ARPA ORDER NO. 189-81

L
C‘!.:‘?
L
G MEMORAN DUM

*RM-4809-ARPA
DECEMBER 1965

P N “@y»w
EIR T l‘
|
L n

DETECTION OF SONAR SINUSOIDS OF
UNKNOWN FREQUENCY AND KNOWN
OR UNKNOWN FHASE

F. S. Hill, Jr.

A
CI.E&ﬁ '"—“'r”

Ha"d‘* Ty : = ~’§

505 o4 575 75

=

=

. ‘ ' !
: e ; H

LS

|
f
|
f

RS E4

i
e L S

PREPARED FOR: CCox €/
ADVANCED RESEARCH PROJECTS AGENCY

24 R 1D oo

SANTA MONICA » CALIFURNIA




APRPA ORDER NOG. 188-81

MEMORANDUM

RM-4809-ARPA
DECEMBER 1965

DETECTION OF SONAR SINUSOIDS OF
UNKNOWN FREQUENCY AND KNOWN
OR UNKNOWN PHASE

F. S. Hill, Jr.

This research is supported by the Advanced Research Projects Agency under Coritract
No. SD-79. Any views or conclusions containcd in this Memorandum should not be
interpreted as representing the official opinion or policy of ARPA.

DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

)] p—"

Y700 main §7 o SANTA MONICA v CALIFOENIA « 90404

Approved for relesse by the Cicannzhouse for
Federal Scientific and Techricaf It

slorma ion

‘E’E}’."Eﬁ ==




Wi

i

LA

iii

PREFACE

In conjunction with RAND's study of Defense Against Submarine-
Launched Ballistic Missiles for the Advanced Research Projects Agency,
background investigations of theoretical methods for calculating the
performance of nondirectional passive sonobuoys are being conducted.
The particular investigation presented in this Memorandum cvaluates
the performance of a theoretically optimum processor for detecting
a sine wave of unknown frequency and unknown phase in gaussian noise.

This study should be of interest to analysts in the fields of
sonar and radar as well as to researchers in the general field of

signal detection theory.
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SUMMARY

This Memorandum considers the problem of detecting a constant
sine wave of unknown frequency and amplitude in gaussian noise. In
particular, it is assumed that the sinusoid may appear at any one of
a finite number of known frequencies, and the probability of its
wccurrence at each of these frequencies is assumed to be equal. Two
cases are treated here. The first assumes that although the frequency
is not known, the phase of the signal is known, thus allowing co-
herent detection. The second acknowledges that the initial phase
indeed could not be known, and an analysis of the incoherent detector
is made. It is shown that for large output signal-to-noise ratios,
the problem in both cases becomes that of detecting one of m approxi-
mately orthogonal signals in a noise background. The magnitude of
the error in the orthogonality approximation is considered. A
physical realization of «n approximately optimum detector structure
is studied in some detail, and the effect of finite observation time
is considered.

The results indicate that the difference between the two cases
is small and quite predictable. Thus, in studies of this kind it can

be assumed that the initial phase is known, the gaussian character of
the quantities that arise may be retained, and finally, the answers
can be adjusted to account for the actual lack of knowledge concerning

the phase.
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I, INTRODUCTION

The problem considered here is that of detecting the presence
of a submarine target by a single, unattended, omnidirectional hydro-
phone. It is presumed that such a target emits both widebard noise
and a set of sire waves of different frequency. This Merorandum
considers the detecticn of the target by means of the sine waves.
Since the exact frequency of eacn sinusoid will not be known in
advance, tue problem becomes that of detecting one or more sinusoids
of unknown frequency in a noise background.

As a first step toward a solution of this probler, the question
of detecting a singlc sinusoid of unknown amplitude and frequency in
a background of gaucsian noise is considered. The noise is assumed
to have a known spectral density and is assumed stationary, at least
for the duration of each decision period. In practice, the frequency
of the sinusoid may only be known within a band of frequencies, and
may, with equal probability, appear anywhere within this band. As
a useful approximation tc this situation, the assumption is made here
that the frequency of the sinusoid has a discrete distribution; that
is, it can appear at one of a finite number, m, of possible frequencies.
If this assumed number m is large, then the assumption is not greatly
different from thet of assuming a ccntinuous distribution of fre-
quency over the band of uncertainty.

It is seen later in this Memorandum that the false-alarm rate,
bzing determined only by the noise statistics, is independent of
signal amplitude, and that detectability of the target increases

monotonically with signal ampliitude. Thus, if signal amplitude is
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not known, but is known to remain steady over the length of a de-
tection period, then the system threshold is set by the allowable
false-alarm rate, and its detection performance will depend only on
the actual signai amplitude. Hence, & constant signal amplitude of
unknown level can be assumed, as done in this Memorandum, giving
final answers in terms of the actual signal amplitude. The signal
amplitude may, of course, e converted into target range if the
signal level emanating from the carget, the transmission loss versus
distance and the noise level at the receiver are known.

The first part of the Memorandum deals with the detection of a
sinusoid of unknown frequency but known phase in gaussian noise. The
known phase assumption is clearly unrealistic if the frequency is
not known, but the mathematics are tractable, and it is known from
studies of known-frequency sine wave detection that the difference
between coherent and incoherent* techniques is small and predictable.
The second part demonstrates this, dealing with the detection of
sinusoids of both unknown frequency and phase. This study concludes
that if work is pursued knowing the phase of the sinusvid, the effect
of the actual ignorancec of phase may then be included by means uf

some loss factor which is constant over a large range of situationc.

*Confusion sometimes arises concerning the terms ''coherent' and
"incoherant," because their roles in disrussions of active radar
systems are quite different from their usage here. In radar nomen-
clature, "coherent'" and "incoherent" refer to methods of integrating
sequences of pulses, either retaining or destroying the phase struc-
ture between different pulses. Iu the present cortext, however, there
are no pulses at all. Here, "coherent'" specifies actual knowledge of
signal phase relative to some reference, for all time. "Incoherent"
implies the absence of this knowledge, which suggec.ts the use of a
statistical description.




I. STATEMENT OF THE PROBLEM

=S

A single hydrophone monitors underwater acoustical enzrgy for
an observation time of T sec. If a signal is present, it is assumed

to have the fcllowing form
s(t) = P cos(uwt + o) (1)

where P is assumed constant, the phase may or may 1ot be known, and
the frequency w, = 2n fi is a random variable having a discrete

probability density function

m
JOED I ICRIICERS @)
i=1
where 6(x) = { é ;g i : g is the Kronecker delta function.

That is, the signal appears at one of the frequencies w. , and is
assumed to remain at that frequency for the duraticn of the o»ser-
vation interval. The frequency nay possibly '"wobble' slightly from
interval to interval but is assumed to change so slowly that it is
essentially constant for the period T.

The m possible frequencies at which the signal may appear are
assumed to be contained in a low-frequency band of total width (.

The noise process received by the hydrophone, in addition to the
signal (if present), is assumed to be a stati~nary, gaussian, random
process with zero mean, and has a known spectral density N(f). The
detector wil) be concerned with the values of £ lying in (-0, (), and
thus N(f) is considered as being non-zero only in this band. The

bandwidth is then Q cps.
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It is known from sampling theory that a waveform of duration T sec
and bandwidth O cps may be approximately represented by a set of
22 T numbers. If the frequency band of the wave extends to zero cps,
then these numbers are simply equally spaced amplitude samples of the
wave. In the following, it will be mathematically convenient to
treat the received waveform in terms of tnese 20 T amplitude samples.
The actual detection system will not perform any sampling, however;
the discrete representation is merely a technique to facilitate manipu-
latior. The information thus presented to the detector is a vector v

of n voltage samples where n = 20 T. The column vectcr v has the

transpose

? = — N
y [V(tl)! V(t2)5 R | '\tn)] (3)
v(ti) = n(ti) if signal is absent
vfti) = n(ti) + P cos(wt:i + ¢) 1if signal is

present at frequency w

It is well known that the optimum detector for a signal con-
taminated by a random noise is a likelihood ratio detector.(l) I1f
any of the input quantities contain unknown parameters, the likeli-
hood ratio must be averaged over all possible values of these quanti-
ties according to their probability distribution. For instance, if
the signal contains the parametars 61 and 92 which are statistically

independent but unkrown a priori to the observer, the detector must

form the averaged likelihood ratio

i) = [ dar(8)) [dr(8,) L(y, e, 8,) (4)




where the quantity P(el) is the cumulative probability distribution
function of €,, and similarly for P(BZ). T.{v, 81, 82‘ is the likeli-
hood ratio, depending on the received vector v, and assuming that the

signal parameters have the particular values 91 and 6 The proba-

9
bility structure of tiie unknown parameters may or may not be known
in a particular case. In the case where 91 is the phase angle of a
sinusoidal signal, it is reasonable to assume that the angle » is
uniformly distributed in the interval 0, 2m. This assurption will
be made in the following when the phase is assumed unknown.

