
'~~ < naiCmmt~q OF? CIVL ~Cl~

~~~~~~~CE 1INGH0 A 0a08N r.ciAN~~

CL !f NS O

Q7

~~~ (TI ,I

StpLad.KVn with, Sueraeisnic Velocity onl the

$1ufvc o _Ma~ 1qtic-P last ic Half~-Space

I.-by,

1i Blae.cb r A, M~attlieWo

O ffice of Npal :Rsearch

38

.,,o ,Deicembher 1965

0 0 4 r ue~tioif Whl r r it~ r~o i lor any' r%r-,



Qlolumbia nibe itp
intfje( tp ot3 etuork

DEPARTMENT OF CIVIL ENGINEERING
AND ENGINEERING MECHANICS

KAI

Step Load Moving with Superseismic Velocity on the

Surface of an Elastic-Plastic Half-Space

by

H. Ho Bleich and A. T, Matthews

Office of Naval Research
Project NR 064-428

Contract Nonr-266(86)
Technical Report No. 38
cu-4-65 ONR-266(86)-CE

December 1965

Reproduction in whole or in part is permittud f,,r ax,, purpose
of the United Statcs Government

7 [i ] I I . . . .' ... . . . " -



ABSTRACT

The plane strain problem of a step load moving with

uniform superseismic velocity V > c on the surface of a

half-space is considered for an elastic-plastic material

obeying the von Mises yield condition.

Using dimensional analysis the governing quasi-linear

partial differential equations are converted into ordinary

nonlinear differential equations which are solved numerically

using a digital computer. To overcome computing difficulties

asymptotic solutions are derived in the vicinity of a singu-

lar point of the differential equations.

Typical numerical results are presented for selected

values of significart non-dimensional parameters, i.e. of

the surface load po/k, of Poisson's ratio v , and of the

velocity ratio V/cp.
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LIST OF SYMBOLS*

a Functions defined by Eqs. (3-39).

b Functions defined by Eqs. (3-14)-(3-16)
and (3-26).

Cp, C c Velocity of propagation of elastic P-waves,

S-waves and of inelastic shock fronts,
respectively.

F Plastic potential, Eq. (2-1).

G Shear modulus.

J ,i Invariants of stress.
1 2

k Yield stress in shear, Eq. (2-1).

_2 I+v>
K (i-2v) G Bulk modulus.

L >0 Function related to inelastic behavior,
Eq. (2-36).

p(x-Vt) Surface pressure.

PE' P P 0  Intensities of step load surface pressure.

R Variable defined by Eq. (2-19).

s , s Principal stress deviators.
1 2

S Sy, s.. Stress deviators with respect to axes1J x,y, etc.

t Time.

Sv Components of particle velocity and
x y x Y acceleration in x and y directions,

respectively.

V Velocity of surface presssure.

*) Other symbols, which are used in one location only, are
defined as they occur.
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x, y Cartesian coordinates, Fig. 1.

x = - sin2 : Nondimensional expression.
2G

X , XS  Values of X at P- and S-fronts, respectively.

S -s
S1 +s Nondimensional stress variable.

1 2

y Angle between the directions of s1 and
of the position ray of an element, Fig. 4.

-3 Small quantity for purposes of asymptotic

expansion.

a, Av, AT, etc. Increments of a,v,T, etc. at a front.

E - Small quantity for purposes of asymptotic
expansion.

E: ijStrains, strain-rates.

7- Small quantity for purposes of asymptotic2 expansion.

e Angle defining direction of the principal
stress a, , Fig. 4.

> 0 Function related to inelastic behavior,

Eq. (2-8).

V Poisson's ratio.

E x - Vt Variable defined by Eq. (2-13).

p Mass density of medium.

ai. Stresses, stress rates.

a , 2 , a Principal Stresses.1 2 3

-Shear stress.
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Position angle of element, Fig. 4.

OP' 0S' q Position of the elastic P- and S- and
of the inelastic shock fronts,
respectively.

, 2 , 0 , 4 Limits of inelastic regions.
1 2 3 4

Differentiation with respect to 4.
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1. INTRODUCTION.

The two dimensional steady-state problem considering the

effect of a pressure pulse p(x - Vt) progressing with the velocity

V on the surface of an elastic half-space, Fig. 1, has been

treated by Cole and Huth [1] for a line load. By superposition

their solution may be used to find the effect for &ny other

distribution p(x - Vt). The equivalent problem for linearly

viscoelastic materials was treated by Sackman [2], and Workman

and Bleich [3], in the superseismic and subseismic ranges,

respectively. The present paper considers the problem again,

but in an elastic-plastic material subject to the von Mises

yield condition. In this material thF problem becomes non-

linear, so that superposition is not permitted and each pressure

distribution p(x - Vt) poses a separate problem. The present

paper treats only the case of a progressing step load

p(x - Vt) p 0oH(Vt - x).

Interest in steady-state problems is not only due to the

fact that they are natural stepping stones towards physically

more meaningful, but more complex nonsteady problems. In the

elastic case Miles [4] has considered the three dimensional

problem of loads with axially symmetric distribution p(r,t)

over an expanding circular area on the surface, Fig. 2. He

has demonstrated that the plane problem [1] is the asymptotic

-1-



solution for the three dimensional one in the region near the

wave front. This gives rise to the expectation that the

situation in other materials may be similar. This motivation

for the search for steady-state solutions limits interest to

those which do not violate conditions which asymptotic solutions

of three dimensional problems must satisfy.

The conditions to be imposed on steady-state solutions

to eliminate any which are not asymptotic solutions of the

problem in Fig. 2, or of a similar one, can easily be recognized

in the elementary example of a half-space of an inviscid com-

pressible fluid loaded by a uniform pressure pulse p, which

progresses with supersonic velocity, V > c. There is an obvious

solution, Fig. 3a, in which the load produces a plane wave of

intensity p progressing with a front inclined at the appro-

priate angle 4, sin' c However, this is not the only
V

steady-state solution. An alternative is a plane wave, the

front of which is inclined at the angle 180 °0 - . Combinations

of the two solutions are also correct steady-state solutions.

To find states generated by the application of a progressing

pressure on the surface only, it can be reasoned that solutions

which include the wave front shown in Fig. 3b can not apply

because the medium ahead of the front shown in Fig. 3a should

be undisturbed when the applied load advances from the left

with supersonic velocity. Further, the transient supersonic

-2-



solution being irrotational without a singularity in pressure

or velocity at the wave front, the same must hold in the steady-

state. This reasoning leads to unique steady-state solutions

for fluids and also for elastic materials in supersonic and

superseismic cases, respectively. An equivalent approach will

be utilized in this paper

In elastic-plastic materials different sets of differen-

tial equations apply in the elastic, or neutral, and in the

plastic regions. The fact that these regions have moving, a

priori unknown boundaries, complicates the solution of dynamic

problems considerably. In the following, the basic equations

will be formulated and solved separately in plastic and in

nondissipative regions. The partial solutions will be matched

to obtain a complete one satisfying the prescribed surface

conditions and additional ones obtained from the requirement

that the steady-state solutions should qualify as asymptotic

for a transient problem of the type shown in Fig. 3. Using

dimensional analysis, similar to the approach used in a simpler

case, [5] permits transformation of the original nonlinear

partial ifferential equations in plastic regions into a set

In subsonic or subseismic cases the equivalent approach is
not fully successful. For example, in elasLic materials the
steady-state solution in the subseismic range is unique for
many, but not for all quantities. Expressions for the hori-
zontal stress and for the velocities contain arbitrary con-
stants which can no- be determined.

-3-



of simultaneous ordinary ones. Their solution in the non-

dissipative case is elementary. Those in the plastic case are

nonlinear and much too complex for closed solution, but they

can be solved numerically requiring the solution of transcen-

dental equations and quadratures, for both of which digital

computers are employed. Break down of the computer solutions

in the vicinity of a singular point of the set of differential

equations made the derivation of asymptotic solutions necessary.

While the solution of the problem is obtained without

overt use of characteristic methods, it is actually dependent

on the hyperbolic character of the quasi-linear differential

equations. As a matter of fundamental interest it is proved

in Appendix B that the steady-state problem in plastic regions

is hyperbolic for superseismic velocities V > cp.

---



2. FORMULATION OF THE BASIC EQUATIONS.

Figure 4 indicates the half-space and a system of Cartesian

coordinates. The x-axis is in the direction of motion of the

step load, the y- and z-axes are normal to the surface in and

out of the plane of the figure, respectively. The analysis

considers the case of plane strain, cz = 0, when the velocity

V of the step load is superseismic, i.e. larger than the largest

elastic or plastic wave velocity, which is the one of elastic

P-waves in the material. Throughout the analysis it is assumed

that the strains and velocities are small, so that their higher

powers may be neglected in comparison to linear terms.

