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This volume rresents a method for estimating the motions on the
interior of a buried cylindrical shell resulting from directly-induced
ground shock caused by the detonation of a nuclear devi:e to aid in the

preliminary degign of shock isolation equipment.

Various theoreticgl models for calculating the free-field waveform
are reQiewed and the acoustic moael is.reéommended for this purpose. The
reasons for this recommendation are erumerated and the methods for applying
it are‘given. Methods for soiving the structure-medium-interactior problem
are discussed and the normal-mode anal, sis of the response of an elastic
cylindrical shell in an acoustic medium to a specified input pulse is

reviewed in detail.

A discussion of ranges of parameters appropriate to realistic
problems is included. A thorough explanation of the results of computer
solutions for the shell response is presented,and a large number of graphs
illustrating the results are included. The results are analyzed to deter-

mine the relative influence of the parameters on interior shell motion.

The application of the method developed i1z explained and i1llustrated
t- sample problems. An appendix contains a Duhamel-integral computer

program that can be used to generate results for cases not included in

thf.is' volume, ( )/r :

111
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SYMBOLS
B - bulk modulus of medium =p _c°
c = longitudinel wave velocity or acoustic velocity in medium
2.
s
E = - -
1 -2

Es =  Young's modulus of shell material

F = polnt force divided by 2m S T o
£ () = function of ( )

g = acceleration due to gravity

En ) = assumed constant coefficient (see Ref. 21)

H =  shell thickress to radius ratio = h/R

h =  shell thickness .

Ine(z) = incomplete modified Bessel function of the first kind

,%r.fe cos n6e? 9% ap . ... .forr <2
= [0}
In(z) - complete Bessel tunction . . . . for T >2
A 1/2 '

L = range distsnce = (r2 + Ca) / (see Figure k)

)/ = dimensionless pulse length = )-Ig
m = mass per unit area of shell

n B 2

O ROr ¢ H S S USRS § B

n = mode number

P = pressure in the medium

Po = pressurz amplicude in the medium (see Figures 1C and 11)
P:l = defined in Figures 10 and 11
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SECTION 1

INTRODUCTION

This is the second volume of a five-volume work directed toward the
improvement of design procedures for shock-isolation sy;tems for underground
protective structures. Volume I dealt with motions imparted to the interior
of a structure by the air-blast-induced ground shock from a.nuclear detonation.:
This volume deals with the region where £he grcund motions transmitted directly

from the crater predominate over the air-blast-induced motions.

Motions appearing at the interior of an underground protective structure
are predictedf They may be used as inputs to the response spectra given in

Volumes III, IV, and V for the design of specific shock isolation systems.

In comparison with the state of knowledge of air-induced ground shock,
there is a decided lack of empirical data concerning directly-induced ground
shock. For this reason, the program reported herein was more analytic than

its predecessor.

1.1 Objectives

The objectives of the program :eported in this volume were threefold.
MiTﬁé first was to eétablish the relation betweeﬁ'arbitréry free-fieldvground
motions and motions #hich appear at the interior of an underground protective
structure. The second objective was to rank the site, weapon, and dynamic-
structure-medium-interaction parameters which influence the interior motions

of a structure in order of their physical importance. The third objective
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was to develop preliminary design methods for estimating shock-isolation

requirements based on the most important parameters.

<

1.2 Method of Approach

" The first effort was the study of directly-induced ground motion.
The results of this portion of the study are reported in Section 2.
Existing theories of predicting the free-field motions caused by directly
transmitted ground shock were reviewed in texms of consideration of physical
aspects of the problem, input-data requirements, computation difficulties,
and applicability cf the end product as input to the next phase. The theories

were compared on these bases, and the best approach for this program was

chosen.

The next phase of the progrum was to determine the best method for
predicting interior structure motions since these are the input required by
Lthe designer to estimate shock-isolation requirements. Interior motions
will be due to both the free-field motions of the surrounding medium and the
motions caused by the structure-medium interaction. In thi: study, it was
of particular importance to compare the motions of each of these phenomena.
Prediction of structure motion was obtained by means of an existing
structure-medium interaction solution which was selected from several that
were studied. This solution was extended for application to the problems
peculiar to this study. The selection of the method was based on consid-

erations of ease of computation and ability to give physical insight to the

< At gty



structuré motion. The structural configuration chosen for the program was
a horizontal cylinder, because it appeared to be more universally applicable

to existing or planned structure shapes than any other.

The ranges of the parameters pertinent to the problem were then chosen

" on the bases of the physical aspects of the problem and the limitations of

the solution. A camputer program was theh_preparéd and a large number of
case§ was run. The results were then plotted; compared, and evaluated.
Béééa 6nA£hi§Méﬁalu5fioﬁ; fhé parameters were ranked aécording to their
relative importance in influencing interior shell motion. The effects of
errors in estimating these parametérs on the shell motion were also con-

sidered. The presentation of this portion of the program is contained in

Sections 3 and L.

Section 5 presents preliminary design methods for estimating shock-

isolation requirements and includes numerical examples illustrating

- application of the method.

1.3 Recormendations for the Shock-Isolation Engineer

The shock-isolation engineer is concerned with the design of a system

- -which will both support an item in a structure and mitigate the shock

motions between the point of support on the structure and the item. The
first step in the design of a shock-isolation system is to predict the
input motions on the wall of the structure at points where the shock

isolation system is to be attached.
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Techniques for predicting the displacement and velocity histories are
presented in this report. They show that the most important displacement
which must be considered is the free-field &isplacement of the medium sur-
rounding the structure, as this is practically identical to the first mode
or "‘rigid-body"' displaéement of the structure. In most situations, this
displacement will far exceed the deformational displacements caused by
the stress-wave interaction with the shell. (In the case of the cylinder,
these displacements are the zeroeth, second, third, etc., modes.) Therefore,
the shock-isolation engineer should pay particular attention to the free-

field displacement caused by the directly-transmitted ground-shock wave.

The input-velocity history must also be considered in the design of a
shock-isolation system., In this study, it has been found that the peak
input velocities due to the first or rigid-body displacement mode and the
s tructure-deformation modes are comparable. Therefore, when considering
the effect of the input velocity on the design of a shock-isolation system,
both the rigid-body and deformational modes of the structure should be

carefully studied.

Once the input motions on the wall of the structure have been predicted,
the response spectra presented in Volumes III, IV, and V may be used to de-
t ermine shock-isolation requirements for items within the structure. These
response spectra are for one-and-two degree-of-freedom elastic and inelastic

systems and multi-degree-of-freedom elastic systems. Responses to several



different input waveforms are included in these volumes. The input wave-

form which most closely corresponds to the input motions predicted by the

‘methods outlined in this repo:t should be used.

1.4 Recommendations for Future Work

Thé results presented in this study should be considered as an interim
guide to the piediction of ﬁotions which must be considered in the design
of shock-isolation systems. There are two reesons for this. First, the
formulas for predicting free-field motions from a surface explosion which
are presented in this report are based on an acoustic model for the medium.
It is to be expected that work now in progfessland future research will

yield improved predictions of directly-transmitted ground shock caused by

surface nuclear explosions.

The second reason is that only one class of structure-medium interaction
problems_ié éonsidered in this report, namely that of the circular cylindrical
sﬁell with an acoustic medium. It was chosen because it is the only class of
intefaction probiem studied thus far which lends itself to the convenient
calculation of motions using a wide variation of paramete¥s. It is recom-
hended that interaction analyses be conducted for additional models of the
medium und for differené types of structures. Structural types should in-
clude circular cylinders with soft liners between the medium and structure.
Also other structural shapes such as the sphere should be studied. The

elastic medium is the type of medium which should be considered next.
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: a hole in the ground and highly-fractured and perménently-deformed regions

~ 1-MT surface burst. This figure represents a description of the residual

SECTION 2

FREE-FIELD MOTION

_Spééification of the free-field ground motion caused by a nucleérﬁbu;ét”
'is prérequisite to the defermination of the motions of a structure placed ih |
the §pil? ‘Eo;Athis study, the‘Qround motion has been estimated for the regionﬁf
Vhere fhe airectly transmitted grﬁund shock predominates ovéf the air-induced {

ground shock.

~When a nuclear device is exploded at the surface or slightly abtove the

surface of the earth, a crater is formed. The typical crater consists of

in the soil surrounding this hole. Figure 1 shows a typical crater from a

" Rupture Zome ;o™ | -
\ RN ”p'....._..” ¢ : »
' Plastic Zone

fl:s.,‘;;;hm,fthw

1Lko°
Region where direct

ground shock is
very large

- Depth below which
direct ground shocl

. rmist be taken into
consideration

Elastic Zone

»*
Figure 1 CRATER FROM A 1MT SURFACE BURST

*Numbers refer to references at end of report.
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configufation of a crater. Timé-varying pressures in the soil lead to the
formation of the crater and the deformed regions surrounding it. When a
nuclear device is exploded at the surface of the soil, shock waves are

propsgated in the air and soil.

Ground-shock effects stem from two sources. The first is stress waves

transmitted through the soil from the immediate region of the burst point

where cratering action takes place, These stress waves are called directly-

‘transmitted ground shock. The second source is the air-blast wave moving

across the surface of the ground. This gives rise to stress waves called

air-blast-induced ground shock. At the pfesent fime,it is impossible to defire

exactly the region where directly-transmitted.ground.shock predominates,»
the rggién where air-blast-indﬁced grqund shock predominates.ahd the relative
effects of each in the region where both are important. For the purpose of
defining the region where the resulﬁs of this report are applicable, it is
adequate to use the definition given in Reference.2 which states that the

. ) '
région of space involved in directly-transmitted ground-shcck effects is

a cone with the apex located at ground zero and with an apex angle of

approximately 1LO degrees.

The limitations on the knowledge of the stress waves in the directly
tranémitted-ground-shock region are also given in Reference 2.

"Present knowledge of direct-transmitted shock effects is
substantially less extensive than the knowledge of air-induced
effects. This situation is a result of a number of factors,
principal among which are the following: (1) Field test data
for direct shock effects are far less extensive than for air-
induced effects. (2) Field test data that are available,

with only a few exceptions, are from buried high explosive
detonations. Extrapolation from high explosive shock effects




to nuclear shock effects requires the introduction of a yield
equivalence factor, about which some uncertainties exist.

(3) Extrapolation from the effects produced by buried charges
to effects produced by surface charges requires the introduction
of another yield equivalence factor to estimate the percentage
of the energy in a surface burst which is propagated directly
into the ground. (L4) The test data that are available, even
from high explosive detonations, produce very little information
concerning the variation with time of the direct transmitted
-shock pulses. In general, only maximum values of strain or
acceleration were measured."

Several theoretical models for the prediction of the free-field ground

_motion in the directly-transmitted region are available. - Each of the theo-

retical’approaches is dependent on the values of varioﬁs soil parameters. The
determination ol stresses at a point in the soil élso'requires the knowledge

of the yield and point of detonation of the delivered weapon. Neither the .soil
parameters nér the delivery parameters are ever known very éccurately. Rather, .
a range 6f’delivery parameters and a range of possible soil parame@ers'may be

specified.

In view of the uncertainty of the various parameters in the problem, only

the simplest model giving an adequate repfésentation of the deformation proces-

7sés ié Jﬁétifiéd. rElaborate theory and elaborate computational work whose

end product is cnly a refinement of secondary effects, are not warranted.

In fhis sectiéh;Agé&érainiﬂ;;retical models of stress-wave bropagétion
in soils are diﬁcussed and the pertinenf physical quantities associated with
each are listed. From the thecretical models of stress-wave propagation in
soils that are presented, a waveform is synthesized. This ﬁaveform contains

the pertinent features of the stresses propagated from a surface nuclear burst.




In particular, the synthesized wave yields:
1. Magnitude of the stress as a function of position
2. Time duration of the stress pulse

3. Approximations of the waveshape

The synthesized waveform is not an exact description of the actual
———+— -stress wave in any given soil. It gives reasonable descriptiohs of all the
free-field phenomena required for specifjing the irnput for the interaction
problem in the region where directly transmitted gr-und s?ock is predominant

“and presents quantitative estimates for these parameters [in a - simple zand

usable form. Fcrmulas for the velocities and pressures ai#’presented.

2.1 Theoret® 11 Prediction of Ground Mot:on

No single consistent theory for the several elements of grourd ﬁotion in
real soil has been generated. Several approximate sélutidné of the éroblem
are in the literature. .Existing theories fall into these categories:

1. Numerical calculations based on analysis which tyeats the

soil as a fluid undergoing finite deformation
2. Analytical and numerical soluticns of the stfeﬁs-wave
propagation in a linear-elastic half-space ‘i

3. Analytical solutions for the stress-wave propagation in

an acoustic or linear-hydrodynamic half-space

L, Analytical solutions to combined models of the above

A =
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2.1.1 Hydrodynamic Calculations
Brode and Bjork3 have calculated a numerical example of the ground

motion due to a very-high-yield weapon detonated on the surface. The solution

for the pressures and particle velocities in the very-high;pressure region was

infinite half-space containing tuff. An énalytical fit to the equation of state

observatiqns:

accomplished by numerical integration of the equations of motion. The pres-
sures were computed for a soil whose equation of stéte was represented by a
single préssurewté;m,which,was awfﬁncﬁion éfwdensity~g§d~tempera£ure;uﬂlt~waa~~*Mf“
aséﬁmed that, in the ciose-in region,. the soil could 5e represented és a flﬁid.rv

The equations of motion'weré solved for a 1-MT device exploded on a semi-

for tuff was made from experimental data.

The results of this calculation may be summarized by the fdllowing

The pressure pulse obtained in the tuff was essentially rectangular.
The bulk of the enefgy and momentum transferred to the-soil propagated
in the vertical direction. In the very close regions (less than 10

meters from the point of detonation) the peak‘pressure deéayed as

'wthe:inverse‘cube*of“themdistanclerbm”the'bﬁfét”éﬁﬁ“ﬁé9”3hdé§éﬁaent“
of orientation. At greater distances, the peak pressure deca&ed.
inversely with the square of the distance from the burst and showed
an angular dependence (approximately sinusoiaally with the angle from

the normal to the free surface). (See Figure 2) The peak raiial

and vertical velocities decay similarly. (See Figure 3)

10
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Vertical Pressure

Horizontal Pressure

L1
= ]

]
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Pressure on 45° Diagonal

1‘ 10. 1m.

age
-
Ly od
-

Slant Range L(m)

Figure 2 DECAY OF PRESSURE WITH DISTANCE FROM SURFACE BURST
(1 MT) IN TUFF3
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Peak Velocity (Km/sec)

o

V. = Vertical velocity along vertical axis
V, = Vertical velocity along surface

<

h
Uv= Horizontal velocity along vertical axis
h= Horizontal velocity along surface
10h
103
10°
10.
1.
107t
1072
-1
10 ~ 4 + $ =4 -+ + +—+ $ 4 4 ¢ $ ’
1071 1.0 10. 102 103

Distance I (m)

Figure 3 DECAY OF VERTICAL AND HORIZONTAL VELOCITY WITH DISTANCE
FROM A 1 MP SURFACE BURST3



2.1.2 Acoustic Calculations

The simplest of all'analytical models representing the free-field is
the linear-ccmpressible-hydrodynamic or acoustic model. This is the linear-
elastic model with the shear modulus set equal to zero. 1In this case, a

closed-form solution for the preésure and velocity may be obtained.u

A point force of magnitude 277 is applied at the surface of a semi-infinite

half space at time t = O and maintained for a period At.

The problem may be‘considered as two-dimensional because of symmetry.

(See Figure 4)

2nF

Figure 4 COORDINATES FOR ACOUSTIC SOLUTION
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. Vertical Velocity: |
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'Eﬁéﬂiesulféht pressure and particie velocities are:

Pressure:
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o
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!
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SN
1
o
[
'
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1

Radial Velocity:

F

L3
where 0 (x) denotes the Dirac delta function
1(x) denotes the Heaviside step function

x) =1 x>0

x) =0 x<0
LE = r2 + ;2 . . .
“,Kl"; et |

AtX =L -+ AX., the pressure undergogs a jump‘equal and opposite to the
initial jumpﬁaﬁd ige;éafter the pressure is zero. The velocity components
also have jump characteristics at A. = L + AX. An idiosyncrasy of this model
is that the velbcities d§ not return to zero after the passage of the second

wave front, but continue at a constant value. Therefore, the model should

"not be used after passage of the wave,
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The vector sun éf the horizontal and vertical components of velocity equals
P/F>mc immediately behind *he wavefront., To a first approximation this particle
velocity may be congidered constant for the duration of the rectanguiar pressure
pplse.

