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FOREWORD

The work reported herein was done at the request of Arnold Engineer-
ing Development Center (AEDC), Air Force Systems Command (AFSC),
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The results of the research were obtained by ARO, Inc. (a subsidiary
of Sverdrup and Parcel, Inc.), under Contract AF 40(600)-1200. The work
was performed from February to August, 1964, under ARO Project No.
SM3105, and the manuscript was submitted for publication on August 31,
1965,

This report is an extension of the work reported in AEDC-TDR-63-206
(February 1964),

This technical report has been reviewed and is approved.

William D. Clement Jean A, Jack
Major, USAF Colonel, USAF
AF Representative, AEF DCS/Test

DCS/Test
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ABSTRACT

This report is concerned with the development of a fast computer
method for evaluating the albedo integral. This integral defines the
illumination on an arbitrarily oriented surface element at any point
in space about a diffusely reflecting sphere. It enters the calculation
of simulation control parameters in the Arnold Engineering Develop-
ment Center Aerospace Environmental Chamber (Mark I), The semi-
numerical method developed here is faster than ordinary numerical
integration by a factor of about ten. A typical computer program,
which formerly required about thirty minutes, now produces the same
results in under four minutes.
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NOMENCLATURE

Albedo, fraction of solar radiation reflected by earth
Horizon circle

Terminator curve

"Target plane cut' curve

Surface element on albedo source
Target surface element

Altitude

Solar constant, intensity

Intensity of target illumination
Orbit angular momentum vector
Vector normal to target surface
Solar node vector

Target position vector

Radius of the albedo source sphere

Sun position (unit)vector
Azimuth angle

(i =1, 2 -.-) Boundary values in azimuth

Azimuth of target normal vector

Minimum, maximum values of azimuth angle

Nadir angle

Nadir angle of target normal vector

Minimum, maximum values of nadir angle

Relative altitude parameter, nadir angle of horizon

Angular distance from S to arbitrary point (dA,) on
albedo sphere; source to sun view angle

Angular distance from S to R
Inclination of plane of Ng and R to S

Angle at dA, between N and dA,; target view angle

vii
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b, Angular distance of arbitrary source point
dA, from R
b, Orbital angular position, between Ny and R

Angle between normal at dA, and direction to dA,;
source view angle

viii
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SECTION |
INTRODUCTION

This report extends one of the problems discussed in an earlier
reportl: the development of a method for evaluating the "albedo integral'.
The aim of this study is to improve the speed at which certain quantities
are computed for the control of simulation parameters in the Aerospace
Environmental Chamber (Mark I). In earlier study programs, the albedo
integral was evaluated by strictly numerical integration techniques. The
present seminumerical method is faster, by nearly an order of magnitude,
than the numerical methods formerly used. This method has been incor-
porated into a Fortran language computer subroutine,

A derivation of the albedo integral, for illumination intensity, is
reproduced in Appendix I, under assumptions that the albedo source is a
homogeneous sphere with a diffusely scattering (Lambert) surface, so
that the albedo is otherwise independent of surface and atmospheric con-
ditions.

SECTION I
THE ALBEDO PROBLEM

In order to properly control the simulation of secondary radiation
(albedo and planet radiance) in Mark I, it is necessary to determine the
illumination on an arbitrarily oriented surface element at arbitrary alti-
tude and at any position in a trajectory or orbital flight near a reflecting
celestial body.

A derivation of the albedo integral, which expresses the illumina-
tion intensity, is given in the previous report2 under assumptions that
the albedo source is a sphere having a homogeneous, diffusely scattering
surface so that the albedo is otherwise independent of surface and atmos-
pheric conditions. Then a different primary body may be distinguished

loord H. Link, Jr. "Problems in Computing Radiation Control
Functions for Mark I."" AEDC-TDR-63-206, February 1964,

21bid.
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by a solar constant suitable for the distance from the sun, its mean
albedo, and its radius. This last factor enters all secondary illumina-
tion calculations since they depend on relative altitude.

I2
A A,

(0s, v, aNsBN) =

a(fs,y,an,Bn) é(a;es,y,aN,BN)
cos 0 (a, B; 0s,y) cos £(a, B; ay,yy) sin BdBda

A

&(0s,y,an-By)  Blaibs,y,an,pn)

The integral contains four parameters which determine the con-
figuration of boundaries of the surface over which the integration is to
be carried out, namely, the albedo source region.

The limits of integration are functions of these same parameters
as well as of the second integration variable. The parameters establish
the limits for the second integration, as well as controlling the func-
tional form of the integration limits.

In principle either of the integration variables may be selected for
the first integration. The azimuth angle « provides simple first integral
forms, but the function limits, involving the nadir angle, are sometimes
double valued functions, a(B).

On the other hand, the first integration taken relative to the nadir
angle B leads to more complex expressions for the first integral, but
the functional limits, involving the azimuth angle «, are single valued
functions, B(a).

This second alternative is chosen. Having once found all the "anti-
derivatives'' of the integrand functions of 8, a simple differencing of
function values for maximum and minimum values of 8 (at a particular
value of ) provides first definite integral numerical values, which are
now functions of the four configuration parameters and «. Integration
over q« involves summation of first definite integral values.

Regardless of which variable, « or B8, is first used, when the func-
tion limits (a(B) or B (a)) are inserted, some of the expressions
become rather formidable, and analytical evaluations of the second
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integrals for many of these have not been found. It is reasonable to
use simple numerical integration in the remaining variable «.

The region of integration is bounded by curves beyond which one or
more of the integrand factors become negative. There are three such
curves (see sketch above). The ever-present horizon circle C, is deter-
mined by the relative altitude of the target above the albedo source. The
terminator Cg, the sunlight-shadow line, is determined both by altitude
and by the angular distance of the target position from the subsolar point
on the albedo source. Finally, the '"target plane cut' C¢, the intersection
of the plane of the target with the albedo source, depends on the specific
orientation of the target and altitude., The curve Cg may fall outside
the circle, and the curve C¢ does not exist outside the horizon circle,

So, depending on the four parameters, the region of integration may be
bounded by one curve Cys by two curves (Cy’ with Cg, Co with C¢,lor
Cy with C¢), or finally by portions of all three curves,

Ce

Cq c

Not only are the boundary curves defined by the four integration
parameters, but their intersections are also, and there may be as many
as six intersections (see above). From this arises part of the complexity
of the problem, since the C¢ curve may have any azimuthal relation to the
C¢ curve, or within the Cy circle. The logical sorting involved in deter-
mining the boundary curves and their limits, for arbitrary parameters,
is rather involved in the number of decisions to be made. Yet for a

given configuration, only one sequence of a few decisions serves to pro-
vide all the information required.
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From the standpoint of computer programming, the method described
here leads to a large program, of which only a small part is executed for
one given set of parameters. In practice all the parameters may be con-
tinually varying.

In the following sections, the analysis will be developed, leading to
the computer program displayed herein as a subroutine. A logical flow
chart and Fortran II listing of the major routine is given as well as a
Fortran II listing of the supporting subroutines. This method turns out
to be approximately ten times as fast in computing as a corresponding
purely numerical integration method.

SECTION 1
THE ALBEDO INTEGRAL

The albedo integral, in its complete form, provides an expression
for the intensity of illumination I, on an arbitrarily oriented and positioned
target surface element AlA," attributable to albedo A, of a homogeneous dif-
fusely scattering sphere exposed to solar radiation intensity Is. 3 We
begin with the definitions
I, I, A

Na = Sp [ cos e cos & sinp dBda (1)

cos O, = cos f5 cos ¢po + sin g sin o cos a (2)
cos & = cos B cos BN + sin 3 sin By cos (a = ay) (3)
siny = 1o/ (h + re) (4)

e =y - B (5)

sin ¢ = sin B/siny (6)

The integration is over all «, 8 within the region where the integrand
factors are all positive. The parameters ay, By define the orientation
of a target surface element to the particular albedo source configuration
defined by 65,7y .

31bid.,
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For present purposes, the factor IsA. is taken as unity, leaving the
integral

—71; [f cos e cos £ sinB dBda
which may be called the "albedo view factor''. It is a measure of effi-
ciency of conversion of collimated illumination into scattered illumina-

tion on an arbitrarily oriented surface element at any point in space
about a perfect diffusely reflecting sphere.

