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ABSTRACT

The plane strain problem of a step load moving with

uniform superseismic velocity V ) ¢ on the surface of a

P
half-space is considered for an elastic-plastic material

obeying the von Mises yield condition.

Using dimensional analysis the governing quasi-linear
partial differential equations are converted into ordinary
nonlinear differential equations which are solved numerically
using a digital computer, To overcome computing difficulties
asymptotic solutions are derived in the vicinity of a singu-
lar point of the differential equations.

Typical numerical results are presented for selected
values of significart non-dimensional parameters, i.e. of
the surface load po/k, of Poisson's ratio v , and of the

velocity ratio V/cg.
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LIST OF SYMBOLS*

Functions defined by Egs. (3-39).

Functions defined by Egs. (3-14)-(3-16)
and (3-26).

Velocity cf propagation of elastic P-waves,
S-waves and of inelastic chock fronts,
respectively.

Plastic potential, Eq. (2-1).

Shear modulus.

Invariants of stress,

Yield stress in shear, Eq. (2-1).
Bulk modulus.

Function related to inelastic behavior,

Eq. (2-36).
Surface pressure,
Intensities of step load surface pressure.
Variable defined by Eq. (2-19).
Principal stress deviators.

Stress deviators with respect to axes
X,y, etc.

Time.
Components of particle velocity and
acceleration in x and y directions,

respectively,

Velocity of surface presssure,

’ *¥) Other symbols, which are used in one location only, are
defined as they occur.
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X, 7
2
- vV 2
X 5G sin“ ¢
Xps Xg
Sl—52
P =355
1 2
Y
A=EB -3
Ao, AV, AT,
65<b-5
i3’ i
- yis
n=7Y "3
6
A> O
v
£ = x -Vt
P
9137 %ij
0,02,0
T

Cartesian coordinates, Fig. 1.
Nondimensional expression,

Values of X at P- and S-fronts, respectively.
Nondimensional stress wvariable,
Angle between the directions of s; and

of the position ray of an element, Fig. 4.

Small gquantity for purposes of asymptotic
expansion.

Increments of o,v,t, etc. at a front.

Small quantity for purposes of asymptotic
expansion.

Strains, strain-rates.

Small quantity for purposes of asymptotic
expansion.

Angle defining direction of the principal
stress o, , Fig. 4,

Function related to inelastic behavior,
Eq. (2-8).

Poisson'!s ratio.

Variable defined by Eq. (2-13).
Mass density of medium,
Stresses, stress rates.
Principal Stresses.

Shear stress.

-viii-




Lo

Position angle of element, Fig. 4.
Position of the elastic P- and S- and
of the inelastic shock fronts,
respectively,

Limits of inelastic regions,

Differentiation with respect to .
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1. INTRODUCTION.

The two dimensional steady-state problem considering the

effect of a pressure pulse p(x - Vt) progressing with the velocity

%
20 T MR W s e ke T T

V on the surface of an elastic half-space, FFig. 1, has been
f treated by Cole and Huth [1] for a line load. By superposition
{ their solution may be used to find the effect for zny other

distribution p(x - Vt). The equivalent problem for linearly

viscoelastic materials was treated by Sackman [2], and Workman
and Bleich [3], in the superseismic and subseismic ranges,
respectively. The present paper considers the problem again,
but in an elastic-plastic material subject to the wvon Mises
yield condition. 1In this material the¢ problem becomes noun-
linear, so that superposition is not permitted and each pressure
distribution p(x - Vt) poses a separate problem. The present
paper treats only the case of a progressing step load

p(x - vt) = pOH(Vt - x).

Interest in steady-state problems is not only due to the
fact that they are natural stepping stones towards physically
more meaningful, but more complex nonsteady problems. In the
elastic case Miles [4] has considered the three dimensional
problem of loads with axially symmetric distribution p(x,t)

over an expanding circular area on the surface, Fig. 2. He

[ SR

has demonstrated that the plane problem [1] is the asymptotic




solution for the three dimensional one in the region near the
wave front. This gives rise to the expectation that the
situation in other materials may be similar. This motivation
for the search for steady-state solutions limits interest to
those which do not violate conditions which asymptotic solutions
of three dimensional problems must satisfy.

The conditions to be imposed on steady-state solutions
to eliminate any which are not asrmptotic solutions of the
problem in Fig. 2, or of a similar one, can easily be recognized
in the elementary example of a half-space of an inviscid com-
pressible fluid loaded by a uniform pressure pulse p, which
progresses with supersonic velocity, V > c. There is an obvious
solution, Fig. 3a, in which the load produces a plane wave of
intensity p progressing with a front inclined at the appro-
1

priate angle ¥ = sin” . However, this is not the only

<jn

steady-state solution. An alternative is a plane wave, the
front of which is inclined at the angle 1800—‘W. Combinations
of the two solutions are also correct steady-state solutions.
To find states generated by the application of a progressing
pressure on the surface only, it can be reasoned that solutions
which include the wave front shown in Fig. 3b can not apply
because the medium ahead of the front shown in Fig. 3a should
be undisturbed when the applied load advances from the left

with supersonic velocity. Further, the transient supersonic

(T . ————————— .l G et




solution being irvotational without a singularity in pressure

or velocity at the wave front, the same must hold in the steady-
state. This reasoning leads to unique steady-state solutions
for fluids and also for elastic materials in supersonic and
superseismic cases, respectively. An equivalent approach will
be utilized in this paper*)

In elastic-plastic materials different sets of differen-
tial equations apply in the elastic, or neutral, and in the
plastic regions. The fact that these regions have moving, a
priori unknown boundaries, complicates the solution of dynamic
problems considerably. 1In the following, the basic equations
will be formulated and solved separately in plastic and in
nondissipative regions. The partial solutions will be matched
to obtain a complete one satisfying the prescribed surface
conditions and additional ones obtained from the requirement
that the steady-state solutions should qualify as asymptotic
for a transient problem of the type shown in Fig. 3. Usinhg
dimensional analysis, similar to the approach used in a simpler
case, [5] permits transformation of the original nonlinear

partial ifferential equations in plastic regions into a set

*)

In subscnic or subseismic cases the equivalent approach is
not fully successful. For examplie, in elastic materials the
steady-state solution in the subseismic range 1s unique for
many, but not for all quantities. Expressions for the hori-
zontal stress and for the velocities contain arbitrary con-
stants which can no* be determined.




of simultaneous ordinary ones. Their solution in the non-
dissipative case is elementary. Those in the plastic case are
nonlinear and much too complex for closed solution, but they
can be solved numerically requiring the solution of transcen-
dental equations and quadratures, for both of which digital
computers are employed. Break down of the computer solutions
in the vicinity of a singular point of the set of differential
equations made the derivation of asymptotic solutions necessary.
While the solution of the problem is obtained without
overt use of characteristic methods, it is actually dependent
on the hyperbolic character of the quasi-linear differential
equations. As a matter of fundamental interest it is proved
in Appendix B that the steady-state problem in plastic regions

is hyperbolic for superseismic velocities V » Cp -




2. FORMULATION OF THE BASIC EQUATIONS.

Figure 4 indicates the half-space and a system of Cartesian
coordinates. The x-axis is in the direction of motion of the
step load, the y- and z-axes are normal to the surface in and
out of the plane of the figure, respectively. The analysis
considers the case of plane strain, €, = O, when the velocity
V of the step load is superseismic, i.e. larger than the largest
elastic or plastic wave velocity, which is the one of elastic
P-waves in the material. Throughout the analysis it is assumed
that the strains and velocities are small, so that their higher
powers may be neglected in comparison to linear terms.

To describe the behavior of the elastic-plastic material

the yield function F is introduced

F =J' - k% (2-1)

where J' 1is the invariant
2

S.. S.. (2-2)

and the value k > 0 is the yield stress in shear.

The behavior of an element of the material is defined by




the following statements.

1. The value of the function F may never be positive

F <_ 0 (2-3)

2. If, in an element of the material at a given instant,

F{O (2-4)

the rates of change in stress and strain are related
by the conventional elastic relations.

3. Howe'er, if the yield condition

F=0 (2-5)

is satisfied, three possibilities exist: a., in the
next instant of time the material may be in a state
of plastic deformation; b., it may be in a state of
elastic unloading; c., it may be in a neutral state.
a. If the material is in a state of plastic defor-

mation

F=0 (2-6)

i - —- S —w— " —_



the total strain rate will be the sum of an elastic

and a plastic portion
(2-7)

where €?j is obtained from the conventional elastic

relations, while, based on the concept of a plastic

potential,
‘P oF
iy = N écij (2-8)
N which must be positive
A> 0 (2-9)

is an a priori unknown function of space and time,
to be found as part of the solution of the problem.
In case of elastic unloading F { 0 holds, and the
elastic stress-strain relations apply.

