AEDC-TR-65-202

ARCHIVE COPY DO NOT LOAN

EVALUATION OF THE ALBEDO INTEGRAL FOR MARK I

Cord H. Link, Jr. ARO, Inc.

February 1966

PROPERTY OF U. S AND FORCE AED AF 40(600)1200 Distribution of this document is unlimited.

ENGINEERING SUPPORT FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE

PROPERTY OF U.S. AIR FORCE AF 40(600)1200

aaiaaa

NGINBERING DEVELOP

AEDC TECHNICH LIBRARY

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

EVALUATION OF THE ALBEDO INTEGRAL FOR MARK I

Cord H. Link, Jr. ARO, Inc.

Distribution of this document is unlimited.

AF - AEDC

- 17

FOREWORD

The work reported herein was done at the request of Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65402234.

The results of the research were obtained by ARO, Inc. (a subsidiary of Sverdrup and Parcel, Inc.), under Contract AF 40(600)-1200. The work was performed from February to August, 1964, under ARO Project No. SM3105, and the manuscript was submitted for publication on August 31, 1965.

This report is an extension of the work reported in AEDC-TDR-63-206 (February 1964).

This technical report has been reviewed and is approved.

William D. Clement Major, USAF AF Representative, AEF DCS/Test Jean A. Jack Colonel, USAF DCS/Test

ABSTRACT

This report is concerned with the development of a fast computer method for evaluating the albedo integral. This integral defines the illumination on an arbitrarily oriented surface element at any point in space about a diffusely reflecting sphere. It enters the calculation of simulation control parameters in the Arnold Engineering Development Center Aerospace Environmental Chamber (Mark I). The seminumerical method developed here is faster than ordinary numerical integration by a factor of about ten. A typical computer program, which formerly required about thirty minutes, now produces the same results in under four minutes.

2 ą -9 9 + n

CONTENTS

		Page
	ABSTRACT	iii
	NOMENCLATURE	vii
Ι.	INTRODUCTION	1
II.	THE ALBEDO PROBLEM	1
III.	THE ALBEDO INTEGRAL	4
IV.	PARAMETERS OF ALBEDO INTEGRAL	6
v.	BOUNDARY CURVES AND INTERSECTIONS	8
VI.	MAJOR DIVISIONS OF PARAMETER RANGES	10
VII.	CONFIGURATIONS OF ALBEDO SOURCE	
	BOUNDARIES.	14
VIII.	CONCLUSIONS	20
	APPENDICES	
	I. Derivation of the Albedo Integral.	21
	II. First Integration in Nadir Angle β	27
	III. Interior Intersections of Boundary Curves	32
	IV. Transformations for β , θ_{e} , and ψ ,	34
	V. Flow Chart for Computer Program	35
	VI. Fortran Listing of Program	53
		00

ILLUSTRATIONS

Figure

¢

Ð

5

ø

Ø.,

1.	Model	Geor	netr	У															
	a.	Geometry Defining Location Parameter																	
		$ heta_{\mathbf{s}}$ ($ heta_{\mathbf{v}}$,φ	v)	• •	•	•		•	•	•	•	•	•	•	•	•	•	5
	b.	Geor	netr	уI)efi	nin	gα	, β	,γ	, (Cγ	ar	ıd	Ce).	•	•	•	6
	c. Geometry Defining α_N , β_N , ξ and $C\xi$												7						
	d.	Geor	netr	уI	Defi	nin	g A	uxi	lia	ry	A	ng]	les	5 ¢	e,	ψ	•	•	9
2.	Major	Divis	sion	s o: C.	fPa	ara	me	ter	Ra	.ng	es	ir	ı t	he					
	1101 120 a	Tvni	cal	υγ Pat	ter	ns	for	·ν =	= 77	/3									11
	b.	Effe	ct of	2γ	on]	Bou	ind	arie	es.	•	•	•	•	•	•	•	•	•	13
3.	Config	urati	ons	of	One	an	d 7	Γwo	Bo	our	ıda	ary	7 (Jui	°V€	es	•	•	15
4.	Case (1,1)		•		•	•		•	•	•	•	•	•	•	•		•	16
5.	Case ((1,2)	• •	•	•••	•	•		•	•	•	•	•	•		•	•	•	18
6.	Case ((2,1)	• •	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	18
7.	Case ((2,2)				•						•			•		•		19

... 4

7

ą

ы

U

2

AEDC-TR-65-202

NOMENCLATURE

2

2

ď

. 67

Ae	Albedo, fraction of solar radiation reflected by earth
C_{γ}	Horizon circle
Cθ	Terminator curve
C <i>ţ</i>	"Target plane cut" curve
ΔA_1	Surface element on albedo source
ΔA_2	Target surface element
h	Altitude
Is	Solar constant, intensity
I ₂	Intensity of target illumination
L	Orbit angular momentum vector
Ν	Vector normal to target surface
Ns	Solar node vector
R	Target position vector
$\mathbf{r_e}$	Radius of the albedo source sphere
S a	Sun position (unit)vector Azimuth angle
a_{i}	(i = 1, 2 \cdots) Boundary values in azimuth
$a_{ m N}$	Azimuth of target normal vector
$\alpha^{\rm v}$, $\alpha^{\rm A}$	Minimum, maximum values of azimuth angle
β	Nadir angle
$\beta_{ m N}$	Nadir angle of target normal vector
\dot{eta} , \hat{eta}	Minimum, maximum values of nadir angle
γ	Relative altitude parameter, nadir angle of horizon
θ_{e}	Angular distance from S to arbitrary point (dA ₁) on albedo sphere; source to sun view angle
$\theta_{\mathbf{s}}$	Angular distance from S to R
$\theta_{\mathbf{v}}$	Inclination of plane of N_{s} and R to S
ξ	Angle at dA_2 between N and dA_1 ; target view angle

vii

- ϕ_e Angular distance of arbitrary source point dA_1 from R
- $\phi_{\rm v}$ Orbital angular position, between N_s and R
- ψ Angle between normal at dA_1 and direction to dA_2 ; source view angle

. .

4°3

SECTION I

This report extends one of the problems discussed in an earlier report¹: the development of a method for evaluating the "albedo integral". The aim of this study is to improve the speed at which certain quantities are computed for the control of simulation parameters in the Aerospace Environmental Chamber (Mark I). In earlier study programs, the albedo integral was evaluated by strictly numerical integration techniques. The present seminumerical method is faster, by nearly an order of magnitude, than the numerical methods formerly used. This method has been incorporated into a Fortran language computer subroutine.

A derivation of the albedo integral, for illumination intensity, is reproduced in Appendix I, under assumptions that the albedo source is a homogeneous sphere with a diffusely scattering (Lambert) surface, so that the albedo is otherwise independent of surface and atmospheric conditions.

SECTION II THE ALBEDO PROBLEM

In order to properly control the simulation of secondary radiation (albedo and planet radiance) in Mark I, it is necessary to determine the illumination on an arbitrarily oriented surface element at arbitrary altitude and at any position in a trajectory or orbital flight near a reflecting celestial body.

A derivation of the albedo integral, which expresses the illumination intensity, is given in the previous report² under assumptions that the albedo source is a sphere having a homogeneous, diffusely scattering surface so that the albedo is otherwise independent of surface and atmospheric conditions. Then a different primary body may be distinguished

²Ibid.

1

¹Cord H. Link, Jr. "Problems in Computing Radiation Control Functions for Mark I." AEDC-TDR-63-206, February 1964.

by a solar constant suitable for the distance from the sun, its mean albedo, and its radius. This last factor enters all secondary illumination calculations since they depend on relative altitude.

$$\frac{I_{2}}{\Delta A_{2}} (\theta_{s}, \gamma, a_{N}, \beta_{N}) = \frac{A_{1}}{A_{2}} (\theta_{s}, \gamma, \beta_{N}) = \frac{A_{$$

The integral contains four parameters which determine the configuration of boundaries of the surface over which the integration is to be carried out, namely, the albedo source region.

The limits of integration are functions of these same parameters as well as of the second integration variable. The parameters establish the limits for the second integration, as well as controlling the functional form of the integration limits.

In principle either of the integration variables may be selected for the first integration. The azimuth angle α provides simple first integral forms, but the function limits, involving the nadir angle, are sometimes double valued functions, $\alpha(\beta)$.

On the other hand, the first integration taken relative to the nadir angle β leads to more complex expressions for the first integral, but the functional limits, involving the azimuth angle α , are single valued functions, $\beta(\alpha)$.

This second alternative is chosen. Having once found all the "antiderivatives" of the integrand functions of β , a simple differencing of function values for maximum and minimum values of β (at a particular value of a) provides first definite integral numerical values, which are now functions of the four configuration parameters and a. Integration over a involves summation of first definite integral values.

Regardless of which variable, α or β , is first used, when the function limits $(\alpha(\beta) \text{ or } \beta(\alpha))$ are inserted, some of the expressions become rather formidable, and analytical evaluations of the second

integrals for many of these have not been found. It is reasonable to use simple numerical integration in the remaining variable a.

The region of integration is bounded by curves beyond which one or more of the integrand factors become negative. There are three such curves (see sketch above). The ever-present horizon circle C_{γ} is determined by the relative altitude of the target above the albedo source. The terminator C_{θ} , the sunlight-shadow line, is determined both by altitude and by the angular distance of the target position from the subsolar point on the albedo source. Finally, the "target plane cut" C_{ξ} , the intersection of the plane of the target with the albedo source, depends on the specific orientation of the target and altitude. The curve C_{θ} may fall outside the circle, and the curve C_{ξ} does not exist outside the horizon circle. So, depending on the four parameters, the region of integration may be bounded by one curve C_{γ} , by two curves $(C_{\gamma}$ with C_{θ} , C_{θ} with C_{ξ} , or C_{γ} with C_{ξ}), or finally by portions of all three curves.