To describe the behavior of the elastic-plastic material

the yield function F is introduced

F J' - k2  (2-1)
2

where i is the invariant
2

Js. s (2-2)
2 2 1J jD

and the value k > Q is the yield stress in shear.

The behavior of an element of the material is defined by

A -5-



the following statements.

1. The value of the function F may never be positive

F < 0 (2-3)

2. If, in an element of the material at a given instant,

F< 0 (2-4)

the rates of change in stress and strain are related

by the conventional elastic relations.

3. Howe-er, if the yield condition

F =0 (2-5)

is satisfied, three possibilities exist: a., in the

next instant of time the material may be in a state

of plastic deformation; b., it may be in a state of

elastic unloading; c., it may be in a neutral state.

a. If the material is in a state of plastic defor-

mation

F = 0 (2-6)

-6-
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the total strain rate will be the sum of an elastic

and a plastic portion

• E 'P3.3 = E..j + '.. (2-7)

E
where e.. is obtained from the conventional elastic

13

relations, while, based on the concept of a plastic

potential,
P )FC.j =  ij(2-8)

13 cc ij

? which must be positive

?'> 0 (2-9)

is an a priori unknown function of space and time,

to be found as part of the solution of the problem.

b. In case of elastic unloading F < 0 holds, and the

elastic stress-strain relations apply.

c. In the neutral state F vanishes as in case a., but

neither energy dissipation nor permanent defor-

mation occurs, and the elastic stress-strain

relations apply. In the present problem neutral

regions of a particularly simple type will be

encountered in which neither the stress nor the

---



strain changes, Ci 0.

For the purpose of this paper it is convenient to combine

elastic and neutral regions, which will be called "nondissipative",

as orposed to plastic regions, where h > 0 , indicating that

energy is dissipated. In the nondissipative regions the changes

in stress and strain are governed by the elastic relations,

while in plastic regions, Eqs. (7) and (8) apply. Formally,

the equations in nondissipative regions can therefore be obtained

by substitution of k = 0 into the differential equations derived

below for the plastic regions, and by replacing the conditions

F = F = 0 by the inequality (3).

Substituting Eqs. (7) and (8) and the elastic stress-

strain relations into the relation

i -2 (v + v. ) (2-10)
~ij 2 i'j '

the following constitutive equations are obtained for the case

of plane strain

1 l-2v "v
2S + 6(l TGJ + 'As -

(2-11a)

1 1 - "DV I

2G y 6+v)G + y Y

-8-



+G + ' - -
I-

2G + 2 y x(2-11b)

1 s + l-2v2G +s)- "6(I+v)G y s~+s) =02G x Y 1__7_ J, + s (s + s y

J is the first invariant of stress, s, s and v v

are, respectively, the stress deviators, and the components

of the particle velocity in the x and y directions.

Further, there are two equations of motion

Sx +1 )v Tx
x-- 6 x 6+ 6y- t

(2-12)
6S 1 O% I

+3 + y x

Equations (11) and (12) and the respective requirements on F

and h complete the formulation except for initial and boundary

conditions.

In the steady-state problem of a half-space subject to a

surface pressure p(x,t) , the latter and all expressions for

stresses, velocities, etc., in the solution must be functions

of

=x - Vt (2-13)

Equations (11), (12) may therefore be reduced to a set of partial

differential equations in the two independent variables and y

-9-



V Sx V1-2v)G1 J x

- S Y- l1v) -i- + \ s --~~ ~ -T lvG%- +  ---=__
2G By6(1A-G Y (2-14)

v 6[Vx 1+

+ + + - (s + s 0

S x +1 + J T Vx

(2-15)

3 3-pV

In plastic regions the additional equation F = 0 applies,

so that there are a total of seven relations for the seven

unknown quantities sx, s y , J, V x, vy and -A > 0. In non-

dissipative regions Eqs. (14), (15) apply, but the function

-A vanishes identically, A - 0, while F must satisfy either

F < 0, or the two conditions F = 0, F < 0 simultaneously. In

-10-



the nondissipative case there are only six differential equa-

tions and six unknown quantities. The complete solution of the

problem is to be obtained from the six differential equations

(14), (15) and the applicable relations on X and F, subject to

appropriate boundary or initial conditions at the surface and

at the junctions of the as yet unknown regions.

It is demonstrated in Appendix B that the system of

differential equations in plastic regions is hyperbolic for

the case under consideration, V > c., there being four char-

acteristic directions which, due to the nonlinearity, are

stress dependent. The problem in nondissipative regions [l]

is also hyperbolic, but without the stress dependency. With-

out the subdivision of the domain into regions of unknown

extent, e.g. in the purely elastic superseismic problem [1],

uniqueness could be established by available theorems on the

initial and boundary conditions required. In the present case

of mixed regions of unknown extent no such general theorem is

available, and the question of uniqueness of transient as well

as steady-state solutions can not be answered in general. For

the solution obtained here uniqueness will be demonstrated by

detailed examination of all possibilities for solutions which

satisfy the various conditions listed below.

1. On the surface, y = 0, a step pressure p = PoH(Vt - x)

-11-



normal to the surface is applied, so that, with

reference to Eq. (13)

p for < 0

G= (2-16)

0 for > 0

while

' -0 (2-17)

2. It is known from a general study of elastic-plastic

wave propagation [6] that the largest characteristic

velocity possible is cp, the velocity of elastic

P-waves. All stresses and velocities must therefore

vanish outside the wedge formed by the negative a-axis

and the P-front which is inclined at the angle

= - sin-' [V 2l] (2-18)

with the -axis, Fig. 5.

3. While the character of the solution of the transient

elastic-plastic problem near = y = 0 is not known,

-12-



in the corresponding elastic problem no singularity

occurs in the region of nonvanishing solutions for

stresses and velocities. Subject to later confir-

mation that the steady-state problem permits solutions

without singularities such solutions are prescribed.

It is subsequently seen that they exist, and are

unique.

To apply dimensional considerations new variables

R = 2 + Y2  (2-19)

= cot -' (6-) (2-20)
y

are introduced. The differential equations and the various

additional conditions which determine the solution contain

only the dimensional quantities: p, V, G, k, p and the

coordinate R. However, three of these six quantities can be

expressed by three others and by three nondimensional para-

meters. A suitable independent set of dimensional quantities,

po V and R, is used, while the remaining quantities enter
2

the problem only in the nondimensional combi
n atio n -- -

.. .... ... .. G k

and P. The stresses, velocities and the quantity A in

terms of functions of nondimensional variables become

J-13-
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pp

si -pof( PV G PkO-  (2-21)

v. = Vf( ... , ) (2-22)

_ V f(), ... , p (2-23)
Rp o

The first two relations satisfy requirement 3. that

stresses and velocities are not singular at R = 0 The

quantity ? has a singularity for R = 0 , but this is not

objectionable becaus, only its sign, not its value is of

physical significance.*)

Using the new variables R, , and noting that the

expressions (21), (22) are not functions of R, one finds for

the derivatives in Eqs. (14), (15)

sins d
__ - R d(2-24)

cos d (2-25)Y- R do

In this fashion the partial differential equations (14), (15)

in and y become ordinary ones in the variable 0. Because

of the manner of solution to be employed the unknowns s,, s
y

*) In addition, as 'A does not occur in the elastic case used

as guide one can conjecture that it may show the same behavior

in a transient problem.

-1--



and - are replaced by three new dependent variables s , s
1 2

and 9,

S = S COS 2 + S sin2 9 (2-26)

S = S cos 2 a + s sin2 e (2-27)Y 2 1

T = (s - 2 ) sin 6 cos e (2-28)1

s and s are the two principal stress deviators while 9
1 2

is the angle between the direction of s and the horizontal,1

Fig. 4. Introducing further the angle y between the direction

of s and the position vector, Fig. 4,

(2-29)

the six differential equations, (14), (15) become finally

s' cos 2 9 + sj sin2 e - (s - s ) 9' sin 29 +
1 2 1 2

l-2v J, + L(s cos 2 2 + s sin 2 e) = i2G

3(l+v) 2 1 V x

(2-30)

s' sin2 0 + s1 cos 2 9 + (s - s ) Of sin 20 +
1 2 1 2

1-2v c~ 2 0 + S =o2@ 2G V o+ Jt + L(s s+ cos) 2G v cot +(+v) 1 1 2 V y

(2-31)

-15-



l-2v 2G (vI cot - Vt) (2-32)

(St - S') sin 2e + 2(s - s ) et cos 20 + L(s - s ) sin 2e =
1 2 1 2 1 2

2G (V' cot V)
V X y

(2-33)

s' cos e sin y + st sin e cos y - (s - s) et cos ( - e) +
1 2 2

+ I sin k J' = - pV V sin 0
31X

(2-34)

s' sin e siny - st cos e cos y + (s - s )e sin (7 -e) +
1 2 1 2

1 Cos = - pV v' sin
3 Y

(2-35)

Primes indicate differentiation with respect to 0, and L is

related to ?\,

2GR (2-36)-V sin 0 2-6

The function L is subject to the same conditions as -A, i.e.,

L > 0 in plastic regions, L = 0 elsewhere.

