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ABSTRACT 

This report is concerned with the development of a fast computer 
method for evaluating the albedo integral.    This integral defines the 
illumination on an arbitrarily oriented surface element at any point 
in space about a diffusely reflecting sphere.    It enters the calculation 
of simulation control parameters in the Arnold Engineering Develop- 
ment Center Aerospace Environmental Chamber (Mark I).    The semi- 
numerical method developed here is faster than ordinary numerical 
integration by a factor of about ten.    A typical computer program, 
which formerly required about thirty minutes,  now produces the same 
results in under four minutes. 

111 
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NOMENCLATURE 

Ae Albedo,  fraction of solar radiation reflected by earth 

Cy Horizon circle 

Cö Terminator curve 

C^ "Target plane cut" curve 

AAj Surface element on albedo source 

AA2 Target surface element 

h Altitude 

I Solar constant,  intensity 

I2 Intensity of target illumination 

L Orbit angular momentum vector 

N Vector normal to target surface 

Ns Solar node vector 

R Target position vector 

re Radius of the albedo source sphere 

S Sun position (unit)vector 
a Azimuth angle 

a\ (i = 1,  2  • • • ) Boundary values in azimuth 

aN Azimuth of target normal vector 

a , a Minimum,  maximum values of azimuth angle 

ß Nadir angle 

/3N Nadir angle of target normal vector 

ß , ß Minimum,  maximum values of nadir angle 

Y Relative altitude parameter,  nadir angle of horizon 

de Angular distance from S to arbitrary point (dAJ   on 
albedo sphere; source to sun view angle 

dg Angular distance from S to R 

6V Inclination of plane of Ns and R to S 

£, Angle at  dA2  between N and dAt ; target view angle 

Vll 



AEDC-TR-65-202 

4>e Angular distance of arbitrary source point 
Ak1   from R 

4>v Orbital angular position,   between NK   and R 

4> Angle between normal at  AKt   and direction to dA2 

source view angle 

Vlll 
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SECTION I 
INTRODUCTION 

This report extends one of the problems discussed in an earlier 
report l;   the development of a method for evaluating the "albedo integral". 
The aim of this study is to improve the speed at which certain quantities 
are computed for the control of simulation parameters in the Aerospace 
Environmental Chamber (Mark I).      In earlier study programs,  the albedo 
integral was evaluated by strictly numerical integration techniques.    The 
present seminumerical method is faster,  by nearly an order of magnitude, 
than the numerical methods formerly used.    This method has been incor- 
porated into a Fortran language computer subroutine. 

A derivation of the albedo integral,  for illumination intensity,  is 
reproduced in Appendix I,  under assumptions that the albedo source is a 
homogeneous sphere with a diffusely scattering (Lambert) surface,  so 
that the albedo is otherwise independent of surface and atmospheric con- 
ditions. 

SECTION II 
THE ALBEDO PROBLEM 

In order to properly control the simulation of secondary radiation 
(albedo and planet radiance) in Mark I,  it is necessary to determine the 
illumination on an arbitrarily oriented surface element at arbitrary alti- 
tude and at any position in a trajectory or orbital flight near a reflecting 
celestial body. 

A derivation of the albedo integral,  which expresses the illumina- 
tion intensity,  is given in the previous report2 under assumptions that 
the albedo source is a sphere having a homogeneous,  diffusely scattering 
surface so that the albedo is otherwise independent of surface and atmos- 
pheric conditions.    Then a different primary body may be distinguished 

Cord H.  Link, Jr.    "Problems in Computing Radiation Control 
Functions for Mark I. "   AEDC-TDR-63-206,   February 1964. 

2Ibid. 
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by a solar constant suitable for the distance from the sun,  its mean 
albedo,  and its radius.    This last factor enters all secondary illumina- 
tion calculations since they depend on relative altitude. 

-^Y (0s, y, oN, /3N) = 

a(<9s,y,aN)1ßN)      ß (a; 6S ,y, aN ,ßN ) 
f f cos 6 (a, ß; 6S , y)   cos f (a, ,8 ; aN , yN)   sin/3dßd< 

«(ös.y.aN.^N)      /JUi^s.y.aN.ßN) 

The integral contains four parameters which determine the con- 
figuration of boundaries of the surface over which the integration is to 
be carried out,  namely,  the albedo source region. 

The limits of integration are functions of these same parameters 
as well as of the second integration variable.    The parameters establish 
the limits for the second integration,  as well as controlling the func- 
tional form of the integration limits. 

In principle either of the integration variables may be selected for 
the first integration.    The azimuth angle a provides simple first integral 
forms,  but the function limits,  involving the nadir angle,   are sometimes 
double valued functions,  a(ß) . 

On the other hand,  the first integration taken relative to the nadir 
angle ß leads to more complex expressions for the first integral,  but 
the functional limits,  involving the azimuth angle a,   are single valued 
functions,  /3(a) . 

This second alternative is chosen.    Having once found all the "anti- 
derivatives" of the integrand functions of ß, a simple differencing of 
function values for maximum and minimum values of ß (at a particular 
value of a) provides first definite integral numerical values,  which are 
now functions of the four configuration parameters and a .    Integration 
over a involves summation of first definite integral values. 

Regardless of which variable,   a or ß , is first used,  when the func- 
tion limits (a(ß)    or    /3(a))  are inserted,   some of the expressions 
become rather formidable,  and analytical evaluations of the second 
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integrals for many of these have not been found.    It is reasonable to 
use simple numerical integration in the remaining variable a . 

The region of integration is bounded by curves beyond which one or 
more of the integrand factors become negative.   There are three such 
curves (see sketch above).   The ever-present horizon circle Cy is deter- 
mined by the relative altitude of the target above the albedo source.   The 
terminator C$,  the sunlight-shadow line,  is determined both by altitude 
and by the angular distance of the target position from the subsolar point 
on the albedo source.   Finally,  the "target plane cut" C£,  the intersection 
of the plane of the target with the albedo source,  depends on the specific 
orientation of the target and altitude.    The curve C# may fall outside 
the circle, and the curve C^ does not exist outside the horizon circle. 
So,  depending on the four parameters,  the region of integration may be 
bounded by one curve Cy,   by two curves (Cy  with  C$, C$   with C£,,'or 
Cy with C£), or finally by portions of all three curves, 

c 

Not only are the boundary curves defined by the four integration 
parameters,  but their intersections are also,  and there may be as many 
as six intersections (see above).    From this arises part of the complexity 
of the problem,  since the C£ curve may have any azimuthal relation to the 
Cö curve,  or within the Cy circle.   The logical sorting involved in deter- 
mining the boundary curves and their limits,  for arbitrary parameters, 
is rather involved in the number of decisions to be made.    Yet for a 
given configuration,  only one sequence of a few decisions serves to pro- 
vide all the information required. 
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From the standpoint of computer programming,  the method described 
here leads to a large program,   of which only a small part is executed for 
one given set of parameters.    In practice all the parameters may be con- 
tinually varying. 

In the following sections,  the analysis will be developed,  leading to 
the computer program displayed herein as a subroutine.    A logical flow 
chart and Fortran II listing of the major routine is given as well as a 
Fortran II listing of the supporting subroutines.   This method turns out 
to be approximately ten times as fast in computing as a corresponding 
purely numerical integration method. 

SECTION iii 
THE ALBEDO INTEGRAL 

The albedo integral,   in its complete form,   provides an expression 
for the intensity of illumination I2   on an arbitrarily oriented and positioned 
target surface element   A|A2' attributable to albedo Ae of a homogeneous dif- 
fusely scattering sphere exposed to solar radiation intensity Is. ^   We 
begin with the definitions 

19 ls Af 

A A2 
// cos (9e   cos £ sin ß   ißda (1) 

cos 6e   =   cos 6S   cos cf>e   +  sin ds   sin <f>e   cos a (2) 

cos (f  =   cos ß   cos /3[\j   +   sin ß   sin /3]\j   cos (a  -   a«) (3) 

sin y   =  re/(h   +  re) (4) 

<£e   =   xf/   -  ß (5) 

sin if/   =   sin/3/siny (6) 

The integration is over all a, ß within the region where the integrand 
factors are all positive.    The parameters   aN, /3N   define the orientation 
of a target surface element to the particular albedo source configuration 
defined by ds, y . 

3Ibid. 
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For present purposes,  the factor IsAe is taken as unity, leaving the 
integral 

— // cos 8e   cos f sin ß  dß da 
n 

which may be called the "albedo view factor".    It is a measure of effi- 
ciency of conversion of collimated illumination into scattered illumina- 
tion on an arbitrarily oriented surface element at any point in space 
about a perfect diffusely reflecting sphere. 

The integration relative to nadir angle ß is given in Appendix II. 

