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ABSTRACT

This volume presents a method for estimating the motions on the

interior of a buried cylindrical shell resulting from directly-induced

ground shock caused by the detonation of a nuclear devl:e to aid in the

preliminary design of shock isolation equipment.

Various theoretical models for calculating the free-field waveform

are reviewed and the acoustic model is recommended for this purpose. The

reasons for this recommendation are enumerated and the methods for applying

it are given. Methods for solving the structure-medium-interaction problem

are discussed and the normal-mode anal.sis of the response of an elastic

cylindrical shell in an acoustic medium to a specified input pulse is

reviewed in detail.

A discussion of ranges of parameters appropriate to realistic

problems is included. A thorough explanation of the results of computer

solutions for the shell response is presented, and a large number of graphs

illustrating the results are included. The results are analyzed to deter-

mine the relative influence of the parameters on interior shell motion.

The application of the method developed is explained and illustrated

1 sample problems. An appendix contains a Iuhamel-integral computer

program that can be used to generate results for cases not included in

this volume.(
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SYMBOLS

2
B bulk modulus of medium =P mc

c = longitudinpl wave velocity or acoustic velocity in medium
9.

E = s

I -V 
2

Es  Young's modulus of shell material

F = point force divided by 27r

f( ) = function of( )

g = acceleration due to gravity

. assumed constant coefficient (see Ref. 21)

H = shell thickness to radius ratio = h/R

h = shell thickness

In(Z) = incomplete modified Bessel function of the first kind

1 z Cos1 cos ri o d .... forr< 2

- 0

In(Z) - complete Bessel function . . . . for T > 2

2 2 1/2L = range distance = (r + ( ) (see Figure 4)

A .= dimensionless pulse length =

m = mass per unit area of shell

1 n2mn -- (I-Z+ n) m

n,

n = mode number

P = pressure in the medium

o = pressure amplitude in the medium (see Figures 10 and 11)

= defined in Figures 10 and 11
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q= dimensionless modal displacement = -

Qelastic = dimensionless root-mean-square value of displacementdienioalasatii... .c

dimensional value of

, o..i = total displacement %lastic " "

NI dimensionless first mode displacement at T7 2

qn= dynamic deflection of the nth mode

q :eroeth mode- static displacement of shell = --

R = radius of shell

r - radial coordinate

t - time

tA - time of arrival of front of pulse

t = time of arrival of back of pulse

u particle velocity in the medium

V dimensionless modal velocity-

Velastic dimensionless root-mean-square value of velocity

V t = dimensional values of V
elasticelsi

V = peak value of V npeak

. total . total velocity = Velastic +v 1  -

W = yield of 'weapon in megatons

X = pulse length (see Figure 9)

x I  = defined in Figure 9

x2 = defined in Figure 9

z = complex root
5

= decay rate of exponentially decaying wave
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an
y = decay factor 2y-

8 = Dirac delta function

vertical coordinate in the medium (see Figure 4)

e angular coordinate

9 = cos (l-

Xct
Ps

=density ratio of shell to medium =--

Pm
V Poisson's ratio

m
n dimensionless parameter - n

m

P = mass density

dimensionless parameter = 
' H (1 - n)

2

n B 12

T dimensionless time parameter ct-

2 n r. n

I subscript = incident

m subscript = medium

n subscript = mode

p subscript = peak in medium

R subscript = radiated or reflected

r subscript = radial of shell

s subscript = shell

subscript = vertical in medium
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SECTION 1

INTRODUCTION

This is the second volume of a five-volume work directed toward the

improvement of design procedures for shock-isolation systems for underground

protective structures. Volume I dealt with motions imparted to the interior

of a structure by the air-blast-induced ground shock from a nuclear detonation.

This volume deals with the region where the grouid motions transmitted directly

from the crater predominate over the air-blast-induced motions.

Motions appearing at the interior of an underground protective structure

are predicted. They may be used as inputs to the response spectra given in

Volumes III, IV, and V for the design of specific shock isolation systems.

In comparison with the state of knowledge of air-induced ground shock,

there is a decided lack of empirical data concerning directly-induced ground

shock. For this reason, the program reported herein was more analytic than

its predecessor.

1.1 Objectives

The objectives of the program reported in this volume were threefold.

The first was to establish the relation between arbitrary free-field ground

motions and motions which appear at the interior of an underground protective

structure. The second objective was to rank the site, weapon, and dynamic-

structure-medium-interaction parameters which influence the interior motions

of a structure in order of their physical importance. The third objective

1



was to develop preliminary design methods for estimating shock-isolation

requirements based on the most :important parameters.

1.2 Method of Approach

The first eff'ort was the study of directly-induced ground motion.

The results of this portion of the study are reported in Section 2.

Existing theories of predicting the free-field motions caused by directly

transmitted ground shock were reviewed in terms of consideration of physical

aspects of the problem, input-data requirements, computation difficulties,

and applicability of the end product as input to the next phase. The theories

were compared on these bases, and the best approach for this program was

chosen.

The next phase of the program was to determine the best method for

predicting interior structure motions since these are the input required by

the designer to estimate shock-isolation requirements. Interior motions

will be due to both the free-field motions of the surrounding medium and the

motions caused by the structure-medium interaction. In th.. study, it was

of particular importance to compare the motions of each of these phenomena.

Prediction of structure motion was obtained by means of an existing

structure-medium interaction solution which was selected from several that

were studied. This solution was extended for application to the problems

peculiar to this study. The selection of the method was based on consid-

erations of ease of computation and ability to give physical insight to the

2



structure motion. The structural configuration chosen for the program was

a horizontal cylinder, because it appeared to be more universally applicable

to existing or planned structure shapes than any other.

The ranges of the parameters pertinent to the problem were then chosen

on the bases of the physical aspects of the problem and the limitations of

the solution. A computer program was then prepared and a large number of

cases was run. The results were then plotted, co)mpared, and evaluated.

Based on this evaluation, the parameters were ranked according to their

relative importance in influencing interior shell motion. The effects of

errors in estimating these parameters on the shell motion were also con-

sidered. The presentation of this portion of the program is contained in

Sections 3 and 4.

Section 5 presents preliminary design methods for estimating shock-

isolation requirements and includes numerical examples illustrating

application of the method.

1.3 Reconmtendations for the Shock-Isolation Engineer

The shock-isolation engineer is concerned with the design of a system

which will both support an item in a structure and mitigate the shock

motions between the point of support on the structure and the item. The

first step in the design of a shock-isolation system is to predict the

input motions on the wall of the structure at points where the shock

isolation system is to be attached.

3.



Techniques foi predicting the displacement and velocity histories are

presented in this report. They show that the most important displacement

which must be considered is the free-field displacement of the medium sur-

rounding the structure, as this is practically identical to the first mode

or "rigid-body" displacement of the structure. In most situations, this

displacement will far exceed the deformational displacements caused by

the stress-wave interaction with the shell. (In the case of the cylinder,

these displacements are the zeroeth, second, third, etc., modes.) Therefore,

the shock-isolation engineer should pay particular attention to the free-

field displacement caused by the directly-transmitted ground-shock wave.

The input-velocity history must also be considered in the design of a

shock-isolation system. In this study, it has been found that the peak

input velocities due to the first or rigid-body displacement mode and the

structure-deformation modes are comparable. Therefore, when considering

the effect of the input velocity on the design of a shock-isolation system,

both the rigid-body and deformational modes of the structure should be

carefully studied.

Once the input motions on the wall of the structure have been predicted,

the response spectra presented in Volumes III, IV, and V may be used to de-

termine shock-isolation requirements for items within the structure. These

response spectra are for one-and-two degree-of-freedom elastic and inelastic

systems and multi-degree-of-freedom elastic systems. Responses to several



different input waveforms are included in these volumes. The input wave-

form which most closely corresponds to the input motions predicted by the

methods outlined in this report should be used.

1.4 Recommendations for Future Work

The results presented in this study should be considered as an interim

guide to the prediction of motions which must be considered in the design

of shock-isolation systems. There are two reasons for this. First, the

formulas for predicting free-field motions from a surface explosion which

are presented in this report are based on an acoustic model for the medium.

It is to be expected that work now in progress and future research will

yield improved predictions of directly-transmitted ground shock caused by

surface nuclear explosions.

The second reason is that only one class of structure-medium interaction

problems is considered in this report, namely that of the circular cylindrical

shell with an acoustic medium. It was chosen because it is the only class of

interaction problem studied thus far which lends itself to the convenient

calculation of motions using a wide variation of parameters. It is recom-

mended that interaction analyses be conducted for additional moduls of the

medium and for different types of structures. Structural types should in-

clude circular cylinders with soft liners between the medium and structure.

Also other structural shapes such as the sphere should be studied. The

elastic medium is the type of medium which should be considered next.



SECTION 2

FREE-FIELD MOTION

Specification of the free-field ground motion caused by a nuclear burst

is prerequisite to the dvtermination of the motions of a structure placed in

the soil. For this study, the cTound motion has been estimated for the regions

where the directly transmitted ground shock predominates over the air-induced

ground shock.

When a nuclear device is exploded at the surface or slightly above the

surface of the earth, a crater is formed. The typical crater consists of

a hole in the ground and highly-fractured and permanently-deformed regions

in the soil surrounding this hole. Figure 1 shows a typical crater from a

1-MT surface burst. This figure represents a description of the residual

1300 Ft.

145 Ft.

Rup tre Z o.e.

: -. Plastic Zone .

. .... ... .. ..... -- " ........ J ... ....... 260 Ft.

,140p Depth below which
Region where direct direct ground shod

ground shock is must be taken into
very large consideration

Elastic Zone

Figure 1 CRATER FROM A 1 MT SURFACE BURST

*Numbers refer to references at end of report.
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configuration of a crater. Time-varying pressures in the soil lead to the

formation of the crater and the deformed regions surrounding it. When a

nuclear device is exploded at the surface of the soil, shock waves are

propagated in the air and soil.

Ground-shock effects stem from two sources. The first is stress waves

transmitted through the soil from the immediate region of the buarst point

where cratering action takes place. These stress waves are called directly-

transmitted ground shock. The second source is the air-blast wave moving

across the surface of the ground. This gives rise to stress waves called

air-blast-induced ground shock. At the present time, it is impossible to define

exactly the region where directly-transmitted ground shock predominates,

the region where air-blast-induced ground shock predominates and the relative

effects of each in the region where both are important. Frr the purpose of

defining the region where the results of this report are applicable, it is

adequate to use the definition given in Reference.2 which states that the

region of space involved in diectly-transmitted ground-shock effects is

a cone with the apex located at ground zero and with an apex angle of

approximately 140 degrees.

The limitations on the knowledge of the stress waves in the directly

transmitted-ground-shock region are also given in Reference 2.

"Present knowledge of direct-transmitted shock effects is
substantially less extensive than the knowledge of air-induced
effects. This situation is a result of a number of factors,
principal among which are the following: (1) Field test data
for direct shock effects are far less extensive than for air-
induced effects. (2) Field test data that are available,
with only a few exceptions, are from buried high explosive
detonations. Extrapolation from high explosive shock effects

7



to nuclear shock effects requires the introduction of a yield
equivalence factor, about which some uncertainties exist.
(3) Extrapolation from the effects produced by buried charges
to effects produced by surface charges requires the introduction
of another yield equivalence factor to estimate the percentage
of the energy in a surface burst which is propagated directly
into the ground. (4) The test data that are availaole, even
from high explosive detonations, produce very little information
concerning the variation with time of the direct transmitted

- shock pulses. In general, only maximum values of strain or
acceleration were measured."

Several theoretical models for the prediction of the-free-field ground

. - motion in the directly-transmitted region are available. -Each of the theo-

retical'approaches is dependent on the values of various soil parameters. The

determination of stresses at a point in the soil also requires the knowledge

of the yield and point of detonation of the delivered weapon. Neither the ,soil

parameters nor the delivery parameters are ever known very accurately. Rather,.

a range of delivery parameters and a range of possible soil parameters may be

specified.

In view of the uncertainty of the various parameters in the problem, only

the simplest model giving an adequate representation of the deformation proces-

ses is justified. Elaborate theory and elaborate computational work whose

end product is cnly a refinement of secondary effects, are not warranted.

In this section, several theoretical models of stress-wave propagation

in soils are discussed and the pertinent physical quantities associated with

each are listed. From the theoretical models of stress-wave propagation in

soils that are presented, a waveform is synthesized. This waveform contains

the pertinent features of the stresses propagated from a surface nuclear burst.

8



In particular, the synthesized wave yields:

1. Magnitude of the stress as a function of position

2. Time duration of the stress pulse

3. Approximations of the waveshape

The synthesized waveform is not an exact description of the actual

-stress wave in any given soil. It gives reasonable descriptions of all the

free-field phenomena required for specifying the input for the interaction

problem in the region where directly transmitted gr-und shock is predominant

and presents quantitative estimates for these parametersF aL simple and
b

usable form. Fcrrulas for the velocities atnd pressures a presented.

2.1 Theoret' i1 Prediction of Ground Mot-on

No single consistent theory for the several elements of ground motion in

real soil has been generated. Several approximate solutions of the problem

are in the literature. &cisting theories fall into these categories:

1. Nimerical calculations based on analysis which tfeats the

soil as a fluid undergoing finite deformation

2. Analytical and numerical solutions of the stress-wave
I.

propagation in a linear-elastic half-space I

3. Analytical solutions for the stress-wave propagation in

an acoustic or linear-hydrbodynamic half-space

4. Analytical solutions to combined models of the above

9
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2.1.1 H ydrodynamic Calculations

Brode and BJork3 have calculated a numerical example of the ground

motion due to a very-high-yield weapon detonated on the surface. The solution

for the pressures and particle velocities in the very-high-pressure region was

accomplished by numerical integration of the equations of motion. The pres-

sures were computed for a soil whose equation of state was represented by a

__--single pressure term which was a function of density and temperature. -It was

assumed that, in the close-in region, the soil could be represented as a fluid.

The equations of motion were solved for a 1-MT device exploded on a semi-

infinite half-space containing tuff. An analytical fit to the equation of state

for tuff was made from experimental data.

The results of this calculation may be summarized by the following

observations:

The pressure pulse obtained in the tuff was essentially rectangular.

The bulk of the energy and momentum transferred to the soil propagated

in the vertical direction. In the very close regions (less than 10

meters from the point of detonation) the peak pressure decayed as

.. .. . the inverse- cube of-the distance from the -burst and was independe-nt -..... ...

of orientation. At greater distances, the peak pressure decayed

inversely with the square of the distance from the burst and showed

an angular dependence (approximately sinusoidally with the angle from

the normal to the free surface). (See Figure 2) The peak ralial

and vertical velocities decay similarly. (See Figure 3)

10
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VW= Vertical velocity along vertical axis

V h= Vertical velocity along surface

U = Horizontal velocity along vertical axis

Uh = Horizontal velocity along surface

10 
4

103 U

102

V 4 V

S10. hV

+113

c -1

10"2

0~ - , , s • : .". I : " -

0" 1  1.0 10. 102  103

Distance L (m)

Figure 3 DECAY OF VERTICAL AN]? HORIZONTAL VELOCITY WITH DISTANCE
FROM A 1 MT SURFAE BURST 3
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2.1.2 Acoustic Calculations

The simplest of all analytical models representing the free-field is

the linear-compressible-hydrodynamic or acoustic model. This is the linear-

elastic model with the shear modulus set equal to zero. In this case, a

4closed-form solution for the pressure and velocity may be obtained.

A point force of magnitude 2'F. is applied at the surface of a semi-infinite

half space at time t = 0 and maintained for a period At.

The problem may be considered as two-dimensional because of symmetry.

(See Figure 4)

2 7TF

L

Figure 4 COORDINATES FOR ACOUSTIC SOLUTION
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The resultant pressure and particle velocities are:

Pressure:

F~1 [-~ ~ ) - C - L - XJ + . 6 x ) -6(X - .