The expression for the plastic potential in these vari-

ables is

S _ I. /,-, -, '\

F S2 I S + S 2  _k21 1 2 2

-16-



In plastic regions Eq. (6) requires F = 0, giving the additional

differential equation

(2s + s ) st + (s + 2s ) s= = 0 (2-38)
1 2 1 1 2 2

The unknowns v' and v' can be eliminated from Eqs. (30)-x y
(38) without differentiation. Using the symbol

X F X(O) = sin2 0 (2-39)

the operations

Eq. (4 5a) = Eq. (30) + Eq. (31) - Eq. (32) (2-40)

Eq. (45b) = - X Eq. (32) + sin 0 Eq. (34) - cos i Eq. (35)

(2-41)

Eq. (45c) = (sin 20 [Eq. (31) - Eq. (30)] + cos 2e Eq. (33)) +

+ cos (y - e) Eq. (34) - sin ( - e) Eq. (35)
(2-42)

Eq. (453) = X (cos 2e [Eq. (31) - Eq. (30)] - sin 20 Eq. (33)) +

+ sin (-y - e) Eq. (34) + cos (y - e) Eq. (35)

(2-43)

Eq. (45e) = Eq. (38) (2-44)

lead to the following set of five differential equations for

plastic regions:

-17-
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3. SOLUTIONS FOR INDIVIDUAL REGIONS.

As a first step towards the construction of overall

solutions, expressions for individual regions must be derived.

The latter will be combined in Section 4 to find the solution

for the entire domain.

a) Nondissipative Regions.

Equations (2-46) are linear and homogeneous so that the

derivatives of the stresses s', st, J1 and the value (s -S )07
1 2 1 1 2

vanish, unless the coefficient matrix in Eqs. (2-46) is

singular, requiring

X(l -2X) [ 1 + (1 - 2X)(l - 2v)] = 0 (3-1)

Equation (1) has two significant roots,

X = 1-v (3-2)P 1-2v

and

XS = (3-3)

-19-



and a spurious one, X = 0 Substitution of the two roots

X Pand X into (2-39) furnishes the two locations

Cp

Pp = 7 - Sin -, C (3-4)v

= 7r - sin-, CV (3-5)

where cp, cS are the velocities of P- and S-waves, respectively.

In all locations @ or S the values s:, S1, J, (s - s )e
]S. 2 1 1 2

vanish, so that in nondissipative regions the stresses must

remain constant except at the locations Op and kS' The latter

being the potential locations of elastic P- and S-shock fronts,

respectively, it is known that discontinuities in stresses and

velocities may occur at these locations and may, therefore, be

part of the complete solutions to be constructed. The follow-

ing pertinent details will be required subsequently.

(1) The P-front.

Designating the discontinuous changes in the various

quantities at the front by the symbol A, the disconti-

nuities in the stresses oN' cYT = az (normal and tan-

gential to the front, respectively) and in the component

It is due to multiplication by sin 6 in changing variables
and eliminating the velocities.

-20-



vN of the velocity (normal to the front) are proportional

to AN.

v AN
MT 1-v MN 'LVNa - N- (3-6)T- ' ' N - p C p

No other discontinuities can occur in this location.

The changes N  and A T  are of course limited by

the yield condition F < 0 which must be satisfied on

either side of the front.

In the actual solution a P-front will be encountered

only for the special case where the region ahead of the

front is stressless and at rest. The normal to the front

is then a principal direction for the stresses behind the

front, so that y = 0 or 7. Selecting a Rja , corre-1 O

sponds to

7 =  
(3-7)

The value of the other quantities of interest behind the

shock front are

2(1-2v) cf (1-2v) a (l+v) 1

D I CM 3(l-v) '2 3(l-v) J 1 1-v

(3-8)

subject to the limitation

-21-



G 1( - v)k (3-9)

imposed by the yield condition.

(2) The S-front.

At an S-front discontinuities occur only in the shear

stress TN = TT = T and in the tangential velocity vT.

The change in velocity is proportional to AT.

AT (3-10)vT -pc s

In addition, the yield condition F < 0 must again be

satisfied ahead of and behind the front.

The relations between the state of stress on either

side of an S-front in terms of AT and of the variables

s , s, and -y can be obtained in such routine manner
3. 2

that only one result actually used in Section 4 is pre-

sented here.

It is possible for an S-front to occur between two

neutral regions, i.e. regions of constant stress for both

of which the yield condition, F 0, is satisfied. in

this special case the quantities , , J , s and s have1 1 2

no discontinuity at the front, only the direction of the

principal stress changes. The values of the angles y, =

ahead of and behind the front, respectively, are comple-

-22-



mentary

=r-y (3-11)

as shown in Fig. 6

b) Plastic Regions.

In such regions Eqs. (2-45) apply. They are linear and

homogeneous in the values s , s' , etc., and may be satisfied1 2

by

s' = s' = J' = (s - s )el = L = 0 (3-12)
1 2 1 1 2

However, L = 0 implies h = 0 which violates Eq. (2-9).

It follows that in plastic regions the determinant of Eqs.

(2-45) must vanish, giving the "determinantal equation"

(s + s ) 2 (b 2 + b b ) = 0 (3-13)
1 2 2 1

where

b = 2 [1 + (l-2v)(1-2X)] (3-14)

b = cos 2 y + (1-2x)(1-2v) (3-15)
2

-23-



b = (l+v)(l-2X) - 2X (3-16)

and

S 1 -S 2
1 2 (3-17)
1 2

If Eqs. (li) to (17) are substituted into Eq. (13) it is seen

that the latter is a homogeneous quadratic expression in si

Due to the vanishing of the determinant only four of the

five Eqs. (2-45) are independent. By definition L must not

vanish, so that s' . s J' and el can always be expressed
1 2 1

in terms of L,

(3-a) b (s + s) 2L
st = (3-18)
1 3b 2

(3+ ) b4 (s1 + s2) L
s=- (3-19)
2 3b2

+ sin 2y b3 h

S (-2X (3-20)

1(i+v)[b - s b (S +S2 L (3-21)
~. (1-2v) L 2  3 4] 2

Velocities and accelerations may be obtained from the

relations
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- V sin O(s I + s2 )L
- 2G(1 b [b sin(2y-k)- 2b sin t] (3-22)

- V sin O(s I + s2 )L

y 2 2bcos ] (3-3)

VX = sin 0 v (3-24)
x R x

= M sin v' (3-25)
y R y

where

b = (1+v) cos 2y + X(1-2v) (3-26)
4

Since Eq. (13) must remain valid throughout a plastic

region, it may be differentiated with respect to c . This

leads to an expression which contains the first derivatives

of the stresses linearly, so that substitution of Eqs. (18)-

(20) furnishes a linear equation for L. Its solution gives

L as a function of p , -y and of the position angle 0,

3b (1-2X)fX sin 20[4(l-2vXb +b )+b1 (0 +2+2v)]+4b sin 2-Y sin2 2

4 sin 2 q (3+ 2 )(1-2X)b 4(b cos 2y-b fX) +3b b sin2 2y J

(3-27)
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The values of the derivatives s' s; J1 and 0t can1 2 1

be obtained by substitution of Eq. (27) into Eqs. (18)-(21).

In principle Eqs. (18)-(27) permit the numerical deter-

mination of the values of stresses and velocities in the

interior of a plastic region by quadratures if the values on

one boundary of this region are known. The starting values

must inherently satisfy the yield condition, F = 0 , and the

determinantal equation (13). Further, the condition

L > 0 (3-28)

must be satisfied, to assure that the result applies.

c) Discontinuities (Shock Fronts).

It is known that in transient problems one, but just one

type of plastic shock front can propagate in the elastic-plastic

material considered here [6] . However, such a fiont can exist

only in locations where the normal to the front lies in the

direction of one of the principal stresses, while the other

two are equal, and where the yield condition is satisfied.

