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PRErACE 

In conjunction with RAND's study of Defense Against Submarine- 

Launched Ballistic Missiles for the Advanced Research Projects Agency, 

background investigations of theoretical methods for calculating the 

performance of nondirectional passive sonobuoys are being conducted. 

The particular investigation presented in this Memorandum evaluates 

the performance of a theoretically optimum processor for detecting 

a sine wave of unknown frequency and unknown phase in gaussian nofse. 

This study should be of interest to analysts in the fields of 

sonar and radar as well as to researchers in the general field of 

signal detection theory. 
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SUMMARY 

This Memorandum considers the problem of detecting a constant 

sine wave of unknown frequency and amplitude in gaussian noise. In 

particular, it is assumed that the sinusoid may appear at any one of 

a finite number of known frequencies, and the probability of its 

»ccurrence at each of these frequencies is assumed to be equal. Two 

cases are treated here. The first assumes that although the frequency 

is not known, the phase of the signal is known, thus allowing co- 

herent detection. The second acknowledges that the initial phase 

indeed could not be known, and an analysis of the incoherent detector 

is made. It is shown that for large, output signal-to-noise ratios, 

the problem in both case.? becomes that of detecting one of m approxi- 

mately orthogonal signals in a noise background. The magnitude of 

the error in the orthogonality approximation is considered. A 

physical realization of an approximately optimum detector structure 

is studied in some detail, and the effect of finite observation time 

is considered. 

The results indicate that the difference between the two cases 

Is small and quite predictable. Thus, in studies of this kind it can 

be assumed that the initial phase is known, the gaussian character of 

the quantities that arise may be retained, and finally, the answers 

can be adjusted to account for the actual lack of knowledge concerning 

the phase. 
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I. INTRODUCTION 

The problem considered here is that of detecting the presence 

of a submarine target by a single, unattended, omnidirectional hydro- 

phone.  It is presumed that such a target emits both wideband noise 

and a set of sine waves of different frequency. This Memorandum 

considers the detection of the target by means of the sine waves. 

Since the exact frequency of each sinusoid will not be known in 

advance, tue problem becomes that of detecting one or ^ore sinusoids 

of unknown frequency in a noise background. 

As a first step toward a solution of this problem, the question 

of detecting a single sinusoid of unknown amplitude and frequency in 

a background of gauosian noise is considered. The noise is assumed 

to have a known spectral density and is assumed stationary, at least 

for the duration of each decision period. In practice, the frequency 

of the sinusoid may only be known within a band of frequencies, and 

may, with equal probability, appear anywhere within this band. As 

a useful approximation tc this situation, the assumption is made here 

that the frequency of the sinusoid has a discrete distribution; that 

is, it can appear at one of a finite number, m, of possible frequencies. 

If this assumed number m is large, then the assumption is not greatly 

different from that of assuming a continuous distribution of fre- 

quency over the band of uncertainty. 

It is seen later in this Memorandum that the false-alarm rate, 

bäing determined only by the noise statistics, is independent of 

signal amplitude, and that detectability of the target increases 

monotonically with signal amplitude. Thus, if signal amplitude is 



not known, but is known to reroain steady over the length of a de- 

tection period, then the system threshold is set by the allowable 

false-alarm rate, and its detection performance will depend only on 
j 

M 
i the actual signal amplitude. Hence, a constant signal amplitude of 

unknown level can be assumed, as done in this Memorandum, giving 

final answers in terms of the actual signal amplitude. The signal 

amplitude may, of course, ;'e converted into target range if the 

signal level emanating from tht target, the transmission loss versus 

distance and the noise level at the receiver are known. 

The first part of the Memorandum deals with the detection of a 

sinusoid of unknown frequency but known phase in gaussian noise. The 

known phase assumption is clearly unrealistic if the frequency is 

not known, but the mathematics are tractable, and it is known from 

studies of known-frequency sine wave detection that the difference 

between coherent and incoherent techniques is small and predictable. 

The second part demonstrates this, dealing with the detection of 

sinusoids of both unknown frequency and phase. This study concludes 

that if work is pursued knowing the phase of the sinusoid, the effect 

of the actual ignorance of phase may then be included by means uf 

some loss factor which is constant over a large range of situationc 

* Confusion sometimes arises concerning the terms "coherent" and 
"incoherent," because their roles in disrnssions of active radar 
systems are quite different from their usage here. In radar nomen- 
clature, "coherent" and "incoherent" refer to methods of integrating 
sequences of pulses, either retaining or destroying the phase struc- 
ture between different pulses. In the present context, however, there 
are no pulses at all. Here, "coherent" specifies actual knowledge of 
signal phase relative to some reference, for all time.  "Incoherent" 
implies the absence of this knowledge, which suggests the use of a 
statistical description. 

ggjB 



II.  STATEHENT OF THE PRDBLm 

A single hydrophone monitors underwater acoustical energy for 

an observation time of T sec. If a signal is present, it is assumed 

to have the following form 

s(t) = P cos(uüt + cp) (1) 

where P is assumed constant, the phase may or may iot be known, and 

the frequency uu. = 2TT f. is a random variable having a discrete 

probability density function 

m 

p(a') = ^ pO«.) 6(0) - a-.) (2) 

i=l 

where 5(x) = ]„.,-  i n    is the Kronecker delta function. 

That is, the signal appears at one of the frequencies u)., and is 

assumed to remain at that frequency for the duration of the obser- 

vation interval. The frequency nay possibly "wobble" slightly from 

interval to interval but is assumed to change so slowly that it is 

essentially constant for the period T. 

The m possible frequencies at which the signal may appear are 

assumed to be contained in a low-frequency band of total width Q. 

The noise process received by the hydrophone, in addition to the 

signal (if present), is assumed to be a stationary, gaussian, random 

process with zero mean, and has a known spectral density N(f). The 

detector wilj, be concerned with the values of f lying in (-Q, Q), and 

thus N(f) is considered as being non-zero only in this band. The 

bandwidth is then Q cps. 
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It Is known from sampling theory that a waveform of duration T sec 

and bandwidth Q cps may be approximately represented by a set of 

^ T numbers. If the frequency band of the wave extends to zero cps, 

then these numbers are simply equally spaced amplitude samples of the 

wave. In the following, it will be mathematically convenient to 

treat the received waveform in terms of these 2Q T amplitude samples. 

The actual detection system will not perform any sampling, however; 

the discrete representation is merely a technique to facilitate manipu- 

lation. The information thus presented to the detector is a vector v 

of n voltage samples where n = 20 T. The column vector v has the 

transpose 

v' = [vCtp, v(t2), ..., v(tn)] (3) 

v(t.) as n(t.)  if signal is absent 

v^tp = n(ti) + P cos(u>t. + 9) if signal is 

present at frequency u) 

It is well known that the optimum detector for a signal con- 

taminated by a random noise is a likelihood ratio detector.  ' If 

any of the input quantities contain unknown parameters, the likeli- 

hood ratio must be averaged over all possible values of these quanti- 

ties according to their probability distribution.  For instance, if 

the signal contains the paramefers 9 and Qfj  which are statistically 

independent but unknown a priori to the observer, the detector must 

form the averaged likelihood ratio 

;(v) = J drop JdPcep L(V, BV e2) (4) 

^^ft" "L'L ■" . '    ' ■'. JlUliiM -L    ■»■'.■!»-■ "'i- -    --.f^     —--.Lwyrai—r !■        ■' ■*V-'--^--^ m 



where the quantity PC©,) is the cumulative probability distribution 

function of 6., , and similarly for P(e„). LCv, 9,, Ö x is the likeli- 

hood ratio, depending on the received vector v, and assuming that the 

signal parameters have the particular values 9. and 9.. The proba- 

bility structure of the unknown parameters may or may not be known 

in a particular case. In the case where 9. is the phase angle of a 

sinusoidal signal, it is reasonable to assume that the angle cp is 

uniformly distributed in the interval 0, 2TT. This assumption will 

be made in the following when the phase is assumed unknown. 

Hence, in the two cases to be considered in this Memorandian: the 

coherent case where the phase angle is assumed known, and the in- 

coherent case where it is assumed to be a uniformly distributed random 

variable, the two quantities must be formed 

m 
Coherent   je(v) = S L(v, a).) p(u3.) (5) 

i=l    1    1 

m 

Incoherent 4(v) = £ p^.) J  f» L(v, u^, cp)        (6) 

i=l     0 

The summation performs integration over the unknown but discretely 

distributed frequency parameter, according to Eq. (2). The two cases 

will be considered separately. 