L(1
Radial Velocity:

+ - I( 16(X - L) - (X-L - ) (

+ [) 1X )1(X L Ax)' (2)

L I

Vertical Velocity:

"T u (r,,x) ;6 6(x - L) - &(x - L - x)

L L

4 (3)
L

where 6 (x) denotes the Dirac delta function

l(x) denotes the Heaviside step function

l(x) =1 x>0

l(x) =0 x < o

L2 2 2
L = r

X =ct

At X = L-+ AX , the pressure undergoes a jump equal and opposite to the

initial jump and thereafter the pressure is zero. The velocity components

also have jump characteristics at X = L + AX. An idiosyncrasy of this model

is that the velocities do not return to zero after the passage of the second

wave front, but continue at a constant value. Therefore, the model should

not be used after passage of the wave.

" 14



The vector sun of the horizontal and vertical components of velocity equals

P/p mc immediately behind *he wavefront. To a first approximation this particle

velocity may be considered constant for the duration of the rectangular pressure

pulse.

The delta-function singularities are an idealization of the rapid variations

near the wavefront. These variations are damped out by nonlinearity of the

wave propagation and only the rectangular pressure pulse gets through. Even

-the rectangular pulse is distorted by propagation through real soils. The

change of pulse shape by percyclic damping has been reported by R.S. Weiner
5

and by T. G. Morrison and L. M. Weiner.
6

The rectangular pulse closely matches Brode's numerical solution as a

function of position. The solution does not match the time coordinates, however,

as the sonic velocity here is a constant. The identification with Brode's

calculations3 requires that the point force divided by 2w be:

F = 106 . W1/3 kilobars - ft2 (MT) -1/3

Figure 5 compares the acoustic solution and Brode's numerical solution.

The pressure pulse is applied for a duration At which is rroportional

to the cube root of the weapon yield.

.. ... ...... .. . A t = A t I  wl/3 . . . ... .(4)

Again, using Brode's solution for 10 MT,

,&t =0.10 sec for 10 MT

thus

At l 0.05 zec/(MT) I / 3

15
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10"1

Equation (1) i
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0-2
I

102  ;03 10 4

Distance L (ft.)

Figure 5 PEAK PRESSURE VS. DISTANCE FROM DETONATION POINT
FOR A SURFACE BURST., ACOUSTIC APPROXIMATION
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This gives a means for estimating the wavelength of the pulse, since

i : AX, = ctt

2.1.3 Linear-Elastic Solutions

The problem of wave propagation in an elastic half-space from a time-

dependent surface load has attracted the attentions and efforts of many

huthors in the past 50 years.

7Cagaird has solved the stress-wave propagation in a linear-elastic

half space due to a point pressure suddenly applied and maintained on the axis

of symmetry. Pekeris8 has solved the same problem for a point vertical stress

suddenly applied and maintained on the axis of symmetry. Knopoff9 has gen-

erated algebraic solutions for the displacements at the wave front in Pekeris'

problem.

The general solutions for the displacements and stresses in this problem

are usually in integral form. A general closed-form solution is not avail-

able. Portions of Cagnaird's solutions are algebraic, but the remainder of

his solution and Pekeris' solution are in the form of contour integrals or

numerical tables.

10Love generated a closed-form solution for the propagation of stress

waves in an infinite space due to a point force suddenly applied and maintained.

Pekeris and Lifson have calculated the vertical and horizontal displace-

ments on the surface from a suddenly applied concentrated vertical stress.

Baron, Bleich, and Weidlinger , by application of the dynamic-reciprocal

theorem, have used the Pekeris and Lifson results to generate displacements

and vertical strain in the region of the semi-infinite half space (VrF S

17



under the point of application of the force. The loading was a force

moderately applied at a point and thereafter maintained.

From their solution, the vertical strain (which is the largest component

of strain along the vertical axis) may be used to deduce the behavior of the

stress in this model. The stresses in the linear elastic model have the fol-

lowing features:

1. A spike, the magnitude of Thich decays inversely with distance

from the source.

2. An almost rectangplar pulse, the magnitude of which decays as

the inverse square of the distance from the source.

3. Permanent stress, the magnitude of which also decays as the

inverse square of the distance from the source..

2.1.4 Combined Models

12
A recent study has developed two approaches to the problem of' analyzing'

ground motion in an elastic medium due to the energy delivered directly to

the ground by a nuclear weapon. One of these approaches treats the elastic

region as a cratered half-space, where the hemispherical boundary of the crater

is subjected to the pressure history exerted by a hydrodynamic region within

__... .he crater .- The other approach -treats ---the --e-lastie-region-asaomplete-- ........-.

ialf space, a portion of which has initial motion and pressures corresponding

to the state of the hydrodynamic region at some instant when its behavior is

becoming more nearly elastic than hydrodynamic.
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Exact analytic exprrssions were obtained for the stresses at the wave-

front for the cratered-half-space approach, and numerical results were

produced. For the complete-half-space approach, analytic expressions alone

were presented.

2.1.5 Wavefront Attenuation

In both the linear elastic model of wave propagatior in a half-space and

the acoustic model of wave propagation in a half-space, the main part of the

stress wave decays as the inverse square of tne distance from the source of the

detonation. There is a short-duration pulse at the beginning of the distur-

bahce which decays as the inverse of the distance from tiie detonation. In a

real soil, there are a number of mechanisms which will reduce or attenuate

this spike.

1. The elastic stress-strain curve is nonlinear. If the slope of

the stress-strain curve increases with stress level, the shock

wave that is propagated downward will be similar in some features

to a one-dimensional shock wave. In particular, the shock wave

13
will be subsonic in comparison with the sonic velocity behind it

Rarefaction waves generated at the surface will overtake and degrade

the shock front.

2. Real soils are dissipative. Internal friction will degrade and

attenuate the high-frequency components of the wave, particularly

in regions where the stresses are high. A simple calculation of

the properties of stress waves in a linear visco-elastic 1 4 or linear

visco-plastic materiall5'16 shows that the stress jump at the wave

front Is shrrply attenuated.
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3. Real soils are inhomogeneous. If the sonic velocity, elastic

constants, or density are randomly inhomogeneous, the high-

frequency components of the stress wave will be reflected

17internally and the sharp wavefront will be attenuated

Estimates of the amounts of damping and attenuation (and their attendant

effects on the magnitude and shape of the propagated wave pulse) have been

obtained by the methods of percyclic damping. Using the percyclic-damping

formulas for the decay of a rectangular pulse developed by Weiner 5 , the change

in shape of a rectangular pulse would be as chown in Figure 6.

2.2 Empirical Data

Reference 2 summarizes the few experimental data available on the

directly-transmitted ground shock. The only experimental data on nuclear

bursts for displacements, velocities, and accelerations directly transmitted

through soil and/or rock are from a sequence of deeply buried, low-yield

explosions. These data do not relate directly to the problem of predicting

directly-transmitted ground shock from the surface burst of a nuclear weapon.

Therefore, in this report the use of the acoustic model for predicting directly-

transmitted ground shock (see Section 2.1.2) is recommended. The pertinent

formulae are summarized in the following subsection. One could use, of

course, some other prediction method or free-field data. The presentation

of interaction data in the later sections of this report is adequate to

accommodatemany different forms of predicted incoming ground shock.
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2.3 Calculation of Free-Field Waveform in the Directly Transmitted Ground

Shock Region

j The dominant stress and velocity for the lihear-elastic model and the

acoustic model decay as the inverse square of the distance from the burst.

The pressure spike, which decays inversely as distance from the source, is

further attenuated by various mechanisms that exist in a real soil. In the

.. . .gion of interest for this 'program, it can be assumed that the spike hat

decayed sufficiently to be ignored.

The order of magnitude of the stresses and displacements calculated from

either the elastic or acoustic models is the same for the same surface

loading. The variations of stress with angle are of less concern to the

designer uhan the magnitude, and this magnitude is most easily estimated

by the acoustic model.

The acoustic model of the soil will be used for prediction of the wave-

form. This simplification of the free-field. studies is made for the following

reasons:

1. The dominant long-period pressures computed in the hydrodynamic

numerical calculations, the linear elastic, and the acou-tic

models all show the same dependence on distance and approximately

the same dependence on the angle from the source.

2. The acoustic model has a simple analytic closed-form expression.

The basic waveform suggested is a rectangular pulse, whose magnitude is a

function of position in the soil with respect to the detonation point and of
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the yield of the weapon. The duration of the pulse is a function of the

yield of the weapon.

The basic rectangular pressure pulse may be obtained then from the

acoustic model. The pressure that may be expected at a point (r, C ) from

.... . .. ...... surface-burst is -given by (lbs/ft2):

P(r,C ,) (5)

F 5

where

F. 1.45 10 10• W1/ 3 ft2.- psi/MTI/3

The particle velocity (ft/sec) behind the wavefront is:

U P (6)Pcm

The pressure and velocity are held for time At. The upper and lower bounds

on At are

A t = L/2c'sec.
.upper

A t lower = 0.05 WI/3 -,ec/MT1/3

For L < 0.1 c W1/3 ft., the lower bound should be used.
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The waveshape that propagates through a real soil is altered from an

ideal shape. As has been mentioned, several mechanisms tend to smooth out

the wave. This attenuation and alteration of the waveform may be represented

mathematically using the theory of percyclic damping.

The mathematical form of the altered wave, after application of the

percyclic damping formulas, is quite complicated. Other mathematically

simpler curves may be used as approximations to thealtered rectangular

pulse. These waveshapes are presented and discussed in Section 3.
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SECTION 3

STRUCTURE-MEDIUH- INTERACTION ANALYSIS

The problem of interaction of a moving pressure pulse vith an

infinitely long cylinder of finite circular cross-section immersed in

an infinite acoustic medium was investigated. The pressure pulse was

considered to be traveling through the medium with its front parallel

with the axis of the cylinder. In the subsequent analysis of the

problem, the shell response of the elastic cylinder was considered to

be of prime importance, and the analysis was restricted to determining

displacements and velocities of the shell in response to a variety of

input pulse shapes. Since the primary motive of the investigation was

to obtain information beneficial to the design of shock-isolation systems

within the structure, the influence of the shell on the motion of the

medium was not investigated.

The problem is basically a two-dimensional one and may be represented,

with its defining variables, as shown in Figure 7.

3.1 Methods for Solving the Structure-Medium-Interaction Problem

A great deal of work has been done on the subject of the interaction

of waves propagating through various media and diffracting about specific

structures. There is an essential similarity in all kinds of wave

behaviors whether the waves are transverse or longitudinal, elastic or

electric. This means that even methods developed for treatment of certain

special cases of wave propag~ition have wide application. Thus, a wealth

of information exists concerning the wave diffraction problem.
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Figure .7 INTERACTION OF MOVING PRESSURE PULSE WITH CYLINDER

Essentially, three basic methods exist by which solutions have been

obtained to the wave-diffraction process about cylindrical objects, the

nozral-mode method, the double-transform method, and the geanetrical method.

The first two methods require the differential equations of motion of the

problem be separable in their independent variables; the third method does

not require separability of variables, thus giving it wider applicability

to cylinders of arbitrary cross section. The first two methods are by far

the most widely used and, in terms of work on the subject of wave interaction

with elastic cylinders, have a certain chronological pre-eminence over the

geometric method.
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3.1.1 The Normal-Mode Method

In the normal-mode method, displacements of the elastic shell are given

in terms of the normal modes of vibration of the shell. The angular

coordinate, e, describing the shell and medium, is expanded in a Fourier series.

3.1.1.1 Acoustic Media

Historically, the first attempts to obtain the solution of the

problem of wave diffraction about an elastic cylinder were made by the

normal-mode method. The first work on the problem was done for an acoustic

medium by Carrier18 in 1951. In 1953, Mindlin and Bleich19 simplified Carrier's

method by assuming that each element 'of the cylindrical surface could be con-

sidered as a flat plate in reflecting and radiating the acoustic wave. This

approximation should be valid in principle for short times with respect to the

development of the shell motion, but the resulting series obtained for the

radial acceleration was not uniformly convergent. In 1954, Baron20 used the

same plane-wave approximation in work with the acoustic-medium problem, but

used a more sophisticated shell model. It was Haywood21 who, in 1958,

succeeded in representing the reflected and radiated waves in cylindrical

form, permitting a significantly greater time period to be accurately

represented with the normal-mode technique.

3.1.1.2 Elastic Media

The first attempts to apply the normal-mode method to the inter-

action of elastic waves with an elastic cylinder was made by Baron who, in

company with several other authors, has written a number of papers on the
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subject in the period from 1960-1962. The most recent and inclusive of this

series of Baron's reports is that of Baron and Parnes . Some of the others

who have contributed to the development of the normal-mode approach to the

elastic-wave problem are Soldate and Hook 2 3 (1960), Paul and Robinson2 4 (1963),

and Yoshihara, Robinson, and Meritt25 (1963).

3.1.2 Integral-Transform Method

The normal-mode technique for solution of the shell-medium-interaction

problem has some difficulties. Perhaps the principal problem is that, while

theoretically correct, the Fourier-series expansion of the angular coordinate

results in series expressions for the solution of the problem which do not

always converge rapidly enough for convenience in numerical computation.

The double-transform technique was developed to meet this problem. Historically,

the method evolved over a period of many years. Perhaps the earliest use of

26the basic techniques of the method was made by Som~ernald in L89 in his

study of the problem of the diffraction of light by a wedge of arbitrary angle.

Sammwteld solved the problem by the method of images regarding the xy-plane

of Figure 7 as a multiple-sheeted Riemann surface, and treating separately

each of the infinitely many sources which comprise the actual 0-periodic

distribution of sources. The multiple-sheeted-Riemann-surface concept was

applied to the wave-cylinder interrction problem by Friedlander27 in 1954.

Using this technique, Friedlander was ablb to describe wave motion occurring

on the surface of the cylinder, not only during its first passage about the

cylinder (in the physical plane of the angular coordinate 0, where -7r<& <r)

but also in repeated passages of the wave about the cylinder where e was
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described on Riemann surfaces whose sheets were given by (2m - 1)

r <e_ (2m + 1) 7T for m = . . .-l, 0, +l, +2 .... With this technique,

it is possible to take the infinite Fourier transform of the dependent

variable of the problem with respect to the angular coordinate, e.

The technique was not imediately exploited to its full potential.

28
It was used by Payton2 in 1960 to obtain exact expressions for the shell

and fluid motion during the diffraction process for an acoustic medium.

29
In 1963, Peralta applied the method to the acoustic-medium problem using

an elastic shell which was filled with acoustic medium other than that en-

closing the shell.

The problem of the interaction of an elastic wave with a cylindrical

shell using the infinite-Riexnann-sheet method together with a double trans-

form (a Laplace transform over the time variable, t, and a Fourier transform

over the angular coordinate, e) was presented by Gilbert and Knopoff30 in

1959 and Soldate and Hook31 in 1962. The method can be described with dis-

arming simplicity, but problems evolve during inversion of the formal solution

when attempting to attain the actual expressions for the untransformed vari-

ables. In practice, although a formal closed-form solution may be obtained

by application of the transform-inversion integrals, integration of the

expressions must almost invariably be performed numerically.

3.1.3 Gemetrical Method

Credit for the initial development of the gecmetrical method must be

given to Friedlander. In his book Sound Pulses32, he developed the technique

for an acoustic medium. The technique was applied to an elastic medium by
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Soldate and Hook31 . The method yields solutions in the form of power series

in time. The primary drawback is that the calculation of successive terms in

the time series is exceedingly complicated. -However, the lending terms are

relatively easy to obtain and provide a means of finding short-time solutions

as a complement, perhaps, to one of the other methods of solution described.

3.l.4 Choice of Method

The method chosen for use in solving the structure-mediiun-interaction

problems for this program was the normal-mode method, as adapted by Haywood21

Because of the inherent difficulties attendant in the niunericil inversion

of transforms required in applying the integral-transform method, this technique

was rejected. Likewise, the complication involved in computing successive terms

of the time series as required Jn using the geometrical method led to its

rejection. Neither of these methods gives the physical insight into the motion

of the structure that the normal-mode method provides.