Terminator- 

a.   Geometry Defining Location Parameter (9s(0y# <f>v) 

Fig. 1   Model Geometry 
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SECTION IV 
PARAMETERS OF ALBEDO INTEGRAL 

If S'is a unit vector indicating the sun direction,  a unit orbital angular 
momentum vector,   and R the target position vector,  then a node vector 
Ns  may be constructed from S x L .     Then the orbital angular position 
4>v may be defined as the angle between Ns   and R .   The plane of the orbit 
is inclined at angle 6V from the plane of Ns   and S .    Then the angular 
distance 0S of R from S is defined by (Fig.   la) 

cos (9S   =  sin 0v   cos $v 

b.   Geometry Defining a, ß, y, Cy and CQ 

Fig. 1   Continued 
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The a, ß coordinate system is defined at the vehicle position by polar 
coordinates,  taking ß = 0 as the (-R) direction,  a = 0 in the plane of R and 
S, a positive by a right-hand rotation about (+R),(Fig.  lb). 

Then aN,   /3N  are defined as the coordinates of the normal to the albedo 
target surface element AA2(Fig.  lc). 

The relative altitude parameter y is defined by Eq. (4).   The relations 
of Eqs.  (4) and (5) are shown in Fig.   Id. 

c.   Geometry Defining a\\, ß\\, £ and C^ 

Fig. 1   Continued 
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SECTION V 
BOUNDARY CURVES AND INTERSECTIONS 

Since the boundary curves separate the region in {a, ß) for which the 
integrand factors of Eq.   (1) are positive from the region where any 
factor is negative,  we may write boundary equations as follows: 

Cy (Horizon Circle): ß = y (7) 

for all a. 

CQ (Terminator,  from Eq.   (2)): cos de = 0, 

hence 
c os a  =  - ctn 0     ctn (8) 

in which Eqs.   (4),   (5),  and (6) are used to obtain expressions for a(ß) 
or ß(a). 

C£  (Target Plane Cut,  from Eq.   (3)): 

cos ,£ =   0, 

hence 

cos (a  -   aN)   =  - ctn/3N   ctn ß (9) 

The intersections of Cf with Cy are obtained from Eqs.  (7) and (9) by 
letting Aa =  a -  aN . 

Then 
cos A a  = - ctn/3AT   ctn y 

di   =  ajjj   +  A a 

a2   =   ßiu   —  A a 

t  (MODULO  2TT) 

(10) 

The intersection of C(9 with Cy is found by using Eqs.   (6),   (5),  and (7) 
with Eq.  (8) as follows 

(H) 
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The intersections of Co with C£ are not needed in the present method, 
but will be essential if it is desired to attempt purely formal second-stage 
integration in the future.    The calculation of this intersection is given in 
Appendix III; transformations between the angles $, \ 0e,   and B implied by 
Eqs.  (5) and (6) are given in Appendix IV. 

d.   Geometry Defining Auxiliary Angles cf>e, xjj 

Fig. 1   Concluded 
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It is desirable to ensure that all the angles of intersections (^ , a2 , 
az ,   and a„)   of Eqs.   (10) and (11) are expressed as positive angles with- 
in (0, 277) to eliminate ambiguities that otherwise occur in determining 
when the variable a is in the range of definition of one of the curves, 
Ce or Cg. 

It is apparent that the limit points a,   and   a2  are symmetrically 
placed with respect to aN  at positions determined by y and /3N .     Corre- 
spondingly,   a3   and a«   are symmetric relative to a = 0 (located from 
expressions involving y and 6S).    The four integration parameters y, 
6S ,    aN ,    /3N remain arbitrary,   subject to limitations 

0 < y     < 7T-/2 

0 < <    TT 

0   <   aN    <   2 77 

0  <  ßN   <  n 

SECTION VI 
MAJOR DIVISIONS OF PARAMETER RANGES 

All required quantities are now defined,   and we shall examine the 
meaning of the values of the four parameters   aN,  /3N ,  6s,     and y .   From 
the definition of y (Eq.   (4)),  we find that y approaches  n-/2   as the altitude 
vanishes,   and y approaches zero as altitude grows large. 

(a, ß) Map of CQ in Cy 

10 
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We confine our attention to the horizon circle and its interior, 
ß < Y •    In the (a, ß) coordinate system about the origin (the vehicle loca- 
tion),  a unit radius sphere is erected.    The horizon circle is a small 
circle,  ß = y, which entirely encompasses the albedo source region,   of 
which no part exists outside the horizon,   ß > y .   The curve C£ is a great 
circle on the a, ß  sphere and hence passes through the origin and maps 
across the interior of the horizon circle as a straight line.    The curve 
Ce,   a great circle on the albedo source sphere,  maps into the horizon 
circle as a part of an ellipse tangent to the horizon circle.    The values 
of es and ßN  control the existence of C$ and G£ within Cy and the points 
of closest approach of these curves to ß = o .   The missing ellipse branch 
of the Ce curve,  the continuation of the terminator,  is not defined in (a, ß)t 

since it is physically outside the horizon circle or "behind" it (see sketch ' 
on page 10), 

Figure 2a illustrates the major divisions of characteristics imposed 
by 0S,    /3N ,   and y and by typical patterns of the integration region.    For 
this illustration,   aN is arbitrarily set at n/2 .    Later,  we shall examine 
the influence of «N on the problem.    Figure 2a illustrates schematically 
some typical boundary patterns. 

IT 

7T 

2 

h 

2   r 

Shadow Side of Target 

0,2 

0,1 

0,0 

ß=o 

2.2 

Shadow 
Side of 
Source 
(Eclipse) 

7T 

2 
7i- y 7T 

9e 

a.   Typical Patterns for y  =   77/3 

Fig. 2   Major Divisions of Parameter Ranges in the Horizon Circle C 

11 
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The major ranges are noted in Fig.   2a by use of paired numbers 
(nl(  n2),  the first referring to the 0a range,  the second to the /3jy   range. 
In range (0,  0),   only  Cy bounds the region,  and for integration we have 
0</3<y,0<a    < 2TT .      This corresponds to a point on the vehicle 
nearest the source sphere,  near ß = 0 and a location of the vehicle not 
far from the subsolar point (0S = 0) on the albedo source sphere. 

With no other changes,  as /3N  increases we move from (0, 0) to 
(0, 1) where C£  comes into the horizon circle.    The vehicle itself begins 
to mask part of the source.    The point ß = 0 is still within the source so 

v 
the a limits are 0 and 2n ; <ß = o is the minimum ß value (ß), and the 
maximum (ß) is either y or dependent on a through the equation for 
curve Cf. 

When ßw = 77/2,   the target plane (or its equivalent   Cf) bisects the 
horizon circle.    Now a has a range of n/2  either side of aN, a   is zero, 
and ß is y only.    Or we may allow a its full (0, 2n) range,  but during 
half of this range the curve  C^ provides ß = 0 and in the other half Cy 
gives ß  = y while ß = 0 . 

As /3JV  grows,    C£ moves into (0,2),  on past the nadir point ß = 0, 
and provides ß while ß is y .   The range of a is now (Ql , a,),   the region 
where  C£  is defined.    Finally,  ß$   increases so far that it is "on top" 
of the vehicle,    Cf has swept completely across the interior of the 
horizon circle,   and the integral value becomes zero.    The target now 
completely masks itself from the albedo source. 

It must be noted that the integrand contains cos 6e,   de being meas- 
ured from the subsolar point on the albedo sphere.    Thus,  generally, 
the source intensity is not symmetric in any way unless ,% = 0  or n , 
and these two instances are not equivalent since one of them includes 
areas nearer the subsolar point,  and the other is directly opposite. 
But «N  is arbitrary,  in practice a function of ßN  determined by the 
vehicle geometry and orientation. 

The dependence of the gs and |8N- ranges on the altitude parameter, y, 
is illustrated in Fig.   2b. 

We now return to case (0,0)  and allow 9S to vary.    As we enter 
(1,0),   the terminator C$ appears in the horizon circle at a = n .  The 
nadir point is still within the integration region so a ranges (0, 277), 
ß = 0 , and ß are determined from either Cg or C . 

12 
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7T 

h 
? + y 
2     r 

7T 

2 

2    r 

Shadow Side 

0,2 1,2 2,2 

0,1 1,1 2,1 

0,0 1,0 2,0 
to a 

13 
UJ 

o   y 
2 

7T- y    7T 

Small y 

0<y <? 
4 

(High Altitude) 

7T 

5 + y 
2      ' 

?- y 
2    ' 

o 

s 
i      i 

nadow Side 

0,2 1,2 2,2 

a> 

Ql 1,1 2,1 

UJ 

0,0 1,0 2,0 

0 y    7T   7T - y 

2 
0c 

7T 

Largey 

?<y< 1 
4 2 

(Low Altitude) 

b.   Effect of y on Boundaries 

Fig. 2   Concluded 
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Allowing 8S to increase to n/2   (as the vehicle crosses over the 
terminator),   Cß bisects the source field,   and we move on into (2, 0). 

V A 

Here  Cß provides ß ,  ß = y , and a ranges only over a3 ,  a4 . 