In the neutral state é vanishes as in case a., but
neither energy dissipation nor permanent defor-
mation occurs, and the elastic stress-strain
relations apply. In the present problem neutral
regions of a particularly simple type will be

encountered in which neither the stress nor the

—— -
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strain changes, éij = 6ij = 0,

For the purpose of this paper it is convenient to combine
elastic and neutral regions, which will be called "nondissipative",
as orposed to plastic regions, where A » O , indicating that
energy is dissipated. 1In the nondissipative regions the changes
in stress and strain are governed by the elastic relations,
while in plastic regions, Egs. (7) and (8) apply. Formally,
the equations in nondissipative regions can therefore be obtained
by substitution of N = 0 into the differential equations derived
below for the plastic regions, and by replacing the conditions
F = f = 0 by the inequality (3).

Substituting Egs. (7) and (8) and the elastic stress-

strain relations into the relation

=2 (v, otV L) (2-10)

the following constitutive equations are obtained for the case

of plane strain

1 1-2v ov
26 S5x T 6(1+v)G Jl ths, = oX
(2-1la)
-
L 1-2v Ve
G sy + BTT+V)G Jl + AS Sy J
-8~
— —— -— Y
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1 - L[ X

\g—llb
1 _1-2vy _
e (s + sy) - B(iavie I, * 2 (sX +s.) =0

J is the first invariant of stress, s, s, and v_, v

1 X Y X Yy
are, respectively, the stress deviators, and the components
of the particle velocity in the x and y directions.

Further, there are two equations of motion

.
aSX laJl +§_1— OVX
>x 3 X o - P 3t

5 (2-12)
N P Y
Fy 1% o Yy
3y 3 dy "ox P Bt )

Equations (ll) and (12) and the respective requirements on F
and N complete the formulation except for initial and boundary
conditions.

In the steady-state problem of a half-space subject to a
surface pressure p(x,t) , the latter and all expressions for
stresses, velocities, etc., in the solution must be functions

of

£ = x -Vt (2-13)

Equations (11), (12) may therefore be reduced to a set of partial

differential equations in the two independent variables £ and y




_v % _y(a-ew) %% L Oy
2G ot 6(1+v)G of x  of
Bs dJ ov
v _v(1-2v) "2 Y
2G ag B(1v)c o TN Sy =35y > (o-14)
V3T L - L[av _a_‘iy_]
2G of T 2L dy d¢
ds \ aJ
v 1 _
- 3G < / Y + 7\(5X + Sy) =0
J
3s 3T Sv )
x ., 1771 o1 . _ X
5t T3ISE toy T TPV TH
$ (2-15)
os oJ oF
R "2 T NS | A Vv
Sy F3 %y T TPVHE

In plastic regions the additional equation F = O applies,
so that there are a total of seven relations for the seven
unknown gquantities s , s , ¢, J , Vv_, v_and )\ > O. In non-

X Yy 1 X Y
dissipative regions Egs. (14}, (15) apply, but the function

A vanishes identically, N = O, while F must satisfy either

F { 0, or the two conditions F = 0, F< O simultaneously. In

-10-
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the nondissipative case there are only six differential equa-
tions and six unknown quantities. The complete solution of the
problem is to be obtained from the six differential equations
(14), (15) and the applicable relations on A and F, subject to
appropriate boundary or initial conditions at the surface and
at the junctions of the as yet unknown regions.

It is demonstrated in Appendix B that the system of
differential equations in plastic regions is hyperbolic for
the case under consideration, V ) Cp there being four char-
acteristic directions which, due to the nonlinearity, are
stress dependent. The problem in nondissipative regions (1]
is also hyperbolic, but without the stress dependency. With-
out the subdivision of the domain into regions of unknown
extent, e.g. in the purely elastic superseismic problem [1],
uniqueness could be established by available theorems on the
initial and boundary conditions required. 1In the present case
of mixed regions of unknown extent no such general theorem is
available, and the question of uniqueness of transient as well
as steady-state solutions can not be answered in general. For
the solution obtained here uniqueness will be demonstrated by
detailed examination of all possibilities for solutions which

satisfy the various conditions listed below.

1. On the surface, y = O, a step pressure p = pOH(Vt - x)

-11-




normal to the surface is applied, so that, with

reference to Eg. (13)
(2-16)

while
T =0 (2-17)

2. It is known from a general study of elastic-plastic
wave propagation [6] that the largest characteristic
velocity possible is Cp the velocity of elastic
P-waves. All stresses and velocities must therefore
vanish outside the wedge formed by the negative £ -axis

and the P-front which is inclined at the angle

¢p = 7 - sin”? [% 1/%%&%5%%] (2-18)

with the £-axis, Fig. 5.
3. While the character of the solution of the transient

elastic-plastic problem near £ = y = O is not known,

-12~




in the corresponding elastic problem no singularity
occurs in the region of nonvanishing solutions for
stresses and velocities. Subject to later confir-
mation that the steady-state problem permits solutions
without singularities such solutions are prescribed.
It is subsequently seen that they exist, and are

unigque.

To apply dimensional considerations new variables

R = |62 + y® (2-19)

©.
Il

-1 (& -
cot™ (&) (2-20)

are introduced. The differential equations and the various
additional conditions which determine the solution contain
only the dimensional quantities: p, V, G, Xk, P, and the
coordinate R. However, three of these six quantities can be
expressed by three others and by three nondimensional para-
meters. A suitable independent set of dimensional quantities,

po, V and R, is used, while the remaining quantities enter

: . o Ve G

the problem only in the nondimensional combinations QE— X
Pg

and - . The stresses, velocities and the quantity A in

terms of functions of nondimensional variables become

~13-




V2 G Po
s;» T, I =p £(9, v, eY_ = ) (2-21)

G
pO
v, = vE(p, . , —k) (2-22)
p
Vv 0
Mogp £ s ) (2-23)

The first two relations satisfy requirement 3. that
stresses and velocities are not singular at R = 0 . The
gquantity 7\ has a singularity for R = O , but this is not
objectionable becaus. only its sign, not its value is of
physical significance,*)

Using the new variables R, ¢, and noting that the
expressions (21), (22) are not functions of R, one finds for

the derivatives in Eqgs. (14), (15)

35; - _JCOE % (2-25)

In this fashion the partial differential equations (14), (15)
in ¢ and y become ordinary ones in the variable ¢. Because

of the manner of solution to be employed the unknowns S,» S

*)  In addition, as N\ does not occur in the elastic case used
as guide one can conjecture that it may show the same behavior
in a transient problem.

-1l
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P ]

and T are replaced by three new dependent variables s , s
1 2

ang 6,

s =s cos? 6 +s sin? 6 (2-26)
X 1 2

s =g cos® 6 +s sin® 6 (2-27)
Y 2 1

T = (sl - Sz) sin 6 cos 6 (2-28)

sl and 52 are the two principal stress deviators while 6
is the angle between the direction of s and the horizontal,
Fig. 4. 1Introducing further the angle v between the direction

of s and the position vector, Fig. 4,

Y = ¢ - 6 (2-29)

the six differential equations, (14), (15) become finally

s' cos® 9 + st sin® 6 - (s - s ) 6! sin 29 +
1 2 1 2
1—2\/ 1 2 L2 - 2_G
3y 9t L(sl cos® 6 + s_ sin 6) = =2 v,
(2-30)
st sin® 8 + s! cos2 6 + (s - s ) Ot sin 290 +
1 2 1 2
1—2\) t T « 2 2 = g—G- t
+ (1) Jl + u(sl sin? 6 + s cos 8) = v vy cot ¢
(2-31)

~15~




[T

1-2v 2G
I 9! = ?7-(v§ cot ¢ - v;) (2-32)
(st - ') sin 260 + 2(s - s ) 6! cos 20 + L(s - s ) sin 20 =
1 2 1 z 1 2
=%§(v;{ cot ¢ - V1)
(2-33)
s! cos 6 sin vy + sl sin 6 cos vy - (s1 - sz) 6t cos (y - 6) +
+ % sin ¢ J' = - pV v! sin ¢
3 1 X
(2-34)
s! sin 6 sin vy - s! cos 6 cos vy + (sl - sz) 6t sin (y - 9) +
..lc:os¢tj"=—pVV'Sj.nQ5
3 1 Yy
(2-35)

Primes indicate differentiation with respect to ¢, and L is

related to A,

— 2GR
L = v*gzg—a'% (2‘36)

The function L is subject to the same conditions as A, i.e.,
L > O in plastic regions, L = 0 elsewhere.
The expression for the plastic potential in these vari-

ables 1is

-16~




In plastic regions Eq. (6) requires F = O, giving the additional

differential equation

(25l + Sa) st + (sl + 252) sl =0 (2-38)

The unknowns v! and v§ can be eliminated from Egs. (30)-

(38) without differentiation. Using the symbol

X = X(¢) = %;; sin? ¢ (2-39)
the operations
Eq. (45a) = Eq. (30) + Eq. (31) - Eq. (32) (2-40)
Eq. (45b) = - X Eq. (32) + sin ¢ Eq. (34) - cos ¢ Eq. (35)
(2-41)
Eq. (45c) = x{sin 26 [Eq. (31) - Eq. (30)] + cos 26 Eq. (33)) +
+ cos (y - 6) Eq. (3%) - sin (y - 6) Eq. (35)
(2-42)
Eq. (454) = X {cos 26 [Eq. (31) - Eq. (30)] - sin 2¢ Eq. (33)) +
+ sin (y - 6) Eq. (3%) + cos (y - 6) Eq. (35)
(2-43)
Eq. (45e) = Eq. (38) (2-44)

lead to the following set of five differential equations for

plastic regions:

-17-
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3. SOLUTIONS FOR INDIVIDUAL REGIONS.

