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PROPAGATION OF SOUND

IN A REACTING GAS MIXTURE NEAR EQUILIBRIUMt

by

Joseph J. Roseman and Vito D. Agosta

Polytechnic Institute of Brooklyn, Brooklyn, New York

ABSTRACT

In a reacting gas mixture the frozen sound speed, af, is
app, S, yw

af2=(6j S, y. while the equilibrium sound speed, ae, is given by

a2 = ( P p ' S' Yie (P' S;
ae P S" The expressions for the two sound speeds are not equal,

indicating a discontinuity as the reaction rate approaches infinity. In this report

the one-dimensional propagation of sound and the significance of the two sound

speeds is examined in detail for the case of a gas mixture at or near equilibrium,

consisting of gases which obey the ideal gas law and Dalton' s law of partial pres-

sures and which have all their degrees of freedom fully excited. The significant

results obtained are summarized below:

1) The movement of a pressure perturbation, 8P, is characterized by
I ~~... o8 [ 1 p)a(p a I (6P) (6P)]

1 2 2  + a a ) =0 , which is used

a 2  8t 2  ax 2 r ax
e r r f r r
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to explain the physical meaning of the two sound speeds. a and afSe

2) For an instantaneous reaction, the state and composition variables are

shown to be representable as solutions of the characteristic differential equations

and as step functions, and the rate of reaction as an impulse function.

3) Explicit expressions are obtained for ae and af in terms of the

equilibrium state and composition variables.

NOMENCLATURE

a speed of sound of nonreacting medium =-
Pp, S, Y.e(p, S) S

a equilibrium speed of sound = ( s r)
e~y a^I

af frozen speed of sound a ip S), Y]

f y.1

A. any possible component of the gas mixture1

C. undetermined coefficient1

Cp constant pressure specific heat of gas mixture, energy per unit mass per

temperature degree

Cpi constant pressure specific heat of A

C constant volume specific heat of gas mixture
V co

-" 1
e base of natural logarithms = -  z" 2. 72

H. specific enthalpy of A., which includes heat of formation
1 1

A r enthalpy change for reaction

J mechanical equivalent of heat

k specific heat ratio

K equilibrium constant in terms of molal concentrationsc
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K equilibrium constant in terms of partial pressuresp

m average molecular weight of gas mixture

m molecular weight of component Az

n molal density of the gas mixture, total number of mols per unit volume

P pressure of gas mixture at any point

q speed of gas stream

R°  universal gas constant

S specific entropy of gas mixture

Sio specific entropy of A. at 7 and P

S. specific entropy of A. at any T and P1 1

AS entropy change for reactionr

t time

t tefined as t = t
r r

T absolute temperature

w. mass rate of production of A. = ym i. r

x distance coordinate along the direction of flow

xr defined as xr = x - qt

Yi mass fraction of A. in the gas mixture

Yie (P,S) mass fraction of A. under equilibrium conditions

Z total number of possible constituents in the gas.mixture

a,, iundetermined coefficients

stoichiometric coefficient of A. in reaction

p net rate of reaction defined in Eq. (12)

parameter

A determinant

Pi free energy of component A., defined as pIi = H. - TS.

A IR free energy change of reaction I
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p mass density of gas mixture

T time of reaction
Tb  backward rate constant in Eq. (32)

T f forward rate constant in Eq. (32)

*
T defined by Eq. (33)

4. .L.

T defined by Eq. (65)

> means greater than

< means less than

Functional and Operational Symbols

d( ) differential of ( )

6( ) perturbation of ( )

partial derivative of ( ) with respect to []

U( ) unit step function defined by U(X) = 0 for X< 0 and U(X) = 1 for X> 0
00

I(X) impulse function defined by I(X) = 0 for X k 0 and I(X)d% =I
-00

<> function defined by <X>= X for X>0 and <X>= 0 for X< 0

A integration sign

summation sign

11 product sign

Index

i usually runs from 1 to Z

Superscript

denotes quantity at equilibrium

CS
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!NTRODUCTION

1
Dr. Boa-Teh Chu has pointed out that the expression for the speed of

sound in a reacting gas mixture appears to have a discontinuity as the reaction

rate approaches infinity. By setting up differential equations for the gas flow, it

is possible to show by the method of characteristics that the sound speed, aft (com-

monly known as the frozen speed of sound) is given by

a =(

where P is the total pressure, p is the density, S is the specific entropy of the

gas mixture, and yi (i = 1, 2, 3, .... , Z) is a composition variable. As indicated,

the differentiation is carried out holding the entropy and composition variables

constant. This expression is in agreement with that for a nonreacting medium,

2 ap (2)

