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SUMMARY 

The dynamic response of conventional and VTOL aircraft with vary- 
ing flight velocity is investigated.    It is assumed that the dynamic mo- 
tions of aircraft may be described by linear differential equations whose 
coefficients (stability derivatives) are functions of flight velocity, and 
therefore vary with time.    Primary emphasis is placed on the evaluation 
of the general nature of the vehicle response and its departure from 
frosen system (constant coefficients) characteristics. 

An approximate solution to linear differential equations with variable 
coefficients is presented, which,  roughly speaking, applies if the per- 
centage change of each of the characteristic roots per unit time is small 
compared to the spacing of the frozen roots on the complex plane.    This 
approximate solution is interpreted in terms of a distortion of the frozen 
locus of roots on the complex plane.    Variable coefficient effects may be 
rapidly estimated using this result. 

The properties of the solutions to linear differential equations with 
variable coefficients of significance to the problem are discussed.   Of 
particular importance is the difference in the apparent damping of the 
various degrees of freedom in accelerated flight. 

The short period motion of aircraft is examined in detail.    For sta- 
bility derivatives that vary linearly with velocity,  typical of conventional 
fixed-wing aircraft, the variations in the time histories of pitching 
velocity and vertical velocity appear as a distortion of the time scale of 
the frozen response.    The transients in angle of attack and normal ac- 
celeration will exhibit different damping characteristics.    For an air- 
craft that is stable in steady flight,  the angle of attack response may be 
unstable in decelerated flight, and the normal acceleration response may 
be unstable in accelerated'flight. 

The influence of other stability derivative variations on the short 
period motion and some examples of higher-order system dynamics are 
examined. 

Simplifying assumptions are used whenever possible,  such that the 
important features of the phenomena can be evaluated.    Specific, detailed 
analyses can be carried out by using the method presented. 
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CHAPTER I 

INTRODUCTION 

The classical approach to the prediction of the stability and control 
characteristics of aircraft is based on linearization of ':he differential 
equations of motion about a reference flight condition,  steady flight. 
Steady flight refers normally to constant flight velocity and attitude, al- 
though the analysis may be extended to such quasi-steady situations as 
constant rolling velocity.    The disturbed motion is then described by 
linear, constant coefficient differential equations.    The linearity of the 
equations follows from the assumption that the deviations of the vehicle 
from the reference condition are infinitesimal, and the constant coeffi- 
cient nature of the equations follows from the fact that the reference con- 
dition is steady, level flight.   The tremendous advantage of this simpli- 
fied mathematical model lies in the ability to obtain analytical solutions 
to the equations.   As a result, a great many general conclusions regard- 
ing the relationships between the physical parameters of the vehicle, the 
flight conditions, and the nature of the disturbed motion may be drawn. 
Insight is gained that would have been obtained only with great difficulty 
by dealing directly with the "exact" nonlinear differential equations, even 
using automatic computation equipment. 

Comparison of theory with experiment has proven this approach suc- 
cessful and applicable to the prediction of the response of aircraft to 
moderate control motions and other disturbances of such a magnitude to 
be of great practical value. 

An extension of the classical approach is necessary to investigate 
the pitching and heaving motion of & ballistic missile about a sero lift 
trajectory.    The differential equations describing this motion are 
linearised about the trajectory, in a similar fashion to the classical ap- 
proach.    Now, however, there are two factors that complicate the analy- 
sis.   The reference condition, i.e., the trajectory, is no longer steady, 
and, in general, the vehicle velocity and flight path angle are changing 
with time.    In addition,  since the flight path is no longer necessarily 
horizontal, the air density is not constant. 

The variation in these three quantities, with time, results in the 
description of the disturbed motion in terms of linear differential equa- 
tions with variable coefficients.    The analytical solution of these equa- 
tions is not as simple as the classical case, and approximate solutions 
must be resorted to,  in general.    However,  it is still possible to draw 



useful conclusions about the motion without dealing with iht complete non- 
linear equations. 

The effect of density variation would appear in stuc> .ng the dynamics 
of aircraft in climbing or diving steady flight and its importance would de- 
pend upon the flight speed of the airplane. 

With the development of vertical takeoff aircraft,  the ability to change 
flight velocity rapidly at slow flight speeds gives rise to similar novel 
questions in relation to the prediction of stability and response character- 
istics,  and to the extension of the classical theory to include these effects. 

In addition to the influence of the unsteady reference condition,  i. e. , 
changing flight velocity on the disturbed motion, two additional effects 
arise.    The first concerns the possible effects of nonsteady aerodynamics 
becoming more important due to low flight speeds,  and the second arises 
from the fact that a rapidly accelerating VTOI airplane at slow flight 
speeds will experience somewhat different flight conditions than encoun- 
tered in steady flight.    For example, a tilt-wing airplane accelerating 
rapidly from hover to forward flight will experience a wing tilt angle, 
velocity relationship different from steady flight at corresponding veloci- 
ties.    This effeci arises from the fact that the weight of the airplane is in 
part supported by propeller thrust.    This effect would not be significant 
in conventional airplane flight where the engine thrust is essentially hori- 
zontal so that the condition of level flight determines the relationship be- 
tween flight velocity and angle of attack. 

The investigation here is primarily concerned with the first ques- 
tion, which is:   What is the influence of nonsteady flight conditions on the 
dynamics of airplanes ?   Th^ latter questions are considered briefly; how- 
ever,  particularly in the case of the second effect,  more experimental 
data are needed to evaluate the importance of these effects. 