Hence, in the two cases to be considered in this Memorandum: the
coherent case where the phase angle is assumed known, and the in-

coherent case where it is assumed to be a uniformly distributed random

variable, the two quantities must be formed

m
Coherent L(v) = T L(v, wi) p(wi) (5)
i=1
m .
&1 d
Incoherent £(¥) = ) plu,) fo 8 1y, w9 6)
i=1

The summation performs integrat.on over the unknown but discretely
distributed frequency parameter, according to Eq. (2). The two cases
will be considered separately.

Although signal level is not known, it is not considered as a
random variable here, and no averaging is performed over this parameter

because the operations which the optimum detector performs are not




i

influenced by signal amplitude. The resulting detection performance
depends very strongly oa signal strength, but the detector can be

(1)

built with no knowledge of how strong the signals will be. Noise
level, on the other hand, must be known in order . set a false-

alarm rate.




IIXI. DETECTION OF A SINE WAVE OF UNKNOWN FREQUENCY AND KNOWN PHASE

The case of detecting a single sine wave of known initial phase
but unknown frequency has been considered in some detail by Levesque,(z)
and this section reports hig findings. It is realized that the
assumption of known phase is unrealistic when the frequency is un-
kno'm, but it is believed that the following analysis is useful for
two reasons: (1) it manipulates gaussian statistics and is therefore
tractable, and (2) it places an upper bound on detectability which

is later (Section IV) seen to be easily related to the unknown phase
case results.

The optimum detector forms the quantity given in Eq. (5) aid
compares it with a preset threshold. If £Z(v) exceeds this threshold,
the decision is made that a signal is present. If £(v) does not
exceed the threshold, the signal is dismissed. Levesque introduces
the concept of the decision hyperplane, which permits a geometrical
interpretation of the decision process. Considering the simple case

where the signal may appear at one of only two possible frequencies,

m = 2, the averaged likelihood ratio takes the fomm

4) = p(wL; + pw,)L, @)

or

il

p(w;) exp(log L,) + p(w,) exp(log L,) (8)

where L. = 1(v, wl) and L

1 = 1(v, w2) for convenience. The form of

2

Eq. (8) is used as it is usually more convenient to determine the

quantity log Li than the likelihood ratio itself. The optimum
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detector compares the quantity of Eq. (8) with a threshold k, and a
target-present decision is made depending on whether L(v) exceeds
this threshold or not. Thus, the "decision line" that separates one

decision from the other is that which satisfies the equation

1(¥) = k (%

Assuming that the two possible frequencies are equally likely,

p(wl) = p(ub) = 1/2, then Egs. (8) and (9) yield

log L, = log[2k ~ exp(log Ll)] (10)

2

as the equation of the "decision line." This line is shown in Fig. 1
for various values of the threshold k. As one of the quantities

log Ll or log L, be omes small, the decision curve rapidly approaches

2
an asymptote parallel to one of the coordinate axes. In an actual
system, a jreset value of k is used, and thus one of the curves of
Fig. 1 will form the boundary between the signal-accept and signal-
dismiss regions. That is, the processed vector v yields the quantities

log L., log L, which cucrrespond to a point on the graph of Fig. 1.

1,
If this pcint lies above or to the right of the decision line given

by Eq. (10), a signal-accept decision is made. If log L, or log L

1 2
lies below or to the left of this line, the signal-dismiss decision
is made. If the number m of possible frequencies were greater than
two, then the likelihood ratio of Eg. (5) would be compared to some
other tureshold. The resulting decision surface of m dimensions

would divide an m-dimensional hyperspace into two regions: signal-

accept and signal~dismiss. The prccessed data would yield m numbers,

\f
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log L log L ..., log Lm, corresponding to some point in the m-

1’ 2°
dimensional hyperspace; and the signal-accept decision is made if
the point lies in the appropriate region. Otherwise, the signal-

dismiss decision is made.

FORM OF THE LIKELIHOOD RATIO

The likelihood ratio L(v, wi) may be written explicitly. It is
well known that for a signal si{t) =P cos(u&t + ¢) imbedded in
gaussian noise with covariance matrix K, the likelihood ratio has the
form

s. K s, +s.K v
=i =S = =

+ =1 -1 1 a1

1

L(!, wi) = exp [- 2

Here g{ is the row vector of time samples of the sinusoid at angular
frequency w, - The noise covariance matrix K is related to the noise

spectral density N(f) by the relation [Ref. 3, p. 103]

o

R(T) = J N(f) exp(jwr) df (12)
- -
B, R ... R,
Rl Ro LK BN ] Rn-z
5 = L) L)
R, s R
n=. o]

- '.1_>.. L_ ...
vwhere R, = R \ 5 ) and 55 = time between samples.




The logarithm of the likelihood ratio of Eq. (11) has the form

s vsfkly (13)

log Li = 5T

DO =

sf K
S 2

The second term indicates that the detector must correlate the re-
ceived waveforn with the signal at the ith frequency. For example,
if the noise is assumed to have a flat spectral density of level No/2
voltsz/cps over the band of all possible frequencies (-2, (), then

the matrix K is given by NOL,Q, where I is the unit matrix, the noise

variance N

NOQ, and the correlation portion of Eq. (13) becomes

n
1-1,___1__2 : "
8; K v= NOQ P cos(_uitj + ) v(tj) (14)
j=1
.2p T
3 5 J v(t) cos(wit + ¢) dt (15)
o ‘o

Equation (15) approximates the sum of Eq. (14) by an integral and

.

makes use of the relation dt = At = 1/(20).

The first part of Eq. (13) may likewise be analyzed, and it is

seen to become

il

I

du
Ll

I
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n
l ! -1 = l _1‘.. \ ‘.:2 \ng m + 0
- 2 él 5 .S_i ! 2 N 0 & COs (Jitj o (16)
o
j=1
T
- .1 2 2
=3 No Jo P~ cos (wit + ) dt

1
2 N (17)

. , , . 2
as long as T is large in comparison to each sine wave pericd, =-.

i
It is convenient to define the 'detection index," d, which satisfies

& PZT/NO (18)

Thus, d2 is the signal-to-noise ratio at the output of the detector

at the end of the observation period of T sec and may be used as a
figure of merit in evaluating detectability. ..s is not the signal-
to-noise power ratio at the input to the detector, which has the

value P2i2N, but it is the ratio after the detector has prccessed

the received data. By comparing input and ou:put signal-to-noise
ratios, it is seen that the '"processing gain' is 20 T, the number of
degrees of freedom in the sampling representation. Note that although
P and therefore d are not known a priori, they can be used here as

if they were known, and the results can be presented in terms of d

as a parameter.

PERFORMANCE OF THE DETECIOR

It remains to calculate the performance of the detector. This

requires findius the probabilities of false alarm and detection for

wuhuulm
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particular settings of the threshold and for particular values of input
signal-to-noise¢ ratio. In order tc do this, the conditional joint
must be computed

distributions of the test quantities log L., log L

1’ 2
under the three hypotheses
Ho: no signal present, v(t) = n(t) (19)
H1: signal present at w5 v(t) = n(t) + sl(t) (20-a)
HZ: signal present at Wa s v(t) = n(t) + 57(t) (20-b)

Levesque has done this, and the derivations appear in Appendix A.
It is sbown there that the resultant joint distribution is gaussian

and that the quantities log L. and log L, are approximately indepen-

1 2
dent since there is almost no correlation between sine waves of dif-
ferent frequencies over a long observation time, a time such that

(I >>1 and |ui - 2| T >> 1. This is exactly true if jw, - w, | is

1 2

a multiple of 2m/T ¢2s. The results are

2 2.2
f(x,,x,/H) = exp = —= (21)
1’72 7o 2nd2 _ 2d2 ]
- 2 .2 2 .2
1 ’ ("1'%"/ "","zJ"(zl—)-i
f(xl’lenl) =~ exp - = T J (22)
2nd - 2d
- 2 2 2 27
/ 1 ("1+§'> +<"2'£21->§
f(x,,x,/H,) = — exp!| - e = : (23)
12 2 anz ‘ 2d2 |

where for convenience x; = iog Li; i=1, 2.