Although signal level is not known, it is not considered as a 

random variable here, and no averaging is performed over this parameter 

because the operations which the optimum detector performs are not 



influenced by signal amplitude. The resulting detection performance 

depends very strongly on signal strength, but the detector can be 

built with no knowledge of how strong the signals will be.    Noise 
I 

level, on the other hand, must be known in order . * set a false- 

alarm rate. 



III.  DETECTION OF A SINE WAVE OF UNKNOWN FREQUENCY AND KNOWN PHASE 

The case of detecting a single sine wave of known initial phase 

(2) 
but unknown frequency has been considered in some detail by Levesque, 

and this section reports his findings. It is realized that the 

assumption of known phase is unrealistic when the frequency is un- 

kno'-m, but it is believed that the following analysis is useful for 

two reasons:  (1) it manipulates gaussian statistics and is therefore 

tractable, and (2) it places an upper bound on detectability which 

is later (Section IV) seen to be easily related to the unknown phase 

case results. 

The optimum detector forms the quantity given in Eq. (5) aud 

compares it with a preset threshold. If i(v) exceeds this threshold, 

the decision is made that a signal is present. If X(v) does not 

exceed the threj.hold, the signal is dismissed. Levesque introduces 

the concept of the decision hyperplane, which permits a geometrical 

interpretation of the decision process.  Considering the simple case 

where the signal may appear at one of only two possible frequencies, 

m = 2, the averaged likelihood ratio takes the form 

£(v) = p(u;1)L1 + p(u)2)L2 (7) 

or 

= PC^) exp(log LJ +  p(a)2) exp(log L2)        (8) 

where L, = ICv, Uü ) and L = l(v, üü ) for convenience. The form of 

Eq. (8) is used as it is usually more convenient to determine the 

quantity log L, than the likelihood ratio itself. The optimum 
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detector compares the quantity of Eq. (8) with a threshold k, and a 

target-present decision is made depending on whether l(v)  exceeds 

this threshold or not. Thus, the "decision line" that separates one 

decision from the other is that which satisfies the equation 

i(v) = k (9) 

Assuming that the two possible frequencies are equally likely, 

p(uO • p(uO = 1/2, then Eqs. (8) and (9) yield 

log L2 = log[2k - exp(log L^] (10) 

as the equation of the "decision line." This line is shown in Fig. 1 

for various values of the threshold k. As one of the quantities 

log L1 or log L« be omes small, the decision curve rapidly approaches 

an asymptote parallel to one of the coordinate axes. In an actual 

system, a preset value of k is used, and thus one of the curves of 

Fig. 1 will form the boundary between the signal-accept and signal- 

dismiss regions. That is, the processed vector v yields the quantities 

log L., log L0 which correspond to a point on the graph of Fig. 1. 

If this pcint lies above or to the right of the decision line given 

by Eq. (10), a signal-accept decision is made. If log L1 or log L„ 

lies below or to the left of this line, the signal-dismiss decision 

is made. If the number m of possible frequencies were greater than 

two, then the likelihood ratio of Eq. (5) would be compared to some 

other threshold. The resulting decision surface of m dimensions 

would divide an m-dimensional hyperspace into two regions:  signal- 

accept and signal-dismiss. The processed data would yield m numbers, 

■ ■ >!       «.l 

i 



log l{v,u0) 

Decision curve 

Asymptotes   — — — 

-5" 

Fig.l—Coherent sinusoid: decision curve for case of two possible 
frequencies (m = 2) 
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log L., log L-, ..., log L , corresponding to some point in the m- 
1      z in 

dimensional hyperspace; and the signal-accept decision is made if 

the point lies in the appropriate region. Otherwise, the signal- 

dismiss decision is made. 

FORM OF THE LIKELIHOOD RATIO 

The likelihood ratio L(v, uu.) may be written explicitly. It is 

well known that for a signal s. (t) = P cos(a.).t + cp) imbedded in 

gaussian noise with covariance matrix K, the likelihood ratio has the 

form 

L(v, u^) = exp ' J s^K    s^ +  sfjC v (U) 

Here cf is the row vector of time samples of the sinusoid at angular 

frequency ft).. The noise covariance matrix K is related to the noise 

spectral density N(f) by the relation [Ref. 3, p. 103] 

00 

R(T) = J N(f) exp(ju^) df (12) 

K = 

P. wl ' 
R n-l 

R 
ri-2 

K  4  ... 
n-I 

R 

' i    \ 1 
where R,  = R I on y an^ ön = t"112 between samples. 

^- 



The  logarithm of the   likelihood  ratio of  Eq.   (11)  has  the   form 

log L.   =  - ^ s' K"1   s.   +  s.' K-1 v (13) 
i 2—1--—i—i—      - s/ 

The second term indicates that the detector must correlate the re- 

ceived waveform with the signal at the i  frequency. For example, 

if the noise is assumed to have a flat spectral density of level N /2 

2 
volts /cps over the band of all possible frequencies (-Q, Q), then 

the matrix K is given by N I Q, where I. is the unit matrix, the noise 

variance N = N Q, and the correlation portion of Eq. (13) becomes 

n 

s[  K"1 v = ^ ^ P cos^.t + $  v(t ) 

0 j-l 

(14) 

. 2P  ^ 
J  v(t) cosCu^t + tp) dt (15) 

N 
o  o 

Equation (15) approximates the sum of Eq. (14) by an integral and 

makes use of the relation dt = At = 1/(20). 

The first part of Eq. (13) may likewise be analyzed, and it is 

seen to become 



tä 1? 

n 
„2 K^'S^i ^ E? -^Vj^^       a6) 

j=i 

1 2  |'T „2   2. 
2 — J P cos (uKt + q3) dt 

o o 

2 N (17) 

as long as T is large in comparison to each sine wave period, —. 

It is convenient to define the "detection index," d, which satisfies 

d2 - P^/N (18) 

2 
Thus, d is the signal-to-noise ratio at the output of the detector 

at the end of the observation period of T sec and may be used as a 

figure of merit in evaluating detectability.   .is is not the signal- 

to-noise power ratio at the input to the detector, which has the 

2 , 
value P /2N, but it is the ratio after the detector has processed 

the received data. By comparing input and output signal-to-noise 

ratios, it is seen that the "processing gain" is 2Q T, the number of 

degrees of freedom in the sampling representation. Note that although 

P and therefore d are not known a priori, they can be used here as 

if they were known, and the results can be presented in terms of d 

as a parameter. 

PEPJORMANCE OF THE DETECTOR 

It  remains to calculate the performance of the detector.    This 

requires findiu»  the probabilities of false alarm and detection for 
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particular settings of the threshold and for particular values of input 

slgnal-to-noise ratio. In order to do this, the conditional joint 

distributions of the test quantities log L.. , log L„ must be computed 

under the three hypotheses 

H : no signal present, v(t) = n(t) 

H..: signal present at UD,, v(t) = n(t) + s1(t) 

H'.  signal present at u)., v(t) = n(t) + s9(t) 

(19) 

(2ü-a) 

(20-b) 

Levesque has done this, and the derivations appear in Appendix A. 

It is shown there that the resultant joint distribution is gaussian 

and that the quantities log L.. and log L are approximately indepen- 

dent since there is almost no correlation between sine waves of dif- 

ferent frequencies over a long observation time, a time such that 

CT > > 1 and |u) - us | T > > I. This is exactly true if |u- - u)01 is 

a multiple of 2TT/T ens. The results are 

i     ^XI 
+
 F)

+
L
X

2 
+
 F) fCx-.x /H ) = -^ exp - > 1  2 ^  \ 2 1U 

*•    0        2-nd _ 2dz 
(21) 

f(x1.x2/H1) = ^T exp ' - ^Xl  2 " y*      2    J 

1 2 1   2TTd'    ^ 2d2 
(22) 

,2 ^2 ,2 ^2 

f(x1 ,*Jnj  = -^ expi - ^ ^-^ ^ 2-^- l   (23) 
1 2 2   2^^   ! 2dZ 

where for convenience x. - log L.; i ■ 1, 2. 

^MBpP" 
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It is noted that the shift in the mean value of, say, x^, 

between the cases of signal absent and signal present, is equal to 

2 
d . The standard deviation of x, is d. Thus, the ratio of t^ie shift 

in the mean over the standard deviation is given by d itself. The 

square of such a ratio is frequently used as the output signal-to- 

noise ratio in detection protlems. This reinforces the choice of 

2 
d or d as a figure of merit. 