It is known, however, that for a gas mixture undergoing a very fast reac-

tion (i. e. , one in which the time of reaction approaches zero) the sound speed, ae,

(known as the equilibrium speed of sound) is given by

a 2 . P[P's, Yie(PS)]
e E S(3)

where Yie(PS) is the equilibrium composition, which depends on 0 and S, and the

differentiation is carried out holding only the entropy constant. The two expressions

are, in general, not equal and are, in fact, related by

2 a Yie(OS)
ae =a. + (4)e .~ Ty .=1DP(4
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where Z is the number of constituents in the mixture. Moreover, since the reac-
tion rate does not appear in the expressions for a and af there is no way to obtain

one from the other by a limiting process.

In this paper the phenomenon of the two sound speeds is examined in detail

for the case of one-dimensional gas flow in which the gas mixture is near chemical

equilibrium and in which it is assumed that all the degrees of freedom of each

molecule are fully excited. This last condition is closely approximated at high

temperatures and high speed gas flow.

A general set of differential equations is obtained for the gas mixture near

equilibrium and then the effect of a reaction with a zero and a non-zero reaction

time is studied. It is shown that the characteristic surfaces of the differential

equations move at speed af for all non-zero reaction times, but that the speed of

the characteristics changes discontinuously to a in the (physically unrealizable)e

case of a reaction time equaling zero.

A differential equation is then derived for the propagation of a pressure

pulse through the gas stream, which clarifies the relationships between ae, af,

and the time of reaction. In particular, it is deduced from the above equation that

for a small reaction time, af represents the speed of the wave front, while a e

represents the velocity of the bulk of the gas behind the wave front, which is in

agreement with the results given in reference 1.

The theoretical problem of an instantaneous reaction is discussed and it is

shown that this problem can be solved by considering the state and composition

variables to be step functions and the reaction rate to be impulse function.

In the course of this work explicit expressions are obtained for a and a
e f
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GENERAL THERMODYNAMIC REALTIONSHIPS

Lin Suppose Z different gases are moving in one-dimensional flow through an

insulated duct of constant cross-section with a velocity q. In general, several

reactions- can occur between some or all of these gases, the predominant reactions

depending on the temperature, pressure, and composition at any instant. Even-

tually, the gases will reach an equilibrium state and the composition and internal

state variables for this equilibrium state can be calculated from thermodynamic

considerations and the initial state of the gases. If this equilibrium is disturbed

slightly, for example, by a small pressure or temperature change, an overall

reaction occurs, which can be written as

_z

Y.A. : 0 (5)

where A. is a constituent and . the stoichiometric coefficient of this constituent.
1

The -fi's can take on any real value, including zero and negative values. If ¥i is

positive, the component A. is called a product; if Yi is negative, A. is a reactant;S1 1

and if. is zero, A. is a nonreactant or dilutant. Since the reaction is reversible,

the distinction between a reactant and a product is arbitrary.

At any temperature and pressure, component A. possesses internal thermo-1

dynamic state properties, Hi Sit pit where H. is specific enthalpy, S. is specific

entropy, and pi is specific free energy. These properties are related by

H TSi (6)

where T is the absolute temperature. In general, H., Si , and p. are functions of

1 1 1
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temperature and pressure, but. for gases obeying the ideal gas law, H. is a function1

of temperature only.

At any fixed absolute temperature T and pressure P, the stoichiometric

reaction, Eq. (5), possesses enthalpy, entropy, and free energy changes, AH r, ASr ,

and APiR' which are related by

AIR = A H R - TASR. (7)

The enthalpy change of the reaction is related to the specific enthalpies of the

constituents by
z

AHR 7\ Y. m.H. (8)

i=l

where m. is the molecular weight of A.. Similarly,1 1

Z

AR Y imipi (9)
i=

and
Z

6S \ Y . S . (10)
i=l

It is a property of the free energy that under equilibrium conditions,

' - __ = 0 (lla)
i=l

and so

AHI = TA R. (llb)

I-,



(From this point on, equilibrium quantities are represented by a bar.)