4
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It is noted that the shift in the mean value of, say, X5
between the cases of signal absent and signal present, is equal %o
dz. The standard deviation of Xy is d. Thus, the ratio of the shift
in the mean over the standard deviaticn is given by d itself. The
square of such a ratio is frequently used as the output signal-to-
nolse ratio in detection protlems. This reinforces the choice of
d or d2 as a figure of merit.

Using these probability density functions, it is convenient to
use che geometrical approach of the decision space to calculate the
performance probabiiities. These three functions are represented
in Fig. 2, where the contours of constant probability are centered
around the mean values of the density functions. For the value of
threshold shown, it is seen that under the hypothesis H0 noises only
is present, and there is some prcbability that the point log Ll’
log L2 = X X, will actually fall above the threshold decisicn
curve. This false-alarm probability may be found by integrating
the density function of Eq. (21) ov2r the entire region above and to
the right of the decisior curve. Using Eq. (10} of the decision

curve, this gives

o . 2.2
“zj ey — e"p["ii(x2+g—>:l+
/I d 2d
log 2k
log 2k 9.2
1 d .
I dx, exp \_- —1'2 < x, T 2—) :l (24)
= J2n d - 2d
i 1 1 a2~
dx1 — —exp - —>{ ¥ +
J2n d 2d -

log, 2k - exp(xz)]

M
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Unfortunately, the lower limit determined by the decision curve in
the above integ 1l renders the integral unsolvable in closed form.
A useful approximation to the value of the integral may be made by
using the asymptote to the decisic curve instead of the exact curve
itself. To understand the effect of this approximation, consider
the following argument.

it is seen from Fig. 2 that the probability density funccions of
xl, x, are centered about the valucs + d2/2. Thus, as the signal-
to-noise ratio increases, the centers of these distributions move
away from the origin and move further away from the decision line.
Lf “he distributions are far from this line, its exact shape is no
longer important, and the asymptotes may be used. Another way of
concidering this is to examine the area, Region II, involved in the
approximation. By using the asymptotes, Region II is effectively
added to the 'signal absent decision portion, when it really belongs
to the "signal present" decision portion. The error then is equal to
the probability density integrated over Region II. But, as the
distributions move further away with increasing dz, their value within
this area decreases rapidly. Therefore, it may be said in general
that for large output signal-to-noise ratios, the asymptotes may give
a very good approximation. Since the asymptotes are parallel to the
coordinate axes in both this and the m > 2 cases, the use of the
asymptotes for the decision curve is analogous to making a decision
based on each quantity for log Li independently. Levesque calls this

behavior the '"band-splitting' detector, since it treats the processed

received signal at each of the m different frequencies independently.

|
\
[
|
bl
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The detectour approaches a maximum-likelihood detector fer large output
signal-tc-noise ratios. Again, it shoul. be pointed out that the
signal-to-noise ratio in question is that at the output after pro-
cessing. For small input signal-to-noise ratios, the output signal=-
to-noise ratio may be increased many times by a long integration time,
as incicated by Eq. (18). Since only in the case of fairly large
output signal-to-noise ratios is there any chance of detection, these
are the primary cases of interest. Hence, this aoproximation will be
used in the following.

Returning to the evaluation of the false-alarmm probability, «,
and using the value of the asymptote in the lower limit of the inte-
gration of Eq. (24), log[2k - exp(xz)] = log (2k), @ may be evaluated.

With a change of variable, Eq. (24) becomes

o,;/-:—_nfae,q,('T dv

(25)
1 -v2 i -u?
rh e (F e[ ea(F e
s a
=%[1-@(a)][3+§(a)] (26)
where
a= % + % log 2k (27)
_tz

ol

and where $(x) = -l“'J e ~ dt is the normal probability integral

/21 =x
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given 1i. tables.(h) Using this resuli, the proper threshold may be

set for an allowable false-alarm probability per observation time.
The probability of detection is the probability that the values

log Ll’ log L, will lie above the threshold curve under sither of

2

the hypotheses H H2 (for equally likely signals). This is more

1)
conveniently found by computing the miss probability, B, which is
equal to one minus the detection probability B =1 - Pd’ the
probability that the test quantities yield a point that lies below

the threshold, even though a signal is actually present. Again,

using the asymptotic approximaticn and the same nomenclature

2
a-d =v_ i T

B=1-pda-21-; Imezdvi‘:ezdu (28)
. |

=-21;[1-4>(d-a)-; [1+’§(a)] (29)

Curves of Pd versus d are given in Fig. 3 for various values of
false-alarm probability. As discussed later in this section, these
curves must be straight lines on normal probability scales. The
dotted curves are shown for values of detection probability less than
50 percent, to indicate that the asymptotic decision curve approxi-
mation begins to br:ak down. Actually, an error check was made for
@ = .01 and Pd = 50 percent, which requires d = 2.6, with the result
that the probability of the vector (xl, xz) falling in the error
region, Region II, is 1.506 percent. Therefore, the correct curve of
P, versus d would curve up slightly as d decreases and at d = 2.6

d

would show Pd = 51.506 percent. For higher values of detection
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probability and/or lower values of false-alarm probability, this
error would de.

. very rapidly.

It must be stressed again that this is only an error in the

analytical results to facilitate a closed-form solution.

It does not
reflect an error made by the system. For the example given

above, the actual system has a detection probability 1.5 percent higher
than that shown in Fig. 3.

A negligible error i3 made in the calcu-

lation of &, since the density function as seen in Fig. 2 is situated
so far from Region II.

m=FREQUENCY CASE

I1f the number of possible frequencies at which the signal might

appear is greater than 2, the decision surface is now m-dimensional

m
S1exp[log Li] = mk
i=1

and satisfies, according to Eq. (5), for equally probable frequencies w;

(30)
where k is the preset threshold, and log Li is the quantity described
by Eq. (11) for each frequency w; - In order to calculate the per-

formance probabi’ities, it is necessary to find the joint conditional
probability distributions of the m test quantities log L

Iy i=1, 2,
..+, m, under each of the hypotheses H , Hl’ HZ’ oo, Hm’ where Hi
indicates the assumption that a signal is present at che i
quency w, .

fre-
It is clear from the analysis of Appendix A that the
result will be an m~dimensional normal distril:ution of uncorrelated
variables, and
1.

if no signal is present, all of the m quantities log L
i =

i)
1, 2, ..., m wiil have mean values -d2/2;

Sy
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2. if a signal is present at w, s m - 1 of the quantities will
have negative mean values of ~d2/2, ard the quantity log Lj

will have a positive mean value of a?/2.

The m-dimensional normal distributions must be integrated over
a portion of the decision space determined by the uecision surface
of Eq. (30). Although the actual detector will form the sunm of
Eq. (3C) and compare this sum with the threshold. for purposes of
analysis it is necessary t. make the approximation to the asymptotic
decision surface as was done in the m = 2 case. If d2 is large (duve,
for instance, to a loug observation time), then the mean values of
the quantities mentioned above will be large, either negative or
positive. In Eq. (30) it is seen that if one term is larger than
the others, as will be the case when a2 signal is present at one of the
w5 the exponentiation performed will markedly accentuate this term
and also depress the other terms. Thus, the detector will be ef-
fectively making its decision based on oniy one term. This is equiva-
lent to 3 maximum likelihood detector for whi:h the asymptotic decision
curves are appropriate.