The integration relative to nadir angle g is given in Appendix II.

Terminator

Plane of ], Ng) LT

a. Geometry Defining Location Parameter 65(0y, bv)

Fig. 1 Model Geometry
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SECTION IV
PARAMETERS OF ALBEDO INTEGRAL

If S'is a unit vector indicating the sun direction, a unit orbital angular
momentum vector, and R the target position vector, then a node vector
N. may be constructed from S x L. Then the orbital angular position
¢, may be defined as the angle between Ns. and R. The plane of the orbit
is inclined at angle 6, from the plane of Ns and S.

Then the angular
distance 05 of R from § is defined by (Fig. 1la)

cos Og = sin ¢y cos Oy

Plane of R Normal to AA

Plane of

b. Geometry Defining a, B, v, Cy and Cyg
Fig. 1 Continued
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The a, B coordinate system is defined at the vehicle position by polar
coordinates, taking B = 0 as the (~R) direction, ¢ = 0 in the plane of R and
S, a positive by a right-hand rotation about (+R)(Fig. 1b).

Then ey, By are defined as the coordinates of the normal to the albedo
target surface element AA,(Fig. 1lc).

The relative altitude parameter y is defined by Eq. (4). The relations
of Egs. (4) and (5) are shown in Fig. 1d.

i Plane of
:F_fand N

Plane

— 2N
X of AA
Buqr\ 2

_ \
Cgiu, p) }

¢. Geometry Defining an, BN, £ and Ce

Fig. 1 Continved
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SECTION V
BOUNDARY CURVES AND INTERSECTIONS

Since the boundary curves separate the region in («, 8) for which the
integrand factors of Eq. (1) are positive from the region where any
factor is negative, we may write boundary equations as follows:

Cy (Horizon Circle): B =y (7)
for all a.

Cy (Terminator, from Eq. (2)):cos 6, = 0,

hence

cos a = —ctn ¢, ctn O (8)

in which Egs. (4), (5), and (6) are used to obtain expressions for «(8)
or B(a).
C¢ (Target Plane Cut, from Eq. (3)):
cos £ = 0,
hence
cos (@ =~ aN) = ~ctn By ctn B (9)

The intersections of C¢ with Cy are obtained from Egs. (7) and (9) by
letting Aa = a - ay.

Then
cos Aa = —ctn BN ctn y

a, ay + Aa
(MODULO 2#)

o = ay ~ Aa (10)

The intersection of Cg with Cy is found by using Egs. (6), (5), and (7)
with Eq. (8) as follows

B =y

¥ = u/2

¢ = /2 =y

ay = cos ' (~ctn fg tany)

a, = 2 — ay (11)
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The intersections of Cg with C¢ are not needed in the present method,
but will be essential if it is desired to attempt purely formal second-stage
integration in the future., The calculation of this intersection is given in
Appendix III; transformations between the angles ¢, ¢,, and B implied by
Egs. (5) and (6) are given in Appendix IV.

d. Geometry Defining Auxiliary Angles ¢, i
Fig. 1 Concluded
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It is desirable to ensure that all the angles of intersections (g, q,,
a;, and a,) of Egs. (10) and (11) are expressed as positive angles with-
in (0, 27) to eliminate ambiguities that otherwise occur in determining
when the variable ¢ is in the range of definition of one of the curves,
Cg or Cg.

It is apparent that the limit points ¢, and «, are symmetrically
placed with respect to ay at positions determined by y and gy . Corre-
spondingly, a, and a, are symmetric relative to a = 0 (located from
expressions involving y and 6,). The four integration parameters vy,
0s, ay, By remain arbitrary, subject to limitations

0<y < n/2

<
IN

Os

IA

T

OSaN 277

IA

IN
3

OSBN

SECTION VI
MAJOR DIVISIONS OF PARAMETER RANGES

All required quantities are now defined, and we shall examine the
meaning of the values of the four parameters ay, By, 0., and y. From
the definition of y (Eq. (4)), we find that y approaches =/2 as the altitude
vanishes, and y approaches zero as altitude grows large.

Cy

(a, B) Map of Cy in Cy

10
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We confine our attention to the horizon circle and its interior,
B < v. Inthe (a, B) coordinate system about the origin (the vehicle loca-
tion), a unit radius sphere is erected. The horizon circle is a small
circle, B = y, which entirely encompasses the albedo source region, of
which no part exists outside the horizon, B > vy. The curve C¢ is a great
circle on the a, B sphere and hence passes through the origin and maps
across the interior of the horizon circle as a straight line. The curve
Cg, a great circle on the albedo source sphere, maps into the horizon
circle as a part of an ellipse tangent to the horizon circle. The values
of ¢; and By control the existence of Cy and G¢ within Cy and the points
of closest approach of these curves to 8 = 0. The missing ellipse branch
of the Cg curve, the continuation of the terminator, is not defined in (a, B),
~since it is physically outside the horizon circle or 'behind" it (see sketch

on page 10),

Figure 2a illustrates the major divisions of characteristics imposed
by 6s, BN, and y and by typical patterns of the integration region. For
this illustration, ay is arbitrarily set at »/2. Later, we shall examine
the influence of ay on the problem. Figure 2a illustrates schematically
some typical boundary patterns,

T
Shadow Side of Target
1 02
By g Shadow
0' 1 1’ 1 2, 1 Side of
Source
@'Cg @ % (Eclipse)
m_ 1
2 7700 ¢, |9~ 2,0
=
@ﬁw eﬁ-’ @
00 Y g =Y 7?
8

a. Typical Patterns fory = 7/3

Fig. 2 Major Divisions of Parameter Ranges in the Horizon Circle ¢y

11
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The major ranges are noted in Fig. 2a by use of paired numbers
(n,, n,), the first referring to the 6; range, the second to the By range.
In range (0, 0), only Cy bounds the region, and for integration we have
0<B <y, 0<a <2r. This corresponds to a point on the vehicle
nearest the source sphere, near 8 = 0 and a location of the vehicle not
far from the subsolar point (6s = 0) on the albedo source sphere,

With no other changes, as 8n increases we move from (0, 0) to
(0,1) where C¢ comes into the horizon circle, The vehicle itself begins
to mask part of the source. The point 8 = 0 is still W1th1n the source so
the ¢ limits are 0 and 27 ;'8 = 0 is the minimum B value (B), and the
maximum (,3) is either y or dependent on « through the equation for
curve C¢.

When BN = n/2, the target plane (or its equivalent C¢) bisects the
hOl"lZOl’l circle. Now a« has a range of /2 either side of ay, Ié' is zero,
and ﬁ is y only. Or we may allow a its full (0, 27) range, but during
half of thls range the curve C¢ provides B 0 and in the other half C,
gives 5 y while 5

As By grows, CfAmoves into (0, 2), on past the nadir point g8 =
and provides B while B is y. The range of a is now (g, o), the region
where C¢ is defined. Finally, By increases so far that it is "on top"
of the vehicle, C¢ has swept completely across the interior of the
horizon circle, and the integral value becomes zero. The target now
completely masks itself from the albedo source,

It must be noted that the integrand contains cos 6., 6. being meas-
ured from the subsolar point on the albedo sphere. Thus, generally,
the source intensity is not symmetric in any way unless 8§ = 0 or n,
and these two instances are not equivalent since one of them includes
areas nearer the subsolar point, and the other is directly opposite.

But ay is arbitrary, in practice a function of gy determined by the
vehicle geometry and orientation.

The dependence of the g, and By ranges on the altitude parameter, y,
is illustrated in Fig. 2b.

We now return to case (0, 0) and allow g, to vary. As we enter
(1,0), the terminator Cy appears in the horizon circle at « = ». The
nadir point is still within the integration region so ¢ ranges (0, 27#),

/‘3" = 0, and B are determined from either Cgy or C.