As a first step towards the construction of overall
solutions, expressions for individual regions must be derived.
The latter will be combined in Section 4 to find the solution

for the entire domain.

a) Nondissipative Regions.

Equations (2-46) are linear and homogeneous so that the
derivatives of the stresses s', s!', J' and the value (s -s )@!
2 2 1 1 2
vanish, unless the coefficient matrix in Egs. (2-46) is

singular, requiring
X(1-2%) [ 1+ (1-2x)(1 -2v)]=0 (3-1)

Equation (1) has two significant roots,

_ _1-v -
Xp = T -5y (3-2)
and
C —-l —
Xg = 5 (3-3)

-19~
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* .
and a spurious one, X = 0O ). Substitution of the two roots

“p

and X, into (2-39) furnishes the two locations

S

N T -4
¢P = T sin 7 (3-4)
s
I | _
¢ = T - sin 7 (3-5)

where Cps cg are the velocities of P- and S-waves, respectively.

] ! ! 1 - T
In all locations ¢ # ¢p OF ¢g the values sty sl Jl, (s:L 82)9

vanish, so that in nondissipative regions the stresses must

remain constant except at the locations ¢, and ¢.,. The latter
P P S

being the potential locations of elastic P- and S-shock fronts,

respectively, it is known that discontinuities in stresses and

velocities may occur at these locations and may, therefore, be

part of the complete solutions to be constructed. The follow-

ing pertinent details will be required subsequently.

(L) The P-front.

Designating the discontinuous changes in the various
quantities at the front by the symbol A, the disconti-
N’ OT =0, (normal and tan-
gential to the front, respectively) and in the component

nuities in the stresses ¢

*)

It is due tc multiplication by sin ¢ in changing variables

and eliminating the velocities.

=20~




VN of the velocity (normal to the front) are proportional

to AON.

v Aoy
AOp = T2 v D0y AVy= - EE—- (3-6)

p

Neo other discontinuities can occur in this location.

The changes AON and AOT are of course limited by
the yield condition F < O which must be satisfied on
either side of the front.

In the actual solution a P-front will be encountered
only for the special case where the region ahead of the
front is stressless and at rest. The normal to the front
is then a principal direction for the stresses behind the
front, so that y = 0 or %u Selecting S, = Oy . corre-

sponds to

Yy =% (3-7)

The value of the other quantities of interest behind the

shock front are

2(1-2v)o, (1-2v)o, (1+v)o,
P=3,8 =731y 2 %, %" 3(1=v) ’ Y, T Tioy
(3-8)

subject to the limitation

-]~




o, [ RS (3-9)

imposed by the yield condition.

(2) The S-front.

At an S-front discontinuities occur conly in the shear
stress T = Tp =7 and in the tangential velocity Vi

The change in velocity is proportional to Ar.

Av. = BT (3-10)

In addition, the yield condition F < O must again be
satisfied ahead of and behind the front.

The relations between the state of stress on either
side of an S-front in terms of At and of the variables
S5 S B and vy can be obtained in such routine manner
that only one result actually used in Section 4 is pre-
sented here.

It is possible for an S-fron® to occur between two
neutral regions, i.e. regions of constant stress for both
of which the yield condition, F = O, is satisfied. 1In
this special case the quantities B , Jl N and s have
no discontinuity at the front, only the direction of the

principal stress changes. The values of the angles -, ;

ahead of and behind the front, respectively, are comple-
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mentary

b)

as shown in Fig.

Plastic Regions.

6

In such regions Egs. (2

homogeneous in the values s

by

However,

L=20

implies

-45) apply.

(3-11)

They are linear and

! s!', etc., and may be satisfied

R

L=20 (3-12)

A = 0 which violates Eq. (2-9).

It follows that in plastic regions the determinant of Egs.

(2-45) must vanish, giving the "determinantal equation"

where

(s

1

+

s )8(b® + bb ) =0 (3-13)
2 2 1 3
2 [1+ (1-2v)(1-2%))] (3-14)
B cos 2y + (1-2X)(1-2v) (3-15)
-23-
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b = (1+v)(1-2X) - B2X (3-16)

and

g = 2 (3-17)

If Egs. (14) to (17) are substituted into Eq. (13) it is seen
that the latter is a homogeneous quadratic expression in 4
Due to the vanishing of the determinant only four of the
five Egs. (2-45) are independent. By definition L must not
vanish, so that s! , s; s Ji and 6' can always be expressed

4

in terms of L,

s! = 35, (3-18)
(3#8) b, (s, + s,) L
- -1
s!= 35 (3-19)

+ sin 2y bs L 0
B(1-2X) b, (3-20)

(s, + s_) L
1+v 2 1 2 -
51 = 36 [bz -3°F b4] b (3-21)

2

w

Velocities and accelerations may be obtained from the

relations

-2~




- V sin ¢(s, + sz)L

Yk T TTER(TE) B, (B P sin(2r-6)- 2 sin 0] (3-22)
- V sin ¢(s, + 52)L

V& = 5G(1-5%) B, [bZB cos(2y-¢)+ 2b cos ¢] (3-23)
. v oo

v, =3 Sin 0} v& (3-24)
V. _
vy R sin b v§ (3-25)

where
b4 = (1+v) cos 2y + pX(1-2v) (3-26)

Since Eg. (13) must remain valid throughout a plastic
region, it may be differentiated with respect to ¢ . This
leads to an expression which contains the first derivatives
of the stresses linearly, so that substitution of Egs. (18)-
(20) furnishes a linear equation for L. Its solution gives

L as a function of B | v and of the position angle ¢,

I.=

3b2(1-2x)[k sin 2¢[4(1-2va2+bs)+b1(32+2+2vn+4b25sin 2ysin2<5\
4 sin2 ¢ L (3+B2)(l—2x)b4(b2 cos 2y -b BX) +3b b_ sin® 2y J

(3-27)
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The values of the derivatives si s s; s Ji and 6! can
be obtained by substitution of Eg. (27) into Egs. (18)-(21).

In principle Egs. (18)-{(27) permit the numerical deter-
mination of the values of stresses and velocities in the
interior of a plastic region by quadratures if the values on
one boundary of this region are known. The starting values

must inherently satisfy the yield condition, F = 0 , and the

determinantal equation (13). Further, the condition
L>O (3-28)
must be satisfied, to assure that the result applies.

c) Discontinuities (Shock Fronts).

It is known that in transient problems one, but just one
type of plastic shock front can propagate in the elastic-plastic
material considered here [6] . However, such a front can exist
only in locations where the normal to the front lies in the
direction of one of the principal stresses, while the other
two are equal, and where the yield condition is satisfied.

The velocity of propagation of the front is

/I:< (3-29)

p

al
]
<
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where K = g it;v G is the bulk modulus. The discontinuity

is restricted to the particle velocity vy normal to the front

and tc the first invariant J, - The change AJ, must have

the same sign as Jl

AJl
-31— >0 (3-30)

The other conditions stated define the values of <y and B

y=% , 8=3 (3-31)

A discontinuity traveling in real space with velocity c,

Eq. (29), can occur in the steady state problem only in the

location

= . -1 ,C
¢ =7 - sin = () (3-32)
\Y
The corresponding value of X 1is
3z 1+v
X = 3-33)
3(1-2v (
The dencminator in Eg. {27) vanishes, as cxpected, for these

values of vy, B and X.

The possibility of the occurrence of this discontinuity




(shock) must be considered when constructing the complete
solutions in Section 4. It was actually found that no such
shocks occur, except in the limit, V> « . However, for
large values of the parameter %? defining the surface load,
the solutions come extremely close to the singular values

representing a shock, so that computing difficulties occur.

d) Asymptotic Solutions near Singularities.