The error protabilities may easily be computed by combinatorial

methods. Since the m quantities log L i=1,2, ..., m are sta-

i’
tistically independent, and for large d2 the asymptotic dev-sion

curve approximation is made so that a decision results according to

each value log L, alone, an overall false alarm will result if any

i

one of the quantities log Li cauges a false alarm. Each test

quantity is nommally distributed with variance d2, and with mean




values -d2/2 or +d2/2 under hypotheses HO and Hj respectively. Here
it is understood that Ho indicates the hvpothesis that no signal is
present in the ith quantity, although it may be present at s me other
frequency. Thus, for each test quantity, the false-alarm and false-

dismissal probabilities (ai and Bi respectively) are given by

o
U A Y 3] .
{B.}—z[l ¢<2¢d10gmk (31)

1

where the asymptotic threshold value log mk is used. The detector
rings a false alarm if any one of the » quantities causes a false

alarm. The probability of this event is given by
=1-(1-a)" (32)
b § O’i dei

for small may, < <1, In addition, a false dismissal occurs wten

all of the m quantities do not exceed the threshold, under the con-
dition that there is a signal present at one of the frequencies.
Since the m test quantities are identically distributed, it makes no
difference at which one the signal actually appears, that is, which
of the quantities log Li produces the false dismissal. Hence, a
false dismissal occurs whenever there are m - 1 correct dismissals

and one false dismissal, and has a probability of occurring

B =8,(1-a)" " ~p, (33)

again for may << 1.

.Muwiw
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The prcoability of detection, Pd =1 - 8, is plotted in Fig. &
o craall valies of m ad R Eilamenlenn pEbe et of 10
and 10-6. it is seen that detectabilivy decreases as m increases,
which is reasonable since there is greater chance of an error with
a large number of independent processors. Also, using the approxi-
mations of Egs. (32) and (33), Eq. (31) may be used to solve for
log mk in terms of the allowable false-alarm probability o®. Using

this value of threshold to compute false-dism.ssal probability by

Eq. (31)

1-Béé{1+®[d-é-l<1~g§ﬁ>;’} (34)

for large values of d2 where é-l(') is the invevse function to ¢(').
It 1s thus seen that Pd = 1 - B is a linear function of d on nommal
probability scales, since the argument of the inverse normal proba-
bility function i; constant with respect to d. This sheds light on
the linearity of the detection probability curves versus d, for
constant @. Finally, it should be noted that the loss in detecta-
bility resulting from doubling the number of possible Irequencies m
in which the signal may appear is equivalent to subtracting about
.15 from the detection index at very low values of &, and a slightly

greater amount at larger values of a. The curve form = i is the

known frequency and known phase detection case.
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LV, DETECTION OF AN INCOHERENT SINUSOID OF UNKNOWN FREQUENCY

The more realistic case of the detection of a sine wave of both
unknown frequency and phase is now --asideres. The signal again
has the form described in Eq. (1), but now the phase ¢ is also random
and uniformly distributed in (0, 27m). The resulting likelihood
ratio, which performs the average over both frequency and phase,
is given in Eq. (6). The quantity in the summai.c has been treated
extensively in the 1iterature,(1’3) as it is the likelihoed ratio
for a sine wave of known frequency and constant amplitude but unknown

phase. For white gaussian noise, the summand beccmes

kR
1
o Jj do L(L,w;¢) = CI (r;) (35)

where C is a constant proportional to the output signal-to-noise power

(4)

ratio, Io(x) is the zero-order modified Bessel functionm, and the

quantity r, is given by

iy 2 r 2
r. = %2 \J/{ I v(t) cos u&t dt } + i II v(t) sin wit dt }
% o 0

(36)

Each test quantity r, is formed by cross-correlating the re-
ceived signal v(t) with the two quadrature-component sinusoids at
the i":h irvequency. If a signal at Wy is indead present in v(t), it
cannot simultaneously be out of p*.se with both of the quadrature-

component sinusoids; consequently, at least one of the cross-

!
{
I
I ‘}
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correlations must yield a non-zero value. r, then forms the ncrmalized
rms value of these two cross-correlations. The quantity r, may also

be generated by passing v(t) through a filter with impulse response

K cos uE(T -t) 0=t=T

h  (t) = { (37)
opt 0 t >T

icr some constant K followed by an amplifier with a gain of 2P/N0K.
This may be seen since the cutput of the filter at time T is
given by the convolution integral as
vo(T) = %2 jI v(T) cos w, T dr (38)
o 0
The final likelihood ratio which the detector must form becomes,

for equally likely frequencies

=l

m
W =2¢ ) I(r) (39)
i=.

The optimum detector consists of a bank of narrow-band f_lters, each
centered at one of the m possible frequencies which the signa. might
have. Thus, the optimum detector forms m terms T, i=1, ..., m
according to Eq. (36), and passes each r, through a nonlinear device
that takes its modified Bessel function. These quantities are then
summed, and the result is compared to a threshold. This is shown
schematically in Fig. 5 on the following page. where, for simplicity,
the term % has teen removed from £(v) above and used to modify a
threshold c¢c. The final threshold is called k. This threshold will be
adjusted to fix the false-alarm probability at the allowable maximum,

and 50 its exact form here is not important.
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By performing the analysis first for the simple m = 2 case, the
likelihood ratio of Eq. (39) becomes, with the constant term ;
3

removed (40)

o

> 0 decide "y s"

v(t) 2

< 0 decide "no"

w ‘
m
r Lﬁ{—— 1 (r )

m

Fig.5—Form of optimum detector

The detector forms this quantity and compares it with the threshold
k. If the sum exceeds k. the signal-accept decision is made. If

the sum does not exceed k, the signal-dismiss decision is made. A
decision curve may be formed in direct analogy to the coherent de-

tecter case, and for m = 2, it will satisfy
Io(rl) + Io(rz) =k (41)

Using the coordinates r this curve is plotted in Fig. 6

1> T

for various values of k, along with the asymptotic values

ISR SRS (42)

-1 3 . s ;
where Io () is the inverse modified Bessel function. The use of
the term asymptote is retained here by analogy with the coherent case,

even though there is strictly no asymptotic value since T, and r,
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are always non-negative. By the asymptotic values here is meant the
largest value of r under the decision curve, or the value of the
decision curve when one envelope is zero (note, IO(O) = 1). It is
seen in Fig. 6 that the decision curve does not appro-ch its asymptote
as quickly as in the last case, shown in Fig. 1. However, the area
of Region Il is approximately constant for different values of k,
and thus for large signal-to-noise ratios this area becomes pro-
portionately less important. For example, later ca'culations will
show that the threshold value k changes very rapidly with signal-to-
noise ratio and false-alarm probability. As d2 (later shown to be
the signal-to-noise ratio) increases, or & decreases, the necessary
value of k increases exponentially. To use two examples, for a
detection probability of 70 percent with a false-alarm prebability
of .01, the required value of d is 3.65, and k = 17,000. For a de-
tection probability of 90 percenr with a false alarm ot .0001, the
required d is 5.6, and k = 5 x 108. For such large values of k, the
error in using the asymptote is clearly negligible.

In conjuncticn with the examples above, it should be remembered
that the false-alamm probability o occurs in each observation inter-
val. If it is desired to calculate from this probability the ex-
pected number of false alarms per year, o is simply multiplied by the
rimber of observation intervals in one year. This is so because the
occurrence of false alarms is independent from one interval to the
next, and therefore the number of false alarms in one year is bi-
nomially distributed with mean value qu, where q is the number of

observation intervals in one year. For example, if o = .0001 and
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each interval lasts 5> min, there are approximately 100,000 intervals

per year, and the expected number of false alarms per year is 10.