We wish, the.i,  to primarily study the dynamics of aircraft in non- 
steady flight wit1.! particular reference to VTOL aircraft, where it would 
be expected that the importance of nonsteady effects would be greatest 
for the following reasons: 

First,  the ability to generate large accelerations and decelerations 
along the iHght path at slow flight speeds would give rise to large per- 
centage changes in velocity in a comparatively short time. 

Second,   rather large changes in the nature of the disturbed motions 
at various steady flight conditions are obtained from the classical ap- 
proach. 
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The problem will be considered primarily with the view of obtaining 
exact or approximate analytical solutions to the problem such that gene- 
ral conclusions concerning the nature of these effects may be drawn. 

The introduction of the nonsteady reference condition, as mentioned, 
changes the mathematical model from linear constant coefficient differ- 
ential equations to linear variable coefficient equations and so we expect 
more difficulty in obtaining "exact" solutions to the problem. 

The particular questions we attempt to answer in this study are: 

1. What parameters are important in determining the departure of 
the description of the motion from the classical steady flight 
description ? 

2. What is the nature of the actual disturbed motion of the vehicle in 
nonsteady flight and how is it best described? 

3. Are there any unusual phenomena that may occur due to nonsteady 
flight that would not be foreseen on the basis of the simpler classi- 
cal approach at neighboring steady flight conditions ? 

The following plan, then, is followed with respect to the approach to 
this problem. 

First we discuss pertinent literature in the field,  in particular the 
analysis of missile dynamics,  which bears a close mathematical relation- 
ship to the problem under consideration. 

Then,  since we will be dealing with linear equations with variable co- 
efficients, we present a discussion of the nature of the solutions to these 
equations using as a reference point the characteristics of constant co- 
efficient equations.    Most of the classical aspects of the investigation of 
equations with variable coefficients deal with second order equations. 
Since in many problems associated with the disturbed motion of aircraft 
we must deal with differential equations of higher order,  a new method of 
approach to the approximate solution of higher order equations with vary- 
ing coefficients is presented. 

We then proceed directly to the problem at hand,  starting with the 
simplest case,  that of an airplane with conventional stability derivatives 
in nonsteady flight, and then characteristics typical of VTOL aircraft. 
The analysis of the motions is limited to the case of responses to initial 
conditions,  since it is considered that this problem should be well under- 
stood before proceeding to the more complex case of response tc control. 
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An attempt is made to provide a complete description of all aspects of the 
disturbed motion as influenced by nonsteady flight,   since this description 
is not found in the literature.    A physical description of the pertinent 
phenomena is given. 

The results are presented in nondimensional form suited to the prob- 
lem such that the importance of unsteady effects can be estimated from 
the nature of calculations made on the basis of the classical steady flight 
approach in the neighborhood of the unsteady flight conditions and the 
nature of the unsteady flight conditions. 

We will only consider briefly the nature of the unsteady reference 
motions,  and will not consider other problems,   such as possible diffi- 
culties in trimming the airplane that may also be of significance in ac- 
celerated flight.    That is,  we consider the counterpart of stick-fixed 
motion in unsteady flight. 

The emphasis of this study is to obtain an estimate of the primary 
factors influencing the phenomena of interest.    Simplifying assumptions 
are used whenever it is considered that they will not influence the basic 
nature of the results. 



CHAPTER II 

PREVIOUS INVESTIGATIONS ON RELATED STABILITY PROBLEMS 

There are three areas of research related to the problem under con- 
sideration.    The first is the direct problem of the effects of unsteady 
flight on the dynamics of aircraft (References 1 and 2).    Similar problems 
have been investigated with respect to aeroelastic systems (References 10, 
11,  and 21).    The second,  a related area which has received considerable 
attention in recent years,  is the analysis of the dynamic stability of mis- 
siles entering or leaving the atmosphere (References 3,4,5, 6, 7, 8, and 9). 
The third area relates directly to the mathematics involved in the prob- 
lem; that is,  the solution of linear differential equations with variable co- 
efficients.    The literature in this field is very large, and so we restrict 
the discussion to those results pertinent to our specific problem and do 
not attempt a comprehensive review of the subject.   A very complete 

i 
I 
f 
} bibliography of engineering literature on this subject is given in Refer 

ence 12. 

It should be noted at the outset that we will only consider coefficients 
that vary roughly in a monotonic fashion with time.   We will not consider 
equations with periodic coefficients,   since these are not typical of the 
variation of the coefficients of the differential equations describing the 
dynamic motions of an aircraft in unsteady flight. 

. Perhaps the most annoying aspect of equations with time varying co- 
efficients is that their solutions,  in general,  cannot be expressed analyti- 
cally in terms of simple functions (Reference 32).    Therefore,  if we wish 
to obtain results in an analytical form, we must resort to approximate 
methods.    The most powerful idea in relation to approximate solutions is 
that of an asymptotic solution (Reference 16); i. e. ,  the solution that be- 
comes valid as time,  the independent variable,  in some sense becomes 
very large (Reference 22).    This may be real time becoming large or 
some transformed independent variable becoming large.    Exactly what 
function of the independent variable must be large will depend upon the 

i nature of the coefficient variation.    As a simple example,  if the coeffi- 
cients of the differential equations are asymptotic to constants,  it might 

I be expected that the asymptotic solution would be the solution of the con- 
'i stant coefficient equation that results from neglecting the varying parts 

of the coefficients.    While we wish to consider differential equations with 
I more general coefficient variations than this,  in many instances it is 

possible to transform a given differential equation into a form where the 
I coefficients are asymptotic to constants.    Then with suitable restrictions 

1 
I 
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i on the varying part of the coefficients, an asymptotic solution will be 
valid (References 16 and 23). 