Not only are the boundary curves defined by the four integration parameters, but their intersections are also, and there may be as many as six intersections (see above). From this arises part of the complexity of the problem, since the $C\xi$ curve may have any azimuthal relation to the $C\theta$ curve, or within the C_{γ} circle. The logical sorting involved in determining the boundary curves and their limits, for arbitrary parameters, is rather involved in the number of decisions to be made. Yet for a given configuration, only one sequence of a few decisions serves to provide all the information required. From the standpoint of computer programming, the method described here leads to a large program, of which only a small part is executed for one given set of parameters. In practice all the parameters may be continually varying.

In the following sections, the analysis will be developed, leading to the computer program displayed herein as a subroutine. A logical flow chart and Fortran II listing of the major routine is given as well as a Fortran II listing of the supporting subroutines. This method turns out to be approximately ten times as fast in computing as a corresponding purely numerical integration method.

SECTION III THE ALBEDO INTEGRAL

The albedo integral, in its complete form, provides an expression for the intensity of illumination I_2 on an arbitrarily oriented and positioned target surface element $\Delta|A_2|$ attributable to albedo A_e of a homogeneous diffusely scattering sphere exposed to solar radiation intensity I_s . ³ We begin with the definitions

$$\frac{I_2}{\Delta A_2} = \frac{I_s A_e}{\pi} \iint \cos \theta_e \cos \xi \sin \beta \, d\beta da \qquad (1)$$

$$\cos \theta_{\rm e} = \cos \theta_{\rm s} \, \cos \phi_{\rm e} \, + \, \sin \theta_{\rm s} \, \sin \phi_{\rm e} \, \cos \alpha \tag{2}$$

$$\cos \xi = \cos \beta \, \cos \beta_{\rm N} + \sin \beta \, \sin \beta_{\rm N} \, \cos \left(a - a_{\rm N}\right) \tag{3}$$

$$\sin \gamma = r_e / (h + r_e) \tag{4}$$

$$\phi_{\rm e} = \psi - \beta \tag{5}$$

$$\sin\psi = \sin\beta / \sin\gamma \tag{6}$$

The integration is over all α , β within the region where the integrand factors are all positive. The parameters α_N , β_N define the orientation of a target surface element to the particular albedo source configuration defined by θ_s , γ .

³Ibid.

For present purposes, the factor $I_{\rm s}A_{\rm e}$ is taken as unity, leaving the integral

$$\frac{1}{\pi} \iint \cos \theta_{\rm e} \, \cos \xi \, \sin \beta \, {\rm d}\beta \, {\rm d}\alpha$$

which may be called the "albedo view factor". It is a measure of efficiency of conversion of collimated illumination into scattered illumination on an arbitrarily oriented surface element at any point in space about a perfect diffusely reflecting sphere.

The integration relative to nadir angle β is given in Appendix II.

Fig. 1 Model Geometry

5

SECTION IV PARAMETERS OF ALBEDO INTEGRAL

If S is a unit vector indicating the sun direction, a unit orbital angular momentum vector, and R the target position vector, then a node vector N_s may be constructed from S x L. Then the orbital angular position ϕ_v may be defined as the angle between N_s and R. The plane of the orbit is inclined at angle θ_v from the plane of N_s and S. Then the angular distance θ_s of R from S is defined by (Fig. 1a)

 $\cos \theta_{\rm s} = \sin \phi_{\rm v} \cos \theta_{\rm v}$

b. Geometry Defining α , β , γ , C_{γ} and C_{θ} Fig. 1 Continued

The *a*, β coordinate system is defined at the vehicle position by polar coordinates, taking $\beta = 0$ as the (-R) direction, a = 0 in the plane of R and S, *a* positive by a right-hand rotation about (+R) (Fig. 1b).

Then a_N , β_N are defined as the coordinates of the normal to the albedo target surface element ΔA_2 (Fig. 1c).

The relative altitude parameter y is defined by Eq. (4). The relations of Eqs. (4) and (5) are shown in Fig. 1d.

c. Geometry Defining $a_{\mathrm{N}},\,\beta_{\mathrm{N}},\,\xi$ and C $_{\xi}$

Fig. 1 Continued

SECTION V BOUNDARY CURVES AND INTERSECTIONS

Since the boundary curves separate the region in (a, β) for which the integrand factors of Eq. (1) are positive from the region where any factor is negative, we may write boundary equations as follows:

$$C_{\gamma}$$
 (Horizon Circle): $\beta = \gamma$ (7)

for all a.

 C_{θ} (Terminator, from Eq. (2)): cos $\theta_e = 0$,

hence

$$\cos a = -\cot \phi_{\rm e} \, \cot \theta_{\rm s} \tag{8}$$

in which Eqs. (4), (5), and (6) are used to obtain expressions for $a(\beta)$ or $\beta(a)$.

 $C\xi$ (Target Plane Cut, from Eq. (3)):

$$\cos \xi = 0,$$

hence

$$\cos\left(a - a_{\rm N}\right) = -\operatorname{ctn} \beta_{\rm N} \operatorname{ctn} \beta \tag{9}$$

The intersections of $C\xi$ with C_{γ} are obtained from Eqs. (7) and (9) by letting $\Delta a = a - a_N$.

Then

$$\cos \Delta a = -\operatorname{ctn} \beta_{\mathrm{N}} \operatorname{ctn} \gamma$$

$$a_{1} = a_{\mathrm{N}} + \Delta a$$

$$a_{2} = a_{\mathrm{N}} - \Delta a$$
(MODULO 2π)
(10)

The intersection of C_{θ} with C_{γ} is found by using Eqs. (6), (5), and (7) with Eq. (8) as follows

$$\beta = \gamma$$

$$\psi = \pi/2$$

$$\phi_{e} = \pi/2 - \gamma$$

$$a_{3} = \cos^{-1} (-\operatorname{ctn} \theta_{s} \tan \gamma)$$

$$a_{4} = 2\pi - a_{3}$$

$$\left. \right\}$$

$$(11)$$

The intersections of C_{θ} with C_{ξ} are not needed in the present method, but will be essential if it is desired to attempt purely formal second-stage integration in the future. The calculation of this intersection is given in Appendix III; transformations between the angles ψ, ψ_e , and B implied by Eqs. (5) and (6) are given in Appendix IV.

d. Geometry Defining Auxiliary Angles $\phi_{
m er}$ ψ Fig. 1 Concluded

It is desirable to ensure that all the angles of intersections $(a_1, a_2, a_3, and a_4)$ of Eqs. (10) and (11) are expressed as positive angles within $(0, 2\pi)$ to eliminate ambiguities that otherwise occur in determining when the variable α is in the range of definition of one of the curves, C_{θ} or C_{ξ} .

It is apparent that the limit points a_1 and a_2 are symmetrically placed with respect to a_N at positions determined by γ and β_N . Correspondingly, a_3 and a_4 are symmetric relative to a = 0 (located from expressions involving γ and θ_s). The four integration parameters γ , θ_s , a_N , β_N remain arbitrary, subject to limitations

 $0 \le \gamma \le \pi/2$ $0 \le \theta_{s} \le \pi$ $0 \le \alpha_{N} \le 2\pi$ $0 \le \beta_{N} \le \pi$

SECTION VI MAJOR DIVISIONS OF PARAMETER RANGES

All required quantities are now defined, and we shall examine the meaning of the values of the four parameters a_N , β_N , θ_s , and γ . From the definition of γ (Eq. (4)), we find that γ approaches $\pi/2$ as the altitude vanishes, and γ approaches zero as altitude grows large.

 (α, β) Map of C_{θ} in C_{γ}

We confine our attention to the horizon circle and its interior, $\beta \leq \gamma$. In the (a, β) coordinate system about the origin (the vehicle location), a unit radius sphere is erected. The horizon circle is a small circle, $\beta = \gamma$, which entirely encompasses the albedo source region, of which no part exists outside the horizon, $\beta > \gamma$. The curve $C\xi$ is a great circle on the a, β sphere and hence passes through the origin and maps across the interior of the horizon circle as a straight line. The curve C_{θ} , a great circle on the albedo source sphere, maps into the horizon circle as a part of an ellipse tangent to the horizon circle. The values of θ_s and β_N control the existence of C_{θ} and $C\xi$ within C_{γ} and the points of closest approach of these curves to $\beta = 0$. The missing ellipse branch of the C_{θ} curve, the continuation of the terminator, is not defined in (a, β) , since it is physically outside the horizon circle or "behind" it (see sketch on page 10).

Figure 2a illustrates the major divisions of characteristics imposed by θ_s , β_N , and γ and by typical patterns of the integration region. For this illustration, a_N is arbitrarily set at $\pi/2$. Later, we shall examine the influence of a_N on the problem. Figure 2a illustrates schematically some typical boundary patterns.

a. Typical Patterns for $\gamma = \pi/3$ Fig. 2 Major Divisions of Parameter Ranges in the Horizon Circle C_y

The major ranges are noted in Fig. 2a by use of paired numbers (n_1, n_2) , the first referring to the θ_s range, the second to the β_N range. In range (0, 0), only C_{γ} bounds the region, and for integration we have $0 \leq \beta \leq \gamma$, $0 \leq \alpha \leq 2\pi$. This corresponds to a point on the vehicle nearest the source sphere, near $\beta = 0$ and a location of the vehicle not far from the subsolar point ($\theta_s = 0$) on the albedo source sphere.

With no other changes, as β_N increases we move from (0,0) to (0,1) where $C\xi$ comes into the horizon circle. The vehicle itself begins to mask part of the source. The point $\beta = 0$ is still within the source so the *a* limits are 0 and 2π ; $\beta = 0$ is the minimum β value $(\dot{\beta})$, and the maximum $(\dot{\beta})$ is either γ or dependent on *a* through the equation for curve $C\xi$.