Using these probability density functions, it is convenient to 

use i:he geometrical approach of the decision space to calculate the 

performance probabilities. These three functions are represented 

in Fig. 2, where the contours of constant probability are centered 

around the mean values of the density functions. For the value of 

threshold shown, it is seen that under the hypothesis H noise only 

is present, and there is some probability that the point log L,, 

log L- » x., x» will actually fall above the threshold decision 

curve. Thtb false-alarm probability may be found by integrating 

the density function of Eq. (21) o\2X  the entire region above and to 

the right of the decision curve. Using Eq. (10) of the decision 

curve, this gives 

co ,22 

« " J    ^2 7^" eXP [" i C X2 + f ) J + 
y2n d 

log 2k 
2d 

log 2k 2 2 

/2TT d     - 2d 

logL2k - exp(x2)] 
Jiü d 

dx1   exp ^(^r)2] 
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f(x1#   x2/H2) 

Asymptote ="- log 2k 

-d72 

Region 

fix,, x2/H0) 

> -7" 

x2 - log   -2 

d 
2 

Region 

—»-Region II 

Decision 
curve 

-d y 2 

XJ =  log L] 

Kx,, x2/H,) 

Contour of constant 
probability density 

Fig.2—Location of probability density functions relative to 
decision regions under three hypotheses for m = 2 case 
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Unfortunately, the lower limit determined by the decision curve in 

the above integ il renders the integral unsolvable in closed form. 

A useful approximation to the value of the integral may be made by 

using the asymptote to the decisic curve instead of the exact curve 

itself. To understand the effect of this approximation, consider 

the following argument. 

it is seen from Fig. 2 that the probability density funccions of 

2 
x , x are centered about the values ± d /2. Thus, as the signal- 

to-noise ratio increases, the centers of these distributions move 

away from the origin and move further away from the decision line. 

If "'he distributions are far from this line, its exact shape is no 

longer important, and the asymptotes may be used. Another way of 

considering this is to examine the area, Region II, involved in the 

approximation. By using the asymptotes. Region II is effectively 

added to the "signal absent" decision portion, when it really belongs 

to the "signal present" decision portion. The error then is equal to 

the probability density integrated over Region II. But, as the 

2 
distributions move further away with increasing d , their value within 

this area decreases rapidly. Therefore, it may be said in general 

that for large output signal-to-noise ratios, the asymptotes may give 

a very good approximation. Since the asymptotes are parallel to the 

coordinate axes in both this and the m > 2 cases, the use of the 

asymptotes for the decision curve is analogous to making a decision 

based on each quantity for log L. independently. Levesque calls this 

behavior the "band-splitting" detector, since it treats the processed 

received signal at each of the m different frequencies independently. 
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The detector approaches a maximum-likelihood detector for large output 

signal-tc-noise ratios. Again, it shoula be pointed out that the 

signal-to-noise ratio in question is that at the output after pro- 

cessing. For small input signal-to-noise ratios, the output signal- 

to-noise ratio may be increased many times by a long integration time, 

as incicated by Eq. (18), Since only in the case of fairly large 

output signal-to-noise ratios is there any chance of detection, these 

are the primary cases of interest. Hence, this aoproximation will be 

used in the following. 

Returning to the evaluation of the false-alarm probability, ot, 

and using the value of the asymptote in the lower limit of the inte- 

gration of Eq. (24), log[2k - exp(x-)] = log (2k), a may be evaluated. 

With a change of variable, Eq. (24) becomes 

a =     exp I -T— ) dv 
/2WJa    ^27 

(25) 

^J  ^(ih)^! exp(^-)du 

= |- [l - f (a) ] [3 + Ma) ] (26) 

where 

a = I + I log 2k (27) 

.t2 

1  i*  2 
and where $(x) -  —- I  e  dt is the normal probability integral 

/2^-x 
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given ii tables. ^ Using this result, the proper threshold nay be 

set for an allowable false-alarm probability per observation time. 

The probability of detection is the probability that the values 

log L,, log L- will lie above the threshold curve under either of 

the hypotheses H., H„ (for equally likely signals). This is more 

conveniently found by computing the miss probability, 3, which is 

equal to one minus the detection probability ß = 1 - P,. the 

probability that the test quantities yield a point that lies below 

the threshold, even though a signal is actually present. Again, 

using the asymptotic approximation and the same nomenclature 

2        2 a-d -v        -u 

e ' ! " ""d " fc 
2       r3    2 

e   dv j  e ^ du (28) 
•00 -OT 

= i [l - #(d - a)j [l + f(a)] (29) 

Curves of PJ versus d are given in Fig. 3 for various values of 

false-alarm probability. As discussed later in this section, these 

curves must be straight lines on normal probability scales. The 

dotted curves are shown for values of detection probability less than 

50 percent, to indicate that the asymptotic decision curve approxi- 

mation begins to briak down. Actually, an error check was made for 

a = .01 and P, = 50 percent, which requires d = 2.6, with the result 

that the probability of the vector (x1, x«) falling in the error 

region, Region II, is 1.506 percent. Therefore, the correct curve of 

P, versus d would curve up slightly as d decreases and at d = 2.6 

would show P, ■ 51.506 percent. For higher values of detection 
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probability and/or lower values of false-alarm probability, this 

error would de*   . very rapidly. 

It must be stressed again that this is only an error in the 

analytical results to facilitate, a closed-form solution. It does not 

reflect an error made by the system.  For the example given 

above, the actual system has a detection probability 1.5 percent higher 

than that shown in Fig. 3. A negligible error i5 made in the calcu- 

lation of a, since the density function as seen in Fig. 2 is situated 

so far from Region II. 

m-FREQUENCY CASE 

If the number of possible frequencies at which the signal might 

appear is greater than 2, the decision surface is now m-dimensional 

and satisfies, according to Eq. (5), for equally probable frequencies u). 

m 

) exp[log L.] = mk (30) 

1=1 

where k is the preset threshold, and log L. is the quantity described 

by Eq. (11) for each frequency OJ. . In order to calculate the per- 

formance probabi'ities, it is necessary to find the joint conditional 

probability distributions of the m test quantities log L  i = 1, 2, 

.... m, under each of the hypotheses H , H,, H0, ..., H , where H. 
o  i  Z      in       i 

Indicates the assumption that a signal is present at ehe i  fre- 

quency u).. It is clear from the analysis of Appendix A that the 

result will be an m-dimenstonal normal distribution of uncorrelated 

variables, and 

1.  if no signal is present, all of the m quantities log L., 

2 
i = 1, 2, ..., m will have mean values -d /2; 

_t -LJ  _L—Äi» 
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2.  If a signal is present at u)., m - 1 of the quantities will 

2 
have negative mean values of -d ll,  and the quantity log L. 

2 
will have a positive trean value of d /2. 

The m-dimeusional normal distributions must be integrated over 

a poition of the decision space determined by the uecision surface 

of Eq. (30). Although the actual detector will form the SUB of 

Eq. (30) and compare this sum with the threshold, for purposes of 

analysis It is necessary to make the approximation to the asymptotic 

2 
decision surface as was done in the m = 2 case. If d is large (due, 

for instance, to a long observation time), then the mean values of 

the quantities mentioned above will be large, either negative or 

positive. In Eq. (30) it is seen that if one term is larger than 

the others, as will be the case when a signal is present at one of the 

uj. , the exponentiation performed will markedly accentuate this term 

and aL-o depress the other terms. Thus, the detector will be ef- 

fectively making its decision based on only one term. This is equiva- 

lent to ^ maximum likelihood detector for whi^h the asymptotic decision 

curves are appropriate. 

The error probabilities may easily be computed by combinatorial 

methods. Since the m quantities log I., i = 1, 2, ..., m are sta- 

2 
tistically independent, and for large d the asymptotic dec sion 

curve approximation is made so that a decision results according to 

each value log L. alone, an overall false alarm will result if any 

one of the quantities log L. causes a false alarm.  Each test 

2 
quantity is normally distributed with variance, d , and with mean 

gggg BBMea^ 
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2      2 values -d /2 or +d'"/2  under hypotheses H and H, respectively.  Here 

it is understood that H Indicates the hypothesis that no signal is 

present in the i  quantity, although it may be present at s me other- 

frequency. Thus, for each test quantity, the false-alarm and false- 

dismissal probabilities {a.   and ß. respectively) are given by 

0'. 