PERFORMANCE OF THE DETECTOR
In order to find the probabilities of false alarm and detection,
the joint distribution of the test quantities T i=1,2, ..., m
mus. again be found under the various hypothescs Ho’ Hl’ ..., H as
defined earlier. Due to the fact that the correlators of Eq. (36)
process the received waveform for only a time T, they exhibit an
effective bandwidth of approximately 2/T cps. More precisely, each
correlator, or filter and amplifier, given by Eq. (37), has the ef-
fective frequency response characteristic [Ref. 5, p. 314)
- sin( |t - £ | 2 )

i, (f) | = E£
0] Yooooamfe-g |2

(f > 0C) (43)

The mirror image of this response is, of course, also present at
negative frequencies. Thus, if two possible signal frequencies lie
near each other, there will be some overlap in their correlator re-

sponses, as shown in Fig. 7. It is seen, however, that this overlap

H(P)
[ #ol

|

\

i
iy 1&




31

is small if f1 and f2 differ by more than 2/T cps. When T is large,

tnerefore, there should be very little dependence betwecen the output
signals from such correlators. This is shown more precisely in
Appendix B, where the joint probability density function of the outputs
r, and r, is calculated. It mav be seen there, for example, that the

correlation between r. and r, is given very closely by

1 2
T
sin{w, - w) =
- d2 2 17 2 (44)
= (w, - w) z
2 1“2
if w, is close to w, 5 the case of interest, and is very nearly equal
to
I
. g Sinuw, 5 .
ylz =2d" — ) T (if, say, wy > > wl) (45)
2 2

if w, and w, are widely separated. The quantity ¢12 is a measure of
the dependence given by Eq. (B-21), and depends on the cross moments
defined in Eqs. (B-8) and (B-10". 4Lt can be seen that two conditions
will insure that this dependence is negligible: |“§ - wl\ T>>1,
and for each frequency w, T >>1., This will always be true in
practice. Thus, the envelopes are independent, and their joint

distribution under each bypothesis can be obtained from Appendix B.

For noise only

2 B
p(r),r,/H) = exp[ > (2 4 1) | (46)
and for signal plus noise
r.r -
- 2 1 2 2 4 J
p(rl,rZ/HZ) = ) exp[ ;;E (rl + r, +d) Io(rz) 47

. g F — T S R——— 2
4 = f-:m,w—_&:g
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, . 2 ., ,
where the signal-to-noise ratio, or detection index 47, is identical

to that of the coherent casc
- I
d” = P" & (48)

Under hypothesis H1 that the signal appears instead at w,, the sub-

l’

scripts in Eq. (47) need only be reversed.

ACTUAL FILTER PERFORMANCE

Having obtained a set of correlators as the desired results for
the optimum detector, it is instructive at this point to digress to
the subject of real narrow-band filters in order to compare their
performance with that of tue optimum detector above. It was seen
that the effective bandwidth of the correlator acting for time T was
approximately 2/T cps. This is the minimum attainable bandwidth for
any actual filter acting only for T sec, as is well known from the
uncertainty principle [Ref. 1, p. 21]. Thus, if an actual RLC filter
having a bandwidth muck narrower than 2/T were used, the filter would
be expected to approximate very closely the optimum detector. The

RLC filter is considered to have impulse response equal to

L c
h(T) = Kle-eT cos(wiT + ¢ ;__fvvx__4( + (49)
v(t) { %R } vo(t)

where ¢ = R/2L, u§ = uﬁ - ez, uﬁ = 1/LC, tan § = e’“&’ and

K, = Zeub/u&. This is followed by an amplifier having a gain of
ZP/NCK1, in order to conform with Eq. (38). The bandwidth of the
filter defined by the half-power frequencies is 2e¢ cps. At time T,

the output voltage is given by

|
|
|
|
|
|
|
i
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T

~

v (1) = ﬁz‘J v(T) 2
oo

T costu (x - M) + ¢] dr (50)
It is shown in Appendix C that for an input noise process v(t) with
spectral density of level NO/Z voltszlcps over a band (-, {J) that

is wide with respect to the passband of the filter, the variance of

the output process (at time T) is given by

p2p

N
o

“'fil (eT < < 1) (51)

The autocorrelation function for such a process when the filter has
impulse response existing only for time T is also given there. In
order to find the signal-to-noise ratio at the output, it is neces-
sary to find the effect of the filter on an input sine wave. As shown
in Appendix B, the signal-to-noise ratio d2 is equal to the square of
the envelope output due to a sine wave alone at time T, divided by
the output variance due to the noise input. (Due to the non-gaussian
statistics, this is somewhat different from the coherent case, whers
d2 was simply the square of the shift in the mean value of the output
from the noise only to the signal plus noise cases, divided by the
output variance.) The envelope output may be found as shown in

Appendix C. This value is

p’r

r(T) = o (eT < < 1) (52)
o

It is clear that when this is squared and divided by the value in
Eq. (51), the same value is obtained for the signal-to-noise ratio,
dz, as before, demonstrating that the filter performs as well as the

optimum detector as long as ¢T < < 1.

]
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Cecnsider now the case when this is not true. In practice, with
observation times in the order of hundreds of seconds, it is very
difficult to build filters with bands narrow enough to satisfy this
condition. Practicable filters will have too wide a bandwidth, which
will admit too much noise power, thus degrading the resulting signal~-
to-noise ratio. This is shown in detail in Appendix C. where using
the above filter, it is seen that the variance of the noise output

at time T (provided that uET >>1) is

2 -
__P . -ZeTJ .
Vein = 2eN_ [1 e (53)

when eT is no longer much less than unity. This is seen to apprnach
the previous value as ¢T diminishes. Also, the envelcpe output atc

time T for a sine wave alone is shown to be
2
r(T) = I— [1 - o "T] (54)
eNO

Squaring this and dividing as before by the variance in Eq. (53),
the signal-to-ncise ratio, or detection index, diil’ for the filter
detector when the filter has a bandwidth no longer narrow enough

(eT is no longer necessarily much less than unity) is

62 = .r;z.’.r. R 2_ . _..__..1 - e-ET (53)
fi1 - N eT -T ?
c 1 4+ e

It is thus seen that a degradation factor is introduced, the ratio
of the signal-to-noise ratios for the optimum and the filter de-

tectors. This factor has the value

-¢T
2 _2 .1-¢e
e ZE eT (56)
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and it seen to appreach unity as =T approaches zero, and it approaches
zero as ¢T becomes large.

The above result . -r d%il may be used directly in Egs. (46) and
(47), as long as the filter outputs are approximately independent.
It can be seen from the derivation in Appendix B that the dependence
between the envelopes is given by the quantity ¢i2 = u%3 + “%4’ where
the latter quantities are cross moments between the guadrature com-
ponents of the two filters. Using the technique shown there, and as-
suming that two identical filters are used, of the form of Eq. (49), it
is a straightforward although tedious matter to show that the normal-

2
ized dependence p” =

2,2 .
ylz/wfil is given by

~4eT -2¢T i
2 462 e 2e cos(ub wl) T+ 1

p = oo (57)
Aez + (ub - wl)z 1 -e e

which is small whenever 2¢ < < |ub - w1|; that is, whenever the filter
bandwidth is much smaller than the spacing between the filter center
frequencies (possible signal frequencies). This assures approximat~
independence between , and Ty, and Eq. (55) can be used to calculate
the signal-to-noise ratio when real RLC filters are used in place of
the optimum correlators. This in turn may be used to calculate the
performance probabilities of the detector, according to the rela.ions

given below.

PERFORMANCE PROBABILITIES

Using the decision curve discussed previously, the probabilities
of false alarm and detection may now be calculatea. For large values
of signal-to-noise ratio at the output of the detecto., the asymptotic

approximation to the optimum decision curve may be used, as the type
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of argument made in connectior with the coherent detector decision
space applicc bere as well. That is, for large output signal-to-noise
ratios, Regirn 11 of Fig. 6 has little significance since the centers
of the distributions in question, those of Eqs. (46) and (47), are
located far from this iegion. Ir particular, if there is no signal
present in the ith filter, the output has a mean value r, = d. I:Z
there is a signal present in this filter, the output has a mean value
r, = dz. The mean values are separated by the factor d.

In the actual calculation, the false-alarm probability o is
easily computed by noting thc~ 1 - o is the probability that the point

Ty Ty lies helow the threshold, given Ho

1
b ) rr -
2 2
o=1 - f dr, | dr L2 exp| - b (r7 + ¢ )J (58)
Jo 1 Jo 2 dé L 2d2 1 2
g 2 2
-1- [t ew (- 25) ]
2d
b2
~ 2 .--.xp{~ — (59)
2d
where
b = I;l(k -1 (60)

The approximation leading to Eq. (59) stems from the fact that
o« is required to Le small. Using Eq. (59), b can be found in terms

of the allowable false-alarm probability per observavion time, «*. Thus

b s /242 iog(2/c¥) (61)

This gives the threshold value k of Fig. 5

k=14 IO[ 24 1og(2/a%) ] (62)
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The detecticn prubability can similariy be found, since the
miss probability (B =1 - Pd) is tue probability that r, T, lies

below the threshold if z signal is present, say, at W, .