Also,  one finds in the physics literature an approximate solution to 
a second-order differential equation referred to as the WKBJ solution 
(References 12 and 20) or in some cases as the Liouville-Green approxi- 
mation (Reference 30),  after its original authors. 

This approximation is the asymptotic solution to a second-order dif- 
ferential equation with certain restrictions on the coefficients.    It has 
been rederived by many authors, particularly in the subject of our in- 
vestigation (References 2 and 3).    We will discuss this approach in some 
detail in Chapter III. 

The above results,   except in special cases, a-e applicable to second 
order equations, and there has been little investigation of higher order 
differential equations. 

An interesting approach to approximate solutions of second order 
equations with time varying coefficients using an analogue computer is 
given in Reference 28.     The authors consider approximating a time vary- 
ing system by an equivalent constant coefficient system.    The coefficients 
of the equivalent constant coefficient system are obtained by minimizing 
the mean square of the differences in the displacement response.    It was 
found that one cycle of the oscillation was necessary to obtain a reason- 
ably sensitive result.    The procedure worked satisfactorily for coeffi- 
cients varying linearly with time if the fractional changes in the coeffi- 
cients per unit time was restricted.    The range of coefficient variations 
studied can be approximated reasonably well by asymptotic solutions. 
This approach was limited to coefficients that varied by a factor of 4 in 
one initial cycle.    Faster variations did not give satisfactory results for 
reasons discussed later. 

For completeness,   these investigations are discussed in some detail 
in Chapter III. 

In relation to the specific problem of the dynamics of aircraft in un- 
steady flight,  the following papers are pertinent. 

In Reference 1 the longitudinal,   short period dynamic stability of an 
aircraft in accelerating and decelerating level flight has been studied. 
The author was primarily interested in developing stability criteria for 
the short period motion rather than integrating the differential equations. 
Essentially,  the second method of Liaponov (Reference 13) is applied to 
derive stability criteria for the angle of attack and pitching velocity 



motion.    The conclusions of this article are that a statically stable air- 
plane is also dynamically stable in the short period phase of the disturbed 
motion if the basic straight level flight is accelerated,  and,  for decelerat- 
ing flight,   that the stability improves with increase of flight speed and it 
gets worse when the absolute value of the acceleration is increasing,  lead- 
ing to the possibility of instability.    The stability criteria for deceleration 
given are: 

1       I      CL     +
CD 

1   dV    ,       a 
gldtl* cL 

iiiY    <._L(X)(c       +c      ) 
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These expressions are sufficient conditions for stability, but they are 
very conservative.    It is only necessary to require that: 

g 

dV 
dt 
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Some estimate is made of the difference in damping of the two variables, 
but no definite conclusions are drawn.    We will show in Chapter V that 
only the angle of attack response can be unstable when the airplane is 
stable,  and that the pitching velocity response is always  stable when the 
airplane is stable. 

The equations of motion employed in this reference are identical to 
those presented here, and thus are exactly integrable if the correct de- 
pendence of the stability derivatives on velocity is assumed.    The manner 
in which the stability derivatives are expressed in this reference implies 
that C       and C        are constant rather than being inversely proportional 

m m. 
q a 

to speed,  the usual variation for a conventional airplane (Reference 14). 

Reference 2 also evaluates the short period dynamic stability of an 
airplane in accelerating and decelerating level flight. For a second order 
differential equation, *he author derives the WKBJ solution (References 12 
and 20) and notes that it is an asymptotic solution. He then develops solu- 
tions by a similar approach for fourth-order, two-degree-of-freedom 
systems. The results are incorrect, however, due to the invalid assump- 
tion that each of the dependent variables is a linear combination of the 
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same functions of the dependent variable,  time.    This aspect of time- 
varying equations is discussed in Chapter III. 

The author discusses son-.c in* .resting concepts with regard to sta- 
bility criteria of systems in general,  and then applies the WKBJ approxi- 
mation to the short period motion,  considering angle of attack motion 

V with constant acceleration and deceleration.    A term — is neglected in the 

damping coefficient of the differential equation,   resulting in an error in 
the solution for angle of attack response.    The denominator term in equa- 
tion 4. 4 should be raised to the first power and not the one-half power. 
While the term neglected is small,  it is the same order as the other ef- 
fects present,   so to obtain consistent results this term should be retained. 
In the latter part of this chapter we consider this effect with respect to 
missile dynamics, where it may cause considerable confusion. 

An estimate is made of the magnitude of acceleration and decelera- 
tion that will result in a 10-percent change in the time to 1 / 2 amplitude 
of the angle of attack response.    It is concluded that the magnitude of the 
change for current aircraft is barely noticeable. 

Again, in this paper, approximate methods are used to treat the ex- 
actly integrable case of level accelerated and decelerated flight, as con- 
ventional stability derivatives are used. 

Reference 10 discusses in some detail the differences between the 
time histories of the displacement,  velocity,  and acceleration responses 
of a second order system with linearly varying coefficients.    As an ex- 
ample,  a second order differential equation with linearly varying coeffi- 
cients is solved approximately in terms of Bessel functions,  and asymp- 
totic expansions of the Bessel functions are used to obtain simple ex- 
pressions for the envelope of the displacement,  velocity, and accelera- 
tion responses.    Implications of the results on flutter testing under ac- 
celerated and decelerated conditions are discussed.    In particular,  the 
difference in growth rate of the displacement compared to the velocity 
and acceleration is noted. 