As stated in the previous paragraph, numerical difficulties
in the vicinity of ¢ = 5 will make the procedure for inte-
gration of Egs. (2-45) outlined in subsection b unsuitable and
inapplicable if the values of 83 and y are sufficiently close

to those for a plastic front, 8 = 3, y = Z . To establish

2
the behavior of the solution of Egs. (2~45) in such cases, let

T

Y =35+
B =3+A (3-34)
¢ =¢ + ¢

where 1, A and € are small gquantities. Introducing these
expressions into the determinantal equation and into the
differential equation (20) for 6! , retaining only the leading

terms in each of the new variables, one obtains for v # %

-28-




A2 —an®f=-ac (3-35)
1+ an L (3-36)

Combination of Egs. (17), (18) and (19) permits the formulation

: dA _
of a relation for qQ = B!

2

dA
& = (@ n® -4 L (3-37)

These three equations govern the solution in terms of the

three unknowns 7, A and L. The derivative of Jl becomes

aJ
&; - 6(1+v) kL (3-38)

PPN EIRE

while sl and s2 can be found from the yield condition and

from Eq. (34) once A is known. A solution of the above equa-
tions is valid only if the inequality (28), L > 0, is satis-
fied.

The coefficients ai are

_ 288(1+v)
a =
1 1-3dv

_ 48(1+v) [RA-v)VE
2 1~2v ‘\\(l+v) CE

v

(3-39)
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i

_ 6(5-4y)
a3 - 1-8v

4 = 2(1+v
4 1-8v

The terms (1-8v) in the denominator of several coefficients
necessitate exclusion of the case v = 1/8 .

The three asymptotic equations (35-37) are nonlinear and
do not have closed solutions*). Numerical integration near
€ =A=mn=0 would again encounter difficulties because of
the presence of the same type of singularity which occurs in
the original differential equations. However, Appendix A shows
that simple expressions exist which describe the asymptotic
behavior of the solution of Egs. (35-37) near € = A =17 = 0,

These equations being asymptotic approximations for the

original differential equations, the behavior of the solutions

*)
By elimination of L and A one can find, as alternative
to Egs. (35)-(37), a first order differential equation

c,n- €
L t—— (3-40)
2-—
c_n €
a a,(1l+a )
= = AR 3 3-41)
where ¢, = 5 s c, = ) (3-41)

valid provided a # - 1 (i.e. v # 1/2).

...30...
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of the latter is also described by the results obtained in
Appendix A. It is shown that Egs. (35-37) for v # 1/8 have
limiting solutions consisting of separate branches. Because

the signs of several of the coefficients aj; differ for v 2 1/8,
the two cases have different character.

1/2 > v > 1/8. 1In this case solutions exist only for € i 0,

which is due to the charact' r of Eq. (35). Noting

a, o, a > 0, the left hand side of the latter is a sum of
squares and therefore positive and no real solutions A, n can
exist for ¢ > O,

Two types of limiting solutions exist, given by Egs.
(A-3,4,7) and Egs. (A-8,9,14), respectively.

In solutions of Type 1, m is proportional toV - € ,
while A , which is proportional to € , is much smaller than 7,
so that approximately A = 0 . The reverse applies for solu-
tions of Type 2, where A is proportional toV - ¢ and
1= 0 . The sign of the square roots is arbitrary, so that in
each case the solution for the respective quantity has two
branches.

Whenever the numerical integration of the original differ-
ential equations, (2-45), approaches ¢ = ¢ , the values 7
and A must approach one of the asymptotic solutions. 1In
Section 5a, where numerical cases are discussed, the actual

and the asymptotic solutions for A are shown in Fig. 15 for

-~31-
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a typical case where v » 1/8 . The values of the stress
deviators si being defined by B = 3 + A , and A being a
small quantity, S, and S, at the terminal point of the

integration (i.e. at the end of the plastic region) must have

a value close to that for B = 3, viz.

sl ~ ¥ g;§§_5 52 w i:ﬁéék (3-42)

The signs in these expressions depend on the branch used in
approaching ¢ - & . The value of J is to be determined from
1

Eq. (38). Regardless of the type of solution, Egs. (A-4) and

(A-9) indicate that L, and therefore J!' , are proportional

1
to 'é . As the terminal point of the integration moves closer
to €

= 0, the integral of J' , i.e. the value J , increases
1 1
without upper bound. while S, ¢ and -~y are practically

constant near the singularity, a very large change in J
1

occurs in a very small angular region. The magnitude of this
change depends on the stopping point, i.e. on the end of the

plastic region. 1In a plastic shock J is discontinuous, while
1

S; s & and <y remain constant and the solution described above

is quite similar to such a shock, except that the change in

J occurs in a small, but finite region of ¢ . The solution

L]
e

describes, therefore, a "plcstic shock” of finite thickness.
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C)g.v { 1/8 . 1In this case a > 0, so that Eq. (35) permits

solutions without restriction on € . A plastic region may
therefore contain the point ¢ = ® . It is shown in Appendix
A that for € ) 0 solutions of Type 1 apply, Egs. (A-3,4,7),
where 1 is proportional to Ve , while A < n 1is linear in
€ . For € < O the solution is of Type 2, A being propor-
tional to V' = € , while n { { A is linear in € . A solution
which extends continuously to both sides of ¢ = ® must there-
fore follow first the one, then the other type of limiting
solution. However, the two are not continuous in the deriva-
tives, so that an actual solution cannot follow either one
asymptotically to the origin € = 0 as was the case for v » 1/8.
An actual solution must have a smooth transition, contained
in Egs. (35-37), but lost in Appendix A due to the approxi-
mations required. Figures 17 and 18, presented in Section 5a
in connection with typical numerical results, show the actual
and the asymptotic solutions.

The details of the transition could be obtained by numer-
ical integration of Egs. (35-37). Even without such inte-
gration, one can already state qualitatively that, just as for

v » 1/8, the quantities s;, 6, v will undergo only minor

A & PR senvy :
changes near $ = ¢. The value J , however, will change
1

radically, it becomes larger without bound, when the solution

passes closer to the point = A =€ = 0 . Again, the actual
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solution in the vicinity of the singularity may be said to be
a plastic shock of finite thickness.

When the asymptotic solutions were obtained it was ex-
pected that the numerical integration of the original differ-
ential equations could be carried sufficiently close to the
singularity, so that the range of validity of the two solutions

overlaps. Due to the very severe singularity this expectation

was not born out by the facts. To obtain a satisfactory overlap

of solutions, approximate equations, similar to Egs. (35-37),

but retaining higher order terms, were formed, and integrated

numerically. The details are given in [8] . While the solutions

in closed form obtained in Appendix A give a good qualitative
understanding of the shock front of finite thickness described
above, they are not sufficient to find quantitative results,
which can be obtained from the analysis in [8] . For this
reason, combined with the complexity of the refined equations
required for the special case v = 1/8 , no attempt was made to
find an asymptotic solution for this case in closed form.

An important conclusion which nay be drawn from the char-
acter of the asymptotic solutions concerns the question whether
a plastic shock may occur in the interior, or at the boundary
of a plastic region. If this would occcur the change in value
of .Jl in an interval including the shock location ¢ would be

aJg

infinite, because the integral of -?E} is divergent at the

-3




point A = n = ¢ O . This of course can not occur in an

P

actual case where the surface load jf-is finite, so that only

the possibility of a shock front between nondissipative regions

is to be considered in the construction of solutions.

_35_
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4. CONSTRUCTION OF SOLUTIONS.

In Secticn 3 a number of partial solutions were obtained
from which the solution of the complete boundary value problem
is now to be constructed. Section 3b gives the differential
equations for the determination of the stresses and velocities
in plastic regions; Section 3a indicates that all unknowns
in nondissipative regions are constants, except for discon-
tinui.ies of a prescribed nature at the locations ¢S and ¢P
In addition, as discussed in Section 3c, a shock front with
plastic deformation may occur at the location .

In Section 2 boundary conditions, and additional require-
ments, which the solution must satisfy, were formulated and
discussed. Equations (2-16 and 17) for the prescribed surface

load in terms of the variables S; > Jl ;Y and ¢ require

either
J, (m) .
s (m) + —3— = - p, ) 6(m) =3 (4-la)
ox
J. ()
s () + —% = -p o(m) = 0 (4-1b)
2 3 o ?

A further boundary condition requires that all quantities

vy



must vanish for ¢ < ¢P , Eq. (2-18). This condition, in
conjunction with the fact that a plastic region or a plastic
shock can exist only in locations where the yield condition

is satisfied, permits the conclusion that the change in stress
from vanishing values for ¢ < ¢P to nonvanishing values
must be ncndissipative. However, 1n nondissipative regions
the stresses are constant, except for discontinuities at

¢ =0, or ¢ = ¢5- A solution in which plastic deformations
occur at all can therefore swtart only in one of the two ways

described below.

Case 1. Discontinuities occur at the P- and S-fronts,
where the discontinuity at ¢P satisfies the

inequality

01[¢<+>] ¢ Y3k (4-2)

P 1-2v

while the discontinuity AT At ¢S is of such

magnitude that the yield condition

F[®é+):[ =0 (4-3)

(+)

is satisfied. The symbois or ) indicate

approach from above or below, respectively.
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Case 2. A discontinuity occurs at the P-front, des-

cribed by Egs. (3-7,8), so that the yield condition

is satisfied for ¢ = q>1(3+> . i.e.