UM^-'CW^O] <w 

where the asymptotic threshold value log mk is used. The detector 

rings a false alarm if any one of the P quantities causes a false 

alarm. The probability of this event is given by 

a = 1 - (1 - a.)"1 «ma, (32) 

for small ma.  < < 1.  In addition, a false dismissal occurs wMn 
i 

all of the m quantities do not exceed the threshold, under the con- 

dition that there is a signal present at one of the frequencies. 

Since the m test quantities are identically distributed, it makes no 

difference at which one the signal actually appears, that is, which 

of the quantifies log L. produces the false dismissal.  Hence, a 

false dismissal occurs whenever there are m - 1 correct dismissals 

and one false dismissal, and has a probability of occurring 

(3 = ß.(l - a.)1""1 «ßi (33) 

again for mo. < < 1. 
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The prcoabiiity of detection,  P    =  1  -  B,  Is plotted in Fig.  4 

-2 
for several values of m and  for false-alarm probabilities of  10 

-ft 
and 10 . It is seen that detectability decreases as m increases, 

which is reasonable since there is greater chance of an error with 

a large number of independent processors. Also, using the approxi- 

mations of Eqs. (32) and (33), Eq. (31) may be used to solve for 

log mk in terms of the allowable false-alarm probability a*. Using 

this value of threshold to compute false-dismissal probability by 

Eq. (31) 

1 - 0 i i{l + $ [d - c^"1 C 1 - 2^ ) ]} (34) 

2      -1 
for large values of d where $ (■) is the inverse function to l('). 

It is thus seen that P, = 1 ~ g is a linear function of d on normal 
d 

probability scales, since the argument of the inverse normal proba- 

* 
bility function is constant with respect to d. This sheds light on 

the linearity of the detection probability curves versus d, for 

constant a-    Finally, it should be noted that the loss in detecta- 

bility resulting from doubling the number of possible frequencies m 

in which the signal may appear is equivalent to subtracting about 

.15 from the detection index at very low values of a,  and a slightly 

greater amount at larger values of a. The curve for m » 1 is the 

known frequency and known phase detection case. 
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IV,  DCTECTTON OF AM  INCOHERENT SINUSOID OF UNKNOWN FREQUENCY 

The more realistic case of the detection of a sine wave of both 

unknown frequency and phase is now :-nsidere^. The signal again 

has the form described in Eq. (1) , but now the phase cp is also raudora 

and uniformly distributed in (0, 2TT) . The resulting likelihood 

ratio, which performs the average over both frequency and phase, 

is given in Eq. (6). The quantity in the summaiiU has been treated 

'l 3) 
extensively in the literature/ ' ^ as it is the likelihood ratio 

for a sine wave of known frequency and constant amplitude but unknown 

phase.  For white gaussian noise, the summand becomes 

,   P2TT 

2v 
dec L(v,a).cp) ^ C I (r.) (35) 

where C is a constant proportional to the output signal-to-noise power 

(4) 
ratio, I (x) is the zero-ordnr modified Bessel function,  ' and the 

' o ' 

quantity r. is given by 

r. = -jp \/{ f v^ cos ^ dt } + 1 J v^  sin ^i*  dt } 
o      o o 

(36) 

Each test quantity r4 is formed by cross-correlating the re- 

ceived signal v(t) with the two quadrature-component sinusoids at 

the i£ ' iraquency. If a signal at u>. is indeed present in v(t) , it 

cannot simultaneously be. out of p'- 4se with both of the quadrature- 

component sinusoids; consequently, at least one of the cross- 
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correlations must yield a non-zero value,  r. chen forms the normalized 

rms value of these two cross-correlations. The quantity r. may also 

be generated by passing v(t) through a filter with impulse response 

f K  cos uu (T - t)  0 < t < T 

V(t)" i „        ' T 
(37) 

for some constant K followed by an amplifier with a gain of 2P/N K. 

This may be seen since the output of the filter at time T is 

given by the convolution integral as 

v (T) = -F !  V(T) N J 
o o 

COS Ui. T dr (38) 

The final likelihood ratio which the detector must form becomes, 

for equally likely frequencies 

m 

'(v) - J C \   I^r.) (39) 

i=l 

The optimum detector consists of a bank of narrow-band f_lters, each 

centered at one of the m possible frequencies which the signat might 

have. Thus, the optimum detector forms m terms r., i = 1, ..., m 

according to Eq. (36), and passes each r, through a nonlinear device 

that takes its modified Bessel function. These quantities are then 

summed, and the result is compared to a threshold. This is shown 

schematically in Fig. 5 on the following pagp. where, for simplicity, 

the term — has been removed from X(v) above and used to modify a 

threshold c. The final threshold is called k. This threshold will be 

adjusted to fix the false-alarm probability at the allowable maximum, 

and 30 its exact form here is not important. 
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By performing the analysis first for the simple m = 2 case, the 

likelihood ratio of Eq. (39) becomes, with the constant term : 

T.i 

rem0ved i = 1  (r.) + X (r.) (40) 
o 1    o 2 

> 0 decide "y s' 

< 0 decide ''no1 

Fig.5—Form of optimum detector 

The detector forms this quantity and compares it with the threshold 

k. If the sum exceeds k. the signal-accept decision is made. If 

the sinn does not exceed k, the signal-dismiss decision is made.  A 

decision curve may be formed in direct analogy to the coherent de- 

tector case, and for m = 2, it will satisfy 

Io<rl) + W (41) 

Using the coordinates r., r., this curve is plotted in Fig. 6 

for various values of k, along with the asymptotic values 

vvr2  = Io (k - 1) (A2) 

.-1 
where I  (•) is the inverse modified Bessel function. The use of 

o 

the term asymptote is retained here by analogy with the coherent case, 

even though there is strictly no asymptotic value since r and r« 

i iyn a 
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Fig.6—Incoherent sinusoid: decision curve for case of 
two possible frequencies (m = 2) 
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are always non-negative.  By the asymptotic values here is meant the 

largest value of r under the decision curve, or the value of the 

decision curve when one envelope is zero (note, I (0) ^ 1). It is 

seen in Fig. 6 that the decision curve does not approach its asymptote 

as quickly as in the last case, shown in I ig. 1. However, the area 

of Region II is approximately constant for different values of k, 

and thus for large signal-to-noise ratios this area becomes pro- 

portionately less important. For example, later calculations will 

show that the threshold value k changes very rapidly with signal-to- 

2 
noise ratio and false-alarm probability. As d (later shown to be 

the signal-to-noise ratio) increases, or a decreases, the necessary 

value of k increases exponentially. To use two examples, for a 

detection probability of 70 percent with a false-alarm probability 

of .01, the required value of d is 3.65, and k = 17,000. For a de- 

tection probability of 90 percent with a false alarm ot .0001, the 

8 
required d is 5.6, and k = 5 x 10 . For such large values of k, the 

error in using the asymptote is clearly negligible. 

In conjunction with the examples above, it should be remembered 

that the false-alarm probability 0/  occurs in each observation inter- 

val. If it is desired to calculate from this probability the ex- 

pected number of false alarms per year, a  is simply multiplied by the 

number of observation intervals in one year. This is so because the 

occurrence of false alarms is independent from one interval to the 

next, and therefore the number of false alarms in one year ?s bi- 

nomially distributed with mean value qa, where q is the number of 

observation intervals in one year. For example, if a = .0001 and 

t^ ^ 
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each interval lasts 5 min, there are approximately 100,000 intervals 

per year, and the expected number of false alarms per year is 10. 