Reference 11 contains some interesting comments on time-varying 
systems and the problems associated with defining stability in a time- 
varying system.    A preliminary investigation of higher-order systems is 
made by assuming a specific coefficient variation that results in Euler's 
differential equation1".    There is also a rather inconclusive approach to 
the lateral motion of the airplane.    The conclusions of this article are 

1   dV that the acceleration effects depend on a dimensionless number, — -7- C, 
y*   dt 
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and that to obtain changes in a critical flutter speed,  the stiffness of the 
system must be varying,  and that variable damping does not alter a 
critical flutter speed. 

We have discussed research related to the influence of variable flight 
velocity on airplane dynamics, and now we describe some results con- 
cerned with the dynamic stability of missiles entering or leaving the at- 
mosphere. 

References 3, 4, 5, 6, 7, 8, and 9 are dynamic stability analyses of 
missiles.    We are primarily concerned with the assumptions and nature 
of the solutions, and not with the significance of the results as they relate 
to the design of missiles. 

Reference 7 considers a spinning missile, and is not of direct inter- 
est. 

References 3,4,5,6,8, and 9 evaluate the dynamic stability of a mis- 
sile entering or leaving the atmosphere.    Reference 6 considers a spin- 
ning missile as well as a nonspinning missile.    We will restrict our dis- 
cussion on Reference 6 to the nonspinning case only, as pertinent to the 
problem under study. 

The standard approach to the problem has been to separate the two- 
degree-of-freedom short-period motion from the trajectory equations 
and then to investigate the angle of attack time history.    References 3, 6, 
8, and 9 use identical angle of attack equations for a missile with no 
thrust.    Only the homogeneous solution of the equations is discussed. 
The stability derivatives for a missile are assumed to vary with flight 
velocity in a manner referred to in Chapter V as conventional airplane. 
In these references this variation is assumed to be valid for hypersonic 
flight. 

In Reference 3,  an expression for the envelope of the oscillatory 
motion is presented,  using the WKBJ approximation which is derived 
from an energy approach.    A complicated expression for the frequency 
is obtained by approximating the spring constant over small portions of 
a cycle.    As noted in Reference 9, and in Chapter III here,  this treat- 
ment of the frequency is an unnecessary refinement by comparison to the 
approximation for the amplitude of the motion.    Later in the paper,  the 
authors refer to the kinetic energy of the motion being constant.    This is 
not,  in general, true in a time-varying system as discussed in Appen- 
dix IV.    In addition,  the kinetic energy of a missile is not determined by 

I the mass times the square of the rate of change of angle of attack with 
time.    This paper does clearly indicate the differences in the time 

i 
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histories of angle of attack,   rate of change of angle of attack with time, 
and the second derivative of angle of attack with time. 

In Reference 6,  the solution to the angle of attack equation is ob- 
tained also by use of the WKBJ approximation.    A method of successive 
approximation is also presented to refine the solution.     The author of 
Reference 6 states that his results differ from References 3 and 8.    The 
difference between the results obtained in these three papers is due to the 
nature of the trajectory equation used in rearranging the expression for 
the angle of attack response as discussed at the end of this chapter.    The 
expression for the angle of attack response contained in Reference 6 con- 
tains an additional term,  due to the iterative procedure developed.    This 
term must be small by the nature of the iteration.    The author also pre- 
sents an approximate solution to a two-degree-of-freedom,  fourth-order 
system by using an extension of the WKBJ approach.    A special case is 
investigated where the equations of motion are symmetric,  and so the two 
variables must involve the same functions of time,   as distinguished from 
an arbitrary system such as that considered in Reference 2 where the 
variables,   in general, will involve different functions of time. 

References 8 and 9 present similar analyses for the angle of attack 
motion,  also studying in detail the motion and the importance of various 
terms.    The independent variable,   time,  is transformed to distance 
traveled (altitude), thus eliminating the dependence of the coefficients 
on velocity.    The coefficients of the transformed differential equations 
vary only due to density,  and are solved using Bessel functions.    There 
appears to be confusion in Reference 8, where the first derivative of 
angle of attack with respect to time is referred to as pitching velocity 
and the second derivative is referred to as angular acceleration.    A two- 
degree-of-freedom system is considered, and since the system is time 
varying,   the time history of pitching velocity with time will be different 
from the time history of the rate of change of angle of attack with time 
as discussed in Chapter V.    Reference 9 presents considerable discus- 
sion on the separation of the trajectory equations from the oscillatory 
equations,  arguing that the former terms are roughtly constants and that 
the latter are oscillatory terms,   so that each must be separately equal 
to zero.    This question is taken up in Chapter V. 

Reference 4 considers also the motion of a missile from launching. 
Body axes are used to derive the equations of motion.    Thrust is included 
in the equations of motion; air density and acceleration along the flight 
path are assumed constant.    The differential equation for angle of attack 
is investigated.      The author studies forced motion, as well as the un- 
forced motion.    The homogeneous angle of attack equation is equivalent 
to the equations discussed above.    The method of solution is to transform 
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the independent variable from time to distance traveled and then solutions 
are obtained in terms of Bessel functions of order ± 1/2; i. e. ,  the as- 
sumption of constant density results in a simple form for the solutions. 
The pitch angle response is then computed from the angle of attack re- 
sponse.    The forcfed analysis becomes quite lengthy.    Two sample re- 
sponses are presented,   but there is no discussion of the results.    Graphs 
of functions are presented to aid in evaluating the nonhomogeneous re- 
sponse. 