The rate of reaction, p, is defined as

I d(Ai)

d(A.)
where -- represents the molal rate of production of A.. The mass rate of

production of a gas A. is called w. and is given by1 1

w. = yimiP "  (13)

Necessarily,

z

z w. 0 (14a)

i=l
and so

z

zYi mi = 0. (14b)
i =1

Eqs. (14) merely assert that the stoichiometric Eq. (5) is balanced.

GENERAL DIFFERENTIAL EQUATIONS OF THE SYSTEM

The mass balance in a gas stream for any one of the components is written as

a(P Yi) a (P Yid 'q_+ q + Pyi - = w. (15)

at ax ax

where p is fhe mass density of the gas, yi the mass fraction of A. in the gas

mixture, and q the speed of the gas stream. Summing Eq. (15) from 1 to Z and
z z

remembering that Yi 1, and w i 0, gives

i=l i=l
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8p a- 8q
-6Y + q x + P - = 0. (16)

If the product differentiation in Eq. (15) is carried out explicitly and combined with

Eqs. (13) and (16), then

8Yi  ay' wi  ¥imirai -1 - (17)

A~~~~~ moetmblac ie

A momentum balance gives

-I a-P = a- + q 8q (18)

where P is the pressure of the gas mixture at any point.

The equation of state for the gas mixture, assuming an ideal gas and

Dalton's Law, is
Z

P=nR T = RoT Yio / i= m.q (19)
i=l I

where R is the universal gas constant, T is the absolute temperature of the

system, and n is the molal density, i. e., the total number of mols of gas per unit

volume.

Choosing the equilibrium temperature, T, and pressure, 1, as reference

states at which each component A. has an entropy per unit mass of S. , the entropy1 1

per unit mass of gas mixture at any temperature and pressure close to T7 and 1

is given by

Yi

i\I  m + z- . " (20)

i =1



assuming again the ideal gas and Dalton's Law.
Yi

m.
The term I represents the partial pressure of A. in the mixture.z YiI

i-1

p , the constant pressure specific heat of A. at equilibrium, is, in general, only

a weak function of pressui'e and temperature and for a small pressure-temperature

range can be taken as constant. 4.

An energy balance yields

z
as as 1K+ q 9-_- T iwi

i =1

Eqs. (16)-(21) are regarded as six partial differential equations with seven

unknown dependent variables yi, Sio, P q, T, S, and I' and two independent vari-

ables x and t. p, is considered to be a known function of temperature and pressure

and w. is given by Eq. (13). In order to obtain independent solutions for each of the1

seven dependent variables, another equation is needed. This other equation is the

relationship between F, p, T, and yi, which is given below.

LINEARIZATION AND SIMPLIFICATION OF THE DIFFERENTIAL EQUATION

The differential equations of the system are highly nonlinear but if attention

is confined to a section of the stream in which the gas mixture is very close to or at

equilibrium, and if all disturbances within this section are of small amplitude, the

equations can be linearized by the method of perturbations. Using this method,

-I
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P(x, t) = 7 + 6P(x, t) Yi(x, t) = Yi + 6yi(x, t)

p (x, t) = -P + 6p (x, t) T(x, t) = T + 6T(x, t)

q(x, t) = -+ 6q(x, t) S(x, t) = + 6S(x, t)

and Pi(TP) =-Pi + 6pi(TP)

The barred quantities are constants and represent the values at thermodynamic

equilibrium. The 6( ) terms are perturbations and are considered to be of a much

smaller order than the equilibrium quantities. Note that by the definitions of w.

and p, w. and f are both zero.1

The expressions above are now introduced into Eqs. (16)-(21). Perturbation

terms are neglected in comparison with equilibrium terms, and the following rela-

tionships are used for simplification:

w. = Yimi (22)

z y.
-\ M.(23)n = P m.

i=l

z

p = piY i  (24)
i=l

m=0= 1 (25)

z i
i=l

m 0 (26)

i =1

_=i=RT (27)
0 

YR m.RR my

. =S. ln - S. R 0 ln -0- S. -- In m yi  (28)
1 10 m. Z - 1 m. -m 10 m. m.i ~ .1 n . 1 1

L m.
1i =1
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where n is the molal density at equilibrium, " the constant pressure specific heat
p

for the gas mixture at equilibrium, i i the average molecular weight of the gas

mixture at equilibrium, and- , the specifi entropy of A. in the gas mixture at
1 1

equilibrium.