The normal-mode solution of the acoustic problem by Hnywood 2 1 represents

u very powerful and relatively straightforward tool for determination of shcll

response to various input forcing functions. In view of the state of the art

of the prediction of the free-field motion as previously stated, the assunaption

of an acoustic medium surrounding the cylinder is felt to bi justified. The

resulting simplification in the description of the medium can be used to per-

mit sophisticated waveforms to be treated in the interaction problem itself.

It is further felt that a thorough understanding of the acoustic-medium-

structure-interaction problem is an absolute necessity as a foundation upon

which to consider and comparc more complicated and sophisticated soil models.
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The method used in this program, then, is an extension of Haywood's to a

complete solution of the acoustic-medium-cylinder-interaction problem.

3.2 Normal Mde Analysis of the Response of an Elastic Cylindrical Shell

in an Acoustic Medium to a Specified Input Pulse

Using a modal analysis, the motion of the structure can be separated

into two essentially separate portions, the rigid-body motion of the shell

and the elastic shell response. The latter response includes the dilatational

* (breathing or zeroeth-mode response) and bending-mode response. It can be

shown that the rigid-body motion of the shell has the same general shape as

*! the free-field ground motion except for its modification due to the effect

of the breathing and bending-mode motion.

A typical response of a cylinder to a step pulse is shown in Figure 8.

Perhaps, the most distinctive feature of the rigid-body response of a shell

to a step pulse is the terminal velocity which the shell attains at long times.

The magnitude of the shell's terminal velocity depends upon the properties of

the shell and the medium. The inertia of the structure causes a gradual initial

acceleration to take place during the early time history of the shell motion

until the structure reaches the rigid-body terminal velocity. In the dila-

tational mode, the shell is compressed initially to a displacement generally

somewhat greater than the displacement which would be attained under an

identical hydrostatic load. The shell then oscillates in a rapidly decaying

manner about the static displacement which it approaches for long times.

In general, the response in the first bending mode (n = 2 in the Fourier-

series expansion) as indicated in Figure 8(c), is the most significant of any
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Qf the elastic modes (n = 0, 2, 3, 4, . . .). The predominant long-time

oscillatory motion of this mode of the shell may be snown to take place at'

a frequency which is directly proportional to the ratio of the square of the

natural frequency of the shell in vacuum to the bulk modulus of the soil.

The response of the shell in higher modes decreases rapidly as the order of

the mode increases. For these higher modes, the motion takes place only

during the period when pressure wave moves over the shell. After engulfrnent,

-the higher modes are essentially quiescent and the motion of the shell when

subjected to a step pressure pulse is then confined to only the rigid-body

mode and the dilatation and first bending modes. The total displacMent

response at the position e = 00, the voint at which the wave first makes

contact with the cylinder, is given in Figure 8(f). For the step pulse, the

most important modifications to the rigid-body motion made by the elastic

modes occur during the early transient response-period of motion.

3.3 Parameters

Observations of the formal and complete solutions to the acoustic-medium-

structure interaction problem, as outlined, in the previous section, indicate

that a relatively small number of dimensional parameters govern the shell

response to a given input forcing function. These parameters are contained

within the two dimensionless parameters, n and n (these correspond to n

and an, respectively, in Ref. 21). Both of these parameters are involved in

the general mass-dependent response of the shell and must certainly be con-

sidered in the rigid-body motion of the shell (n = 1). If tba mass of the

shell can be neglected, only n influences the shell motion and consequently
n
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the number of parameters is reduced. The constants n and an are defined as:

m (8)nn = p R :L $ n2 )(8)

En

(I - n 2s
an B 12

Thus, in general, each modal response of the shell depends pon the parameters

J, H, E, and B. In general, all four of these parameters are required to

specify completely the solution for the shell displacement. In this program,

however, it was necessary to use only three of the four at any one time for

the reasons stated below.

Except for very small times, the mass of the shell may be neglected in

determining the elastic modes of shell motion (n = 0, 2, 3, 4 .... .

Hence, tn = 0 and only the parameters involved in the constant an are of

importance to the problem, i.e., E, B, and H.

For the case of the rigid-body motion of the shell (n = 1) an = 0, and

the parameters required for definition of the shell motion are l, H, and B.

The term B, although not contained with en, is contained in the general ex-

pression for the solution of the problem. However, it enters the equationi

....... simply as a multiplication constant.-.-

Data presented in this section are given in terms of the dimensionless

displacement, qn' and velocity, V n. It should be noted that the displacements

in all modes are made dimensionless by means of the zeroeth-mode static dis-

placement. This provides a uniform base for direct comparison of relative

displacements among modes. Because of singularities in the short-time
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solutions for the dimensionless velocity, Vn, it was not possible to obt in

the maximum acceleration values, since they appear to occur at very shor"

times in the development of the motion. Consequently, accelerations are not

presented in the results which follow. The inability to present acceler tion

values was disappointing, but the investigation of the overall shock-isolation

problem indicated that knowledge of maximum values of displacement and v locity

was sufficient to define shock-isolation requirements for protective strLctures.

Hence, description of response properties was -imited to displacemeni and

velocity results.I

The final parameter of importance in the problem is the wavelength of the

incoming wave. The incoming wave is illustrated in Figure 9.

Figire 9 INCMNG PRESSURE WAVE

The positive-pressure phase of the wave is defined nondimensionally as

(x2  Xl) =i (tB tA) TB -T. (1O)
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It should be noted that T A and 7 B are simply the arrival time and clearing

time of the positive-pressure phase of the incoming wave, respectively, in

dimensionless form. The wavelength of the incoming wave is an extremely

important parameter. Physically, it is direc.ly related to the weapon yield.,

3.3.1 Waveforms of Inccming Pulse

As indicated in Section 2, the incoming wave may be represented as a

rectangular pulse. For such a wave, the range of estimates of appropriate

values for the wavelength of the positive phase, X, were taken as

300 ft. <X < 750 ft. for W = 1 NT

The range is an allowance for variations in types of soils. Based on the

above estimate of the wavelength of the incoming pulse, nondimensional wave-

lengths, 2, were investigated within the range

0< 1<30

In some cases, the range was extended to investigate interesting phenomena.

In addition to the investigation of shell response to a rectangular

waveform, it was felt that a number of other basic waveshapeb should be

investigated. Examination of the literature indicated that a wide variety

of waveforms have been observed in experimental investigations of free-field

motion. To cover as broad a ringe of waveforms as possible and to investigate

the effect of perturbations of some of the fundamental waveshapes, the followi.

waveforms were investigated: (1) the rectangular pulse, (2) a rectangular

pulse with an exponentially decaying spike superimposed upon it (various

decay rates were investigated), (3) a half sine, (4) a haversine, (5) a sine

wave with discontinuous first derivatives at its initiation and termination,
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and (6) a modified sine.* These are illustrated in Figures 10 and 11. The wave-

shapes discussed above were all investigated throughout the entire range of

wavelengths as given above.

3.3.2 Shell Parameter Ranges

Only steel 'shells were investigated because in the region of interest_

of ground shock stress, namely, 1000 psi < P < 10,000 psi, concrete shells
E

might not survive. The value of E selected was E = 33 x 10 psi.- 2

As a first estimate of the order of magnitude of Shell-thickness-to-

radius ratios to be used in the investigations, a static design for the shell

was made. After ruling out the use of concrete, it was estimated that steel

shells would withstand the ground shock of interest with thickness-to-radius

ratios of the order of .01 to .1. It was decided to investigate the values

of thickness-to-radius ratios of H = .01, .0, and .08.

3.3.3 Medium Parameter Ranges

The problem of determining an appropriate range for the parameter B of

the medium is ccmplicated by one of the basic assumptions in the solution to

the problem. The assumption is made that the motions of the shell can be

described in a Fourier series in the angular coordinate, e. This assumption

implies that all points on the circumference of the shell respond simultaneously

to a force exerted at any point on the shell. In a real shell, when a load is

applied locally, the signal from the load is not felt instantaneously through-

out the entire shell, but is transmitted as a wave motion either through the

Ihell or through the medium, whichever route provides the most rapid path.

*For the origin of this waveshape, see Volume III of this report.
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Since it is assumed that the forcing function on the shell is represented

by a traveling wave, the propagation of the signal in the shell must be much

greater than the signal propagation in the medium if the assumption of the

Fourier series expansion of the shell motion is to be valid. To insure the

validity of this assumption, it was necessary to choose values of wave prop-

agation velocities in the medium in ranges which were below that of the

acoustic velocity of steel.

Even with such stringent requirements, it was found possible to make the

range of the parameter B embrace a large variety of materials. A low and high-

modulus soil were selected with a range of B of 0.4 x 106 to 2.0 x l0e psi.

The low-modulus medium is representative of the value of the modulus which

333
one might obtain from a typical clay or a slow sandstone.3 ,The upper limit

of the soil modulus is representative of a typical limestone 0r a slow granite.33

Thus, a wide variety of potential media may be considered while still remaining

within the requirements of the solution of the problem.

Once the range of the modulus of the medium has been 'selected, the

selection of the density ratios becomes nearly automatic. To provide the

widest range in the density ratio, the density extrezies for the media cor-

responding to the limits of the range of the bulk modulus of the medium were

selected. -The values of the density ratio used were:

= 4 when B. .4 x l08 psi

= 3 when B = 2.0 x,106 psi

The' value of = 4 corresponds to the ratio of the density of steel to that

of a typical water-saturated clay. The density ratio P = 3 corresponds to

ratio of the density of steel to that of granite. A range of this size

adequately covers practically all media of interest.

4o



SECTION 4

DISCUSSION OF RESULTS*

Because of the many combinations of parametric variations that were

necessary to explore the relative influence of these parameters on the

structure response, a great number of cases were computed.

The usual custom of distributing the graphs throughout the written text

was departed from in this section because it would be too disruptive of overall

continuity and many of the graph. have application in several parts of the

discussion. Therefore, the graphs are. all located at the end of the section.

The discussion of results is long because of' the many relationships

which must be considered. Standards of comparison must be developed and

explained. It is important to note that the quantities plotted in the figures

are nondimensional. Most of the following discussion compares nondimensional

displacements and velocities. Whe.n comparing specific parameters for specific

situations, the quantities should be brought back to dimensional form.

Major subdivisions of the discussion are based on the shape of the inrut

pulse or wave, beginning with the step pulse and continuing with the rectangular

pulse and other waveforms. The discussion of both the step pulse and rectangular

-------pulse is rather extensive since these form the bases of Comparison for the

influence of other waveshapes.

*Designers of shock isolation systems interested only in applying the data
to specific situations need not read the beginning of this section, but may
proceed directly to Subsection 4.4 on page 69 without loss of continuity.
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Discussion within each major subdivision is ordered according to modal

response, beginning with the zeroeth mode and progressing in sequence to the

third and fourth modes. Within each of the modes, displacement response and

velocity response are considered.

Following this, the general shell response to changes in shell and

medium properties for all waveshapes is presented. Then the influence of

variation in waveform on shell response for various media and shell properties

is discussed.

Finally, the parameters are ranked according to their inf on dis-

placement and velocity response, and the effects of errors in estimating

values of parameters on prediction of response are presented.

To present complet displacement and velocity-time histories for all

cases considered for this program would make the report too large. Moreover,

since an estimate of the response of interior articles to be shock isolated

can be made on the basis of values of peak displacement and velecity alone,

pr sentation of the modal response of the shell to various waveforms will,

ir general, be limited to discussion of the peak positive and iegative

va es of the modal shell response. In order that the results of this study

be--considered-completely described herein, the Duhamel-integral computer

routine used for determination of the response of the shell to any given input

waveform is included in Appendix A. When coupled with the response of the shell

to the unit-step pressure pulse described in detail in subsectiun 4.1, the

Duhamel integral routine will provide complete time-history solutions to other
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waveforms which one may vish to investigate. Therefore, after the discussion

of the step-pulse response, this section will consist primarily of a discussion

of the modal response peaks.

4.1 Shell Response to Step-Wave Input

The response of the shell to the unit-step-pressure-pulse input is reported

in this section. Modal shell displacement response to the unit step wave is

shown in Figures 12 through 22. The velocity response is shown in Figures 23 to 32.

4.1.1 Zeroeth Mode Response (n = 0)

In Figure 12, the zeroeth or "breathing" mode response of the shell in

low-modulus (B = .4 x 106 psi) soil is shown. The results shown in Figure 12

are unique in that the type of response shown was not found in any other medium

or mode investigated. It will be noted that for the thin shell (H -.01) the

shell responds rapidly, its displacement increasing until approximately T = 5,

at which time the displacement has exceeded the static displacement. The peak

displacement response is approximately Q = 1.1. After reaching its peak

value, the zeroeth-mode displacement decreases towards its static value, about

which it oscillates with rapidly decaying amplitude. The displacement may be

considered to have reached the static value by the time T = 20.

The thicker shells investigated do not exhibit this same type of dis-

placement response. As the shell thickness increases, the displacement no

longer overshoots its static value, but remains below it, approaching the

static displacement asymptotically. This type of response is very similar

in appearance to that of a damped spring-mass system. The thin shells have
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the appearance of an underdamped system in which the displacement overshoots

its equilibrium position and then oscillates about it with a decaying amplitude.

The thicker shells, conversely, have the appearance of being overdamped, so

that no oscillation is apparent in their response.

Because there is such similarity to damped oscillatory motion, it becomes

interesting to investigate conditions under which a response vimilar -to--ritic-al--

damping-is obtained. Examination of the conditions which cause this type of

response shows that it is connected with the change of the poles of the integrand

(See Equation 6.1 in Reference- 21) from-complex-to, real.- For- comp-lexpole-....

the motion is similar to that of the under-damped system. When the poles

become real, the response behaves like an over-damped system. It is reasonable

to conclude that critical damping will occur as the poles change from complex

to real. As Equation 6.1 in Reference 21 is a quadratic equation in z, the

transition from complex to real roots of z will occur as the discriminant, D,

goes to zero. Where

D a a 2  4 a (1.n n gn

D equals zero for two. cases. In the only nontrivial case,

H B
= 4o E

- .1lx -lO - 2  for B = 0.4 x 10 psi (12)

- 34.2 x 10-2 for B 2.0 x 106 psi

Thus, it can be seen that motion corresponding to the case of critical damping

is obtained for the case described in Figure 12 wheo H =.0171. For thickness-

to-radius ratios less than this value, the solution yields complex roots and
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corresponds to the under-damped case, as indicated when H = .01. For h > .0171,

the solution yields real roots and the shell response corresponds to an over-

damped case, having an appearance similar to that indicated for the values

H = .04 and .08.

It is interesting to note that for the case of the high-modulus medium
=2_x 106

- (B 2 x psi) the roots remain complex for H < .342. Values of the thickness-

to-radius ratio of this magnitude exceed the limits of thin-shell theory. It

may be observed that the response curves for all indicated values of H in Figure 13

resemble the under-damped case. It should also be noted that as H increases

the response of the shell becomes more rapid, the initial velocities of the shell

being greater for thicker shells in a given medium than they are for thin shells.

In the zeroeth-mode-displacement response for the hiph-modulus medium

(Figure 13), the characteristic under-damped motion of the shell me.y bn observed.

It should be noted however, that the peak values of the displacement are

considerably larger for the high-modulus medium than for the low one. Whereas

the maximum value of the displacement for the low-modulus medium was Q = 1.1

for H = .01, the peak value of the displacement for the high-modulus medium

is Q0 = 1.35 for H = .01. The increase in the peak values of the zeroeth-mode

displacement is also accompanied by more pronounced oscillation of the shell

about the static displacement. There is an apparent direct connection between

the magnitude of the discriminant D (Equation (11)) and the damping of the

zeroeth-mode response. As the imaginary part of the complex root of z

ihcreases, the damping of the zeroeth-mode displacement decreases. Hence,

peak responses increase under such conditions and it may be concluded that
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oscillatory motion will become more predominant as well; the motion will decay

to the static displacement value more gradually as the magnitude of the imaginary

part of the root of z increases. This indicates that for values of the bulk

modulus of the medium exceeding those presented here, peak shell response would

continue to increase with increasing values of the modulus and damping would

be expected to decrease.