The delta-function sinmilurities are an idealization of the rapid variations
near the wavefront. These variations are damped out by nonlinearity of the
wave propagation and only the rectangular preséure pulée gets through. Ewven
'the'rectangulaf pﬁlse is distorted by propagation through real soils., The
change of pulse shape by percyclic damping has been reported by R.S. WeinerS
and by T, G. Morrison and L. M, Weiner.6

The rectangular pulse clocely matches Brode's numerical solution as a
function of p&sition. The solution .does not match fhe time coordinates, however,
as the sonic velocity here is a constant. The identification with Brode's

3

calculations requires that the point force divided by 2w be:

F o= 100 - w3 xiiovars - £t2 (Mp)H/3
Figure 5 compares the acoustic solution and Brode's numerical solution.
The pressure pulse is applied for a duration At which is proportional
to the cube root of the veapon yield.
At = Atﬁ.Wl/3 ' ST T ' (4)

Again, using Brode's solution for 10 MT,

At =~ 0.10 sec for 10 MT

At, = 0.05 sec/(M‘I‘)l/3
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This gives a means for estimating the wavelength of the pulse, since

A) = cAt

2.1.3 Linear-Flastic Solutions

The problem of wave propagation in an elastic half-space from a time-
~ dependent surface load has attracted the attentions and efforts of many

duthors in the past 50 years.

Cagnaird7 has solved the stress-wave propagation in a.linear-elastic
haif‘;pééé due‘fa a poinf preééuré suddenly'aﬁplied'ahd maintained on the axis
of'symmetry.. ngeris8 has soived the same problem for a point verticgl stress
suddenly applied.and maintained on the axis of symmetry. Knopoff9 has gen-
erated algebraic solutions for the displacements at the wave front in Pekeris'

problem.

The general solutions for the displacements and stresses in this problem
_are usually in integral form. A general closed-form solution is not avail-
able. Portions of Cagnaird's solutions are algebraic, but the remainder of
his solution and Pekeris' solution are in the form of contbu; integrals or

numerical tables.

: Lovelo generﬁted a closed-form solution for the propagation of stress

waves in an infinite spéée due to a point force suddenly applied and maintained.

Pekerls and Lifsonll have calculafed the vertical and horizontal displace-
ments on the surfacé ffom a suddenly epplied concentrated vertical stress.
Baron, Bleich, and Weidlingerh, by application of the dynamic-reciprocal
theorem, have used the Pekeris and Lifson results to generate displacements
and vertical strain in the region of the semi-infinite half space (VQ§? s C)

17
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under the point of aepplication of the force. The 1oading'was a force

moderately applied at a point and thereafter maintained.

From their solution, the vertical strain (which is the largest component

of strain along the vertical axis) may be used to deduze the behavior of the

stress in this model., The stresces in the linear elastic model have the fol-
1. A spike, the magﬁitude of w«hich decays inversely with distance

from the source,

2. An almost rectangular pulse, the magnitude of which decays as
the inverse square cf the distance from the source.

3. . Permanent stress, the magﬁitﬁde of which also decays as the

inverse square of the distance from the source..

2.1.4 Combined Models

12
A recent study  has developed two approaches to the problem of" analyzing-
ground motion in an elastic médium due to the energy delivered directly to

the ground by a nuclear weapon. One of these approaches treats the elastic

. region as a cratered half-spéce, where the hemispherical boundary of the crater

is subjected to the pressure history exerted by a hydrodynamic region within

thégcrater.m“The,other,approachwtreatsmthe%e;astieéregion~&s~a~eomp3 te

- half space, a portion of which has initial motion and pressures corresponding

, to the state of the hydrodynamic region at some instant when its behavior is

becoming more nearly elastic than hydrodynamic.

18
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Exact analytic’exprcssions were obtained for the stresses at the wave-
front for the cratered-half-space approach, and numerical results were
produced. For the complete-half-space approach, analytic expressions alone

wvere presented.

2.1.5 - Wavefront Attenuation
In both tﬁe linear elastic model of wave propagation iq a half-space and
the acoustic model of wave propagation in a half-space, the main part of the
stress'Qavé decays as the inverse square of tne distance from the source of the
detonation. There is é short-duration pulse at the beginning of thé distuf-
bahce which decayé as the inverse of the distance from.tne detonation. In a

real soil, there are a number of mechanisms which will reduce or attenuate

this spike.

1. The elastic stress-strain curve is nonlinear. If the slope of

the stress-strain curve increases with stress level, the shock
" wave that is propagated downward will be similar in Some'features

to & one-dimensional shock wave. In particular, the shock wave
ﬁill be subsonic in comparison with the sonic velocity behind it13.
Rarefaction waves generated at the surface will overtake and degrade
the shock front,

2. Real soils are dissipative. Internal friction will degrade and

attenuate the high-frequency components of the wave, particularly

in regions where the stresses are high, A simple calculation of

the properties of stress waves in & linear visco-ele.sticl)+ or linear

15,16

visco-plastic material shows that the stress jump at the wave

front is sherply attenuated.
19
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3. Real soils are inhomogeneous. If the sonic velocity, elastic
constants, or density are randomly inhomogeneous, the high-
frequency components of the stress wave will be reflected

internally and the sharp wavefront will be attenuatele.

Estimates of the amounts of damping and attenuation (and their attendant
effects on the magnitude and shape of the propagated wave pulce) have been
obtained by the methods of percyclic damping. Using the percyclic-damping
formulas for the decay of a rectangular pulse developed by Weiners, the change

in shape of a rectangular pulse would be as shown in Figure 6.

2.2 Empirical Data

Reference 2 summarizes the few experimental data availatle on the
directly-transmitted ground shock. The only experimental data on nuclear
bursts for displacements, velocities, and accelerations directly transmitted
through soil and/or rock are from a sequence of deeply buried, low-yield
explosions. These data do noct relate directly to the problem of predicting
directly-~transmitted ground shock from the surface burst of a nuclear weapon,
Therefore, in this report the use of the acoustic model for predicting directly-
transmitted ground shock (see Section 2.1.2) is recommended. The pertinent
formulae are surmarized In the following subsection, One could use, of
course, some other prediction method or free-field data. The presentation
of interaction data in the later sections of this report is adequate to

accommodatemany different formes of predicted incoming ground shock.

20
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2.3 Calculation of Free-Field Waveform in the Directly Transmitted Ground
Shock Region
E + The dominant stress and velocity for the linear-elastic model and the
RE ‘acoustic model decay as the inverse square of the distance from the burst,
% The pressure spike, which decays inversely as distance from the source, is
;E further attenuated by various mechanisms that exist in a feal soil. In the 3

t

_rugion of interest for this program, it can be assumed,thatﬂthe.spike,hasww,; “

decayed sufficiently to be ignored.

The order of magnitude of the stresses and displacements calculated from
either the elastic or acoustic models is the same for the same surface
loading. The variations of stress with angle are of less concern to. the
designer chan the magnitude, and thisymagnitude is most easily estimated

by the acoustic model.

v The acoustic model of the soil will be used for prediction of the wave-
form. This simplification of the free-field studies is made for the following
reasons:

- 1, The dominant long-period pressures computed in the hydrodynamic

numerical caiEﬁié%ian, the linear elastic, and the acou.tic
models all show the same dependence on distance and approximately
the same dependence on the angle from the source.

2. The acoustic model has a simple analytic closed-form expression.

The basic waveform suggested is a rectangular pulse, whose magnitude is a

function of position in the soil with respect to the detonation point and of

22




the yleld of the weapon. The duration of the pulse is a function of the

yield of the weapen.

e~ S

The basic rectangular pressure pulse moy be obtained then from the
acoustic model. The pressure that may be expected at a point (r, L) from

-~ ——-———g surface burst is given by (lbe/ftZ); = v e oo

P(r A) £ ' (
- 5)
F 13
where
COF = L5t 1070 - w3 g4 et jurt/3

The particle velocity (ft/sec) behind the wavefront is:

u = p P i (6)

The pressure and velocity are held for time &t. The upper and lower bounds

on At are

t L/2¢" sec.
upper

; 1/3 1/3
Atlower = 0.05 W sec/MT

For L<O0.1 ¢ W1/3 ft., the lower bound should be used.




The waveshape that propagates through a real soil is altered from an
ideal shape. As has been mentioned, several mechanisms tend to smooth out
. the wave. This attenuation and alteration of the waveform may be represented

mathematically using the theory of percyclic dampihg.

The mathematical form of the altered wave, after application of the
percyclic damping formulas, is quite complicated, Other mathematically
simpler curves nay bé,usea as approximations to the altered recfangular?rmﬂﬁwmuw

pulse. These waveshapes are presented and discussed in Section 3.
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SECTION 3

STRUCTURE-MEDIUM- INTERACTION ANALYSIS

The problem of interaction of a moving pressure pulse with an
infinitely lbng cylinder of finite circular cross-secticn immersed in
an infinite acoustic medium was 1nve§tigated. The pressure pulse was

considered to be traveling through the medium with its front parallel

. with the axis of the cylinder. In the subsequent analysis of the

problem, the shell response of the elastic cylinder was considered to
be of prime inéortance. and thé analysis was restricted to determining
diaplacenents-and velocities of the shell in response to a variety of
input pulse shapes. Since the primary motive of the investigation was
to obtain information beneficial to the design of shock-isolation systems
within the structure, the influence of the shell on the motion of the
medium was not investigated.

The problem is basically a two-dimensional one and may be represented,

with its defining variables, as shown in Figure 7.

3.1 Methods for Solving the Structure-Medium-Interaction Problem -

A greaE deal of work has’béqn done on the sdbjéctAof‘thérfﬁtéfacfiohmm
of waves propagating through various'nedia and diffracting sbout specific
structures. There is an essential similarity in all kinds of wave
behaviors whether the waves are transverse or longitudinal, elastic or
electric. This means that even methods developed for treatment of certain
special cases of wave propagsation have wide application. Thus, a wealth

of information exists concerning the wave diffraction problem.

25




VUR P wave

""4to cylinders of arbitrary cross section. The first two methods are Byvfér"ﬁ
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Figﬁre-? INTERACTION OF MOVING PRESSURE PULSE WITH CYLINDER

Essentially,ythree basic methods exist by ﬁhich solutions have been
obtained to the wave-diffraction process,abéut cylindrical objécﬁs, the
norhal-mode method, the double-transform method, and thé'gécmétriéalrmetﬁéd.

The first two methods require the differential equations of motion of the

' pfoblém be separabie'in their independent variatles; the third method does

not require separability of variables, thus giving it wider applicabilify

the most widely used and, in terms of work on the subject of wave interaction

with elastic cylinders, have a certain chronological pre-eminence over the

‘geametric method.
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. succeeded in representing the reflected and radiated waves in cylindrical

|

3.1.1 The Normal-Mode }Method

In the normal-mode method, displacements of the elastic shell are given
in terms of the normal modes of vibration of the shell. The angular

coordinate, 6, describing the shell and medium, is expanded in a Fourier series.

3.1.1.1 Acoustic Media

Historically, the first attempts to oﬁtain the solution of the
problem of wave diffraction about an elastic cylinder were made by the
normal-mode method; The first work on the problem was done for an acoustic
medium by Carriér18 in 1951. Ip 1953, Mindlin and Bleich19 simplified Carrier's
method by assuming that each element of the cylindrical surZface could be con-
sidered as a flat plate in reflecting and radiating the acoustic wave. This
approximation should be valid in pripciple for short times with respect to the
development of the shell motion, but the resulting series obtained for.the
radial acceleration was not uniformly convergent. In 1954, Baron20 used the
same plane-wave approximation in work with the acoustic-medium problem, but

used a more sophisticated shell model. It was Haywood21 who, in 1958,

form, permit*ing a significantly greater time period to be accurately

represented with the normal-mode technique.

'3.1.1.2 Elastic Media

The first attempts to apply the normal-mode method to the inter-h
action of elastic waves with an elastic cylinder was made by Baron who, in

campany with several other authors, has written a number of papers on the
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subject in the period from 1960-1962. The most recent and inclusive of this
series of Baron's reports is that of Baron and Parnesaa. Some of the others
who have contributed to the development of the normal-mode approach to the
elastic-vave problem are Soldate and Hook®3 (1960), Paul and Robinson2" (1963),

and Yoshihara, Robinson, and Meritt?? (1963).

3.1.2 Integral-Transform Method

The normal-mode technique for solution of the shell-medium-interaction
problem has some difficulties. Perhaps the principel problem is that, while
theoretically correct, the Fourier-series expansion of the angular coordinate
results in series expressions for the solution of the problem which do not
always converge rapidly enough for convenience in numerical computation.

The double-transform technique was developed to meet this problem. Historically,
the method evolved over a period of many years. Perhaps the earliest use of
the basic techniques of the method was made by SMIQZG in 1896 in his
study of the problem of the diffraction of light by a wedge of arbitrary angle.
Sommerfeld solved the problem by the method of images regarding the xy-plane
of Figure 7 as a multiple-sheeted Riemann surface, and treating separately
each of the infinitely many sources which camprise the actual §-periodic
distribution of sources. The multiple-sheeted-Riemann-surface concept was
applied to the wave-cylinder interrction problem by Friedlander27 in 1954,
Using this technique, Friedlander was ablé to describe wave motion occurring
on the surface of the cylinder, not only during its first passage about the
cylinder (in the physical plane of the angular coordinate 8, where -1 <6 _51:)

but also in repeated passages of the wave about the cylinder where 6 was

28
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an elastic shell which was fil..led,with_gcoustic,medium' other than that en-
- closing the shell.

described on Riemann surfaces whose sheets were given by (2m - 1)
m<6< (2m+ 1) wform=. . .-1, 0, +1, 42 . . . . With this technique,
it 1s possible to take the infinite Fourier transform of the dependent

variable of the problem with respect to the angular coordinate, 6.

The technique was not immediately exploited to its full potentisal.
It was used by Payto'n28 in 1960 to obtain exact expressions for the shell
and fluid motion during the diffraction process for an acoustic medium.

In 1963, Peraita2,9 applied the method to the acoustic-medium problem using

" The problem of the interaction of an elastic wave with a cylindrical
shell using the infinité-Riet‘nann-'sheet method together with a double trans-
form (a Laplace transform over the time variable, t, and a Fourier ;‘.ransform
over the angular coordinate, §) wus presented by Gilbert and Knopoff3o in
1959 and Soldate and Hook3! in 1962. The method can be dsscribed with dis-
arming simplicity, but problems evolve during inversion of the formal solution
vhen attempting to attain the actual expressions for the untransformed vari-
ables. In practice, slthough a formal closed-form solution may be obtained
by application of the transfom-inyersion integrals, integratiofx of the

expressions must almost invariably be performed mmerically. - - S

3.1.3 Geometrical Method

_ Credit for the initial develcpment of the geametrical method must be

given to Friedlander, In his book Sound Pulse332, he developed the technique

for an acoustic medium. The technique was applied to an elastic medium by
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Soldate and Hbok3l. The method yields solutions in the form of power series
in time. The primary drawback is that the calculation of successive terms in
the time serles is exceedingly complicated. -However, the leading terms are
relatively easy to obtain and provide a means of finding short-time solutions

as a complement, perhaps, to one of the other methods of solution described.

3.1.4 Choice of Method

'The method chosen for use in solving the structure-medium-interaction

problems for this program was the normal-mode method, as adapted by Haywoodel.

Because of the inherent difficulties attendant in the numerienl inversion
of transforms required in applying the integrul-trunsform method, this technique
was rejected. Likewise, the complication involved in computing successive terms
of the time series us required in using the geomectrical mecthod led to its
rejection. Neither of these methods gives the physical insipght into the motion

of the structurce that the normal-mode method prevides,

The normal-mode solution of the ucoustic problem by Hnywood21 represents
a very powerful and relatively struightforward tool for determination of chell
response to various input forcing functions. In view of the state of the art
of the prediction of the free-field motion as previously stated, the assunption
of an acoustic medium surrounding the cylinder is felt to b= justified. The
resulting simplification in the description of the medium can be used to per-
mit sophisticated waveforms to be trecated in the interaction problem itself.
It is further felt that a thorough understanding of the acoustic-medium-
structure-interaction problem is an absolute necessity as a foundation upon

which to consider and compare more complicated and sophisticated soil models.

30
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The method used in this program, then, is an extension of Haywood's to a

camplete solution of the acoustic—medium-cylinder-interaction problem,

3;2 Normal Mode Analysis of the Response of an Elastic Cylindrical Shell
in an Acoustic HMedium to a 8pecified Input Pulse ’

Using a modal ahalysis, the motion of the structure can be sepafatq@

into two essentially separate portions, the rigid-body motion of the shell

“and the elastic shell response. The latter"re3p065é>ihéiﬁ&eé the dilatational

(breathing or zeroeth-mode response) and behding—mbde response. It can be
shown that the rigid-body motion of the shell has the same general shape -as
the free-field ground motion except for its modification due to the effect

of the breathing and bending-mode motion.