Finally ßs  increases so far that Cß leaves the horizon circle at 
a = 0,  and we have the eclipse condition where no part of the illuminated 
albedo sphere is visible at the vehicle.    The integral vanishes.    We note 
that cos £ in the integrand also destroys the apparent symmetry in a of 
the source function except in special cases.    Instances where symmetry 
occurs were treated in Appendix II of the previous report^ as special 
cases in which the albedo integral can be obtained in closed form. 

The parameter ranges labeled (1,1), (1,2),  (2,1), and (2, 2) are 
superpositions of those just described.    The bounds are dependent on all 
four parameters.    When only one of the curves   C£ or  Cß establishes the 
ß, then the a range necessarily lies within the corresponding end points 
(<*! ,   a2) or (a3 ,  a4) .    More precise statements are developed in subsequent 
sections as we go more deeply into the logic of sorting out the various 
cases. 

SECTION VII 
CONFIGURATIONS OF ALBEDO SOURCE BOUNDARIES 

In this section,  we display 43 distinct configurations of boundaries 
covering all useful values of the four integration parameters.    All of these 
must be examined for the purpose of establishing exact integration ranges 
in a, ranges in which the boundaries are different functions /3(a).    As 
earlier indicated,   we shall eventually integrate over (a, ß) by using exact 
expressions for the first definite integral in ß , which contains functions ß(a) 
and ß(a) ,  then numerically integrating in a . 

We recall that all end points   (at , a2 , az ,   a,,) are defined to have values 
in (0, 2?r) ,  that the curve  Cy is defined by ß = y for all a, that   C£ is 
defined (Eq.   (8)) in (ax , a2) ,   and Cß is defined in (a3 , a„) .    We do not re- 
quire the intercepts of Cß with C£,   which would be denoted {a5 , a6) ,   be- 
cause results based on this knowledge are readily obtainable by an artifice 
which we shall use in the numerical a integration.    These points would be 

4Ibid. 

14 
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required if one were to attempt to find a complete analytical expression 
for the albedo integral. 

We return to the notation of the previous section for discussion of 
the major divisions.    Viewed from the origin of the  (a, ß)  coordinate 
system,  boundary curve Cy is a circle whose interior contains the 
regions of interest.    Curve C£  is a straight line segment,  and Cö , 
although an ellipse section tangent to Cy , is indicated as a circular arc 
for clarity and ease of drawing.    The variously numbered points are 
simply numbered in sketches.    The sides of C£  and Cfl on which the corre- 
sponding integrand factors are positive are indicated by a small arrow, 
pointing toward aN on Cf,   and toward a = 0 on Cd >  or to the "interior" 
of these curves.    Then the region of interest is just that part of the pat- 
tern which is common to the interiors of all three curves. 

Case(0,0):   ßN<|-y, 9S <y 

0< a< 27T, ß =0, ß =y 

Case (1,0):   ßN< | - y, y <9S<| 

0 < a < 27r    ß = 0      ß=y 
or    I = ß(Ce) for a3 < a < a4 

Case (2,0):   ßN <  |-y       * 

8 < a < a3        split 

and   a4 < a < 2TT     scan 

2 < es < * ■ r 

ß = ß(C9)   ß = y 

Case(0,1):   9S < y    |-y<ßN<| a2 0<a<27r 

0 < a < 27r 
ß = 0 
ß = y 

or  ß = ß(C^) 
( 0<a < a2 j   split 
|a1<a<27r|   test aj < a < a2 

Case (0,2):    9S <y      | < ßN < | + y 

ß ■ y 
^ ■ ß(C|i) 
a2 1 a i al 

ß -r 
ß = ß (ce) 
0 < a <^ aj 

and a2 < a < 2it 

Fig. 3   Configurations of One and Two Boundary Curves 

15 
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Cases (0,0),  (0,1),  (0,2),  (1,  0), and (2,  0), shown in Fig.   3,   are 
largely self-explanatory.   Cases (0,1),  (0,2), and (2,0),  however,  intro- 
duce the problem of the "split range".    Although the two orientations shown 
in (0,1) and (0, 2) are geometrically equivalent,  they are logically distinct 
since all intersection values are defined in (0,2/7-) .   For example,  in case 
(1, 0) when the order of end points is ax < a2 , the  C^ curve is defined in 
(at ,  a2) , but when the order is  a2 < ax , C£  is defined in the split range 
(0,  oj)  and (at , In) .    Thus,  the order of end points is essential to the 
orderly determination of the range in which a may be during numerical 

V A 

integration and for the selection of the proper boundaries (ß , ß) for a 
given a . 

The split range is also used in the initiation and advance of a during 
numerical integration.    If the range is split,  a is scanned over the two 
parts successively. 

Case (1, 1) is the most complicated group of configurations because 
the a range is 0, 277 and both C£ and C0 are present, Fig. 4. Each con- 
figuration is labeled by letter referring to the corresponding permutation 

Three Boundary Curves 

f-r< PN<f, y<es<|, p-o, o<a<2jr 

3_1 

2 " 

Configuration 0 Order 

(0) 1 2 3 4 (2;r) 
1324 
1342 
2314 
2341 
3124 
3142 
3241 
3412 

Boundary Curve for ß 

e 

Symbol 

(8,|) 

Y 

r 
r    i 

i r 
i r 
r e 
r    e 
I (9,£) 
r    e 

Meaning 

Y 
(9,£> 

(9,1) 
(8,1) 

B y 

e r 
i Y 

(8,1) i 
Y i 
9 r 

i Y 
r I 
i Y 

ß ■ Min(ß(Ce), ß(C|)) 

$ -r 
ß - ß(ce> 
% ■ ß(C|) 

Split Test 

Notes 

Fig. 4   Case (1, 1) 
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of end points,  given in the table at the bottom of the figure.    Beside each 
permutation appears the order of subscripts in the boundary curves from 
which ß is to be found.    For this case,  the point ß = 0, lying interior to 
the integration region,  is also /3 = 0 .   Where a double subscript occurs, 
we make use of the artifice (previously mentioned) to determine whether 
to use Cß or C^.    Here,  when ß is to be found in a range of a where both 
Cff and  Cg are defined,  we use the  CO and C£ definitions to determine 
both values of ß , i. e. ,   /3(C#)  and ß(Cg) ;  we then select the least of these 
to be ß . 

We give an example of interpretation of the table of Fig.  4.    Select 
configuration B.    Initiate a at 0 , change the value by the (fixed) step 
size,  and test a to see when it is in each subsequent range.    In  (0,  a,) , 
ß   =   y;in    (a, ^  a,) ,    ß   =   ß (Cf) .     In   (a, ,   a,) ,      ß   =   min [ ß (Cg),   ß (Cf) J   ;  then 
in (a2 ,  a„) ,   ß = ß(Ce) •    Finally,  in U4 , 2n) , ß = y . 

Note that in any configuration in which  a2 < at ,  the range test must be 
split,   as noted earlier. 

v 
Case (1,  2) in Fig.   5 has ß defined by the curve C^,   and,  hence,  a is 

scanned only over the range of definition of C^; that is,   over   (a, ,  a2)  if 
a,  < a2,   or over (0,  a,)  and (a. , 2n) if a, < a. .     In the table,  the symbol [0] 

A V 

means that we use ß = ß(Ce) only if it is greater than ß = ß(Cg) ; otherwise, 
there is no contribution to the integral for the current value of a. 

Case (2,   1) in Fig.   6 has ß defined by CQ ,   so a is scanned over (0,  a3) 
and («4 , 2 7!-),  a split scan.    The notation £* in the table means that 
ß = ß(C£)   if only ß > ß ■ otherwise,  the current value at a contributes 
nothing to the integral. 

A V 

Finally,   case (2, 2) in Fig.   7 has ß defined by ß = y , and we select ß 
as the greatest of  ß(Cg) and ß{Cß),  which is the meaning of the symbol 
(6, g)  in the table.    Note that configuration G illustrates that nonover- 
lapping of the ranges of (c^ ,  a2)   and («3 ,  a4)  leads to zero value of the 
integral.   For case (2, 2) we let a scan only the least of the spans of Cö or 
C£;  if this is Co then the a scan is split,  but if C£ . the a scan may or may 
not be split.    Notations of split scan test appear on the figures. 