PERFORMANCE OF THE DETECTOR 

In order to find the probabilities of false alarm and detection, 

the joint distribution of the test quantities r., i = 1, 2, ..., m 

mucL again be found under the various hypothesrs H , H, , .... H as 
o  1       m 

defined earlier.  Due to the fact that the correlators of Eq. (36) 

process the received waveform for only a time T, they exhibit an 

effective bandwidth of approximately 2/T cps. More precisely, each 

correlator, or filter and amplifier, given by Eq. (37), his the ef- 

fective frequency response characteristic [Ref. 5, p. 314] 

sin( 2rr|f - f I | ) 

IVf) 1 = f ~L- fY2^-     (f > c) 
o  2TT f - f. Mr 

(43) 

i1 2 

The mirror image of this response is, of course, also present at 

negative frequencies. Thus, if two possible signal frequencies lie 

near each other, there will be some overlap in their correlator re- 

sponses, as shown in Fig. 7. It is seen, however, that this overlap 

H(f) 

Mirror 

image ("r ^i) 

[—2/T—I 
Fig.7—Effective characteristics of filters 

f cps 
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is small if f, and f differ by more than 2/T cps. When T is large, 

tnerefore, there should be very little dependence between the output 

signals from such correlators. This is shown more precisely in 

Appendix B, where the joint probability density function of the outputs 

r, and r_ is calculated. It mav be seen there, for example, that the 

correlation between r. and r. is given very closely by 

T 

t12 = d 
2 Sln(a2 I V 2 

(^2 - ^) | 

(44) 

if u) is close to uu , the case of interest, and is very nearly equal 

to 

T 
2 sm ai — 

*12 '  2d T     (if' Say' "2 > > V (45) 
'D. 
2 2 

if u) and OJ are widely separated. The quantity f.» is a measure of 

the dependence given by Eq. (B-21), and depends on the cross moments 

defined in Eqs. (B-8) and (B-IO". it can be seen that two conditions 

will insure that this dependence is negligible: U) - u^) T > > 1, 

and for each frequency u). T > > 1. This will always be true in 

practice. Thus, the envelopes are independent, and their joint 

distribution under each hypothesis can be obtained from Appendix B, 

For noise only 

p(r1,r2/Ho) = -^ exp[. -^ (r* + r*)] 
2d 

and for signal plus noise 

r,r. 

(46) 

P(rrr2/H2) = -^ exp[- -^ (c] + ^ + d4)] Io(r2) (47) 
d Zd 

SBEg 
^ "^ m* 
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2 
where the signal-to-noise ratio, or detection index d , is identical 

to that of the coherent case 

2   2 T 
d = P J- (48) 

o 

Under hypothesis H, that the signal appears instead at OL, the sub- 

scripts in Eq. (47) need only be reversed. 

ACTUAL FILTER PERFORMANCE 

Having obtained a set of correlators as the desrred results for 

the optimum detector, it is instructive at this point to digress to 

the subject of real narrow-band filters in order to compare their 

performance with that of the optimum detector above. It was seen 

that the effective bandwidth of the correlator acting for time T was 

approximately 2/T cps. This is the minimum attainable bandwidth for 

any actual filter acting only for T sec, as is well known from the 

uncertainty principle [Ref. I, p. 21]. Thus, if an actual RLC filter 

having a bandwidth much narrower than 2/T were used, the filter would 

be expected to approximate very closely the optimum detector. The 

RLC filter Is considered to have impulse response equal to 

L    C 
h(T) = Kje"6'' cosC^x + cp)      __rafarv—K-^—       (49) 

v(t) { IR } vo(t) 

2   2   2  2 
where c ■ R/2L, u) = üü - e , * = 1/LC, tan -? = e/uu., and 

i   o      o i 

K1 = 2eu) /OJ, . This is followed by an amplifier having a gain of 

2P/N K,, in order to conform with Eq. (38). The bandwidth of the 

filter defined by the half-power frequencie«; is 2e cps. At time T, 

the output voltage is given by 
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vo(T) - 1^ J V(T) e"e(T"T) co^il  - T) + cp] dT      (50) 
o c 

It is shown in Appendix C that for an input noise process v(t) with 

2 
spectral density of level N /2 volts /cps over a banc1 (-Q, f,) that 

is wide with respect to the passband of the filter, the variance of 

the output process (at time T) is given by 

2 

tfil •" p    (sT < < 1) (51) 
o 

The autocorrelation function for such a process when the filter has 

impulse response existing only for time T is also given there. In 

order to find the signal-to-noise ratio at the output, it is neces- 

sary to find the effect of the filter on an input sine wave. As shown 

2 
in Appendix B, the signal-to-noise ratio d is equal to the square of 

the envelope output due to a sine wave alone at time T, divided by 

the output variance due to the noise input.  (Due to the non-gaussian 

statistics, this is somewhat different from the coherent case, wher^. 

2 
d was simply the square of the shift in the mean value of the output 

from the noise only to the signal plus noise cases, divided by the 

output variance.) The envelope output may be found as shown in 

Appendix C. This value is 

r(T) - |p    (eT < < 1) (52) 
o 

It is clear that when this is squared and divided by the value in 

Eq. (51), the same value is obtained for the signal-to-noise ratio, 

2 
d , as before, demonstrating that the filter performs as well as the 

optimum detector as long as cT < <■' i. 

s     ^J^MMB"1  |..a==^r ;    - -_-3^-^=--  - —  .   «J^^-  „MiJL.JlL. .  ^Li 
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Consider now the case when this is not true. In practice, with 

observation times in the order of hundreds of seconds, it is very 

difficult to build filters with bands narrow enough to satisfy this 

condition. Practicable filters will have too wide a bandwidth, which 

will admit too much noise power, thus degrading the resulting signal- 

to-noise ratio. This is shown in detail in Appendix C. where using 

the above filter, it is seen that the variance of the noise output 

at time T (provided that üU.T > > 1) is 

p2 r 
*fiia T^T L1 

o 

-2€T 
e (53) 

when eT is no longer much less than unity. This is seen to approach 

the previous value as eT diminishes.  Also, the envelope output ac 

time T for a sine wave alone is shown to be 

,2 
r(I) - fü- [l - 

o 

e-eT (54) 

Squaring this and dividing as before by the variance in Eq. (53), 

2 
the signal-to-noise ratio, or detection index, d..., for the filter 

detector when the filter has a bandwidth no longer narrow enough 

(eT is no longer necessarily much less than unity) is 

2   i^T  2_  1 - e"eT . 
fil  N  ' eT * , , -eT 0J) 

o 1 + e 

It is thus seen that a degradation factor is introduced, the ratio 

of the signal-to-noise ratios for the optimum and the filter de- 

tectors. This factor has the value 

n2  2 . 1 - e"eT D = IT * TTTlT (56) 
i + e 
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and it seen to approach unity as ^T approaches zero, and it approaches 

zero as eT becomes large. 

2 
The above result . ^»r df.. may be used directly in Eqs. (46) and 

(47), as long as the filter outputs are approximately independent. 

It can be seen from the derivation in Appendix B that the dependence 

2    2    2 
between the envelopes is given by the quantity ijf.^ ■ M-.,. + M-. , , where 

the latter quantities are cross moments between the quadrature com- 

ponents of the two filters. Using the technique shown there, and as- 

suming that two identical filters are used, of the form of Eq. (49), it 

is a straightforward although tedious matter to show that the normal- 

?   2  2 
ized dependence p' = ^     /^ is given by 

.        . 2      e~4eT - 2e"2eT COS(Uü_ - UüJ T + 1 

P =2*     ,2     "    " ^T (57) 

4e + (u) - yti,) 1 - e 

which is small whenever 2e < < |UJ " ^I I» that is, whenever the filter 

bandwidth is much smaller than the spacing between the filter center 

frequencies (possible signal frequencies). This assures approximate 

independence between r. and r_, and Eq. (55) can be used to calculate 

the signal-to-noise ratio when real RLC filters are used in place of 

the optimum correlators. This in turn may be used to calculate the 

performance probabilities of the detector, according to the rel^.ions 

given below. 

PERFORMANCE PROBABILITIES 

Using the decision cuive discussed previously, the probabilities 

of false alarm and detection may now be calculated.  For large values 

of signal-to-noise ratio at the output of the detectoi, the asymptotic 

approximation to the optimum decision curve may be used, as the type 

- .1  _»-  ^;- 
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of argument made in connection with the coherent detector decision 

space applicc here as well. That is, for large output signal-to-noise 

ratios, Region II of Fig. 6 has little significance since the centers 

of the distributions in question, those of Eqs. (46) and (47), are 

located far from this i.egion. In particular, If there Is no signal 

th 
present in the i  filter, the output has a mean value r. = d. If 

there is a signal present in this filter, the output has a mean value 

2 
r, = d . The mean values are separated by the factor d. 

In tht actual calculation, the false-alarm probability a  is 

easily computed by noting th,,*" 1 - a is the probability that the point 

r.., r? lies below the threshold, given H 

4 
d^    ^ 2d* 

2 ^ ^2 

Id' 

2 

a -1 ■ Jo 
dri Jo 

dr2 "^4 expL' ;T2 (ri+ vJ        (58> 

where 

« 2 -xpf- ■— 1 (59) 
2d J 

b = l'o
lik  - 1) (60) 

The approximation leading to Eq. (59) stems from the fact that 

a is required to be small. Using Eq. (59), b can be found in terms 

of the allowable false-alarm probability per observation time, cr*. Thus 

b *J V2d2 iog(2/tf*) (61) 

This gives the threshold value k of Fig. 5 

k = 1 4 Io[v4d
2 log(2/a*) ] (62) 
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The detection piubability can similarly be found, since the 

trass probability (ß = 1 - P,) is tue probability that r^ r2 lies 

below the threshold if a signal is present, say, at a)0. 