P 1-2v

01[¢(+)] _ Va(vk (4-4)

In Case 1, plasticity may occur only in locations ¢ > ¢S s

while, in Case 2 it may occur already for ¢P ¢ < ¢S

As a next step in the search for solutions it is helpful

to consider the latter as function of the nondimensional sur-

p
face pressure 7? , while Poisson's ratio v and the velocity V

are considered constant. For sufficiently small values of 7%

P -

the solution must be entirely elastic, but as 7? increases plastic

regions must occur and should form a gradually changing pattern.

p
Based on [1] one can find the limiting value = above which

k 3
entirely elastic «olutions are no longer possible.

The elastic solution, shown in Fig. 7, has two discon-
tinuities at ¢P and ®S with regions of constant stress

between ¢P and @S and between ¢_. and the loaded surface

th W

the parameters v and v
“p
the yield condition may be reached in either of the two regions
. : Pg : .
resulting in different expressions for * If the region

Y = m . Depending on the values

O




¢ > ¢s controls,
3
p 2
= = 3N (4-5a)
3N® - 3N cos 2pg + (1-v+v®) cos® 204

where

N = % [cos 20 + (1-2v) cos 2(¢S - ¢P{] (4-5b)
while

p 3

“E _ 3NZ -

k - (4 6)

(1-2v) 2 cos® 2

if the region ¢ < ¢S controls. The decision which region
controls can be made by comparing the values given by Egs. (5)
2ad (6), the smalle. cne controlling. Designating as Range I
the combination of values v and gL where Eg. (5a)controls,

P
one finds that in this range

® 1-2vy)2
<cl) > T (4-7)
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The remainder of the range will be designated as Range II.
Both ranges are shown in Fig. 8. The limiting values %? are
shown in Fig. 9 for several values of y as function of gL-,
If the surface load exceeds the value'%? by a suffiiiently
small amount the elastic-plastic solution should differ only
slightly from the elastic one, which can be used to predict

the character of the solution. Because the situations differ,

the Ranges I and II must be discussed separately.

a) Solutions in Range I.

P
In this case'jg is given by Eg. (5a) and the yield stress

in the elastic solution is reached only in the region ¢ » ¢S
The discontinuity Ol satisfies then the inequality (2) and
continuity requires that this inequality will still apply for
a range of values %? > %? > %? . where P is a limiting
value, not yet known. 1In this range the start of the solutions
will be according toCase 1 and plasticity can therefore occur
only in the region $ > bq

Using an indirect approach, the determination of plastic

. Ps , Pp .
solutions for values-i;- { == begins with the selection of a

k
pair of starting values 01 and AT near those for the limit-
ing elastic case. Experience and continuity considerations

indicate that the value | oll should be larger than | ¢ |
1

corresponding tO.pE given by Eq. (5a) A plastic region can

~40-
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start only at a point ¢1 which is a root of kg. (3-13).
inequalities derived in Appendix B, Eq. (B-23) indicate that
this equation has one, but only one root ¢1 > ¢S . Starting
integration at ¢ = ¢l the solution in the interior of the
plastic region is determined from Egs. (3-18 to 27). The
plastic reyion can be extended as long as Eg. (3-27) gives
values L » 0O, but the plastic region may be terminated at
will at any earlier locetion ¢2 . The solution for ¢ ) ¢2
is then nondissipative, i.e. all quantities are constant. If,
therefore, in the process of forward integratior a value 6 is
encountered which satisfies Eg. (1), the plastic region is
terminated and a solution for one value of the surface pressure
%? has been obtained. Repeating this process with gradually
increasing starting values | ol| the whole spectrum of values
satisfying the inequality (2) can be explored. Solutions, 1if
any, obtained in this manner will have the configuration shown
in Fig. 10, i.e. discontinuities at ¢P and ¢S and a plastic
region 1 » ¢2 > ¢l > ¢S . There will be an elastic region
of constant stress from ¢P to ¢S and two neutral regions to
either side of the plastic one.

Postponing the discussion of uniqueness and of alternative
configurations, one can proceed 1n a similar manner when the
solution begins at ¢ = ¢P as indicated in Case 2. Starting

with a value ol according to Eg. (3), the yield condition is

41~
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satisfied for any value ¢ » ¢P , so that the determinantal
equation (3-13) according to Eg. (B-23) now has two roots,

¢l 2 ¢S , at which plastic regions may start. Both roots
must be explored. If the larger one, ¢l > ¢S , -eads to a
solution, it has a configuration as shown in Fig. lla. Start-
ing, alternatively, with the smalle' oot, 5 < ¢l < by -
several possikilities are to be investigated. The integration
may be continued as long as 1, > 0 to see if a value 9§ = 0 oOr
g can be reached. The configuration of such a solution, if
any, is shown in Fig. llb. Alternatively, the plastic region
can be terminated at will at a point ¢2 { ¢ where @ # 0, %
The plastic region will then be followed bysa neutral one for
values ¢ > ¢2 . The inequalities on the roots of Eg. (3-13)
indicate that there is just one more root ¢3 > ¢S , when a
second plastic region can begin. Starting integration at

this point may lead to a terminal location ¢4, where 6 = 0

or -g . The configuration of such a solution, if any, Fig. llc,
contains a P-front and two plastic regions, separated by three
neutral regions There are, lowever, further possibilities.

The neutral region ¢ > ¢2 which follows the first plastic

one may be terminated at @S by an elastic change in shear,

AT ., which is restricted in sign and intensity by the yicld

condition. If At 1s such that F[¢S(+)] o , the reg.on

» > ¢S becomes elastic. This might permit values 6 = 0, s

2
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at the surface, the corresponding solution having the config-
uration of Fig. 12. Finally, the important case must be con-
sidered where the value of AT is such that F‘[¢é+)J vanishes
again, a situtation discussed in Section 3-~a-2. 1In the latter
case there is again a neutral region for ¢ » ¢S , which can

be followed by a plastic region because Eq. (3-13) has a root

d > ¢S giving a starting location. The configuration of a
3

solution obtained in this manner is shown in Fig. 13.

b) Solutions in Range II.
Pg

In this range

p p .
limiting case 7? = 7? vield is just reached in the region

¢, < < ¢

is given by Eg. (6) so that in the

S The discontinuity ol at the P-front must

therefore satisfy Eq. (4), which will also hold for neigh-

Po

Pg
boring elastic-plastic solutions where — exceeds £ slightly.

k k

These solutions will therefore start at ¢ = ¢

P
T . Po pE
Case 2. 1In the limiting solution for-ir =T the region

according to

¢ > ¢S is below yield and continuity requires this to hold

in neighboring elastic-plastic solutions, so that the plastic

region must lie irn the range ¢P < ¢1 ¢ < ¢S . The con-
2
P p
struction of solutions, Fig. 12, begins exactly as for 3?-> 7%!.

For each terminal point ¢, the strength ot the discontinuity

AT at the shear front is determined by the requirement that

6 =0 or % subject to the limitation F [¢é+)J(< O . When

=4 — Mt o p- . —




the required value AT violates this condition a second plastic
region for ¢ > ¢S is needed, i.e. the configurations shown

in Figs. llc and 13 are to be investigated.

c) Alternative Solutions, and Considerations of Unigueness

and Existence.

In the absence of a unigueness theorem it is vital to
demonstrate that configurations other than those shown in
Figs. 10 to 13 can not lead to solutions. It has been shown
in Appendix B that Eq. (3-13), which is also the equation for
the characteristic directions, has for a giveir state of stress
one root ¢ , no more no less, in each of the intervals
bp o< ¢s and bg {C ¢< m . If aplastic region ends at a
location ¢i in one of these intervals, the state of stress
in the remainder of the interval ¢ » ¢i is necessarily neutral
and uniform, and equal to the one at the terminal point ¢i of
the plastic region. ¢i is therefore the only solution of
Egq. (3-13) for this state of stress in the particular interval,
and no more than one plastic zone can therefore occur in any
interval.

In Section 3-c the possibility of discontinuous plastic
shock fronts has been indicated and their occurrence must be
considered. First, it has been concluded at the end of Section

3-d that a plastic shock can not occur in the interior of a

=4y

ks



plastic region nor at its end, so that a plastic shock, if it
occurs, must lie between nondissipative regions and be quite
separate from a continuous plastic region. Further, such fronts

can not occur in an interval ¢, ¢ ¢, or g { ¢ { m where

S
a plastic zone occurs, because Eg. (3-13) which is satisfied

in the location of a plastic shock would then have two roots

in the same interval. This reasoning leaves only the possi-
bility of configurations similar to Figs. 10 to 13, where one

of *the plastic zones is replaced by a plastic shock. For y > 1/8,
where ¢ < ¢ . this can not occur (except in the limit v » m)*)
because Eq. (3-31) requires that the principal stress be normal
to the shock front 5 ., while the actual principal stress in the
neutral region behind the P-front is normal to the latter.
For v< 1/8 , ¢ > ¢q, SO that configurations similar to Figs.