This completes the details of the logical procedures for doing the 
numerical integration in a .  From the tables on the figures,  the logic flow 
chart in Appendix V was derived; the problem was then programmed for 
computer directly from the flow chart.    The Fortran listing is shown in 
Appendix VI. 
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Three Boundary Curves 

!<ßN<f + r,  y<es<|,  jJ-piCg) 

if a2 <a1;  then  o.2-a-al   '• but if aj < a2 , 

then   0<a<aj   and  a2 < a < Ztr 

3— L~   . 3 L 

Three Boundary Curves 

f-v<ßN<f ■ l<h<«- r , ß=ß(ce) 

Split Scan    0<a<a3 and a4<a<27r 
3 2 3 

Configuration a Order Boundary Curves for ß 

A 
B 
C 
D 
E 
F 
G 
H 
1 

Symbol 

(0) 13 2 4 (2TT) 

13 42 
2134 
2314 
2341 
3142 
3214 
3241 
3421 

y    -    - 
y   -   - 
- y   - 
- y   [83 
- y    8 
y   El    - 
- -  m 
- -  w 

Meaning 

11   y 
- y 

y  - 
- y 

y   - 
y   - 

[8] $ - p(Cg) only if ß > ß, Otherwise 
No Contribution to Integral 

- Means No Contribution to Integral 

* Split Scan in a 

Notes Configuration a Order Boundary Curves for ß Notes 

A (0) 1 2 3 4 (2TT)      y 4»   y - y t 

B 1324 y \*  - - y » 
C 2314 i* y   - - i> 
D 2341 \. y   - y f » 
E 3124 y -   - - y « 
F 3142 y -   - i* y a 

G 3214 ## 
H 3241 |. -   - y ?• 
1 3412 y -   y V y • 

Symbol Mean ng 

€    %• ß(C£)ifß> ß 
Oth erwise No Contribution 

*       Split Scan 

*■»       Identically Zero Integral 

Fig. 5   Case(l>2) Fig. 6   Case (2,1) 
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Three Boundary Curves  ? < ßN < H +   y ,   ^ < 8S < 7r- y, ß = y 

a Ranges over Least Span, Covering Range of C* if A a < 0:3, 

Otherwise over Cg. Span of CQ Always Split 0 < a < a3 and 

a4 < a < 27T 

3 

Configuration        a Order Boundary Curves for ß        Notes 

A 
B 
C 
D 
E 
F 
G 
H 

(0) 1 3 2 4 (2TT) (8,4)  - 
13 42 (8,4)  - 
2 134 -  (8 4) 
2314 - (&,£,) 
3124 8 
3142 (8,^)  - 
3214 
3241 
3421 

Symbol Meaning 

(8,4) ß=Max[ß(C0), ß(C|)] 

* Split Test if a Ranges over C ^ 

** Identically Zero Integral 

Fig. 7   Case (2, 2) 

(8,4) 
(8,4) 

(8,4) 
(8,4) 

(8, 
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SECTION VIII 
CONCLUSIONS 

In an attempt to gain computing speed in the evaluation of the albedo 
integral,  a double integral,  the problem has been changed from a straight- 
forward numerical integration to a much faster but more complex semi- 
numerical integration.    For example,  whereas formerly the a, ß range 
was covered by a mesh of 72 X 36 points,  the present method requires 
somewhat more computation per point through a more complex logic net- 
work at only 72 points,  and the accuracy is improved by the formal first 
integration.    The time improvement is approximately one order of 
magnitude. 

In application,   a particular Mark I control program formerly required 
from 2 5 to 3 5 min (IBM 7074) to generate simulation parameters for a 
90-min orbit with a simulation interval of two minutes.    The same results 
are now produced in approximately four minutes. 

It appears unlikely that significant gains in computing speeds can be 
made by using a purely formal solution to this problem.    Second integrals 
will contain many more terms,   some quite complex,   and much of the gains 
made by having a single evaluation to perform will be lost in the sheer 
bulk of the expressions involved.    Most of the logic of the present method 
would still apply for selecting integration limits and function groups to be 
evaluated.    Some gain may result in changing the variable of first integra- 
tion,  and this will be studied in the future.    It may also be possible to 
develop rapidly computing empirical approximating functions,  especially 
over limited ranges of the integral parameters. 
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APPENDIX I 
DERIVATION OF THE ALBEDO INTEGRAL 

In the following discussion, the albedo source body is taken to be 
the earth. Substitution of appropriate values for radius, albedo, and 
solar constant allows extension to any source body. 

To compute earth albedo and radiance integrals for a surface element 
having arbitrary orientation and position,   we make the following assump- 
tions: 

1. that Albedo is a uniform property of the earth's surface, 

2. that the earth is a sphere, 

3. that the earth's surface is diffusely reflecting,   and 

4. that the earth has no atmosphere. 

Is      Solar constant,   intensity of solar radiation at earth 

Ae    Albedo,  fraction of solar constant reflected,   a 
surface property. 

The solar radiation incident on an area element.  AAl  having its normal 
inclined at angle 0e to sun direction is 

fls  cos    0e   AAl 
for      cos öe   -   0 

Ale     =    1 
I  0 for      cos 6e   <   0 

Of this a fraction Ae is reflected diffusely by AAX; hence,  the intensity 
per unit solid angle M,   in a direction inclined at angle ft to the surface 
normal is 

AI,/,  =   ——   cos 8e   cos ft AAj 
Ae    Is 

The intensity included in solid angle Aw is 

Ae i 
Alßj   =    —   cos 0e    cos iff AAj  AOJ 

An area element   AA2,   at distance pe from AA1;   having its normal 
inclined at angle £ to the direction of pe , intercepts a solid angle 
(Fig.   1-1). 

A                     A A,   cos   <? 
A co    =     i—=  
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Hence the intensity arriving at  AA2   is 
A.  I. 

AL   = 
JT    p 

r e 

cos 6e   cos if/  cos f   A Ai   AA2 

Area ElementAAj 
as Seen from M2 
n Terms of a and ß 

dA  =p| sin ß da dp 
AA1 = rJsin0edad0 
dA  iMj_cos iy 

p2sjn ßda dß 
cosvjJ 

Solid Angle atMj 
Subtended byAA2 
Having Normal \\^ AA2cos i 
Inclined at I to 
Direction between 
AA1andAA2at Distance p 

Fig. 1-1   Solid Angle Geometry for Albedo and Earth Radiance Calculation 

Let the area element  AA2 be located at altitude h above earth of 
radius re .    From this point,  the portion of the earth that can be seen is 
confined within a horizon circle.    The angle y between the direction of 
earth center and the horizon circle is defined by 

sin y =    re /(re    +  h) (0  <  y   <    -2-) 

At the earth center, let 0S be the angle between the direction to 
AA2   and the sun direction; let' de be the angle between the area element 
AAt   on earth and the sun; let cf>   be the angle between the directions of 
AA!   and AA2. 
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x = re sin vp = (re + h) sin ß 

.   ,       sin ß 
Horizon Line sm ^ >0/(r0 +h) 

P-y sin i|/ 
sin p 
siny 

q> = ß + 0 
To Sun 

Earth Surface 
Radius r0 

siny   =re/(re + h) 
cos 9e = cos 0 cos 9S + sin 0 sin 6S cos a 

sin ty s sin ß/siny 

V   =ß + 0e 

Fig. 1-2   Coordinate Relations for Albedo and Earth Radiance Calculation 

At the element AA2 .   t/j  is the angle between the normal to Aj and the 
direction of AA2   as before. 

At the element AA2,   let ß be the angle between the direction to earth 
center and &At.     Angle ß is a "nadir" angle. 

Then the following relations hold (Fig.   1-2): 

xjj =  ß + 4> 

sin ^i   =    sin ßIs'va. y 

cos 6e    =     cos ds   cos <f> +   sin 0S  sin9i>e cos a 

where a is the angle about the line from AA2 to earth center measured 
from the plane including this line and the sun. Angle a is the azimuth 
angle (Fig.  1-3). 
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Now the element  AA,   is described in spherical coordinates having 
polar axis along the earth-to- AA2   line,  longitude a,  and co-latitude <ße: 

AAt   =   re
2 sin <f>e  d a d cpe 

The a, ß Coordinate System atAA2 

To Sun 

a =0 

to Horizon 
Circle on 
Earth 

Normal toAA 

to Earth 
ß=0 

cos i = cosßcosßN + sinßsinßNcos(a-aN) 

Fig. 1-3   Albedo-Radiance Integration Coordinates 

Similarly,  we may describe a spherical area element in terms of 
a,   ß , and pe  from AA2 : 

AAp   =   pe
2    sin ,8   d ß  da 

Hence any point may be described by either   (re,   0e,   a) or (pe , ß , a) 
at AA! ,    and we find that AAp   and AAt   are related by simple projective 
properties: 

so that 

AAi  cos ip   =   AAf 

A A      =        Pe'    sin ß   iß    d« 
cos if/ 
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We may now write the intensity at AA2   caused by reflection from AAi : 

Al2 e   'a cos   f pe
2    sin   ß 

—r =      —      cos Up   cos \fj     =     — '—    da   dp 
iAj " pe cos  i^ 

Ae  is 

=     —-—     cos 6e   aas ^sinjß   d ß d a 

Integrating over the interior of the horizon circle,   we obtain 

-rV (AA2,(?s,y,^)   =   -a-s-      / / co8Öe  (d.,j8,eB1y)   cosf sin/3   djSda 
AA2 "■ Jß = 0   J- a„ 

where am;n . amax may be functions of ß, and there may be several distinct 
regions or functions. 