Pd i 1 - J dr1 J dr2 -^ cxp [- -ij (r^ r^ d4) ] I (r ) 
o     o     d        2d 

(63) 

-[l- exp(-^-)][l-Q(dJf )] (64) » 1 
2d* 

where Q(x,y) is the Q-function, given by 

(t2-H x2) 
00    - '       ■ 

Q(x,y) = J t e    2    Io(xt) dt (65) 
y 

which has been tabulated by Marcum. 

A useful approximatioi is made in Eq. (64) by neglecting 

the exponential term as being much smaller than one and then using 

the value of D found in Eq. (61). This gives the detection proba- 

bility in terms of the false-alarm probability and the detection 

index. 

Pd = Q (^ d, Jl  log 2/ä* ) (66) 

T 
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This function is plotted in Fig. 8 for several values of allowable 

false-alarm probability. Also presented in Fig. 8, tor the purpose 

of comparison, are some results of Fig. 3 for the coherent case. 

For large values of signal-to-noise ratio, vhere the curves are very 

accurate, the incoherent detector yields detection probability 

curves that are parallel straight lines. This indicates that the 

detection probability follows a gaussian law, which may be seen by 

using the common approximation to the Q-function in Eq. (66), given 

by Rice [Ref. 8, p. 241]. It is important to realize that there is 

a constant loss between the coherent and incoherent results. In 

order to achieve the same detection probability with the incoherent 

detector as with the coherent detector, the detecti.cn index must be 

-4 
increased by adding about d = .4. For example, to achieve a =  10     , 

P, = .9, the coherent detector requires d = 5.15, whereas the in- 

coherent detector requires d = 5.6. Analysis carried out in terms 

of known-phase signals would finally be altered by adjusting the 

required d. This difference could presumably be made up by in- 

creasing observation time. The attendant small increase in a would 

have little effect. This amount of required increase is found to 

increase slightly with higher false-alarm rates (equivalent to 

lower thresholds). 

This result indicates that in the case of detecting a sine wave 

of unknown frequency in gaussian noise, the problem may be approached 

using coherent techniques, which are more convenient to work with, 

and then introduce some constant loss factor since knowledge of the 

phase is not available. In retrospect, this result is not GO 
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surprising when it is considered how the detector forms the optimum 

likelihood ratio. It is well known that for a signal of known 

frequency in gaussian noise, the necessary increase in d is approxi- 

mately .4 as well between the coherent and incoherent detectors. It 

seems reasonable that the same sort of behavior would continue to 

apply when a set of such variables is simply added in each case. It 

is useful, however, to know by how much this loss factor changes, as 

given above. 

DETECTOR PERFORMANCE. m-FR£QUENCY CASE 

If the signal can appear at any one of m possible frequencies 

with, say, equal probability, the detector is that pictured in Fig. 5, 

and the decision curve satisfies 

m 

I W =k <67) 
i=l 

Again assuming that p. - 0) | T > > 1 if üü. ^ u, and u;. T > > 1 for 

all i.j so that the m quantities I (r.), i ~ 1> 2, ..., m are inde- 

pendent, the joint conditional density function of the m quantities 

may be formed, and these may be integrated over the m-dimensional 

decision space to obtain the false-alarm and detection probabilities. 

In a manner analogous to that in Section III, it may be demonstrated 

2 
that the asymptotic approximation is valid for large values of d , 

and this approximation will be used here. Although the actual 

detector does form the likelihood ratio sum and compares it 

with the threshold, the computation uses the approximation that 
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the detector forms each of the ffl terms r and compares each of them 

with the threshold given by the asymptote, which i^ 

r = l"1 [k - (m - 1)]  i = 1, 2, .... m       (68) 

Thus, the same combinatorial techniques may be used where the error 

probabilities associated with each quantity r. are found. These then 

may be logically combined to obtain the overall error probabilities. 

Each quantity r. has the following distribution 

PC^/iy = r./d2 exp(-r2/2d2) (69) 

P(ri/Hi) = r./d2 exp[(-l/2d2)(r2 + d4) ] I^r.) (70) 

The error probabiliticä may be formed exactly as done previously, 

with the result for each test quantity 

ai = exp(-g2/2d2) (71) 

ß.  = 1 - Q(d,8/d) (72) 

where g = I    [k -  (m -  1)].    Combining thest for the m-frequency 

case,  the overall false-alarm and detection probabilities become 

a = 1 - (1 - or.)    ss ma. 

= m exp[-g2/2d2] (73) 

so that 

B = 9,(1 - ^r1. h 

Pd i 1 - ^ = Q(d.g/d) (74) 
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Solving Eqs. (73) and (74) for P in terms of o*, the allowable false- 

alarm probability, the detection probability 

Pd = Q (d' V^ log *"* ) (75) 

-2 
Curves of P, versus d for various values of m and for a =  10 a 

— f\ 
and 10  are given in Fig. 9, along with some of the coherent de- 

tector results of Fig. 4 for comparison. It is seen tha: the curves 

are straight lines, indicating that the detectability follows a 

gaussian law as is expected from the normal approximation to the 

Q-function. Also, it is seen that if the number m of possible 

frequencies at which the signal may appear is doubled, an increase 

iii d of between .1 and .2 is required in order to achieve the same 

detection probability. This very slight loss is encouraging since 

in practice the exact frequency would not be known, and many narrow- 

band filters would have to be built in order to cover the entire 

band of interest. 

The results seem intuitively satisfying, since in Eq. (75) it 

is seen that the lack of knowledge about the exact signal frequency 

requires that the thresholds be set slightly higher than in the known 

frequency case (m = 1).  Since a filter is used for each possible 

frequency, and there are m parallel detectors contributing possible 

false alarms, a higher threshold will maintain the desired false- 

alarm rate. Also, the appearance of the simple factor d in Eq. (75) 

indicates that if a signal is present in one of the m filters, it 

alone is significant in causing a detection. The approximation 

of Eq. (74) shows this by neglecting the very small contribution to 
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a target-present decision from noise false alarms. It is seen that 

the optimum detector, by passing the filtered signal through a Bessel 

function device, greatly accentuates the large signals and depresses 

the small signals. This fact causes the single large signal--if 

present—to predominate. 
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V.  CONCLUSIONS 

The results of the above analysis indicate that it is not neces- 

sary to work in terms of unknown phase detection when considering 

unknown frequency in order to be realistic.  For the case of a finite 

number of known frequencies at which the signal may appettr, it is 

apparent that any real situation may be approached as if the phase 

were indeed known and thus work with gaussian statistics. This 

greatly simplifies the analysis, especially for a large number of 

possible frequencies. An adjustment is made at the end of the analysis 

to account for the actual ignorance of the signal phase, lut this 

adjustment is quite constant for many different situations, thereby 

allowing accurate final results. 

It is seen that the optimum detector for both the coherent and 

incoherent cases is a nonlinear device, which acutely accentuates 

large received signals. This seems quite reasonable under the cir- 

cumstances, for the detector is testing the sum of a large number of 

random variables, and unless the detector weighted these in some 

manner that drew attention to the strongest member, or equivalently 

suppressed the smaller members, the false-alarm rate would be very 

high, necessitating a higher threshold setting which would reduce 

the detection capability. 

By means of the decision plane geometry it is seen that, although 

the optimum detector actually tests the sum of the filter outputs 

against a threshold, the system may be analyzed as if each filter 

output were separately tested against the threshold. This is, of 
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course, a result again of the emphasis placed on large signals. The 

system then becomes one of a band-splitting type which divides the 

frequency band of concern into a set of small independent bands and 

interrogates each for the presence of a signal. The approximation 

of considering the optimum detector as a band-splitting detector, 

which is made clear through the use of the geometric approach, is 

very g   for large output signal-to-uoise ratios. It is seen from 

the d    jn-plane representation just how the optimum detector 

approaches the situation of m approximately orthogonal signals in 

noise. The asymptotic approximation finally isolates each filter 

output, permitting m independent decisions. 

Even though the power levels of the signal and noise may be very 

unfavorable at the hydrophone, a long integration time will increase 

the signal-to-noise ratio to a useful value. This requires that the 

noise level and signal level be constant for the duration of the 

observation interval. In practice, the duration of each observation 

interval will be limited by the noise nor^nationarity and/or the 

time of passage of the target. 