Pd I drl I dr il f exp [-'——— (r + r§+ d) ] 1 (r )

(63)
e[ ()] - e e 8))] 2
where Q(x,y) is the Q-function, given by
N e
Qx,y) =f te 2 I (xt) de (65)
y
(7)

which has been tatulated by Marcum.

A useful approximatio: is made in Eq. (64) by neglecting
the exponential term as being much smaller than one and then using
the value of b found in Eq. (61). This gives the detection proba-
bility in terms of the false-alarm probability and the detection
index.

pa 2 q( d, /2 log 2/a* ) (66)

\
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Tnis function is plotted in Fig. 8 for several values of allowable
false-alamm probability. Also presented in Fig. 8, tor the purpose
of comparison, are some results of Fig. 3 for the coherent case.

For large values of signal-to-noise ratio, vhere tr.e curves are very
accurate, the incoherent detector yields detection probability
cucves that are parallel straight lines. This indicates that the
detection probability follows a gaussian law, which may be seen by
using the common approximation te the Q-function in Eq. (66), given
by Rice [Ref. 8, p. 241]. It is important to realize that thcre is
a constant loss between the coherent and incoherent results. In
order to achieve the same detection probability with the incoherent
detector as with the coherent detector, the detecticn index must be
increased by adding about 4 = .4. For example, to achieve o = 10-4
Pd = .9, the coherent detector requires d = 5.15, whereas the in-
coherent detector requires d = 5.6. Analysis carried out in temms
of known-phase signals would finally be altered by adjusting the
required d. This difference couid presumably be made up by in-
creasing observation time. The attendant small increase in « would
have littie effect. This amount of required increase is found to
increace slightly with higher false-alarm rates (equivalent to

lower threshoids).

This result indicates that in the case of detecting a sine wave
of unknown frequency in gaussian noise, the probiem may be approached
using coherent techniques, which are more couvenient to work with,
and then introduce some constant loss factor sincc knowledge of the

phase is not available. In retrospect, this result is not so
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surprising when it is considered how the detector forms the optimum
likelihood ratio. It is well known that for a signal of known
frequency in gaussian noise, the necessary increase in d is approxi-
mately .4 as well between the coherert and incoherent detectors. It
seems reasonable that the same sort of behavior would continue to
apply when a set of such variables is simply added in each case. It
is useful, however, to know by how much this loss factor changes, as

given above.

DETECTOR PERFORMANCE, m-FREQUENCY CASE

If the signal can appear at any one of m possible frequencies
with, say, equal probability, the detector is that pictured in Fig. 5,

and the decision curve satisfies

m

Z I(r) =k (67)
i:

Again assuming that lu& o uﬁl IT>>1if w, # wj and w, T >>1 for
all i,j so that the m quantities Io(ri), i=1, 2, ..., m are inde-
pendent, the joint conditional density function of the m quantities
may be formed, and these may be integrated over the m-dimensional
decision space to obtain the false-alarm and detection probabilities.
In a manner analogous to that in Section III, it may be demonstrated
that the asymptotic approximation is valid for large values of d2,
and this approximation will be used here. Although the actual
detector does form the likelihood ratio sum and compares it

with the threshold, the computation uses the approximation that
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the detector forms each of the m terms r, and compares each of them

i
with the threshold given by the asymptote, which is

Ty T 1;1 [k -(@-1)) i=1,2, ..., m (68)

Thus, the same combinatorial techniques may be used where the error
probabilities associated with each quantity r, are found. These then
may be logically combined to obtain the overall error probavilities.

Each quantity r, has the following distribution
_ 2 2,2
P(ri/Ho) = ri/d exp( ri/2d ) (69)
P(r./H.) = r,/d® exp[(~1/2d%)(c% + 4] 1 (r.) (70)
i'i i i o i

The error probabilitics may be formed exactly as done previously,

with the result for each test quantity

exp(-g2/2d2) (71)

R
n

1 - Q(d,g/d) (72)

]

B.

1

where g = I;l[k - (m - 1)]. Combining these for the m-frequency

case, the overall false-alarm and detection probabilities become

a=1- (1 - ai)m ~ Wy
=m exp['g2/2d2] (73)
-1
B=8,{1-a)"  ~8

so that

"
]

g = 1-8; =Q3d,ze/d) (74)

o
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Solving Eqs. (73) and (74) for P, in terms of o, the allowable false-

d
alarm probability, the detecticn probability

Pd = Q (d,‘\/Z log %; ) (75)

Curves of Pd versus d for various values of m and for v = 10-2
and 10-6 are given in Fig. 9, along with some of the coherent de-
tector results of Fig. 4 for comparison. It is seen thai: the curves
are straight lines, indicating that the detectability follows a
gaussian law as is expected from the ncrmal approximation to the
Q-function. Also, it is seen that if the number m of possible
frequencies at which the signal may appear is doubled, an increase
iv d of between .1 and .2 is required in order to achieve the same
detection probability. This very slight loss is encouraging since
in practice the exact frequency would not be known, and many narrow-
band filters would have to be built in order to cover the entise
band of interest.

The results seem intuitively satisfying, since in Zq. (75) it
is seen that the lack of kuowledge about the exact signal frequency
requires that the threshclds be set slightly higher than in the known
frequency case (m = 1). Since a filter is used for each possible
frequency, and there are m parallel detcctors contributing possible
false alarms, a higher threshold will maintain the desired false-
alam rate. Aiso, the appearance of the simple factor d in Eq. (75)
indicates that if a signal is present in one of the m filters, it

alone is significant in causing a detection. The approximation

of Eq. (74) shows this by neglecting the very small contribution to
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a targe“-present decision from noise false alarms. It is seen that
the optimum detector, by passing the filtered signal through a Bessel
function device, greatly accentuates the large signals and depresses
the small signals. This fact causes the single large signal--if

present-~to predeminate.

"
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V. __CONCLUSIONS

The results of the above analysis indicate that it is not neces-
sary to work in terms of unknown bhase datection when considering
unknown frequency in order to be realistic. For the case of a finite
number of known frequencies at which the signal may appear, it is
apparent that any real situation may be approached as if the phase
were indeed known and thus work with gaussian statistics. This
greatly simplifies the analysis, especially for a large number of
possible frequencies. An adjustment is made at the end of the analysis
to account for the actual ignorance of the signal phase, lit this
adjustment is quite constant for many different situations, thereby
allowing accurate final results.

It is seen that the optimum detector for both the coherent and
incoherent cases is a nonlinear device, which acutely accentuates
large received signals. This seems quite reasonable under the cir-
cumstances, for the detector is testing the sum of a large number of
random variables, and unless the detector weighted these in some
manner that drew attention to the strongest member, or equivalently
suppressed the smaller members, the false-alarm rate would be very
high, necessitating a higher threshold setting which would reduce
the detection capability.

By means of the decisior plane geometry it is seen that, althcugh
the optimum detector actually tests the sum of the filter outputs
against a threshold, the system may be analyzed as if each filter

output were separately tested against the threshold. This is, of
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course, a result again of the emphasis placed on large signals. The

system then becomes one of a band-splitting type which divides the
frequency band of concern into a set of small independent bands and
The approximation

interrogates each for the presence of a signal.
of considerinyg the optimum detector as a band-splitting detector,
It is seen from

which is made clear through the use of the geometric approach, is

for large output signal-to-uoise ratios.
.n-plane representation just how the optimum detector

very g
approaches the situation of m approximately orthogonal signals in

the d
The asymptotic approximation finally isolates each filter

noise.
This requires that the

output, permitting m independent decisions.
Even though the power levels of the signal and noise may be very
unfavorable at the hydrophone, a long integration iime will increase

the signal-to-noise ratio to a useful value.
noise level and signal level be constant for the duration of the
In practice, the duration of each observation

(9)

observation interval.
interval will be limited by the noise norc<tationarity and/or the
He

time of passage of the target.