In the spherical coordinates a, ß , any orientation of surface ele- 
ment may be described by the direction angles of its normal, aN, /3N. 
Then the angle £ is found from 

cos ^ =  cos ß   cos /3N   +  sin /3   sin /3r>j   cos (a — apj) 

Since 0e   =  ijj  -  ß,      and     sin </r  =  sin/3/siny 

cos öe   =  sin i/f (cos 0S   sin ß   +  sin 0S   cos ß   cos a) 

+   cos \fi (cos 0S   cos ß   -  sin 6>s   sin ß   cos a) 

The intensity integrand is completely expressible in the two variables 
a ,  ß , and the configuration parameters ds,  y ,  a^ , /3N . 

At this stage it is possible to integrate numerically by letting a range 
from 0 to 2)T and ß range from 0 to Y, provided that 

cos  £ >   o 

cos 6 >  o 

cos i/f >  0 

and using (=0) for any  {a, ß) violating these conditions. 

Ignoring for the moment the constant Aie'Is/n-,   we have the following 
terms to be integrated over a and ß : 

1. cos jS]\f    cos ög cos2 ß    sin    ß     cos \f/ 

2. - cos /3]\j    sin  0 cos    ß   sin2  ß      cos ifj      cos    a 

3. cos /3N    COS (9 cos   /3    sin2 ß     sin "A 

4. cos /3N    sin   (9 cos2 ß    sin    /3     sin  i/f      cos    a 
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5. sin  /3ft    COS 0       cos a^    sin2  ß     cos   ß     cos I/J      cos    a 

6. sin /3]\j    cos 0      sin ajj    sin2 /3     COs   /3     cos i/r     sin   a 

7. — sin /3N    sin 0      cos ajj   sin3 ß cos i/f      cosa a 

8. — sin /3N    sin 6      sin aft    sin3 /3 cos if/     sin    a     cos a 

9. sin /3N   COS 0      cos apj    sin3 /3 sin if/     cos   a 

10. sin /3N    cos 0      sin  ajj    sin3  ß sin 'A     sm    a 

11. sin /3]\(    sin  0      cos aj\j    sin2 ß    cos   ß     sin i/'      cos2 a 

12. sin /3N    sin d      sin  ajvj    sin2 ß     cos   /3     sin   i/'     sin    a     cos a 

Note:      sin if/   =  sin/3/siny 

As long as there are no boundaries of earth surface for which 
a = a ( ß ),so that a can range from 0 to 2w , we may integrate relative to 
a and obtain simple results.    Integrals (1,  3) do not contain a so the 
integration results in a factor 2n.   Integrals (2,  4,   5,  6,  8,   9,   10,   12) 
contain only  sin a   or   cosa   and vanish.    Integrals (7,   11) contain cos2 a 
or  cos a    sin a and result in a factor of n . 

These conditions are satisfied as long as we have both 

ßu  * -f- - y 

0S    <   y 

If J8N ^ n/2  + y   or   ös   > 77 - y,the earlier conditions on  cos   £  or 
cos   <9e   are violated and the entire integral (I2/AA2)   vanishes. 

For _|_ _ y   <   /3N <   -n- + y 

and/or y   <   0g   <   n- - y 

there exist boundaries of form a(/3), and the integration becomes com- 
plicated.    The integration is bounded by arcs of one,  two,   or three 
curves of a{ß), whose intersections are generally given by implicit 
functions.    A first integration may be done formally; expressions result 
for which the integrals are not available in closed form. 

Numerical integration may be accomplished in an easily compre- 
hended manner by referring to the earlier integral expression.    The 
product  cos   f  cos   8e   sin   ß may be calculated term by term,   and in addi- 
tion,  the expression cos   if/ can be evaluated to ensure that the conditions 

cos   £ 

cos   6 e V * o 

cos   if/ 

are satisfied.    For some value combinations of  a      /3N,  0S the integra- 
tions can be carried out. 
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APPENDIX II 
FIRST INTEGRATION IN NADIR ANGLE ß 

Table II-I displays the twelve possible integrands,  with their param- 
eter coefficients.    The last eight of these may be grouped in pairs and 
combined by use of the identity 

cos a  cos a,,   +  sin a  sin a»r   =  cos (a  —  a^j) 

Further grouping can then be performed based on the formal similarity 
of integrands.    We use the numbering of Table II-I to identify integrands 
and the following definitions of parameter functions. 

Ax =   sin /3AT   sin 0     cos a   cos ( a — a^ ) 

A2 =   cos ß^   cos 0g 

A3 =  sin ßJT   cos 0     cos (a — a») 

A4 =   cos /3^  sin 0g   cos a 

(1)    A2 f cos2 ß   sin/3. (1   -   sin2/3/sin2y)/2   dß 

(2)-A4 f cos ß  sin  ß   (1   - sin2/3/sin2y)/2   d/3 

(3) A2 f cos ß   (sin3/3/siny)   d/3 

(4) A4 j cos2 ß   (sin2 ßjsin y)   d/3 

(5,6)    A3 f cos ß  sin2/3   (1   - sin2 ß/sin2 y/2   dß 

(7, 8) -A, f sin3 ß   (1   -  sin2 ß/sin2 y)^   d/3 

(9,10)    A3 J (sin   ß/siny)   d/3 

(11,12)    A, f cos ß   (sin3 ß /sin y)   d/3 
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TABLE ll-l 
INTEGRAND FORMS FOR ALBEDO 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

cosßN 

-cos ßN 

cosßN 

cosßN 

sinßN 

sinßN 

•sinßN 

-sinßN 

sinßN 

sinßN 

sinßN 

sinßN 

cos 0S 

sin 0C 

cos 0S 

sin 9c 

cos2ß s 

cos ß s 

cos ß s 

cos 0S cos aN s 
cos 0S sin a^ s 
sin 0S cos aN s 
sin 0S sin aN s 
cos 8S cos ajsj s 
cos 0S sin aN s 
sin 0S cos aN s 
sin 9C sin aN) s 

cos' ß s 
• 2 

n ß cos ip 

n2 ß cos ty cos a 
2 

's 
Note: 

N 

nc ß sin ty 

n ß sin vp cos a 

x\L ß cos  ß cos i|i cos a 
2 n'ß cos ß cos vp sin a 

cos \\i cosd a 

cos ty sin a cos a 

sin ty cos a 

sin ip sin a 

n ß cos ß sin ijJ cos4 a 

n2 ß cos ß sin i|/ sin a cos a 

n3ß 

n3ß 

n3ß 

n3ß 

sin vp = sin ß /sin y 
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Regrouping for formal similarity 

(1,7,8) (A2   + A,) / cos' ß   (1   -  smß/sin'yV2   sin ß   dß 

- A, f  (1   -  sin'^/sin2/)172   sin/3   dß 

(2,5,6)        (A,   - A4) fsinß   (1   -  sin2^/sin2y)1/2   cos ß  dß 

(3,11,12)    (A,   + A2) J(sin3/3/siny)   cos ß   dß 

(4,9,10)      A4 J(sin2/3/siny)   dß  +  (A,  - A4) f (sin" ß/sin y)   dß 

We proceed to integrate, first making the following substitutions 

(1, 7, 8) Let 

sin  y  =  G cos y  =  B cos /3   =  x 

and note that 
.2 •   2    „ 2    „ 2 

sin   y  -  sin   /3   =   cos   ß   —   cos   y 

sin ß   dß   =  - d   cos /3   =  - dx 

Then we obtain 

(A2 + At)        f    2  .   2 2 .%    j At       /* ,   2 DJ//2     , -   — J   x   (x    -  B )     dx  +  -—   I (x    - B )     dx 

(A> '  Ai.) •*    r..2   _   ,,'w    ,     IJ'_ „ (J   __   n2V2  __    >L ;„   (x  +  (x
a-Ba)X/a)l 

3 2 ,4 
x     I   2 r>2\^ B C   2 r>21/2 B       7 — (x    - B ) + —— x (x    -  B ) 2 — In 
4 8 8 

G ~ (x- - B')'/. 