12



Regions Identified by Numbered Ranges (8¢, By)

T
-Shadow Side
T+y
2 1102 12 22
2
T YO,I 11 21
2
A
0,0 1,0 2.0 2
B
00— m Ty
2
95
v T T T
T Shadow Side
-t Y
2
0,2 1,212,2
[«5]
s =3
2 )
0,1 11021
T-y —
2 0 0,0 1,020
0 y ™ m-y
2
95

b. Effect of y on Boundaries

Fig. 2 Concluded

AEDC-TR-65-202

Small y

0<y <™
753

(High Altitude)

A

Large y

it i
=<y< £
4Y 2

(Low Altitude)

A

13
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Allowing 6, to increase to n/2 (as the vehicle crosses over the
terminator), Cg blsects the source field, and we move on into (2, 0).
Here Cg provides /3 B = y, and a ranges only over a,, a .

Finally 65 increases so far that Cyp leaves the horizon circle at
a = 0, and we have the eclipse condition where no part of the illuminated
albedo sphere is visible at the vehicle. The integral vanishes. We note
that cos ¢ in the integrand also destroys the apparent symmetry in « of
the source function except in special cases. Instances where symmetry
occurs were treated in Appendix II of the previous report4 as special
cases in which the albedo integral can be obtained in closed form.

The parameter ranges labeled (1,1), (1,2), (2,1), and (2, 2) are
superpositions of those just described. The bounds are dependent on all
four parameters. When only one of the curves C¢ or Cy establishes the
B, then the a« range necessarily lies within the corresponding end points
(a,, a,) OF (a;, q). More precise statements are developed in subsequent
sections as we go more deeply into the logic of sorting out the various
cases.

SECTION Vil
CONFIGURATIONS OF ALBEDO SOURCE BOUNDARIES

In this section, we display 43 distinct configurations of boundaries
covering all useful values of the four integration parameters. All of these
must be examined for the purpose of establishing exact integration ranges
in a, ranges in which the boundaries are different functions B(a). As
earlier indicated, we shall eventually integrate over (a, 8) by using exact
expressmns for the first definite integral in 8, which contains functions B(a)
and ﬁ(a) then numerically integrating in a.

We recall that all end points (a,, a,, a3, a,) are defined to have values
in (0, 27), that the curve Cy is defined by B = y for all a, that C¢ is
defined (Eq. (8)) in (a,,a,), and Cg is defined in (a;, a). We do not re-
quire the intercepts of Cy with C¢, which would be denoted (a5 , as) , be-
cause results based on this knowledge are readily obtainable by an artifice
which we shall use in the numerical « integration. These points would be

41bid.
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required if one were to attempt to find a complete analytical expression
for the albedo integral.

We return to the notation of the previous section for discussion of
the major divisions. Viewed from the origin of the (a, ) coordinate
system, boundary curve Cy is a circle whose interior contains the
regions of interest. Curve C¢ is a straight line segment, and Cg,
although an ellipse section tangent to Cy, is indicated as a circular arc
for clarity and ease of drawing., The variously numbered points are
simply numbered in sketches. The sides of C¢ and Cg on which the corre-
sponding integrand factors are positive are indicated by a small arrow,
pointing toward ay on C¢, and toward a = 0 on Cg, or to the "interior"
of these curves. Then the region of interest is just that part of the pat-
tern which is common to the interiors of all three curves,

Case (0,0 By g%’-y, 8 <y C;i
v A - C EU

0<a<am, B0, By T PR
ﬁ:

Case (1, 0k pNg%’-y, Y <8<

]

0<a<2m f=0

Case (2,0: By < g-y

S8 <My 3
8<a<a split v ~
- - 3 = =
and ay < a < 2m) scan B =By b=y %B

AT

a
Case(0,1: 85 <y g-ygpNgg ap 0<a<2m .. .
0<a<2nw ¢t f-0 ¢
B =0 B =y
/[;=Y a al ADF 32 uN
or B = BiCy B = BiCe)
¢ | 0<a<ay ) spit if
ap<a<2m) ftest ap <y
Case (0,2 8 <y 7%<_BN<_7§’+Y
B =y a9 ﬁ’Y
v E[l
B
0

B =By - plcy
ap < a < qq ay < a<lap ) split ay
ay and a9 < @ < 27} scan
2

Fig. 3 Configurations of One and Two Boundary Curves

15
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Cases (0,0), (0,1), (0,2), (1, 0), and (2, 0), shown in Fig, 3, are
largely self-explanatory. Cases (0,1), (0,2), and (2, 0), however, intro-
duce the problem of the "split range''. Although the two orientations shown
in (0,1) and (0, 2) are geometrically equivalent, they are logically distinct
since all intersection values are defined in (0, 2#). For example, in case
(1, 0) when the order of end points is ¢, < ¢, , the C¢ curve is defined in
(a,, @), but when the order is e, < a,, C¢ is defined in the split range
(0, @) and (e, ,27). Thus, the order of end points is essential to the
orderly determination of the range in which « may be during numerical
integration and for the selection of the proper boundaries (é , ﬁA) for a
given a.

The split range is also used in the initiation and advance of a during
numerical integration., If the range is split, « is scanned over the two
parts successively.

Case (1, 1) is the most complicated group of configurations because
the « range is 0, 27 and both C¢ and Cg are present, Fig. 4. Each con-
figuration is labeled by letter referring to the corresponding permutation

Three Boundary Curves

T-v<py<g, v<e<d. Bro, 0gagom
4

14 2
0

‘

=
-

Configuration a Order Boundary Curve for p Notes
A 1234em y ¢ Y 8y
8 1324 y £ @& 8 y
c 1342 y £ & E v
D 2314 £y 8 (&) & =
E 2341 £y ] y &
F 3124 y 6 @®¢& 8 y
G 3142 y 8 @f) £ v
H 3241 £ @t 8 y & ¢
| 3412 y 8 Y 3 Y

Symbo! Meaning
8¢ B = MinlB(Cy), BICEN
y Bey

8 B = picg

3 ﬁ’B(Cg)

* Split Test

Fig. 4 Case (1, 1)

16
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of end points, given in the table at the bottom of the figure. Beside each
permutatlon appears the order of subscripts in the boundary curves from
which ﬂ is to be found. For thls case, the point 8 = 0, lying interior to
the integration region, is also ﬁ 0. Where a double subscript occurs,
we make use of the artifice (preAvmusly mentioned) to determine whether
touse Cg or C¢. Here, when 8 is to be found in a range of a where both
Co and C¢ are defined, we use the ,Cg and C¢ definitions to determine
both values of ,8 i.e., ﬁ(Ce) and B(Cg) ; we then select the least of these
to be B.

We give an example of interpretation of the table of Fig. 4. Select
configuration B. Initiate a at 0, change the value by the (fixed) step
81ze and test a to see when it is in each subsequent range. In (0, a),
B =y;in (a, a), B =BCH. In (a, @), B = mnlp(Co, BCH I ; then

A

in (¢, a), B = B(Cgy). Finally, in (a,, 27), B = y.

Note that in any configuration in which a, < @, , the range test must be
split, as noted earlier.

Case (1, 2) in Fig. 5 has 8 defined by the curve C¢, and, hence, a is
scanned only over the range of definition of C¢; that is, over (a, a,) if
a < au, Or over (0, a,) and (a;, 27) if o, < o, . In the table the symbol [8]
means that we use ﬁ B(Cg) only if it is greater than ﬁ B(C¢); otherwise,
there is no contribution to the integral for the current value of a.

Case (2, 1) in Fig. 6 has ,BV defined by Cg, so a is scanned over (0, a;)
and (e, 27), a split scan, The notation ¢* in the table means that
é = B(C¢) if only BA > ﬁv; otherwise, the current value at o contributes
nothing to the integral.

Finally, case (2, 2) in Fig., 7 has é defined by B8 = v, and we select é
as the greatest of B(C¢) and B(Cg), which is the meaning of the symbol
(6, &) in the table. Note that configuration G illustrates that nonover-
lapping of the ranges of (e, @) and (a,, a,) leads to zero value of the
integral. For case (2, 2) we let a scan only the least of the spans of Cy or
C¢; if this is Cg then the a scan is split, but if C¢ , the « scan may or may
not be split. Notations of split scan test appear on the figures.