(9) The problem of unknown noise level has been shown by Tuteur 

to be of critical importance in an actual detection situation. He 

has considered the effect of noise uncertainty on the detectability 

of submarines by means of their emission of broadband signals and 

has demonstrated that unreasonable detection ranges result if noise 

uncertainty is ignored. He suggests a long-term average-power 

measurement of the noise level, which would include and presumably 

"swamp out." the short-tenn fluctuation due to the target's own wide- 

■Bgagggyg—-^ H ■._•■« < 



band noise as it passed by the hydrophone, as a means of estimating 

actual noise level. This technique is intuitively appealing in the 

present study also, since the sine wave pover will have little effect. 

on the long-term wideband noise power estimate.  There is need fcr 

further analysis which consider.? the detection of both the wide- 

band noise and the sine wave signals simultaneously, especially in 

light of the critical nature of the results for noise level uncertainty. 
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Appendix A 

PROBABILITY DISTRIBUTION OF THE TEST QUANTITIES 

It is required to find the joint conditional probability density 

functions for the test quantities 

x1 - log 1^ = - - s^ K  s1 + s^ K  v (A-l) 

x2 = log L2 = - | s' K"1 s2 + s^ K"
1 v (A-2) 

where the quantities are as defined in Section III.  Since the only 

random variable appearing in these expressions is the vector v, which 

is jointly gaussian (in n-diraensions), and iince the quantities 

x ,x_ are formed by linear superposition0 of these gaussian variables, 

x, and x- are gaussian random variables, rience it only remains 

to find their mean and variance under the three hypotheses, H , H,, 
o  1 

and H?, as defined in Section III. 

Let the notation 

(  ) (A-3) 

o 

indicate the statistical average of the quantity in brackets under the 

hypothesis H , and similarly for V    and H„.  If no subscript appears, 

then v has already been changed to its component parts, and the average 

is that over the noise portion.  It is clear that these hypotheses 

imply 
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H :   v(t) = n(t) 
o 

H, :   v(t) = n(t) f s1(t) (A-4) 

H2 :   v(t) = n(t) + S2(L) 

Thus, using standard matrix techniques, the conditional averages 

are 

xl /   = 

o 
4+U*lzX 

o 

ri 
O 

a2 

since the noise has zero mean, and where, as shown in Section III 

= - |- + d2 + s| K"1 (n^) (A-7) 

■4 

/ 
\ 

' h2 

2 

f- + s| K"1 s2 (A-8) 

d2 r 
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■■ 1 

In Eq. (A-8) , ü, K i.n **  0« This is so because this term indicates 

the cross-correlation of two sine waves of different frequencies. 

In particular, using the conditions of Eq. (16), where the noise is 

assumed white, there results (provided that jai - iu | T > > 1) 

n 

4 &l Zi'Tä I p2 ^Vj + rpi> "^'Vj + cp2) 

j-i 

«|-J    P2 cos(a)1t + 91)  cos((Jü2t + cp2)  dt (A-9) 
o    o 

w 0 

This is not an exact relation, except when jf, - f_| is a multiple of 

1/T cps, but the term in Eq. (A-9) does not increase with time for 

d2 
reasonably large T, whereas the term - ~ grows linearly with time. 

Thus, the cross-correlation term becomes negligible with respect to 
d2 

the T— term for large observation times. 

To compute the variances of x1 = log L1 

varH Cx1]»^-r+81K  vj ^ --d 
o      ^ ' o 

= (%' K-1 v v' K"1 s^ - *( ic"1 % s; K-1 ( v 

"I  /       / \    „"I 

o x    o 
/ 

% K"1 (^ V vr ^H K"1 ^ (A-10) 

s^ K-1 K K"1 ^ 

d2 
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, 2 9 2 ? . 

= f f l{ K'1 S1 S^ K'
1 ( n \ + sj K"1 /n n' \ K"1 S1 

d4 

" li K"1 li (A-ll) 

-d2 

2 x   ,2 
a 

va 

« - s^ K-1 S1 sj K"
1
 S2 + (sj K

-1 S2)
2
 + s^ K'1 ^ n n' ^ K-1 3I 

- ll £" ^ ,;A-12) 

= d2 

Ti,s same results are obtained when x = log L9 is averaged over the 

hypotheses, since x and x„ are similarly distributed.  It still 

remains to find the correlation between x and x9.  The normalized 

correlation coefficient is 
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* 

7<C^rX*2
+r)VM^"l^M 

o o 

«^ l' K'Vv v^N je'1 s5     (A-13) 

o 

Al -1 S  12 a 

« 0 

Thus, x, and x„ are uncorrelated and consequently independent. The 

joint distribution can then be expressed according to the results 

found here, end these are given in Eqs. (21), (22) and (23). 

Tf 
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Appendix B 

JOINT DENSm FUNCTION OF TH£ ENVELOPES OF TWO CORMLAIORS 

In the following derivation, the input is assumed to be a 

2 
stationary gaussian noise process with the spectrum level N /2 volts / 

cps and band limited to (-Q, Q). It is assumed that T > > 1/Q. 

Thus, the noise may be considered as being white, and the following 

may be used for the input autocorrelation function 

N 
Rn(T) = -f  6(T) (B-l) 

where 6(x)  is defined by 

J       f(x)  6(x - a) dx = f(a) (B-2) 
••06 

and f(x) is any function continuous at x = a. 

As discussed in Section IV, the optimum detector must form the 

two quantities defined by 

2P  C3" 
I, = — J v(t) cos tu t dt 

o  o 

and (B-3) 

^f^ h s N   J   v(t) sln V dt 
o  o 

for the optimum detection of a sine wave at frequency U). rad/sec. 

It then forms the envelope 1 asing these quantities according to 

Eq. (36). It was shown there that the correlations performed in 

Eq. (B-3) could be carried out by a "narrow-band" filter centered 

at u^, as described by Eq. (37). In the following, the terms "filter" 
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and "correlator" will be used interchangeably, referring always to the 

device that performs the operations of Eq. (36). 

Considering further a second filter centered at Uü 

f 
o o 

T 
2P r I3 ^ i" J  V^ C0S ^ dt 

and
 T (B-4) T 

2P f 
1/  - TT J    v(t) ain u;„t dt 4  N "o   '     2 

o 

Under the hypothesis H that the input v(t) consists of noise alone, 

the outputs Ij, I , I and I, are each the result of linear orocessiV 

of a gaussian proceas and hence are all jointly normal -.-: i«  v;  ables. 

It is only necessary to fin.1 the first and second momintf for each 

in order to specify the Joint distribution completely. 

Each quantity I. has zero mean since n(t) has z<      mean. The 

second moments are calculated as follows 

^1 " V N / J  dT J  ^ n(T) n(a) cos ^i7  cos ^iCT 

(r)2fdTfd46(T- a)  cos u) T cos üu.a 
c     o    o    " 

1  T 
(B-5) 

i    2 

dr cos ou T 
O  ' o 

— M 

^v  —jgB-y ,__j^ 1 1   i _i.lili l  ■ - 



J^ 

The result is not exact, but as T increases, the rapidly oscillating 

portion of the integrand contributes very little to the variance- 

Similarly, it is easily shown that 

The covariances are calculated in a similar manner. 

iji. 
/ 2P \2 F   F     

0 = ( rj- ; J  d-r   da n(T) n(c) cos UJ,T sin UJ.a 

2£ 
N o   o 

cos uu T sin uu. T dr (B-7) 

P  r = — J  sin 2UJ T dr = |i. 
o  o 

This term does not increase with time, and consequently as T increases, 

it will become negligible with respect to the variances having the 

2 value P T/N . It is thus set to zero at this point, 
o 

—   2P2 rT 
I,In =     COS UJ.T COS UU-T dT 
1 3  N  J      1      2 

o      o 

V2?  r Sin^2 '_   V T  sin(l)2 +  V T 1 „Of   v 2   I7   , '" 2   V      1 ,    „. 
" No L  (UJ2 - a;1) T     {^ + vj T      J        KD 0' 

p2T sin(u)2 > u)^ T 

~      (UL - a.) T  = ^13 
o   v 2   1 

-" H 
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The approximation in Eq. (B-8) assumes thac the frequencies ou and 

(jü. are close enough together so chat (UJ + w ) > > ju) - UL j, thus 

making the sum frequency term above small with respect to the dif- 

ference frequency term. If this is not the case and instead 

(^2 + u,
1) « I "2 " ^ I' t:hen 

 02- 2 sin tt) T 
1,1. = —■ =~- 13  N UQ T 

(say Uü2 > wj (B-9) 

The results will be the same in either case, but the interesting 

case cf U)2 close to U). will be considered here, and Eq. (B-8) will 

be used. Similarly, the other moments are easily obtained. 