[i <«' - 
y2     B

2 

ln   (x   +  (x2 -B2)1/2)] 

( A2 + At)     x     ,2 

[^G ~ ^r" 4] lx (x* ~ ß2)Vl ~ ß2 Zn (x + (x* -ß2)1/2)} 

Finally 

(1,7,8)    ^{ 2At  - -J- (A,  + A2)B
2] [x(x2  - B2)1/a  - B2   In (x  + (x2 - B2)'/2)] 

- (A, + A2) x(x2 - B2)Va} 

29 



AEDC-TR-65-202 

(2, 5, 6) Let 

where 

and note 

>in y  =   G sin ß   =  y cos \fj  =  z 

sin if/   =  sin /3/sin y 

cos ß   d/3   =  d   sin ß   =  dy 

Then we obtain 

^=^JY(G2   -y2)V>   dy 

(A3-A4) y    , r2 
G 

A4 -A, 
4G 

A4-A3 

4G 

(G2   -  y2)V*  +  \ {y(G2- /)%   +  G2   sin"1   -L}J 

{y(G2  -y2)^   +G
2
-A}J [y(G2   -y2)3/*   -    ± 

yz    -   —  (yz  + Gi/0 

(3, 11, 12) Let 

then 

(4, 9, 10) Let 

then 

G   =   sin y 

r    sin3/j   cos/3   d^j     =     (A2 + Al) 4 
«/ siny 4G ' 

G   =  sin y 

J sin2 /3    iß   +      Ua     A<)     / sin4 0   dß 
A4        f   „:    » 

G 
-i-   (/3   -  sin/3   cos ß) 

(A,--A4) sin   p   cos 
^— +   -j-   {-y-   (j8   -   sin/3   cos/3)} 

1 
4G 

(A4   -  A3)   sin   /3   cos /3 

+   ~~ (A4  + 3A3) (/3  - sinß   cosß) 

30 



AEDC-TR-65-202 

Now all groups have a common factor 1/(4G); this factor is ignored 
in practice until final calculation of the albedo view factor,  which is 
the calculated value of the integral multiplied by 

1/(4/7  sin y) 

The actual albedo illumination intensity is then gotten by multiplying 
by the albedo Ae and solar constant Is . 
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APPENDIX III 
INTERIOR INTERSECTIONS OF BOUNDARY CURVES 

Intercepts of CQ with C£   are defined by the system of equations 

cos a  =  -  l/(tan 6S   tan <j>e) (III-l) 

cos (a-aN)   =  -  l/(tan/3N   tan ß) (III-2) 

with the conditions 

4>e = <A - /3 (HI-3) 

sin i/f  =  sin/3"/siny (III-4) 

thus all four parameters 6S1 y,   «N,   and ßN are involved.    From the condi- 
tions of Eqs.   (III-3) and (III-4) we derive the relation 

sin d>     sin y , _. 
tanj8   = ^ Y—r- (III-5) 

1  — sm y   cos 0 

We expand the left side of Eq.   (III-2) and use Eq. (III-5) on the right of 
Eq. (III-2) to obtain 

C   cos a  +  S  sin a  =  (G   cos 0e   - 1)/BG  sin <£e (III-6) 

where 
B   =  tan ßN 

C   =   cos a-fl ,   G   =  sin y ,   S   =  sin a^ 

Let 
T   =  tan 0S 

and substitute Eq.   (III-l) on the left of Eq.   (Ill-6) to obtain 

C  C0S ^e    +   g  (l 
C0S    ^e \  2 G  c OS ^e - 1 

T sin 9Se I T2 sin2 <f>e J B G sin ^ 

Now write the middle term as 

.% S f m2 /rr-12        .       n\ _2»~|/2 -      S   ,      (T2sin20p   -  cos20j/2   =      -;    .s   ,      [T2
   -  (T2   +  1)   cos2<£ 1 

T sin <j> re e T sin 0       L J 

and factor out sin c£e assuming <f>e £ o.    Isolate the radical on the left side 
and obtain,  by squaring and rearranging, 

G2 [(B2 + 1)(T2 + 1) - (1 -BCT)2]  cos <j>e - 2T (BC +T)  G cos 0e  + T2 (1 -S2B2G2)   =  0 

(III-7) 
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Solving this quadratic for cos </>e,  we find 

T_        (BC + T)   ±   { (BC + T)2   -   [ ( B2 + 1) ( T2 + 1)   -   (1 - BCT )2 ] ( 1 - S2 B2 G2 ) ) ^ cos (ße   = 
(B2 + l) (T2 + 1)   -   (1   -   BCT) 

(III-8) 

From these two ( + ) values of cos <£e we may find corresponding values for 
sin -<f)e,  noting that <f>e   < ~— y   always,  by definition.    Use the values of 
cos (f>e,\ sin <j>e in Eq.   (III-5) to obtain two corresponding values of tan ß , 
hence ß , noting that for this purpose ß < y .   At the same time,  Eq.   (Ill-1) 
allows evaluation of the two values of a , and the intersection points for 
Cö  and C^ can be found.    These points are labeled (as , ßs)   and (a6 , ß6) . 

Now the discriminant of Eq.  (Ill-8) provides indications of the 
presence of two,   one,   or no intersections of C# andC^. 

From the fact that (a5 ,  a6)   contains a values of intersection for two 
curves defined between both pairs (at ,   a2)  and (a3 ,   a4) ,  of necessity 
(as ,   a6)  values lie inside both ranges (a, , a2) and (a3 ,   a4) .    That is, 
(as ,   a6) values are within the a ranges of definition which are common to 
both Cf and Ce •    This is the region where,  in practice,  we may compute 
both ß(Ce) and ß(Cg) to select which shall be used.    In this way we avoid 
calculation of (o5 ,  a6)   and avoid further complication of the selection 
logic. 
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APPENDIX IV 
TRANSFORMATIONS FOR/3,0« AND <A 

Transformations for iff, <f>e,   and ß are based on the relations 

iff = 4>e + ß 

sin xfi   =  sin /3/sin y 

.2 '/ 
F   =   (1   +   sin   y   —  2 sin y   cos <£>    ) 2 

The transformations are 

sin i/f  =  sin/3/sin y  =  sin <£_/F 

cos i/f   =   (sin   y   -   sin   ß) 2/sin y 

=   (cos0e   —   siny)/F 

sin ß   =  sin y   sin<^>/F   =  sin y  sin iff 

cos ß   =   (1   -  sin y   cos<£)/F   =   (1   -  sin2 y   sin2i/f)2 

sin </>e   =      cos /3   -   (sin   y   -  sin   /3 ) 2      sin ß / sin y 

=   sin i/f      (1   —  sin   y   sin   i/f) 2   —   sin y   cos i/< 

cos <pe   =      sin   /3   +   cos ß   {sin   y   -  sin   /3) 2    / sin y 

=   cos if/   (1   —  sin   y   sin   if/) 2   +   sin y   sin   i/< 

2 2        V 
tan t/f   =   sin ß/(sin   y   -  sin   /3)2   =   sin <£e / ( cos <£     -   sin y) 

tan /3   =   sin y   sin </>/(!   -  sin y   cos (f>   )   = ±- 
( 1 — sin   y   sin   if/) \% 

2 2 / 
, [cos   ß   -   (siny — sin/3)2] 

tan</>e   =   - 

1/ „ s in : 

[sin   /3 + c os /3 ( s in   y — sin   jS)2] 

[(l — sin   y   sin   if/)2   —   siny   cosl/fj 
=    sin if/ 

[ cos i/f ( 1 — sin   y  sin   i/f)  2   +   sin y  sin   i/f ] 
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APPENDIX V 
FLOW CHART FOR COMPUTER PROGRAM 

FC-1 

C Case Select in 8C 

To Case Select in PN 

a, - 1 + sin"1 /.Ml /tan Y\ 
\tan 9S) 

a4- 2TT- a3 

Eclipse, No Albedo - Planet 
Radiance Only 

Subroutine "ALBDO" Arguments: 
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a2 =aN- 7T 

*^B— 

K-K + 3 

IjfflE -■^M™* 

To a Adjust, Case Switch 

K = K + 6 

Calc. * 
a1( a2 

Exit 

FC-2 

Case Select in ßfg 

Topside, No Albedo, 
No Planet Radiance 

•Aa - 1 + sin"* 
2 

aj ■ aN + Aa 

a2 - aN -Aa 

\tanßNtany/ 
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Key 

2 

PN        2 

■v 

Topside 

0,2 

7 

1,2 

8 

2,2 

9 
CD 

Q. 0,1 

4 
1,1 

5 
2,1 

6 

0,0 

K-l 

1,0 

2 

2,0 

3 
0        y 71/2 

9S" 

7T-y       7T 

( 
Case 0,0 

) 

( 1,0 ) 

( 
2,0 ) 

( 0,1 ) 

( 1,1 ) 

( 2,1 ) 

( 0,2 ) 

( 1,2 ) 

( 
2,2 

) 
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Call 
Subroutine 

BDI 

Subroutine BDI, with Arguments a, a<u, ß, ß, y, 0 ; Sum, Öa 

Evaluates the First Integral Between ß, ß 

Adding Results to Sum, Advancing a by 6a 
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Split?      ^ 

Subroutine CXI, Arguments a, aN, ß|\| 
Evaluates ß on the Curve C* (a, ß) 
defined by 

cos (a - aN)   = -ctn ß ctn ß^ 

ß - tan"1 f Li 1 
[tan ßN cos (a -aN)J 
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CaseO, 2 FC-6 

(    Is Range Split?     j 

1 f 

a lim ■ 2TT 
K = l 

P -y 
a -a2 + 6a/2 

a lim =ai 
K = 2 

+~r* 

Call 
Subroutine 

CXI(fl) 

_i_ 
Call 

Subroutine 
BDI 

-^- 

a - 6a/2 

Exit 
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Case  1, 0 

Call 
Subroutine 

THET <ß) 

FC-7 

FC-3 

a-6a/2 
ß =0 

a lim»27T 

ß=y 

Call 
Subroutine 

BDI 

Subroutine CTH, Arguments a, 0S, y 

Evaluates ß on the Curve Cg(a, ß) 

defined by the Set of Equations 

cos a = - ctn 0S ctn 0 

0= \p -ß 

sin 4> = sin ß/sin y 
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Case 2, 0 J 
FC-3 

K = l 
a = 6a/2 

a lim= a. 