The velocity of propagation of the front is

SXN1(3-29)
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2 l+v)

where K = 2(12v) G is the bulk modulus. The discontinuity

is restricted to the particle velocity vN normal to the front

and to the first invariant J The change AJ1 must have

the same sign as J

1

S> 0 (3-30)J
1

The other conditions stated define the values of 'y and

T (3, = 3 (3-31)

A discontinuity traveling in real space with velocity c,

Eq. (29), can occur in the steady state problem only in the

location

S- sin () (3-32)

The corresponding value of X is

3(l-2v) (3-33)

The ... " .1i E . (27) vanish , as cxpeccted, for these

values of y, and X.

The possibility of the occurrence of this discontinuity
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(shock) must be considered when constructing the complete

solutions in Section 4. It was actually found that no such

shocks occur, except in the limit, V -> c . However, for
p0

large values of the parameter - defining the surface load,

the solutions come extremely close to the singular values

representing a shock, so that computing difficulties occur.

d) Asymptotic Solutions near Singularities.

As stated in the previous paragraph, numerical difficulties

in the vicinity of = will make the procedure for inte-

gration of Eqs. (2-45) outlined in subsection b unsuitable and

inapplicable if the values of 5 and -y are sufficiently close

to those for a plastic front, = 3, = . To establish

the behavior of the solution of Eqs. (2-45) in such cases, let

3 + A (3-34)

where r, 6 and E are small quantities. Introducing these

expressions into the determinantal equation and into the

differential equation (20) for 0' , retaining only the leading

terms in each of the new variables, one obtains for v
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A2 -a =-ae (3-35)

d 1 + a71 L (3-36)d e 4

Combination of Eqs. (17), (18) and (19) permits the formulation

of a relation for d _de - ' ,

dA 2
de (a 3 A) L (3-37)

These three equations govern the solution in terms of the

three unknowns T), A and L. The derivative of ji becomes

W I 6(l+v) kL
dE: (3-38)

(1-2v) \3 + (3 + 6) 2

while s and s can be found from the yield condition and
1 2

from Eq. (34) once A is known. A solution of the above equa-

tions is valid only if the inequality (28), L > 0 , is satis-

fied.

The coefficients a. are1

a 288(l+v)
S I-8v

48(i+v) I -v.v7
a2 1-2v ~ c

(3-39)
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a 6(5-4v)

a

The terms (l-8v) in the denominator of several coefficients

necessitate exclusion of the case v = 1/8

The three asymptotic equations (35-37) are nonlinear and

do not have closed solutions*). Numerical :ntegration near

= A = i = 0 would again encounter difficulties because of

the presence of the same type of singularity which occurs in

the original differential equations. However, Appendix A shows

that simple expressions exist which descr.be the asymptotic

behavior of the solution of Eqs. (35-37) near c = A = = 0.

These equations being asymptotic approximations for the

original differential equations, the behavior of the solutions

By elimination of L and A one can find, as alternative
to Eqs. (35)-(37), a first order differential equation

c1 7, - (3-40)

Cr 2 -_2

a4  a1 (l+a 4 )

where c = -- c = (3-41)
1 2 2 a

2

valid provided a - 1 (i.e. v /- 1/2).
4
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of the latter is also described by the results obtained in

Appendix A. It is shown that Eqs. (35-37) for v / 1/8 have

limiting solutions consisting of separate branches. Because

the signs of several of the coefficients ai differ for V 1/8,

the two cases have different character.

1/2 > v > 1/8. In this case solutions exist only for c K 0,

which is due to the charact' r of Eq. (35). Noting

a < 0 , a > 0, the left hand side of the latter is a sum of

squares and therefore positive and no real solutions A, r can

exist for c > 0.

Two types of limiting solutions exist, given by Eqs.

(A-3,4,7) and Eqs. (A-8,9,14), respectively.

In solutions of Type 1, r1 is proportional to -c ,

while A , which is proportional to e , is much smaller than TI,

so that approximately A - 0 . The reverse applies for solu-

tions of Type 2, where A is proportional to.,/ -c and

Z 0 . The sign of the square roots is arbitrary, so that in

each case the solution for the respective quantity has two

branches.

Whenever the numerical integration of the original differ-

ential equations, (2-45), approaches k = , the values

and A must approach one of the asymptotic solutions. In

Section 5a, where numerical cases are discussed, the actual

and the asymptotic solutions for A are shown in Fig. 15 for

-31-

^ p



a typical case where v > 1/8 . The values of the stress

deviators si being defined by = 3 + A , and A being a

small quantity, s and s at the terminal point of the1 2

integration (i.e. at the end of the plastic region) must have

a value close to that for = 3, viz.

s 2Z3k S + (3-42)3 2 - 3

The signs in these expressions depend on the branch used in

approaching -> . The value of J is to be determined from
1

Eq. (38). Regardless of the type of solution, Eqs. (A-4) and

(A-9) indicate that L, and therefore j , are proportional
1

1
to - . As the terminal point of the integration moves closer

to e = 0, the integral of ji , i.e. the value j , increases1 1

without upper bound. While si  b and y are practically

constant near the singularity, a very large change in J
1

occurs in a very small angular region. The magnitude of this

change depends on the stopping point, i.e. on the end of the

plastic region. In a plastic shock j is discontinuous, while
1

s, and y remain constant and the solution described above

is quite similar to such a shock, except that the change in

J occurs in a small, but finite region of d . The solution

describes, therefore, a "plastic shock" of finite thickness.

-32-



0 < V < 1/8 • In this case a > 0 , so that Eq. (35) permits
____________1

solutions without restriction on e . A plastic region may

therefore contain the pointi 0 = . It is shown in Appendix

A that for e > 0 solutions of Type 1 apply, Eqs. (A-3,4,7),

where T1 is proportional to /-c , while A < < T1 is linear in

. For e < 0 the solution is of Type 2, A being propor-

tional to /WT , while T1 < < A is linear in c . A solution

which extends continuously to both sides of 0 = 1 must there-

fore follow first the one, then the other type of limiting

solution. However, the two are not continuous in the deriva-

tives, so that an actual solution cannot follow either one

asymptotically to the origin c = 0 as was the case for v > 1/8.

An actual solution must have a smooth transition, contained

in Eqs. (35-37), but lost in Appendix A due to the approxi-

mations required. Figures 17 and 18, presented in Section 5a

in connection with typical numerical results, show the actual

and the asymptotic solutions.

The details of the transition could be obtained by numer-

ical integration of Eqs. (35-37). Even without such inte-

gration, one can already state qualitatively that, just as for

v > 1/8, the quantities si, e,-y will undergo only minor

changes near P = 1. The value - however, wL l change1

radically, it becomes larger without bound, when the solution

passes closer to the point c = = = 0 . Again, the actual
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solution in the vicinity of the singularity may be said to be

a plastic shock of finite thickness.

When the asymptotic solutions were obtained it was ex--

pected that the numerical integration of the original differ-

ential equations could be carried sufficiently close to the

singularity, so that the range of validity of the two solutions

overlaps. Due to the very severe singularity this expectation

was not born out by the facts. To obtain a satisfactory overlap

of solutions, approximate equations, similar to Eqs. (35-37),

but retaining higher order terms, were formed, and integrated

numerically. The details are given in 81. While the solutions

in closed form obtained in Appendix A give a good qualitative

understanding of the shock front of finite thickness described

above, they are not sufficient to find quantitative results,

which can be obtained from the analysis in [8] . For this

reason, combined with the complexity of the refined equations

required for the special case v = 1/8 , no attempt was made to

find an asymptotic solution for this case in closed form.

An important conclusion which may be drawn from the char-

acter of the asymptotic solutions concerns the question whether

a plastic shock may occur in the interior, or at the boundary

of a plastic region. If this would occur the change in value

of J in an interval including the shock location would be

infinite, because the integral of --. is divergent at the
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point A --- 0 This of course can not occur in an
PO

actual case where the surface load -- is finite, so that only

the possibility of a shock front between nondissipative regions

is to be considered in the construction of solutions.

-35-

• .. . .. . ... 
. . . . . . . _ . .



4. CONSTRUCTION OF SOLUTIONS.

In Section 3 a number of partial solutions were obtained

from which the solution of the complete boundary value problem

is now to be constructed. Section 3b gives the differential

equations for the determination of the stresses and velocities

in plastic regions; Section 3a indicates that all unknowns

in nondissipative regions are constants, except for discon-

tinuiies of a prescribed nature at the locations kS and kp

In addition, as discussed in Section 3c, a shock front with

plastic deformation may occur at the location .