10 to 13 might occur where the plastic region degenerates into

a shock at 5 > ¢S . This can not happen, however, because

the direction of the principal stress behind the shock front,

at ¢ > 5(+) , would have to be normal to this front, which
} contradicts the requirement § = Q or -g , on the surface,
except in the limiting case V = o . Discontinuous shock

fronts can therefore not occur at all for finite values of the

velocity V, but values of v and B where the conditions (3-31)

*)

In this case the surface pressure is applied simultane-
cusly everywhere on the su-face, producing the trivial result
of a P-wave followed by a plastic shock, both having horizon-
tal plane fronts.

- Dt w1 - PO ed - g T o= e T e o
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are nearly satisfied are encountered. The asymptotic behavior
of the solution near ¢ = 5 in such cases was studied in
Section 3-d, and examples are given in Section 5.

The preceding discussion shows that for finite values of
V no plastic shock front can occur and that there can be no
more than one plastic region in each of the intervals
6p 0 < ¢y, 0o ¢ < m . Combined with elastic disconti-
nuities at the P- and S-fronts, only the limited number of
configurations shown in Figs. 10 to 13 are possible.

The numerical analysis by digital computer was set up to
investigate all possible alternatives, i.e. the configuration
according to Fig. 10 if the starting value 01 satisfies Eqg.
(2) and any of the alternatives shown in Figs. 11 to 13 if ol
satisfies Eg. (3). While none of the configurations shown in
Figs. 11 a-c ever furnished a solution, no general proof per-
mitting elimination of these cases is available.

In Range I solutions which start accoxding to Case 1,
have the configuration of Fig. 10. For fixed values of v and
V, these solutions form a family which depends on one parameter,
the selected starting value | o [ > lOlEI . It was found that
the surface load'ﬁ? increases monotonically with | oll until
the limit, Eq. (4) for Ol is reached, which leads to a limit-

p
ing value of the surface load-i% . However, no analytical

p
proof of the monotonic increase of -i? is available.

UG-
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The solutions found for Range I, which start according
to Case 2, had always the configuration shown in Fig. 13.
These solutions also depend on one parameter, viz. the stopping
point ¢2 of the plastic region between ¢P and ¢S . If ¢2

is selected only slightly larger than ¢l , the solution must

obviously be very close to the limiting one for Case 1, so

P, ~ P
that in such a case 1?-) T? and there is a smooth transition
from the configuration according to Fig. 10 to that of Fig. 13.

p
The numerical analysis indicated tlat the surface load 7?

increases monotonically with ¢ . As ¢ approaches a limit-
2 2

ing value the surface load goes to the limit T? > o , for

reasons explained in Section 3-d.
In Range II, only solutions which start according to Case

2 were found, their configurations being as shown in Figs. 12

p p P p
and 13. Figure 12 applied for values 7?-( T?'< ?% where 7%

is a bound. The corresponding family of solutions depends on

p
the stopping point ¢2 of the plastic region. The bound 7%

is reached when the elastic region for ¢ » ¢S becomes neutral.

Po
K

made in Range I for this case applyv.

For larger values of Fig. 13 applies and all statements
In Range I as well as in Range II, combination of all
solutions obtained numerically furnished one, and only one
: Po . PE
solution for each value of * > * However, no general

proof is available that this must >e so. Existence and

T e pApsaapay - — e T T~ prarve b P




uniqueness of the solutions obtained must therefore be demon-
strated for each combination of values y and gL by actual

P
computation of the families of solution according to the con-

figurations shown in Figs. 10 to 13.
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5. RESULTS AND CONCLUSIONS.

a) Discussion of Typical Numerical Results

The numerical integration of the simultaneous differential
equations (3-18 to 21) in plastic regions was accomplished by
a Runge-Kutta forward integration scheme of fourth order [9]
Computations were programmed in Fortran II for an IBM 7090
digital computer. Only typical results representing the various
configurations will be given here for the case of the velocity
for several values of 29 and v . An extensive

p k

tabulation of additional results is given elsewhere, [8].

V=125c¢c

Significant differences in the solution for large values
occur, depending on whether v 2 1/8 , so that examples for
both situations are presented.

p
For v = 1/4, V = 1,25 cP the limiting value T? up to
P
which the solution is entirely elastic is T? = 2.50. Figure

l4a shows the detail of a solution for a slightly higher value

P p
of the pressure, 1? = 2,61 > —% . The configuration has one

plastic region in agreement with Fig. 10. The limiting value

p
for this configuration is-i% = 2,65 . When the surface pressure

exceeds this value, the configuration contains two plastic

zones and is of the type shown in Fig. 13. The details for the
D

value-i? = 3,58 are shown in Fig. 14b. Further solutions for

P
other values of 'ig can be obtained by varying the end point




¢2 of the lower plastic region.

However, computational difficulties arise when the end
point ¢2 approaches the value 5 , which has in the present
example the value ¢ = 143,3957° . As explained in Section
3-d a very rapid change occurs in the quantity Jl , hearly
a shock front, when ¢2 > 5 , with the result that the corres-
ponding surface pressure will be large. Figure 15 illustrates
the result of the measures taken to obtain numerical results
in this range. First the program for the numerical integration
was revised for double accuracy (16 digits). When it was found
that this was not adequate to continue solutions sufficiently
close to ¢ = 5 to obtain agreement with the asymptotic solu-
tions, expansions including higher order terms than used in
Appendix A were made and the resulting approximate*) differen-—
tial equations were integrated numerically**). This procedure
was successful as illustrated by Fig. 15. It was stated in
Section 3-d that for y » 1/8 there are two types of asymptotic
soluticns and the actual solution may approach either one.

Figure 15 shows the quantity A = B -3 as function of ¢ = ¢ - ¢,

The solution of the approximate differential equations approaches

*)

The details of these numerical computations are contained
in [8]
* %)

The expansions indicate that near ¢ = ¢ cancellations of
leading terms up to high order occur, which explains the diffi-
culty encountered.
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the negative branch of the asymptotic solution of Type 2 for
very small values of ¢, The curve shown is part of the solu-
tion for %g = 10,5. The integral of the original differential
equations even with double precision approaches the asymptotic
solution not well and is in this range inaccurate. However, the
solution of the original and of the approximate differential
equations agreed very well for €) 5x 10 >, which fact could not
be shown in the scale of Fig. 15. The complete results for the

P
case E? = 10.5, corresponding to Fig. 15, are shown in Fig. llc.

Solutions for other values of vy and V are essentially

Po
k
v < 1/8 , because the asymptotic behavior near ¢ = 5 changes.

similar, except for solutions for large values of when

To illustrate such a case, Figs. l6a-c give solutions for vy = O,

Pg pL .
vV =125 Cp where - = 1.41 and.7;-= 2.L0 . Figures
p P p
l6a, b apply respectively for 7?«( 7? = 2.17>< 7% and
Pr, Po . . ) Ps
j;'( % = 3.70 . Figure l6c finally applies for-jr = 8.02

a case where the numerical integration of Egs. (3-35 to 38)
encountered computing difficulties.

As discussed in general in Section 3-d, in the last case,
the singular angle 5 is situated in the interior of the upper
plastic region, and the asymptotic expressions for A =g - 3
n=7vY - n/2 as function of ¢ = ¢ - 5 differ for ¢ {( 0 and

€ > 0 , and are discontinuous at ¢ = 0 . Figures 17, 18 show

A and 1 given by the asymptotic expressions and the actual
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P
integral obtained. For the value-j% = 8,02 considered, the

approximate differential equations obtained by expansion of

Egs. (3-35 to 38), [8] , had to be used. Figure 17 also shows

p
a solution for a lower value —= where Egs. (3-18 to 21) could

k
still be integrated using double accuracy. As stated earlier,
b
solutions for various values of the surface pressure 1? are

obtained by changing the end point ¢2 of the lower plastic
region. In the range under discussion thz computation becomes
very sensitive to small changes in ¢2 . If an upper bound,
which can only be found numerically, is exceeded the integra-
tion no longer leads to a solution because the value 6 instead
of approaching the value 6 = 90O moves away from it. Figure
17 shows also one of the integrals which does not lead to a
solution.

Solutions in Range II, i.e. for values of y and %L

P
located in the cross-hatched area of Fig. 8, do not differ from
. po pL . . .
those in Range I, except when TZ'< * . As illustration Fig.

19 treats the case v = 35, V= 1,25 ¢, for the surface pressure

P
p P p
7§'< T? =4 41 < i? = 6,24 . 1In this solution an elastic

region occurs for ¢ » ¢g -

b) Conclusions.