4.1.2 Rigid-Bodr Response - First Mode (n = 1)

The rigid-body-displacement response of the shell to a unit step pulse is

shown in Figures 14 and 15. The velocity response to the step pulse is shown in

Figures 25 and 26. The most striking feature of the rigid-body response to a

step pulse is the terminal velocity which the shell attains. The shell is

accelerated until it reachesits characteristic terminal velocity. This accel-

eration period is relatively short. (However, for example, see Figures 25 and 26

where terminal velocity Is-essentially reached before T -5.)

Fig&.es 14, 15, 25 and 26 indicate that terminal velocity is a function of

both B and H. Actually, in dimensional units the terminal velocity Is indepen-

dent of H and depends only on B; it is identical to the free field particle

velocity associated with the stress wave. The H dependence indicated in the

figure is due solely to the manner in which the nondimensional variables were

formulated.

4.1.3 Second Mode Response (n = 2)

The second mode response to a unit step pulse is shown for relatively

short times in Figures 16 and 1T. The long-time response is shown to a different

scale in Figures 20, 21, and 22. The second-mode response develops the largest
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v:,tritions in displacement of any of the ela~stic modes, n 0, 2, 3, 4

This 1: particularly true for the low-modulus soil. The peak displacement

response for za Civen shell thickness is nearly five times as great for the low-

modulus soil as it is for the high modulus.

The effect of shell thickness on the second-mode response is quite sig-

nificant. Figures 16 and 17 show that Q is nearly directly proportional to

shell thickness. It is only for the very largest displacement response, i.e.,

thick shell and low modulus medium where this direct relationship breaks down.

This effect mny be quite misl(.ading. Since the static displacement, qst, is

actuAlly inversely proport'on-il to the shell thickness, this effect and the

increaing cf Q,, with shell thickness tend to cancel, each other. Thus the

actuul dimensional displacement in the second mode, q2P would be nearly the

sime for all shell thicknesse2, except for the case of thick shells in a low-

modulus medium where q2 would be somewhat less than that of a thin shell in

the same medium.

Consider now the gross .otion of the shell in the stcond mode. Comparing

the curves of the displacement, Figures 16 and 17, with those of the velocity,

Figure s 27 and 28, it can be observed that the peak values of velocity occur as

the front of the wave passes over the shell, i.e., 0 < T < 2. In all cases, the

peak is reached during this very short period. In general, one can also observe

that an abrupt change in shell velocity occurs after thz passage of the wave over

the shell. The essence of this activity during the engulfment period is con-

tained in the contribution of the incomplete- Bessel Function, Ino (z), which

is a time-dependent factor during the passage of the wave across the shell.
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Itt. v."Lue fe dependent upon the value of the A , co (1- ), which

describes ttj i.oition of the wavefront in *.'nm of the- arg.. iwept out by a

'radius ve tc'r to the shell surface at t, wic ve% t s.nd the x-ox s of the

shell. The I-:omplete Bessel function beoies an ordinary Bessel function

when the wavefront haa traversed the shell 6 = . or *r > 2, 'nd thereafter

is no lorger zime depsmndent. Thus, follo'-ing thf. engulfment of the shell by

the vavefront, the motion of the shell is entirely a function of the two

exponential terms of the equation, e and e . But since

z and z2 are the two roots of a quadratic equation which, in the case of the

second mode, my be shown to always be complex for the entire range of variables

investigated for this .problem, z1 and z2 are simply complex conjugates of one

another. Letting

zi - + ± (13)

the two time-dependent exponential terms become

The first term of (14) contributes an exponential decay to the magnitude of

the modal shell displacement,, while-the second term gives-the-respoze-a--

time harmonic oscillatory motion with frequency f . It can be shown that .y

and I' my be represented as

In the second mode, the magnitude of a is very small with a range of

.12 x 10" < a2 <3.O7 x1 2
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Thus, the exponential decay term e ( - i) is very small and, at the lower

limits of a 2 , becomes almost negligible. Conversely, 12 is directly

proportional to V12- Hence, the order of magnitude of he frequency of the

shell oscillatory motion is several times greater than that of the decay

factor, 'y . For this reason, a distinct time-hrmonic oscillation of the

shell, about the zero point of the displacement may be seen in the c. g-time

responpe of the shell in the second mode, as shown in Figures 20 through 22.

Little or no evidence of any exponential decay can be observed for the high-

mo&lus medium, but the decay rate of the low modulus medium is apparent as

might be expected, since the la-gest values of G 2 are associated with the

low-modulus medium.

4.1.4 igt hr-Mode Response (n = 3, )

Response of the shell in the higher modes is shown in Figures 18 and 19

for the displacement and Figures 29 through 32 for the velocities. The

displacement response in the higher modes decreases rapidly with increasing

modal order. Although there are some relatively large fluctuations in

displacement during the engulfment period, the shell motion in the higher

modes is nearly negligible in terms of long-time motion. One would expect that

the long-time motion of the shell in the higher modes should be very similar

to that of the second mode in that it should exhibit the same type of

oscillatory motion about the zero value of the modal displacement with a

frequency f which is proportional to V(ywhile the magnitude of the
an

oscillations should decay exponentially in time with a decay factor y =

However, the magnitude of the displacement which remains at 7 = 2 is negligible
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%.nd the oscillatory motion is imperceptible. The decay factor y is

jubstantially larger for the higher modes as well, being of order pne for thick
I

shells and low-modulus soils. Thus, even if the motion were apparent, it

would decay rapidly with time and be of little significance following the

passage of the wave over the shell. During the engulfment of the thicker

shell, however, some fairly substantial peak positive and negative displace-

ments are obtained for the low-modulus medium (Figure 18). Since they are

of relatively high frequency, their effect on items of equipment to be

shock-isolated may rot be negligible.

Although the peak positive and negative displacements for the higher

modes decrease much rore rapidly than do the velocities as the modal number

increases, observation of the velocity-time curves for the shells (shown in

Figures 29 through 32) indicates that the peak velocities decrease fairly

rapidly with incraasing modal number. Thus, both the displacement5 and the

velocities are negligible after engulfment, and it is unnecessa-.r to carry

the investigation of the modal response of the shell beyond the fourth mode.

4.2 Response to Rectangular Pulse

The-peakpositive and negative values of displacement response of a shell

are shown in Figures 33, 39, 45, 46, 57 and 59,-for the zeroeth, first, second,

third, and fourth modes, respectively. Peak modal velocity response to a

rectangular-pulse input are shown in Figures 61, 6T, T3, 8o, 81, 82 and 83,

again for the zeroeth, first, second, third, and forth modes, respectively.

All the above curves are plotted in terms of peak response versus dimensionless

pulse wavelength, , as a function of thickness to radius ratio, H, and bulk
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modulus of the medium, B. Response-time histories for shell response to a

rectangular pulse may bd obtained by direct superposition of a step pulse

response curve initiated at time T A (see Figure 10) and a negatively directed

step pulse response curve of equal magnitude initiated at the time T £, the delay

corresponding to the desired input wavelength. Thus, the results obtained for

the peak response curves may be inferred directly by observation of ap;ropriate

step-wave curves. Typical modal response-time curves for the case of rec-

tangular-pulse interaction are shown in Figure 84.

4.2.1 Zeroeth-Mode Response

Description of the zeroeth-mode displacement response' to a rectangular

pulse is made more tractable by distinguishing between relatively short and

relatively long pulse lengths. For relatively short pulse durations, the

shell displacement is characterized by increasing absolute values of the

peak positive and peak negative response with increasingiwavelengths. As

the duration of the rectangular pulse increases, however, the peak positive

and negative displacement response curves reach constant values which are not

exceeded thereafter regardless of how long the pulse length is made. For

relatively large pulse lengths, increasing the shell thickness decreases both

the peak positive and negative displacement response of the shell. For short

pulse lengths, the situation is reversed,,and increasing shell thickness causes

increased peak positive v.'ues of-the displacement response. As the soil bulk

modulus increases in magnitude, the magnitude of the peak positive and negative

shell response increases also. In the paragraphs which follow, an explanation

of these response features is given.
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From a comparison of the curves of Figure 33 with those of Figures 12 and

13, it is apparent that if the pulse duration is less than the time required

f for the shell displacement to reach its peak response to the step pulse, the

maximum value of the response will be that value of the displacement which the

shell has attained at the moment the tail of the wave reaches the shell, and

the negatively directed step-pulse curve is initiated (i.e., when "-r ).

_Thus,,the peak positive values indicated in Figure 33 follow the pressure-time - ..

curve for the step pulse as shown in Figures 12 and 13 exactly until the peak

value of the response to the step pulse is reached. When positive duration of

the pulse is longer than the time required to reach the maximum for the step

pulse, the maximum value remains constant at the peak value obtained with the

step pulse.

The peak negative values obtained for the zeroeth mode are much smaller

in absolute magnitude than those of the peak positive response. That peak

negative values are obtained at all is simply the result of the fact that the

S -Ldisplacement response to the step wave may overshoot the static displacement.

If this occurs, then regardless of when the negatively directed portion of the

pulse- initiated---there -will-be-a-tine at which it sab-solute magmitude will

exceed that of the earlier starting positive phase of the wave. This will then

provide the peak negative response of the shell. If, in the step-pulse response,

the response does not overshoot the static displacement value but acts as though

it were overdamped, approaching the static displacement value from below, then

there can be no peak negative value for any rectangular pulse. This will be

true regardless of the length of the rectangular pulse. An example of this is
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shown in Figure 33 for the low-modulus soil and shell thicknesses of .04 and .08.

The curve indicates that there are no peak negative displacement values for

such shells. On the other hand, the thinner shell (H = .01) behaves as an

under-damped mass-spring system, overshooting the static displacement value

before returning to it.

Attention should be called to the fact that positively and negatively

-directed displacement response is simply a function of sign c nvention, Accord-

ing to the shell displacement sign convention, begative dip fements are

directed outward, in the direction of increasing values of r. Thus, increasingly

negative values of the displacement indicate actually increasing absolute

values of the outwardly directed displacement. That is to say, large absolute

values of negative displacements are actually just large outward displacements.

In the following sections when large peak negative values of the response are

mentioned, it should be understood that large absolute values are implied.

Returning to the discussion of zeroeth mode response to a rectangular

lse, it should be noted that the peak negative response obtiined in the

lroeth mode for the rectangular pulse remains constant after the pulse length

s reached a certain value. For example, in the high-modulus thin-shelled

case, the response of the shell to a step pulse appears to have little damping

and oscillates noticeably about the static displacement, but with decaying

amplitude. For such a case, the constant value of the peak negative response

which the shell attains for large pulse lengths may not, in fact, be the maximum

value of the peak negative response of the shell. Examining the particular case

illustrated in Figure 33, it is observed that the largest absolute value of the
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negative response is obtained at a pulse length of about =14. Comparing this

result with the displacement-time history shown for the step-pulse response of

Sa ishell-medium system with the same properties, as shown in Figure 13, it may

-_be observed that this corresponds to the initiation of the negati-:ely directed

* pulse at a time such that its maximum absolute value will occur at the time when

the lowest point of the first oscillation of the posit'1,rely directed pulse

about the static displacement is obtained. Such a case -rovides the maximum

peak negative value of the response.

It is interesting to observe that in the zeroeth mode, as the shell thick-

n ness increases, the peak positive value of "the shell displacement response de-

2 creases for long pulse durations. On the other hand, for pulse lengths le.s

than that required for-the attaining of the maximnn peak positive values for

i each of the shell thicknesses considered, the opposite ccndition holds. That

is, under such circumstances, thick shells will have larger dynami2 displace-

-r * ments than a thin shell. This phenomenon appear to hold true regardless of

tebulk, modulus of the medium.'

. In the case of the peak negative displaceent values, the absolute value

of the shell response is always greater for thin shells than far thick- shells ,

regardless of wavelength and medium properties.,

The effect of variation in medium modulus on the shell respons'elis similar

-to that for the step pulse. That is, as the modulus of the soil increases, the

maximum and minimum disrlacements of the shell increase also.

In summary, the results of variation of shell and medium parameters on

zeroeth mode shell displacement response to a rectangular-pulse yield the
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following information:

(i) For relatively large pulse lengths, incresing the shell

thickness decreased both the peak positive and negative displace-

ment response of the shell.

(2) For short pulse lengths, the situatinn is reversed, and

increasing shell thickness causes increased peak positive values .

of the shell.

(3) As the soil modulus increases in magnitude, the magnitudes

of the shell peak positive and negative response increase also.

Moreover, the response of the shell in the higher-modulus soil is more sluggish

than in a lower-modulus soil. This is shown by the fact that larger times,

hence greater pulse lengths, are required to obtain both the Laximum values

of the peak positive and negative response in the higher-modulus soil.

Results for the velocity response to the rectangular pulse are more

straightforward than those of the displacement. The velocity response-time

curves for a rectangular pulse may be obtained by superposiTior. frcm step-pulse

........ -velocity-time curves in an identical fashion-to-those- or-the--displacement.

Comparing Figures 23 and 24 for stem-pulse velocities with Figure 61 for

the rectangular-pulse peak positive and negative velocities, it can be seen that

maximum velocities for the step pulse are obtained very rapidly. Consequently,

the pulse lengths required to obtain the maximum-peak-positive values of the

velocity (Figure 61) are very short. It is physically impossible to exceed the

maximu-peak-positive velocity values obtained for the step pulse regardless of
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rectangular-pulse lengths. Similar results are obtained for the peak-positive-

* velocity response as a function of pulse length regardless of shell or medium

I parameters.

..-The peak-negative values of shell response do not have the same response

. characteristics which are found in the peak-positive values. In considering

the effect-of the step-pulse velocity response on the rectangular-pulse

response, it my be observed from the step-pulse response curves (Figures 23

and 24) that the peak velocity increases with increasing shell thickness.

However, the duration of the velocity response and the variation in shell

motion is greater for the thinner shells. As the soil modulus increases

(hence, as observed previously, damping of the shell motion decreases)

variation in velocity-time curves and duration of response increases. Thus,

for the thinnest shell in the high-modulus medium, a well-defined peak negative .

value of the velocity occurs in the velocity-time history of the response to

the step-pulse. This minimum value of the velocity occurs at a time of .

- approximately T = 17.5. If the length of the rectangular pulse is chosen

such that in superposition, the negatively directed peak velocity associated

with the tail of the wave is made to coincide with the appropriate value of time

at which the positively directed phase associated with the head of the iave is

experiencing the above described minimum, a peak-negative-velocity value whose

absolute magnitude is greater than that of the peak-positive value will occur.

This accounts for the rather peculiar looking bulges occurring in the peak-

negative-velocity-response curves shown for the high-modulus medium in Figure

61. It will be noticed that the maximum value of the peak-negative response,
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in absolute value, exceeds the maximum response for the peak-positive velocity

for the equivalent thickness. In particular, the pulse length at which the

maximum-peak negative velocity is obtained corresponds to about £ - 13 when

H = .01, 1= 7 when H = .04, and T 7 when H = .08, for the high-modulus

soil. At pulse lengths greater than these indicated values, the peak-negative

velocity response decreases in absolute magnitude until, for long pulses, the

peak positive and negative responses for the shell velocity are identical.

Similar results, though not so pronounced, are observable for the thin-shell,

low-modulus soil case. The thicker shells do not exhibit this same characteristic

for the low-modulus soil. The velocity responses of these shells approach zero

rapidly without a change in direction.