In Section 2 boundary conditions, and additional require-

ments, which the solution must satisfy, were formulated and

discussed. Equations (2-16 and 17) for the prescribed surface

load in terms of the variables si , J -y and ' require

either

( T + 7r)
s (T)+ - (r) = (4-la)+ 3 - -Po 4-a

or

s + J1 (,r+ = - Po0()=0 (4-1b)2 3 - P

A further boundary condition requires that all quantities
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must vanish for < p , Eq. (2-18). This condition, in

conjunction with the fact that a plastic region or a plastic

shock can exist only in locations where the yield condition

is satisfied, permits the conclusion that the change in stress

from vanishing values for 0 < 0p to nonvanishing values

must be ncndissipative. However, in nondissipative regions

the stresses are constant, except for discontinuities at

= p or 0 = S" A solution in which plastic deformations

occur at all can therefore si.art only in one of the two ways

described below.

Case 1. Discontinuities occur at the P- and S-fronts,

where the discontinuity at 0p satisfies the

inequality

CiI4+)] < f3(l-vk (4-2)

while the discontinuity AT ;t 0S is of such

magnitude that the yield condition

+) (4-3

is satisfied. The symbols or indicate

approach from above or below, respectively.
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Case 2. A discontinuity occurs at the P-front, des-

cribed by Eqs. (3-7,8), so that the yiel.d condition

is satisfied for 0 , i.e.

P

= 3(l-v)k (4-4)

In Case 1, plasticity may occur only in locations 0 > Os
while, in Case 2 it may occur already for 0P < 0 < 0S *

As a next step in the search for solutions it is helpful

to consider the latter as function of the nondimensional sur-
po

face pressure , while Poisson's ratio v and the velocity V

are considered constant. For sufficiently small values of p0
p0

the solution must be entirely elastic, but as E- increases plastic

regions must occur and should form a gradually changing pattern.
PE

Based on [1] one can find the limiting value -j- , above which

entirely elastic -olutions are no longer possible.

The elastic solution, shnwn in Fig. 7, has two discon-

tinuities at kp and 1S with regions of constant stress

between p and 0S and between qS and the loaded surface

r = Depending on the values of tc parameters v and
C p

the yield condition may be reached in either of the two regions
PE

resulting in different expressions for If the region
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0> OS controls,

E [_3N 2  1(4-5a)
k 3N2 - 3N cos 20s + (l-v+V2 ) cos 2 20 4

where

N [cos 20S + (1-2v) cos 2(0 s - Op)] (4-5b)

while

PE 3N 2  2 (4-6)
k (l-2v) 2 cos2 20

if the region k < OS controls. The decision which region

controls can be made by comparing the values given by Eqs. (5)

;.id (6), the smalle. one controlling. Designating as Range I

the combination of values v and V where Eq. (5a)controls,

one finds that in this range

2-v
p (1-2) 2-(-V > (l-v) (1-3v) 47
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The remainder of the range will be designated as Range II.

Both ranges are shown in Fig. 8. The limiting values -- are

shown in Fig. 9 for several values of v as function of V_
cPE P

If the surface load exceeds the value -- by a sufficiently

small amount the elastic-plastic solution should differ only

slightly from the elastic one, which can be used to predict

the character of the solution. Because the situations differ,

the Ranges I and II must be discussed separately.

a) Solutions in Range I.
PE

In this case-k is given by Eq. (5a) and the yield stress

in the elastic solution is reached only in the region 0 > 0S

The discontinuity a satisfies then the inequality (2) and1

c'ntinuity requires that this inequality will still apply for

a range of values -V- -o > - ,where P is a limiting

value, not yet known. in this range the start of the solutions

will be according toCase 1 and plasticity can therefore occur

only in the region k > 0S

Using an indirect approach, the determination of plastic

Po PL
solutions for values - <k - begins with the selection of a

pair of starting values a and AT near those for the limit-1

ing elastic case. Experience and continuity considerations

indicate ihat the value ! a I should be larger than I o 111

corresponding to PE given by Eq. (5a). A plastic region can
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start only at a point d1 which is a root of Eq. (3-13).

inequalities derived in Appendix B, Eq. (B-23) indicate that

this equation has one, but only one root 0 > 0S Starting

11integration at 0 = 0 1 the solution in the interior of the

plastic region is determined from Eqs. (3-18 to 27). The

plastic re~,ion can be extended as long as Eq. (3-27) gives

values L > 0, but the plastic region may be terminated at

will at any earlier oction 2 . The solution for 0 > ck2 2

is then nondissipative, i.e. all quantities are constant. If,

therefore, in the process of forward integration a value 0 is

encountered which satisfies Eq. (1), the plastic region is

terminated and a solution for one value of the surface pressure
P0-P- has been obtained. Repeating this process with gradually

increasing starting values I a I the whole spectrum of values
1

satisfying the inequality (2) can be explored. Solutions, if

any, obtained in this manner will have the configuration shown

in Fig. 10, i.e. discontinuities at 0p and 0S and a plastic

region 7T > > b > 0 S There will be an elastic region

of constant stress from 0p to 0S and two neutral regions to

either side of the plastic one.

Postponing the discussion of uniqueness and of alternative

configurations, one can proceed in a similar manner when the

solution begins at 0 = 0p as indicated in Case 2. Starting

with a value a according to Eq. (3), the yield condition is1

vw. - -



satisfied for any value p > p , so that the determinantal

equation (3-13) according to Eq. (B-23) now has two roots,

S1ZOS I at which plastic regions may start. Both roots

must be explored. If the larger one, S , _eads to a

solution, it has a configuration as shown in Fig. lla. Start-

ing, alternatively, with the smalle sot, 0p < 0 < 0S I

several possibilities are to be investigated. The integration

may be continued as long as L > 0 to see if a value 0 = 0 or

T can be reached. The configuration of such a solution, if
2

any, is shown in Fig. llb. Alternatively, the plastic region

can be terminated at will at a point k < where 0 #0, 7

2 S

The plastic region will then be followed by a neutral one for

values k> . The inequalities on the roots of Eq. (3-13)
2

indicate that there is just one more root >S , when a

second plastic region can begin. Starting integration at

this point may lead to a terminal location 0 , where 0 = 0
4

or - The configuration of such a solution, if any, Fig. llc,
2

contains a P-front and two plastic regions, separated by three

neutral regions There are, however, further possibilities.

The neutral region > 0 which follows the first plastic
2

one may be terminated at kS by an elastic change in shear,

AT which is restricted in sign and in-ensity by the ,,i

condition. If AT is such that F 0 , the region

> 0, becomes elastic. This might permiL values 0 = 0, 1
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at the surface, the corresponding solution having the config-

uration of Fig. 12. Finally, the important case must be con-

sidered where the value of AT is such that F +) vanishes

again, a situtation discussed in Section 3-a-2. In the latter

case there is again a neutral region for 0 > OS ' which can

be followed by a plastic region because Eq. (3-13) has a root

> OS giving a starting location. The configuration of a3 S

solution obtained in this manner is shown in Fig. 13.

b) Solutions in Range II.

In this range is given by Eq. (6) so that in thelImti rngca e ,_-

limiting case PO - k- yield is just reached in the region
P < 0 \ 0S The discontinuity o at the P-front must

1

therefore satisfy Eq. (4), which will also hold for neigh-

boring elastic-plastic solutions where -- exceeds -- slightly.
k k

These solutions will therefore start at 0 = qp according to
Po P'Eth

Case 2. In the limiting solution for k -- t region

> OS is below yield and continuity requires this to hold

in neighboring elastic-plastic solutions, so that the plastic

region must lie in the range 0p < 0 < 0 < 0S " The con-

struction of solutions, Fig. 12, begins exactly as for -k-> -

For each terminal point 0 2 the strength ot the dlscontinuity

AT at the shear front is determined by the requirement that

9 = 0 or 7T subject to the limitation F LP + ) < 0 When
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the required value AT violates this condition a second plastic

region for 0 > 0S is needed, i.e. the configurations shown

in Figs. llc and 13 are to be investigated.

c) Alternative Solutions, and Considerations of Uniqueness

and Existence.

In the absence of a uniqueness theorem it is vital to

demonstrate that configurations other than those shown in

Figs. 10 to 13 can not lead to solutions. It has been shown

in Appendix B that Eq. (3-]3), which is also the equation for

the characteristic directions, has for a given state of stress

one root , no more no less, in each of the intervals

0P < 0 < S and S < 0 < ir . If a plastic region ends at a

location 0i in one of these intervals, the state of stress

in the remainder of the interval k > 0i is necessarily neutral

and uniform, and equal to the one at the terminal point 0i of

the plastic region. ki is therefore the only solution of

Eq. (3-13) for this state of stress in the particular interval,

and no more than one plastic zone can therefore occur in any

interval.