The linearized equations become

8 + a + a(q) _ (Z 9a)

8(6Yi) 8(6yi) Y imi (29b)

8t ax p

(6q) + 8(q) + 3(8P) = P90

6P _ 6_- +z 
6y i

i=l

=+I-- + AT--+8m (290)

z Cp

1

6S = 8 Si yi + if-- 6T 6P (29e)

"' [Y imi" Id].

-(6s) + 8 (6s) _ i=l r (z9f)
F -5 -x pT

r is of the order of the derivative of a perturbation by (Z9b). Then, since

the expression on the left of (29f) contains derivatives of 6, while the expression

on the right contains the product of I and perturbation terms, the expression on

i4
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the right is of a higher order and can be neglected, giving

a(6S) + - = 0 (2 9g)

The above equations can now be simplified somewhat by changing to Xr, tr

coordinates where

x = x - -t (30a)
r

t = t (30b)
r

Physically, xr represents the coordinate of a pulse relative to a fixed particle in

the fluid.

Eqs. (Z9) now become

a(60) + - 8(6q) 0 (31a)
r r

a(6yi) Yimi(3b
1 1t (31b)
r

(6q). + 1 (6P) _0 (31c)
r r

z

S6=_ -  + T+ 6Yi (31d)

P i=l 1

z Up 1

6S = 6yi + - 6T -- 6P (31e)
T pT

8S) = 0 (31f)
r
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The derivative with respect to t r is actually a "substantial" time derivative and

represents differentiation with respect to a fixed particle in the fluid.

Combining (31e), (31f), and using E-HR = YES gives

8(6T)_ 1 (8P) A'HR
= T ____ - R r (31g)

at P at Pp r p

EXPRESSION FOR THE NET RATE OF REACTION

For a reversible gas reaction, a rate equation of the following type can be

pc stualted:

z zi T(.1).>-1 T- (py. y (32)
-TT i• m. i=l i

where

<X> 0 X< 0
X= X> 0

Tf(T) and rb(T) are forward and backward rate constants, respectively,

and as indicated, they are functions of temperature. The first product term contains

the product of the molal concentrations of the reactants raised to the power of their

stoichiometric coefficients and the second term contains the products of the reaction.

At equilibriurn , = 0, and so

z -- z --1 DYi < -¥i>  P YT < Yi? 1
-. 1 (33)

'f(T) i=l m. Tb(T) i=1 m.

and

T b(T ) Yi v
b H- K (T) (34)

Tf(T) i=l km.i
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K (T) is the equilibrium constant of the reaction in terms of molal concen-
C

trations.

By differentiating Eq. (32), considering perturbation terms to be differen-

tials, and combining with Eqs. (33) and (34), gives

z

F i==  - (35)
6T 6dTy

(r = P since = 0).

T , which was defined by Eq. (33), contains the units of time and must be
.t.

related to the time of reaction. For a "very fast" reaction, T -. 0. If it is now

assumed that the composition of the gas is a continuously differentiable function of

time, even if °- -.0, Eq. (31b) indicates that r must remain finite as T -*0. This

would then imply that
z

dlnK \ Y.
dT TP - - 6Y.= 0 (36)

i=l1

for a "very fast" reaction; but this is equivalent to

n K (T) K K(T)
I = 0 or z-c constant. (37)
IT Pyi) -[ i Yi

M. M.1 1 1 1

The constant can be evaluated from the situation at equilibrium, Eq. (34), and it

is seen that the constant must equal one, and so

z ) Yi =K (T) (38)

i=l ic

-.-
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Therefore, in a "very fast" reaction, the composition of the gas mixture obeys the

equilibrium equation at every instant.

Eq. s (31a), (31b), (31c), (31d), (31g), and (35) can now be combined to

eliminate 6T, 6p, and 6yi, which gives three first order linear partial differen-

tial equations in three unknowns.