It should be noted that the development of maximum values of peak negative

response of equal or greater absolute value than the peak-positive maximum

occurs at much larger pulse lengths than those required to obtain constant

maximum values of the peak-positive velocity. The required pulse length to

obtain maximum values of the peak-negative-velocity response decreases as the

shell thickness increases. As an example, observe that pulse lengths on the

order of < 1/2 are required for the maximum-peak-positive-velocity response

to be attained for the low-modulus soil. To obtain the maximum-peak-negative

response for the thick shell, a pulse length of £ > 1 is required. For a thin

shell in the same medium, a wavelength of approximately A > 7 is required

before the magnitude of the peak-negative response becomes equal to or exceeds

that of the maximum peak-positive response. Similar results are obtained for

the high-modulus medium.
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The peak positive and negative absolute values of velocity response in-

crease with increasing shell thickness for all pulse lengths. For the low-

modulus soil, the range of the maximum velocity values is .41 for H = .01,

.88 for H = .04, ard 1.25 for H = .08.

As the modulus of the soil increases, the same general relationship

between the maximum velocities and shell thickness continues to hold true.

However, as the soil modulus increases, the absolute value of the peak

positive and negative response is decreased. For example, the corresponding

values of velocity maxima in the high-modulus soil to those shown above for

equal shell thickness in the low-modulus soil are .17 for H = .01, .37 for H = .04,

and .56 for H = .08. Thus, the magnitude of ta velocity response has been

reduced to a value less than half that vi the low-modulus soll-shell system.

For the high-modulus soil the magnitude of the maximum-peak-negative velocity

exceeds that of the maximum-peak-positive response for the corresponding shell

thickness in every case. The representative values of the maximum-peak-negative

'Velocity being .24 for H = .01, .42 for H a .04, and .59 for H = .08. The

absolute values of the peak-negative velocity maxima will exceed corresponding

values of the peak-positive maxima in every case where the medium-shell system

exceeds the requirements for critical damping and becomes underdamped.

Summarizing the variation in zeroeth-mode velocity response with medium

and shell parameters, it is noted that:

(1) The maximum-peak-positive velocities associated fwith

rectangular-pulse shell response are developed very rapidly and

consequently are nearly independent of the pulse length. Only
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for pulse lengths less than the shell diameter is there a likeli-

hood that the maximum-peak-positive velocities will not be obtained.

(2) For very long pulse lengths, the absolute values of the peak

positive and negative velocity maxima are identical.

(3) For an intermediate range of pulse lengths (5 < I < 20 for

the range of parameters investigated in this report) it is possible,

under certain conditions, for the maximum-peak-negative-velocity

response to have a greater absolute value than the maximum-peak-

positive response.

(4) Greater absolute values of maximum-peak-negative velocity will

occur, however, only when the medium-shell satisfies the conditions

required to achieve the underdamped state.

(5) The absolute values of the maxima of both peak positive and

negative velocities increase with increasing shell thickness.

(6) Absolute values of the maxima of both peak positive and

negative velocities decrease with increasing soil-modulus values.

(7) For equal shell thicknesses, increasing values of soil modulus

prod-ace decreasing damping effects and consequently make the

possibility of maximum-pek-negative velocity exceeding those of the

maximum-peak-posiive velocity more likely.

Moreover, as the damping decreases, the frequency of the oscillatory shell

motion decreases so that longer pulse lengths are required to obtain the

absolute maximum values of the velocity.
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4.2.2 Rigid-Body Response

Rigid-body-peak-positive-displacement response to a rectangular-pulse

input is shown in Figure 39. Except for very short pulse lengths, the peak-

positive response is a linearly increasing function of pulse length. Figure

84(c), a typical rigid-body-motion-time curve, illustrates this type of motion.

If the pulse length is sufficiently long for the shell to reach its termiLal

velocity, further increase in pulse length will merely result in an extension

of the linear portion of the displacement-time curve. Therefore, for all

cases where the pulse length is of sufficient duration to raise the shell

to terminal velocity, the maximum displacement will be found along the linear

portion of the curve in Figure 39. When the pulse length is too short for the

shell to reach its terminal velocity, the shell motion is taken up completely

in the initial acceleration and final deceleration phase. The range of the

pulse lengths which are too short to accelerate the shell to terminal velocity

is very narrow. The pulse lengths must be less than 2 shell diameters ( 4 = )

to qualify for this distinction.

In each case, the terminal velocity which is approached is that of the

free-field particle motion due to the passage of the stress wave.

The peak positive and negative velocity response curve for the rectangular-

pulse input is given in Figure 67. As might be expected, the curves in Figure

67 are identical to those found for the step pulse. (Compare Figures 25

and 26).
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4.2.3 Second-Mode Response

The most striking feature of the second-mode-maximum-displacement

response curve, as shown in Figure 45, is the large magnitude of the thick

-.- shell-peak-negative-displacement curve. Its absolute magnitude is nearly

twice that of the corresponding peak-positive-displacement curve shown in

the same figure for the same case. The explanation of the phenomenon can be

- obtained by considering the long-time-second-mode-response curve to the step

pulse shown in Figure 22. These long-time-displacement-time histories for the

step pulse indicate that the shell responds very rapidly, initially, attaining

what appears to be an initial displacement. Then, in a manner similar to a

damped single-degree-of-freedom system subject to an initial displacement, the

shell oscillates about its null displacement in a damped manner. If the length

of the rectangular pulse is such that in the superposition process the maximum

value due to the negative phase is attained Just as the positive phase of the

motion has reached its first peak-negative response, then the response will be

augmented and a response in the negative direction is obtained which is nearly

double the peak positive-response value. The greatest absolute value of the

peak-negative displacement curves is obtained for the shell thickness H .08

at a pulse length of approximately 1 = 14. As can be seen in Figure 22, this

pulse length closely corresponds to a half period of the apparent natural

frequency of the shell-medium system. Similar values would be obtained for

the other thicknesses shown if the curves were carried out to sufficient length.

The remaining portion of the response curves shows that the maximum peak-

positive values of the response are reached for very short length pulses,

after which the peak-positive response remains constant. A

61



Again, the shell response for both peak positive and negative displacement

increases with increasing shell thickness. This appears to be true in general

except for some minor adjustments which must be made for certain long pulse

lengths where there is a crossover point in the minimum curves (e.g., = 25

in Figure 45).

As the soil modulus increases, the peak positive and negative values of

the displacement decrease.

Examination of second-mode-velocity response of the shell to a rectangular

pulse, as shown in Figure 73, indicates that the maximum-velocity-response

curves are very similar in appearance to the maximum-displacement curves.

They are not, however, nearly so extreme in the manner in which the maximum

values of the peak-negative-response curves exceed the corresponding values

of the peak-positive curves. Comparison of the step-pulse-velocity-time curves

indicates, howevr, that a response in the velocity curves very similar to

that shown in the maximum-displacement curves is to be expected. That this is

actually the case is clearly indicated for the combination of shell thickness

H .08 and modulus B = .4 x 106 psi, where a distinctly larger absolute

magnitude of the peak negative value of the response is obtained compared with

-- the corresponding peak-positive response. The oscillatory nature of the peak-

negative-response curve is also apparent in the same figures. Foi the other

thicknesses shown, the period of the oscillation is so much longer and the

amplitude of oscillation so much less, that the oscillatory motion of the

peak negative curve cannot be shown with the scale of Figure 73.
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It should be noted that the same generalizations concerning the in-

fluence of shell thickness and soil modulus on the magnitude of the maximum-

velocity-response curves made for the maximum-displacement-response curves

may be applied here. That is, the peak positive and negative velocities

both increase with increasing shell thickness, and decrease with increasing

soil modulus. Here again, the analogy may be made between displacement and

velocity. However, the rate of decrease with increasing soil modulus is

somewhat less in the case of the velocity curves than it is for the case of

the displacement curves.

4.2.4 Higher-Mode Response

Curves of the peak positive and negative displacement response for the

third and fourth modes are shown in Figures 57 and 59. Where reliable results

exist, it appears that the shell displacement response in the third mode is

nearly symmetrical in both peak positive and negative response. Moreover,

the response in the higher modes for all practical purposes may be considered

to end when the front has traversed the shell (compare with Figure 19). The

maximum-peak-positive shell response is constant for all wavelengths where

I > 2. Similarly. the maximum value of the peak-negative response is identical

with that of the maximum-peak positive response. But, the length of the

rectangular pulse required to obtain the maximum-peak-negative response must

be twice the value of that required to obtain the maximum-peak-positive-

response value, i.e., I > 4.

For the third mode, the peak positive and negative response seems to

increase with increasing shell thickness. Note however, that no results are
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shown in the low-modulus soil case for the thickest shell, H = .08. This is

because convergence problems with the incomplete Bessel functions for this

particular combination of parameters caused the Ibcmputer results for the

shell displacement-time response to be considered unreliable. Again, as the

soil modulus increases, the peak-positive displacement decreases. As was the

case in several other modes, the response appears to be inversely proportional

io soil modulus.

In the fourth-mode-displacement response, even greater problems were

experienced with the reliability of the numbers obtained for certain cases.

However, notice that naximum responses as shown are significantly less than in

the third mode. There is a very satisfactor3 convergence of the maximun

response values with increasingly higher modes. It was for this reason that it

was felt unnecessary to determine more accurately the remaining cases whose

response-time curves were considered imreliable because of difficulties with

convergence of the incomplete Bessel function computation routine.

As appears to be the general case for all the bending modes, the magnitude

of both peak positive and negative displacements increase with increasing shell

thickness. Also, for the one case which can be compared (H - .01) the maximum

peak positive and negative response appears to be inversely proportional to

the soil modulus.

A small blip appears in the peak negative displacement curves for pulse

lengths less than 2. For such lengths, it is again possible to achieve a sort

of resonant situation in which the pulse length is directly related to the
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minimum of an oscillatory condition in the displacement of the fourth mode.

(Compare with Figure 84 (i).)

The third and fourth mode velocities are shown in Figures 80 to 83. Again,

due to problems with the Incomplete Bessel functions, little can be said con-

cerning the effect of shell thicknesses. The maximut velocities of the shell

for all pulse lengths decrease as the soil modulus increases.

4.3 Response to Exponentially Decaying Pulse

Peak-modal-displacement-responae curves for the shell-medium interaction

with an exponentially decaying pulse are shown in Figures 314, 40, 4T7, 48, 58

and 60. Peak-modal-velocity curves for this case are shown in Figures 62, 68,

74, 75, and 80 through 83.

Since analytical and experimental results indicated the possibility of a

waveform existing with a sharply decaying pressure spike at the leading edge,

an exponentially decaying pulse was selected for investigation as one of the

shapes approximating this form. In order to investigate the effect on the

response of variation of shell thickness, medium modulus, the pulse length, an

exponential form was selected which would give the same general waveshape

regardless of pulse length of the forcing function. To satisfy this condition,

the pulse selected was of the form

P a P0 (l + , " T) (16)

A decay factor of A = 5/1 guarantees that the tail of the wave will always be

within approximately 1/2 of P0  A aveahape of this form was selected because

it represented the superposition of an exponentialy decaying spike on a

6I
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rectangular pulse with-an initial pressure of twice that of the pure rectangular

pulse but decaying to the rectangular pulse pressure at the tail of the pulse.

Although detailed comparison of the influence of the waveshape on response

will be considered in a later section of this report, it should be noted here

that there is a great deal of similarity between the response curves for the

rectangular pressure pulse and the exponentially decaying pulse. For this

reason, the discussion of variation in response with variation in parameters

will deal only with the influence of pulse length where it produces a signifi-

cantly different result than that obtained with the rectangular pulse.

In the zeroeth mode, for relatively long pulses, the absolute value of

the peak positive and negative displacements decrease with increasing shell

thickness. In all other modes where comparison is possible, the absolute value

of peak displacements increase with increasing shell thickness. In the first

and higher modes, the maximum displacement varies linearly with the logarithm of

the shell thickness. In the zeroeth mode, the variation of the response is

nearly inversely proportional-to the logarithm of the shell thickness.

A general characteristic of the peak-displacement-response curves for the

response to an exponentially decaying wave is that the peak positive values do-------

not appehr to have a maxi=um value as a function of pulse length. That is, for

all modes, the peak positive displacement values, regardless of shell thickness

or medium modulus, appear to be gradually increasing with pulse length. This

cannot continue indefinitely since, in 'the limit of very long pulse lengths,

the exponentially decaying pulse approaches the step pulse of strength 2 P.O

Thus, a limiting factor on the peak positive displacement response of twice
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that of the unit-step pulse response will exist for these curves. The pulse

lengths for an exponentially decaying wave would have to be quite a bit larger

than those for which data were obtained before this limit would be reached.

In the zeroeth mode, changes in the medium modulus do not produce

pronounced effects. The phenomenon of the overdamped shell-medium system

does not seem to appear in Figure 34. Apparently, the higher pressures of

the exponentially decaying wave are sufficient to ensure that the dynamic

displacement response of the shell will always exceed the static displacement.

However, it may be observed that, for the low-modulus medium, the peak-negative

values of the response curves of Figure 34 are considerably less than those of

the high-modulus medium. In fact, for the thicker shells, which for the

rectangular pulse were found to be overdamped, the peak-negative response is

negligible, indicating that these shells return to their equilibrium position

after-passage of the wave with no oscillatory motion thereafter. For the

higher-modulus medium, however, observe that there is a notable value of the

peak-negative response for all shell thicknesses, especj lly the thinner ones.

In the variation of the response with increasing m ium modulus for the

zeroeth mode, note that the response appears to become , re sluggish with in-

creasing modulus. Tha. is, the increase in peak positive displacement requires

pulses of greater length in the high-modulus medium than in'the low-modulus one

to obtain the same displacement value's.

In the higher modes, it can be seen that peak-displacement values appear

to be inversely proportional to the modulus of the medium. In the second mode,

this appears to be true for all shell thicknesses. In the first mode, some
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minor variation from inverse proportionality is experienced as shell thickness

increases, but for thin shells these minor variations do not exist. In the

higher modes, for the cases where conparison is possible, the relationship

- seems to- be approximately valid and gives a fair estimate -of the smali-values...........
of the mximum displacements which would be expected under such conditions.

In the case of the peak-velocity-response curves, it may be observed

that increasing the shell thickness for a given medium causes the absoluti

value of peak positive and negative velocities to increase. This appears to be

true of the peak positive and negative velocity in all modec where it is

observable. The variation in peak positive velocity as a function of shell

thickness is proportional to the logarithm of the shell thickness. Peak-negative

velocities are subject to a sort of psuedo-resonance condition where the negative

response is strongly .ugmented at certain pulse lengths.

There is no apparent peak-positive value, of the velocity obtained in any

mode investigated. All of the velocities increase with increasing pulse length.

If the pulse-length curve were extended the peak-positive velocity curves would

approach the peak-positive velocity associated with a step pulse of twics. the

strength. But for the step pulse, doubling the strength simply doubles the

values of the displacements and velocities obtained in the response. Hence, in

the limit of long pulse lengths, the peak-positive velocities of the shell

obtained with the exponentially decaying pulse must approach a value equal.

to twice that obtained for the step pulse.

It should also be noted that increasing the value of the soil modulus

causes a decrease in the shell velocities. In the first and second modes, the
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peak positive and negative velocities are inversely proportional to the modulus

of the medium.

4.4 Summary of Shell Response to Step, Rectangular and Exponentially-Decaying

Pulses

Results discussed in preceding subsections of Section 4 are summarized

in this section. Note that displacements and velocities are compared in this

subsection, whereas most of the preceding discussion is based on the comparison

of the nondimensional quantities plotted in the figures at the end of Section Z.

4.4.1 Zeroeth Mode

Peak positive and negative displacements decrease with increasing shell

thicknesses. The displacement-time history has the appearance of an under-

critically-damped spring-mass system for thin shells and high modulus soils.

Motions become more sluggish, resembling an over-critically-damped spring-mass

system for thick shells and low modulus soils.