In Section 3-c the possibility of discontinuous plastic

shock fronts has been indicated and their occurrence must be

considered. First, it has been concluded at the end of Section

3-d that a plastic shock can not occur in the interior of a
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plastic region nor at its end, so that a plastic shock, if it

occurs, must lie between nondissipative regions and be quite

separate from a continuous plastic region. Further, such fronts

can not occur in an interval %p < 0 \ 0S or 0S < 0 < - where

a plastic zone occurs, because Eq. (3-13) which is satisfied

in the location of a plastic shock would then have two roots

in the same interval. This reasoning leaves only the possi-

bility of configurations similar to Figs. 10 to 13, where one

of the plastic zones is replaced by a plastic shock. For v > 1/8,

where < OS , this can not occur (except in the limit V -> C)

because Eq. (3-31) requires that the principal stress be normal

to the shock front , while the actual principal stress in the

neutral region behind the P-front is normal to the latter.

For v < 1/8 , 0 > Osso that configurations similar to Figs.

10 to 13 might occur where the plastic region degenerates into

a shock at 0 > OS This can not happen, however, because

the direction of the principal stress behind the shock front,

at 0 > 0(+) , would have to be normal to this front, which

contradicts the requirement 0= 0 or -H , on the surface,
2

except in the limiting case V = . Discontinuous shock

fronts can therefore not occur at all for finite values of the

velocity V, but valuesof -y and where the conditions (3-31)

In this case the surface pressure is applied simultane-
ously everywhere on the su-face, producing the trivial result
of a P-wave followed by a plastic shock, both having horizon-
tal plane fronts.
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are nearly satisfied are encountered. The asymptotic behavior

of the solution near = b in such cases was studied in

Section 3-d, and examples are given in Section 5.

The preceding discussion shows that for finite values of

no plastic shock front can occur and that there can be no

more than one plastic region in each of the intervals

0P < 0 < 0S OS \ 0 < 7r Combined with elastic disconti-

nuities at the P- and S-fronts, only the limited number of

configurations shown in Figs. 10 to 13 are possible.

The numerical analysis by digital computer was set up to

investigate all possible alternatives, i.e. the configuration

according to Fig. 10 if the starting value a satisfies Eq.
1

(2) and any of the alternatives shown in Figs. 11 to 13 if a
1

satisfies Eq. (3). While none of the configurations shown in

Figs. 11 a-c ever furnished a solution, no general proof per-

mitting elimination of these cases is available.

In Range I solutions which start according to Case 1,

have the configuration of Fig. 10. For fixed values of v and

V, these solutions form a family which depends on one parameter,

the selected starting value I a > I GlE I It was found that
PO

the surface load- increases monotonically with I a until1

the limit, Eq. (4) for G is reached, which leads to a limit-

ing value of the surface load-- . However, no analytical

proof of the monotonic increase of -o is available.
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The solutions found for Range I, which start according

to Case 2, had always the configuration shown in Fig. 13.

These solutions also depend on one parameter, viz. the stopping

point 2 of the plastic region between p and hS . If 1'

is selected only slightly larger than , the solution must
1

obviously be very close to the limiting one for Case 1, so
Po PL

that in such a case -- > - and there is a smooth transition
k k

from the configuration according to Fig. 10 to that of Fig. 13.
P0

The numerical analysis indicated that the surface load 
PO

increases monotonically with 2 As 2 approaches a limit-2 2 P

ing value the surface load goes to the limit PO 4 c , for

reasons explained in Section 3-d.

In Range II, only solutions which start according to Case

2 were found, their configurations being as shown in Figs. 12

and 13. Figure 12 applied for values -E-< P- -L- where L

is a bound. The corresponding family of solutions depends on

the stopping point 6 of the plastic region. The bound L-
2 k

is reached when the elastic region for > 0 S becomes neutral.
P0

For larger values of - Fig. 13 applies and all statements

made in Range I for this case apply.

In Range I as well as in Range II, combination of all

solutions obtained numerically furnished one, and only one
Po PE

solution for each value of P > -E However, no general

proof is available that this must De so. Existence and
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uniqueness of the solutions obtained must therefore be demon-

strated for each combination of values v and V.- by actualc p

computation of the families of solution according to the con-

figurations shown in Figs. 10 to 13.
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5. RESULTS AND CONCLUSIONS.

a) Discussion of Typical Numerical Results

The numerical integration of the simultaneous differential

equations (3-18 to 21) in plastic regions was accomplished by

a Punge-Kutta forward integration scheme of fourth order [9]

Computations were programmed in Fortran II for an IBM 7090

digital computer. Only typical results representing the various

configurations will be given here for the case of the velocity
P0

V = 1.25 cp for several values of Po and v An extensive

tabulation of additional results is given elsewhere, [8].

Significant differences in the solution for large values

occur, depending on whether v Z 1/8 , so that examples for

both situations are presented.
Po

For v = 1/4, V = 1.25 cp the limiting value - up to

kkwhich the solution is entirely elastic is -E =_ .0 Fgr

14a shows the detail of a solution for a slightly higher value

of the pressure, Po = 2.61 > - . The configuration has one

plastic region in agreement with Fig. 10. The limiting value

for this configuration isk- = 2.65 - When the surface pressure

exceeds this value, the configuration contains two plastic

zones and is of the type shown in Fig. 13. The details for the
o

value .o = 3.58 are shown in Fig. 14b. Further solutions fork 35
other values of P- can be obtained by varying the end point
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0 of the lower plastic region.2

However, computational difficulties arise when the end

point 2 approaches the value q , which has in the present

example the value = 339570 . As explained in Section

3-d a very rapid change occurs in the quantity j , nearly1

a shock front, when , with the result that the corres-
2

ponding surface pressure will be large. Figure 1.5 illustrates

the result of the measures taken to obtain numerical results

in this range. First the program for the numerical integration

was revised for double accuracy (16 digits). When it was found

that this was not adequate to continue solutions sufficiently

close to = to obtain agreement with the asymptotic solu-

tions, expansions including higher order terms than used in

Appendix A were made and the resulting approximate' differen-

tial equations were integrated numerically This procedure

was successful as illustrated by Fig. 15. It was stated in

Section 3-d that for v > 1/8 there are two types of asymptotic

solutions and the actual solution may approach either one.

Figure 15 shows the quantity S = p - 3 as function of E E c - .

The solution of the approximate differential equations approaches

The details of these numerical comput-ations are contained
in [8].

The expansions indicate that near cancellations of
leading terms up to high order occur, which explains the diffi-
culty encountered.
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the negative branch of the asymptotic solution of Type 2 for

very small values of e. The curve shown is part of the solu-

Po
tion for -=- 10.5. The integral of the original differential

equations even with double precision approaches the asymptotic

solution not well and is in this range inaccurate. However, the

solution of the original and of the approximate differential

equations agreed very well for e> 5 X 10 -s, which fact could not

be shown in the scale of Fig. 15. The complete results for the
p0

case -- = 10.5, corresponding to Fig. 15, are shown in Fig. lc.

Solutions for other values of v and V are essentially

similar, except for solutions for large values of -- when
k

v < 1/8 , because the asymptotic behavior near q = - changes.

To illustrate such a case, Figs. 16a-c give solutions for v = 0,

V = 1.25 cp where !- = 1.41 and - = 2.40 . Figuresk k
16a, b apply respectively for k< - = 2.17 < P- and
PL <Po kkPO

- k 3.70 . Figure 16c finally applies for-- = 8.02

a case where the numerical integration of Eqs. (3-35 to 38)

encountered computing difficulties.

As discussed in general in Section 3-d, in the last case,

the singular angle is situated in the interior of the upper

plastic region, and the asymptotic expressions for A = p - 3

= -7r/2 as function of c= - differ for E < 0 and,

e > 0 , and are discontinuous at c = 0 . Figures 17, 18 show

A and r given by the asymptotic expressions and the actual
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integral obtained. For the value -- = 8.02 considered, the

approximate differential equations obtained by expansion of

Eqs. (3-35 to 38), [8] , had to be used. Figure 17 also shows
PO

a solution for a lower value k where Eqs. (3-18 to 21) could

still be integrated using double accuracy. As stated earlier,
P0

solutions for various values of the surface pressure -- are

obtained by changing the end point k of the lower plastic
2

region. In the range under discussion the computation becomes

very sensitive to small changes in 0 . If an upper bound,
2

which can only be found numerically, is exceeded the integra-

tion no longer leads to a solution because the value e instead

of approaching the value 9 = 900 moves away from it. Figure

17 shows also one of the integrals which does not lead to a

solution.

Solutions in Range II, i.e. for values of v and -

located in the cross-hatched area of Fig. 8, do not differ from
Po PL

those in Range I, except when - < - . As illustration Fig.