These equations are

d=H
, C a~P r z ~ q

8__ () - - 8(6q)

p r r i=l r

-i dT
(__ Y d (39a)

P C

z
p~ C PC Yi

(P ) at6p +x a(q)I- (39b)
ptr Cxr ap

1 a(6P) + a(6q)= 0 (39c)
p ax r at rDxr r

EXPLICIT EXPRESSIONS FOR a and af

e

At this point it will be advantageous to determine explicitly the two sound L

speeds af and a .e

Rewriting Eqs. (31d) and (31e) in differential, rather than perturbation

notation.
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-i y + - (40a)

P p 1

dT 1 dP (40b)

dS = idyi + dT d
1 P T

Letting dS = dy. = 0, and then eliminating dT between Eqs. (40a) and (40b) gives

a dP] 8 _0Ps a5 P 0 r

f - S 0 Yi CT "P(41)

dyi = 0 P

R

For gases obeying the ideal gas law, C - C =- where C is the

constant volume specific heat. Defining k -LP and Eq. (41) can be
v m

put in the form,

R
af2 = 0 T (42)

m

which corresponds in form to the expression for the speed of sound of a nonreacting

gas. However, the nolecular weight of a nonreacting gas remains constant, whereas

for a reacting gas, it is a variable.

The equilibrium speed of sound can be calculated from Eqs. (31b) and (36),

which are rewritten below in differential notation, a-d Eqs. (40a) and (40b)

a(6yi) YI i l(4 a___- drm (43a)

at pr

z

1Y idyi d inK
1 d +_ ( c )dT

P I Yi dT (43b)
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Setting dS = 0, there is obtained by the straightforward combination of Eqs. (40a),

(40b), (43a), and (43b).

z

z mi 6 dinK T A

a 2 _ T_ _ i '_T _ _-n (44)e z

C--P z Y 2 m d inK - Y. d inK
pP C) y)( PT" . dT n dT

1 i

The equilibrium constant for the reaction in terms of partial pressures, Kp,

is given by

z P YR°T )Yi (45)
K(T) = i--7 (-m

= 1

py.R 0T
The term - 0 is the expression for the partial pressure of a perfect gas in am.

1

gas mixture.

K (T) and K (T) are thus related by
c p

K = (R T) K (46)

and
Z

dInK d InKc -_ (47)

dT dT T

The van't Hoff Equation states that

d inK AHR
P -

(48)
dT R T

0

... -,- ,,4 -,-- - . z _-i ,= _ -, _. ... : .... .- *-- . .. . ---°_ :t :-:_ .. .
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z

dlnK c  AHR  (49)

dT R T 2  T
0

Putting this expression into Eq. (44) and then simplifying, the equation for a cane

be put in the form

a 2 _ _ _ _ _ _ _ _= i / ( 5 0 )

*e Y.4~ M. R.) 2 ARY
- i P Fn Ro0TI

z

In practice, the terms containing Y " are negligible and
1

C RT 2  Y2M. AH 2
0i > R (51)

R z y 2 m. TT

T (C 1R (52)
m I i R

If these inequalities are very large so that the terms containing "H R are

z

also negligible in comparison with the L i jmi terms, Eq. (50) becomes

1 T

R
0 2a 2  =T- T = a, (53)

z 2. M.

The ratio of the AH 2 term to the ) 1 term in the numerator of Eq. (50)
RL

I Y
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R The ratio in the denominator is

P'R 7? i - T

Yi 1 Yi

R
Since, clearly C > C" - = C, the numerator ratio is less than the denominator

m

ratio and so a <af"

CHARACTERISTICS OF THE GENERAL SET OF DIFFERENTIAL EQUATIONS

Having determined explicitly the expressions for af and a , the character-e

istics of the set of Eq. (39) is now calculated.

Suppose 6P, I', and 6 q are prescribed on a curve given parametrically by

xr = xr(k) andt = tr(X). On this curve, 6P = 6P(X), r = r(X), 6q = 8q(%). Then,

by the chain rule,

dt dxr N(8?) + r a(5P) d(6P) (54a)

r r
dt dx

r ar+ r al, dr (54b)
aX FT -TT- M Wr r

dt"r 8(6q) + dx 8 (6q) _ d(6q) (54c)

r r

Treating Eqs. (39) and (54) as a system of six linear equations in six unknowns,

8(6P) 8(6P) 8 8 8(6q) d 8(6q)at U 7-x---- .i-, , .g- and ax"- the characteristic surfaces of these
r r r 8x r r

r
equations can be found by setting the determinant of the system, A, equal to zero.