4.4.2 First Mode (Rigid Body Displacement

The shell rapidly accelerates to the particle velocity associated with the

stress wave in the free field. Total displacement is substantially the same

as the free field.

4.4.3 Second and Higher Modes (Bending Modes)

Peak displacement is greatest for the lowest modulus soils. Peak

displacement of the second mode is practically independent of shell thickness.

Displacement decreases rapidly with increasing modal number.

69



4.5 General Response to Change in Shell and Medium Properties for Other Waveshapes

There is little further to be gained by separate analysis of the influence

of changes in shell and medium parameters on the maxim 17 shell response for the

remaining waveshapes. Examination of the response cuves -will show- that a pattern

has been established which can be generalized for all cases.

In general, the zeroeth-mode peak positive and negative response is

characterized by a decrease in absolute value of the displacement with increas-

ing shell thickness for the long pulse lengths. For short lengths, a

transition point occurs and the opposite effect may be observed with increasing

shell thickness producing increased peak-positive responses. The 'most marked

effect which change of medium modulus has on zeroeth-mode response is the change

in the position of the transition point in displacement response with shell

thickness. For the low-modulus medium the transition point occurs at pulse

lengths of approximately A = 5. "For the high-modulus medium, the shefl response

appears to be more sluggish and the transition occurs at values of the pulse

length of about 1 = 10.

Another notable effect of variation in the medium modulus is the character-

istically overdamped response for the low-modulus medium and the thicker shells.

Only a relatively minor variation occurs in the actual value of the peak positive

and negative zeroeth-mode displacements with change in soil modulus when compared

with the effect which this parameter has on displacement in other modes. It

should also be noted that for pulse shapes (which have only a positive phase as

opposed to waveshapes which have both positive and negative phases), the peak-

negative response for the shell experiences no transition point in the effect
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of shell thickness as do the peak positive responses. However, when waveshapes

such as the sine or modified sine are used, the zeroeth-mode peak negative

responses are nearly identical to those of the peak-positive responses.

The rigid-body-positive response is basically identical in form for all

waveshapes. In general, the shell response increases linearly in magnitude

with increasing wave length. Shell response may be considered, for all

practical purposes, as varying inversely with modulus of the medium.

The second mode is characterized more by values of the peak-negative

response than that of the peak positive. The absolute values of both peak-

positive and peak-negative response increases with increasing shell thickness.

As with the first mode, both values appear to be inversely proportional to the

modulus of the medium. The effect of changes in wavelength upon the response

can most properly be discussed later as part of the consideration of the effect

of waveform on shell response.

Where observations are possible with the higher modes (n = 3 and 4), it

appears that absolute values of the peak-positive and peak-negative displace-

ments increase with increasing shell thickness. Again, the response of the

shell in the third mode seems to be inversely proportional to the soil modulus.

As far as modal velocities are concerned, the absolute values of the peak-

positive and peak-negative responses are seen to increase with increasing shell

thickness in all modes. Although they also appear to decrease with increasing

soil modulus, an inverse proportionality relationship with soil modulus again

appears to hold reliably only in the first and second modes. Some indication

exists that the relationship-may hold for the higher modes as well, but it
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cannot be completely verified in all cases and existing data are rather slim

to give a definite answer to this question.

4.6 Influence of Variations in Waveform on Response for Given Medium and

Shell Properties

In considering the influence of variations in waveform on shell resporse,

the exponentially decaying pulse must be considered as a special case. Peak.

preszures associated with-the-exponentially decaying-pulse-were permitted -o -

vary. Thus, it is not possible to compare directly the numerical values o4he

displacements obtained with the exponentially decaying pulse with those obtained

with other shapes where peak pressures were uniformly normalized. Therefore,

the exponentially decaying pulse will be discussed separately following the

general comparison of the other waveshapes. The general waveshape comparison

will be conducted by consideration of the response in the several separate

* modes individually. Wide variations in peak-response curves make it impossile

to generalize a single description of waveshape effects which would satisfy

the conditions in all modes. In the following modal analysis, the influen e

of waveshape displacement and velocity will also be considered separately.

--k-6ThIZeroeth-Mode-Response -- ***

Zeroeth mode response to variation in pulse and waveshape can best be

analyzed by dividing the shape into two categories;. those with positive phases

only (pulses), and those with botb positive and negative phases (waves). The

first group includes the rectangular pulse, the half-sine, and the haversine.

The rectangular-pulse-positive-and negative-response curves represent upper

and lower bounds for all the pulses with the exception of the exponentially
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decaying pulse. In all these cases, maximum shell response attains or is

slightly greater than the static-displacement response. In the transition

from rectangular to half-eine pulse, a decrease in the maximum response of the

shell is experienced which is less than 5% of the rectangular-pulse maximum

displacement. The response, however, is more sluggish in the half-sine case,

requiring somewhat longer pulse lengths to achieve the maximum-response values.

In going from half-sine to haversine shape, there is a negligible change in

appearance of the zeroeth-mode-peak-positive-displacement-response curves.

The influence of shape on the zeroetb-mode velocities is more apparent

than it is on displacements, but many of the same conclusions are applicable.

The rectangular-pulse-peak-response curves represent an upper bound for the

maximum velocity of all the pulses. In fact, the rectangular-pulse-peak-

response curves very.nearly bound cases of both pulses and. waves.

In the transition from rectangular to half-sine pulse input, the half-sine-

peak-positive-velocity responses approach those of the rectangular pulse only

for very short pulse lengths. The influence of pulse length on peak-positive-

and negative-velocity response for the half-sine shape is very pronounced.

As the wavelength increases, the peak-positive-and peak-negative-velocity

responses decrease rapidly in absolute magnitude. This is readily explainable

in that at very short pulse lengths, a half-sine pulse of unit amplitude and

rectangular pulse of unit-amplitude have practically identical impulses as well

as physical appearance. As the length of the half-sine pulse increases though,

the relative impulse which it provides when compared with the rectangular pulse

decreases sharply. This influence is more noticeable for the velocities of the
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shell than for the displacements, since displacements seem to be relatively in-

dependent of pulse length and shape in zeroeth mode. At least this displacement

independence appears to hold for the large pulse lengths where the velocity is

significantly affected. -For lengths greater than 1 = 20, the thick shell

(H =.08) velocities are less than 1/6 their value in the response to a,

rectangular pulse. At large lengths for the half-sine pulse, the velocities

become relatively independent of thickness approaching a constant value for

both peak positive and negative velocity curves, regardless of soil-modulus.--- -

This constant value is approximately 0.2.

0 Little change in peak velocities is attained in going from the sharp-edged

half-sine pulse to the haversine, with its more gradual change in derivatives.

In fact, the absolute value of the peak positive and negative velocities is

slightly greater for the haversine shape than the half-sine.

In transforming from the half-sine and haversine pulse shapes to the sine

and modified sine waves, the peak-positive values of the velocity are almost

unchanged. The peak-negative values of the velocity for small wavelengths,

.however, ar nearly doubled in absolute magnitude. For the sine-wave shapes,

the maximum peak-negative velocities are nearly 50% greater than the maximum-

peak-positive velocities at the same wavelengths. This large variation in

zeroeth-mode velocity as a result of waveshape is only true for very short

waVelengths. For wavelengths for I > 5 the half-sine and sine curves are

within 6% of one another for the low modulus medium. However, a rather wide

variation still exists at these wavelengths for the high-modulus medium and

continues to be larger than that for the low-modulus medium until a wavelength
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of about = 10 is reached. For longer wavelengths, the response for absolute

values of both peak positive and negative velocities again appears to approach

a constant value of 0.20 which is independent of wavelength, soil modulus, and

shell thickness. The variation in velocity obtained in going from the sharp-

edged sine-wave shape to the modified sine is negligible as may be seen in

Figure 66.

.4.6.2 Rigid-Body Response

Although the basic shape of the rigid-body-peas -displacement response

curves is unchanged with variation of waveshape, the magnitude and the slope

of the linear portion of the curve is strongly influenced by waveshape. One

obse. mes that in going from the rectangular pulse to the half-sine pulse, the

peak response is reduced by approximately 40%. In redu61ng the accelerative

forces by smoothing the pulse shape from half sine to haversine, the peak dis-

placements are reduced even more. The peak response for the haversine is

approximately 75% that of half sine.

The half-sine pulse and the sine wave, on the other hand, have essentially

identical peak-positive-displacement values. The reduction in maximum displace-

ments in going from the sine to the modified sine is not as marked as the

corresponding transition from half sine to haversine. Reductions of approxi-

mately 10-15% are obtained in this transition.

In the rigid-body-peak-velocity-response curves, the rectangular pulse

velocity curves represent the limiting values for all other cases. Velocities

equal to rectangular-pulse velocities are obtained for half-sine pulses of

sufficiently long pulse lengths. For shorter lengths however, the velocity
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response is more sluggish and peak-positive velocities remain behind the

rectangular-pulse velocities by as much as 50% at 1 = 2. Nearly equal values

are obtained for lengths of L > 10.

The velocity response to the haversine is essentially identical to the

rectangular-pulse velocity for wavelengths. > 10. For shorter wavelengths

however, the haversine velocities are found to. be even less than the half-sine

velocities by as much as 20%. These values are again obtained at wavelengths

of approximately 2 =2.

Response curves for the sine and madified-sine waves are essentiall

identical in forn to those of the half-sine and haversine pulses, respectively,

with the exception that the sine and modified sine have a set of minimum veloc-

ity curves which are essentially mirror images of the maximum-velocity curves

for the same material and medium properties.

4.6.3 Second Mode Response

The peak response curves of the second-mode displacement are strongly

dependent upon waveshape and shell thickness. Because there is a wide

variation in peak response under the influence of different waveshapes and

shell and medium properties, it is difficult to compare-the-response-in- general ----

terms.

The peak-displacement-responSe curves for the sine and modified sine

waveshapes are particularly complex in interrelationship of the parameters.

But it is for these waveshapes that the maximum values of the peak-displacement

response are obtained. Figures 53 through 56 present the peak-response curves

for the sine and modified-sine waveshapes. Maximum-response values are obtained
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for th. low-modulur soil from a bulbous response curve shown in Figure 53.

The maximum value of the response shown for the peak-positive displace.3.-nt at

-- 16 is the 1%rgect value of the response obtainable regardless of wavelength.

The peak-positive-response curve, for larger wavelengths than those shown will

follow a series of humps of deeaying amplitude. In Figure 53, the maximum-

peak-positive response is shown to have a value of approximately 12. This is

about twice the value of the maximum-peak-positive response for the rectangular

pulse in the second mode, and approximately 30% greater than the maximum-peak-

negative-response value for the rectangular pulse. The maximum value of the

peak-negative response for the sine and modified-sine wave is also very large

with a maximum value larger than either the maximum peak positive or negative

response of the rectangular pulse.

Peak response to the sine and modified-sine wave is much larger than that

due to other waveshapes. Peak-response values for all other shapes may be

bounded by the response to the rectangular pulse. In the case of the response

to the half-sine and haversine pulses, for relatively short wavelengths (I < 5)

the response curves follow closely those of the rectangular pulse. At longer

pulse lengths, the peak displacement responses, both positive and negative,

decrease rapidly to values much below the rectangular-pulse values.

For the peak-velocity-response curves, the second-mode response is much

more well behaved than was the case with the displacements. For the peak-

velocity-response curves, except for very small values of , maximum-response

values for the rectangular pulse exceed the response values of all other wave

and pulse shapes. In general, the peak positive and negative response curves

I
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are nearly symmetric. However, for the case of thick shells and the low-modulus

medium, the peak-negative-velocity response curves exceed the peak-positive

values for nearly all shapes. In particular, for the sine and modified-sine

shapes, the maximum peak-negative-velocity response (at 1g 1.5) can be seen

to be slightly greater than maximum peak negative response of the rectangular

pulse. For these short lengths, the maximum value of the sine and modified sine

are almost the same and exceed the maximum response of the rectangular pulse by

-- approximatelyF 30%. -As the pulse lengths increase, > 2, the peak response,

both positive and negative, for all shapes other than rectangular pulse, de-

creases very rapidly. Thus, in the case of the second-mode velocities, the

assumption that the incoming wave is rectangular leads to maximum response

values.

4.6.4 Higher-Mode Rcsponse

Higher-mode displacement response is shown as a function of waveshape in

Figures 57 through 60. In the range of 0 < I < 1, the displacement has an

extremely rapid increase with I in its peak-positive values. For all greater

lengths, displacement remains constant. The ctirves for peak negative velocity

for the third-mode response to the rectangular pulse are -quite-unusual since.

they are practically mirror images of the maximum displacement curves.

The effect of changes in waveshape on the displacement is shown graphically

for the thickness H = .01 in Figure 58. At a glance, one can o, :'ve that the

peak-positive-displacement response for half sine, sine, haversine, and modified

sine are practically identical. The peak positive values associated with these

curves are 12%to 15% lower than the rectangular-pulse value. Values for all
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shapes except the rectangular pulse are recorded only for 0 < I < 5. It can

be seen however that for all waveshapes the maximum values decrease sharply for

I > 2. Since the waves decay rapidly, it was not felt necessary to obtain da-

beyond the limits shown.

Similar results can be seen for the peak-negative-displacement portion of

the response curves with only two basic changes. First, the sine and modified-

sine peak-negative displanements exceed all others for the third mode. Their

zmaximum values of displacement are nearly 4O% larger than the largest peak-

rectangular-pulse displacements.

The unique form of the rectangular-pulse displacement in the fourth mode

(see Figure 84) produces some unusual maximum-displacement curves. As indicated

in Figure 59, the rectangular-pulse-peak-displacement curves have their absolute

maxima on the negative side of the curve for very small values of the pulse

length, .5 < A < 2. For these short lengths, valuespof the peak displacement

approximately25% to 35% greater than the long-pulse-length-peak-displacement

values may be obtained. For all lengths greater than I > 2, the maximum dis-

placements become constant and are of equal absolute Value for both peak-positive

and peak-negative-response curves.

In Figure 60, the effect of alteration of waveform can be seen for the

thin-shell case. It can be seen that maximum values of peak displacement are

obtained at very short wavelengths. The amplitudes of peak-positive and peak-

negative response for the half sine and haversine are sharply reduced and fall

below the long-pulse-length values of the rectangular pulse. For long pulse

lengths, it appears that half-sine and haversine fourth-mode influence would
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soon become negligible. However, for the sine and modified-sine response curves,

the short-pulse-length maximum values exceed sliE'htly (by only about 10%) those

j of the rectangular pulse. Again, for long waves, the sine and modified-sine

A ........peak-displacement response values decrease rapidly-so that-at 7-=5, their value

is no greater than that of the half-sine and haversine pulses.

Maximum higher-mode velocity profiles for various waveshapes are shown in

Figures 80 through 83. Following the pattern of the third and fourth-mode dis-

placements, the maximum values of velocity are those associated with peak-

negative velocities and short pulse lengths. Short pulse length peak-negative

veiocities as much as 85% greater than the long pulse length rectangular-pulse-

peal: positive velocities are obtained for the rectangular pulse and sine and

modified-sine waves. In the case of all waves and pulses except the rectangular

and exponential pulses, the velocity amplitude dfcreases rapidly toward what

appears to be negligible values for long wavelengths.

The same general remarks are true about fourth-mode velocity response.

Maximum peak-positive velocities are obtained at very short wavelengths,

£ <Z 2. At these wavelengths, the sine and modified-sine have peak positive___

velocities approximately 85% greater than the long rectangular-pulse velocity.

But as was true with the third mode, the responses decay rapidly with increasing

pulse lengths for all shapes other than the rectangular and exponential pulses.