When $\beta_N = \pi/2$, the target plane (or its equivalent C_{ξ}) bisects the horizon circle. Now α has a range of $\pi/2$ either side of a_N , β is zero, and $\hat{\beta}$ is γ only. Or we may allow α its full $(0, 2\pi)$ range, but during half of this range the curve C_{ξ} provides $\hat{\beta} = 0$ and in the other half C_{γ} gives $\hat{\beta} = \gamma$ while $\dot{\beta} = 0$.

As β_N grows, $C\xi_{\alpha}$ moves into (0, 2), on past the nadir point $\beta = 0$, and provides β while β is γ . The range of *a* is now (a_1, a_2) , the region where $C\xi$ is defined. Finally, β_N increases so far that it is "on top" of the vehicle, $C\xi$ has swept completely across the interior of the horizon circle, and the integral value becomes zero. The target now completely masks itself from the albedo source.

It must be noted that the integrand contains $\cos \theta_{\rm e}$, $\theta_{\rm e}$ being measured from the subsolar point on the albedo sphere. Thus, generally, the source intensity is not symmetric in any way unless $\beta_{\rm N} = 0$ or π , and these two instances are not equivalent since one of them includes areas nearer the subsolar point, and the other is directly opposite. But $\alpha_{\rm N}$ is arbitrary, in practice a function of $\beta_{\rm N}$ determined by the vehicle geometry and orientation.

The dependence of the θ_s and β_N ranges on the altitude parameter, γ , is illustrated in Fig. 2b.

We now return to case (0, 0) and allow θ_s to vary. As we enter (1, 0), the terminator C_{θ} appears in the horizon circle at $a = \pi$. The nadir point is still within the integration region so a ranges $(0, 2\pi)$, $\dot{\beta} = 0$, and β are determined from either C_{θ} or C.

Regions Identified by Numbered Ranges ($\theta_{S}^{}$, $\beta_{N}^{})$

Fig. 2 Concluded

Allowing θ_s to increase to $\pi/2$ (as the vehicle crosses over the terminator), C_{θ} bisects the source field, and we move on into (2,0). Here C_{θ} provides $\dot{\beta}$, $\dot{\beta} = \gamma$, and a ranges only over a_3 , a_4 .

Finally θ_s increases so far that C_{θ} leaves the horizon circle at a = 0, and we have the eclipse condition where no part of the illuminated albedo sphere is visible at the vehicle. The integral vanishes. We note that $\cos \xi$ in the integrand also destroys the apparent symmetry in a of the source function except in special cases. Instances where symmetry occurs were treated in Appendix II of the previous report⁴ as special cases in which the albedo integral can be obtained in closed form.

The parameter ranges labeled (1, 1), (1, 2), (2, 1), and (2, 2) are superpositions of those just described. The bounds are dependent on all four parameters. When only one of the curves $C\xi$ or C_{θ} establishes the β , then the *a* range necessarily lies within the corresponding end points (a_1, a_2) or (a_3, a_4) . More precise statements are developed in subsequent sections as we go more deeply into the logic of sorting out the various cases.

SECTION VII CONFIGURATIONS OF ALBEDO SOURCE BOUNDARIES

In this section, we display 43 distinct configurations of boundaries covering all useful values of the four integration parameters. All of these must be examined for the purpose of establishing exact integration ranges in α , ranges in which the boundaries are different functions $\beta(\alpha)$. As earlier indicated, we shall eventually integrate over (α, β) by using exact expressions for the first definite integral in β , which contains functions $\dot{\beta}(\alpha)$ and $\dot{\beta}(\alpha)$, then numerically integrating in α .

We recall that all end points (a_1, a_2, a_3, a_4) are defined to have values in $(0, 2\pi)$, that the curve C_{γ} is defined by $\beta = \gamma$ for all a, that C_{ξ} is defined (Eq. (8)) in (a_1, a_2) , and C_{θ} is defined in (a_3, a_4) . We do not require the intercepts of C_{θ} with C_{ξ} , which would be denoted (a_5, a_6) , because results based on this knowledge are readily obtainable by an artifice which we shall use in the numerical a integration. These points would be

⁴Ibid.

required if one were to attempt to find a complete analytical expression for the albedo integral.

We return to the notation of the previous section for discussion of the major divisions. Viewed from the origin of the (a, β) coordinate system, boundary curve C_{γ} is a circle whose interior contains the regions of interest. Curve C_{ξ} is a straight line segment, and C_{θ} , although an ellipse section tangent to C_{γ} , is indicated as a circular arc for clarity and ease of drawing. The variously numbered points are simply numbered in sketches. The sides of C_{ξ} and C_{θ} on which the corresponding integrand factors are positive are indicated by a small arrow, pointing toward a_N on C_{ξ} , and toward a = 0 on C_{θ} , or to the "interior" of these curves. Then the region of interest is just that part of the pattern which is common to the interiors of all three curves.

<u>Case (0, 0):</u> $\beta_{N} \leq \frac{\pi}{2} - \gamma$, $\theta_{s} \leq \gamma$ $0 < \alpha < 2\pi$, $\check{\beta} = 0$, $\hat{\beta} = \gamma$ <u>Case (1, 0):</u> $\beta_{N} \leq \frac{\pi}{2} - \gamma$, $\gamma \leq \theta_{S} \leq \frac{\pi}{2}$ <u>Case (2, 0):</u> $\beta_{N} \leq \frac{\pi}{2} - \gamma$ $\frac{\pi}{2} \leq \theta_{s} \leq \pi - \gamma$ az $\begin{array}{c|c} 0 \leq \alpha \leq \alpha_{3} \\ \text{and} & \alpha_{4} \leq \alpha \leq 2\pi \end{array} \begin{array}{c} \text{'split} \\ \text{scan} \end{array} \begin{array}{c} \beta = \beta(C_{\theta}) & \widehat{\beta} = \gamma \end{array}$ <u>Case (0, 1):</u> $\theta_{s} \leq \gamma$ $\frac{\pi}{2} - \gamma \leq \beta_{N} \leq \frac{\pi}{2}$ $0 \le \alpha < 2\pi$ $\begin{matrix} 0 \leq \alpha \leq 2 \pi \\ \widecheck{\beta} &= 0 \end{matrix}$ **β** = γ = β(C_c) or $\hat{\beta} = \beta(C_{\beta})$ $0 \le \alpha \le \alpha_2$ | split $\alpha_1 \le \alpha \le 2\pi$ | test $\alpha_1 < \alpha < \alpha_2$ <u>Case (0, 2):</u> $\theta_{s} \leq \gamma$ $\frac{\pi}{2} \leq \beta_{N} \leq \frac{\pi}{2} + \gamma$ β = γ α2 $\check{\beta} = \beta(C_{e})$ $\alpha_2 < \alpha < \alpha_1$ split

Fig. 3 Configurations of One and Two Boundary Curves

Cases (0, 0), (0, 1), (0, 2), (1, 0), and (2, 0), shown in Fig. 3, are largely self-explanatory. Cases (0, 1), (0, 2), and (2, 0), however, introduce the problem of the "split range". Although the two orientations shown in (0, 1) and (0, 2) are geometrically equivalent, they are logically distinct since all intersection values are defined in $(0, 2\pi)$. For example, in case (1, 0) when the order of end points is $a_1 < a_2$, the $C\xi$ curve is defined in (a_1, a_2) , but when the order is $a_2 < a_1$, $C\xi$ is defined in the split range $(0, a_2)$ and $(a_1, 2\pi)$. Thus, the order of end points is essential to the orderly determination of the range in which a may be during numerical integration and for the selection of the proper boundaries (β, β) for a given a.

The split range is also used in the initiation and advance of a during numerical integration. If the range is split, a is scanned over the two parts successively.

Case (1, 1) is the most complicated group of configurations because the α range is 0, 2π and both $C\xi$ and $C\theta$ are present, Fig. 4. Each configuration is labeled by letter referring to the corresponding permutation

Fig. 4 Case (1, 1)

of end points, given in the table at the bottom of the figure. Beside each permutation appears the order of subscripts in the boundary curves from which $\hat{\beta}$ is to be found. For this case, the point $\beta = 0$, lying interior to the integration region, is also $\hat{\beta} = 0$. Where a double subscript occurs, we make use of the artifice (previously mentioned) to determine whether to use C_{θ} or C_{ξ} . Here, when $\hat{\beta}$ is to be found in a range of a where both C_{θ} and C_{ξ} are defined, we use the C_{θ} and C_{ξ} definitions to determine both values of $\hat{\beta}$, i.e., $\hat{\beta}(C_{\theta})$ and $\hat{\beta}(C_{\xi})$; we then select the least of these to be $\hat{\beta}$.

We give an example of interpretation of the table of Fig. 4. Select configuration B. Initiate *a* at 0, change the value by the (fixed) step size, and test a to see when it is in each subsequent range. In $(0, a_1)$, $\hat{\beta} = \gamma$; in (a_1, a_3) , $\hat{\beta} = \beta(C\xi)$. In (a_3, a_2) , $\hat{\beta} = \min[\beta(C\theta), \beta(C\xi)]$; then in (a_2, a_4) , $\hat{\beta} = \beta(C\theta)$. Finally, in $(a_4, 2\pi)$, $\hat{\beta} = \gamma$.

Note that in any configuration in which $a_2 < a_1$, the range test must be split, as noted earlier.

Case (1, 2) in Fig. 5 has $\mathring{\beta}$ defined by the curve C_{ξ} , and, hence, *a* is scanned only over the range of definition of C_{ξ} ; that is, over (a_1, a_2) if $a_1 < a_2$, or over $(0, a_2)$ and $(a_1, 2\pi)$ if $a_2 < a_1$. In the table, the symbol $[\theta]$ means that we use $\mathring{\beta} = \beta(C_{\theta})$ only if it is greater than $\mathring{\beta} = \beta(C_{\xi})$; otherwise, there is no contribution to the integral for the current value of *a*.

Case (2, 1) in Fig. 6 has $\dot{\beta}$ defined by C_{θ} , so a is scanned over $(0, a_3)$ and $(a_4, 2\pi)$, a split scan. The notation ξ^* in the table means that $\dot{\beta} = \beta(C\xi)$ if only $\dot{\beta} > \dot{\beta}$; otherwise, the current value at α contributes nothing to the integral.