Upon expanding, the determinant is found to be

T dx rdt p C T-P dx r
p PCT )(a)

S- -9-
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Setting A = 0, it is seen that if T # 0, characteristics occur when

dx dx / dX
a) r r = , i.e., when

r r

x r x -qt is a constant

and

dXr PC T
b) r 2 

_ -_ V a, 2 , i.e., when
r CpT-P

x - (q + af)t is a constant.

Since the characteristic surfaces propagate at the same speed as .the wave front,

condition (b) implies that the wave front moves at speed af if T" 0.

The compatibility equation for 8(6P) is
r z" Rr mCPT i¥

8( ? -H R -V / T

1 dt ( rd( 8 q)1

W-~ J. (56)
dx

Compatibility always exists at =OFocmptblt"at

r
dx IP T

I r rd(P +dxr 2d1q

rr
t- a f a = ± -  -
r pC pT-P

z/AH R-m ZCpT Yi

af ( ) a d(6q) (5.
71-r r57)-Z -"T r-
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a(6yi) Y.m.
Using Eq. (31b), i.e. _ gives

1 _ P d(6yi) 1 d(6P) d(6q)
a - _ ±aaf - = 0. (58)

Y.m. dt dt dt
p r r r

Multiplying Eq. (58) by p-dtr and integrating, the compatibility equation becomes

z

S+ 6P + 6q= constant. (59)
P Y.m. f

/ 1

If ' =0, it is seen that both the determinant and the compatibility equation

are identically equal to zero and so the wave front does not necessarily move at the

speed af. Examination of the system of Eqs. (39) shows that the -highest derivative

of P is the first derivative if T -A 0. However, if T': is equal to zero, the first

derivative term drops out and the highest derivative of P becomes the "zeroth"

derivative. Thus, if T"' is equal to zero, the form of the system of equations is

changed which can, and in this case, does produce a discontinuous change in the

characteristics.

The characteristics for the case of a "very fast" reaction can be found by
.3.

setting r equal to zero in Eq. (39a) eliminating r between Eq. (39a) and (39b) and

then following a procedure similar to the above. It is found that in the equilibrium

case, the characteristic surfaces, or the wave front, propagate at a speed ae
Since it is physically impossible for T to ever actuall be zero, these

results imply that the wave front must always propagate at a speed af. However,

the question of the physical significance of a in near equilibrium flow (T* very
e

small) is still unresolved.
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DERIVATION OF GENERALIZED ACOUSTIC EQUATION

Clarification of the roles played by af and ae can be obtained by reducing

Eq. (39) to a single higher order equation and attempting to find solutions for this

equation. The reduction is accomplished in the following way:

Solve for I' in Eq. (39b) to obtain

p CpT-P (6P) + z 3(6q)
y.-P =H at C T+ --H

CPTL R) tr Y R r

1. 1

(60)

Putting this Eq. (60) for r into Eq. (39a), using Eq. (41) and simplifying, gives

0-- 1 i (6P) + 8(5q)] +

r paf tr  axr

z ¥ 2 m. dlnK z d K____ d-_T ,C &R )-mCPTc)(]

a(6P) P 2 c CdT PTY( dT
rP 1

at r  _p p 2 P-f

z y M d InK -z z

-PC T -. +PTAHR dT)+P R2  Y.-rC PT( Y

If it is assumed that 6q and 6P have continous first derivatives, then

2(6q) _ a (6q) and a2(6P) - a2(6P) Substituting Eq. (39c) into the aboveat ax ax at at ax ax at
r r r r r r r



25

equation gives

a (6q) - 8a(6q) 1 82 (6P) (62a)
at ax 8x -t -- ax (a

r r r r p r

8 (6P) 82 (6p) -- a2 (8q) (62b)
ax -t at - P t-----

r r r r r

Now, by differentiating Eq. (61) with respect to t , combining with Eq. (62a)r

and simplifying, using the expression (44) obtained for a es there is obtained

1 2 (6p) 1 a.(6P) a6P)826 FO81"P) + t 6P) 0

a 2 t2 ax 2 8t a2 at 2 ax 2
e r r r £ r r (63)

where

C -T
1p 

p -C Z-'P-- i - + -- ( dT )+--
P Yi P P I

(64)