So that at wavelengths greater than I = 5, the fourth mode velocity response to

any waveshape other than these becomes negligible.
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4.6.5 Exponentially Decaying Pulse

The results of more extensive investigation of the effect of decay rate

and peak-pressure value on the response to the exponentially decaying pulse

are shown in Figures 85 and 86. In Figure 85, the effect of varying the decay ---

rate of the basic pulse shape on thc zeroeth-mode response is shown. For this

6
study, the parameters chosen were H = .01, B - .4 x 10 psi, I = 5. For very

small values of p, the displacement approaches a value which-would be somewhat

gerater than 2. This value is the anticipated 2 P rectangular-wave-response0

limit. As p increases, the maximum displacement decreases .very rapidly. In

the limiting case of very large , the maximum displacement is 1.1, which cor-

responds with the value for the rectangular pulse of strength P o For all

values of the decay rate greater than 1.5, the maximum displacement for the

exponentially decaying pulse is less than 5% greater than .the rectangular-pulse

displacement of strength P . For decay rates greater than = 2, the difference

in response is negligible. Therefore, as the spike becomes only moderately sharp_,

its influence on the displacement response is greatly reduced.

In Figure 86, the results of an investigation to determine the effect of

varying the peak value of the pressure while maintaining the same decay rate

for two given pulse lengths ( 1 = , 10) are shown. The pressure-time relation-

ship for this case is defined by

P = P+ (Pi - Po) e" ,(17)

Although a significant increase in the maximum displacement response may be

observed as the peak pressure increases, particularly as the pulse length
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increases, it is important to note that for neither of the two pulse lengths

does the maximum response increase as rapidly as the peak pressure. Although

the slope of the curve appears to be increasing as the peak pressure advances,

the effect of a mildly sharper spike would greatly reduce the effect of the

incrcased pressure.

In general, it may be concluded that the superposed spike may be ignored if

the decay rate is large. For spikes in which the decay rate is not large (cr for

large pulse lengths) the effect on the maximum displacement may not be negligible.

However, the maximum displacement is bounded by the rectangular-pulse displace-

ment at the magnitude of the peak pressure of the spike and an exponential fit

for the response between upper bound and established values would appear to

give a good estimate of unknown maximum-displacement values.

In the case of the peak-valocity-response curves, the exponentially decaying

pulse leads to the same general results as for the displacement. That is, the

response lies somewhere between the response to a rectangular pulse of strength

P and one of strength 2 P The exact value of the peak velocity response
0 0

depends upon the length of the pulse. If the decay parameters were varied, one

would anticipate that the same results would be obtained for the effect of

variation in decay parameters and peak-pressure or velocity response as were

obtained for the peak displacement curve, although no data were generated to

validate the theory. That is, for sharply decaying exponential pulses, the

velocity would approach that of the rectangular pulse of strength P . On the0

other hand, increasing the peak pressure while maintaining the same decay rate

would gradually ;increase shell velocity. As with the displacements, it is
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possible that the superposition of a decaying spiked pulse may significantly

alter maxlmum-velocity response. In general, it may be anticipated that for a

sharply decaying spike, regardless of peak pressure, the effect of the spike

can be ignored. If the decay rate is more gradual, or the wavelength very long,

then the influence will be felt. Its effect may be estimated by using the

limiting values corresponding to the maximum velocities of rectangular pulses

having maximum and minimum pressure values of the pulse and exponentially

interpolating fcr peak responses between these values as function of pulse

length and decay parameters.

4.7 Ranking of Parameters

To correctly rank the site, weapon, and structure-medium interaction

parameters which influence structural interior motion in the order of their

physical importance presents a difficult problem. The difficulty is caused

primarily by the nature of the modal analysis conducted for this presentation.

When the modal results for dynamic displacements and velocities of the shell

are considered individually, it can be seen that the importance of the para-

meters may be significantly different in one mode than in another. To help

resolve this problem, the modal responses have been ranked in the 'order of

their physical importance". Since the response amplitudes in certain modes

are much greater than they are in others, this krowledge of the maximum-

response amplitudes in various modes is used to weight the parameter rank-

ings within each mode.

The maximum displacement and velocity responses to a rectangular pulse,

for various values of B and H, are shown in the table which follows.
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MAXIKM DISPLACEMEMT AND VELOCITY RESPONSES FOR VARIOUS MODES

Mode Number 0 1 2 3 4

Maximum Displacement 1.35 9.0 2.1 .88

Maximum Velocity 1.2 7.7 5.5 2.9 2.1

This table illustrates that, in terms of physical importance, parameters

affecting the displacement must be heavily weighed by the first or rigid body

mode of motion. The velocity response, on the other hand, is influenced to

relatively the same extent by all modes. Since this is the case, and since the

relative importance to the design of displacement vs. velocity depends on the

specific circumstances of the design problem, ranking of parameters for the

displacement and velocity will be presented separately. The ranking will

consider the following parameters as controlling the structural response:

the weapon parameters of peak pressure, wave shape and wavelength; the site

parameter of the soil modulus; and the structure-medium interaction parameters

of the shell thickness and the density ratio of shell to medium.

4.7.1 Ranking of Parameters Affecting Displacements

In ranking the displacement-response parameters, it is immediately

evident that the parameter of greatest importance must be the peak pressure

associated with the incoming wave. The response in all modes is directly

proportional to this peak pressure.

Because of its pronounced effect on displacement in the first mode

(although not as universally important in all modes of displacement response)

*This value is directly proportional to the pulse length.
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the pulse length of the incoming wave must be considered the second most

important parameter. In the first mode, the displacement response of the shell

has beeh shown to be dirictly proportional to the length of the incoming

pressure pulse. In the second mode, the pulse length is one of the parameters

of lesser importance. In the zeroeth mode, the effect of pulse length on

response is similarly of small importance, since the displacement is nearly

constant over a wide range of pulse lengths in this mode. However, the pulse-

---length influence may be very important in the remaining modes, since large

variations in the displacement response take place with changes in pulse length.

It is the strong influence of the pulse length on the first mode, however,

which almost alone causes it to be second place. among the parameters affecting

displacement.

In third place, in the order of physical importance of the parameters

affecting the cisplacement of the shell, is the shell thickness. The shell

thickness has a very pronounced effect on the second and higher modes.

Fourth in the order of importance of parameters affecting shell displace-

ment is the soil modulus. In the all-important first mode, the response is

inversely proportional to the soil modulus. For the cases of thin and inter-

mediate shell thickness in the second mode, this relationship appears to be

true also. In the thick-shell case, the shell response is so intimately

connected with the wavelengtb and waveform that it is difficult to separate

the effect of the soil modulus from these other parameters. But, it is clear

that the soil modulus is important here also, as reductions in response of

nearly 95% of the maximum shell responses whicdh appear to be connected with the
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variation of the soil modulus are observable. The range of the soil modulus

6 6
of from .4 x 10 psi to 2 x 10 psi, includes a rather wide range of soil and

rock varieties and causes a reasonably large variation in displacement through-

out the material presented in this study. It should also be pointed out that

......the higher-mode~i Iacenmeh spons apears tobe related to the soil

modulus through an inverse proportionality relationship. Although this cannot

be substantiated in all cases for the higher modes, it appears to hold well

for relatively-long-pulse-length cases. Only in the zeroeth mode does the

inverse proportionality to soil modulus appear to break down. However, in this

mode, variations in response of up to 22.5% of the maximun values may be directly

attributed to the soil modulus.

The fifth parameter, in order of its physical importance, is the wave-

shape. Although relatively low in the parametric standings, the influence

of the waveshap6 on the displacement is still significant. In the first mode,

variations in waveshape produce reductions in response of from hO% to 53% of

maximum response values. In the second mode, the effect is even cre pro-

nounced. Reductions of up to 90% of maximum response are recogniz 0le simply

as a result of variation of the shape. In the higher modes and th zeroeth

mode, the influence of waveshape does not appear to be of such inportance.

Reductions of displacements in these modes range only from 35% to 50% of

maximum values.

The sixth and least important parameter in shell displacement is the

density ratio.
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In sunmmary, the parameters affecting displacement of the shell, in order

of their importance, are: (I) peak overpressure, (2) length of the pressure

pulse, (3) shell thickness, (4) soil modulus, (5) the shape of the incoming

pressure pulse, and (6) the density ratio of the shell to medium.

----4.7.2 Rankingof Parameters Affecting Velocities

Applying similar reasoning to the problems of the velocity response of the

shell) the most important single factor affecting the velocity is the peak

pressure. As in the case of the displacement respcnse, the velocity response

is directly proportional to the peak pressure of the incoming pulse.

Second in order of importance to the velocity response, is the shell

thickness parameter. In the second mode, the velocity response appears to be

nearly directly proportional to the shell thickness. Except for a few isolated

cases, this proportionality seems to hold true. Even where it does not appear

to fit exactly, i.e., the sine-wave thick-shelled case and the mc.ified-sine-

wave high-modulus case, it gives a very good approximation of the velocity

response. In the zeroeth mode, the velocity shows a 65% variation between the

maximum and minimum response as a function of shell thickness. In the higher

modes, insufficient data preclude specifying the exact relationship between

velocity and shell thickness, but from the remaining modes, this parameter can

be an important factor.

The third factor of influence to the velocity response is the soil modulus.

In the first and all higher modes, it has been shown that the velocity is in-

versely proportional to the soil modulus. Variations in response of up to 80%

of the maximum velocity response in each mode is caused by the soil modulus.
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In the first mode, the variation is limited to a reduction of 50% below the

maximum response values.

Ranked fourth in the velocity parameters, is the length of the incoming

pressure pulse. The lowering in importance of this parameter results from

its relative unimportance in the first and second-mode velocity response..

In the first-mode response, the velocity is essentially independent of pulse

length for relatively long pulse lengths. In the second mode, a reduction in

the maximum response values of from 35% to 50% results from the influence of

pulse length, in a relatively short wavelength range, 1 < 1 5. In the

higher modes and the zeroeth mode, this factor pays a more important role.

The velocity is reduced by factors of from 80% to 90% of the maximum velocity

response in these modes. However, the influence of the zeroethand higher

modes on the physical importance of the parameters is insufficient to increase

the importance of the role of the pulse length in determining velocity response

and, therefore, it must occupy the fourth position in the relative ranking.

The fifth position is occupied by the shape of the incoming wave.

Examination of the effect of changing the waveshape through the rather wide

variety of shapes examined for this study indicated that this parameter was

-of relatively- minor -importance-- t0 thespons eofthe hel7 -n the-first

and second modes, reductions in maximum velocities of no more than 23-33%

were observed to be caused by variations in waveshape. In the zeroeth mode,

an even narrower band of velocity reduction was noted, ranging from 15% to 17%.

In the higher modes, the effect was somewhat more pronounced, with reductions

of from 10% to 55% of maximum velocities noted.
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Once again' the least important parameter was the density ratio of the

shell to the medium. The density ratio variation of 25% produced a resulting

variation in velocity response of only 5%. This parameter, although difficult

to separate from the soil modulus in its effect on shell response, seems to

cause very . rligible changes in either the displacement or velocity response.

In slumnarizing the effects of the site, weapon, and structure-medium para-

meters on the velocity response, they may be ranked as: (1) peak-pressure,

(2) shell thickness, (3) soil modulus, (4) wavelengtn, (5) shape of the in-

coming pressure pulse, and (6) the density ratio of shell to medium.

It is interesting to note that there are several similarities between the

rankings of the displacements and velocity parameters. In first place, for

both cases the position of the peak pressure is insured by its direct pro-

portionality to both displacement and velocity. In fifth and sixth places

are found the waveshape of the incoming pulse and the density ratio of the

shell for both cases. It may be somewhat silprising to find that the shape of

the incoming pressure pulse should be one of the parameters with he least

importance in the response. However, that this should be the case is gratifying,

since it simplf'.es the problem of estimating the effect of unforeseen changes

in the waveform on the response of the shell.

4.8 Influence of Deviations in Parametric Values on Shell Response

It can clearly be seen that because of the direct relationship between

peak pressure and shell displacement or velocity response, a given deviation

from the anticipated pressure will change the value of the particular response

in the same proportion. This will be true in all cases except where the input
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waveshape is in the form of an exponentially decaying pulse. Under these

conditions, the percentage deviation in the response will be somewhat less

than the percentage deviation in the pressure, whatever the values of the

decay factor and wavelength associated with the decaying exponential are.

(Compare Figures 85 and 86.)

From the parameter ranking, it can be seen that even if the soil density

is known only within broad limits, or can be estimated only, any deviation

from an assumed average value would appear to have negligible influence on

the shell response. Thus, its effect can be safely ignored.

Similarly, it is quite probable that the exact form of the incoming wave

will not be known. Therefore, it is encouraging to note that variation.s from

the rectangular pulse response to practically any other form of wave at the

same pressure result in variation in displacement response no greater than

approximately 50%. For all practical purposes, the variations in velocity

resulting from a wrong choice of waveshape will be between 25% and 30%. If, on

the other hand, the actual waveshape is close to the design waveshapes, then

the deviation in response will be even less than the value indicated.

With regard to deviations from the assumed value of the boil modulus, or

alternatively, if the modulus is only known to within a given accuracy, then it

cat be seen from the response characteristics of the shell to the soil modulus

that a deviation A B would result in a change in the response given by the

factor - -

B

Of all the parameters mentioned here, the shell thickness is the only

parameter which would be completely within the control of the designer and
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builder of the protertive structure. However, if one considers an unforeseen

perturbation in shell thickness, it can be seen from the results of the studies

performed here that such a perturbation will result in a proportional change

in displacement and velocity. Thus, if the perturbation is small, its effect

is negligible.

Similarly, if the weapon detonation produces a pulse length which deviates

from the estimated value used in the design of the shock isolation system,

the displacement response will be changed proportionately. On the other hand,

as can be seen from velocity ranking parametric study and inspectio& of the

curves, it is very likely that change in pulse length will not alter the

velocity of the shell or, at most, cause some slight reduction in its value.

These parameters, as listed a'zd discussed above, for all practical

purposes, may be considered as independent variables in their effect upon shell

response. Thus, it is felt that they may be considered to be independent in

application, and their totality of effect obtained through superposition of the

estimated variation for each perturbing factor alone.
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SECTION 5

DESIGN METHODS FOR ESTIMATING STFJCTURE MOTION

IN DIRECTLY-TRANSMITTED REGION

The results of the analysis of the shell-medium interaction can now be

used to develop design methods for estimating interior motion of protective

structures subjected to direct ground shock from a nuclear detonation.

Inasmuch as it is not within the scope of this report to determine the

relative importance of tle displacement and velocity responses to the

designer of the shock-isolation equipment (since such relative importance

depends very strongly on particular circumstances), the procedure presented

here will be directed to developing design methods for estimating both

responses.

5.1 Selection of Pulse Shape

The underlying principle guiding the approach towards the devclopnent of

design methods has been the realization that the biggest unknowns in the whole

problem are the characteristics of the pressure pulse engulfing the structure.

The results of the ground-motion studies reported in Section 2 are, at best,,

reasonable estimates of the strength and shape of the pressure pulse. Since

only scant experimental data Rre available to verifythe _theoretical results,

the approach to the estimation of the structural motion must, of necessity,

be on the conservative side. Of all the pressure-pulse shapes considered in

this report (which represent a large number of possible attenuated-pulse

shapes), the one which yields the maximum structural response, arid thus the

most stringent requirements on the isolation system, must be chosen as rep-

resentative of the actual pulse impinging upon the buried structure.
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The results indicate that the pulse shape so chosen is the long-pulse-

length rectangular pulse. In addition, it. happens that the theoretical

results of Section 2 predict such a pulse shape, at least initially, and

this tends to lend credence to the choice. The results of Section 2 may

be used to estimate the length of the pulse as well as its strength for

any given structurallocation with respect to the point of- detonation..

The degree of conservatism involved in this choice is reasonable since

none of .the other pulse shapes yields a radically different structural

response. The shell response to all pulse shapes is of the same order of

magnitude and the rectangular pulse shape represents an upper limit to the

responses. All these reasons lead to the conclusion that in spite of the

apparent conservatism, this choice represents a rational and economical

approach to the shock-isolation problem.