The problem of unknown noise level has been shown by Tuteur
to be of critical importance in an actual detection situation.

has considered the effect of noise uncertainty on the detectability

of submarines by means of their emission of broadband signals and

has demonstrated that unreasonable detection ranges result if roise
He suggests a long-term average-power

uncertainty is ignored.

measurement of the noise level, which would include and presumably
"swamp out'" the short-term fluctuation due to the target's own wide-

T

i

]




band noise as it passed by the hydrophone, as a means of estimating
actual noise level. This technique is intuitively appealing in the
present study also, since the sine wave power will have little effect
on the long-term wideband noise power estimate. There is need feor
further analvsis which considers the detection of both the wide-

band noise and the sine wave signals simultaneously, especially in

light of the critical nature of the results for noise level uncertainty.
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Appendix A

PROBABILITY DISTRIBUTION OF THE TEST QUANTITIES

It is required to find the joint conditional probability demnsity

functions for the test quantities

= = - .l 4 3 ?

x]. log L]. 2 31 K 517 E]_ K v (a-1)
o <. 1 -1 r gL

X, log Lz 2 3 K Zo) w 5, K ¥ (A-2)

where the quantities are as defined in Section III. Since the only
random variable appearing in these expressions is the vector v, which
is jointly gaussian (in n-dimensions), and tince the quantities

X),%, are formed by linear superposition<s of these gaussian variables,
X, and X, are zaussian random variables. dence it only remains

1 2

to find their mean and variance under the three hypctheses, Ho, Hl’

and H,, as dcfined in Section III.

()

indicate the statistical average of the quantity in brackets under the

Let the notation

hypothesis Ho, and similarly for ﬁl and HZ’ If no subscript appears,
then v has already been changed to its component parts, and the average
is that over the uoise pertion. It is clear that these hypotheses

imply

I

i
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Ho ¢ v(t) = n(t)
H v(t) = n(t) + sl(t) (A-4)
H, ¢ v(t) = n(t) + sz(f)

Thus, using standard matrix techniques, the conditional averages

are
2 ,
(), =5+ (eixy)
H H
) )
2 7
N r el /N A-5
) +§'l§ \X/ ( )
H
)
_ &
2

2
S WIS SRR SRS ]
2 -2215 .§l 2325 _5.2 (A6)
2
X =-d—+/s’1<l(§ + n)
iy 2 \ =1 1 4
1 i
2
d 2 ;=1 \
= - ——— 5 A_
2+d+_15 <E/ (A-7)
d2
=+—2——
2 /
/ =_d_ 7 g 1
\Xl>n 2 T s R Gt g
2 1
2
-~ d__ 7 -1 Fa
- 2 +§.1.15 §2 (A-8)
d2
=-7

e p—r=—— e e r—
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In Eq. (A-8), §£‘§-1 S, = 0. This is so because this term indicates

the cross-correlation of two sine waves of different frequencies.

In particular, using the condirions of Eq. (16), where the noise is

asstmed white, there results (provided that ‘ui - uh‘ T>>1)

n
¢t =1 D S, ;
s, K" s, = N G 2, P cos(witj + @1) cossztj + ¢2)
j=1
s jI P2 cos(w. t + ¢.) cos(w,t + © ) dt (A-9)
~N 1 1 "7 2 2
o o
= 0

This is not an exact relation, except when f1 = f2 is a multiple of

1/T cps, but the temm in Eq. (A-9) does not increase with time for
2
reasonably large T, whereas the term - %“ grows linearly with time.

Thus, the cross-correlation term becomes negligible with respect to

2
the %— term for large observation times.
To compute the variances of X = log L1

2 2
A L I t -1 > _1 4
"aruo[xlj =\ ( y t k¥ >Ho ; ¢

[o] [o]
/ T
s’k P vv' ) ks (A-10)
=1 -= /= =
0

¢t =1 -1
= §1 £ 5 K .§.1

¢ =1
=5 K s
= dz

e s = _ — =1
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Hl _
2 2
/. d -1 1 .4
=) + - / - -
W2ty K n > ;4
a1 ;-1 \ -1/ \ -1 a*
= e + + ! - s _a
4 .5.15 _S_lill( <E/ _3_15 &22 /_ls 59 4
= ! K-l
585 5 (A-11)
= d2
2 2 2
_/r_ 4 -l d
vary [x] = \(‘ St K r) )- g
o . ot el r -l r -l 2 r -l :\ -1
_5.15 .Sﬂ]_.s.ll_\ 2+(§15 _5_2) +s5, K g //_lf 3
= o -1
=5 Kk s {A-12)
= dz

The same results are obtained when Xy = log L2 is averaged over the
hypotheses, since x, and x, are similarly distributed. It still
remains to find the correlation between X and x,. Trke normalized

correlation coefficient is
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2 2 /
1(/ d)/ d)‘ 1 PRNES| -1
= X, + 5 X, + o ) = —-< si K vv' K
ARSI C2 2,“(12—1——-—--2H
(o] (o]

ks, A1)

Thus, xy and x, are uncorrelated and conseguently independent. The

joint distribution can then be expressed according to the results

found here, und these are given in Eqs. (21), (22) and (23).

1

|
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Appendix B

JCINT DENSITY FUNCTION OF THE ENVELOPES OF TWO CORKELATORS

In the following derivation, the input is assumed to be a
stationary gaussian noise process with the spectrum level No/2 voltsz/
cps and band limited to (=Q, Q). It is assumed that T > > 1/0.

Thus, the noise may be considered as being white, and the following

way be used for the input autocorrelation function

N
R (1) = 52 6(7) (B-1)
where 6(x) is defined by
[ 20 8(x - a) ax = £Ga) (B-2)

and f£(x) is any function continuous at x = a.
As discussed in Section IV, the optimum detector must form the

two quantities defined by

-—g J'T s
13N v(t) cos ¢ dt

I =
o o
and (B-3)
2
12 =3 JI v(t) sin W, t dt
o o

for the optimum detection of a sine wave at frequency w, rad/sec.

1
It then forms the envelope 1 4sing these quantities according to
Eq. (36). It was shown there that the correlations performed in

Eq. (B=3) could be carried out by a "narrow-band'" filter centered

at w,, as described by Eq. (37). In the following, the terms "filter"

|
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and ''correlator" will be used interchangeably, referring always to the
device that performs the operations of Eq. (36).

Considering further a second filter centered at

2
. 22
I3 =N v(t) cos w,t dt
o o
and T (B-4)
_z | y
14 =3 Y v(t) <in u&t dt

o
Under the hypothesis H.0 that the input v(t) consists of noise alone,
the outputs Il’ IZ’ 13 and I4 are each the result of linear processi.
of a gaussian process and hence are all jointly nommal -+ i -: ables.
It is only necessary to fin' the first and secord mom:nts for each
in order to specify the joint distributicn completely.
Each quantity Ii has zero mear since n(t) has z¢: mean. The

second moments are calculated as follows

IR

" 2P 2 e~
1, = ( ﬁ; ) . dr jj do n(T) n(c) cos w; T cos w0

2P 2 JI jI No
( N ) dr do 7 (1t = o) cos W, T cos wo
c ) )

(B-5)

1t

N
2P 2
== dTt cos” w T
N 1
o) o

PZT

oo
o)




LY
(L, ]

The result is not exact, but as T increases, the rapidly oscillating
portion of the integrand contributes very little to the variance.

Similarly, it is easily shown that

- = = 2

2 2

rd
Ler]

_y2 _RT _ -
IZ_IB_IA_N = (B-6)
o
The covariances are calculated in a similar manner.
2p \2 f i
= | £ g Bl nl~s ¥
1112 (N > er doc n(T) nf~} cos W T sin w0
o c o
2 )
_ 2P i -
= N ) cos ® T sin w7 dr (B=7)

2
Eo sin 2w, 7 dT =
N 1 12
o o
This term does not increase with time, and consequently as T increases,

it vill become negligihle with respect to the variances having the

value PZT/NO. It is thus set to zero at this point.

— 2P2 T
1113 = ﬁo— Io cos wl'r cos ng dr

P_ZI ’_ sin('\n2 . wl) T s SI'.rl(C)g + wl) T 1 T
N, L (m2 - wl) T (w, + u)l) T J

2 si.n(u)2 - 1) T i

oy = W

N (@, - @) T 13
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The approximation in Eq. (B=8) assumes thac the frequeancies wz and

w, are close enough together se chat (m2 + wl) >> iwz - ol thus

making the sum fregquency term above small with respect to the dif-

ference frequency temm. If this is not the case and iustead

(m2 + wl) A ;DZ - o, then

- 1,2,"_, 2 sin w,T
LA T S — )
1113 No wZT (say u)z > u)l,

(B-9)

The results will be the same ir either case, but the interesting

case cf w, close to Wy will be considered here, and Eq. (B-8) will

2
be used. Similarly, the other moments are easily obtained.