Finally, case (2, 2) in Fig. 7 has $\hat{\beta}$ defined by $\beta = \gamma$, and we select $\hat{\beta}$ as the greatest of $\beta(C_{\xi})$ and $\beta(C_{\theta})$, which is the meaning of the symbol (θ, ξ) in the table. Note that configuration G illustrates that nonoverlapping of the ranges of (a_1, a_2) and (a_3, a_4) leads to zero value of the integral. For case (2, 2) we let a scan only the least of the spans of C_{θ} or C_{ξ} ; if this is C_{θ} then the a scan is split, but if C_{ξ} , the a scan may or may not be split. Notations of split scan test appear on the figures.

This completes the details of the logical procedures for doing the numerical integration in a. From the tables on the figures, the logic flow chart in Appendix V was derived; the problem was then programmed for computer directly from the flow chart. The Fortran listing is shown in Appendix VI.

A ED C-T R-65-202

Three Boundary Curves $\frac{\pi}{2} < \beta_N < \frac{\pi}{2} + \gamma$, $\frac{\pi}{2} \leq \theta_S \leq \pi - \gamma$, $\hat{\beta} = \gamma \alpha$ Ranges over Least Span, Covering Range of $C_{\hat{\xi}}$ if $\Delta \alpha \leq \alpha_3$, Otherwise over C_{θ} . Span of C_{θ} Always Split $0 \leq \alpha \leq \alpha_3$ and $\alpha_4 \leq \alpha \leq 2\pi$

Configuration	<u>a</u> Order	r Boundary Curves for β									
А	(0) 1 3 2 4 (2π) (8, 巻)	-	-	-	(θ, ^ξ)	*				
В	1342	(θ, ξ)	-	-	-	(θ, ξ)	*				
С	2134	-	(θ ξ)	-	-	-					
D	2314	-	(θ,ξ)	-	-	-					
Ε	3124	θ	-	-	-	θ	*				
F	3142	(θ, ξ)	-	-	-	(θ, ξ)	*				
G	3214	-	-	-	-	-	**				
Н	3241	-	-	-	(θ,ξ)	-					
1	3421	-	-	-	(θ, ξ)	-					
	Symbol Meaning										
	(θ, ξ) β̃ = Max [β(C _θ), β(C _ξ)]										
	 Split Test if α Ranges over C_g 										

Identically Zero Integral

Fig. 7 Case (2, 2)

SECTION VIII CONCLUSIONS

In an attempt to gain computing speed in the evaluation of the albedo integral, a double integral, the problem has been changed from a straightforward numerical integration to a much faster but more complex seminumerical integration. For example, whereas formerly the a, β range was covered by a mesh of 72 X 36 points, the present method requires somewhat more computation per point through a more complex logic network at only 72 points, and the accuracy is improved by the formal first integration. The time improvement is approximately one order of magnitude.

In application, a particular Mark I control program formerly required from 25 to 35 min (IBM 7074) to generate simulation parameters for a 90-min orbit with a simulation interval of two minutes. The same results are now produced in approximately four minutes.

It appears unlikely that significant gains in computing speeds can be made by using a purely formal solution to this problem. Second integrals will contain many more terms, some quite complex, and much of the gains made by having a single evaluation to perform will be lost in the sheer bulk of the expressions involved. Most of the logic of the present method would still apply for selecting integration limits and function groups to be evaluated. Some gain may result in changing the variable of first integration, and this will be studied in the future. It may also be possible to develop rapidly computing empirical approximating functions, especially over limited ranges of the integral parameters.

APPENDIX I DERIVATION OF THE ALBEDO INTEGRAL

In the following discussion, the albedo source body is taken to be the earth. Substitution of appropriate values for radius, albedo, and solar constant allows extension to any source body.

To compute earth albedo and radiance integrals for a surface element having arbitrary orientation and position, we make the following assumptions:

- 1. that Albedo is a uniform property of the earth's surface,
- 2. that the earth is a sphere,
- 3. that the earth's surface is diffusely reflecting, and
- 4. that the earth has no atmosphere.
 - I Solar constant, intensity of solar radiation at earth
 - A_e Albedo, fraction of solar constant reflected, a surface property.

The solar radiation incident on an area element ΔA_1 having its normal inclined at angle θ_e to sun direction is

$$\Delta I_{e} = \begin{cases} I_{s} \cos \theta_{e} \Delta A_{1} & \text{for } \cos \theta_{e} \ge 0\\ 0 & \text{for } \cos \theta_{e} < 0 \end{cases}$$

Of this a fraction A_e is reflected diffusely by ΔA_i ; hence, the intensity per unit solid angle ΔI_{ψ} in a direction inclined at angle ψ to the surface normal is

$$\Delta I_{\psi} = \frac{A_e I_s}{\pi} \cos \theta_e \cos \psi \Delta A_1$$

The intensity included in solid angle $\Delta \omega$ is

$$\Delta \mathbf{I}_{\omega} = \frac{\mathbf{A}_{\mathbf{e}} \mathbf{I}_{\mathbf{s}}}{\pi} \cos \theta_{\mathbf{e}} \cos \psi \ \Delta \mathbf{A}_{\mathbf{i}} \ \Delta \omega$$

An area element ΔA_2 , at distance ρ_e from ΔA_1 , having its normal inclined at angle ξ to the direction of ρ_e , intercepts a solid angle (Fig. I-1).

$$\Delta \omega = \frac{\Delta A_2 \cos \xi}{\rho_e^2}$$

21

Hence the intensity arriving at ΔA_2 is

$$\Delta \mathbf{I}_2 = \frac{\mathbf{A}_{\mathbf{e}} \ \mathbf{I}_{\mathbf{s}}}{\pi \ \rho_{\mathbf{e}}^2} \ \cos \theta_{\mathbf{e}} \ \cos \psi \ \cos \xi \ \Delta \mathbf{A}_1 \ \Delta \mathbf{A}_2$$

Fig. 1-1 Salid Angle Geametry far Albeda and Earth Radiance Calculatian

Let the area element ΔA_2 be located at altitude h above earth of radius r_e . From this point, the portion of the earth that can be seen is confined within a horizon circle. The angle γ between the direction of earth center and the horizon circle is defined by

$$\sin \gamma = r_e / (r_e + h)$$
 (0 < $\gamma < \frac{\pi}{2}$)

At the earth center, let θ_s be the angle between the direction to ΔA_2 and the sun direction; let θ_e be the angle between the area element ΔA_1 on earth and the sun; let ϕ_e be the angle between the directions of ΔA_1 and ΔA_2 .

22

At the element ΔA_2 . ψ is the angle between the normal to A_1 and the direction of ΔA_2 as before.

At the element ΔA_2 , let β be the angle between the direction to earth center and ΔA_1 . Angle β is a "nadir" angle.

Then the following relations hold (Fig. I-2):

 $\psi = \beta + \phi$ $\sin \psi = \sin \beta / \sin \gamma$ $\cos \theta_{e} = \cos \theta_{s} \cos \phi + \sin \theta_{s} \sin \phi_{e} \cos \alpha$

where a is the angle about the line from ΔA_2 to earth center measured from the plane including this line and the sun. Angle a is the azimuth angle (Fig. 1-3).

Now the element ΔA_1 is described in spherical coordinates having polar axis along the earth-to- ΔA_2 line, longitude α , and co-latitude ϕ_{α} :

$$\Delta A_1 = r_e^2 \sin \phi_e d \alpha d \phi_e$$

The α , β Coordinate System at ΔA_2

Fig. I-3 Albedo-Radiance Integration Coordinates

Similarly, we may describe a spherical area element in terms of a, β , and ρ_e from ΔA_2 :

$$\Delta A_{\rho} = \rho_{e}^{2} \sin \beta \, d\beta \, d\alpha$$

Hence any point may be described by either (r_e, ϕ_e, α) or (ρ_e, β, α) at ΔA_i , and we find that ΔA_{ρ} and ΔA_i are related by simple projective properties:

$$\Delta A_1 \cos \psi = \Delta A_\rho$$

so that

$$\Delta A_1 = \frac{\rho_e^2 \sin \beta \, d \beta \, d \alpha}{\cos \psi}$$

We may now write the intensity at ΔA_2 caused by reflection from ΔA_1 :

$$\frac{\Lambda I_2}{\Delta A_2} = \frac{A_e I_s}{\pi} \cos \theta_e \cos \psi \quad \frac{\cos \xi}{\rho_e^2} \quad \frac{\rho_e^2 \sin \beta}{\cos \psi} \quad da \ d\beta$$
$$= \frac{A_e I_s}{\pi} \quad \cos \theta_e \cos \xi \sin \beta \ d\beta \ da$$

Integrating over the interior of the horizon circle, we obtain

 $\frac{I_2}{\Delta A_2} (\Lambda A_2, \theta_s, \gamma, \xi) = \frac{A_e I_s}{\pi} \int_{\beta=0}^{\gamma} \int_{a_{\min}}^{a_{\max}} \cos \theta_e (d, \beta, \theta_s, \gamma) \cos \xi \sin \beta d\beta da$ where a_{\min} , a_{\max} may be functions of β , and there may be several distinct

In the spherical coordinates a, β , any orientation of surface element may be described by the direction angles of its normal, a_N , β_N . Then the angle ξ is found from

Since

regions or functions.

$$\cos \xi = \cos \beta \, \cos \beta_{\rm N} + \sin \beta \, \sin \beta_{\rm N} \, \cos (a - a_{\rm N})$$
$$\theta_{\rm e} = \psi - \beta, \quad \text{and} \quad \sin \psi = \sin \beta / \sin \gamma$$
$$\cos \theta_{\rm e} = \sin \psi (\cos \theta_{\rm s} \, \sin \beta + \sin \theta_{\rm s} \, \cos \beta \, \cos a)$$
$$+ \cos \psi (\cos \theta_{\rm s} \, \cos \beta - \sin \theta_{\rm s}) \sin \beta \, \cos a)$$

The intensity integrand is completely expressible in the two variables a, β , and the configuration parameters θ_s , γ , a_N , β_N .