A typical response of a cylinder’to a step pulse is shown in Figure 8.
Perhaps, the mést distinctive feéture of the rigid-body response of a shell
to a step puls; is the terminal velocity which the sﬁéll attains.at long times.
Thg magnitude of theé shell's terminal velocity depends upon the properties of
the shell and the medium. The inertia of the structure causes a graduel initial
acceleration to take place durihg the early time history of the shell motion
until the.strucfure reaches the rigid-body terminal velocity. In the dila-
tational mode, the shell 1is éompressed initially to a displécement generally
;amgwhat‘grgaie{ than the displacement which would be attained under an
identical hydrostatic load. The shell then oscillates in a rapidly decaying

manner about the static displacement which it zpproaches for long times.,

In general, the response in the first bending mode (n = 2 in the Fourier-

series expansion) as indicated in Figure 8(c), is the most significant of any
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of the elastic modes (n =0,2, 3 L4 ...). The rredominant long-time
osbillaiory'motion of this mode of the shell may be sacwn to take place aP/
‘a frequency which is directly proportional to the ratio of the square of the
natural frequency of the shell in vacvum to the bulx modulus of the soil.
The response of the shell in higher inodes decreases rapidiy as the order of
the mode increases. For these higher modes, the motion takes place only
during the period when préssure wave moves over the shell, After enguifment,
m;fhe hiéﬁér mbdes aré'eééé;tiaiiy quiéséeﬁf aﬁé thé4ﬁ6ti65“6f thé shéllrwhen 7
subjected to a step pressufe pulsg is then confined to only the rigid-body
mode and the dilatatioﬂ and first bending modes, The total displacement

~ response a% the position 8 = 0°, the point at which the wave first makes
contact with the cyliﬁder, is given in Figure 8(f).. for the step pulse, the
most ;mfortant modifications to the rigid-body motioﬁ made by the elastic

modes occur during the early *ransient response-period of motion.
3.3 Parameters

Observations of the formal and camplete solutions to the acoustic-medium-
structure inferacfion problem, as outlined.in the vrevious section, indicate
that a relatively émall mumber of dimensional parametefs govern the shell
response to a given input forcing function. These parameters ére contained
within the fwo dimencionless parameters; gn and o, (these correspond to kn
and.cn; reépectively, in Ref. 21). ‘Both of these pafameters are involved.in
the general mass-dependent response of the shell and must certainly be con-
sidered in the rigid-body motion of the shell (n = 1). If the mass of the

shell can be neglected, only Un'influences the shell motion and consequently
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the number of parameters is reduced. The constants gn and g, are defined as:

m ' : : o

En =p = uH (1 hs n2) : , (8)
m 'n2
-

o = % HS S.___ﬁl Ian - ‘ ‘ (9)

n
Thus, in general, each modal response of the shell depends vpon the parameters
i, H, E, and B. In general, all four of these parameters are required to

specifv completely the solution for the shell displacement. In this program,

however, 1t was necessary to use only three of the four at any one tlme for

the reasons stated below.

Except for very small times, the mass of the shell may be neglected in
'determining the elastic modes of shell motion'(n =0, 2, 3, 4 . . . ).
Hence,ﬁrl 20 and only the parameters involved in the constant g, are of

importance to the problem, i.e., E, B, and H.

For the case of the rigid-body motion of the shell (n = 1) ch’= 0, and
the parameters required for definition of the shell motibn are yu, H, and B.
The term B, although not contained with € n’ is contalned in the general ex-

pression for the solution of the problem However, it enters the equation

simply as a multiplication constant. : } —

Data presented in this seetion are given in terms of the dimensionless
displacement, Qn, and velocity, Vn. It should be noted that the displacements
in all modes are made dimensionless by meane of the zeroeth-mode static dis-
placement. This provides a uniform base for directlccmparison of relative

displacements among modes. Because of singularities in the short-time
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solutions for the dimensionless velocity, Vn’ it was not possible to obtiin
the maximum acceleration values, since they appear to occur at very short
times in the development of the motion. Consequentl&, accelerations are |not
presented in the results which follow. The inability to present accelethion

values was disappointing, but the investigation of the overall shock-iso]atior:

problem indicated that knowledge of maximum values of displacement and velocity
was sufficient to define shock-isolation r’equirements for protective strictures.

Hence, description of response properties was iimited to displacemem and

velocity results.

. {0

The final parameter of importance in the problem is the wavelength o the

incaming wave. The incoming wave is illustrated in Figure 9.

>

Figure 9 INCQMING FRESSURE WAVE

The positive-pressure phase of the wave is defined nondimensionally es

X_1 . ?‘
L=g R lp-x) =g (g-t)=Tg-7, | (o)




It should be noted that T, and T, are simply the arrival time and clearing

A B
time of the‘positive-pressure phase of the incaming wave, respectively, in
dimensionless form. - The wavelength of the incoming wﬁve is an extremely

important parameter. Physically, it is direc’.ly related to the weapon yield.

3.3.1 Waveforms of Incaming Pulse

"~ As indicated in Section 2, the incaming wave may be represented as a

rectangular pulse. For such a wave, the range of estimates of appropriate

values for the wavelength of the positive phase, X, were taken as |

300 ft. < X < 750 ft. for W = 1 MT

The range is an allowance for variations in types of soils., Based on the

above estimate of the wavelength of the incoming pulse, nondimensicnal wave-

lengths, 4, were investigated within the range
0< £<30

In same cases, the range was extended to investigate interesting phenomena.

In addition to the ianstigation of shell response to a rectanguiar
waveform, it was felt that a number of other basic waveshapes should be
investigated. Examination of the literature indicated that a wide variety

of waveforms have been cbserved in experimental investigations of free-field

motion. To cover as broad 2 ronge of waveforms as possible and to investigate
the'effect of perturbations of some of the fundamental waveshapes, the followi.
waveforms were investigated: (1) the rectangular pulse, (2) a rectangular

777777 exponentially decaying spike superimposed upon it (various

decay rates were investigated), (3) a half sine, (4) 2 haversine, (5) a sine

wave with discontinuous first derivatives at its initiation and termination,

36




- |

- /’

and (6) a modified sine.* These are illustrated in Figures 10 and 11. The wave-
shapes discussed above were all investigated throughout the entire range of

. wavelengths as given above.

3.3.2 Shell Parameter Ranges

. Only steel shells were investigated because in the region of interest . ...

of ground shock stress, namely, 1000 psi < P < 10,000 psi, concrete shells
, Es' ,
, C1- p2 .
As a first estimate of the order of magnitude of ‘s'hell“’thickness-fo-v-"uw

might not survive. The value of E selected was E = =33 x 10° psi.

radius ratios to be used in the investigations, a static design for the shell
was made. After ruling out the use of concrete, it was estimated that steel
shells would withstand the ground shock of interest with thickness-to—radius
ratios of the order of .01 ‘to .1.. It was decided to investigai:e the values

of thickness-to-radius ratios of H= .0l, .04, and .08.

3.3.3 Medium Parameter Ranges -

The problem of determining an appropriate range for the parameter B of
the medium is camplicated by one of the basic assumptions in the solution to
_the problem. The assumption is made that the motions of the shell can be

described in a Fourier series in the angular coordinate, 6. This assumption

i.mplies that all points on the circumference of the shell respond simultaneously
to a force exerted at any point on the shell. In a real shell, when a load is

applied localily, the signal from the load is not felt instantaneously through-

out the entire shell, but is transmitted as a wave motion either through the

shell or through the medium, whichever route provides the most rapid path.

¥For the origin of this waveshape, see Volume III of this report.
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o Since it is assumed that.thevforcing function on the shell is represented
‘by';";;aveling wﬁve, the propagétion of.the signallin the shell must be much
greater than the signal propagation in the medium if the assumption of the
Fourier series expansion of the shell motion is té be valid. To insure the
validity of this assumption, it was necessafy to choose values of wave prop-

agetion velocities in the medium in ranges which were below that of the ...

acoﬁstic'velocitf-ofrggégi:

‘Even with such éfriﬁééhf féqﬁifehenéé, it was found possiblé to make fhe
range of'the'pa:ameter B embraée‘a large variety of materials. A low and high-
mo&ulﬁs soil were selected with a fangg of B of 0.4 x 10? to 2.0 x 10§ psi.
The low-modulus medium is represenfative of the value of‘the modulus which
one ﬁight obtain from a typical clay or a slow sandstqne.33 The upper limit
of the soil quulﬁs is representétive 6f a typical limestone or'a'slqw granite.33

" Thus, a wide variety of potential media may be considered while»stiil remaining

within the requirements of the sclution of the problem.

Once fhe range of‘thg modulus.of the medium has been-ﬁelected,'the
selection 6f the density ratios beéqmes nearly automatic. To provide fhev
widest range in the denéity'ratio; the density extremes for the media cor-
responding to the limitsrof the raﬁée of the bulk modulus of the medium were

w'selected.'~The~values of the density ratio used were: -

g =k when B= .4 x 10°® psi

u 3 when B = 2.0 x 108 psi

The value of u = U4 corresponds to the ratio of the density of steel to that
of a typical water-saturated clay. The density ratio g = 3 corresponds to
ratio of the density of steel to that of granite. A range of this size

'adequately covers practically all media of interest.
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SECTION 4

DISCUSSION OF RESULTS*

Because of the many combinations of parametric variations that were
necessary to explore the relative influence of these parameters on the

structure response, a great number of cases were computed,

The usual custom of distributing the graphs throughout the written text

was departed from in this section because it would be too disruptive of overall

continuity and many of the graphc have application in several parts of tre

discussion. Therefore, the graphs are all located at the end of the section.

The discussion of results is long because of the many relationships
which must be considered. Standarde cf comparison must be developed and
explaihed. It is important to note that thé quantities piotted in the figures
are nondimensional. Most of the following discussion compares nondimensional
displacements and velocities. When comparing specific paremeters for specific

situations, the quantities should be brought back to dimensionzl form.

Major subdivisions of the discussion are based on the shape of the input

pulse or wéve, beginning with the step pulse and continuing with the rectangular

pulse and other waveforms. The discussion of both the step pulse and rectangular

“pulge 1s rather extensive since these form the bases of ccmparison for the

influence of other waveshapes.

*Designers of shock isolation systems interested only in applying the data
to specific situations need not read the beginning of this section, but may
proceed directly to Subsection 4.4 on page 69 without loss of continuity.
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- Discussion within each major subdivision is ordered according to modal

resﬁonse, beginning with the zeroeth mode and progressiag in seqﬁence'to the

'

"third and fourth modes. iWithin each of the modes, displacement response and

velocity response are considered.

- Following'this, the general shell response to changes in shell and

is discussed ' . | |

medium properties for all waveshapes ismiresenteé:ﬁwlﬁea4thewinfluence”of a

variation in waveform on shell response for various media and shell properties

Finally, the parameters are ranked accordin%’to their inflhence on dis-
placement and velocity response, and the effects of errors in estimating

values of parameters on prediction of response are presented.

-To present compleil. displacement and velocity-time bistories for'all .

' cases considered for this program would make the report too large. Moreover,

since an estimate of the response of 1nterior articles tc be shock isolated
can be made on the basis of values of peak displacement and velJEitJ alone,
presentation of the modal response of the shell to various waveforms will,

gereral, be limited to discussion of the peak positive and 3egative

I
ues of the modal shell response. In order that the results of this study

routine used for determination of the response of the shell to any.given input
waveform is included in Appendix A. When coupled with the response of the shell
to the unit-step pressure pulse described in detail in subsection 4.1, the

Duhamel integral routine will provide complete time-history solutions to other

Lo | [

be—considered-completely described herein, the Dubamel-integralucomputer R
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waveforms which one may wich to investigate, Therefore, after the discussion

of the step-pulse response, this section will consist primarily of a discussion

of the modal response peaks.

L,1 Shell Response to Step-Wave Input

The response of the shell to the unit-step-pressure-pulse input is reported
" in this section. Modal shell displacement response to the unit step wave is

shown in Figures 12 through 22. The velocity response is shown in Figures 23 to 32.
N - .

4.1.1 Zeroeth Mode Response (n = 0) . e

Iﬁ Figure 12, the zeroeth or "breathing" mode response of the shell in
low-modulus (B = .b x 100 psi) soil is shown. The results shown 1a Figure 12
are unique in that the fype of response shown was not found in any other medium
or mode investigated. It'will be noted that for the thin shell (H =.01) the
shell responés rapidly, its displacement increasing until approximately T = 5,
at which time the displacement has exceeded the static displacement. The peak
displacement response is approximately Qo = 1.1. After reaching its peak
value, the zerceth-mode displacement decreases towards its static value, about
which it oscillates with rapidly decaying amplitude. The'displacement.hay be

considered to have reached the static value by the time T = 20.

 The thicker,shélis“in§éstigated do hot"éihibit’iﬁié_sémerfﬁié éf éié;’m
placement response. As the shell thickness increases, the displacement no
longer overshoo?s its sfatic value, but remains below it, approaching the
statiz dispiécement asymptotically. This tjpe of response is very similar

in appearance to that of a damped spring-mass system. The thin shells have
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- interesting to investigate conditions under which~arresponse~similarwtowcritieaLﬂ—;—m

- (See Equation 6.1 in Reference-21) frommcompieXﬁtO“real;“"Forwcomp}exmp01357““ﬁ“'“f*““

“to real. As Equation 6.1 in Reference 21 is a-quadratic equation in z, the

the appearance of an underdamped system in which the displacement overshoots .
its equilibrium position and then oscillates about it with a decaying amplitude.
The thicker shells, conversely, have the appéarance of being overdamped, so

that no oscillation is apparént in their responsé:'>ﬂu »

Because there is such similarity to damped oscillatory motion, it becomes

demping is obtained. Examination of the conditions which cause this type of

response shows that it is connected with the changé of the poles of the integfand
the motion is simiiar to that of the underfdamped system. When the poles
become real, the response behaves like an over-damped system. It is reasonable

to conclude that critical damping will occur as the poles change from compiex

transition from complex to real roots of z will occur as the digcriminant, D,

goes to zero, Where ) - ; | L P
2 ~ : ' _ |
D= 0y-t0y 8 o B¢t

D equals zero for two. cases. In the only nontrivial case,

., T B
H = 4 & &
- 1.7 x 102 for B = 0.4 x 10° psi
: . - (12)
= 34,2 x 10-2 for B = 2.0 x 106 psi

Thus, it can be seen that motion corresponding to the case of critical damping
is obtained for the case described in Figure 12 wher H =.0171. For thickness-

to-radius ratios less than this value, the solution yields complex roots and
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corresponds td the under-damped. case, as indicated when H = ,01. For h > .01Tl,
the solution yields real roots and the shell response corresponds to an over-

damped case, having an appearance similar to that indicated for the values

H = .Oh and .08.

It is interesting to note that for the case of the high-modulus medium

_;;,(B = 2'; 106 psi) the roots remain complex for H < .342. Values of the thickness-
to-radiu; ratio of this magnitude e*ceed the limits of thin-shell theory. It’

may be observed that the response curves for all indicated values of H in Figure 13
resémble £he uqder-damped case, It éhould ﬁlso be noted that as Hhincreases

the response of the shell becomes more rapid, the initial velocities of the shell

being greater for thicker shells in a given medium than they are for thin shells.

In the zeroéph-mode-displacement response for the high-modulus medium
(Figure 12), the characteristic under-damped motion of the shell msy bn observed.
It should be noted however; that the peak values of the displacement are
considerably larger for the high-modulus medium than for thgvldw one, Whereas

the maximum value of the displacement for the low-moaﬁlus medium was QO = 1.1

for H = .01, the peak value of the displacement for the high-modulué medium

i

is Qo 1.35 for H = .01. The increase in the peak values of the zeroeth-mode
displacement is also accompanied by more pronounced oscillation of the shell
“about the statie dispiacement, There is an apparent diréct connection bet&een
the magnitude of the discriminant D (Equation (11)) and the damping of tha
zeroeth-mode response. As the imaginary part of the complex root of z

ihcreases, the damping of the zeroeth-mode displacement decreases. Hence,

peak responses increase under such conditions and it may be concluded that
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oscillatory motion will become more predominant as well; the motion will decay

to the static displacement value more gradually as the magnitude of the imaginary -
part of the root of 2 increases. This indicates that for values of the bulk

modulus of the medium exceeding those presented here, peak shell response would

continue to increase with increasing values of the modulus and damping would‘/

be expected to decrease. -~

-

4.,1.2 Rigid-Body Response - First Mode (n = 1)

The rigid-body-displacement response of the shell to a unit ste% pulse is
shown in Figures 1h and 15. The velocity response to the step pulse is shown in
Figures 25 and 26. The most striking feature of the rigid-body response to a
step pulse is the terminal velocity which the shell attains, The shell is
accelerated until it reaches its characteristic terminal velocity. This accel-
eration period is relatively short. (However, for example, see Figures 25 and 26

where terminal velocity is-essentially reached before T =5.)

Fig.res 14, 15, 25 and 26 indicate that terminal velocity is & function of
both B and H, Actually, in dimensional units the terminal velocity is indepen-
dent of H and depends only on B; it is identical to the free field particle
velocity asrociated with the stress wave, The H dependence indicuted in the
figure is due solely to the manner in which the nondimensional variables were

formulated.