Reference 5 then sets out to show the equivalence of the differential 
equation for angle of attack presented in Reference 4 compared to those 
in References 3,6, 8, and 9,   since the method of derivation makes them 
appear slightly different.    The author arrives at the rather surprising and 
erroneous conclusion that different results are obtained depending on the 
axis system and the variables used.    This,   of course,  must be due to the 
fact that different assumptions were used in the derivation of the equa- 
tions.    One inconsistency is the fact that the wind axis equations from 
References 3, 6,8, and 9 are valid only when there is no thrust, while the 
equation given in Reference 4 is valid when thrust is present,   since body 
axes are employed.    The inconsistency appears when the coefficients in 
the differential equations are compared on the basis of high drag and low 
deceleration, a situation not physically possible without thrust.    This dif- 
ference is explained fully in Appendix II.    Reference 5 also notes that, 
using the equations of References 3,6,8, and 9, and transforming the in- 
dependent variable from time to distance traveled,   the equation of motion 
will be a constant coefficient equation if density is constant.    The nature 
of the amplitude of the angle of attack motion is discussed briefly. 

To summarize these papers we will discuss briefly the results.   The 
angle of attack equation presented in References 3,6,8, and 9 is: 

dta    V  L» m      mq '   /V dt    V     ma '   / 

This equation,  precisely speaking,  is restricted to level flight with no 
thrust, and small terms in the restoring force are neglected.    This is 
equation 13 in Reference 3,  using approximation 52,  equation 52,   in 

lx 
Reference 6, where C is included and C       = - (CT    + C_) — ; equa- 

m . m L D   b a a a 
tion 6 in Reference 9, with assumptions made later to reduce it to this 
form; and equation 8 in Reference 5.    Equation 16 of Reference 4 does not 
appear identical,   since thrust is included and density is assumed constant, 
but will reduce to equation II-l with the assumption of no thrust. 
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The nature of the angle of attack oscillations is determined by re- 
moving the damping term with the transformation 

ori = ae M (II-2) 

The contribution of this transformation to the restoring force term is 
neglected (see Chapter III),   such that the equation for ©i   is: 

— + [.CmaT]qa1=0 (11-3) 

Then solving this equation by the WKBJ method (Reference 20),  the ex- 
pression for the envelope of the angle of attack motion will be: 

C       Sb3 

m 
i/[cLo|-^-]ld 

a   = a   I i le , (II-4) 
e       o 1 

i    il 
/   r. bSA     4 

bSv • or since (Cm    -7-) is a constant, 

2 J ^o- m       "^Q   I    ^ v 
e Q-   - — e (II-5) 

el 

This is equation 61 in Reference 9,  equation 60 in Reference 6,  (the +1 
in the numerator appears due to the iteration used), and equation 54 in 
Reference 3.    To obtain the form given in Reference 9,  one must use the 
trajectory relationship, 

C    PS V3 

mV = = , 

which assumes that gravity is not important. 
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Integrating this relationship, we obtain 

t 

— = e (II-6) 

and therefore 

i^cD5.cLtt l^c^^ads 
a    - — e (II-7) c 1 

This is the result presented in Reference 8,   equation 30. 

Equation II-5 is easier to interpret,  does not depend on the trajectory 
equations, and is perhaps less confusing than II-7.    Note that the relation- 
ship used to obtain II-7 assumes that gravity is not important in deter- 
mining the trajectory,  as pointed out in Reference 6. 

Thus,  the basic conclusion of these studies is that the angle of attack 
envelope is influenced by the aerodynamic damping as well as the dynamic 
pressure variation with time.    It is concluded that even with no natural 
damping of the airframe,   the amplitude of the angle of attack will de- 
crease with time whenever the dynamic pressure is increasing with time. 
Or in other words,  whenever the spring constant is increasing with time. 

There is little consideration of the conditions necessary for applica- 
tion of approximate solutions (asymptotic solutions are not valid when the 
missile is at the "edge" of the atmosphere),  or how different variations 
in the stability derivatives with velocity will affect the results.    Also 
there is little discussion of the nature of the time histories of other 
variables of interest in the problem.    We shall consider these questions 
in detail. 
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CHAPTER m 

LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS 

The properties of the solutions of linear differential equations have 
been the subject of many investigations.    We have not attempted to review 
this large field in Chapter II,  and in this chapter we will only discuss 
those results pertinent to our particular problem.    Extensive bibliogra- 
phies are given in References 12 and 36.    The nature of the nonhomogene- 
ous (forced) solutions will not be considered.    Only homogeneous (transi- 
ent) solutions are discussed. 

We begin this chapter with a discussion of some general properties 
of the solutions to linear differential equations,  paying particular atten- 
tion to those properties that are a departure from the familiar properties 
Oi. constant coefficient differential equations.    We take this point of view 
because of the nature of the problem of interest.    We wish to consider the 
dynamic motions of an aircraft as it passes continuously through a series 
of flight conditions.    When it is in equilibrium flight at any one of these 
flight conditions,  its dynamic motions may be described by linear con- 
stant coefficient differential equations.    Thus,  we would expect that the 
form of the results in the unsteady case would be similar to the steady, 
constant coefficient case.    We would like to be able to state our results 
in terms of the deviations of the motions in unsteady flight from the 
classical steady flight results.    We consider some of the properties of 
the solutions to a second-order linear differential equation,  interpreting 
the results in physical terms. 

Since,   in the problem of interest, as in many engineering problems, 
we are faced with systems of a higher or ler than second,  in Chapter IV 
we develop a new method for the approximate solution of higher-order 
equations,  and a convenient way of interpreting the results. 