By differentiating Eq. (61) with respect to xr, combining with Eq. (62b) and

simplifying, gives

1 a2 6q) 82 (6q) + a 1 1  6(6q) a2(6q) '- '65'

a a at 2 ax at a 2 at 2  x
e r r r f r r
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In x-t coordinates, Eqs. (63) and (65) become

-2 ( 6P ) , Eq ?(6P) , I 8a(8P) +

2 x a 8x8t a 2 t
e e e

-222a a + )[(. a62 P) + ? (6P)q a -7 a( 1  0 (66)
af ax a axat a2 at

ff f

q ) a 2 (6q) + a 2 (- q+ 1 a2 (q)+
2 2 2 2 2

S ax 2  a axat a at 2

e e e

S-2 a2 q 7 a2 (6q) 1 8
T (q- + )[(-- 1 1q0 (67)af ax 2 axat a2 atZ

Eqs. (63) and (65), or (66) and (67), can now be regarded as generalized acoustic

equations for the system.

PHYSICAL SIGNIFICANCE OF af and a

It is seen that Eq. (63) is made up of two wave equations. One wave equation

has characteristics at x r ± a t = constant or x -(q ± a )t = constant, while ther e r e

other has characteristics at Xr aftr = constant or x - ± af)t = constant. Thus

if T is exactly equal to zero, Eq. (63) reduces to the equation of a wave with

constant velocity a * If T is very large (T - oo), as would be the case for a verye

slow reaction or for a nonreactive medium, Eq. (63) reduces to the equation of a

wave with velocity af . In any other case, the equation is not a wave equation, but

a third order equation. If T is very small, but not zero, the characteristics are

governed by the third order terms, although the value of the differential equation is

governed by the second order derivatives. As has been shown, for T # 0, no
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matter how small, the wave front propagates at af. This agrees with physical

intuition in that the wave front cannot have any knowledge of the medium into which

it is approaching.

The significance of the equilibrium speed of sound will now be determined

by attempting to find solutions of Eq. (63). Since Eq. (63) is a linear differential

equation with constant coefficients, one possible method is to assume a solution of

the form

2O 0 7itr+Pi~i)Xr6P =  CI a' r+P11 Li)r

i=l

Here C. and a. are undetermined coefficients and Pi is a function of a.. By1 1 1

putting this expression into Eq. (63), the relationship between Pi and a. will be

obtained. Then a. and C. can be chosen as functions of the integer i in such a1 1

way as to satisfy the boundary and initial conditions of the particular problem. (Note

that sinusoidal solutions can be obtained if a i, Pi, and Ci are complex).

Inserting the above expression into Eq. (63) gives

00
I _. 2  + .... t - )] C.1 I t r + pi x r = 0. (68)

P. pil af2

Requiring that each term in the summation be identically equal to zero implies
~ ,.' ,ia-i

S. a.. T

(li+aTP' + 1 (69)
a 2 af2

e
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CL. CL..

Note thatif T 0, then 1 = + e and if T -, then#= +af.'P7 e1
J",* - 2

If W is small enough so that T is negligible in comparison with Tr

then neglecting second powers of 7

a,. T CL. a
a- [1- ---___ a ( (70)

2 a f

When T =0, or T o0, .- L were seen to be equal (both numerically

and dimensionally) to the equilibrium or frozen wave velocities, respectively, which
a.

were constants. If the interpretation of .-. as a wave velocity is now extended to

the case of T , finite and unequal to zero, it is seen that for small T , the

"wave velocities" are not constants but weak functions of a . oscillating about the1

value a . Thus, for near-equilibrium flow, the expression of 6P can be inter-e

preted as the sum of a number of disturbances whose speeds are not, in general,

equal, but are all close to a . This implies that, although the wave front is mov-e

ing at a speed af, the bulk of the disturbance behind the wave front is moving at a

speed close to a e. In order for this to be true, ae must be less than af and in

deriving the explicit expressions for a and af, this was shown to be the case.