-^ 

Call 
Subroutine 

THET (ß) 

Call 
Subroutine 

BDI 

FC-8 

K = 2 
a = 0.4+ 6a/2 

a lim = 27T 
<- 
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Case 1, 1 
FC-9 

TTU 
Evaluating 

Schematic Only 
Details on Next 
Three Pages 
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Case 1,1 

i-rom 
P- 

FC-12 

ß=0 
a =6a/2 

a lim ■ 27T 

Sort Configurations 

FC-10 

OO    ©     OO    ©     0©    0 
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(case 1, f) ( Range Tests) 

o© 0 From P-FC-10 OO00 00 Fc-n 
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Case 1,1 ) (        Evaluating       j 

From P-FC-11 

FC-12 

To P-FC-10 
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c Case 1,2 J 

(   Is Range Split?   J 

K-l 
a *6a/2 

M- ^®^- 

Call 
Subroutine 

THET $) 

Call 
Subroutine 

XI (ß) 

Call 
Subroutine 

BDI 

FC-13 

a lim = 27T 

-§>> V 

K = 2 
a « a2 + 6a/2 

Exit 

A 

49 



AEDC-TR-65-202 

Case 2,1 

FC-14 

K-l 
a lim - 03 

a = 6a/2 

K = 2 
a lim - 2n 

a - a4+ 6a/2 

■ *<^miiin _^\ 

ß=r 

1 ^^ 

Call 
Subroutine 

THET (ß) 

Call 
Subroutine 

BDI 

-^- 
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c Case 2,2 

Is Range Split? 

ß -Pi 

-^JxitJ 

a ■ a4+ 6a/2 a ■ a2 + 6a/2 
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APPENDIX   VI 

FORTRAN LISTINGS 

SUBROUTINE ALBDO 

SUBROUTINE  BDI 

SUBROUTINE  XI 

SUBROUTINE  THET 
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SUBROUTINE ALBDO<SUM,BEI AN,GAM,ALN.THETS.DALS,SGAM>CGAM,STHS,CTHS, 
 7 SBN.CBN) , .  

1 PY = 3,1415927 
PY2 = 1.5707963 
EP = .000001 

2 SUM = 0. 
C. START THETA SEARCH  

IF(THETS -6AM)400,401,401 
400 AL3 = PY 

AL4 = PY 
K = 1 
GO TO 408 

401 IFiTHETS -PY2    1402,402,405  
402 K = 2 

GO TO 407 
405 IFITHETS -PY +GAM 1406,575,575 
406 K=3 
407 CAL3 = -SGAM * CTHS/(CGAM * STHS) 
 AL3 = PY2 - ASINF1CAL3) [  

AL4 = 2.*. PY - AL3 
C        START BETA SEARCH 

408 IFtBETAN - PY2 + GAM 1409,409,410 
409 ALI = ALN + PY 

AL2 = ALN - PY* 
 GO TO 417  

410 IFIBETAN - PY2)411»411.414 
411 K=K+3 

GO TO 416 
414 IF(BETAN - PY2 -GAM)415,575,575 
415 K = K+6 
416 CDAL =   -CGAM * CBN/ (SGAM * SBN )  

DAL = PY2 - ASINF(CDAL) 
ALI - ALN + DAL 
AL2"--= ALN - DAL 

417 IF(AL1 - 2. * PY)419,419,418 
418 ALI = ALI - 2. * PY 
419 IF( AL2 1420,421,421  
420 AL2 = AL2 + 2.* PY 
421 GG=K 

GO TO(422,441,447,425,452,520,434,500,540),K 
C START CASE 0-0 

422 ALPHA = .5 * DALS 
BMIN =0. 
BMAX = GAM 
ALIM = 2. * PY 

423 IF(ALPHA - ALIM 1424,575,575 
424 CALL BDI(SUM.ALPHA,DALS,ALN,BMAX,BMIN,SGAM,CGAM,STHS,CTHS,SBN,CBN) 

GO TO 423 
 START CASE 0-1  
425 ALPHA =.5 * DALS 

BMIN = 0. 
ALIM = 2.* PY 

426 IFtALPHA -AL IM 1427,575,575 
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427 IF(AL1 - AL2)428»428.429 
428 IF((ALPHA -ALI)*<ALPHA -AL2 ) )432»431»431 
429 IF(ALPHA »(ALPHA -AL2) )432.430.430  
430 IFUALPHA -AL1)*(ALPHA ~2.*PY ) )432 »431 »431 
431 BMAX = GAM 

GO TO 433 
432 CALL XKBMAX.SBN.CBN.ALN.ALPHA) 
433 CALL BDI(SUM»ALPHA»DALS»ALN»BMAX»BMIN»SGAM»CGAM»STHS.CTHS,SBN»CBN) 
 GO TO 426, ■    1  

C START CASE 0-2 
434 BMAX = GAM 

ALPHA = AL2 + .5 * DALS 
IFIAL1 -AL2)435,436,436 

435 K = 1 
 ALIM = 2. * PY  

GO TO 437 
436 K = 2 

ALIM = ALI 
437 IFJALPHA - AL IM ) 440 ,438 ,438 
438 IF(K-1)439.,439,575 
439 ALPHA = . 5 »■ DALS  

GO TO 436 
44ü    CALL XI(BMIN»SBN»CBN»ALN,ALPHA) 

CALL BDI(SUM,ALPHA,DALS,ALN,BMAX»BMIN»SGAM»CGAM,STHS»CTHS,SBN»CBN) 
 GO TO 437_    

C START CASE 1-0 
441    ALPHA = .5 *   DALS _^  

BMIN _ ö# 

ALIM = 2e* PY 
442 IFIALPHA - AL IM 1443»575»575 
443 IF((ALPHA-AL3) *(ALPHA~AL4))444»445»445 
444 CALL THET(BMAX.STHS.CTHS.5GAM»ALPHA) 

GO TO 446 
445 BMAX = GAM 
446 CALL BDI 1 SUM»ALPHA»DALS,ALN.BMAX»BMIN»SGAM»CGAM»STHS»CTHS»SBN»CBN) 

GO TO 442 
C ^TART CASE_2-_0_ 

447 K=l 
 ALPHA = .5 * DALS  

ALIM = AL3 
BMAX = GAM .   

448 IFIALPHA - AL IM )449,450»450 
449 CALL THETtBMIN,STHS.CTHS,SGAM,ALPHA) 

CALL BDI(SUM.ALPHA»DALS»ALN»BMAX»BMIN.SGAM.CGAM.STHS»CTHS.SBN.CBN) 
 GO TO 448  

450 IF(K-1)451»451»575 
451 K = 2    

ALPHA = AL4 + .5 * DALS 
ALIM = 2.* PY        __■ 
GO TO 448 

C START CASE 1-1 
452 BMIN = 0. 

ALPHA = .5*DALS 
ALIM = 2.*PY 

453 IFIALPHA -ALIM)454»575.575 
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454 IFIAL1 -AL2)465»455 ,455 
455 IFIAL1 -AL4)462,462,456 
456 IF(AL2-AL3)460,460,457 
457 IF( (ALPHA -AL3)*(ALPHA -ALI))458,602,602 
458 IF((ALPHA -AL2)*(ALPHA -AL4))601,601,459 
459 IFIALPHA -AL2)6C4,603 ,603 
460 IF((ALPHA -AL2)*(ALPHA -ALI))461,602»602 
461 IFUALPHA -AL3 ) * ( ALPHA-AL4 ) ) 60 1 ,603 »603 
462 IF( (ALPHA -AL2)*(ALPHA-AL4) )463,602,602 
463 IF( (ALPHA -AL3)*<ALPHA -AL 1) )601,601,464 
454 IFIALPHA -AL3)603,603»604 
465 IF1AL1 -AL3)476,466,466 
466 IF1AL1 -AL4J467,473,473 
467 IFIAL2 -AL4)471,468,468 
468 IFUALPHA -AL3)*(ALPHA -AL2 ) ) 469 ,603 »603 
469 IFUALPHA -AL1)*(ALPHA -AL4 ) ) 604 ,604 »470 
470 IFIALPHA -ALI)601,602,602 
471 IF((ALPHA -AL3)*(ALPHA -AL4))472,603»603 
472 IFUALPHA -ALl)#(ALPHA -AL2 ) ) 601 ,601 , 604 
473 IFUALPHA -AL3)*(ALPHA -AL2 ) ) 474 ,603 »603 
474 IFUALPHA -AL4)*(ALPHA -AL 1 ) ) 603 , 603 »475 
475 IFIALPHA -AL4)601,602,602 
476 IFIAL2 -AL3)483,483,477 
477 IF(AL2 -AL4)478,478,481 
478 IF((ALPHA -AL1)*(ALPHA -AL4))479,603,603 
479 IFflALPHA -AL3)*(ALPHA -AL2 ) )604,480»480 
480_ IFIALPHA -AL3)602,602,601 
481 IFUALPHA -ÄL1)*(ÄLPHÄ -AL 2 ) ) 482 ,603 »603 
482 IFUALPHA -AL3)#(ALPHA -AL4 ) ) 604 »602 ,602 
483 IF( (ALPHA -AL1)*(ALPHA ~AL4 ) ) 484 ,603»603 
484 IFUALPHA -AL2)*(ALPHA -AL3 ) ) 603 ,603 »485 
485 IFIALPHA -AL2)602,602»601 
603 K=3 