This completes the details of the logical procedures for doing the
numerical integration in a. From the tables on the figures, the logic flow
chart in Appendix V was derived; the problem was then programmed for
computer directly from the flow chart. The Fortran listing is shown in
Appendix VI,
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Three Boundary Curves

ig ig T i

if ap <ay, then ap<a<ay ; butifay<ay, g-ygﬁNUir , %r<es<1r-y , B-Bicy
then 0<a< oy and ap<a< 27w

Three Boundary Curves

SplitScan  0< a<ag and o <a< 2w

E ."i"i'.
171
14
4 41
G 5 l
Configuration a Order  Boundary Curvesfor B Notes  Conflguration aOrder  Boundary Curvesforf  Notes
A @1324¢m y - - ® y . A m1234@m v &y - v .
B 1342 - - -y . B 1324 y & - - o
c 2134 -y - - - c 2314 £+ y - - &
D 2314 -y @ - - D 2341 €* vy - v & *
E 2341 -y 2] Yy - E 3124 Y - - - Y *
F 3142 vy @ - -y . F 3142 y - - Er ¥ n
G 3214 - - @® - - G 3214 - - - = - »e
H 3241 - - |y - H 3241 ge - - y £
| 3421 - - -y - | 3412 Y - v '€ v »
Symbol Meaning Symbol Meaning
@ B -picgonlyitB > B, Otherwise € B-BplCgitp>p
No Contribution to Integral Otherwlse No Contribution
- Means No Contribution to Integral *  Split Scan
» Split Scan in « s Identically Zero Integral
Fig. 5 Case (1, 2) Fig. 6 Case (2,1)
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Three Boundary Curves g<BN <7§T+ Y, %’gesgvr-y,ﬁw

o Ranges over Least Span, Covering Range of Cé ifAa < a3,
<

Otherwise over Cg. Span of CgAlways Split 0 < a < a3 and
U4 S o g 2T
34 3]
2
42 4
B C
13 1 3
,\‘27
4 2 4
D E F
2 .3 3 3
N
= = 1 HN1
15 4 4
G H I
Configuration o Order Boundary Curves for p Notes
A (M13240n (€ - - - ((BE .
B 1342 e - - - (g€ .
C 2134 - € - - -
D 2314 - (€ - -
E 3124 8 - - = 9 "
F 3142 (6€) - - - (8¢E) .
G 3214 - - - - - o
H 3241 - - - (88 -
I 3421 - - - (g€ -
Symbol Meaning

(8€) B =Max[B(Cq) BICe]]
* Split Test if a Ranges over Cé
w0 Identically Zero Integral

Fig. 7 Case (2, 2)
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SECTION Vi
CONCLUSIONS

In an attempt to gain computing speed in the evaluation of the albedo
integral, a double integral, the problem has been changed from a straight-
forward numerical integration to a much faster but more complex semi-
numerical integration. For example, whereas formerly the «, 8 range
was covered by a mesh of 72 X 36 points, the present method requires
somewhat more computation per point through a more complex logic net-
work at only 72 points, and the accuracy is improved by the formal first
integration. The time improvement is approximately one order of
magnitude.

In application, a particular Mark I control program formerly required
from 25 to 35 min (IBM 7074) to generate simulation parameters for a
90-min orbit with a simulation interval of two minutes. The same results
are now produced in approximately four minutes,

It appears unlikely that significant gains in computing speeds can be
made by using a purely formal solution to this problem. Second integrals
will contain many more terms, some quite complex, and much of the gains
made by having a single evaluation to perform will be lost in the sheer
bulk of the expressions involved. Most of the logic of the present method
would still apply for selecting integration limits and function groups to be
evaluated. Some gain may result in changing the variable of first integra-
tion, and this will be studied in the future. It may also be possible to
develop rapidly computing empirical approximating functions, especially
over limited ranges of the integral parameters.
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APPENDIX |
DERIVATION OF THE ALBEDO INTEGRAL

In the following discussion, the albedo source body is taken to be
the earth, Substitution of appropriate values for radius, albedo, and
solar constant allows extension to any source body.

To compute earth albedo and radiance integrals for a surface element
having arbitrary orientation and position, we make the following assump-
tions:
that Albedo is a uniform property of the earth's surface,

that the earth is a sphere,

that the earth's surface is diffusely reflecting, and

B W N -

that the earth has no atmosphere.

I, Solar constant, intensity of solar radiation at earth

A, Albedo, fraction of solar constant reflected, a
surface property,

The solar radiation incident on an area element AA, having its normal
inclined at angle ¢, to sun direction is

A {IS cos G AA, for cos 6, 2 0
I =
© 0 for cos 8, < 0

Of this a fraction Ae is reflected diffusely by AA,; hence, the intensity
per unit solid angle ALy, in a direction inclined at angle ¢ to the surface
normal is

Ag I
7

AII/[ = cos 0e cos Y AA,

The intensity included in solid angle Ao is

A, 1

Aly = ; cos Be cos ¥ AA, Aw

An area element AA,, at distance p, from AA,, having its normal
inclined at angle ¢ to the direction of p,, intercepts a solid angle
(Fig. 1-1).

AA, cos &

2

Pe

Ao
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Hence the intensity arriving at AA, is

A 1
Al = 7: P's, cos O cos iy cos & AA, AA,

8

Area ElementAA;
as Seen from.AAg
in Terms of @ and B

dA =p2sinB da dp
AAy =g sin ¢, da dg

e dA 4AAlcos Yy
2",
pcsin Bdadp
M1 cosyY

Solid Angle atAA,
Subtended by ARy

Having Normal

Inclined at € to
Direction between

AA, and AA, at Distancep

Fig. I-1 Salid Angle Geametry far Albeda and Earth Radiance Calculatian

Let the area element AA, be located at altitude h above earth of
radius r, . From this point, the portion of the earth that can be seen is
confined within a horizon circle, The angle y between the direction of
earth center and the horizon circle is defined by

siny = l.e/(re +h) (O<)’< %)

At the earth center, let ¢, be the angle between the direction to
AA, and the sun direction; let' 6. be the angle between the area element

AA; on earth and the sun; let ¢_ be the angle between the directions of
AA, and AA,,
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X=rgsiny=(rg +h)sin p

sin B
Horizon Line r /(r h)
B=y - sm
siny = sin Y
Yy=p+¢

To Sun

/

Earth Surface
Radius Fe

B¢
siny =rgllrg +h)
cos B, =cos § cos B + sin g sin es cos a

siny =sin B/siny
Y =B +g,

Fig. 12 Coordinate Relations for Albedo and Earth Radiance Calculation

At the element AA,. ¢ is the angle between the normal to A, and the
direction of AA, as before.

At the element AA,, let B be the angle between the direction to earth

center and AA,,

Angle B is a "nadir' angle.

Then the following relations hold (Fig. I-2):

v = B+
siny = sin B8/siny

cos @ = cos 0 cos + sin O sing, cos a

where a is the angle about the line from AA, to earth center measured
from the plane including this line and the sun. Angle a is the azimuth
angle (Fig. I-3).
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Now the element AA, is described in spherical coordinates having
polar axis along the earth-to- AA, line, longitude «, and co-latitude &,:

AA, = r,*sin ¢, d a d &,

The a, B Coordinate System at AA,

to Horizon
Circle on
Earth
toAA
Normal toAA, b 1
to Earth
B=0
3
B cos € = cosBcosPy + sinBsinycos(a-ay)
BN
a-ay

Fig. 1-3 Albedo-Radiance Integration Coordinates

Similarly, we may describe a spherical area element in terms of
a, B, and p, from AA,:

AAp = pe2 sinB dB da
Hence any point may be described by either (., ¢,, a) or (p,, 8, a)
at AA,, and we find that AA, and AA, are related by simple projective
properties:
AA, cos ¢y = AAp
so that

AA, = pe® sinf8 dfB da
COS(/,
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We may now write the intensity at AA, caused by reflection from AA,:

Al Ag I cos & pe’ sin 3
B s U e
A, 7 cos O cos ¢ P con § da d8

Aol
= * 2 cosf, cos & sinB dBda

v

Integrating over the interior of the horizon circle, we obtain

[ A I 'y amax

Ai\z eﬂs j;g:o j(;min cos O, (d,B, 0., y) cos £ sinf8 dBda
where anmin» apax may be functions of 8, and there may be several distinct
regions or functions.