4,1.3 Second Mode Response (n = 2)

»The second mode reéponse to a unit step pulse is shown for relatively
short times in Figures 16 and 17. The long-time response is shown to a different

scale in Figures 20, 21, and 22, The second-mode response develops the largest
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varintions in displacement of any of the elastic modes, n=0, 2, 3, 4 . .
This is particularly true for the low-modulus soil. The peak dicplacement
response for u given shell thickness is nearly five times as pgreat for the low-

modulus soil as it is .for the high modulus.

The effect of shell thickness on the second-mode response is quite sig-
nificant. Figures 16 and 17 show that Q2 is nearly directly proportional to
shell thickness. It is only for the very largest displacement response, i.e.,
thick shell and low modulus medium where this direct relationship breaks down.
Thic effect may be quite mislcading. Since the static displacement, Qg is
actually inversely proportionial to the shell thickness, this effect and the
increasing of Q2 with shell thickness tend to cancel each other, Thus the
actuul dimensionul displacement in the second mode, s would be nearly the
same for all shell thicknessc:s, except for the case of thick rhells in a low-

modulus medium where 9 would be somewhat less than thet of a thin shell in

the sume medium.

Corsider now the gross mmotion of the shell in the scecond mode. Comparing
the curves of the displacement, Figures 16 and 17, with those of the velocity,
Fipures 27 and 28, it can be observed that the peak values of velocity occur as
the front of the wave passes over the shell, i.e., 0 <T < 2. 1In all cases, the
peak is reached during this very short period. In general, one can also observe
£hut an abrupt change in shell velocity occurs after tiz passage of the wave over
the shell. The essence of this activity during the engulfment period is con-
tained in the»contribuﬁion of the incomplete Bessel Function, Ine (z), which .

is a time-dependent factor during the passage of the wave across the shell.

k7
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S radius vee..cr to the shell surface at +‘1'~ w \ez Jat and the 7-f.sxis of the

= _'_,'isuel_l. ) The i.z:.mplete Bessel function uet-omes an ordinary Bessel function - e

" tipe marmonic oscillatory motion with "requency Q . It can be shown that 'y

B P

I*' va 'Lae i8 dependent upon the value of the angLe, .’3 = "os | ( l - ‘r ) , which

describes tt.. ,;,o tlon ot the wavefrom in Teme of tnf arg‘. wept out by &

’“‘Qr_i-when the wavefront has traversed the shell 5 = »r or > 2, nd thereafter -

is no longer time dependent 'I‘hus ’ follo ing the engulfment of thre shell by

_ the wavefront, the motion of the shell is entirely a i‘unction of the two
: zlv T-21) 22& T - 1)
exponential terms of the equa+ion ’ and e . But since

2y ‘and z_ are the two roots of a quadratic equation which, in the case of the

2
second mode, my be shown to always be comnlex for the entire range of var‘ables

investigated for this problem, z:L and 22 are simply complex conJugates of omne

another, Letting

o7y i, R | (13)
the two time- dependent exponential terms become

' ""Y( T - 1) 9( T 1) = »_" C : (lll-)

_'I’he first term of (lh) contributes an exponential decay to the magnitude of

the modal shelZL displacement, while the second term gives%he—reaponseﬂ

- and (' may be represented e.s '

g
n 1 o~ 2 o :
v=-a'fﬂ=§\/“bnen-°n S (15)
In the second mode, the magnitude of qa is very small with a range of

.Mxm45%5&me4
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Thug, the exponential decay term e'Y( T-1)

is very small and, at the liower
limits of Py becomes almost negligible, Conversély, 1 is directly
proporticpal to V;_;. Hence, the order of magnitude of .he frequency of the
shell oscillatory motion 1s several times greater than that of the decay |
factor, y . For this reason, a distinct time-harmonic oscillation of the
shell, about the ze‘ro point of the displacement may .be séen in fhe lo: g-time
responee .of the shell in the second mode, as shown in Figures 20 through 22.
‘Little or no evidence of any exponential decay can be. obséf;';é'i fér thé high- o
modnlus medium, but the decay rate of the low mpdulus nedium 1is apparént as
might be expected, since the largest valueé of ¢ 5 are associated with the

low-modulus medium.,

4.1.4 Higher-Mode Response (n = 3, %)

Response cof the shell in the higher modes is ghown in Figures 18 and 19
for the displacement and Figures 29 thfouéh 32 fér the velocities. The
displacement responsé_in'the.higher modes decreases rapidly with increasing
modal order. Although there are gome relatively large fluctuations in
displacement during the engulfment périod; the shell motion in the highef
~_modes 1is nearly negligible in terms of long-time motion. One would expect that
the long-time motion of the ghell in the higher modes shquld be very similar

to that of the second mode in that it should exhibit the same type of
oscillatory motion about the zero value of the modal displacement with a

frequency f{) which is proportional to \/ 0‘n while the magnitude of the

: g
oscillations should decay exponentially in time with a decay factor ¥y = ==,

2
However, the magnitude of the displacement which remains at ¥+ = 2 is negligible

o
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" 4nd the oscillatory motionlis‘imperceptible. The decay factor y 4
i;substantially larger for the higher modes as well, being of oroer one for thick
.pﬁfgshells ard low-modulus soils. Thus, even if the motion were apparent it A

*';’would decay rapldly with time and be of little significance following the

. passage of the wave over the =hell During the engulfment of the thickerf
: shel . however, some fairly subctantial peak positlve and regative displace- :

V'ments are obtained for the 1ow-modu1us medium (Figure 18) Since they are.

'of relativelj high frequency, thcir effect on items of °quipment to be

. shock- isolated may zot be negligible.

Although the peak positive and negative displacements for the higher
modes decrease much rore rapidly than'do the velocities as the modal number

increases, observaticn of the‘velocity-time curves for the shells (shown in

Figures 29 through 32) indicates that the peak velocities decrease fairly

rapidly with incra2asing modaltnumber. Thus, both the displacements and the

-

velocities are negligible after engulfment, and it is ‘unnecessa~y to carry

the investigation of the modal response of the shell beyond the fourth mode.

h.E _Response to Rectangular Pulse‘

“The peak positive and negative values of displacement response of a shell

are shovn in Figures 33, 3 hS, h6 57 and 59,<£or the,zeroeth, first, second

L third and fourth modes; respectively. Peak modal velocity response to a

rectangular-pulse input are shown in Figures 61, 67, 73, 80, 81, 82 and 83,

. again for the zeroeth, first, second; third, and forth modes, respectively.

All the above curves are plotted in terms of peak response versus dimensionless

pulse wavelength, J , as a function of thickness to radius ratio, H, and bulk

50




modulus of the medium, B, Response-time histories for shell response to a
rectangular pulse may bé obtained by direct superposition of a step pulse
response curve initiated at time 7 A (see Figure 10) and & negatively directed

step pulse response curve of equal magnftude initiated at the time T ., the delay

corresponding to the desired iInput wavelength., Thus, the results cbtained for

the peak response curves may be inferred directly by observation of aprropriate
step-wvave curves. Typical modal response-time curves for the case of rec;

tangular-pulse interaction are shown in Figure 84,

4,2.1 Zeroeth-Mode Response

Description of the zeroeth-mode displacement response to a rectangular
pulse is made more tractable by distinguishing between relativeiy shgrt and
relatively long pulse lengths. For relatively short pulse durations; the
shell displacement is characterized by increasing absolute values of the

peax positive and peak negative response with increasing-wavelengths. As

" the duration of the rectangular pulse increases, however, the peak positive

and negative displacement response curveé reach constant values which are nof
exceeded thereafter regardless of how long the pulse length is made. - For
relatively large pulse léngths, increasing the sheil thickness decreases both
the peak pdsitive and negative displacement response of the shell. For short
pulse lengths; the situation is reversed, and increasing shell thickness causes
increased peak positive ve'ues of .the displaceﬁent response. As the soil bulk
modulus increases in magnitude, the mégnitude of the peak positive and negative
shell response increases also, In the paragraphs which follow, an explanation

of these response features is given.
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:2;,13, it is apparent that if the pulse duratior is 1ess than the time required

' '55:for the shell displacement to reach its peak response to the sten pulse, the

*3rwmaximum value of the response will be that value of the displacement which the ’_;4

'lr,—ashell has attained at the moment the tail of the vave reaches the shell, and

B the negatively directed step-pulse curve is initiated (i e., when T=y )

L e &y e

Ra

From a comparison of the curves of Figure 33 with those of Figures 12 and

”ii Thus,,the peak positive values indicated in Figure 33 follow ‘the pressure-time e
”i curve for the step pulse ‘as shown in'Figures 12 and 13 exactly until the peak
’; value of the'response to the step pulse is reached. ‘When positive duration of
v the pulse is longer than the time required to reach the maximum for the step

. pulse, the maximum value remains constant at the pesk value obtained wi*h the

;_vstep pulse,

“in absolute magnitude than those of the peek positive response. That peak
"ff]negative values are obtained at all is simply the result of the fact that the
iiwldisplacement response to the step uave may overshoot the static displacement.v'ti’9

U,If‘this occurs, then regardless of when the negatively directed portion of thc‘li

:iexceed that of the earlier starting positivc pnase of the wave.v This will‘then"'
_provide the peak negative response of the shell, If, in the step-pulse response,
_the response does not overshoot the static displacement value but acts as though

lit were overdamped approaching the static displacement value from below, then

The peak negative values obtained for the zeroeth mode are much smallerk

there can be no peak negative value for any rectangular pulse, This will be

true regardless of the length of the rectangular pulse. An example of this is
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shown in Figure 33 for the low-modulus soil ard shell thicknesses of .O and .08.
The curve indicates that there are no peak negative displacement wvalues for
such shells. On the other hand, the thinner shell (H = .01) behaves as an

under-damped mass-spring system, overshooting the static displacement value

before returning to it.

Attention should de called to the fact that positively and negatively

S ~directed displacement response is simply a function of sign convention. ‘Accord-
; ing to the shell displacement sign convention, negative disp ¢ements are
directed ocutward, in the direction of increasing values of r. .Thué, increasingly
negative values of the displacement indicate aéfually increasing absolute

values of the outwardly directed displﬁcement. Thﬁt is tp say, large absolute
values of negative displacements are actually just large outward diapiacements.

In the following sections when large peak negative values of the response are

' -
mentioned, it should be understood that large absolute values are implied.

Returning to the discussion of zeroeth mode response to a rectangular
lse, it should be ncted that the peak negative response obt&ined in the

roeth mode for the rectangular pulse remains constant arfter the pulse length

?

s reached a certain value. For example, in the high-mcdulus thin-shelled
case, the respcnse of the shell to a step pulse appears to have little damping
and oscillates noticeably about the static displacement, but with decaylng
amplitude. For sﬁch a case, the constant velue of the peak negative response
which the shell attains for large pulse lengths may nct, in fact, be fhe maximm
value of the peak negative'response of the shell, Einmining the particular case

illustrated in Figure 33, it is observed that the largest absalute value of the
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negative response is obtalned at a pulse length of about b4 =,lh.q Compaflng\tﬁis‘“

lfresult with the displacement-time hlstory shown for the step-pulse re5ponse of

l{a shell-medlum system with the same propertie g, as shown in Figure 13, it may

% .
a
P
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:3be observed that this corresponds“to the inltlation of the negatx ely directed

~ejabout the static dlsplacement 1s obtalned Suuh & case prov*des the matimur

"}regardless of wavelength and medlum propertles. ;l

pulse-at a time snch that its maximnm absolute value will occur at’th  t1me when‘

"ﬁthe lowest point of the first oscillation of the POSiti"elb “1re°ted pulse

peak negative value of the responseu

It is 1nteresting to observe that 1n the *exaetk moae as tne ehell tblcﬁ-

’ness 1ncreases, ‘the peak poeitive va lue o? the <~‘qell dlsplscenert respon e GEw

'T'f:creases for long pulse durations. On the o+her hand, for pulce lengths le;s’

'4:jthan that requlred for the attalninr o tbe matlmum pea& posi*ive valueq for
. each of the shell thlcknesses con51de1ed the oppoelte condition bolus. That
‘is, under such circumstances, thick shells will have larger aynamlﬂ alsplace-

fx?ments than a thin shell.‘ This phenomenon appear' to hold true regavuless of

the-bulk mo&ulus of the medlum.‘{fi_-gq

‘In the”case of the peak negat;ve dlsplacewenL val;es, ohe absolute value

S The'effect of variation in'medium modnius ‘on the shell resﬁonseiis similar

“'Vi;to'thaf'for the step pulse. That 1s, as the modulus of the soil increases, the

:'maximum and mlnimum displacements of thn shell increase also

In summary, the results of variation of shell and medium parameters on

zeroeth node shell displecement’response to a reotangular-pulse yield the
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following information:

(1) For relatively large pulse lengths, increaging the shell
thickness decreased both the peak positive and negative displéée-, i
.ment résponse of the shell,

(2) For short pulse lengths, the situatisn is reversed, and

increaéing'shell thickness causes:inCreased peak positive values . ... . ..

of the shell,

(3) As the soil modulus increeses in magnitude, the magnitudes

of the shell peak positive and negative response increase alsc.

Moreover, the response of the shell in the higher-modulug soil is more sluggish
thanvin a lower-modulus soil,. ?his is shown by the fact that larger times,
hence greater pulse 1engtbs, are required to obtain both the uaximum/values

of the peak positive and negative response in the higher-modulus soil.

Results for the ve10citj response to the rectangular pulse are more
straightforward than those of the displacement. The velocity response-time

curves for & rectangular pulse may be obtained by superpositior frem step-pulse

ww~~~‘-velocity¥time curves in an identical fashionWtOLthose-for;the“displacement. “‘

Comparing Figures'23 and 2t for stev-pulse velocities with Figure €1 for
the rectangular-pulse peak positive and negative velocities, it can bé seen that
maximum velocities for the step pulse are obtained very rapidly. Consequently,
the pulse lengths required to obtain the maximum-peak-positive values cf the
velocity (Figure 61) are very short. It is physically impcssible to exceed the.

maximum-peak-positive velocity values cbtained for the step pulse regardless of
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mw:with the tail of the vave is made to coincide with the appropriate vaiue or time:

' experiencing the above described minimum, a peak-negative-velocity value vhose'u

rrectanguiar-pulse lengths. Similar results are obtained fOr the peak-positive-”;

B characteristics vhich are found in the peak-positive values. In considering L

“the effect of tne step-pulse velocity response on the rectanguler-pulse

and- 2&) that the peak velocity increases with increasing shell thickness.ur ;

(hence, as observed previously, damping of the shell motion decreases)

vfor +he thinnest shell in the high-modalus medium, a well defined peak negative,“i, |

3approximatc1y T = i7 5. If the length of the rectangular pulse is chosen gf
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velocity response as a function of pulse 1engtn regardless of shell or medium

- The peakpnegative values of shell response do not have the same'response

response, it may be observed from the step—pulse response curves (Figures 23

However, the duration of the velocity response and the variation in shell

motion is greater for the thinner shells. As the soil modulus increases o

variation in velocity-time curves and duration of response increases. Thus,

velue of the velocity occurs in the velocit y-time history of the response to ﬂﬁ‘

the’step-pulse.“ This minimum value of the velocity occurs at a time of
such that in superposition, the negatively directed peak velocity associated
at which the positively directed phase associated with the head of the uave is:
absolute magnitude is greater than that of the peakﬁpositive value’will occur.
This accounts for the rather peculiar looking bulges’occurring in the’peak-

negative-velocity-response curves shown for the high-modulus medium in Figure

61. It will be noticed that the maximum value of the peak-negative,response,
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in absolute value, exceeds the maximum response for the peak-pbsitive velocity
for the equivalent thickness. In particular, the pulse length at which the
maximum-peak negative velocity is obtained corresponds to about g = 13 vhen

H=.01, g=TvwhenH = .04, and g = T when H = ,08, for the high-modulus

s0il, At pulse lengths greater than these indicated values, the peak-negative

velocity response decreases in absolute magnitude until, for long pulses, the

' peak positive and negative responses for the shell velocity are identical.

Similar results, though not so pronounced, are observable for the thin-shell,
low-modulus soil case, The thicker shells do not exhibit this same characteristic
for the low-modulus soil. The velocity responses of these shells approach zero

rapidly without a change in direction.

It should be noted that the developmént of maximum values of peak negative
response of equal or greater absolute value than the peak-positive maximum
occurs at much larger pulse lengths than those required ‘o obtain constant
maximum values of the peak-positive velocity. Therequired pulse length to
obtain maximum values of the peak-negative-velocity response decreases as the
shell chickness increases. As an example, observe that pulse Nlepgths on tfle,
orderv;f z _<_1/2 are requireé for the maximum-peak-positive-velocity response
to be attained for the low-modulus soil. To obtain the maximum-pesk-negative
response for the thick shell, a pulse length of Q Z.h is required., For a thin
shell in the same medium, a wavelength of approximately g > T is required
before the magnitude of the peak-negative response becomes equal to or exceeds
that of the maximum peak-positive response., Similar results are obtained for

the high-modulus medium.
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The peak positive and negative absolute values of velocity response in-
crease with increasing shell thickness for all pulse lengths. For the low- -
modulus soil, the fange of the maximum velocitydvalues is .41 for H = .01,

.88 for H = .04, and 1.25 for H = .08.