At this stage it is possible to integrate numerically by letting α range from 0 to 2π and β range from 0 to γ , provided that

```
\cos \ \xi \ge 0
\cos \ 	heta_{
m e} \ge 0
\cos \ \psi \ge 0
```

and using (= 0) for any (a, β) violating these conditions.

Ignoring for the moment the constant $A_{i_e}I_s/\pi$, we have the following terms to be integrated over a and β :

1.	$\cos \beta_{\rm N}$	$\cos \theta_{ m S}$	$\cos^2 \beta$	sin β	$\cos\psi$		
2	$\cos \beta_{ m N}$	$\sin \theta_s$	$\cos \beta$	$\sin^2 \beta$	$\cos \psi$	cos	α
3.	$\cos \beta_{ m N}$	$\cos \theta_{s}$	$\cos \beta$	$\sin^2 \beta$	sin ψ		
4.	$\cos \beta_{ m N}$	$\sin \theta_s$	$\cos^2 \beta$	sin β	sin ψ	cos	а

5.
$$\sin \beta_{\rm N} \cos \theta_{\rm s} \cos a_{\rm N} \sin^2 \beta \cos \beta \cos \psi \cos a$$

6. $\sin \beta_{\rm N} \cos \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \cos \psi \sin a$
7. $-\sin \beta_{\rm N} \sin \theta_{\rm s} \cos a_{\rm N} \sin^3 \beta$
8. $-\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^3 \beta$
9. $\sin \beta_{\rm N} \cos \theta_{\rm s} \cos a_{\rm N} \sin^3 \beta$
10. $\sin \beta_{\rm N} \cos \theta_{\rm s} \sin a_{\rm N} \sin^3 \beta$
11. $\sin \beta_{\rm N} \sin \theta_{\rm s} \cos a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a$
12. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$
13. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$
14. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$
15. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$
16. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$
17. $\sin \beta_{\rm N} \sin \theta_{\rm s} \sin a_{\rm N} \sin^2 \beta \cos \beta \sin \psi \sin a \cos a$

As long as there are no boundaries of earth surface for which $a = a(\dot{\beta})$, so that a can range from 0 to 2π , we may integrate relative to a and obtain simple results. Integrals (1, 3) do not contain a so the integration results in a factor 2π . Integrals (2, 4, 5, 6, 8, 9, 10, 12) contain only $\sin a$ or $\cos a$ and vanish. Integrals (7, 11) contain $\cos^2 a$ or $\cos a - \sin a$ and result in a factor of π .

These conditions are satisfied as long as we have both

$$\beta_{\rm N} \leq \frac{\pi}{2} - \gamma$$

 $\theta_{\rm s} \leq \gamma$

If $\beta_N \ge \pi/2 + \gamma$ or $\theta_s \ge \pi - \gamma$, the earlier conditions on $\cos \xi$ or $\cos \theta_e$ are violated and the entire integral $(I_2/\Delta A_2)$ vanishes.

For

$$\frac{\pi}{2} - \gamma < \beta_{\rm N} < \frac{\pi}{2} + \gamma$$
$$\gamma < \theta_{\rm s} < \pi - \gamma$$

and/or

there exist boundaries of form $a(\beta)$, and the integration becomes complicated. The integration is bounded by arcs of one, two, or three curves of $a(\beta)$, whose intersections are generally given by implicit functions. A first integration may be done formally; expressions result for which the integrals are not available in closed form.

Numerical integration may be accomplished in an easily comprehended manner by referring to the earlier integral expression. The product $\cos \xi \cos \theta_e \sin \beta$ may be calculated term by term, and in addition, the expression $\cos \psi$ can be evaluated to ensure that the conditions

$$\begin{array}{ccc} \cos \xi \\ \cos \theta_{\rm e} \\ \cos \psi \end{array} \right\} \ge 0$$

are satisfied. For some value combinations of a_N , β_N , θ_s the integrations can be carried out.
APPENDIX II FIRST INTEGRATION IN NADIR ANGLE β

Table II-I displays the twelve possible integrands, with their parameter coefficients. The last eight of these may be grouped in pairs and combined by use of the identity

$$\cos a \cos a_N + \sin a \sin a_N = \cos (a - a_N)$$

Further grouping can then be performed based on the formal similarity of integrands. We use the numbering of Table II-I to identify integrands and the following definitions of parameter functions.

 $A_{1} = \sin \beta_{N} \sin \theta_{s} \cos a \cos (a - a_{N})$ $A_{2} = \cos \beta_{N} \cos \theta_{s}$ $A_{3} = \sin \beta_{N} \cos \theta_{s} \cos (a - a_{N})$ $A_{4} = \cos \beta_{N} \sin \theta_{s} \cos a$ $(1) \quad A_{2} \quad \int \cos^{2} \beta \sin \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} d\beta$ $(2) - A_{4} \quad \int \cos \beta \sin^{2} \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} d\beta$ $(3) \quad A_{2} \quad \int \cos \beta (\sin^{3} \beta / \sin \gamma) d\beta$ $(4) \quad A_{4} \quad \int \cos^{2} \beta (\sin^{2} \beta / \sin \gamma) d\beta$ $(5, 6) \quad A_{3} \quad \int \cos \beta \sin^{2} \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} d\beta$ $(7, 8) - A_{1} \quad \int \sin^{3} \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} d\beta$ $(9, 10) \quad A_{3} \quad \int (\sin^{4} \beta / \sin \gamma) d\beta$ $(11, 12) \quad A_{1} \quad \int \cos \beta (\sin^{3} \beta / \sin \gamma) d\beta$

TABLE II-1 INTEGRAND FORMS FOR ALBEDO

۰ ه

,

1.	cos β _N	cos	θ _S			cos ²	β	sin	β	cos	ψ				
2.	-cos β _N	sin	θ			COS	β	sin ²	β	cos	ψ	COS	α		
3.	cos β _N	cos	θ			COS	β	sin ²	β	sin	ψ				
4.	cos β _N	sin	θ			cos ²	β	sin	β	sin	ψ	COS	α		
5.	sin β _N	cos	θ	cos	α _N	sin ²	β	COS	β	cos	ψ	COS	α		
6.	sin β _N	cos	θ _s	sin	α _N	sin ²	β	COS	β	COS	ψ	sin	α		
7.	-sinβ _N	sin	θ _S	cos	α _N	sin ³	β			COS	ψ	cos ²	α		
8.	-sin β _N	sin	θ _S	sin	α _N	sin ³	β			COS	ψ	sin	α	cos	α
9.	sin β _N	cos	θ _S	cos	α _N	sin ³	β			sin	ψ	COS	α		
10.	sin β _N	cos	θ _S	sin	α _N	sin ³	β			sin	ψ	sin	α		
11.	sin β _N	sin	θ	COS	α _N	sin ²	β	COS	β	sin	ψ	cos ²	α		
12.	sin β _N	sin	θ _s	sin	α _N	sin ²	β	COS	β	sin	ψ	sin	α	cos	α
		N	ote	si	nψ	= si	n	β/sir	γ ו						

,

Regrouping for formal similarity

$$(1, 7, 8) \quad (A_{2} + A_{1}) \int \cos^{2} \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} \sin \beta \, d\beta$$

$$- A_{1} \int (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} \sin \beta \, d\beta$$

$$(2, 5, 6) \quad (A_{3} - A_{4}) \int \sin^{2} \beta (1 - \sin^{2} \beta / \sin^{2} \gamma)^{\frac{1}{2}} \cos \beta \, d\beta$$

$$(3, 11, 12) \quad (A_{1} + A_{2}) \int (\sin^{3} \beta / \sin \gamma) \, \cos \beta \, d\beta$$

$$(4, 9, 10) \quad A_{4} \int (\sin^{2} \beta / \sin \gamma) \, d\beta + (A_{3} - A_{4}) \int (\sin^{4} \beta / \sin \gamma) \, d\beta$$

We proceed to integrate, first making the following substitutions (1, 7, 8) Let

$$\sin \gamma = G$$
 $\cos \gamma = B$ $\cos \beta = x$

and note that

-a

\$

v

$$\sin^{2} \gamma - \sin^{2} \beta = \cos^{2} \beta - \cos^{2} \gamma$$
$$\sin \beta d\beta = -d \cos \beta = -dx$$

Then we obtain

$$-\frac{(A_{2}+A_{1})}{G}\int x^{2}(x^{2}-B^{2})^{\frac{1}{2}} dx + \frac{A_{1}}{G}\int (x^{2}-B^{2})^{\frac{1}{2}} dx$$

$$= \frac{(A_{2}+A_{1})}{G}\left[\frac{x}{4}(x^{2}-B^{2})^{\frac{3}{2}} + \frac{B^{2}}{8}x(x^{2}-B^{2})^{\frac{1}{2}} - \frac{B^{4}}{8}\ln(x+(x^{2}-B^{2})^{\frac{1}{2}})\right]$$

$$+ \frac{A_{1}}{G}\left[\frac{x}{2}(x^{2}-B^{2})^{\frac{1}{2}} - \frac{B^{2}}{2}\ln(x+(x^{2}-B^{2})^{\frac{1}{2}})\right]$$

$$= -\frac{(A_{2}+A_{1})}{G}\frac{x}{4}(x^{2}-B^{2})^{\frac{3}{2}}$$

$$+\left[\frac{A_{1}}{2G} - \frac{A_{1}+A_{2}}{G}\frac{B^{2}}{8}\right]\left\{x(x^{2}-B^{2})^{\frac{1}{2}} - B^{2}\ln(x+(x^{2}-B^{2})^{\frac{1}{2}})\right\}$$