19 treats the case v = .35, V = 1.25 cp for the surface pressure

-E< Lk = 4.41 < -- = 6.24 . In this solution an elastic
k k .4<k

region occurs for > 0S"

b) Conclusions.

The effects of a step pressure po progressing with con-

stant superseismic velocity V > c on the surface of a half-
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space have been determined for an elastic-plastic medium obeying

the von Kises yield condition. The steady-state solutions

obtained satisfy additional conditions selected to ensure that

the solutions are asymptotic ones in the vicinity of the front

of the surf-ce load for transient problems of the type shown

in Fig. 2.

In spite of the lack of a general uniqueness and existence

theorem, a unique solution was obtained for each combination
V p0

of the significant nondimensional parameters - , V and-PO

for which numerical computations were actually made. Extensive

numerical results, in addition to the typical ones discussed

above can be found in [8].

The elastic-plastic configuration of the solution differs,

there being three cases, Figs. 10, 12, 13, depending on the
p0

value of the nondimensional parameters. For pressures-P

below a value PE which is a function of V and , the
k c p

solutions are entirely elastic. For larger values of the

pressure, in a range PE-< - - , the solutions contain one

plastic region, the configurations being shown in Figs. 10 and

12. The former, or the latter applies when the parameters v

and are in Range I or Range II, respectively, see Fig. 8.
P PO

For values of the nondimensional pressure-k above a limiting
PL Vvalu_ -k which is of course a function of v and c

two plastic regions occur as shown in the typical configuration
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,I

Fig. 13.

Two significant features common to all elastic-plastic

solutions found should be noted.

1. While in one dimensional plane or spherical problems,

discontinuous plastic fronts occur, [5], [10],

they do not exist in the solutions of the two dimen-

sional problem solved.

2. All solutions obtained contain an elastic discontinuity

at the S-front, in addition to the one at the P-front.

The latter occurs also in one-dimensional problems

and is to be expected from general considerations of

wave propagation. Such considerations also permit

prediction of the possibility of a discontinuity in

shear similar to the one in the elastic solution. The

solutions found show that this discontinuity occurs in

all cases, a fact which can not be established by purely

qualitative considerations.

In view of the asymptotic character of the solutions ob-

tained, it must be expected that these two features will be

found also in steady-state solutions for non-step loads, Fig.

1, and in transient cases, Fig. 2.

The present paper is the first one to give results for
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multidimensional wave propagation in elastic-plastic media,

except for purely numerical, finite difference schemes*) in

which discontinuities can not appear. The solutions found in

the present paper permit checks on the effectiveness of these

numerical schemes, particularly in the vicinity of disconti-

nuities in the actual solution.

As a by-product of the steady-state solution for the step

load, the character of the partial differential equations for

the general case was examined in Appendix B. For superseismic

velocities V >c p the equations were found to be hyperbolic.

The method used in this paper is also applicable to cases

with other yield conditions. The equivalent problem for a

yield condition

J2 - a 2 j =0 (5-1)

has been treated concurrently with the present problem [12].

Computer programs, not published, or given limited dis-

tribution only have been developed by a number of organizations
for various purposes, an example being [11]
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APPENDIX A - Asymptotic Solution of Equations (3-35,36,37).

The asymptotic equations (3-35,36,37) have been derived

without assumption on the relative magnitude of the quantities

A and E:, the leading terms in each quantity were retained

in each equation. Further simplifications of the asymptotic

equations are possible by studying separately the various

possibilities for the relative magnitude of r and A

If r and A are of equal magnitude, Eq. (3-35) requires

that in the limit E-*O the relations

=cH \ = c\/- (A-l)
1 2

hold, where c and c are constants, This assumption leads,
1 2

however, to a contradiction. Substituting Eq. (A-l) in Eq.

(3-37), a 31 2  is in the limit negligible compared to A
3

so that

L (A-2)

Substituting this expression and the value of T info Eq. (3-36),

the term unity is negligible compared to a 9L . The result

44
requires a4= -1 , valid only for v = V/2 . This value

corresponds to an incompressible material where cp = C, so
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that the superseismic problem to be studied here, does not exist.

Solutions according to Eqs. (A-i) do not apply here.

Solutions of Type 1. If, in the limit E : 0, >>A , Eq.

(3-35) requires

S 2E (A-3)

a1

The unity term being small compared to , Eq. (3-36) gives

L (A-4)
2a E

4

The requirement L> 0 restricts the sign of E for which the

solution applies to sign c = sign a 4 Inspection of Eqs.

(3-39) shows that this requirement ensures - > 0 , so thatal

Eq. (3) gives real values of 1 •

Substitution of Eqs. (A-3,4) into Eq. (3-37) gives the

differential equation

a a

2a dA + A = a a (A-5)4 dea
1

the general solution of which is
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, 2-a a a E:

= C2 4 + a (i + 2a (A-6)

where C is an arbitrary constant. However, the solution (A-6)

must satisfy the premise A< < q where T is given by Eq. (A-3).

If the constant C does not vanish the exponent of e in the

above expression must be larger than 1/2 , or - > . Use
a
4

of the expression for a 4 Eq. (3-39), indicates that the in-

equality requires v > i/2 , an impossible requirement. The

constant C must therefore vanish, and

a ( + 2a ) (A-7)
1 4

a
The signs of a and of --P which govern the sign of c , dependa l

on the value of v . The solution applies for E> 0 when

v < 1/8 , and for C < 0 when v > 1/8 . The denominator in

Eq. (A-7) does not vanish in the range 0 < V< 1/2 , so that

the result applies except for the previously excluded value

Solutions of Type 2. If, in the limit E 4- 0, A , Eq.
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(3-35) requires

- 2

a being always positive, this solutions applies only for2

c < 0 . Due to the premise A> > q the term a rT in Eq.
S

(3-37) is, in the limit, small compared to A , giving

L - (A-9)

The value of 71 is to be determined from the differential

Equation (3-36) after substitution of Eq. (A-9))

a
ell + 2 4 = E (A-10)

If a 4 -2 , the general solution of this differential equation4

is

4
2 2c

c (v 2/7) (A-Il)
4

while for v =2/7, when a = -2~4

= Cc + ctn e (A-12)
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where C indicates an arbitrary constant.

The premise A > > q limits the exponent in the first term
a4

of Eq. (A-Il), - /2 . This condition is not satisfied

for V< 1/8 , requiring C = 0 , but it is satisfied for values

of V >/8 . Equation (A-12) for v= 2/7 also satisfies the

premise A> > , , so that the constant C does not vanish in

Eqs. (A-11,12) if v >i/8 . For v < i/8 the solution for

approaches therefore asymptotically the expression

2 (v< 1/8) (A-13)-2 + a
4

while the expressions for v > 1/8 contain an arbitrary constant

and are not fully defined. While it is possible to find a range

of v where in the limit - 0 the term containing C is negli-

gible, the matter need not ue pursued because it will be seen

in the examples that for v >1/8 it is sufficient to know that

< A , so that one can use the apprcximation

A> > -0 - 0 (v> i/8) (A-14)

in conjunction with Eqs. (A-8,9) for A and L
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APPENDIX B - Proof for the Hyperbolic Character of Equations

(2-14,15) and Bounds on Characteristics.

The differential equations applicable for steady state

solutions in plastic regions are the six relations (2-14,15)

supplemented by the yield condition, F = 0 . To prepare the

system for the manipulations required to obtain the charac-

teristic directions, the function X , the derivative of which

does not occur in Eqs. (14), (15), may be considered to be the

derivative with respect to of another function A , or X

Further, differentiation of the yield condition converts it

into a differential equation, F = 0 , a total of seven for

seven unknowns.

These seven differential equations can be combined with

expressions for the derivatives of the unknowns f in the

direction 0 of a characteristic, if any,

)f f

cos +i + sin of =  (B-l)

where r is a new variable. The coefficients of the derivatives

with respect to and y form a determinant which must vanish

in a hyperbolic system for seven, real, characteristic angles

Oi . It is, however, not necessary to derive the character-

istic equation, because the seven differential equations are
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4

not only quasi-linear, but also homogeneous in the derivatives
y Y In such a case the determinant for the deter-

mination of the characteristic angles Oi is necessarily iden-

tical with the determinant obtained by substitution of the

relations (2-24,25) into the differential equations. This

substitution was made in Section 2 after a change of variables

which cannot be material, so that the determinant of Eqs. (2-45)

must vanish for characteristic values i . This is precisely

the condition which leads to the determinantal Equation (3-13),

which applies thus for the values i, too. However, it will

be seen that Eq. (3-13) gives four, not seven roots Oi , which

difference can be traced to disregarded factors containing

powers of sin 0 , which were of no consequence in Section 3.