BMAX = "GAM"" 
GO TO 491 

601 K =1 
GO TO 486 

604    K =4 
486 CALL THET(BMAX»STHS»CTHS»SGAM»ALPHA) 

IF(K-4)491,487,49"1     ~ 
487 Bl= BMAX 

GO TO 488 
602 K=2 
488 CALL XKBMAX.SBN,CBN,ALN,ALPHA) 

I F ( K-4)491,489,491 __      __ 
489 IF(BMAX -Bl)491,491,490 
490 BMAX = Bl t ? U       Di'lHA  -  Dl 

491    CALL BDI(SUM»ALPHA,DALS,ALN,BMAX»BMIN»SGAM»CGAM»STHS,CTHS»SBN»CBN) 
GO TO 453 

C START CASE 1-2 
500 ___ALIM =_AL! ... 

IFIAL1 -AL2J501.501,502 
501 K =1 

ALPHA = .5 »DALS 
GO TO 503 
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502    K = 2 
ALPHA = AL2 + .5* DALS 

__5 03 IF (ALPHA -AL_[M ) 506_» 504 ,504  
504  ' IF7K-1)"5Ö'~5,505T575 

505'   ALIM = 2. * PY 
GO TO 502 

506 IF((ALPHA -AL3)*(ALPHA -AL4))508>507»507 
507 BMAX = GAM 
 _Q-.IQ.509  _.__.  

508 CALL THET(BMAX,STHS,CTHS,SGAM,ALPHA) 
509 CALL XI(BMIN,SBN,CBN,ALN,ALPHA) 

CALL BDI(SUM,ALPHA»DALS,ALN,BMAX»BMIN»SGAM»CGAM,STHS,CTHS,SBN»CBN) 
GO TO 503 

C START CASE 2-1 
520    K =1 

ALIM =AL3 
ALPHA = .5 * DALS 

521 IF(ALPHA -AL IM)524»522 ,522 
522 IF(K-1)523»523,575 
523 K   =2 

ALIM = 2. * PY 
"ALPHA ="A"L4 +" .5*DAL'S   
GO TO 521 

524 IFIAL1 -AL2)525»525,526 
525 IFIIALPHA -AL1)*(ALPHA -AL2 ) ) 529 »528 , 528 
526 IFULPHA *<ALPHA -AL2 ) ) 529 » 529 . 527 
527 IF((ALPHAT AL1)*(ALPHA -2.*PY))529»528»528        
528 BMAX = GAM    '  " """        " 

GO TO 530 
529 CALL XI (BMAX,SBN.CBN.ALN,ALPHA) 
530 CALL THET(BMIN,STHS,CTHS,SGAM»ALPHA) 

CALL BDI(SUM»ALPHA»DALS,ALN,BMAX»BMIN»SGAM»CGAM»STHS»CTHS»SBN»CBN) 
GO TO 521 

C START CASE 2-2 
540 BMAX = GAM 

IFtALl -AL2)541,545,545 
541 K =1 

ALPHA = .5 *DALS 
IFIAL1 -AL3)542,542,543 

542 ALIM  = ALI 
GO TO 553 

543 ALIM = AL3 
IF(AL2 -AL4)544,553,553 

544 K =3 
GO TO 553     

545"  K =2 
IFtALl -AL3)551,551.546 

546 IFIAL1- AL4)547»547,549 
547 IFIAL2 -AL3)548,575,575 
548 ALPHA = AL2 +.5* DALS 
__ _   ALiM_ = AL3  

GO TO 553 
549 IF(AL2 -AL4 ) 550 , 55ü,551 
550 ALPHA = AL4 +.5* DALS 

GO TO 552 
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551 ALPHA = AL? + .5 «DALS 
552 ALIM = ALI 
553 IF1ALPHA -AL IM)556,554,554 
554 IFIK-21555,575,555 
555 ALIM = 2.* PY 

K =2 
IF(AL2 -AL4)556,557,557 

556 ALPHA = AL4 + .5*DALS 
GO TO 553 

557 ALPHA = AL2 + .5 *DALS 
GO TO 553 

558 CALL THET(BMIN,STHS,CTHS,SGAM,ALPHA) 
IF(K-3)559,561,559 

559 CALL XIIB1  ,SBN,CBN,ALN.ALPHA) 
 IFtBl -BMIN1561,561,560 
560 BMIN = Bl 
561 CALL BDI<SUM,ALPHA»DALS,ALN»BMAX»BMIN»SGAM.CGAM»STHS»CTHS»SBN»CBN) 

GO TO 553 
575 SUM = SUM * DALS / (SGAM *4. * PY) 

IFfSUM - .00001)576,577,577 
576 SUM = o. 
577    BETAN = GG 

RETURN 
END 
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SUBROUTINE BDI(SUM»ALPHA»DALS»ALPHN.BMAX»BMIN»SGAM»CGAM»STHS>CTHS» 
2 SBETN,CBETN)   

IFIBMIN -BMAX)1.2.2 
I CALPD = COSRFIALPHA -ALPHN) 

CALPH = COSRF(ALPHA) 
CBMAX = COSRF(BMAX) 
SBMAX = SINRF(BMAX) 
CBMIN = COSRF(BMIN)  

"SBMIN = SINRF(BMIN) 
ARG1 = 1.-(SBMAX »SBMAX ) / ( SGAM * SGAM') 
ARG2 = l.-ISBMIN *SBMIN)/(SGAM * SGAM) 
IF(ARG1)3.3»4 

3 CPMAX =0. 
GO TO 5  

4 CPMAX = SQRTF~(ARG1) 
5 IF(ARG2)6»6»7 
6 CPMIN =0. 

GO TO 8 
7 CPMIN = SQRTFIARG2) 
_8      ARG3 =1. -CPMAX »CPMAX   

" ÄRÖ4"=1. -CPMIN "»CPMIN 
IF(ARG3)9.9,10 

9 PMAX =0. 
GO TO 11 

10 PMAX = ASINF(SQRTF(ARG3)) 
II I _F_<_A RG4) 1_2_> 12 »_13^  
"12"    'PMIN =0."  "  

GO TO 14 
33     PMIN = ASINFiSQRTFIARG4)) 
14     FE1 = SBETN* STHS »CALPH » CALPD 

FE2 = CBETN » CTHS 
FE3 = SBETN» CTHS » CALPD  
FE4 = CBETN * STHS * CALPH 
Si =(2.* FE1 -,5*< FE1 + FE2)* CGAM»CGAM )*  (SGAM» (CBMAX »CPMAX 

1 - CBMIN »CPMIN ) - CGAM »CGAM"'*"" LÖGFI ( CBMAX+ SGAM» CPMAX)/( CBMIN" 
2 +   SGAM   »   CPMIN)))   -   (FE2   +   FED   »SGAM»SGAM»SGAM   »(CBMAX*   CPMAX» 
3 CPMAX »CPMAX- CBMIN »CPMIN »CPMIN * CPMIN) 
 S2 =(FE4 -FE3)» (.SBMAX* CPMAX »CPMAX »CPMAX - SBMIN » CPMIN »CPMIN 

1 »CPMIN -.5  * < SBMAX »CPMAX -•SBMIN »CPMIN +SGAM »(PMAX -PMIN))) 
2 *SGAM»SGAM*SGAM I 

53 =(FE2 +FED* ( SBMAX**4 - SBMIN***.) 
54 = (.5 »FE4+ 1.5 »FE3)»(BMAX -BMIN -SBMAX »CBMAX +SBMIN »CBMIN 

1 ) +IFE4 -FE3)*(S.BMAX*SBMAX »SBMAX »CBMAX -SBMIN*SBMIN*SBMIN*CBMIN) 
DSUM = SI +S2 +S3 +S4  
SUM = SUM + DSUM 
ALPHA = ALPHA + DALS 
RETURN 
END 
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SUBROUTINE X I(B»SBN,CBN,AN»AL) 
B = 0.  
TB = -CBN / (SBN * COSRFIAL - AN)) 
B =  ATANF(TB) 
RETURN 
END 

SUBROUTINE THET(B»STHS,CTHS,SGAM»AL) 
FF = -(-THS / (STHS * COSRF(AD) 
B = 0. 
B  = ATANF(FE) 
FE = SINRF(B)/(COSRF(B)-SGAM) 
FE = ATANF(FE) 
B = FE -B 
RETURN  
END 
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