A.    General Considerations 

A linear second-order equation with variable coefficients may be 
written as 

^-4 +c(t)—•+k(t)x = 0. (III-l) 

where in terms of a mechanical analogy we may think of c(t) as a viscous 
damping term that varies with time, k(t) as a spring or restoring force 
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that varies with time,  and x as a displacement.    In the following we use 
this nomenclature,   referring to the coefficient of x as restoring force, 

dx 
and the coefficient of —r- as damping,   even though we may have no specific 

physical system in mind. 

Two transformations are useful in considering the nature of the solu- 
tions to equation III-l. 

The first is a transformation of the dependent variable that removes 
the terms proportional to velocity (damping term). 

jf cdn 
Let Bit) - x(t) e (III-2) 

The differential equation in terms of 6 is: 

M + W.ty'.^B-.O. (111-3, 

This transformation preserves the zeros of the original variable and 
c a 

adds two terms to the restoring force.    The first,  (y) ,  is the usual effect 
1 dc 

of damping on frequency,  and the second,  {•y~Tr)>  is new, arising from 
the time-varying nature of the damping. 

The transformation indicates that we may consider 

da6 

dta 
+ b(t) 0=0 (HI-4) 

as the canonical form of a second-order linear time-varying equation. 

A second transformation, applied to the independent variable,   re- 
sults in a constant restoring force term. 

Let s =J   k8 (n) dn . (III-5) 

Equation III-l becomes: 

dax   ,  .   c(t)    L 1    1   dkv dx n lv„,   4  ä+ (-?===+T T-rr) ^—+x = 0 (UI-6a 
dsa       /k(t)     2    f  dt' ds 

k2 
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1 or 

i!| H£ifl +   1     1     dk) ^ + x = o. (III-6b) 
ds3       /k(I)      2k(s)ds'ds 

f If we Apply the dependent variable transformation,  III-2,  to equa- 
f tion III-6b, denoting 

8 

f  C'Mdn 
and letting 6= x e , (III-2) 

jag a     dC* 
we obUin -^-r+U-U')    -^-)Ö=0. (III-8) 

ds3 d8 

Equation III-8 is of the form anticipated in Chapter II, where the only co- 
efficient in the differential equation is a constant plus a varying term. 

We may expect that if C' and its rate of change are sufficiently small 
compared to 1,  an approximate solution to the differential equation III-4 
may be obtained by neglecting the latter two terms in equation III-8. 
Equation III-8 becomes a constant coefficient equation, and is readily 
solved.    We anticipate our results and refer to equation III-7 as an ap- 
parent damping.    If this apparent damping is small,  it appears that we 
can find an approximate solution.    These implications will be investigated 
in detail in succeeding sections. 

The limitation of an approximate solution to lightly damped systems 
is a particularly interesting one.  since it indicates that many situations 
of practical interest can be studied using approximate methods; that is, 
cases on the boundary of stability and instability. 

Now,  let us consider some general properties of the solutions to 
equation III-4,  and then return to the question of approximate solutions. 

It is natural to think of equation III-4 in terms of the deviations of 
the behavior of its solutions when the restoring force is a function of 
time from the case where the restoring force is a constant and the solu- 
tions are well known and easily manipulated.    This viewpoint is particu- 
larly useful in relation to the physical problem of interest here. 
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Unfortunately,  the exact solutions of the equation III-4 when the re- 
storing force is some arbitrary function of time usually cannot be ex- 
pressed in terms of well-known functions,  or at least in terms of func- 
tions that can be easily manipulated and whose general behavior can be 
simply interpreted. 

The theorems of Sturm (Reference 16) are helpful in indicating that 
our intuition and knowledge of constant coefficient equations can be ex- 
tended to equations with varying coefficients,  and so we list them. here. 

If a solution has no more than one zero in an Interval,  it is said to be 
nonoscillatory. 

Given the differential equation III-4, 

e(to) = öi. 

il + b(t)e=o with 
dt2 

dÖ,    , 
dt ^ = aa 

(HI-4) 

The theorems of Sturm are: 

1. The zeros of two real linearly-distinct solutions of a differential 
equation of second order separate one another; i. e. ,  the zeros 
of all solutions of a given differential equation oscillate equally 
rapidly. 

2. A sufficient condition that the solution of the differential equa- 
tion III-4 should have at least mzeros in the interval (t0,   ti) is 

that b(t) = : 7r -    If b(t) is considered as the instantaneous 
(ti  - t0)a 

value of the frequency squared,  then the instantaneous period of 
^(t!   - t0) 

the motion must always be equal to or less than ; i. e. , 
m 

equal to or less than the constant period that would result in m 
zeros in the interval. 

3. If b(t) = 0 throughout an interval (t0,   ti ) the solutions of equa- 
tion III-4 are nonoscillatory in this interval; i. e. ,  if the restor- 
ing force gradient is negative,  the system does not oscillate. 

4. Given two differential equations, 
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öi (t0) = a! , 

iÜi. 
dt2 

+ bx ex ^ o with 

dt (tn)   =  0-8   . 

(III-9a) 

ea(t0) ^x , 

daea 

dt3 
+ ba 6a  = 0 with 

w-^-p" 

(III-9b) 

Also, 

and throughout the interval (t0,  ti ),  ba = bx . 

a. di and aa are nn both zero,  nor are ßi  and ßa.    This restriction 
eliminates the possibility of the trivial solution. 

b. If o-i ^   0,   then ßi   ^   0.    If 6^ (t) has m zeros in the interval 
t0 ^ t ^ti,  then 6a(t) has at least m zeros in the same interval, 
and the  i**1 zero of 6a(t) is less than the i^1 zero of ö1(t). 