(AA,, 0,7, 8 =

In the spherical coordinates a, B8, any orientation of surface ele-
ment may be described by the direction angles of its normal, ay, gy
Then the angle ¢ is found from

cos £ = cos B cos BN + sin B8 sin BN cos (a —aNn)

i

Since 0, Y ~ B, and siny = sin B/siny
cos 0 = sin ¢ (cos O sin B + sin O, cos 8 cos a)
+ cos ¢ (cos O cos B — sin 05 sin B cos a)

The intensity integrand is completely expressible in the two variables
a, B, and the configuration parameters 6., y, an, BN -

At this stage it is possible to integrate numerically by letting « range
from 0 to 27 and B range from 0 to 7, provided that

cos c’fz 0
cos 0, > 0
cos Y > 0

and using (=0) for any (a,8) violating these conditions.

Ignoring for the moment the constant Ag'I,/#, we have the following
terms to be integrated over « and S:

1. cos BN cos fg cos’ B sin B cosy
2, — cos BN sin 95 cos B sin* B cos ¢ cos a
3. cos BN cos 05 cos B sin* B sin ¢
4.  cos BN sin 6, cos* 8 sin B sin Y cos a
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5. sin BN cosf cosan sin' B cos B cosy cos a
6. sin BN cos 6, sin ay sin’f8 cos B cosy sin g
7. ~sin BN sin 6 cos ay sin’ cos Yy cos’a
8, ~sin BN sin 6 sin ay sin’ cos ¢y sin a cosa
9. sin By cos 6, cos ay sin’ sin ¥ cos a
10.  sin BN cos 6§, sin ay sin® 3 sin sin a

s

W

11.  sin BN sin 6, cosany sin® 8 cos B sin ¢y cos’a
12.  sin BN sin 6, sin ay sin® 8 cos B8 sin ¢ sin a cosa
Note: siny = sin B/siny

As long as there are no boundaries of earth surface for which
a = a(pB),s0 that a can range from 0 to 27, we may integrate relative to
« and obtain simple results. Integrals (1, 3) do not contain « so the
integration results in a factor 2». Integrals (2, 4, 5, 6, 8, 9, 10, 12)
contain only sina or cos e and vanish, Integrals (7, 11) contain cos’

or cosa sina and result in a factor of «.

These conditions are satisfied as long as we have both

=Y

™
=z
IN

no \:l

cos 0, are violated and the entire integral (I,/AA,) vanishes.

If Bx 2 7/2 + y or 6, 2 » - v,the earlier conditions on cos ¢ or

For -y < BN < T ory

and/or y < 0, < m~y

there exist boundaries of form «(g8), and the integration becomes com-
plicated. The integration is bounded by arcs of one, two, or three
curves of «(fB), whose intersections are generally given by implicit
functions. A first integration may be done formally; expressions result
for which the integrals are not available in closed form,

Numerical integration may be accomplished in an easily compre-
hended manner by referring to the earlier integral expression. The
product cos ¢ cos 6, sin 8 may be calculated term by term, and in addi-
tion, the expression cos ¢ can be evaluated to ensure that the conditions

cos &

cos 4 20
e

cos

are satisfied. For some value combinations of ay, By, ¢s the integra-
tions can be carried out.
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APPENDIX 1I
FIRST INTEGRATION IN NADIR ANGLE 3

Table II-I displays the twelve possible integrands, with their param-
eter coefficients. The last eight of these may be grouped in pairs and
combined by use of the identity

cos @ cos ay + sina sinay = cos (a ~ aN)

Further grouping can then be performed based on the formal similarity
of integrands. We use the numbering of Table II-I to identify integrands
and the following definitions of parameter functions.

A, = sin By sin 0  cos a cos (a- aN)
A, = cos By cos 0

A; = sin By cos 6, cos (a- aN)

A, = cos By sin O cos a

W) A, feos’g sing (1 - sin® B /sin’ y) 2 48
(@) —A, fcos,e sin’ B (1 — sinzﬁ/sinzy)l/z dB
3) A, fcos,e (sin’ B/siny) dB
@) A, fcos’ B (sin'B/siny) df
(,6) A, fcos,e sin B (1 - sin® B/ sin’ y) 4B
(7, 8) =A, fsinsﬁ a - sinzﬁ/sinzy)l/" B
(9,100 A, f(sin‘,e/siny) B

(11, 12) A, fcosﬁ (sinsﬁ/,sin y) dB
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28

10.
11.
12.

O 00N o VAR WD

TABLE Hl-1

INTEGRAND FORMS FOR ALBEDO

coS BN cos 6
-C0S BN sin 6
cos By cos 6
coS BN sin 6
sin By cos 6
sin By cos 6
=sin By sin 6
-sin By sin 6
sin By cos 8
sin By cos 65
sin By sin B
sin BN sin GS
Note:

cosZB sin B cos Y
cos B sinZB cos Y cos
cos P sinZB siny
coszﬁ sin B sinWy cos «a

cos Oy sinZB cos B cos Y cos «
sin o sinZB cos P cosy sin «
COS O sin3B cos Y cos2 a
sin ay sin3B cos Y sin o cos a
€os Oy sin3 B siny cos «
sin o sin3B siny sin a

cos ay sinZB cos P siny cosza
sin o sin’ B cos B siny sin a cosa

siny =sinB/siny
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Regrouping for formal similarity
1,7, 8) (A, + A)) fcoszﬁ (1 - sinzﬁ/sin2 y)l/2 sin 8 df

- A, f (1 - sinzﬁ/sinzy)l/2 sin 8 dB
: . 2 . 2 NN
@, 5, 6) (A, - A)) fsm B (1 - sin” B/sin )™ cos B dB
(3,11,12) (A, + A,) f(sinaﬁ/sin y) cos B dB

4,9,100 A, [ (sin B/siny) dB + (A, = A,) [ (sin' B/siny) dB

We proceed to integrate, first making the following substitutions
@, 7, 8) Let
sin y = G cosy = B cos B = x
and note that
siny - sin” 8 = cos’ B — cos’y

sin 8 df = ~d cos B = ~dx
Then we obtain

(A+A1) 2, 2 2.4 A 2 2.\ %
~—-—2—G——fx(x -—B)zdx+——é—f(x - B")? dx

3 2 4 1

R B SR S (x + (¢ =B |
A x 2 2. Y B2 2 21/z]
e [T B s Sl e (OB

_ (A, +Ay) x 2 o2\

i S S

A A+ A B2 2 2.4 2 2 2. %
Rt S RIS SLE N CRCEY 1)

Finally
(1, 7, 8 Tl(;_{[zA’ ~ % (A, + Az)Bz] [x (x* —- Ba)l/2 - B In (x + (x° ~ Bz)l/z):l

S (A 4 A x (X = 32)3/2}

29



AEDC-TR-65-202

2,5, 6) Let
siny = G sin 8 =y cos ¢ = z
where
sin ¥y = sin 8/siny
and note

cos B d3 = d sin B = dy
Then we obtain
(A; ~ A) ’
e R) 6 -y

2

- 3 1
_ (A3G A,) [“%(Gz VN 08 {y(Gz__ AV s 6 e

A “Aa 2 a/ Gz 2 13
s [ e i ]
_ _A_l[ s - -L(z+G¢>]G’

1G y 3 y

(3,11, 12) Let

G = siny
then
sin3B cos d (A, +A,)
(Az + A‘) f sinyB B = 2401 Sm4B
4, 9, 10) Let
G = siny
then

A—G‘fsinzﬁ 18 + ————(A="CA4) fsin'p ap

_ AG4 I:% (B -~ sin B cosﬁ)]

(As";;A4) [_ sin B4cosﬁ + % {% (B - sin B cos B)}]

= 4_10!:(A4 - A;) sinaﬁ cos f3

+ ~21— (A, + 3A,)(B =~ sin B cos B)]
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Now all groups have a common factor 1/(4G); this factor is ignored
in practice until final calculation of the albedo view factor, which is
the calculated value of the integral multiplied by