The effects of a step pressure < progressing with con-

stant superseismic velocity V ) cp on the surface of a half-
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space have been determined for an elastic-plastic medium obeying

the von Mises yield condition. The steady-state solutions
obtained satisfy additional conditions selected to ensure that
the solutions are asymptotic ones in the vicinity of the front
of the surfrce load for transient problems of the type shown
in Fig. 2.

In spite of the lack of a general uniqueness and existence

theorem, a unique solution was obtained for each combination

P

of the significant nondimensional parameters gL PR and~E?
P

for which numerical computations were actually made. Extensive
numerical results, in addition to the typical ones discussed
above can be found in [8},

The elastic-plastic configuration of the solution differs,

there being three cases, Figs. 10, 12, 13, depending on the

P
value of the nondimensional parameters. For pressures 7?
P
below a value-i? , which is a function of y and %L , the
p
solutions are entirely elastic. For larger values of the
. Pp . Py , Py, ) )
pressure, 1n a range i?‘< 7;—( * the solutions contain one

plastic region, the configurations being shown in Figs. 10 and

12. The former, or the latter applies when the parameters vy
v

and-a— are in Range I or Range II, respectively, see Fig. 8.
P P
For values of the nondimensional pressure-ig above a limiting
value i% , which is of course a function of vy and gL '
P

two plastic regions occur as shown in the typical configuration
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Fig. 13.
Two significant features common to all elastic-plastic

solutions found should be noted.

- 1. While in one dimensional plane or spherical problems,
discontinuous plastic fronts oceur, [5], [10],
they do not exist in the solutions of the two dimen-
sional problem solved.

2. All solutions obtained contain an elastic discontinuity

at the S-front, in addition to the one at the P-front.
The latter occurs also in one-dimensional problems
and is to be expected from general considerations of
wave propagation. Such considerations also permit
prediction of the possibilityvy of a discontinuity in
shear similar to the one in the elastic solution. The
solutions found show that this discontinuity occurs in
all cases, a fact which can not be established by purely

qualitative considerations.

In view of the asymptotic character of the solutions ob-
tained, it must be expected that these two features will be
found also in steady-state solutions for non-step loads, Fig.
1, and in transient cases, Fig. 2.

The present paper is the first one to give results for
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multidimensional wave propagation in elastic-plastic media,
except for purely numerical, finite difference schemes*> in
which discontinuities can not appear. The solutions found in
the present paper permit checks on the effectiveness of these
numerical schemes, particularly in the vicinity of disconti-
nuities in the actual solution,

As a by-product of the steady-state solution f>r the step
load, the character of the partial differential equations for
the general case was examined in Appendix B, For superseismic
velocities V:>cP the equations were found to be hyperbolic,

The method used in this paper is also applicable to cases
with other yield conditions. The equivalent problem for a

yield condition

J, - a®t% =0 (5-1)

has been treated concurrently with the present problem [12].

*) Computer programs, not published, or given limited dis-
tribution only have been developed by a number of organizations

for various purposes, an example being [11]
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APPENDIX A - Asymptotic Solution of Equations (3-35,36,37).

The asymptotic equations (3-35,36,37) have been derived
without assumption on the relative magnitude of the quantities
n s & and €, the leading terms in each gquantity were retained
in each equation. Further simplifications of the asymptotic
equations are possible by studying separately the various
possibilities for the relative magnitude of 7 and A

If n and A are of equal magnitude, Eq. (3-35) requires

that in the limit €= 0 the relations

A =cVe n = céfE~ (A-1)

1

hold, where cl and ¢ are constants, This assumption leads,
2

however, to a contradiction. Substitutirg Eq. (A-1l) in Eq.

(3-37), asn2 is in the limit negligible compared to A ,
so that
R -
L= -4 (A-2)

Substituting this expression and the value of 7 into Eq. (3-36),

the term unity is negligible compared to a nL . The result
4
requires a = -1 , valid only for v =1/2. This value
4
corresponds to an incompressible material where Cp = . SO




that the superseismic problem to be studied here, does not exist.

Solutions according to Egs. (A-1) do not apply here.

Solutions of Type 1. If, in the limit €= 0, n>> A , Eq.

(3-35) requires

=a [/ —cE€ (A-3)
The unity term being small compared to U%r ., Egq. (3-36) gives
S -
L = 2a4€ (A-4)

The requirement L) O restricts the sign of € for which the

solution applies to sign € = sign a4 . Inspection of Egs.
a_e
2

(3-39) shows that this requirement ensures 77— >0 , so that

1
Eg. (3) gives real values of 1

Substitution of Egs. (A-3,4) into Eq. (3-37) gives the

differential equation
2a4€ _q_A_ + A = 2.3 ¢ (A-S)

de a

the general solution of which is
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2a a a
A=Ce * +——728 (A-6)

where C is an arbitrary constant. However, the solution (A-6)
must satisfy the premise A{ ( 1 where 1 is given by Eq. (A-3).
If the constant C does not vanish the exponent of e in the
above expression must be larger than 1/2 , or gi > 14 . Use

of the expression for a4 . Eq. (3-39),indicates4that the in-

equality requires v > L/? , an impossible requirement. The

constant C must therefore vanish, and

a,a €
+
alri 2a4)

A = (A-7)

The signs of a, and of é}i which govern the sign of € , depend
on the value of y . The solution applies for € O when

v< 1/8 , and for €< O when v » 1/8 . The denominator in
Eq. (A-7) does not vanish in the range 0{ v< 1/2 , so that

the result applies except for the previously excluded value

v = 1/8

Solutions of Type 2. If, in the limit € >0, A >> q , Eq.




(3-35) requires
A=q[-ace (A~8)
a being always positive, this solutions applies only for

€ { 0 . Due to the premise A > 7 the term asna in Eq.

(3-37) is, in the limit, small compared to A , giving

]
mhé

(A~9)

[
]
)]

The value of 1 1is to be determined from the differential

Equation (3-36) after substitution of Eq. (A-9),

a
en' + 3t =€ (A-10)
If a, # -2 , the general solution of this differential equation
is
7 24
r 2 2¢e
! n = Ce + x (V # 2/7) (A-11)
4

while for v =2/7 , when a = -2

1 = Ce + €&n ¢ (A~-12)




P il A i

where C indicates an arbitrary constant.

The premise A >:>n limits the exponent in the first term
a

g >1/2 . This condition is not satisfied

of Eq. (A-11l), -
for v{1/8 , requiring C=0, but it is satisfied for values
of v»1/8 . Equation (A-12) for v= 2/7 also satisfies the
premise A D n , so that the constant C does not vanish in
Eqs. (A-11,12) if v>»1/8 . For v { i/8 the solution for 7

approaches therefore asymptotically the expression

— (v< 1/8)  (a-13)

while the expressions for v » 1/8 contain an arbitrary constant

and are not fully defined. While it is possible to find a range
of v where in the limit € - O the term containing C is negli-

gible, the matter need not e pursued because it will be seen

in the examples that for v »1/8 it is sufficient to know that

1< < A , so that one can use the apprcximation

AY>n~0 (v>1/8) (a-14)

in conjunction with Egs. (A-8,9) for A and L
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APPENDIX B -~ Proof for the Hyperbolic Character of Equations

(2-14,15) and Bounds on Characteristics.

The differential equations applicable for steady state
solutions in plastic regions are the six relations (2-14,15)
supplenented by the yield condition, F = O . 7o prepare the
system for the manipulations required to obtain the charac-
teristic directions, the function A , the derivative of which
does not occur in Egs. (14), (15), may be considered to be the
derivative with respect to € of another function A , or X==§%
Further, differentiation of the yield condition converts it
into a differential equation, %% = 0 , a total of seven for
seven unknowns.

These seven differential equations can be combined with

expressions for the derivatives of the unknowns £ in the

direction ¢ of a characteristic, if any,

Q/
o/
th
Q/
Hh

l
|
I

cos ¢i f

4+ Sin (I)i (B-1)

Q/
Q/
L<:
(
o/
a

where r 1is a new variable. The coefficients of the derivatives
with respect to ¢ and y form a determinant which must vanish
in a hyperbolic system for seven, real, characteristic angles

¢i . It is, however, not necessary to derive the character-

istic equation, because the seven differential equations are

-61~
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not only quasi-linear, but also homogeneous in the derivatives
%% ’ %5 . In such a case the determinant for the deter-
mination of the characteristic angles ¢i is necessarily iden-
tical with the determinant obtained by substitution of the
relations (2-24,25) into the differential equations. This
substitution was made in Section 2 after a change of variables

which cannot be material, so that the determinant of Eqgs. (2-45)

must vanish for characteristic values ¢,

i This is precisely

the condition which leads to the determinantal Equation (3-13),

which applies thus for the values ¢,

i too. However, it will

be seen that Eq. (3-13) gives four, not seven roots ¢i , which
difference can be traced to disregarded factors containing
powers of sin ¢ , which were of no consequence in Section 3.
That there is a triple root ¢i== O , as required for a total
of seven, may be proved by showing that the matrix of the
coefficients of the derivatives %5 in the combined Egs.
(2-14,15) and %% = 0 1is of order seven but only of rank four.
To demonstrate the hyperbolic character of the differ-
ential equations for the steady-state the roots of Eg. (3-13)

must be studied. This equation, omitting the unessential

factor (sl + 52)2 , may be written




C =[Bcos 2y + (1-2v)(1-2X)]2+2[1+ (1-2v) (1-2x)][(1+v Y1-2X)-B*K] =0 (B-2)

where the values X and <y contain ¢

N
_pvE .2
X = 5G sin® @

) (B-3)
y=¢ -6

For given values of the velocity V and of the properties
p s G, v of the material, Eq. (B-2) defines ¢ implicitly
as function of 6 and B , which describe the state of stress
at the point considered. Substitution of Egs. /B-3) leads to
a quartic in tan ¢ , so that the direct investigation of the
character of its roots is an unpleasant prospect. An alter-

native approach will be used here.