5.2 Parametric Values

Since the level of pulse pressures considered in this study points to

the choice of steel as the structural material, it seems that the only para-

meter contrclled by the designer is the shell thickness ratio. All other

parameters affecting the response (the density ratio of shell to medium,

the medium modulus, and the pressure level) are determined by the geo-.

graphical location of the structure and its range from the blast.

However, since the design of the stncture will, in all probability, be

dictated by strength and stability considerations, rather than by interior

motion considerations, tue designer of the shock-isolation system for interior
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equilpent will be presented with specific values for the medium and pressure-

.pulse parameters and a given shell thickness as well. Therefore, it is clear

that the problem is not how to design the primary structure to minimize de-

leterious dynamic effects on interior equipment, but rather, given the values

of the various parameters governing the response, how to best estimate the

resultant structure motion so as to determine isolation requirements.

To this end, the results of the analysis presented in the previous sections

are directly applicable.

In the ensuing discussion, therefore, it is tacitly assumed that the

valxves of the various governing parameters are given a priori within certain

confidence limits.

5.3 Estimation of Response

A basic conclusion which emeiged from the analysis of the shell-medium

system is that, although the total shell displacement is not very different

from the medium displacement, the interior shell velocity may be substantially

different from the medium particle velocity. Thus, it is erroneous to use the

nedium motion as a direct in.ut in the shock-isolation design ini those cases

where velocity (and acceleration) is of impcrtance.

. The total displacement and velocity response at any location on the

:ircumference of the shell is made up of the contributions of all the modes.

?or certain applications to shock isolation, it may be convenient to dis-

;inguish between the rigid-body motion (n - 1) on one hand, and the elastic

iotion of the shell (n = 0, 2, 3, 4) on the other. As the name implies, the

7igid-body motion of the structure denotes the translation of the structure as
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a whole with respect to the surrounding medium, whereas the motion in all

other modes is of the nature of deformation of the shell akin from its un-

deformed position. Thus, in the former case' there is no change in the

relative position of points within the shell, while in the latter case

these changes are the essence of the motion. This distinction is relevant

only to those cases where the relative motion of points within the structure

is of importance.

In general, however, the total response at any point is considered in

the design of the shock-isolation equipment. Therefore, one must super-

impose the contribution of all modes. Since the reliability of the phase

differences among the modes given in the results cannot be considered in-

fallible, and since the contribution of each mode to the total motion at

any point depends on the particular azimuthal location of the point within

the structure, a reasonable estimate of the total maximum expected response

is given by the root-mean-square of the maxima of all modes. The numerical

results of Section 4 provide the necessary information for this purpose.

Results for other values of the parameters may be obtained either directly

from the curves by interpolation or by using Figures 87 through 90 or by

using the computer program given in Appendix A to generate additional

numerical results.

Besides maximum values, knowledge of the actual displacement and velocity

pulse shape transitted by the structure to its interior is also of direct im-

portance. It is evident fron the time histories of the structural response

presented in Section 4 that the shape of the displacement or velocity pulse
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transmitted by the structure, when subjected to the assumed input pressure

pulse, is far from being standard. Rather, it is strongly dependent on t'..,e

combination of the various parameters. The parametric ranking given in

Section 4 should provide a guide-line to the evaluation of the effects of

each parameter. In any event, it will be necessary to determine the motion

history either from the results given in this report or by using the appended

computer program. Thus, the combination of knowledge of the response maxima

and its history would provide the necessary inputs towards the shock-isolation-

system design.

5.4 Numerical Examples

To illustrate the method of using the results in the shock-isolation-

design process, two examples are presented. The values of the various

physical parameters were chosen so as to simulhte a realistic situation and

to make possible a direct application of the results given in this report.

Ground Zero

----- 14M Ft*'2000 kt.

Structure

Figure 91 Il=USTRATIC( OF S4PLZ PROLEM
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A circular cylindrical steel structure with a 25 foot diameter and a

shell thickness of 3 inches is buried at a depth of 2,000 feet. A nuclear

surface detonation of 10 MT yield is assumed to take place at a point having

a slant range of 3,000 feet from the structure. It is desired to estimate

the response of the interior of the structure due to the directly-transmitted

shock.

Step I - Medium Parameters

The following values, representing typical limestone, are assumed,

Pm = 160/g lb-sec2/ft 
4

c = 7600 ft/sec

Thus, the medium modulus is

B= mc2 :- 2.0 x 106 psi

The density ratio is

0 49 3.07

Pm 160

Step 2 - Shock Parameters

From Equation (5) obtain the pulse pressul, (note change to psi)

__ = i- Mil)(!01/3)(2000. )/3000 =2320 psi

From Equation (7) obtain upper and lower bounds to the pulse duration,

Atupper =L/2c = 3000./(2)(7600.) = .2 sec.

Atlower -.05 Wl/3 = (.05)(101/3) = .108 sec.

Assume, therefore,

At =.12 sec.
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Fron the definition of the pulse length obtain,,

x = ~ = (7600)(12)/12-5 73

The particle velocity-is

u P P = (2320)(144)g/(160)(7600)

= 9 ft/sec

Step 3 -Shell Parameters

The thicknmess ratio is

H h= .25 =.02R 12.5

The static displacement of' the shell is

q = PR/E S H = (2320)(12-5)(l-2)/(3)(10 7)(.02) =.58 inch

Step 4~ - Velocity Response

From Figure 24~i obtain

d(qc/qs)
Vo peak - .25

From Figure 26 obtain

V1 peak 4~

Fram Figure 28 obtain

V2 peak =*

From Figure 30 obtain

V3 peak =-*

From Figure 32 obtain

Vpeak .13
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Ucing the root-mean-square approach, the velocity due to the de-

orznational modes is

V elasti(.25)2 + (.3) 2 (.2)2 + (.13) 2]1/2 .4'5

Dimensionally, this becomes

Velastic = elastic qst /

-(. 4 )(.58)(760 )/(12'.5)(12) 13 ft/sec

The total velocity,. due to all modes, is

Vtotal V1 + elastic 4 -4 8

or

Vtotal = (.85)(.58)(7600),/(12.5)(12) =.25 ft/sec

Step 5 -Displacement Response

From Figure 87, obtain

Qo penk =1.25

From Figures 88 and 89 obtain

2l T = .8

~i ek=2. ( 2 + V (T- 2) (2) (.8) + (J.) (70) 29.6

From Figure 90 obtain

Q2 peak = *

From Figure 19 obtain

Q peak-

Q4 peak .0
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The displacement due to deformational modes becomes

Relastic 1.25)2 + (.3)2 + (.1)2 + (.03)2]1/2 = 1.29

Dimensionally, this becomes

Qelastic = (1.29)(.58) = .75 inch

The total displacement, including rigid-body mode, is

Qtotal = Q + Qelastic 29.6 + .75 = 30.4

or

Qtotal ( 30.4)(.58) 17.6 inches

It is evident that as far as the displacement response is concerned, the

major contribution is that of the rigid-body mode, whereas contributions to

the velocity response are made by all modes to relatively the same extent.

The medium particle velocity and displacement are 9 ft/sec and 13 inches.

respectively. An estimate of the total shell displacement based on the medium

displacemcnt may therefore be justified. However, :t is clear that a similar

estimate is erroneous for the velocity response.

It should be noted, however, that the rigid-body velocity and displace-

ment values given here should be considered as upper limits, th? values for

the medium being considered as alternatives. This question is discussed more

fully in Appendix B.

Step 6 - History

The velocity histories may be obtained using Figures ?4, 26, 28, 30 and

32. The displacement histories may be obtained using Figures 13, 15, 17 and
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19. The modal data thus obtained may then be approximately superposed,

depending on the pdrticular shell location.

As an illustration off how the problem may be solved when the parameter

values are beyond the limits off the graphs, consider the same geometrical

* conffiguration and weapon, but a diffferent medium.

Step I Medium Parameters

The ffollowing values are assumed,

-1=20/g 2/ftsec_____

c =3000 ft/sec

Thus, the medium modulus is

2 6
B =p c = 23 x 10 psi

The density ratio is

T20 40

Step 2 -Shock Parameters

From Equation (5) obtain the pulse pressure, (note change to psi)

=--(I.-45)(10 10)(1013(2o/3 oo3 =22 s

A t = L/2c =3000./(2)(3000.) = .5 sec.upper

a t lower = .05 W / (.05)(101/3) = .108 sec.

Assume, thereffore

Ait =.3 sec.
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From the definition of the pulse length obtain

z_ CAt= (3000.)(.3)/12.5 = 72-R R

Step 3 - Shell Parameters

The thickness ratio is

h .25 .O2
H R 12.5-

The static displacemen'z of the shell is

qst= PR/E sH = (23'20)(12"5)(12)/(3)(107)(.02) .58 inch

Step 4 - Velocity Response

From Figures 23 anI 24 extrapolate to obtain
d1(q/qs )

V i-re .8
1 peak dT

From Figure 89 obtain

V 1 peak = 3.5

From Figures 27 and*28 extrapolate to obtain

V3 peak = 2.0

From Figures29and 30 extrapolate to obtain

V3 peak = 1.6

From Figures 31 and 32 extrapolate to obtain

V4 peak = 1.0

Using the root-mean-sluare approach, the velocity due to the deformational

modes is

Velati c = [(.8)2 + (2.0)2 + (1.6)2 + (1.0)2]1/2 = 2.75
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ii ... . . . ... . . .. .. -. . ..... .-.--- .. . . .

fDinenslenally, this becomes

ej3.tic = Velastic qs"

= (2.75)(.58)(3o00.v/?,5)(12) -r ? 1t/sec

The c.:i wlocit, due to all r x'e is

V1 = V. + V 3.5 + 2.75 = 6.25. . . .. .. . . .. . e last ic . . .. .... . . .. .

or
tcta (6.25)(.58)(000.)

Step 5 - Displ.-ceient Response

From Figure 87 obtain

Qo peak = 1.0

From Figures 88 and 89 obtain

(QI) 7 = 2 7.5

QI peak 2 (QI) 2 + VI(T" 2) = (2)(7.5) + (3.5)(70) 245

From Figure 90 obtain

Q2 peak = 2.8

From Figures 18 and 19 extrapolate to obtain

3 peak = .6

Q4 peak -3

The displacement due to deformational modes becomes

eastic .[(10)2 (2.8)2 +.6)2 + (.3)2]1/2 = .5

Dimensionally, this becomes

Qelastic = (3.05)(.58) = 1.77 inch
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The total displacement, including rigid-body mode, is

total I elastic 24- 3.5 28

or

Qtotal (248 )(.58) =144 Inches
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TABLE I

TPICAL SOIL AND1 ROCK PROPERTIES 6 ' 3.

Approximate Comprezive
Soil orRock Approximate -Wave Velocity

Type Density -lb/ft
3  Range -ft/sec

Top soil, dry or
moist silty loam 100 -110 650 -2000

Sand -loose 100 -110 650 -2000

Sand -well comnacted 110 -120 2000 -4500

Saturated clay 120 3000

Sandstone -loose * 140 - 150 4500 - 6000

Sandstone well cemented 150 -160 6000 - locoo

Limestone -soft, 155 -160 4500 - 10000

Limestone - hard 160 6000 - 16000

Granite -fractured 16o - 165 7500 - 12000

Granite 169 12000 -18000
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APPE1NDIX A

DUHAMEL fI1TEGRAL COMPUTER PROGRAM

The response of a single-degree-of-freedcm system to an arbitrary

forcing function may be computed knowing the system response to a step pulse.

Each mode of a continuous system may be separately treated as such. Applying

Duhamel's integral to the modal response of the system;

Let A(t) = system response to a step pulse*

F(t) = arbitrary forcing function

x(t) = response of the system to F(t)

then
t

x(t) = F(O) A(t) + f A(t-r) dr
0

which, for numerical evaluation may be -written as

• T=t

x(t) = F(O) A(t) + Z 4FA

If F and A are evaluated at regular intervals of t then the above expression

is further reduced to

T=t
x(t) = F(O) A(t) + ZAF A(t-T)

A computer program has been written to evaluate this expression. Input

data are: At, the interval at which x(t) is to be evaluated. F(t), the values

of the forcing fkuction to be taken at the midpoint of regular inte-vals of At.

A(t), the values of the response to a unit .step pulse, to be taken at the mid-

point of regular interval; of. At. The latter two lists of data are to be ended

*Notation contained herein deviates fram that defined in the table of
notation ond is defined above.
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with 10 8, or any arbitrarily larger nunber as an indication of end of data.

Output data consists of tabulated values of T, F, A, and RESPONSE.

Following is a FORTRAN LISTING OF THE PROGRAM FOR THE IBM 1620 COMPUTER.

C DUHAMrL INTEGRAL RWK 10 A PRI L 64
DIMENSI ON r(200),A(200)

4 READ 7,oT
PR INT 10
0 0 1 -l ,200
READ 7 F(!)RIA ,-r (r (71-1.EO8)4,11,11

1 C ONT I NUE
11 Kr-1-I

oo 12 i1 200
READ 7 A(I)
Ir(A( I 5-1.E08)12,13,12

12 CONTINUE
13 KA-I "I

I r ( tA -Kr )14,14,15
14 K-KA

Go To 16
15 K-KF
16 TOT*.5

z.r (1)
oo 2 1-1,K
XIIZ*A( 

')

9 r'( I-1)-r(Y)r (t-l)
M-1-1

oo 3 J-1,0U"-1 -J,

3 X-X+(J)*A(L)
5 PRINT 8,Tr(e),A(I),x
2 TT+OT

GO TO 4
FORMAT r16.8)
rORMAT r8.3,r12.8, r12.8 r12.8)

10 f OR MAT (4X1HT9X1IHrl1Xl HA6X8H4 S PONSE)
E NO
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APPENDDC BV

TERMINAL VELOCITIES OF RIGID-BODY-MODE RESPONSE
(Notation is the same as in the main body of the
report. Equation numbers and figure nL-bers used
refer to the main body of the report.)

The limiting value of the rigid-body velocity can be determined directly

-..... from the exact equations of motion of the shell (Equation 14). This value
22

can be shown to be:

V _= 1lim " d q l ~ I ' P  2

d t (B-l)

Since the magnitude of the particle velocity behind the incomin wave is given

by P/p C, it can be seen that it is possible to obtain values of the terminal
m

velocity of the shell which exceed the magnitude of the particle velocity of

the free-field behind the incaming wave when 1 1. 'According to the

definition of n' it may be represented as

=2H (B-2)

Since, for a steel shell, a reasonable range of the parameter j is given by

<1< 4, it can be seen that as long as the thickness to radius ratio does

not exceed the value H = .1.25 the value of will be 1 is than lone and shell

terinal velocities in the rigid-body modes will exceed the magnitude of the

.particlevelocity. It is not considered likely that shel*. thickness-to-

radius ratios will very frequently exceed a value of .1. Moreover, such a value

of H is really outside the limits of thin-shell theory. Regardless, it is

apparent that for all cases investigated in this report, rigid-body terminal

velocities will exceed those of the medium.
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Mathematically, such a solution appears to be possible, but physically it

may be open to inme question. It seems highly unlikely that the terminal

*velocity of the rigid-body motion of the shell could possibly exceed the velocity

of the surrounding medium. In fact, it seems unlikely that the rigid-body

velocity of the shell could exceed the medium velocity for more than very short

.... periodsof _tmeunder_anycircumstances. It-is probable that the reason that

this occurs in this analysis is that such circumstances were not considered

likely during derivation of the equations Of motion.; Consequently, no terms

were included which would account for the drag of the shell in the- medium- in the-- -

case when the velocity of the shell exceeded the velocity of the medium. An

examination of the literature failed to reveal such an analysis for any solution

presently made to the cylinder'medium-interaction problem, in any type of medium.

It is felt that further study with the aim of including a drag-type force in

vhe analysis of the structure-medium interaction problem would be beneficial.
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