As the modulus of the soil increases, the same general relationship
between the maximum velocities and shell thickness continues to hold true.
However, as the soil modulus increases, the absolute value of the peak
positive and negative response is decreased. For example, the corresponding
values of velocity maxima in the high-modulus soil to those shown ahove for
equal shell thickness in the low-modulus soil are .17 for H = .01, .37 for H = .04,
and .56 for H = .08, Thus, the magnitude of the velocity response has been
reduced to a value less than half that ur the low-modulus soil-shell system.

For the high-modulus soil the magnitude of the maximum-peak-negative velocity
exceeds that of the maximum-peak-positive response for the corresponding shell
thickness in every case. The repregsentative values of the maximum-peak-negative
velocity being .24 for H = .01, .42 for H = .04, and .59 for H = .08. The
absolute values of the peak-negative velocity maxima will exceed corresponding
values of the peak-positive msaxima in every case where the medium-shell system

exceeds the requirements for critical damping and becomes underdamped.

Summarizing the variation in zeroeth-mode velocity response with medium
- and shell parameters, it is noted that:

(1) The maximum-peak-positive velocities associated with
rectangular-pulse shell response are developed very rapidly and

consequently are nearly independent of the pulse length. Only
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fo¥ pulse lenéths lesé than the shell diameter is there a likeli-
hood that the maximum-peak-positive velocities will not be obtained.
(2) For very long pulse lengths, the nbsoiute values of the peak
positive and negative velocity maxima are identical.
(3) For an intermediate range of pulse lengths (5 < g < 20 for
the range of parameters investigated in this report) it is possible,
under certain conditions, for the maximum-peak-negative-velocity
response to have a greater absolute value than the maximum-peak-
positive response,
(4) CGreater absolute values of maximum-peak-negative velocity will
occur, however, only when the medium-shell satisfies the conditions
required to achieve the underdamped state.
(5) The absolute values of the maxima of both peak positive and
negative velocities iricrease with increasing shell thickness.
(6) Absolute values of the maxima of both peak positive and
negative velocities decrease with increasing soil-modulus values.
(7) For equal shell thicknesses, increasing values of soil modulus
prodice decreasing damping effects and consequently make the
possibility of maximum-peak-negative velocity exceeding those of the
ma#imum-peak-positive'velocity more likely.

Moreover, as the damping decreases, the frequency of the oscillatory shell

motion decreasss so that longer pulse lengths are required to obtain the

absolute maximum values of the velocity.
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4.2.2 Rigid-Body Regponse

Rigid-body-peak-positive-displacement response to a rectangular-pulse
input is shown in Figure 39. Except for very short pulse lengths, the peak-
positive response is a linearly increasing function of pulse length. Figure
84(c), a typical rigid-body-motion-time curve, illustrates this type of motion.
If the pulse length 1s sufficiently long for the shell to reach its termi.al
velocity, further increase in pulse length will merely result in an extension
of the linear portion of the displacement-time curve. Therefore, for all
cases where the pulse length is of sufficient duration to raise the shell
to terminal velocity, the maximum displacement will be found along the linear
portion of the curve in Figure 39. When the pulse length is too short for the
shell to reach its terminal velocity, the shell motion is taken up completely
in the initial acceleration and final deceleration phase. The range of the
pulse lengths which are too short to accelerate the shell to terminal velocity

is very narrow. The pulse lengths must be less than 2 shell diameters ( £ = L)

to qualify for this distinction.

"In each care, the ‘terminal velocity which is approached is that of the

free-field particle motion due to the passage of the stress wave.

The peak positive and negative velocity response curve for the rectangular-
pulse input is given in Figure 67. As might be expected, the curves in Figure
67 are identical to those found for the step pulse. (Compare Figures 25

and 26).
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4.,2.3 Second-Mode Response

The most striking feature of the second-mode-maximum-displacement

response curve, as shown in Figure 45, is the large magnitude of the thick

- - - ghell-peak-negative-displacement curve, Its absolute magnitude is nearly

twice that of the corresponding peak-positlve-displacement curve shown in

. the same figure fo; the same cas;; The explanation of the phenomenbn can bdbe
“obtained by considering the long-time-second-mode-response curve to the step
pulse shown in Figuré 22. These long—time-displacement~time histories for @he
step pulse indicate thﬁt the shell regponds very rapidly, initially, attaining
what appears to be an'initial displacement., Then, in a manner similar to a
damped single-degree-of-freedom system subject to an initial displacement, the
shell oscillates about its null displacement in a damped manner. If the length
of the rectangular pulse is such that in the superposition process the maximum
" value due to the negative phase is attained Jjust as the positive phage of the
vmotion has reached its first peak-negative response, then the response will be
augmented ang a fesponse in the negative direction is obtained which 1s.nearly
double fhe peak positive-response value. The greatest absolute value of the
peak-negative displacement cu'rvers 1s obtained for the shell thickness H = .08
at a pulse length of approximately j = 14, As can be seen in Figure 22, this
pulse length closely corresponds to a half pefiod of the appzreny natural

frequency of the shell-medium system. Similar values would be obtained for

the other thicknesses shown if the curves were carried out to sufficient length.'

The remaining portion of the response curves shows that the maximum peak-
positive values of the response are reached for very short length pulses,

after which the peak-positive response remains constant.
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'Again; the shell response for both peak‘pcsitive and negative displacement ;

increases with increasing shell thickness. This appears to be true in general
except for some minor adjustments vhich must be made for certain long pulse

lengths where there is a crossover point in the minimum curves (e gy 4 =25

in Figure hS)

As the“soil modulus increases, the peak positive and'negative values of

the displacement decrease. - -

Examinatiom of second-mode-velbcity response of the shell to a rectangular
pulse, as sméwn in Figure 73;‘indica£es that the maximum-velocity-response.
curves areivery similar in appearanee to the maximum-displacement eurves.

They are not,‘hcwever, nearly so emtreme in the‘manner‘in mhich the maximmm
values of the peak-negati#e-response curmes exceed tme corresponding values

of the peak-pcsitive’curves. Comparison of»the step-pulse-velocity-time cufves
indicates, howevcr, that a response'in fmermelocity curves very similar ﬁe
that shown in the maximum-displacement curves is to be expected. - That fhis is
actually the case is clearly indlcated for the. comblnation of shell thickness

= .08 and modulus B = .A X 106 psi, where a distinctly larger absolute

magnitudevof the peak negative value of the response is obtained comparsd with
__the corresponding peakspositive response. The oscillatory nature of therpeak-
negative-response emrve is also appsrent in the same figures. For the other
thicknesses shown, the period of the oscillation is so much longer and the
amplitude of oscillation so much less, that the oscillatory motion of the

peak negative curve cannot be shown with the scale of Figure T3.
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It_should be noted that the same generalizations céncerning the in-
fluence of shellvthickness and soil modulus on the magnitudé of the maximum-
velocity-response curves made for the maximum-displacement-response curves
may be appiiéi here. That 1s, the peak positive and negative velocities
both increace witﬁ increasing shell thickness; and decrease with increasing
soil modulus. Heré again, the analogy may be made between displacemeqt and
velocity. However, the rate of decrease with increasing soil modulus is
somewhat less in the case}of the velocity curves than it is :or the cése of

the displacement curves.

4.2.4 Higher-Mode Response

Curves of the peak positive and negative displacemenf response for the
third and fourth modes are shown in Figures 57 and 59. Where reliable results
exist, it appears that the shell aisplacement responée-in the third rode is
néarly'symﬁetrical in both peak positive and'negative respdnse;-rMbreover,
the'response’in the higher modes for all practical purposes may bé considered.
to end when the front has traversed the shell (compare with Figure 19). The
maximum-peak-positive shell response is constant for all wavélengths where
g >2a. Similarly, the maximum'value of the peak-ﬁégaéiﬁémrespogée isridenéical
with that of the maxirum-pesk positive response. But, the length of the
rectangular pulse required to obtain the maximum-peak-negative response must
be twice the value of that required to obtain the maximum-peak-positive-

response value, i.e., 2> L,

For the third mode, the peak positive and negative response seems to

increase with increasing shell thickness. Note however, that no results are
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shown in the low-modulus soil case for the thickest shell, H = .08. This is
because convergence problems with the incomplete Bessel functions for this
particular combination of parameters caused the tccmputer results for the

shell displacement-time response to be considered unreliasble, Again, as the
s0il modulus increases, the peak-positive displacement decreases, As was the
case in several other modes, the response appears to be inversely proportional

L0 801l modulus.

In the fourth-mode-displacement response, even greater problems were
experienced with the reliability of the numbers obtained for certain cases.
However, notice that maximum responses as shown are significantly less than in
the third mode. There is a very satisfactory convergence of the maximun
response values with increasingly higher modes. It was for this reason that it
wvas felt unnecessary to determine more accurately the remaining cases whose
response-time curves were considered unreliable because of difficulties with

convergence of the incomplete Bessel function computation routine,

As appears to be the general case for all the bending modes, the magnitude
of both peak positive and negative displacements increase with increasing shell
thickness. Also, for the one case which can be compared (H = .01) the maximum
peak positive and negutive response appears to be inversely proportional to

the soil modulus.

A small blip appears in the peak negative displacement curves for pulse
lengths less than 2, For such lengths, it is again possible to achieve a sort

of resonant situation in which the pulse length is directly related to the

S s iy



minimum of an oscillatory condition in the displacement of the fourth mode.
(Compare wath Figure 8% (1).)

The third and fourth mode velocities are shown in Figures 80 to 83. Again,
due to problems with the incomplete Bessel functions, little can be said con-
cerning the effect of shell thicknesses. The maximum velocities of the shell

for all piulse lengths decrease as the soil modulus increases,

4.3 Response to Exponentially Decaying Pulse

Peak-modal-displacement-responae curves for the shell-mwedium interaction
with an exponentially decuying pulse are shown in Figures 34, 40, 47, LB, 58
and 60. Peak-modal-velocity curves for this case are shown in Figures 62, 68,

7%, 75, and 80 through 83.

Since analytical and experimental results indicated the possidility of a
vaveform existing with a sharply decaying pressure spike at the leading edge,
an exponentially decaying pulse was selected for investigation as one of the
shapes approximating this form. In order to investigate the effect on the
response of variation of shell thickness, medium modulus, the pulse length, an
exponential form was selected which would give the same general waveshape
regardless of pulse length of the forcing function. To satisfy this conditionm,
the pulse selected was of the form

P = P (14 e~PT) (16)
A decay factor of B = 5/f guarantees that the tail of the wave vill always be
vithin approximately 1/2§ of P,. A waveshape of this form vas selected because

it represented the superposition of an exponentially decaying spike on a
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recfangular pvlse with an initial pressure of twice that of the pure rectangular
pulse but decaying to the rectangular pulse pressure at the tail of the pulse.

Although detailed comparison of the influence of the wavashape on response

will be considered in a later section of this report, it should be noted here

that there is a great deal of similarity between the response curves for the
rectangular pressure pulse and the eprnentially decaying pulse. For this

reason, the discussion of veriation in response with variation in parameters

et st o .

will deal only with the influence of pulse léngth where ityproduces a'signifi-

cantly different result than that obtained with the rectangular pulse.-

In the zerceth mode, for relatively long pulses,‘the ebsolute value of
the peak positive and negative displacements decrease with increasing shell
thickness. In all other modes where comparison is possible, the absolute value

of peak displacements increase with increasihg shell thickness. In the first

~ and higher modes, the maximum displacement varies linearly with the logarithm of

the shell thickness., In the zeroeth mode; the variation of the response is

nearly inversely proportional to the logarithm of the shell thickness.

A'general charaéteristic'of the peak;displaéement-response,curves for the

-~ regponse to an exponentially~decaying~wave~is'that~the~peakspositive4value3wdorm~»-~v—~

not appear to have a maximm value as a function of pulseklengfh. That is,_for
all-modes, the peak positive disp;écement values, regardless of shell thickness
or medium modulus, éppear té_ﬂéw;¥adually increasing with pulse 1ehgth. This
cannot continue indefinitely since, 1n:th§ limit of very long pulse lengths,
the exponentially decgying pulse approaches the step'pulse of strength'2‘Po.

Thus, & 1limiting factor on the peak positive displacement response of twice
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~that of the unit-step pulée response will exist for these curves. The pulse
lengths for an exponentially decaying wave would have to be quite a bit larger

-than those for which déta were obtained before this limit would be reached.

In the zeroeth mode, changes in the medium modulus do not produce

g

. ‘Aﬁféhaﬁﬁéed effects. The pﬂ;ﬁ;;égdn BfiéhekOQQ;damped shell-medium system
doés ot seem to appear in Figure 34, Apparently, the higher pressures of
the exponentially decay;ng wave are sufficient to ensurerfhgﬁhtpg dynamic
AA%U#mmaiggi;;;;e;£ifééégg;;igf.égéASA;iim§iil always exceed the static displacement.
However, it may be observed that, for the low-modulus mgdium, the peak-negativev
values of the response curves of Figure 34 are considerably less than those of
the high-modulus mediumf In faét, for the thicker shells, which for the
rectangular pulse were found to be overdamped, the peak-negative response is
ﬁegligible, indicating that these shells return to their equilibrium position
after'iassage of the wave with no oscillatory mction thereafter. For the

higher-modulus medium, however, observe that there is a notable value of the

peak-negative response for all shell thicknesses, espec% lly the thinner onss.

In the variation of the response with increasing ium modulus for the

zeroeth mode, ncte that the response appears to become moure sluggish with in-

creasing modulus. Tha. is, the increase in peak positive displacement requires
pulses of greater length in the high-modulus medium than in the low-modulus one

to obtain the same displacement values.

In the higher modes, it can be seen that peak-displacement values appear
0 be inversely proportional to the modulus of the medium. In the second mode,

this appears to be trve for all shell thicknesses, In the first mode, some
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minor variation from inverse proportionality 1s experienced as shell thickness
increases, but for thin shells these minor varigtions do not exist. 1In the
higher modes, f§r the cases where cﬁﬁparison is possible, the relationehip _
seems;to~be~approximaﬁely”valid'énd”givéh*a'faif“eétimaté*bf“thévéﬁaii*Véiﬁéﬁ“w

of the maximum displacements which would be expected under such conditions.

‘ " In the case_of-the peak-velocity-response curves, it may be observed
that increasing the shell thickness for abgiven medium causéé‘fhéﬂéggélute
value of peak positive ahd hegative veiocitieé to‘increasg. This aﬁpears to bej
true of the peak positive and negative velocity in ali modec where it is
observable, The variation in peak pbéitive velocity as a fﬁhction of shell
thickness is>proportionai to the 1oga£ithm of the éhell thickness; Peak-negativé
velocities are subject to a sort of psuedo-resbnance_condition where thé negative
responsé 1s strongly,augmépfed at certain‘pulse lengths.

_ There is no apparenf peak-positive §alue,of the vélocity obtained ih any
mode investigated., All of the velocities increase wifh incréasing pulse length.

If the pulse-length curve were extended the peak-poéitive velocity curves would

strength. - But for the step pulse, doubling the strength simply doubles the

‘values of the displacements and velocities obtained in the response. Hence, in

the 1limit of long pulse lengths, the peak-positive velocities of the shell
obtained with the exponentially decayihg pulSe must approach a value equal.

to twice that obtained for the step pulse.

It should also be noted that increasing the value of the soil modulus

causes & decrease in the shell velocities. In the first and second modes, the
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" peak positive and negative velocities are inversely proportional to the modulus

of the medium.

k.4 Summary of Shell Response to Step, Rectangular and Exponentially-Decaying

Pulses

Results discussed in preceding subsections of Section 4 are summarized
in this section. Note that displacements ;nd velocities are compared in this
subsection, whereas most of the preceding discussion is based nn the comparison
of the nondimensional quantities plotted in the figures at thé end of Section k.
4.1 Zeroeth Mode '

Peak positive and negative displacements decrease with increasing shell
thicknesses, The displacement-time history has the appearance of an under-
critically-damped spring-mass sysfem for thin shells and high modulus soils.
Motions bécome more sluggish,‘resembling an over-critical;y-damped spring-mass

system for thick shells and low modulus soils,

4,4.2 First Mode (Rigid Body Displacement)

stress wave in the free field. Total displacement is substantially the same

as the free field.

L,4,3 Second and Higher Modes (Bending Modes)

Peak displacement is greatest for the lowest modulus soils. Peak
displacement of the second mode is practically independent of shell thickness.