2 1

1214 = u.13 , 1'.314 = E_ sin 20!2'r dt = “34 a0
o o

(B-10)
- - T
- . PZT 1 cos(_u‘)_zl wr) I
1: 4 No (wz - 1) T 14 273

These quantities define a symmetrical covariance matrix M like that

of Rice [Ref. 8, p. 215], which may be inverted to form the infor-

mation matrix M

v L Hy o Mg
R v M1e M3
M =K (B'll)
i3 By ¥ g
M W3V v
L —d
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wvhere
p2p 2 2
V=5 and A=y (hyg T 7,0
o (B"‘].Z)
2 2
=y - le

By comparing the variances and the cross moments defired above, it
is readily seen that as long as !ub - wli T>>1, wl T>>1, and

w, T >>1, all of the cross moments will become negligible with

2
respect to § for large T. Thus, M“1 reduces to a diagonal matrix

2

indicating that the random variables I, are independent, and A = §

i
results.

Thus, for the conditional joint density functionm under th=2

hypothesis H_ (under which all variables have zero mean)

1 1.2 -2 22 2]
/ = = -
p(L,,L,,15L,/H) Anzwz exp[ 2y (@] + I, +I5+1)) ] (B~13)

The standard transformation may be made to ihe Rayleigh distribution

for the envelopes r, = ,;E + Ié-and r, = 12 + I2 [Ref. 8, p. 214
: 1 Wt g =4/I3 * I, [Ref. 8, p. 214,
using
I1 = rl cos 61 I3 = r, cos 82

(B-14)

12 =r sin 61 I4 = rz sin 62

Using standard techniques for transformations of random variables
[Ref. 3, p. 31], the following is obtained for the conditional joint
distribution of the envelopes ITRTY from Eq. (B-13)

r

r
172 1 2 2
p(rl,rZIHo) = d4 exp[- ;;E (r1 + rz)] (B-15)
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wh

2re, using § of Eq. (B-12)

N

rd
N

3

(B-16)

l
[}

as in the coherent case. Also, this form for s r2 is seen to be
exactly that for the r of Eq. (36).

When a sine wave is present at the input of the form P cos(wzt + £)
for any angle 7, it is clear tnat the quantities 13 and ]’.4 will have
their means shifted from zero to the valuec

S ) N
13('1) No . P cos(wzt + €) cos wzt dt =

ﬁ sin(szT + £) - sin §]
N [cos € + SoT (3-17)
o 2
2 ,
~d cos E J.fu:«?T>>1
I(T)='2'I',‘ P cos(w,t + E) sin w t dt =
4 No 2 2
2 cos § - cos(2w,T + E)
RT(_ o 2 | -
v [ sin § + o | (B-18)
o 2
2 .
~=d” sin € if w,T: >1

2

Due to signal aicne, the envelcpe to willi have a vaiue of apprcxi-
mately dz. If the above mean elues are used in Eq. (B-13) and the

same transfonastion as in Ei1., {5~24) is used, the joint distribution




of r

> To may be casily obtained [Ref. 8, pp. 214, 238]. Here only

the final result is given

r 2

r
12 exp[- L (r2 + . + da)] I (x,) (B-19)
d4 2d2 1 2 o' 2

p(rl,rz/Hz) =

This completes the derivation c¢f the envelope statistics, but a slight
extension is now made, both as a matter of interest and also because
it yields a useful measure of filter output dependence. The joint
distribution of the envelopes ry and r, when the dependence is not
negligibly small is given here. Thus, starting from the information
matrix of Eq. (B-11), ki3 and p,, are retained throughout, letting
only K1 and A be zero, which is reasonable in light of their
definitions. The following result may be obtained in a manner similar
to Rice's derivation of the autocorrelation function for a filter
output [Ref. 8, p. 2167 but extends the analysis to the case when a
sine wave is present at frequency w,. The dependence between r, and

2 1

+ uia; that is, r, and r_  are

1’2 =
Y12~ ™13 1 2

completely independent only if wlz = 0.

r2 is seen to occur as

The result is as follows: For two envelopes ry and r, under

hypothesis Hz, assuming only that o and gy in Eq. (B-11) are

small
r.r n -r2
172 1 f 1 2
p(r ,r/H)=——fd9exp expl = 7= B7(9)
172" 72 anac o ( 2d20 ) L 20 ]
p [Hoe L] (B-20)
o, o d J

et

il
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where
¢2
12 2 2 2
c=1 --;—- , le = u13 + “14 (B-21)
and
2
2 Ty 2
B7(9) = — td - 2r2 cos § (B-22)
d

A closed-form expression for this was not found, although numerical
techniques could be used to evaluate it.
Uader the hypotnesis HO of noise only, the only change is that

62(9) = ré/dz, which pemits a closed-form evaluation

r.r 1/ r.r
p(r,,r,/H) = -l-z'exp[- L (r2 + r?)] I [ LS 6 “2—2] (B-23)
1’72 70 4 2 1 2 o o 2
do 2d"¢c d
which agrees v '.th Bendat [Ref. 6, p. 308] and prcvides a convenient
check. If ¢12 = 0, then ¢ = 1, and it is easily seen that r, and
r, become independent, leading to Eqs. (B=15) and (B-19) under H

and H2 respectively.
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Appendix C

AUTOCORRELATION FUNCTION FOR THE ACTUAL NARROW-BAND FILTER

Consider the output of the narrow-band filter with impulse re-
sponse as in Eq. (49), when the filter is connected only during (0,T).

The scaling factor 2P/NOK is added by means of an amplifier in order

1
to concur with Eq. (50)

K e-eTcos(w,T + ¢) 0<7<T
) (c-1)

hp () =

0 Otherwice

The input process to the filter is a stationary white ncise process
of the level NO/Z voltszlcps. The noise could as well be band-limited
to a band (-Q, 1); for as long as the passband of the filter is
narrow with respect to this band, the noise could still be assumed
white.

The output correlation function is given by Lee [Ref. 5, p. 332]

o0

R(T) =f hT(v) dvj hT(c) R, (T+ v - 0)do (c-2)

-0

where the input correlation function Ri('r) is given by Eq. (B-1) and
N
equals '5_2 §(1). Thus

2 T
R(T) = (92-2' )J e G"vcr:,s(u)iv + ¢) dv J-T e wcos(wic + )
N o] o
o
pe
7 6(r+ v - 0) do (C=3)
‘2.‘P2 -e(2v+T)
=5 J ¢ cos(wiv + @) cos[u)i('r + v) + @] dv (c-4)
o o

if (v + v) lies in (0,T)

(MHiH

e e T




and equals zero if 7 + v does nst lie in (0, T). This restriction

on T + vV requires that for a given value of T, the range of v is
(=7, T = T); and T is also restricted to (0, T). This sets the upper

limit of the integral

20 o
R(T) = %— e €T IT e “®rcos W T+ cos(2w v + 2¢ + uET)] dv (C-5)
o o

if 1 < T, and zerc otherwise.
The rapidly oscillating portion of the integrand may be neglected

as it contributes very little to R(T), provided ZwigT = T] > > 1. Thus

2 -T .
R(T) = %— e T cos w, T fI e 2ev dv (C-6)
o o
p? 1 2¢7(T-7)
_PT -erT 1 _ ~2er(T-7 -
=y cos w T [ e ][1 e ] c-7

o

and the variance is given by K(0) as

2
. . -ZeT] .
Vein 2eN_ [1 e (C-8)

For a sine wave input to the ciccuit, the output of the filter at
time T may be found in a manner similar to that of Eqs. (B-17) and

(B-18) of Appendix B. The result is that the envelope has the value

2
. P Cad!
r(T) = N [1 - e STJ (for 2w.T > > 1) (C-9)
(o

Consider the case where ¢T < < 1; that is, where the filter is
very narrow band relative to the observation time. Then Ec. (C-8)

reduces to

Y

|

!

f

|
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I . .
Y§i1 T N (eT << 1) (C-10)
o
and Egq. (C-9) becomes
P2T
r(T) = N (eT < < 1) (C~11)

o
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