From these theorems it may be seen that the following properties of 
solutions to linear variable coefficient equations are similar to the be- 
havior or solutions to linear constant coefficient equations: 

From 1,   roughly speaking, both solutions of a second-order differ- 
ential equation with oscillatory solutions have the same frequency. 

From 2,  the minimum value of the spring constant over an interval 
gives a lower limit on the number of zeros (frequency) in an interval. 

From 3, when the restoring force gradient is negative,  the system 
is nonoscillatory. 

From 4, as the average value of the restoring force gradient in- 
creases,  the number of zeros,  i.e. ,  the frequency,  increases.    In other 
words, b(t) still is roughly the square of an instantaneous frequency even 
when b(t) is varying. 

These similarities between constant coefficient and variable coeffi- 
cient equations result in comparison theorems (Reference 16). 
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The solutions of variable coefficient equations differ in one important 
respect from the solutions of constant coefficient equations that is of con- 
siderable significance relative to the dynamic characteristics of physical 
systems. 

Foi the homogeneous solution to a system of constant coefficient dif- 
ferential equations, all dependent variables and their derivatives may be 
expressed in terms of the same functions of time.    This is no longer true 
in a variable coefficient system1   • Ina single-degree-of-freedom 
system,   the dependent variable and its derivatives will,   in general,   ex- 
hibit different characteristics; e. g. ,  the amplitude of the displacement 
may decrease with time while the amplitude of the velocity may increase 
with time.    Ina multiple-degree-of-freedom system,  different variables 
may exhibit different characteristics; that is,  the amplitude of one vari- 
able may decrease with time while the amplitude of another variable may 
increase with time. 

These properties can be shown by the following considerations: 

Given the differential equations 

4^= aii (t) xi + aia (t) ^ - (IIHOa) 

-^ = aa! (t) xi + aaa (t) xa , (III-10b) 

the differential equations describing each variable are: 

d xa       ,^ai , dxa 
dt aai dt 

(-au  aaa + ax a aaj   + aaa  -aaa—M xa . (IIHla) 
aai 

d xi       .äia . dxi 

dta        aia dt 

(-an aaa + a.ia aai  + ku   -a1i-^i^)xi. (Ill-lib) 
aia 

Thus, the differential equations describing xi (t) and xa(t) are different, 
and since the solutions of each of these equations are unique, the solu- 
tions will be different.    The solutions depend upon the rate of change of 
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the coefficients with time, as well as their instantaneous values.    As the 
coefficients become constant, the equations become identical. 

Denoting Ill-lib as 

^-+A^-+Bx1 = 0. (111-12) 
dta dt 

we may determine the differential equation for -— by differentiation and 
substitution as: 

Therefore,  in general, -r— vill involve different functions of time than xx . 

Thus, in the study of the dynamics of systems described by time 
variable equations, we must investigate the nature of all variables.    The 
conventional concepts of stability as applied to constant coefficient sys- 
tems must be applied with care.    In a constant coefficient system,  where 
the stability of one variable ensures the stability of all variables and 
derivatives of the variables,  the characteristic equation of the constant 
coefficient system indicates directly the form of all variables and their 
derivatives.    This is no longer true in a time varying system. 

In a specific problem it is probably not necessary to ensure the sta- 
bility of all variables,  but only certain ones of concern; say in a piloted 
airplane,  those that are sensed by the pilot or that may cause structural 
damage if they exceed certain limits. 

B.    Some Well-Known Results 

We refer to those solutions readily available in analytic or tabular 
form.    Many functions have been investigated specifically because they 
are solutions to particular linear differential equations; Bessel functions, 
Mathieu functions,  the hypergeometric function,  to name a few.    We 
briefly investigate the nature of some solutions that are well known and 
readily available,  at least in tabular form.    Generally,   such tabular re- 
sults are available only for second-order equations.    For the differential 
equation 

dafl 
-^4+b(t)Ö= 0. (Ill-4) 
dta 
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a list of tables available for various simple forms of b(t) may be found in 
Reference 29. 

N 
Let us consider b(t) = t   ,   since we are primarily interested in mono- 

tonically varying coefficients.    Equation III-4 becomes 

dae       N 

dta 
+ t    Ö = 0. (111-14) 

Let us determine the nature of the solutions to equation 111-14 for various 
values of N. 

N = 0 

We have a constant coefficient equation, 

6= Ci cos (t + *). (111-15) 

N = -2 

We have Euler's equation^" and the solution may be found by assum- 
ing a solution of the form C t^, 

2+21 Z '   2 1 

6 = Ci t + Ca t (m-l6a) 

or 
1 
2 /T 

e=t     Cx cos (—In t+ ♦). (m-l6b) 

N = -4 

We have an exact solution, 

6 = t {Ca cos l{j- - i) + ♦]} . (UI-l?) 
o 

We note from III-l6a and 111-17 that the argument of the oscillating term 

is of a form that might be expected, i. e., j   b   ds ; however,  in addition, 
o 

we obtain an amplitude modification.    Note that in both these examples 
the amplitude of the response grows without limit as t ~* • even though 
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there is no velocity dependent term in the original equation.    This is the 
sort of time varying effect that we wish to consider in more detail. 

N any value 

The solution to equation 111-14 may be expressed in terms of Bessel 
functions for any power of N (Reference 18, page 147). 

_L _L 
0 =/t{Ci J (2p t2p) + Ca ND(2p t2p) } . (111-18) 

where J    is a Bessel function of the first kind and ND is a Bessel function 
of the second kind, and p =   _, I       . 