Displacement decreases rapidly with increasing modal number.
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The shell rapidly accelerates to the particle velocity associated with the




h.S General Response to Change in Shell and Medium Properties for Other Waveshapes

- There is little further to be gained by separate analysis of the influence

of chanées in shell and wedium parameters on the maxim%ﬁ shell response for the

remaining wvaveshapes. --Examination of therresponse~cgyVe5»willwshow'thatwa pattefnr~ﬁ;»~w

has been established which can be generalized for’ali cases.,

In general, the zeroeth-mode peak positive and nega£iv§ résponse.is.
 characterized by a decrease in gbsolufe valuevof the displacement with increas-
ing sﬁell thickness for the long pulse lengths. For short lengths, a |
transition point occurs and the opposite effect may be observed with increasing
shell thickness producing ilcreased peak-positive responses. The most marked
effect whigh change of medium modulus has on zeroeth-mode resﬁonse is the éhanée'
ih the pOSition of the transition poiﬁt in‘displacement response with shell‘
thickneés. For the low-mbdulué medium the transition point occurs at pulse
lengths of approximately £ = 5. For the high-modulus medium, the shéfl response
éppears to be'more sluggish and the trénsition occurs at values of the pulse

_ length of about 2=

Another notable effect of varlatlon in the medium modulus is the character-

istlcally overdamped ‘response for the low-modulus medium and the thicker shells.
Only a relatively minor variatlon occurs in the_actual value of the peak positive
" and negative zgroeth-mode displacements with change in éoil modulus when compared
' ;ith the effect which this parameter has oﬁ disélacement in other modes. 1t

" should also be noted that for pulse shapes‘(which have only a positive phase as
.dpposed to waveshapes which have both positive and negative pheses), the peak-

negative response for the shell experiences no transition point in the effect
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of shell thickness as do the peak positive responses. However, when waveshapes
such as the sine or modified sine are used, the zeroeth-mode peak negative

responses are nearly identical to those of the peak-positive recponses.

The rigid-body-positive response is basically identical ir form for all
waveshapes. In general, the shell response increases iinearly in magnitude
with .increasing wave length, Shellhresponse'may be considered, for all

"practical purposes, as varying inversely with modulus of the medium.

The second mode is characterized more by values of the peak-negative
response than that of the peak positive. The absolute values of both peak-
positive.and peak-negative response increases with 1Acreasing shell thickness.
As with the first mode, both values appear to be inversely proportional to the
modulus of the medium. The effect of changes in wavelength upon the response

can most properly be discussed later as part of the consideration of the effect

of waveform on shell response,

Where observaticns are possible with the'higher modes (n = 3 and 4), it
appears that absolute values of the peak-posifive and peak-negative displace-
pents tnorease vith tncreasing shell thickness. Again, the response of the
shell in the third mode seems.to be inver;ely proportional to the soil modulus.

As far as modal velocities are concerned, the absolute values of the péak-
positive and peak-negative responses are seen to increase with increasing shell
thicknes; in 21l modes. Although they aléo appear to decrease with increasing
soil modulus, an inverse proportionality relationship with soil modulus again
appears to hold reliably only in the first and second modes. Some indication

exists that the relationship may hold for the higher mcdes as well, but it
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cannot be completely verified in all cases and existing data are rather slim

- --to give a definite answer to this questlon. :

4.6 Influence of Variations in Waveform on Response for Given Medium and

'Shell Properties

lniconsidering the influence of variations in waveform on shell resporse,

the exponentially decayihg pulse must be considered as‘a special case.A Peak .

S —— p:essureswassociatedwwith~the»exponentially,decayingmpulsefwere permittedwjow—
varY} Thus, it is not possible to compare directly tﬁe'oumenical values o iﬁhe
displacements obtained with the exponentially decaying pulse ﬁith those obtained
with other shapes where peak pressures wvere uniformly normalized. Therefore,
the exponentially decaying pulse will be discussed separately following the
general comparison of the other waveshapes., The general waveshape comparison
will be conducted by consideration of the response in the several separate

. modes indlvidually Wide veriations in peak-response‘curves make it 1mpossfble

to generalizeva single descriptton of waveshape effects which would satisfy

. the condition4

in all modes. In the following modal analysis, the influenﬁ
; e
}displacement and velocity will also be considered separately.

of waveshape

k6.1 Zéiv oeth-Mode Respongse T

: Zeroeth mode response to variation in pulse and waveshape can best be
analyzed by dlviding the shape into two categories; those with positlve phases
= -+ _ only (pulses), and those with both positive and negative phases (waves). The
first group includes the rectangular pulse, the half-sine, and the haversine.
The rectangular-pulsefpositive¥end negafive-reSponsebcurves represent upper

and lower bounds for all the pulses with the exception of the'exponentiall%
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decajing pulse. In all these cases, maximum shell response attains or is
slightly greater.than the static-displacement ¥eéponse. In the transition
from rectangular io half-cine phlse, a decrease in the maximum response of the
shell is experienced which_is less than 5% of the recfangular-pulse maximum

- - displacement, The response,-however, is ﬁore sluggish in the half-sine case,
requiring somewhat longer pulse lengths to achieve the maximum-response values.
In going from ha;f—sine'to haversine shapé, there is a negligible change in

- --=-gppearance of the zeroceth-mode-peak-positive-displacement-response curves.

The ;nfluence of shape on the zeroeth-mode velocities is more apparent
than it is qn'displacements, but many qf the same conclusions are applicable.
The rectangular-pulse-peak-response curves represent an upper bound for the
maximum velocity of all the pulées: In féct, the rectangular-pulse-peak-

response curves very nearly bound cases of both pulses and. waves.

In the transition from rectangular to half-sine pulse input, the half-sine-
peak-positive-velocity responses approach those of the rectangular pulse only
’71Afor very short pulse lengths. The influence of rulse 1ength on peak-positive-
'  and negative-velocity response for the half-sine shape is very pronounced.
As the wavelength increases, the peak-poéitive-and Péak‘n989?1Y?jY?}99§F¥m

U [P - &

responses decrease rapidly in absolute magnitude. This is readily explainable

in that at very short pulse lengths, a half-sine pulse of unit amplitude and

rectangular pulse of unit -amplitude have practically identical impulses as well
as physical appearance. As the length of the half-sine pulse increases though, %
the relative imbulse which it p;ovides when compared with the rectangular pulse ;

decreases sharply. This influence is more noticeéble for the velocities of the
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shell than for the displacementé, since aisplacements seem to be relatively in-
dépendent of pulse length and shape in zeroeth mode. At least this displacemeﬁt
indebéhdénéewépfeéfs to holdvfbf thevlarge pulse_lengths where the velocity_is

significantly affected. ‘For lengths greater than g = 20, the thick shell

(n =~'°8)"Vel°¢iti?$M§£?W;¢§SAthan 1/6 their value in the response to a
rectangular pulse. At 1argev1engths for the half-sine pulse, the velocities

become relatively independent of thickness approaching a consfant value for

both péak positive and negativé velocity curves, regardless of soil-modulus-

This constant value is'approximately 0.2.

Little change in peak velocities is attained in going from the sharp-edged
half-sine pulse to the haversine, with its more gradual change in derivatives.
In fact, the absolute value of the peak positive and negative velocities is

.slightly greater for the haversine shape thah-the half-sine.

f.VIn'transforming from the half-siﬁe andlhaversine pulse shapes to'the’sine
and modified sine waves, the peak-posifive yalues of the velocity are aimost
unchanged. The peak-negative values‘of the velocity fof smallvwavelengtﬁs,
 hovéver, a?é nearly doubled in absoiute magnitude. Fof‘the sine-wavé shépéé;

the maximum peak-negative velocities are nesrly 50% greater than the'maximum-'

-

peak-positive velocities at the same wavelengths. This large variation in
zeroeth-mode velocity as a result of ﬁaveshape is only true for very short
wavelengths. For wavelengths for f > 5 the half-sine and sine curveévare
within 6% of onevanother for the low modulus medium. However, a rather wide
variation still exists at these wavelengths for the high-modulus medium and

continues to be larger than that for the low-modulus medium until a wavelength
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ot about £ = 10 is reached. For longer wavelengths, the response for absolute
values of both peak positive and negative velocities again appears to approach
a constant value of 0.20 which is independent of wavelength, ssil modulus, and
shell thickness. The variation in velocity obtained-in going from the sharp-
edged‘sine-wéve shape to the modified sine is negligible.as may be seen in

Figure 66.

4.6.2 Rigid-Body Response

Although the basic shape of the ri@id-bd&y;ééé?-diéplééement response
curves is unchanged with variation of.waveshape; the magnitﬁde and the slop~
of the linear portion of the curvé is strongly influenced by waveshape. Oﬁe
obse. ves that in going from the rectangular pulse to the half-siné pulse, the
peak response is reduced by approximately ho%. In reducing the accelerative
forces by smoothing the pulse shape from half sine fo haversine, the peak dis-
placghents are reduced even more. The peak response for the haversine is

approximately 75% that of half sine.

The half-sine.pulse and the sine wave, on the othef hand, have essentially
identical peak-positive-displacément values. The reduction in maximum displace-~
ménts in going f;oq the sine to the modified sine is not #s marked as the
.corresponding transition from half sine to haversine. Reductions of approxi-

mately 10-15% are obtained in this transition.

In the rigid-body-peak-velocity-response curves, the rectangular pulse

velocity curves represent the limiting values for all other cases. Velocities
‘ equal to rectangular-pulse velocities are obtained for half-sine pulses of

sufficiently long pulse lengths. For shorZer lengths however, the velocity
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response is more sluggish and peak-positive velocities reméin behind the
rectangular-pulse velocities by as much as 50% at g = 2. Nearly equal values

are obtained for lengths of g > 10.

The velocity response to the haversine is essentially identical to the
rectangular-pulse velocity for wavelengths. f > 10. For shorter wavelengths
however, the haversine velocities are found to.be‘eyen less than the half-sine

velocities by as much as 20%. These values are again obtained at wavelengths

—of approximately g =2.-

Response curves for the sine ana modified-sine waves are essentially
identical in form to those of.the half-siﬁe and haversine pulses, réspectively,
with the exception that the sine and modified sine have a set ofAminimum veloc-
ity curves which are essentially mirror images of tge maximﬁh—velocit& curves

‘for the same material and medium properties.

4,6.3 Second Mode Response

The peak response curves of the second-mode displacement are strongly

.. ..dependent upon wavéshape and shell thickness. Because there is a wide

variation in peak respcnse under the influencerf different waveshapes and

'shell and medium properties, iﬁ_is‘aiffigultTEQWQQmparegthe_responsewinwgenepalA~ﬂm~»w

terms.

Afggrpeak;diépla;ément-responSe curves for the sine aﬁd modified sineA'
- wavechapes are particularly complex in intérrelationship of the'parémetérs.
Butiit is for these wavechapes ﬁhat the maximum values of the peék-displacement
response are obtained. Figures 53 through 56 present thg peak-r«sponse curves

for the sine and modified-sine waveshapes. Maximum-response values are obtained
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for th: low-modulus soil from a bulbous response curve shown in Figure 53.

The maximum value of the response shown for the peak-positive displace:2nt at
£ = 16 is the l.rgest value of the response obtainable regardless of wavelength.
‘The peak-positiveQrespon:e curvé for larger wavelengths than those shown will

~ follow a series of humps of decaying amplitude. In Figure 53, the maximum-

peak-positive response is shown to have a value of approximately 12. This is
about twice the valug.of the'maxiﬁum-peék-positive'response for the rectangular
pulse in the second mode, and approximately 30% greater thar the maximum-peak-
negative-response value for the rectangular pulse; The mdiimum value of the
pesk-negative response feor the siné and modified-sine wave is also very large
vith a maximum value larger than either the maximum peak positi§e or negative

respcnse of the rectangular pulse.

 Peak response to the sine and modified-sine wave is much larger than that

-due to other waveshapes. Peak-response values for all other shapes may be

»

‘bounded by the response to the rectangular pulse. 1In the case of the response

- to the half-sine and haversine pulses, for relatively short wavelengths (2 <5)

the response curves follow closely those of the rectangular pulse. At longer

pulse léngths, the peak displacement responses, both positive and regative,

Vndééfease rapidly té values much below the rectangular-pulse values.

 For the peak-velocity-response curves, the second-mode response is much

more well behaved than was the case with the displacements. For the peak-
velocity-fesponse curves, except for very small values of g, méximum-response
values for the rectangular pulce exceed the response values of all other wave

and pulse shapes. In generél, the peak positive and negative response curves

7
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2 are nearly symmetric. However, for the case of thick shells and the low-modulus
f medium, the peak-negative-velocity response curves exceed the peak-positive

values for nearly all shapes. "In particular, for the sine and modified-sine

shapes, the maximum peak-negative-velocity response (at 4= 1.5) can be seen
--to be slightly greater than maximum peck negative response of'tne rectangular
pulse" For these short lengths, the maximum value of the sine and modified sine

~are almost the same and exceed the maximum response of the rectangular pulse by

~——~ﬂf"~**‘“approx1mately 30% As “the pulse lengths 1ncrease, £ > 2, the peak re°ponse,

~both positive and negative, for all shapes other than rectangular pulse, de-
creases very rapidly. Thrus, in the case of the second-mode velocities, the

'assumption that the incoming wave;is rectangular leads to makimum response

values.

L.6.4 Higher-Mcde Response

A [Higher-mooe displacement response is shown as a function of waveshape in
Figures 57 through 60. In the range of 0 < £< 1, the displacement has an
extremely rapid increase with ‘z in 1ts peak-p051tive values. For all greater
lengths, displacement remains constant The curves for peak negative velocity

for the third-mode response to the rectangular pulse are quite,unusual sinece--——————]

Athey are practically mirror images of the maximum displacement curves.

The effect of changes in waveshape on the displacement is shown graphically
for the thickness H = .01 in Figure 58. At a glance, one can o. _ve that the 7
peak-positive-displacement response for half sine, sine, haversine, and modified
sine are practically identical. The peak positive values associated with these

curves are 12%to 15% lower than the rectangular-pulse value. Values for all
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shapes except the rectangular pulse are recorded only for O < £ <5. Itcan
be seen however that for all waveshapes the maximum values decrease sharply for
£ > 2. ©Since the waves'decay rapidly, it was not felt necessary to obtain dada

beyond the limits shown. : ]

~Similar results can be seen for the peak-negative-displacement portion of
the response curves with only two basic changes. First, the sine and modified-

sine peak-nerafive dicsplacements exceed all others for.the third mode. Their:

maximum values of alsplacement are nearly Lo% larger than the largest peak-
. vl

- -

rectangular-pulse displacements, 4

The unique form of the rectangular-pulse displacement in the fourth mode
(see Figure 84) produces some unusual maximum- displacement curves. As indicateh
in Figure 59, the rectangular-pulse-peak-displacement curves have their absolute
maxima on the negative side of the curve for very small values of the pulse
leng*h .5 < g <2. For these short lengths, values ,of the peak displacement
approx1mat51"25%to 3°% greater than the long-pulse-length-peak-displacement E
values mey be obtained. For all lengths greater tha? { > 2, the maximum dis- f

: : |
placements become constant and are of equal absolute iValue for both peak-positire

and peak-negative-response curves,

In Figure 60, the effect of alteration of waveform can be seen for the '

thin-shell case. It can be seen that maximum velues of peak displacement are

obtained at very short wavelengths. The amplitudes of peak-positive and peak- |
negative response for the half sine and haversine are sharply reduced and fall
below the long-pulse-length values of the rectangular pulse, For long pulse
lengths, it appears that half-sine and haversine fourth-mode influence would

‘ {
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soon become negligible. However, for the sine and modified-sine response curves,

the short-pulse-length maximum values exceed slightly (by only about 10%) those

of the rectangular pulse. Again, for long waves, the sine and modified-sine

is no greater»than that of the half-sine and haversine pulses.
. . :

Maximum higher-mode velocity profiles for various waveshapes are shown in

... peak- displacement response values decreaSE’rapidly §0 that at l -5, their value

' Figures 80 through 83. Following the pattern of the third and fourth-mode dis—

placements, the maximum values of velocity are those associaued with peak-

negative velocities and short pulse lengths. Short pulse‘length peak-pegative

veiocities’as much as 85% greater than the long pulse lengthirectangular-pulse-

ypeak'positive velocities are.obtained for the rectengular pulse and sine and

modified-sine waves. In the case of all waves and pulses except the rectangular
. and exponential pulses, the velocity amplitude de creases rapidly toward what

" appears to be negligible values for long wavelengths.

The same general remarks are true about fourth-mode velocity response.