Finally
(1, 7, 8)
$$\frac{1}{4G} \left\{ \left[2A_1 - \frac{1}{2} (A_1 + A_2) B^2 \right] \left[x (x^2 - B^2)^{\frac{1}{2}} - B^2 \ln (x + (x^2 - B^2)^{\frac{1}{2}}) \right] - (A_1 + A_2) x (x^2 - B^2)^{\frac{3}{2}} \right\}$$

(2, 5, 6) Let

 $\sin \gamma = G$ $\sin \beta = y$ $\cos \psi = z$

where

$$\sin\psi = \sin\beta / \sin\gamma$$

and note

$$\cos\beta \, \mathrm{d}\beta = \mathrm{d} \, \sin\beta = \mathrm{d} \mathrm{y}$$

Then we obtain

$$\frac{(A_3 - A_4)}{G} \int y^2 (G^2 - y^2)^{\frac{1}{2}} dy$$

$$= \frac{(A_3 - A_4)}{G} \left[-\frac{y}{4} (G^2 - y^2)^{\frac{3}{2}} + \frac{G^2}{8} \left\{ y (G^2 - y^2)^{\frac{1}{2}} + G^2 \sin^{-1} \frac{y}{G} \right\} \right]$$

$$= \frac{A_4 - A_3}{4G} \left[y (G^2 - y^2)^{\frac{3}{2}} - \frac{G^2}{2} \left\{ y (G^2 - y^2)^{\frac{1}{2}} + G^2 \psi \right\} \right]$$

$$= \frac{A_4 - A_3}{4G} \left[y z^3 - \frac{1}{2} (y z + G \psi) \right] G^3$$

(3, 11, 12) Let

$$G = \sin \gamma$$

*

then

$$(A_2 + A_1) \int \frac{\sin^3 \beta \cos \beta d\beta}{\sin \gamma} = \frac{(A_2 + A_1)}{4G} \sin^4 \beta$$

(4, 9, 10) Let

$$G = \sin \gamma$$

then

$$\frac{A_4}{G} \int \sin^2 \beta \ d\beta + \frac{(A_3 - A_4)}{G} \int \sin^4 \beta \ d\beta$$

$$= \frac{A_4}{G} \left[\frac{1}{2} \left(\beta - \sin \beta \ \cos \beta \right) \right]$$

$$+ \frac{(A_3 - A_4)}{G} \left[- \frac{\sin^3 \beta \ \cos \beta}{4} + \frac{3}{4} \left\{ \frac{1}{2} \left(\beta - \sin \beta \ \cos \beta \right) \right\} \right]$$

$$= \frac{1}{4G} \left[\left(A_4 - A_3 \right) \ \sin^3 \beta \ \cos \beta$$

$$+ \frac{1}{2} \left(A_4 + 3A_3 \right) \left(\beta - \sin \beta \ \cos \beta \right) \right]$$

Now all groups have a common factor 1/(4G); this factor is ignored in practice until final calculation of the albedo view factor, which is the calculated value of the integral multiplied by

$1/(4 \pi \sin \gamma)$

The actual albedo illumination intensity is then gotten by multiplying by the albedo A_e and solar constant I_s .

APPENDIX III INTERIOR INTERSECTIONS OF BOUNDARY CURVES

Intercepts of C_{θ} with $C\xi$ are defined by the system of equations

$$\cos \alpha = -\frac{1}{(\tan \theta_s \tan \phi_e)}$$
(III-1)

$$\cos (a - a_N) = - 1/(\tan \beta_N \tan \beta)$$
 (III-2)

with the conditions

$$\phi_{\rm e} = \psi - \beta \tag{III-3}$$

$$\sin \psi = \sin \beta / \sin \gamma$$
 (III-4)

thus all four parameters θ_s , γ , a_N , and β_N are involved. From the conditions of Eqs. (III-3) and (III-4) we derive the relation

$$\tan \beta = \frac{\sin \phi_e \sin \gamma}{1 - \sin \gamma \cos \phi_e}$$
(III-5)

We expand the left side of Eq. (III-2) and use Eq. (III-5) on the right of Eq. (III-2) to obtain

C cos
$$\alpha$$
 + S sin α = (G cos ϕ_{α} - 1)/BG sin ϕ_{α} (III-6)

where

B = $\tan \beta_N$ C = $\cos \alpha_N$, G = $\sin \gamma$, S = $\sin \alpha_N$

Let

T = tan
$$\theta_s$$

and substitute Eq. (III-1) on the left of Eq. (III-6) to obtain

$$- \frac{C\cos\phi_e}{T\sin\phi_e} + S\left(1 - \frac{\cos^2\phi_e}{T^2\sin^2\phi_e}\right)^{\frac{1}{2}} = \frac{G\cos\phi_e - 1}{BG\sin\phi_e}$$

Now write the middle term as

$$\frac{S}{T \sin \phi_{e}} \left(T^{2} \sin^{2} \phi_{e} - \cos^{2} \phi_{e}\right)^{\frac{1}{2}} = \frac{S}{T \sin \phi_{e}} \left[T^{2} - (T^{2} + 1) \cos^{2} \phi_{e}\right]^{\frac{1}{2}}$$

and factor out $\sin \phi_e$ assuming $\phi_e \neq 0$. Isolate the radical on the left side and obtain, by squaring and rearranging,

$$G^{2} \left[(B^{2} + 1)(T^{2} + 1) - (1 - BCT)^{2} \right] \cos \phi_{e} - 2T (BC + T) G \cos \phi_{e} + T^{2} (1 - S^{2}B^{2}G^{2}) = 0$$
(III-7)

Solving this quadratic for $\cos \phi_{e}$, we find

$$\cos \phi_{e} = \frac{T}{G} \cdot \frac{(BC+T) \pm \left\{ (BC+T)^{2} - \left[(B^{2}+1) (T^{2}+1) - (1-BCT)^{2} \right] (1-S^{2}B^{2}G^{2}) \right\}^{\frac{1}{2}}}{(B^{2}+1) (T^{2}+1) - (1-BCT)^{2}}$$

From these two (±) values of $\cos \phi_e$ we may find corresponding values for $\sin \phi_e$, noting that $\phi_e \leq \frac{\pi}{2} - \gamma$ always, by definition. Use the values of $\cos \phi_e$, $\langle \sin \phi_e \text{ in Eq. (III-5)} \rangle$ to obtain two corresponding values of $\tan \beta$, hence β , noting that for this purpose $\beta \leq \gamma$. At the same time, Eq. (III-1) allows evaluation of the two values of a, and the intersection points for C_{θ} and C_{ξ} can be found. These points are labeled (a_{ξ}, β_{ξ}) and (a_{ξ}, β_{ξ}) .

Now the discriminant of Eq. (III-8) provides indications of the presence of two, one, or no intersections of C_{θ} and C_{ξ} .

From the fact that (a_5, a_6) contains *a* values of intersection for two curves defined between both pairs (a_1, a_2) and (a_3, a_4) , of necessity (a_5, a_6) values lie inside both ranges (a_1, a_2) and (a_3, a_4) . That is, (a_5, a_6) values are within the *a* ranges of definition which are common to both $C\xi$ and C_{θ} . This is the region where, in practice, we may compute both $\beta(C_{\theta})$ and $\beta(C_{\xi})$ to select which shall be used. In this way we avoid calculation of (a_5, a_6) and avoid further complication of the selection logic.

APPENDIX IV TRANSFORMATIONS FOR β , ϕ e, AND ψ

Transformations for ψ , $\phi_{\rm e}$, and β are based on the relations

$$\psi = \phi_e + \beta$$

$$\sin \psi = \sin \beta / \sin \gamma$$

$$F = (1 + \sin^2 \gamma - 2 \sin \gamma \cos \phi_e)^{\frac{1}{2}}$$

The transformations are

$$\sin \psi = \sin \beta / \sin \gamma = \sin \phi_e / F$$

$$\cos \psi = (\sin^2 \gamma - \sin^2 \beta)^{\frac{1}{2}} / \sin \gamma$$

$$= (\cos \phi_e - \sin \gamma) / F$$

$$\sin \beta = \sin \gamma \sin \phi / F = \sin \gamma \sin \psi$$

$$\cos \beta = (1 - \sin \gamma \cos \phi) / F = (1 - \sin^2 \gamma \sin^2 \psi)^{\frac{1}{2}}$$

$$\sin \phi_e = \left[\cos \beta - (\sin^2 \gamma - \sin^2 \beta)^{\frac{1}{2}}\right] \sin \beta / \sin \gamma$$

$$= \sin \psi \left[(1 - \sin^2 \gamma \sin^2 \psi)^{\frac{1}{2}} - \sin \gamma \cos \psi \right]$$

$$\cos \phi_e = \left[\sin^2 \beta + \cos \beta (\sin^2 \gamma - \sin^2 \beta)^{\frac{1}{2}} \right] / \sin \gamma$$

$$= \cos \psi (1 - \sin^2 \gamma \sin^2 \psi)^{\frac{1}{2}} + \sin \gamma \sin^2 \psi$$

 $\tan \psi = \sin \beta / (\sin^2 \gamma - \sin^2 \beta)^{\frac{1}{2}} = \sin \phi_e / (\cos \phi_e - \sin \gamma)$

 $\tan \beta = \sin \gamma \, \sin \psi / (1 - \sin \gamma \, \cos \phi_e) = \frac{\sin \gamma \, \sin \psi}{(1 - \sin^2 \gamma \, \sin^2 \psi)^{1/2}}$

$$\tan \phi_{e} = \frac{\left[\cos \beta - (\sin^{2} \gamma - \sin^{2} \beta)^{\frac{1}{2}}\right]^{\sin \beta}}{\left[\sin^{2} \beta + \cos \beta (\sin^{2} \gamma - \sin^{2} \beta)^{\frac{1}{2}}\right]}$$
$$= \sin \psi \frac{\left[(1 - \sin^{2} \gamma \sin^{2} \psi)^{\frac{1}{2}} - \sin \gamma \cos \psi\right]}{\left[\cos \psi (1 - \sin^{2} \gamma \sin^{2} \psi)^{\frac{1}{2}} + \sin \gamma \sin^{2} \psi\right]}$$

AEDC-TR-65-202

APPENDIX V FLOW CHART FOR SUBROUTINE ALBEDO (ALBDO)

:-4

APPENDIX V FLOW CHART FOR COMPUTER PROGRAM

•

Subroutine "ALB DO" Arguments: $\alpha_N,~\beta_N,~\theta_S,~\gamma;~\delta\,\alpha$

.