1/(4 7 siny)

The actual albedo illumination intensity is then gotten by multiplying
by the albedo A and solar constant Is.
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APPENDIX I
INTERIOR INTERSECTIONS OF BOUNDARY CURVES

Intercepts of Cy with C¢ are defined by the system of equations

cos a = ~ 1/(tan 65 tan ) (111-1)
cos (a=ay) = ~ 1/(tan By tan B) (111-2)
with the conditions
¢ =¥ =B (111-3)
sin ¢y = sin B/siny (I11-4)

thus all four parameters 6s, y, ay, and By are involved. From the condi-
tions of Egs. (I1I-3) and (I11-4) we derive the relation

sin ¢, sin y _
tan B = Ty ces b (111-5)

We expand the left side of Eq. (I1I-2) and use Eq, (I1I1I-5) on the right of
Eqg. (I1I1I-2) to obtain

C cosa + S sina = (G cos b, 1)/BG sin ¢, (111-6)
where
B = tanBN
C =cosay, G =siny, S = sinay
Let
T = tan fg

and substitute Eq. (III-1) on the left of Eq. (III-6) to obtain
C cos c 2 1/2 cos -
_ _—‘_qf)_e .S (1 _ os (;Se > _ Gco (;,')e 1

T sin (;,')e BG sin (;Se

Now write the middle term as

1 1/
_ S 2, 2 _ 2 A _ g ‘N 2 2 A
Tsind sin g, (T sin” ¢, cos <if>e) T d Y [T (T + 1) cos ¢e:|

and factor out sin ¢, assuming ¢_# 0. Isolate the radical on the left side
and obtain, by squaring and rearranging,

G LB +1)(T"+1) ~ (1-BCT) ] cos ¢, = 2T (BC+T) G cos ¢, + T* (1-S'B'G’) = 0
(111-7)
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Solving this quadratic for cos ¢ e, we find

(BC+T) + {(BC+T)Y = [(B*+1)(T*+1) — (1-13(:1‘)’](1—5’13’02)}l/2
(B2+1)(T*+1) - (1 - BCcT)

T
cos g, = — -
G

(111-8)

From these two () values of cos ¢, we may find corresponding values for
sin ‘¢, noting that ¢, < ’2'— - v always, by definition. Use the values of
cos ¢, | sin ¢, in Eq. (III-5) to obtain two corresponding values of tanf,
hence B, noting that for this purpose 8 < y. At the same time, Eq. (III-1)
allows evaluation of the two values of ¢, and the intersection points for

C¢ and G¢ can be found. These points are labeled (o , B;) and (a;, Bs) -

Now the discriminant of Eq. (III-8) provides indications of the
presence of two, one, or no intersections of Cy and C¢.

From the fact that (a; , a;) contains « values of intersection for two
curves defined between both pairs (e, , o) and (a;, «,), of necessity
(as , a5) values lie inside both ranges (q,, @) and (q,, «,). That is,
(as , @) values are within the « ranges of definition which are common to
both C¢ and Cg. This is the region where, in practice, we may compute
both g(Cy) and B(C¢) to select which shall be used. In this way we avoid
calculation of (a; , ) and avoid further complication of the selection
logic.

33



AEDC-TR-65-202

APPENDIX IV
TRANSFORMATIONS FOR 3,% e, AND ¢

Transformations for ¢, ¢., and 8 are based on the relations

¥
sin ¢
F

¢ + B

sin B/sin y

1
(1 + sinzy ~ 2siny cos (f)e)/z

The transformations are

sin ¢ = sin §/siny = sing_/F
cos § = (sin’y = sin® B)%/sin y
= (cos b, — siny)/F
sin B = siny sin¢/F = siny sin g
cos B = (1 - siny cos ¢)/F = (1 - sin’y sinzl)b)l/z
sin g, = [cos B ~ (sin’y — sin® §)% | sin B/siny
= siny [(1 = siny sin’ )% = siny cos ¢ |
cos b, = [sin’ B + cos B (sin’y — sin® B)%]/siny
= cos iy (1 ~ sin’y sin2¢)1/2 + siny sin’ ¢

tan ¢y = sinﬁ/(sinzy - sinzﬁ)l/2 = sin ¢, /(cos ¢, — siny)

sin y sin qj
(1 - sin’ y sin’ ¢)1/2

tan 8 = siny sin $/(1 - siny cos ¢,) =

sin 3
lcos B - (sinzy—‘sinzﬁ)l/?] !

[sin2ﬁ+cos‘3 (sinzy—sinzﬁ)l/z]

tan qSe =

[(l—sinzy Sinzl/})l/z — siny cos 1/;]
[cosl/;(l—sinzy sinzl/;)l/z + siny sinzl/;]
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APPENDIX V
FLOW CHART
FOR
SUBROUTINE ALBEDO (ALBDO)
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APPENDIX V
FLOW CHART FOR COMPUTER PROGRAM

Fc-1

‘ Case Select In 8 )

\ 4
K=1 K=2
Gg=m Calc. ®
ag=m a3, 04
—p G—

C To Case Select in By ) Q Ecnpseéa':?aﬁl?do‘;I‘ypla”?t )

oy g )
S

ag= 2w~ as

Subroutine "ALBDO' Arguments:
uNr BN: es:Y; ba
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FC-2

( Case Selectin Py )

A;
| <4
K=K+3 K=K+6
A 4 :‘
gp=an+T Calc, *
02=0N“1T Ql,az
> —4

= . Topside, No Albedo, )
C To a Adjust, Case Switch ) ( No Planet Radiance

sAa = Tagipl (1
2 o0 (tan ﬁNtany)

ay - aN+Aa
ay = ay -Aa
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-

c-3

Adjustaj, apto
Range 0, 27

From @

{UE} il
+*
0
A 4
oy -ay-2m Gy = ag +2m
( Case Switch )
Topside
0,2 1,2 22 -“
1 8 9
01 ) 11 21 | &
4 5 6] S
11
0,0 Lo 2,0 )
K=1 2 3
0 Y 72 -y W 2,1
-
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@ FC-4
Case 0, 0

Call
Subroutine
BDI

< i

Subroutine BDI, with Arguments a, ap, \[;, B, Y, B Sum, ba
Evaluates the First Integral Between ﬁ, B
Adding Results to Sum, Advancing a by da

40



AEDC-TR-65-202

) FC-5

a=6a/2

C Case 0,1

p=0
alim=2nm

@ =alim)

N

Call
Subroutine

XI() Py

Call
Subroutine
BDJ

Subroutine CXI, Arguments a, ay, BN
Evaluates B on the Curve Cg(u, B)
defined by

cos (a - ap) o=r -ctn B ctn By

- -l T -1
P = tan [tanBNcos(u-uN)]
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< Case 0, 2

42

( Is Range Split? )

) FC-6
By
as= (12 + 8a/f2
Yes No
|
a=06a2 |—
a llm =2m alim = a;
K=1 K=2
b—+«¢
(o -alim % b—
Cali
A Subroutjne K= 1
CX1 (B)
i 2
Call Y
Subroutine
BDI
4 Exit




AEDC-TR-65-202

Case 1, 0
P
FC-3

g-ba/Z
p=0
alim=27

(a = a lim)

[0'33}{0'04}

Call A
Subroutine B=Y
THET (B)
|
Call
Subroutine
BDI

Subroutine CTH, Arguments a, 8 ¥
Evaluates B on the Curve Cgla, B)
defined by the Set of Equations
cos a = - ctn 65 ctn ¢
g=V-p
sin ¥ = sin B/sin y
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C Case 2, 0 ) | FC-8

K=1

a=06a/f2
ulim=u3

B=vy

K=2

a=ag4+ a2 ——

alim=2w

(a-alim §

Call
Subroutine
THET (B)

v 2

Call
Subroutine
BD1
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B-0
a=0al2 FC-10
a lim =27
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From
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Range Tests
CE‘ |

6 la-gqa-ay)

FCc-11

From P-FC-10

la-aq)la-ay)

{a-aia-ag a
la-apta-ay g

0 la-aylla-ay
! 1 4 la-agla-ay

UL

1
T

(LECPULEEY

(a-g lllﬂ'ﬂ 2’ X

ta-aslia- ayl

lo-ayHa-ay a

{o-a)la-ay

(a-agla-ay)

{a-agho-as}

SO0
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From P-FC-11
K=4 K=2 K=3
Call Call s
Subroutine Subroutine B=y
THET (B) X1 (B}
a
4

ﬁ]'ﬁ

Call

Subroutine
BDI

-

To P-FC-10




Case 1,2 ) FC-13
P
FC-3
alim=ay
a lim =27 =
Is Range Split?
Yes
K=1 K=2
a=bal2 o = gp + baf2
v
| 4
kA 4
Call n
Subroutine B=y

THET (B
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Call
Subroutine
X1 (8)

Call
Subroutine
BDI
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C

Case 2,1

a lim =03
a = 6al?2

FC-14

(ala - aj)

(a-alim ¢F

K=2
a lim =27
=ay+8af2

Call
Subroutine
X1 (@)

Call
S ubrout\ine
THET (8)

Call
Subroutine
BDI
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Case 2,2

alim=a

Is Range Split?