Maximum pesk-positive velocities are obtained'at very short wavelengths,

£ < 2. At these wavelengths, the sine and modified-sine have peak positive

“ve1001ties approximately 85% greater than the long rectangular-pulse velocity.
But as was true with the third mode, the responses decay rapidly with increasing
pulse lengths for all shapes other than.the rectangular and exponential pulses.
So that at wavelengths greater than jJ = S,Ithe fourth mode velocity response to

any wvaveshape other than these becomes negligible.
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" are shown in Figures 85 and 86, In Figure 85, the effect of varying the decay — -

gerater than 2. This value is the anticipated 2 P0 rectangular-wave-response

“Varying the peak value of the pressure while maintaining the same decay rate

Pias SEE—Taa © T = ey — e

4.6.5 Exponentially Decaving Pulse

The results of more extensive investigation of the effect of decay rate

and peak-pressure value on the response to the exponentially decaying pulse

rate of the ‘basic pulse shape on thc zeroeth-mode response is shown. For this
study, the parameters choéen.were H= .01, B= 4 x 106 psi, £ = 5. For very

small values of B, the displacément approaches a value which would be somewhat

limit. As g increases, the maximum dicplacement decreases.very rapidly. 1In

the limiting case of very large B, the maximum displacement is 1.1, which cor-
responds with the value for the recfangular pulse of strength Po; For all
values of the decay rate greater than 1.5, the maxdmum displaéement for the
exponentially decaying pulse is less than 5% greater thag,the rectangular-pu;se
displacement of strength Po. For decay rates greater than B = 2, the difference
in response is negiigible. Therefore, as the spike becomes only moderately sharp,

its influence on the displacement response is greatly reduced.

In Figure 86, the results of an investigation to determine the effect of

for two giveﬁ-pulse lengths ( ¢ = 5, 10) are shown. The pressure-time relation-

ship for this case is defined by
- - - BT
P = P + (Pi Po) e R (17)

Although a significant increase in the maximum displacement response may be

observed as the peak pressure increases, particularly as the pulse length
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increases, it is important to note that for neither of the two pulse lengths
does the maximum response increaseas rapidly as the peak pressure. Although
the slope of tie curve appears to be increasing as the peak pressure advances,

the effect of a mildly sharper sp;ké would greatly reduce the effect of the

In general,'it may be concluded that the superposed spike may be ignoréd'if
the deéay~fate isllarge.»nFof spikes in which the decay rate is‘not 1arge (cr fér
large pulse lengths) the effect oh the méxiﬁum displacement may not be negligible.
" However, the.maximum displacement is bounded by the rectangular-pulse displéce-
ment at the magﬁitﬁde cf the peak pressure of the spike.and an exponential fit
for the response bétyeeprpppef bound and established values would appear to

give a gonAestimate of unknown maximum-displacement values.

Iﬁ the case of the peak-veiocity-reSponse'¢urves, the exponen?ially decéying
pulse leads to the same general rgsuitsras for the displacement. That is, the -
‘response lies somewvhere between the‘fésponse to a rectangular puise'of strength
Po and.one of strengthiade. The éxact value of.the pegk velocity respopse
depehds upon fhe length of the pulée, If the decay parameters were varied, gne ,
would anticipate that the same results would be obtained for the effect of
variation in decay parameters and peak;pressure or velocity response as were
obtained for thé péak displacement curve, although no'data were genefated to
Qalidate the theory. That is, for sharply decaying exponential pulses, the
velocity would approaéh that of the rectangular pulse of stréngth Po' On the
other hand, increasing the peak pressure while mainfaining the same decay rate

would gradually increase shell velocity. As with the displacements, it is
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possible that the superposition of a decaying splked pulse may significantly
alter maximum-velocity respcnse, In general, it may belanticipated that for a
sharply decaying spike, regardless of peak pressure, the effect of the spike '

can be ignored, If the decay rate is more gradual, or the wavelength very long,

" then the influence will be felt. Its effect may be estimated by using the

limiting values corresponding to the maximum velocities of rectangular pulses
having maxinum and minimum pressure values of the pulse and exponentially
interpblating fcr peak respénses between these values as funétion of pulse

length and decay parameters,

4.7 Ranking of Parameters

To correctly rank the site, weapon, and structure-medium interaction
parameters which influence structural interior motion in the order of their
physical importance presents a difficult problem. The difficulty is caused
primarily by the nature of the modal analysis conducted for this presentation.
When the modal results for dynamic displacements and velocities of the shell
.are considered individualiy, it can be seen that the importance of the para-
meters may be significantly different in one mode than in another. To help
4;§sglvewthié_problem, the modal résponses have been ranked in the "ordér of
their pﬁysical importance". Since the response émplitudes in certain modes
are much greatefdtﬁén they afe in others, this krowledge of the maximum-
response amplitudes in various modes is used to weight the parameter rank-

ings within each mode.

The maximum displacement and velocity responses to a rectangular pulse,

for various values of B and H, are shown in the table which follows,
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MAXIMUM DISPLACEMENT AND VELOCITY RESPONSES FOR VARIOUS MODES

Mode Number 0 1 2 3 L
Maximum Displacement 1.35 ~* 9.0 2.1 .88
Maximum Velocity 1.2 T.T 5.5 2.9 2.1

This table illustrates that, in terms of physical importance, parameters
affecting the displacement must be heavily weighed by the first or rigid body
mode of motion. The velocity response, on the other hand, 1s influenced to
relatively the same extent by all modes. Since this is the case, and since the
relative impcrtance to the design of displacement vs. velocity depends on the
specific circumstances of the design problem, ranking of parameters for the
displacement and velocity will be presented separately. The ranking will
consider the following parameters as controlling the structural response:
the weapon parameters of peak pressure, wave shape and wavelength; the site
parameter of the soill modulus; and the structure-medium interaction parameters

of the shell thickness and the density ratio of shell to medium.

4.7.1 Ranking of Parameters Affecting Displacements

In ranking the displacement-response parameters, it is immediately
evident that the parameter of greatest importance must be the peak pressure

assoclated with the incoming wave, The response in all modes is directly

proportional to this peak pressure.

Because of its pronounced effect on displacement in the first mode

(although not as universally important in all modes of displacement response)

*This value is directly proportional to the pulse length.



the pulse length of the incoming wave must be considered the second most
important parameter. 1In the figst mode, the displacement response of the shell
has been shown to be dirﬁcily proportional to the length of the incoming
pressure pulse. In the second moae, the pulse length is one of the parameters
- of lesser lmportance., In the zeroeth mode, the effect of pulse length on
response is similarly of small importance, since the displacement is nearlyv

constant over a wide range of pulse lengths in this mode. However, the pulse-

7 "length influence may be very important in the rémainiﬁévmédes, since large

variations in the displacement response take.place with changes in pulse length.
It is the strong influence of the pulse length on the first mode, however,
which almost alone causes it to be second place among the parametérs affecting

displacement,

In third place, in the order of physical importance of the parameters
affecting the uisplacement of the shell, is the shell thickness. The shell

thickness has a very pronounced effect on the second and higher modes.

Fourth in the order of imﬁortance of parameters affecting shell displace-
ment 1s the soil modulus. In the all-impértant first mode, the response is
inversely prppo;?ippa;_tqwthg soil rodulus. For the cases of thin and inter-
mediate shell thickness iIn the secoﬁd mode, this relationship appears to be
true also, In the thick-shell case, the shell response is so intimately
connected with the wavelength and waveform that it is difficult to separate
the effect of the soil modulus from these other parameters. But, ;t is clear
that the soil modulus is important here also, as reductions 1in response of

nearly 95% of the maximum shell responses which appear to be connected with the
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variation of the soil modulus are observable. The range of the soil modulus

of from .t x 106 psi to 2 x 106 psi, includes a rather wide range of sbil and

" rock varieties and causes a reascnably large variation in displacement through-

qféfmféiatively-long-pulse-length‘caseé.' Only in the zeroeth mode does the

out the material presented in this study. It should also be pointed out that-

“the higher mode displacement reésponse appears to be related to thé soil

modulus through an inverse'proportionality reiationship.' Although this cannot

be substantiated in all éases for the higher modes, it appears to hold well

inverse proportionality to soil modﬁlus'appear to break down. However, in this
mode, variastions in response of up to 22.5% of the maximun values ﬁay be directly .

attributed to the soil modulus.

The fifth parameter,‘in order of its physical imporfahce, is the wave-

shape. Although relatively low in the parametric standings, the influence

e
/s

of the waveshapé/on‘the displaéement is still significant. In the first mode,

- variations in waveshape'prdduce reductions in fesponse of from hO% to 53% of

L

maximum résponse vélues. In the‘sécond mode; the effect.is even ndre pro-
nounced. Reductions of ﬁp fo'90% of maximum respbﬁsé aré recogni‘ Fle simply
as a result of variation'of the shape.‘th the higher ﬁédes and th Yzéroeth
mode, the influénce of waveshape does not appear fo be c¢f such impgrtance.

Reductions of displacements in these modes rangé only from 35% to 50% of

maximum values.

The sixth and least important parameter in shell displacement is the

density ratio.
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In summary, the parameters affecting displacement of the shell, in order
of their importance, are: (1) peak overpressure, (2) length of the pressure
pulse, (3) shell thickness, (4) soil modulus, (5) the shape of the incoming

pressure pulse, and (6) the density ratio of the shell to medium.

7" 'h,7.2 Ranking of Parameters Affecting Velocities

Applying similar reasoning to the problems of the velocity response'of’the

shell, the most important single factor affzcting the velocity is the peak

pressure. As in the case of the displacement respcnée, the velocity response

is directly proportional to the peak pressure of the incominé pulse,.

Second in order of importance to the velocity response, is the shell
thickness parameter. In the second mer, the velocity response appears to be
neafly directly proportional to the shell thickness. Except for a few isclated
cases, this proportionality seems to hold true. Even where it does not éppear
to fit exactly, i.e., the sine-wéve thick-shelled case and the mcuiried-sine-
wave high-modulus case, it gives a very godd approximation of the veloecity

response, In the zerceth mode, the velocity shows a 65% variation between the

- maximum and minimum response as a function of shell thickness. In the higher

‘modes, insufficient data preclude specifying the exact relationship between

velocity and shell thickness, but from the remaining modes, this parameter can

be an important factor.

_ The third féctor of influence to the velocity response is the soil modulus.
In the first and all higher modes, it has been shown that the velocity is in-
versely proportional to the soil modulus. Variations in response of up to 80%

of the maximum velocity response in each mode is caused by the soil modulus.
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' In the first mode, the variation is limited to a reduction of 50% below the

maximum response values.

Ranked‘fourth in the velocity parameters, is the lengtn of‘tne incominé

pressure pulse. The lowering in importance of thLis parameter results from

its relative ‘unimportance in the first and second-mode. veloczty response. .
.In the first-mode response, the velocity is essentially independent of pulse
length for relatively long pulse lengths. In the second mode, a reduction in
. the maximum response values of from 35% to SO% results from the influence of -
pulse length, in a relatlvely short wavelength range, 1 < g <5, In the
higher’modes_and the zeroeth mode, this factor'pays a mecre important role.

The velocity is reduced}by‘factors'of from 80% to 90% of the maxinum velocity |
response in these modes, 'However; thepinfluence‘ofpthe zeroethland higher
modes on the physical importance of the parameters is insufficient‘to increase
the importarce of the roleyof the pulse length in determining velocity response

and, therefore, it must occupy the fourth position in the relative ranking.

- The fifth position is occupied by the shape of the incoming wave.
Examination of the effect of changing,the'waveshape’through the rather wide

- variety of shapes examined for this study indicated that this parameter was

”of”reiatively“minor“importancettoftﬁe@responsé”of*fhé‘shell. In the first
"and second modes, reductions in maximum velocities of no more than 23-33%

were observed to be caused by variations in weveshape. In the zerceth mode,
an even narrower band of velocity reduction was‘noted, ranging from 15% to 17%.
In the higher modes, theveffect was somewhat more pronounced; vith reductions

of from 10% to 55% of maximum velocities noted.
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Once agaigg the least important parameter was the density ratio of the
shell to the medium. The density rgtio va;iation of 25% produced a resulting
variation in velocity response of only 5%. This parameter, althouéh difficult
to separate from the soil modulus in its effect on shell response, seems to

cause very . zligible éhanges in either the displacement or velocity response,

:frfinJSummarizing the effects of ihe site, weapon, and structure-medium para-
meters on the velocity response, they may be rarked as: (1) peak pressure,
(2) shell thickness, (3) soil modulus, (4) wavelengtn, (5) shape of the in-

édmiﬂg pressure pulse, and (6) the density ratio of shell to medium.

It is interesting to note that there are several similarities between the
rankings of the displacements and velocity parameters. In first place, for
both cases the position of the peak pressure is insured by its direct pro-
portionality to bofh displacement and velocity. In fifth and sixth places
are found the waveshape of the incoming pulse and the density ratio of the
shell for both cases. It may be somewhat suprising to find that the shape of
the incoming pressure pulse should be one of the parameters with *he least
~ importance in the response, However, that this should be the case is gratifying,.
'sinée it simpliifes the problem of estimating the effect of unforeseen changes

in the waveform on the response of the shell.

4.8 Influence of Deviétiéns in Parametric Values on Shell Response

It can clearly be seen that because of the direct relationship between

peak pressure and shell displacement or velocity response, a given deviation
- from the anticipated pressure will change the wvalue of the particular respdnse

in the same proportion. Thié will be true in all cases except where the input

[N — )
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wvaveshape is in the form of an exponentially decaying pulse. Under these
conditions, the percentage deviation in the response will be somewhat less
than the percentage deviation in the pressure, whatever the values of the

decay factor and wavelength associated with the decaying exponential are.

(Compare Figures 85 and 86.)

From the parameter ranking, it can be seen that even if the soll density
is known only within broad limits, or can be estimated only, any deviation
from an assumed average value would appear to have negligible influence on

the shell response. Thus, its effect can be safely ignored.

Similarly, it is quite probable that the exact form of the incoming wave
will not be known, Therefore, it 1is encouraging to note that variatiors from
the rectangular pulse response to practically any other form of wave at the
same pressure result in variation in displacement response no greater than
approximately 50%. For all practical purposes, the variations in velocity
resulting from a wrong choice of waveshape will be between 25% and 30%. If, on
the other hand, the actual waveshape is close to the design waveshapes, then

the deviation in response will be even less than the value indicated.

With regard to deviations from the assumed value of the so0il modulus, or
alternatively, 1f the modulus is only known to within a given accuracy, then it
car be seen from the response characteristics of the shell to the soil modulus

that a deviation A B would result in a change in the response given by the

factor - _gé.

Of all the parameters mentioned here, the shell thickness is the only

parameter which would be completely within the control of the designer and
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builder of the protertive structure, However, if one considers an unforeseen
perturbation in shell thickness, it can be seen, from the results of the studies
performed here that such a perturbation will result Iin a proportional change

in displacement and velocity. Thus, if the perturbation is small, its effect

is negligible,

Similarly, if the weapon detonation produces a pulse length which deviates
from the estimated value uced in the design of the shock isolation system,
the displacement response will be changed proportionately. On the other hand,
as can be seen from velocity ranking parametric study and inspection of the
curves, it is very likely that change in pulse length will not alter the

velocity of the shell or, at most, cause some slight reduction in its value.

. These parameters, as listed aud discussed above, for all practical
purposes, may be considered as independent variables in their effect upon shell
responce., Thus, 1t is felt that they may be considered tn be independent in
application, and their totality of effect obtained through superposition of the

- estimated variation for each perturbing factor alone,
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SECTION 5

DESIGN METHODS FOR ESTIMATING STRUCTURE MOTION
IN DIRECTLY-TRANSMITTED REGION '

The results of the analysis of the shell-medium interaction can now be
used to develop design methods for estimating interior motion of protective
structures-subjected to direct ground shock from a nuclear detonation.
Inasmuch as it is not within the scope of this report to determine the
relative importance of the displacement and velocity responses to the
designer of the shock-isolation equipment (since such relative importance
depends very strongly on particular circumstances), the procedure presented
here will be directed to developing design methods for estimating both

responses.

5.1 Selection of Pulse Shape

The underlying principle guiding the approach towards the devclopment of
design methods has been the realization that the biggest unknownsin the whole
problem are the characteristics of the pressure pulse engulfing the structure.
The results of the ground-motion studies reported in Section 2 are, at best,

reasonable estimates of the strength and shape of the pressure pulse. Since

_only scant experimentsl deta are available to verify the theoretical results,

the epproach to the estimation of the structural motion must, of necessity,
be-on the conservative sigde. Of all the pressure-pulse shepes considered in
this report (which represent a large number of possible attenuated-pulse
shapes), the one which yields the maximum structural response, arnd thus the
most stringent requirements on the isolation system, must be chosen as rep-

resentative of the actual pulse impinging upon the buried structure.'
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The results indicate that the pulse shape so chosen is the long-pulse-
length rectangular pulse. 1In addition, it happens that the theoretical
results of Section 2 predict such a pulse shape, at least initially, and

this tends to lend credence to the choice. The results of Section 2 may

be used to estimate the length of the pulse as well as its strength for

The degree of conservatism involved in this choice is reasonable since
none of the other pulse shapes yields a radically different stfuctural
response. The shell response to all pulse shapes is of the same order of

magnitude and the rectangular pulse shape represents an upper limit to the

. responses. All these reasons lead to the conclusion that in spite of the

apparent conservatism, this choice represents a rational and economical

~ approach to the shock-isolation problem.