5%

4

Subroutine BDI, with Arguments α , α_N , β , β , γ , θ_s ; Sum, $\delta \alpha$ Evaluates the First Integral Between β , β Adding Results to Sum, Advancing α by $\delta \alpha$

Subroutine CXI, Arguments α , α_N , β_N Evaluates β on the Curve C $_{\xi}(\alpha, \beta)$ defined by $\cos (\alpha - \alpha_N) = - \cot \beta \cot \beta_N$

1.

$$\beta = \tan^{-1} \left[\frac{-1}{\tan \beta_N \cos (\alpha - \alpha_N)} \right]$$

Subroutine CTH, Arguments α , θ_s , γ Evaluates β on the Curve $C_{\theta}(\alpha, \beta)$ defined by the Set of Equations $\cos \alpha = - \operatorname{ctn} \theta_s \operatorname{ctn} \phi$

```
\phi = \Psi - \beta
sin \Psi = \sin \beta / \sin \gamma
```

-

Schematic Only Details on Next Three Pages

?

d'

۰

e N

 $\mathbf{47}$

ų.

2

4

. 18

ø

\$

*

q

 $\partial \theta$

APPENDIX VI FORTRAN LISTINGS SUBROUTINE ALBDO SUBROUTINE BDI SUBROUTINE XI

4

**

4

2

. 7 ទ 10 ø.,

	SUBROUTINE ALBDO(SUM, BETAN, GAM, ALN, THETS, DALS, SGAM, CGAM, S 2 SBN, CBN)	THS,CTHS,
1	PY = 3.1415927	
	PY2= 1.5707963	
	EP = 000001	
2	SUM = U.	
С	START THETA SEARCH	
	IF (THETS -GAM) 400, 401, 401	
400	AL3 = PY	
	AL4 = PY	
	K = I	-
	60 10 408	
401	IF(IHEIS -PY2)402,402,405	
402	$K = 2^{\circ}$	
405	IF (IHEIS - PY + GAM) 406,575,575	
406		
407	CAL3 = -SGAM * CTHS/(CGAM * STHS)	
	AL3 = PYZ = ASINF(CAL3)	
C	$AL4 = 2 \cdot h PY - AL3$	-
C (O O	START BETA SEARCH	
408	1 + (BETAN - PYZ + GAM) 409,409,409,410	
409	ALI = ALN + PT	
	ALZ = ALN = PT	
(1 ()	$\frac{60 10 417}{100000000000000000000000000000000000$	
410	IF (BETAN = PYZ)41194119414	
411		8 - <i>S</i>
414	GU 10 410 TE/DETAN - DV2 _GAM)415.575.575	
414	L - L - L - L - L - CAMITIS (373) 373	
414	n = -r r r r	
410	CDAC = -COAM - CDN - (SOAM - SOAN - CDN)	
		-
417	IE(A 1 - 2a + PY) 4 19 4 19 4 18	
418	A 1 = A 1 - 2 + PY	
419	TE(-A 2) + 20 + 421 + 421	
420	$A_{12} = A_{12} + 2 * PY$	
421	GG=K	
- test =	GO TO (422,441,447,425,452,520,434,500,540) .K	
С	START CASE 0-0	
422	ALPHA = .5 * DALS	
	BMIN = 0.	
	BMAX = GAM	
	ALIM = 2 · * PY	
423	IF(ALPHA - ALIM)424,575,575	
424	CALL BDI(SUM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS	,SBN,CBN)
	GO TO 423	
С	START CASE 0-1	
425	ALPHA =.5 * DALS	
	BMIN = 0.	
	$ALIM = 2 \cdot * PY$	
426	IF(ALPHA -ALIM)427,575,575	

s.

4

۵'

427	IF(AL1 - AL2)428,428,429
428	IF((ALPHA -AL1)*(ALPHA -AL2))432,431,431
429	IF(ALPHA *(ALPHA -AL2))432,430,430
430	IF((ALPHA -AL1)*(ALPHA -2•*PY))432•431•431
431	BMAX = GAM
	GO TO 433
432	CALL XI(BMAX,SBN,CBN,ALN,ALPHA)
433	CALL BDT (SUM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS, SBN, CBN)
135	GO TO 426
c	START CASE 0-2
434	BMAX = GAM
	ALPHA = AL2 + .5 * DALS
	IF(AL1 -AL2)435,436,436
435	K = 1
151	$ALIM = 2 \cdot * PY$
	GO TO 437
436	K = 2
150	
437	
438	IE(ACTING A439-675
430	
437	
1. 1. 15	
440	CALL ATTOMINISONYCONYALINAATAA
	CALL BUILSOM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS, SBN, CBN)
C (4.4.1	ALDHA - 5 * DALS
	DMIN = 0
1.1.2	ALIM - 200 FT
442	1F(ALEMA = ALIMIA43))))))))) TE(ALEMA = ALIMIA43)) ALA = ALIA(ALIA)) ALA = ALIA(ALIA) ALIA(ALIA) ALIA) ALIA) ALIA) ALIA ALIA) ALIA ALIA) ALIA ALIA) ALIA ALIA ALIA) ALIA ALIA ALIA ALIA
445	$\frac{1}{1} \left[\left(\left(A \cup F n A - A \cup S \right)^{-1} \right) \left(A \cup F n A - A \cup A + S \right)^{-1} \right] \left(A \cup F n A - A \cup A + S - A + A + A + A + A + A + A + A + A + A$
444	CALL THEILOMAAASINGSCHSSGAMSALPHA)
445	DMAX = GAM
446	CALL BDITSOM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS, SBN, CBN)
_	GO 10 442
C	START CASE 2-0
447	
	ALPHA = •5 * DALS
	ALIM = AL3
	BMAX = GAM
448	IF(ALPHA - ALIM)449,450,450
449	CALL THET(BMIN,STHS,CTHS,SGAM,ALPHA)
	CALL BDI(SUM,ALPHA,DALS,ALN,BMAX,BMIN,SGAM,CGAM,STHS,CTHS,SBN,CBN)
	GO TO 448
450	IF(K-1)451,451,575
451	K = 2
	ALPHA = AL4 + .5 * DALS
	$ALIM = 2 \cdot * PY$
	GO TO 448
с	START CASE 1-1
452	BMIN = 0.
	ALPHA = .5*DALS
	ALIM = 2•*PY
453	IF(ALPHA -ALIM)454,575,575

्रम्

ł

A	Е	D	c-	т	R-	6	5	-2	02	2
---	---	---	----	---	----	---	---	----	----	---

454	IF(AL1 -AL2)465,455,455	
455	IF(ALI -AL4)462,462,456	
. 456	IF (ALZ-AL) 460,460,457	
4 5 7	IF((ALPHA ALD)*(ALPHA ALI)/400,002,002	
420	IF((ALPHA -AL2)*(ALPHA -AL4))00190019409	
459	IF (ALPHA -AL2)6(4)6(3)603 IE ((ALPHA -AL2)8(ALPHA -AL1))661.602.602	
460	1F((ALFHA ALZ)*(ALFHA ALA)/401/002/002	
461	IF((ALPHA -ALS)*(ALPHA-AL4))00190039003	
402	IF((ALPHA -AL2)*(ALPHA -AL4))40390029002	
402	IF (AL DUA -AL 2) 402 4602 4004	
454	1 = 1 = 1 = 3 = 3 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5	
466	IF(A 1) - A 4)467.473.473	
467	IF(A 2 - A 4)471.468.468	
468	IF((ALPHA = AL3)*(ALPHA = AL2))469•603•603	
469	1F((ALPHA -AL1)*(ALPHA -AL4))604.604.470	
476	IF (ALPHA -AL1)601.602.602	
471	IF((ALPHA -AL3)*(ALPHA -AL4))472•603•603	
472	IF((ALPHA -AL1)*(ALPHA -AL2))601,601,604	
473	IF((ALPHA -AL3)*(ALPHA -AL2))474,603,603	
474	IF((ALPHA -AL4)*(ALPHA -AL1))603,603,475	
475	IF(ALPHA -AL4)601,602,602	
476	IF(AL2 -AL3)483,483,477	
477	IF(AL2 -AL4)478,478,481	
478	IF((ALPHA -AL1)*(ALPHA -AL4))479,603,603	
479	IF((ALPHA -AL3)*(ALPHA -AL2))604,480,480	
480	IF(ALPHA -AL3)602,602,601	
481	IF((ALPHA -AL1)*(ALPHA -AL2))482,603,603	
• 482	IF((ALPHA -AL3)*(ALPHA -AL4))604,602,602	
483	IF((ALPHA TALI)*(ALPHA TALA))484,603,603	
404	IF((ALFHA ALZ)^(ALPHA ALS)/00596059465	
603	K=3	
	BMAX = GAM	
	GO TO 491	
601	K =1	
	GO TO 486	
604	K =4	
486	CALL THET(BMAX,STHS,CTHS,SGAM,ALPHA)	
	IF(K-4)491,487,491	
487	B1= BMAX	
	GO TO 488	
602	K=2	
488	CALL XI(BMAX,SBN,CBN,ALN,ALPHA)	
	IF(K-4)491,489,491	
489	IF (BMAX -BI)491,491,490	
490	BMAX = B1	
491	CALL BDITSUM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS	SBN,CBN)
C	START CASE 1-2	
-500	AT $M = A[1]$	
	IF(AL1 -AL2)501,501,502	
501	K =1	
	ALPHA = .5 *DALS	
	GO TO 503	