&

K=1
a=06ai?

a Iim-a3

(a - alim)

Call

as= ﬂz‘i‘ baj2

a=ay+bal2

#._1

a=ap+bal2
alim=ag
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Subroutine
THET (B)
a lim=2m
K=2
Call x (@, -y
3 Subroutine . + A
v XIBy) 0
B =P
4
|
call a=ay+bal2 a=ay+bal2
Subroutine
BDI
¢ <4 <
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APPENDIX VI
FORTRAN LISTINGS
SUBROUTINE ALBDO

SUBROUTINE BDI
SUBROUTINE XI
SUBROUTINE THET
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SUBROUTiNE ALBDO{(SUMsBETANsGAMs ALNs THETSs DALS s SGAM s CGAMs STHSs CTHS »
SBN.CBN)

1 PY = 3.1415927
PY2= 1.,5707963
EP = .,000001
2 SUM = 0,
START THETA SEARCH
IF(THETS —-GAM)40U+401,401
400 AL3 = PY
AL4 = PY
K =1
GO TO 408 .
401 IE({THETS =PY2 14024025405
402 K =2
GO TO 407
405 IF(THETS —-PY +GAM )406+575,575
406 K=3
407 CAL3 = =SGAM * CTHS/(CGAM * STHS)
AL3 = PY2 - ASINF(CAL3) —
AL4 = 2% PY - AL3
START BETA SEARCH
408 IF(BETAN — PY2 + GAM )4095409+410
4G9 ALl = ALN + PY,
AL2 = ALN - PY
GO TO 417
410 IF(BETAN = PY2)411+411+414
411 K=K+3
GO TO 416
414 IF(BETAN - PY2 =GAM)415,575,575
415 K = K+6
416 CDAL_= -CGAM * CBN/ (SGAM_* SBN)
DAL = PY2 -~ ASINF{CDAL)
AL1-~= ALN + DAL
ALZ2 -= ALN - DAL
417 IF(ALL - 2+ % PY)41944194418
418 AL1 = ALl - 2. * PY
419 IF( AL2 )420,421,42]
420 AL2 = ALZ2 + 2% PY
421 GG=K _
GO TO(422+4415447,+4255452+5205434+5005540) 9K
i START CASE 0-0
422 ALPHA = 5 % DALS
BMIN = O
BMAX = GAM
ALIM = 2+ % pY
423 IF(ALPHA = ALIM )4244575,575
424 - CALL BDI(SUMsALPHASDALSsALNsBMAX sBMINsSGAMsCGAMsSTHSsCTHS s SBNsCBN)
GO TO 423
START CASE 0-1
425 ALPHA =.5 * DALS
BMIN = 0.
ALIM = 2% PY
426 IF(ALPHA —ALIM)427+5755575
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427 IF(ALL = AL2)4285428+429
428 IF((ALPHA —AL1)*(ALPHA -AL2))432+431,431
429 IF(ALPHA * (ALPHA —AL2))43254305430
430 IF((ALPHA —AL1)*(ALPHA -2.%PY ))432+4319431
431 BMAX = GAM
GO TO 433
432 CALL XI(BMAX3sSBNsCBNsALNsALPHA)
433 CALL BDI(SUM,ALPHAaDALSyALN,BMAXyBMINaSGAMyCGAMySTHSyCTHSgSBN,CBN)
GO_TO 426,
C START CASE 0-2
434 BMAX = GAM
ALPHA = AL2 + 5 * DALS
IF(AL1 ~AL2)435,436,436
435 K =1
ALIM = 2 * PY
GO TO 437
436 K = 2
ALIM = ALl
437 IF(ALPHA = ALIM)440,438,438
438 IF(K=1)439+439,575
439 ALPHA = «5 % DALS
GO TO 436
440  CALL XI(BMINsSBNsCBNsALNALPHA)
CALL BDI(SUM,ALPHA:DALoy LNsBMAX s BMIN»SGAM» CGAM s STHS»CTHS s SBNsCBN)
GO TO 437 o -
c START CASE 1-0 o
441 ALPHA = «5 % DALS e
BMIN = O
 ALIM = 2.% PY
442 IF(ALPHA = ALIM)443457545575 N
443 IF( (ALPHA=AL3) #*(ALPHA-AL4) 444 34454445
444 CALL THET(BMAXsSTHSsCTHS » SGAMsALPHA) N
GO TO 446
445 BMAX = GAM
446 CALL BDI(SUMs ALPHAsDALSsALNsBMAXsBMINISGAMsCGAMsSTHSsCTHSsSBNCBN)
GO TO 442 o
C START CASE 2-0
4L47 K=1 B o T N T T
ALPHA = «5 % DALS
ALIM = AL3
BMAX = GAM ) B
448 IF(ALPHA - ALIM)449,45045450 T T
449  CALL THET(BMINsSTHS,CTHS sSGAMsALPHA)
CALL BDI(SUMsALPHASDALSsALNIBMAX sBMINsSGAMsCGAMsSTHS sCTHSySBNCBN)
GO TO 448
450 IF(K-11451+451+575
__ 451 . K=2 S S o B o
ALPHA = AL4 + «5 * DALS T )
ALIM = 2e* PY
GO TO 448
C START CASE 1-1
452 BMIN = O
ALPHA = +5%DALS
ALIM = 2¢%PY .
453 IF(ALPHA —ALIM)45455755575