That there is a triple root 5i= 0 , as required for a total

of seven, may be proved by showing that the matrix of the

coefficients of the derivatives f in the combined Eqs.

(2-14,15) and 0 is of order seven but only of rank four.

To demonstrate the hyperbolic character of the differ-

ential equations for the steady-state the roots of Eq. (3-13)

must be studied. This equation, omitting the unessential

factor (s + S )2 , may be written
1 2
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C cos 2y + (1-2V) (I-2X)]2 +2[1+(j.-2v)(i-2X)][(I+VXI-2X)- 2XI =0 (B-2)

where the values X and y contain

X V- sin22G
(B-3)

7= ¢-e

For given values of the velocity V and of the properties

p , G , V of the material, Eq. (B-2) defines 0 implicitly

as function of e and P , which describe the state of stress

at the point considered. Substitution of Eqs. 'B-3) leads to

a quartic in tan , so that the direct investigation of the

character of its roots is an unpleasant prospect. An alter-

native approach will be used here.

Consider first the properties of the roots X of Eq. (B-2)

as functions of P and y . Equation (B-2) is quadratic in X:
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c -(1-2v)(3+ 2 )x2 - 4[(4-5v) + (1-v)p2 + (1-2v)P cos 2y]X +

p 2cos 2 2y + 2(1-2v)p cos 2y + 5 - 4% = 0 (B-4)

To prove that this equation must have two positive roots X,

it is noted that examination of the X-independent term shows

C > 0 for X =0 . The coefficient of X2 in the range

0 o v < 1/2 * ) being positive, C is also positive for suffi-

ciently large values of X. The proof is completed by the

demonstration in the next paragraph that there is a positive

value X for which C < 0 .

It is proved in [6] in the transient case that one pair

of characteristic velocities is always above, one below the

speed cS of elastic shear waves. The equivalent holds here

for X and is shown by substitution of the appropriate value

XS = 1/2 (B-5)

in Eq. (B-2),

The value v = !/2 need not be considered as pointed out
in Appendix A.
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C Ix= 1/2 = p 2 [cos 2 2y - i] (B-6)

Excepting the cases P = 0 or cos 2y =+I when C vanishes,

Eq. (B-6) gives negative values of C, so that there are two

distinct real roots 0 < X < 1/2 , X2>1/2 . The special

cases P = 0 and cos 2y = + i require consideration of the

discriminant D of Eq. (B-4),

D = (i-2v)p2 (3+02 ) sin 2y + [(1-2v)p cos 2y + I + v]2 +

vp2 [vp 2 +2(1-2v)p cos 2y + 2(I+v)] (B-7)

If 3=0 the value of D becomes (i+v) 2  0 so that

X = 1/2 is a root but not a double one. If cos 2y =+ I

sin 2y = 0 , let

= cos 2y (B-8)

and 2= p2 cos 2 2-y = 2. The discriminant (B-7) is then

a function of P and v only, and of the surprisingly simple

form
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Dj = [(2y-) 2 v + B + 1] 2  (B-9)
Icos 2y=+±1

The value x = 1/2 will therefore be a double root if

cos 2 2y = 1, and a = - cos 2y - (B-l0)
cos 2y - 1) (1

Allowing for the special cases, it has been shown so far

that for given values 1 and y , Eq. (B-2), has only real

positive roots X,

0< x < 1/2 <_ X2  (B-11)

The roots are equal, X, = X = 1/2 if Eqs. (B-i0) hold.

Studying X(p,y) as a function of y alone, relative

maxima and minima of X for any given value of P must satisfy

the equation

e = -4P sin 2-y[P cos 2-y + (L-2v)(1-2x)]= 0 (B-12)

This will be used to find an upper bound on X . Equation
2

(B-12) gives three possibilities:
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cos 2y = - (1-2v)(1-2X), or sin 2y = 0, or 6 = 0

Case a. When cos 2y = - (1-2v)(1-2X) , Eq. (B-2) becomes

C = [i+(1-2v)(1-2X)][(i+v)(i-2X) - p 2 X] = 0 (B-13)

a

which gives either

X -V -X (B-14)
a 1-2v P

independent of , or

Xa = i+V (B-15)

The maximum of the latter value, which occurs for = 0

is 1/2 . Xp being larger than 1/2 the result (B-15) never

controls.

Case b. sin 2y = 0 In this case cos 2y = ±1 and the value

of C is

Cb = [±P +(1-2v)(--2X)]2 + 2[1+(1-2v)(i-2X)]

[(I+v)(1-2X) - 2X] (B-16)
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Substituting the maximum value of X found 'n Case a, from

Eq. (B-14) into Eq. (B-16) one finds

Cbj = [=+ - j]2 > 0 (B-17)

It was previously demonstrated that the value of C is not

positive for X = /2 and that there can be only one root

X> 1/2 The value -b for x =x being positive, the only
Xab a

root of Eq. (B-16) for which Xb > 1/2 must be less than

Xa= . Case b cannot furnish the upper bound.a 1-2v

Case c. In this case =0 and

cc = (1-2x)[3(1-2v)(1-2x) + 2(i+v)] (B-18)

This equation gives Xc= 1/2 , which is not a maximum, and

S-V (B-19)Xc r -2-v

Comparison with the value of X- Y Eq. (B-14), indicatesa "P

that Xc< Xp regardless of the value of v

While the controlling maximum, Eq. (B-14), was derived
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by a search for relative maxima of X for given values of ,

the largest value of X found being independent of P , it is

the absolute upper bound. For any selected pair of values

and y , Eq. (B-2), has therefore two positive roots, subject

to the following bounds:

< X, < 1/2 , 1/2 < X_ Ki-V (B-20)x <_ /2 , I 2 x < XP 1 -2v

Changing from the values X to the more pertinent values

Eq. (B-3) gives

sin 2  X (B-21)

The upper bound in Eq. (B-20) X K -v, assures that Eq.' _ 1-2V

(B-21) gives real values 0 for superseismic velocities

V /Z(I-v') G (B-22)V /(1-2v)p

Restricting the range of 0 to the meaningful one, 0 < <7

it has therefore been demonstrated that Eq. (B-2) has two pairs
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of real roots Oi , 7r - , and no others, for any pair of

values / and . Double roots = S occur when Eqs. (B-10)

apply. The roots are bounded

0<7r < <7
- S 5- 2p

(B-23)

p P 3< S J0S <04<T

The final step may now be taken, where the roots t of

Eq. (B-2) are considered as functions of P and e . For a

given value of , , any root b. satisfying Eq. (B-2) for aJ

specified value -y , gives a combination k and e = 0 - /

which satisfies Eq. (B-2). It will now be demonstrated that

variation of y leads to solutions for any value of e .

Figure B-b shows a typical plot of 0(-/) for a fixed

value of P . There are four curves, bounded by horizontal

lines representing the bounds, Eq. (B-23). The value -y appears

in Eq. (B-21) only in the form cos 2y , so that 0(-Y) must

be periodic, 0(y) E(0 ((y± 7) - Each of the four separate

branches must be continuous as function of y • (There can be

no discontinuity because the standard form of solution of the

quadratic equation (B-4) for X cannot lead to a discontinuity

if X is always real.) The values 0 which pertain to a pre-

scribed value of e appear in Fig. B-1 as intersection points
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of a straight line, 0 = y + e , with the curves 0 = 6(y) .

There is obviously at least one value 0 in each interval

between the five horizontal bounding lines, for a total of

four, except for the possibility of double roots which may

occur for certain values of e if the second Eq. (B-10) is

satisfied. The purely qualitative Fig. B-I does not prove

that the straight line 0 = y + e cannot intersect the same

branch more than once. This is, however, impossible because

Eq. (B-2) is a quartic having at most four roots. The fact

that Eq. (B-2) as function of the state of stress, e and P

is a quartic, not a bi-quadratic indicates also that the char-

acteristic directions are not symmetric, i.e. in general

7 -0, .7T-
1 4 2 3

It has therefore been demonstrated that, including double

roots, there are always four characteristic directions 7>ti>0

for any state of stress, the values 0i being subject to the

inequalities (B-23). Due to the asymmetry mentioned in the

last paragraph, only one double root 0 > 0 may occur for any

state of stress, the other two roots remain different. In

addition there is a triple root 6 = 0 .

In final conclusion it has been proved that all seven

characteristic directions are real, and the system is there-

fore hyperbolic. The occurrence of multiple roots does not

create any difficulty affecting the nature of the differential
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equations [7]. While the details are not given here, it was

found that along a double (triple) characteristic two (three)

independent compatibility relations apply.
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