5.2  Parametric Values
_Since the level of pulse pressures considered in this study points to
the choice of steel as the structural material, it seems that the only paréf

metericontrclled by the designer is the shell thickness ratio. All other

parameters affecting the response (the density ratio of shell to medium,

the medium modulus, and the pressure levgl) arg qete;minedwby‘§he geo-

graphical location of the structure and its range from the blast.

However, since the design of the structure will, in all probability, be

dictated by strength and stability considerations, rather than by interior

motion considerations, tne designer of the shock-isolation system for interior
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equipment will be presented with specific values for the medium and pressure-
-pulse parameters and a given shell thickness as well. Therefore, it is clear
that the problem is not how to design the primary structure to minimize de-
leterious dynamic effects on interior equipment, but rather, given the values
of the various parameters governing the response, how to best estimate the
resultgnt strucfure motion so as to determine isclation requirements.

To this end, the results of the analysis presented in the previous sections

are directly applicable.

In the ensuing discussion, therefore, it is tacitly assumed that the

valves of the various governing parameters are given a priori within certain

confidence limits,

5.3 Estimation of Response

A basic conclusicn which emexged fram the analysis of the shell-medium
systen is that, althéugh the total shell displacement is not very different
from the redium displacement, the interior shell velocity may be substantially
differenf from the medium particle velocity. Thus, it is erroneocus to uée the
nedium motibn as g direct inmut in the shock-isolation design in those cases

shere velocity (and accelerztion) is of impcrtance.

-...The total displacement and velocity response at any location on the
rircumference of the shell is madé up of the contributions of all the modes.
?;frcertain applications to shock isolation, it may be convenient to dis-
singuish between the rigid-body motion (n - 1) on one hand, and the elastic
otion of the shell (n =0, 2, 3, 4) on the other. As the name implies, the

'igid-body motion of the structure denotes the translaticn of the structure as
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a whole with respect to the surrounding medium, whereas the motion in all
other modes is of the nature of deformation of the shell skin from its un-
deformed position. Thus, in the former case there is no change in the
relative position of points within the shell, while in the latter case
these changes are the essence of the motion. This distinction is relevant

only to those cases where the relative motion of points within the structure

is of importance.

In general, however, the total response at any point is considered in
the design of the shock-isolation equipment. Therefore, one must super-
impose the contribution of all modes. Since the reliability of the phase
differences among the modes given in the results cannot be considered .in-
fallible, and since the catribution of each mode to the total motion at
any point depends on the particular azimthal location of the point within
the structure, a reasonable estimate of the total maximum expected response
is given by the root-mean-square of the maxima of all modes. The numerical
results of Section 4 provide the necessary informetion for this purpose.
Results for other values of the parameters may be obtained either directly
from the curves by interpolation or by using Figures 87 through 90 or by
using the computer program given in Appendix A to generate additional
numerical results.

Besides maximum values, knowledge of the actual displacement and velocity
pulse shape transmitted by the structure to its interior is also of direct im-
portance. It is evident from the time histories of the structural response

presented in Section U4 that the shape of the displacement or velocity pulse
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transmitted by the structure, when subjected to the assuméd input pressure
pulse, is far from being standard. Rather, it is strongly dependent on t:e
cambination of the various parameters. The parametric ranking given in
Section 4 should prgvide a guide-line to the evaluation of the effects of

each parameter. In any event, it will be necessary to determine the motion
history either frcﬁ the results given in this report or by using the éppended
camputer program. Thus, the combination of knowledge of the_response maxima
and its history would provide the necessary inputs towards the shock-1solation-
system design. | | | -

5.4 RNumerical Examples

To illustrate the method of using the results in the shock-isolation-
design process, two examples are presented. The values of the various
physical parameters were chosen so as to simlate a realistic situation and

4o make pcssible a direct application of the results given in this report.

Ground Zero

Figure 91 TILIUSTRATIOR OF SAMPLZ PROBLEM
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A circular cylindrical steel structure with a 25 foot diameter and a

- shell thickness pf 3 inches is buried at a depth of 2,000 feet. A miclear

surface detonation of 10 MT yield is assumed to také place at a point having'
a slant rénge of 3,000 feet from the structure. It is desired to estimate

the response of the interior of the structure due to the directly-transmitted

shock.

Step 1 - Medium Parameters

The following values, repiesenting typical limestone, are assumed,

- 160/g lb-sece/fth

P, =
¢ = T600 ft/sec
Thus, the medium modulus is

B = pmc:2 - 2.0 x 10° psi

Thg density ratio is

Py
_ .5 _ koo _
k=p 160 =~ 307

m
Step 2 - Shock Parameters

From Equation (5) obtain the pulse pressuf , (note change to psi)

- E& . :
P= 3 | :

(1.45)(10) (10%/3) (2000.)/3000.7 = 2320 pst
From Equation (7) obtaip upper and lower bounds to the pulse duration,

At L/2¢c = 3000./(2)(7606.) = ,2 sec.

upper
At

[}

[}

lower = 92 W}/3 = (~05)(101/3) = .108 sec.

Assume, therefore,

At =.12 sec.
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Fram the definition of the pulse length obtain,

L=5= fi' = (7600.)(12)/12.5 = 73

The particle velocity ‘is

-

(2320) (14k)e/ (160) (7600)

N o
. g
"o

9 ft/sec

"~ Step 3 - Shell Parameters
~ The thickness ratio is

=== =< = 02
The static displacement of the shell is
a = PR/EH = (2320)(12.5)(12)/(3)(207)(.02) = .58 inch

Step 4 - Velocity ﬁesponse

From Figure 24 obtain

ala /a,)
Vb peak = aT =25

From Figure 26 obtain

v L

1 peak ~
From Figure 28 obtain

2 peak = 3

From Figure 30 obtain

Vé peak

Fram Figure 32 obtain

Vi peak = 13
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Using the root-mean-square approach, the velocity due to the de-

lormational modes is

Velastic

- [(.25)2 s (3% (20 4 (.13)2]1/2 . s

Dimensionally, this becomes

~

Velastic = Velastic fﬁqSt,fw¢/3ﬂ :

(.45)(.58)(7600)/ (12.5)(12) = 13 ft/sec

The total velocity, due to all modes, is

Viotal = "1 * Velastic ~
or »
Viotal = ¢ -85)(-58)(7600)/(12.5)K12) = .25 fg/sec

Step 5 - Displacement Response
From Figure 87, obtain
Q

0 peok

= 1.25

Fram Figures 88 and 89 obtain

(Ql),r: 2 = ‘8

Y peak = 2'(Q1)1;; é + Vi(;r-”2) = (2)(.8) + (.4)(70)

From Figure 90 obtain

Ls b5 = 8 o

29.6

% pesk = -3
From Figure 19 obtain

Q3 peak -1

Q peak -03
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The displacement due to deformational modes becones

e

rnstte = [1:297 (3P ¢ (1P 4 (2 g

Dimensionally, this becomes

~

Qlastic = (1.29)(.58) = .75 inch

The total displacement, including rigid-body mode, is

Qotal = Y * Qiestic = 29.6 + .75 = 30.4

or

n

5total (30.4)(.58) = 17.6 inches

It is evident that as far as the displacement response is concerned, the

major contribution is that of the rigid-body mode. whereas contributions to

ﬁhe velocity response are made by all modes to relatively the same extent.

The medium particle velocity and displacement are G ft/sec and 13 inches,

respectively. An estimate of the total shell displacement based on the medium

displacement may therefore be justified. However,  t is clear that a similar

estimate is errcneous for the velocity response.

It should bz ncted, however, that the rigid-body velocity snd displace-
ment values given here should be considered as upper lﬁmita, th= valﬁes for
the medium being considered as alternatives. This question is discussed more
fully in Appendix B.

Step 6 - History
The velocity histories may be obtained using Figures 24, 26, 28, 30 and

32. The displacemeht histories may be obtained using Figures 13, 15, 17 and
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‘19 The modal data thus obtained may then 'be approximately superposed
’depending on the particular shell location. | ' |
"As an illustrati on of how the problem may be solved when the parameter

values are beyond the limits of the graphs, consider the same geometrical

conflguration and weapon, but a dlfferen’c :nedlum.

. o ppy = 120/g 1b- secalfth .

Step 1 - Medium Eara.meters

The following values are ‘assumed,

T e B oo M o b SR s e b Wt .

¢ = 3000 f‘t/se_e - e f{l’
Thus, the medium modulus is ’

B = pmcz_ - .23 x 106 psi ‘

The density ratio is

P.::p-; = -1—2—-0- = Ll».08

Step 2 - Shock Parameters

Fron Equation (7) obtaln upper and lower bounds to the pulse duration

[}
n .

At 5 sec.

upper 1/2e = 3000./(2)(3000.)

]
#

At .108 sec.

over = 05 W3 - (Los)(10t/3)

Assume, therefore

At = ‘.3 sec.
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From Equatlon (5) obtam the pulse pressure, (note change to psi)
P = 5 - ) ] : . g
= wm~;~_~w(1wu5)(1010)(101/3)(2000i)/3ooo.3 =~,3207psiﬂwwen_mmbmalie+m:;ﬂ :




= & =—p— = (3000.)(.3)/12.5 = 72

Step 3 - Shell Parameters

The thickness ratio is

The static displacemen:c of the shell is

-qst - PR/ESH - (2320)(12'5)(12)/(3)(107)(-02) = .58 inch

Step 4 - Velocity Response
From Figureé 23 ani 24 extrapolate to obtain

. )
v _ (g /a )
o pesk aT

From Figure. 89 obtain

Yy peak = 3+

From Figures 27 and 28 extrapolate to obtain

Vé pesk = 2.0

Frdm Figures 29and 3G extrapolate to obtain

From Figures 31 bnd 32 extrapolate to obtain . . .. . .. .. .

vh peak 1.0

Using the root-mean-sjuvare approach, the velocity due to the deformational

modes is

‘[(.'8)2 v 2.0+ (162 + (1.07Y2 = 275

velastic
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 Step 5 - Displ~cement Response

e R L P e

:g],Diﬁénsichq;ly, thié becomes |
veiéﬂ%ic‘ e velastic'f_qsﬁ'. ;/R‘;.

‘= (2.75)(.58)(3;00.\/izgaa}(la), - '3°Lftfsec -

The %“ci2l velocity, due to all mxies. is

.,Yfﬁtalmmémqvlvfmvé;asticf

< 352 - 65

or .

vtcfal =_‘(6.25)(f58)(3qoo.}/{12,5)(12) = T2 ft'sec

el ot B il L e e

e -

From Figure 87 obtain

Qo peak = 1.0

Fromvfigures 88’§nd fols] qbtain
% peak = 2 (@)r 5+ T(T22) = ()(T.5) + (3.5)(70)
- From Figpre 96 obtain
'QQ posk =‘ 258 |
’ f 7From Fig#r§% 18v§nd‘i9 extrépolaﬁe’to:obtéin

% peak ’§

-—Qﬁ péak‘ =.:;3 .

- The displacement due to deformational modes beconmes

Gerastic = [(1:0F + @87 + (.62 4 (32]H2 - 3.5

Dimensionally, this becomes

~

Q

elastic 3.05)(.58) = 1.77 inch
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The total displacement, including rigid-bedy mode, is

O‘total =- Ql + Qelastic = 2’4‘:" 3-05 = 2',_8

or

atotal (48 )(.58) = 1bkh inches
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o TABIEI

TYPICAL SOIL AND ROCK PROPERTIES6’ 3

Y

Soil or Rock
Type

Approximate ]
Density - 1b/ft

Approximate Compressivé
Wave Velocity
Range - ft/sec

Top soil, dry or
moist silty loam

Sand -~ loose

Sand - well campacted
Saturated clay

Sandstone loose

Sandstone well cemented

Liﬁestone - soft .

Limestone - hard

i Granite - fracturéd

_Granite

100 - 110

100 - 110
110 - 120

120

140 - 150

150 - 160

155 -,i6o
160

1160 - 165
o169

650 - 2000

- 650 - 2000
2000 - 4500

3000

4500 - 6000
6000 - 10C00

4500 - 10000
6000 - 16000

12000
‘18000

7500
12000
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APPENDIX A

DUHAMEL INTEGRAL COMPUTER PROGRAM

The response of a single-degree-of-freedcom system to an arbitrary

forcing function may be computed knowing the system response to a step pulse,
: | _

Each mode of a contimucus system may be éeparately treated as such. Applying

e ‘ y,
Duhamel's integral to the modal response of the system;

Let A(t) = system responsevto a stgp pulse*
F(+) = arbitrary forcing function
x(t) = respcnse of the system to F(t)
- then
v aF
x(t) = F(0) A(t) +£ = A(s-T) dT

which, for numerical evaluation may be written as

=t '
x(t) = F(0) A(t) + 12.: AF A(t-T)AT

T=ATAT

If F and A are evzluated at regular intervals of t then the above expression

»

is further reduced to
' t

x(t) = F(0) At) + EA

TAF A(t-T)

A computer program has been written to evaluate this expression. Input

" data are: At, the interval at which x(t) is to be evaluated. F(t), the values

of the forcing fuaction to be taken at the midpoint of regular inte:vals of At.

A(t), the values of the response to a unit step pulse, to be taken at the mid-

point of regular interval: of . At. _The latter two 1ists of data are to be ended

*Notation contained herein deviates fram that defined in the table of
notation and 1s defined above,

1
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with 108, or any darbitrarily larger number as an indication of end of data.

Output data consists of tabulated values of T, F, A, and RESPONSE.

Following is a FORTRAN LISTING OF THE PROGRAM FOR THE IBM 1620 COMPUTER.

DUHAMEL INTEGRAL Rwxk 10 aApriL 64
oiMENS | ON F(200),A(200)
4 READ 7,07
PRINT 10
pol 1=,200
READ T,F(1)
'rir(1)o1.c08)1,11,12
1 C ONT I NUE
11 KFm|=l
0o 12 =1,200
READ T.a(1
tF{a( |)-1 £08)12,13,12
12 C OHT | NUE
13 KAsmj =l
n‘(m-xr a4,14,15
14 K==KA
6o 10 16
15 K=m=KF
16 T=pT*,5
zmr (1)
0o 2 =l,k
x=z *a (

AR LT AP

9 -1
N-l-l
00 3 y=l,M
L=l =y
x-x+r(.:)*A(L)
rint 8,7,r(1),a(1),x
TeT40T
Go to &
ForMAT(r16.8)
rormMat(r8.3,r12.8,r12.8,r12.8)
0 FORMAT ltxlnr9x1ur11x1méx8untsronst)
£ ND

o Dniw
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APPENDIX B

TERMINAL VELOCITIES OF RIGID-EODY-MODE RESPONSE
(Notation is the same as in the main vody of the
report. Equation numbers and figure numbers used
refer to the main body of the report.)

The limiting value of the rigid-body velocity can be determined directly

_.___.from the exact equations cf motion of the shell (Equation 14). This value

can be shown to be:22
dq, . '
- 11 1y, P 2 : _

Since the magnitude of the particle velocity behind the incoming wave is given

|
by'Imec, it can be seen that it is possible to obtain values of the terminal
velocity of the shell which exceed the magnitude of the particle velocity of -
the free-field behind the incaming wave when &l < 1. ' According to the

definition ofﬁrf it may be represented as

€, = 2HU | ' (B-2)

:,'
Since, for a steel shell, a reasonable range of the parameter y is given by

3 <M <k, it can be seen that as long as the thickness to radius ratio does

i
notjlexceed the value H = .125 the value of 61 will be 1 :ss thanlpne and shell

i : .
inal velocities in the rigid-body modes wili exceed the magrnitude of the

ter

‘medium particle velocity. It is not considered likely that shell thickness-to-
" radius ratios will very frequently exceed a value of .1. Moreover, such a value
of H is really outside the limits of thin-shell theory. Regardless, it is

apparent that for all cases investigated in this report, rigid-body terminal

velocities will exceed those of the medium.
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Mb*hematically, such a solution appears to be possible, hut physically it

_may be open to some question. It seems highly unlikely that the terminal "_ ‘ ',

fveloc1ty of the rig*d—body motion of the shell could p0531b1y exceed the ve1001ty
i of the surrounding medlum. In fact it seems unllkely that the rigld-body
'veloc1ty of the shell could exceed the medium velocity fbr more than very short

‘lyeriods of time under any circumstances. t is probeble,that.the,reason that

‘+his occurs in this analy31s 1s that such cxrcumstances were not considered
"likely during derivation of the equatlons of motlon.' Consequently,‘co terms
‘!ﬁ,were 1nc1uded which would account for che drag of - the shell in the medxum'xn the~”f‘*“**mc“‘
‘case when the veloclty of the shell exceeded the veloclty of the medlum. An |
examination of the llterature falled to reveal such an analy51s for any solution
presently made to the cyllnder-medlum-1nteractlon prleem, in any type of medlum.

Q; It is felt that further study w1th the axm of includlng a drag—type force in

“q'rvhé analysis of the structvre-medlum .nteractron problem would be'benef1c1el
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