	502	K =2
		ALPHA =AL2 + •5* DALS
	503	IF(ALPHA -ALIM)506,504,504
*****	504	IF(K-1)505,505,575
	505	ALIM = $2 \cdot * PY$
		GO TO 502
	504	$T_{\rm c}$ (A) DUA -A) 3)*(A) DUA -A) (A) 508,507,507
	507	$\frac{1}{1} \frac{1}{1} \frac{1}$
	507	DMAX = GAM
	508	
	500	
	505	CALL BDI (SIMA ALDHADALS)ALNIAENAY BMAY, BMIN, SGAM, GAM, STHS, CTHS, SBN, CBN)
		GO TO 503
c		START CASE 2-1
C	520	K =1
	520	
	1	ALPHA = •3 * DALS
	521	IF (ALPHA -ALIM)524,522,522
	522	IF (K-1)523,523,575
	523	K = Z
		$ALIM = 2 \cdot * PY$
		ALPHA = AL4 + •5*DALS
		GO 10 521
	524	IF(AL1 -AL2)525,525
	525	IF((ALPHA -AL1)*(ALPHA -AL2))529,528,528
	526	IF(ALPHA *(ALPHA -AL2))529,529,527
_	527	IF((ALPHA- AL1)*(ALPHA -2.*PY))529,5 28,528
	528	BMAX = GAM
		GO TO 530
	529	CALL XI(BMAX,SBN,CBN,ALN,ALPHA)
	530	CALL THET(BMIN,STHS,CTHS,SGAM,ALPHA)
		CALL BDI(SUM,ALPHA,DALS,ALN,BMAX,BMIN,SGAM,CGAM,STHS,CTHS,SBN,CBN)
		<u>GO TO 521</u>
С		START CASE 2-2
	540	BMAX = GAM
		IF(AL1 -AL2)541,545,545
	541	κ =1
		ALPHA = •5 *DALS
		IF(AL1 -AL3)542,542,543
	542	ALIM = ALI
		GC TO 553
	543	ALIM = AL3
		IF(AL2 -AL4)544,553,553
	544	K = 3
		GO TO 553
- •	545	K = 2
		TE(AL1 – AL3)551,551,546
	546	F(A) = A(5)/(5)/(5)/(5)/(5)/(5)/(5)/(5)/(5)/(5)/
	547	$\frac{1}{100} \frac{1}{100} \frac{1}$
	541	Ir(ALZ = ALS)SHO(3)(3)(3)(3)(3)
	04 0	ALTMA = ALZ + 0 T VALS
	F / C	
	549	IF (AL2 - AL4)500,550,551
	550	ALPMA = AL4 +•5* DALS
		60 10 552 2

	551	$\Delta I PHA = \Delta I 2 + 5 * 0.15$
	552	
	553	1F (A L PHA → A LIM)558,554,554
	554	IF(K-2)555,575,555
	555	ALIM = $2 \cdot * PY$
		K =2
		IF(AL2 -AL4)556,557,557
	556	ALPHA = AL4 + •5*DALS
		GO TO 553
	557	ALPHA = AL2 + .5 *DALS
		GO TO 553
1	558	CALL THET (BMIN, STHS, CTHS, SGAM, ALPHA)
		IF(K-3)559,561,559
1	559	CALL XI(B1 ,SBN,CBN,ALN,ALPHA)
		<u>IF(B1 - 5MIN)561,561,560</u>
	560	BMIN = B1
!	561	CALL BDI(SUM, ALPHA, DALS, ALN, BMAX, BMIN, SGAM, CGAM, STHS, CTHS, SBN, CBN)
		GO TO 553
-	575	SUM = SUM * DALS / (SGAM *4. * PY)
		IF(SUM - •00001)576,577,577
	576	SUM = C.
	577	BETAN = GG
		RETURN
		END

ņ

		SUBROUTINE BDI(SUM,ALPHA,DALS,ALPHN,BMAX,BMIN,SGAM,CGAM,STHS,CTHS,
8 111	2	SBETN, CBETN)
,		IF (BMIN -BMAX)1)2,22
1		(ALPU = (OSRE(ALPHA - ALPHN))
		CRMAY = COSPE(RMAY)
		CDMAA = COURTODMAA)
		SDMAA - SINKE (DMAA)
		CDMIN - COURTONINT
		$\frac{1}{2} = 1 + \frac{1}{2} (SBMAY + SBMAY) / (SCAM + SCAM)$
		AD(3) = 1 = (CDMAA - SDMAA)/(CCAM - CCAM)
		TE(ADG1)3.4
2		
2		
4		CPMAX = SQRTE(ARG1)
6		
0		GO TO 8
7		CPMIN = SQRTE(ARG2)
8		ARG3 = 1CPMAX *CPMAX
	*****	ARG4 =1CPMIN *CPMIN
		IF (ARG3)9,9,10
9		PMAX = C.
		GO TO 11
10		PMAX = ASINF(SQRTF(ARG3))
11		IF(ARG4)12,12,13
12	-	PMIN =0.
		GO TO 14
13		PMIN = ASINF(SQRTF(ARG4))
14		FE1 = SBETN* STHS * CALPH * CALPD
		FE2 = CBETN * CTHS
		FE3 = SBETN * CTHS * CALPD
		FE4 = CBETN * STHS * CALPH
		S1 = (2.* FE15*(FE1 + FE2)* CGAM*CGAM)* (SGAM* (CBMAX *CPMAX
	1	- CBMIN *CPMIN) - CGAM *CGAM * LOGF((CBMAX+ SGAM* CPMAX)/(CBMIN
	2	+ SGAM * CPMIN))) - (FE2 + FE1) *SGAM*SGAM*SGAM *(CBMAX* CPMAX*
	3	CPMAX *CPMAX - CBMIN * CPMIN * CPMIN * CPMIN)
		S2 = (FE4 -FE3)* (SBMAX* CPMAX *CPMAX *CPMAX - SBMIN * CPMIN *CPMIN
	1	*CPMIN5 * (SBMAX *CPMAX - SBMIN *CPMIN +SGAM *(PMAX -PMIN)))
	2	*SGAM*SGAM*SGAM
		53 = (FE2 + FE1) * (SBMAX**4 - SBMIN**4)
		$S4 = (.5 \pi + E4 + 1.5 \pi + E3) * (BMAX - BMIN - SBMAX \pi CBMAX + SBM IN \pi CBMIN)$
	1) +(FE4 -FE3)*(SBMAX*SBMAX *SBMAX *CBMAX -SBMIN*SBMIN*SBMIN*CBMIN)
		$U_{SUM} = SI + 52 + 53 + 54$
2		$30\mu = 30\mu \pm 0.00\mu$
		DETINO - ALIA I VALS
		END STATES STA

2

*,*60

	SUBROUTINE XI(B,SBN,CBN,AN,AL)
19-1 <u>2000</u>	$B = U_{\bullet}$
	IB = -(BN / (SBN * (USRF(AL - AN)))
	B = AIANF(IB)
	RETURN
	END
	SUBROUTINE THEILB, STHS, CTHS, SGAM, AL)
	$\frac{FE}{P} = \frac{-(THS / TSTHS * CUSKF(AL))}{P}$
	B = AIANF(FE)
	FE = SINRF(B)/(COSRF(B)-SGAM)
	FE = ATANF(FE)
	8 = FEB
=	RETURN
	END

0

~

UNCLASSIFIED						
Security Classification						
DOCUMENT CONTROL DATA - R&D						
(Security classification of titls, body of abstract and indexing annotation must be antared when the overall report is classified)						
Arnold Engineering Development C	enter	UN	CLASSIFIED			
ARO, Inc. Operating Contractor		2 b. GROUI				
Arnold Air Force Station, Tennes	see	N/.	A			
3. REPORT TITLE						
EVALUATION OF THE ALBEDO INTEGRA	L FOR MARK I					
 DESCRIPTIVE NOTES (Type of report and inclusive dates) N /Δ 						
S. AUTHOR(S) (Last name, first name, initial)						
Link, Cord H., Jr., ARO, Inc.						
6. REPORT DATE	74. TOTAL NO. OF P	AGES	7b. NO. OF REFS			
February 1966	69		1			
8a. CONTRACT OR GRANT NO.	98. ORIGINATOR'S R	EPORT NUM	BER(S)			
AF 40(600) - 1200	AEDC-TR-	65-202				
5. PROJECT NO.						
° Program Element 65402234	9b. OTHER REPORT this report)	NO(S) (Any	other numbers that may be assigned			
<i>d</i> .	N/A					
10. A VAIL ABILITY/LIMITATION NOTICES						
Qualified users may obtain cop	ies of this	report	from DDC.			
11. SUPPL EMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY			
N/A	Arnold En	gineer ir For	ing Development			
	Arnold Ai	r Forc	e Station. Tennesse			
13. ABSTRACT						
This report is concerned with the development of a fast com- puter method for evaluating the albedo integral. This integral defines the illumination on an arbitrarily oriented surface element at any point in space about a diffusely reflecting sphere. It enters the calculation of simulation control parameters in the Arnold Engineering Development Center Aerospace Environmental Chamber (Mark I). The seminumerical method developed here is faster than ordinary numerical integration by a factor of about ten. A typical computer program, which formerly required about 30 minutes, now produces the same results in under four minutes.						

.

•

6

7
UNCLASSIFIED

Security Classification

14. KEY WORDS	LIN	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WΤ	ROLE	WT.	
mathematical analysis							
albedo							
integrals							
computers							
seminumerical integration							
simulation control							
planet radiance							
illumination							
INSTRI	ICTIONS		11	-			

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a, TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: 1f appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- "Foreign announcement and dissemination of this (2)report by DDC is not authorized."
- "U. S. Government agencies $m_{\theta y}$ obtain copies of (3)this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

è.

(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatorv notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Security Classification