Consider first the properties of the roots X of Eq. (B-2)

as functions of B and v . Equation (B-2) is gquadratic in X:




C = 4(1-2v)(3+83)x2 ~ U] (4-5v) + (1-v)B® + (1-2v)B cos 2y]X +

BZcos? 2y + 2(1-2v)p cos 2y + 5 - 4v =0 (B-4)

To prove that this equation must have two positive roots X,
it is noted that examination of the X-independent term shows
c>0 for X =0. The coefficient of X2 in the range
o v { 1/2 *) being positive, C is also positive for suffi-
ciently large values of X. The proof is completed by the
demonstration in the next paragraph that there is a positive
value X for which ¢< 0 .

It is proved in.E6] in the transient case that one pair
of characteristic velocities is always above, one below the
speed c_, of elastic shear waves. The equivalent holds here

S

for X and is shown by substitution of the appropriate value
Xg = 1/2 (B-5)

in Eq. (B"'z) ’

*)
The value v = 1/2 need not be considered as pointed out
in Appendix A.
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c |X= 1/2 = B2[ cos® 2y - 1] (B-6)

Excepting the cases B =0 or cos 2y =%1 when C vanishes,
Eq. (B-6) gives negative values of C, so that there are two
distinct real roots 0 ¢ X1< 1/2 ., X2>1/2 . The special
cases P =0 and cos 2y = + 1 require consideration of the

discriminant D of Eg. (B-4),

D = (1-2v)B3(3+p3) sin® 2y + [(1-2v)B cos 2y + 1 + v]2 +

vp3[ vp2 +2(1~2v)B cos 2y + 2(1+v)] (B-7)

If B=0 the value of D becomes (1+v)® # O so that
X = 1/2 is a root but not a double one. If cos 2y =%1 ,

sin 2y = 0 , let
é = B cos 2y (B-8)
and B2z g2 cos? 2y = p2 . The discriminant (B-7) is then

a function of B and v only, and of the surprisingly simple

form

T e SRS R
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D' =[(p-1)3v + B + 1]2 (B-9)
cos 2y=+1

The value X = L/Q will therefore be a double root if

cost 2=ty an v e [(EERE L] 0

Allowing for the special cases, it has been shown so far
that for given values R and v , Eq. (B-2), has only real

positive roots X,

0< X, < 1/2< X, (B-11)

The roots are equal, X, = X, = 1/2 if Egs. (B-10) hold.
Studying X(B,y) as a function of ~ alone, relative
maxima and minima of X for any given value of B must satisfy

the equation
%—5— = -UB sin 2y[B cos 2y + (4-2v)(1-2%)]= 0  (B-12)

This will be used to find an upper bound on X . Eguation
2

(B-12) gives three possibilities:




= -

B cos 2y = - (1-2v)(1-2X), or sin 2y = 0, or B = O

Case a. When B cos 2y = - (1-2v)(1-2X) , Eq. (B-2) becomes

c, = [1+(1-2v) (1-2%) ][ (1+v) (1-2X) - B®X] = O (B-13)

which gives either

X =+ =y (B-14)

independent of B , or

X_ = 1ty (B~15)

a 2(1+v) + B<

The maximum of the latter value, which occurs for B = 0

is 1/2 . X, being larger than 1/2 the result (B-15) never

controls.

Case b. sin 2y = 0 . 1In this case cos 2y = *#41 and the value

of C 1is

c, = [P +(1-2v) (1-2X) 1% + 2[1+(1-2v)(1-2X)]

[(2+v)(1-2%X) - B3X] (B-16)




Substituting the maximum value of X found in Case a, from

Eq. (B-14) into Eg. (B-16) one finds

1-v (B=17)

It was previously demonstrated that the value of C is not
positive for X = 1/2 and that there can be only one root

X > 1/2 . The value ¢, for X =}gi being positive, the only

“b
root of Eq. (B-1i6) for which Xy > 1/2 must be less than
X = {E;g . Case b cannot furnish the upper bound.

Case ¢. In this case B =0 and

c, = (1-2X%)[ 3(1-2v) (1-2X) + 2(1+v)] (B-18)

This equation gives Xc= 1/2 , which is not a maximum, and

_ _5-4y _
X = B%I:§JT (B-19)

X Eq. (B-14), indicates

Comparison with the value of YaE XP ;
that ;xc< xP regardless of the velue of vy .

While the controlling maximum, Eq. (B~14), was derived
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by a search for relative maxima of X for given values of 8B,
the largest value of X found being independent of g , it is
the absolute upper bound. For any selected pair of values f

and v , Eq. (B-2), has therefore two positive roots, subject

to the following bounds:

0< %, 1/2, 1/2{ X, { X = 11_’2\; (B-20)

Changing from the values X to the more pertinent values

¢ , Eq. (B-3) gives

sin ¢ = 4 /[~=X (B-21)

The upper bound in Eq. (B-20), X < i:;v , assures that Eq.

(B-21) gives real values ¢ £for superseismic velocities

v (B-22)

Restricting the range of ¢ to the meaningful one, 0< ¢ {7

it has therefore been demonstrated that Eg. (B-2) has two pairs




e g p—.

of real roots ¢i sy T - ¢i , and no others, for any pair of
values v and B . Double roots ¢ = ¢S occur when Egs. (B-~10)

apply. The roots are bounded

<
0 ¢ < m - ¢y s M-, {9, (-0,

(B-23)
6, ¢ < ¢ ) 9, < ¢, (m ?

The final step may now be taken, where the roots ¢ of
Eg. (B-2) are considered as functions of B and 6 . For a
given value of B , any root éj satisfying Eg. (B-2) for a
specified value ¥y , gives a combination ¢ and 6 = ¢ - 7y
which satisfies Eg. (B-2). It will now be demonstrated that
variation of < leads to solutions for any value of 6

Figure B-1 shows a typical plot of ¢(v) for a fixed

value of B . There are four curves, bounded by horizontal

lines representing the bounds, Eqg. (B-23). The value < appears

in Eg. (B-21) only in the form cos 2y , so that &(y) must
be periodic, ¢(y) = ¢(y+m) . Each of the four separate
branches must be continuous as function of v . (There can be
no discontinuity because the standard form of solution of the
quadratic equation (B-4) for X cannot lead to a discontinuity
if X is always real.) The values ¢ which pertain to a pre-

scribed value of 6 appear in Fig. B-1 as intersection points

-70-

e A m e ag a 7 T — o — — e




of a straight line, ¢ = v + 6 , with the curves ¢ = &(vy)
There is obviously at least one value ¢ in each interval
between the five horizontal bounding lines, for a total of
four, except for the possibility of double roots which may
occur for certain values of 6 if the second Eg. (B-10) is
satisfied. The purely qualitative Fig. B-~1l does not prove
that the straight line ¢ = v+ 6 cannot intersect the same
branch more than once. This is, however, impossible because
Eq. (B-2) is a quartic having at most four roots. The fact
that Eq. (B-2) as function of the state of stress, 6 and B
is a quartic, not a bi-quadratic indicates also that the char-
acteristic directions are not symmetric, i.e. in general
b FM b, 9 FW - b

It has therefore been demonstrated that, including double
roots, there are always four characteristic directaions ﬂ><bi>(3
for any state of stress, the values ¢j_ being subject to the
inequalities (B-23). Due to the asymmetry mentioned in the
last paragraph, only one double root ¢ » 0 may occur for any
state of stress, the other “wo roots remain different. 1In
addition there is a triple root ¢ = 0 .

In final conclusion it has been proved that all seven
characteristic directions are real, and the system is there-
fore hyperbolic. The occurrence of multiple roots does not

create any difficulty affecting the nature of the differential
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equations [7]*. While the details are not given here, it was
found that along a double (triple) characteristic two (three)

independent compatibility relations apply.
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