START CASE 1-2
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454 IF(ALL -AL2)4655455,455
455 IF(ALL -AL&) 46254625456
456.  IF(AL2-AL3)460 4605457
457 IF((ALPHA =AL3)%(ALPHA —AL1))45856025602
458 IF( (ALPHA —AL2)%*(ALPHA -AL4))601+6015459
459 IF(ALPHA =AL2)6C456035603
460 IF((ALPHA =AL2)%(ALPHA —=AL1))461,602+602
461 IF((ALPHA =AL3)%*(ALPHA-AL%4))6G15603,603
462 IF((ALPHA =AL2)*(ALPHA=AL4))463+6025602
463 IF((ALPHA —AL3)%(ALPHA -AL1))601,601s464
454 IF (ALPHA —AL3)60355035604
465 IF(ALL -AL3)47654665466
466 IF(ALL -AL4) 46754735473
467 IF(AL2 —AL4)471+468,468
468 IF((ALPHA —AL3)%(ALPHA -AL2))469+6035603
469 IF((ALPHA —AL1)%(ALPHA -AL4))604 6045470
4710 IF (ALPHA =AL1)601,6025602 :
471 IF((ALPHA =AL3)%(ALPHA —AL4))472,603603
472 IF((ALPHA =AL1)#*(ALPHA =AL2))6015601s604
473 IF((ALPHA =AL3)¥*(ALPHA -AL2))474,6035603
474  IF((ALPHA —AL&)%(ALPHA -AL1))60356035475
475 TF(ALPHA -AL4)60156025602
476 IF(AL2 —-AL3)483 483,477
477 IF(AL2 -AL4)4785478,5481
478 IF( (ALPHA —AL1)*(ALPHA =AL4))47956035603
473 IF((ALPHA =AL3)%(ALPHA —AL2))60454805480
480 IF(ALPHA ~AL3)602,602,601 .
481 IF((ALPHA —AL1)* (ALPHA —AL2))482+6035603
482 IF((ALPHA —-AL3)%(ALPHA =AL4))6046025602
483 IF({(ALPHA —AL1)%(ALPHA ~AL4))484+6035603
484 IF((ALPHA =AL2)*(ALPHA —AL3))603+6035485
485 IF (ALPHA =AL2)6025602+601
603 K=3
BMAX = GAM
GO TO 491
601 =1
GO TO 486
604 K =4
486 CALL_ THET (BMAXsSTHS s CTHS s SGAMs ALPHA )
IF(K=4)491,4875491
487 Bl= BMAX
GO TO 488
602 K=2
488 CALL XI(BMAXsSBNsCEBN»ALN,ALPHA)
o IF(K=4)4515489,491
489 IF(BMAX -B1)491+491,490
490 BMAX = Bl
491 CALL BDI(SUMsALPHA»DALSsALN sBMAX »BMIN»SGAMsCGAMsSTHSs CTHS s SBN sCBN)
GO TO 453
C
_ 500 ALIM = AL R
IF(AL] -AL2)5015501,502
501 K =1
ALPHA = +5 %DALS
GO TO 503
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502 K =2
ALPHA =AL2 + «5% DALS
503 _IF(ALPHA -ALIM)506,504,504
504 IF(K<1)505,505,575
505 ALIM = 2. * PY
GO TO 502
5C6 IF((ALPHA —AL3)#*(ALPHA —AL4))508+5075507
507 BMAX = GAM
e GO_TO.509 » u
508 CALL THET(BMAX,STHSCTHSsSGAMsALPHA)
509 CALL XI(BMIN,SBN»CBNysALNsALPHA)
CALL BDI(SUMyALPHADALS,ALNsBMAXsBMINSGAMsCGAM,STHS,CTHS » SBNCBN)
GO TO 503
C START CASE 2-1
._.520 K =1 .
ALIM =AL3 )
ALPHA = +5 % DALS
521 IF(ALPHA —ALIM)524+522,522
522 IF(K-115235523,575
523 K =2
ALIM = 2. % PY .
ALPHA = AL% + JB*DALS -
GO TO 521
524 IF(AL1 =AL2)525,525,526
525 IF((ALPHA —AL1)*(ALPHA =AL2))529+528528
526 IF(ALPHA *({ALPHA =AL2))529,529,527
_227 IF({ALPHAT AL1)#*(ALPHA -2.%PY))52915289528
528 BMAX = GAM
GO TO 530
529 CALL XI{BMAXsSBNsCBNjsALNsALPHA)
530 CALL THET(BMIN,STHS,»CTHSs SGAM»ALPHA) ] N
CALL BDI(SUM,ALPHAsDALS,ALNsBMAXsBMIN»SGAMsCGAMsSTHSCTHS s SBNsCBN)
GO TO 521 N
c START CASE 2-2
540 BMAX = GAM
IF(ALL =AL2)541,545,545
541 K =1

ALPHA = +5 ¥DALS
IF(AL1 —AL3)542,542,543

547 ALIM = ALl
GC TO 553
543 ALIM = AL3
IF(AL2 —-AL4)5444553,553
544 K =3
- GO TO 553 .
545 K =2 o ‘_‘
IF(AL1 —AL3)55155515546
546 IF(AL1— AL4)547+5475549
547 IF(AL2 -AL3)548,575,575
548 ALPHA = AL2 +.5% DALS
—— ALIM = AL
GO TO 553
549 IF(AL2 —AL4)5504555Us551
550 ALPHA = AL4 ++5% DALS
GO TO 552
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551 ALPHA = AL2 + o5 *DALS

552 ALIM = AL1

553  IF(ALPHA ~ALIM)558,554,554

554 IF(K=2)5555575,555

555 ALIM = 24% Py
K =2
IF(AL2 -AL4)55695575557

556 ALPHA = AL4 + J5%DALS
GO TO 553

557 ALPHA = AL2 + .5 *DALS
GO TO 553

558 CALL THET(BMINsSTHS»CTHS » SGAMsALPHA )
IF(K-3)559,5615559

559 CALL XI(B1 »S8BNsCENsALNsALPHA)
IF(B1 =BMIN)5615561,560

560 BMIN = Bl

561 CALL BDI(SUM,ALPHASDALSsALNsBMAXsBMINSSGAMyCGAMsSTHS s CTHS s SBN»CBN)
GO TO 553

575 SUM = SUM ¥ DALS / (SGAM ¥4, * PY)
IF(SUM = 400C01)5765577,577

576 SUM = L.

577 BETAN = GG
RETURN
END
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2

SURROUTINE BDI(SUMsALPHA sDALSsALPHN s BMAXsBMINs SGAM>CGAM» STHS s CTHS
SBETN,CBETN)

IF(EMIN —RMAX)13292

CALPD = COSRF(ALPHA =ALPHN)
CALPH = COSRF(ALPHA)
CBMAX = COSRF(BMAX)
SBMAX = SINRF(BMAX)
__CBMIN = COSRF(BMIN)
SBMIN = SINRF(BMIN)

ARGl = 1.=-(SBMAX *SBMAX)/(SGAM * SGAM)
ARG2 = 1.-(SBMIN ¥SBMIN)/(SGAM * SGAM)
IF(ARG1)35354
CPMAX =0o

GO TO 5

CPMAX = SQRTF(ARG1)
IF(ARG2169657
CPMIN =0.

GO TO 8

CPMIN = SQRTF(ARG2)
ARG3 =1. —CPMAX *CPMAX

T ARGH =1. —CPMIN ¥CPMIN

IF (ARG3) 959510

PMAX =U.

GO TO 11

PMAX = ASINF(SQRTF(ARG3))
IF(ARG4)12912513

PMIN =0.

GO TO 14 .

PMIN = ASINF{SQRTF(ARG4))

FE1 SBETN% STHS * CALPH * CALPD
FE2 CBETN % CTHS

FE3 SBETN % CTHS % CALPD

3

FE4 CRETN ¥ STHS ¥ CALPH
S1 =(2e% FE1 —5%( FE1 + FE2)% CGAM¥CGAM )* (SGAM* (CBMAX *CPMAX

- CBMIN ¥CPMIN ) — CGAM ¥CGAM * LOGF(( CBMAX+ SGAM* CPMAX)/( CBMIN
+ SGAM * CPMIN))) — (FE2 + FEl) *SGAM*SGAMXSGAM * (CBMAX* CPMAX*
CPMAX #CPMAX - CBMIN % CPMIN * CPMIN * CPMIN)

S2 =(FE4 -FE3)* (SBMAX%* CPMAX *CPMAX *CPMAX - SBMIN * CPMIN *CPMIN

N

¥CPMIN —-+5 * ( SBMAX ¥CPMAX —- SBMIN *CPMIN +SGAM #(PMAX -PMIN)))
*¥SGAM#SGAM*¥SGAM e
53 =(FE2 +FE1)* ( SBMAX*¥4 - SBMIN*%*4 )

St = (45 %FE4+ 1.5 *FE3)%¥(BMAX =BMIN -SBMAX ®CBMAX +SBMIN *CBMIN

) +(FE4 —FE3)*(SBMAX*SBMAX *SBMAX *CBMAX —SBMIN*SBMIN*SBMIN*CBMIN)
DSUM = 81 +82 +S53 +54

2

SUM = SUM + DSUM
ALPHA = ALPHA + DALS
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SUBROUTINE XI(BsSBNsCBNyANsAL)
B = 0.

TB = -CBN / (SBN ¥ COSRF(AL - AN})
B = ATANFI(TB)

RETURN

END

SUBROUTINE THET(BsSTHS»CTHS s SGAMsAL)
FF = =CTHS / (STHS * COSRF(AL))

B = 0.

B = ATANF(FE)

FE = SINRF(B)/(COSRF(B)}-SGAM)
FE = ATANF(FE)

B = FE -8B

RETURN

END
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