,2   „T 
I2I4 ' ^13  ' I3I4 ^ N" J.  sin 2V dT = ^34 ö 0 

o o 

. p2T 1 - cos(*2  - u^) T 
1r4 " No    (w2 - u^) T S ^14 " -hh 

(B-10) 

These quantities define a symmetrical covariance matrix M like that 

of Rice [Ref. 8, p. 215], which may be inverted to form the infor- 

mation matrix M 

M -1 

-M- 13 "14 

"^14  ^13 

'13 

'14 

Ü 

-li 

-H 

14 

13 
(H-ll) 



57 

where 

N 
2    2    2 

and    A = i)f - (|J.13 + M<14) 

2   2 = r - r 12 
(B-12) 

By comparing the variances and the cross moments defined above, it 

is readily seen that as long as ju) - uu j T > > 1, (tt. T > > 1, and 

(D- T > > 1, all of the. cross moments will become negligible with 

respect to ^ for large T. Thus, M  reduces to a diagonal matrix 

indicating that the random variables I. are independent, and A = ^ 

results. 

Thus, for the conditional joint density function under ths 

hypothesis H (under which all variables have zero mean) 

4Tr f 
(B-13) 

The standard transformation may be made to the Rayleigh distribution 

for the envelopes r1 =-/I^ + 1^ and r2 ^J^ + I4 [Ref. 8, p. 214], 

using 

I. ■ r cos 9.    I- = r. cos 8- 

I2 = r1 sin ei   I4 - r2 sin 9,, 
(B-14) 

Using standard techniques for transformations of random variables 

[Ref. 3, p. 31], the following is obtained for the conditional Joint 

distribution of the envelopes r., r», from Eq. (B"13) 

iXvW ■ 1? exp[- ^2 <r?+ 'M (B-15) 

- — - ■ ^WMBH 



58 

"here, using ijf of Eq. (B-12) 

2 
2  FT d = i~ (B-16) 

o 

as in the coherent case. Also, this form for r., r is seen to be 

exactly that for the r of Eq. (36). 

When a sine wave is present at the input of the form P cos(u} t + |) 

for any angle 7. it is clear that the quantities I« and I. will have 

their means shifted from zero to the valuec 

2P f 
N J I3(T) = ^J- J P cos(u)2t + I)  cos yy: dt = 
o o 

Z r      8in(2u) X + §) - sin §-, 
P [cos ? + ^— J        (B- 17) 

d2 cos §    if uCC > > 1 

I4(T) = ^ J P cos(üü2t + §) sin a) t dt 
o o 

p2„ r        cos § - cos(2u; T + §)-, 

s  L-sin'+ äsr- ^J      <B-l8> o 2 

2 
«s -d sin §    if UJ T : > 1 

Due to signal alone, the envelope r    will have a value of apprcxi- 

2 
mately d . If the above mean vlues are used in Eq. (B-13) and the 

same transfomation as in ET. (ö-i") is used, the joint distribution 
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of r,, r may be easily obtained [Ref. 8, pp. 214, 238]. Here only 

the final result is given 

p(r1,r2/H2) - -^ exp|_- -^ (^ + ^ + d4)] Io(r2)      (B"19) 

"  "    d       2d        ' 

This completes the derivation of the envelope statistics, but a slight 

extension is now made, both as a matter of interest and also because 

it yields a useful measure of filter output dependence. The joint 

distribution of the envelopes r, and r„ when the dependence is not 

negligibly small is given here. Thus, starting from the information 

matrix of  Eq. (B-ll) , M-,-, and p. , are retained throughout, letting 

only M.,9 and p- , be zero, which is reasonable in light of their 

definitions. The following result may be obtained in a manner similar 

to Rice's derivation of the autocorrelation function for a filter 

output [Ref. 8, p. 216] but extends the analysis to the case when a 

sine wave is present at frequency UJ . The dependence between r.. and 

2 2 
r„ ib seen to occur as y.- = t*,^ + M-,,; that is, r, and r are 

completely independent only if ijf,_ = 0. 

The result is as follows: For two envelopes r. and r under 

hypothesis lU, assuming only that ^l2  and M^ in Eq. (B-ll) are 

small 

2 
rir9   r" /   "ri \      r   i     2    1 KWV 'ff\    de expi, -2" j explL- ^ B (9)J 
2TTa  CT     o ZQ  o 

jpLUli^e)] (B-20) 
o^      a      d J 

-^r 
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where 

t2 ^2     2    2    2 
a = 1 " T"  ' *12 ^ ^13 + ^14 (B"21) a 

and 

2 
32/rtN  

r2 . ,2 
ß (9) = -2 + d - 2r9 cos 9 (B-22) 

d ^ 

A closed-form expression for this was not found, although numerical 

techniques could be used to evaluate it. 

Under the hypothesis H of noise only, the only change is that 

2     2 2 
ß (9) - r2/d , which permits a closed-form evaluation 

X'vh'V - ^ «4- ^r <ri+ r2)] h[^? r-f]    <B-") 

which agrees v .th Bendat [Ref. 6, p. 308] and provides a convenient 

check. If ^12 = 0, then a - I,  and it is easily seen that r. and 

r2 become independent, leading to Eqs. (B-15) and (B-19) under H 

and Hj respectively. 
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Appendix C 

AUTOCORRELATION FUNCTION FOR THE ACTUAL NARROW-BAND FILTER 

Consider the output of the narrow-band filter with impulse re- 

sponse as in Eq. (49), when the filter is connected only during (0,T). 

The scaling factor 2P/N K. is added by means of an amplifier in order 

to concur with Eq. (50) 

IK1e"
eTcos((Jü. T + tp)    0 <: T £ T 

(C-l) 
0 Otherwise 

The input process to the filter is a stationary white nc .se process 

2 
of the level N ll  volts /cps. The noise could as well be band-limited 

to a band (-CJ, Q) ; for as long as the passband of the filter is 

narrow with respect to this band, the noise could still be assumed 

vhite. 

The output correlation function is given by Lee [Ref.  5, p.  332] 

„00 00 

R(T) = J    hT(u)  du j    h^c) R^T + u - a)dcT (C-2) 

where the input correlation function R^T) is given by Eq. (B-l) and 
N 

equals ~ 6(T). Thus 

2        T T 
R(T) m ^ ^_ j J   e"€Vcos<u)tv + 9) du J    e'^cos^a + cp) 

N       "o o 

N 
^ 6(T + v - CT) da (C-3) 

- ?- I     e"e(2U'H")cos(uj.v + cp)  COS[U),(T + u)  + cp] ^ (6-4) 
N        «! 11 

0 O 

if (T + u)  lies in (0,T) 

BI8JJ    I 
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and equals zero if T -r v does not lie in (0, T). This restriction 

on T + u requires that for a given value of T, the range of v  is 

(-T, T - T); and T is also restricted to (0, T). This sets the upper 

limit of the integral 

2     «X-T 
R(T) = M~ e"eT    e"''eV[cos  u;. T + cos(2u). u + ?.cp + U) T) ] dv   (C-5) 

o     o 

if T < T, and zero othervise. 

The rapidly oscillating portion of the integrand may be neglected 

as it contributes very little to R(T) , provided 2uu. |T - T j > > 1. Thus 

R(T) = |- e"eT cos UU.T j  e~2eU du (C-6) 
o o 

N o 

C0S V [ 27 I1 - e-2eT(T-T)J    (C-7) 

and the variance is given by R(0) as 

♦fu '-wb- e"2eT] (c-8> o 

For a sine wave input to the ciircuit, the output of the filter at 

time T may be found in a manner similar to that of Eqs. (B-17) and 

(B-18) of Appendix B. The result is that the envelope has the value 

^  P2 r   -erl r(T) = F7 L1 " e .  (for 2ujiT >> ^ (c-9) o 

Consider the case where eT < < 1; that is, where the filter is 

very narrow band relative to the observation time. Then Ec. (C-8) 

reduces to 
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^fii 'w1      <eT < < l) (C-10) 

and Eq.   (C-9)  becomes 

2 
r(T) = ~ (eT < < 1) (C-U) 
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