The significance of the two sound speeds, a and af, has now been deter-• e

mined for a reacting gas mixture near equilibrium with a fast reaction rate. In

such a system, af represents the speed of the wave front, while ae represents

the approximate speed of the bulk of the wave behind the front. Velocity-of-sound

measurements have been made in methane-air combustion products in which the

frozen speed af was obtained. In some cases speeds greater than af were

measured, and thes were assumed to be close to molecular relaxation.
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For the general case of a reacting gas mixture near equilibrium solutions

can theoretically be built up from Eq. (63), either by the method shown or by any

other technique for solving linear partial differential equations with constant coeffi-

cients. Practically, however, the usefulness of this procedure is limited by the

fact that very little data exists on rates of reaction and so, in most cases, there

will be no way of determining Tb and Tf, and hence T and T

However, if T is known to be small, the bulk of the wave behind the front

moves at an overall speed very close to a and the acoustic equation (63) is approxi-e

mately equal to the standard one-dimensional wave equation with velocity a e. Thus,

for purposes of computation, a theoretically instantaneous reaction can be used to

approximate the actual state.

THE INSTANTANEOUS REACTION

In an instantaneous reaction the time of reaction is zero. Therefore, if the

gas flow is steady, the gas mixture will reach equilibrium after passing through an

infinitesimally short distance. If a small disturbance is sent through the pipe, the

old equilibrium at any point is destroyed and a new equilibrium is established at

exactly the instant that the pulse reaches that point.

Assume that the pulse starts at time t=O and travels down the pipe with a

velocity a relative to the gas stream or with an absolute velocity of a + _. At ae e

time t the pulse has traversed a distance equal to (ae + -q)t. For points

x > (ae + q)t, the pulse has not yet arrived and the conditions are still the old equi-

librium conditions. For x <(a e + 7q)t, the pulse has already passed and changed

conditions to the new equilibrium. For example, P is changed to P + 6P, where

6P is the change in pressure between the old equilibrium and the new And it is of

perturbation order. Similarly, fcr x <(a e+ q)t, T = T + 6T, q = q + 6,

C{
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=p+6p, y. =y. + 8yi ,etc.

According to our hypothesis of an instantaneous reaction, for x > (ae+q)t,

F=O since the pulse has not yet arrwed, and for x < (ae+ )t, e = 0 since the reaction

is already completed. At x = (a e + q)t, a change of perturbation order is accom-

plished in a time interval approaching zero. Hence, at x = (a e +q)t, rbecomes

infinite.

One is therefore led to assume solutions of the form

6P =6 U[a e + )t-x] = 6P U (ae t r-x r ) (71a)

6p = 6p U (ae t r-x r) (71b)

byi= byiU (ae t r-x r) (71c)

6q =bq U (aetr-X r )  (71d)

6T 6T U (a t -x r) (71e)

p = p I(ae t r-x r) (71f)

where 1, 6P, 6, 6y, 6q, T are constant amplitude terms. "U" is a symbol

for the unit (Heaviside) step function defined by U(X) = I for X > 0 andoUW = 0

for X < 0. The impulse function is defined by I(X) = 0, if X 0 and -00I(X)dX = 1.

Although neither U(X) nor I(X) is an everywhere continuous function

and I(X) is not properly a function at all , they can nevertheless be treated as

continuous differentiable functions which are related by I(X) = dU(X)

Putting Eq. (71) into Eqs. (31a), (31b), (31c), (31d), (31g), and (36), which

are the governing equations for an instantaneous reaction, gives

a e 6P - 0 6 = 0 (7Za)

.'-' . " - M' - - N i ,m ~ illllamm" elllll l ~ e
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paY.M 6i r=o
Y.m.q - (72b)1 1

60 6\ - - 0 (72d)
p T L m.

1

a AHR
a e8T 6 P + - - 0 (7Ze)

p Cp p C p

d=-l Yi Y.

a ic - i 1i

dT )pT 1 6 - 6yi  0 (72f)

Eqs. (72) are a set of linear homogeneous equations in six unlnowns. The

requirement for the existence of non-trivial solutions is that the determinant of the

system be equal to zero and evaluation of the determinant shows that this is true if

a is given by Eq. (44). This being the case, Eqs. (72) enable one to obtain all thee

perturbation amplitudes, if any one of them is known.
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