2m  +   1 
When p = j • where m is an integer, J   and N_ are expressible 

in a finite number of terms (Reference 17, page 69). 

If N = 1,  equation 111-14 is sometimes called Airy's equation (Refer- 
ence 19).    Also in Reference 19,  for - x ^ N s 2,  the solutions are re- 

ferred to as generalized Airy functions.   Airy functions are Bessel func- 
tions with a modified amplitude and argument.    Two linearly independent 
solutions of equation 111-14 for N - 1 are shown in Figure 1.    Both the dis- 
placement (0) and the velocity (ffz.) are shown.    Note that the displacement 

dt 
amplitude is decreasing with time, and the velocity amplitude is increas- 
ing with time.    The amplitude of the velocity response is influenced by 
the changing frequency with time.    The difference in the amplitude varia- 
tion with time of these two quantities points out one property of time 
variable equations which was discussed earlier. 

For N > 0,   the solutions of 111-14 will be qualitatively similar to 
Figure 1.    For N <0,  the displacement amplitude will increase and the 
frequency will decrease, as seen by inspection of equations III-l6b and 
111-17. 

Since Bessel functions appear in many engineering problems it is 
worthwhile to discuss qualitatively their general nature. 

The behavior of Bessel functions of the first and second kind for 
various orders and arguments can be readily visualized from relief maps 
(Reference 18,  pages 152 and 198). 

For a sufficiently large value of the argument,  Bessel functions are 
approximately lightly damped oscillations with constant frequency.   When 
the argument is greater than the value corresponding to the first zero, 
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this is a reasonably accurate description of the function.    As the order of 
the Bessel function is increased,  the argument at which the first zero 
occurs is increased.    Simple expressions are available in terms of asymp- 
totic expansions (Reference 18,  page 138).    As t "* * , 

2 {P ■ 2' 
J (t) m^ . (111-19) p 

:o8 {t - j(p +T)3 

Note the appearance of tne order p only as a phase shift. 

When p is an integer, we must express the two linearly independent 
solutions, as above,   in terms of Bessel functions of the first and second 
kind.    When p is not an integer, we may either use this form or J     (x) as 
the other solution. 

In some problems it may be convenient to use J- and ND,   since asymp« 
totically Jp and Np are 90° out of phase, while Jp and J      are not. 

Note that the behavior of the solutions to equation 111-14,  for small 
arguments,  is considerably modified by the presence of the additional fac- 

_L 
tor /t, which now makes the term /t N   (2p t^P) approach a constant as 
t ~*0 even though N(t) "*00   as t "• 0.    Figure 1 shows this behavior clearly. 

Bessel functions are solutions to a class of differential equations 
that represent a wide variety of physical problems, and we see that they 
enter into the problem considered here as they have into other related 
problems (References 4,9, and 10). 

Note that for the type of equation under consideration,  the argument 
of the Bessel function is not linearly proportional to the independent 
variable. 

C    Approximate Solutions 

We have discussed some well-known solutions and some general pro- 
perties of linear time varying differential equations.    Since these solu- 
tions are generally available in tabular and not analytical form and ap- 
plicable to specific coefficient variations with time, approximate results 
are of considerable assistance in providing insight into the nature of the 
solutions to time varying equations for engineering applications. 
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Approximate solutions to differential equations can be considered 
from two points of view.    We will take the one where the differential equa- 
tion is examined and approximate solutions are developed for specified re- 
strictions on the coefficients and their variations with time.    The alternate 
point of view, where we consider approximations to the coefficients of the 
differential equation such that the solution of the differential equation with 
approximate coefficients may be expressed in analytical form,  or at least 
is available in tabular form,  will not be discussed (References 11 and 29). 
These points of view are equivalent,   since the approximate solution ob- 
tained from the former approach will exactly satisfy a differential equa- 
tion with coefficients that are slightly different from the actual differential 
equation investigated. 

"We will discuss some approximate solutions to a second-order linear 
differential equation, as well as higher-order equations, and evaluate the 
conditions under which various approximate solutions are valid. 

1.      The Frozen Solution (Reference 27).    This solution is obtained 
from a constant coefficient differential equation based on the 
initial values of the coefficients of a variable coefficient differ- 
ential equation.    Specifically, for equation III-4, 

dfe 
dt3 

+ b(t) 8= 0, (III-4) 

over a time interval (ti ,  ts) the frozen solution is defined as the 
solution of: 

da6 
-—. +b(ti)e = 0. (111-20) 
dt 

This approximation would be expected to be valid when a solu- 
tion is desired over a time interval in which the fractional change 
of the restoring force is small.   A more exact estimate of the 
error is considered later. 

In multiple-degree-of-freedom systems,  different frozen 
solutions will result,  depending upon whether the frozen system 
approximation is made directly with the coupled differential equa- 
tions,  or with differential equations describing each variable 
separately.    Given a system described by coupled differential 
equations,  the differential equations describing each variable 
will contain additional terms, depending upon the rate of change 
of the coefficients.    These new terms arise in the process of 
eliminating variables. 
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For example,  for a system described by the two coupled dif- 
ferential equations 111-10,  the frozen system approximation is: 

-~ =all(t1) xx + axa^xa . (III-2la) 

-~ =aai(tl) ;.x +aaa(tx)xa . (Ill-21b) 

and therefore the frozen differential equations describing each 
variable are: 

-~r= (axx(ti) +aaa(t1)) ^- + 
dt3 dt 

(-aix(tx) aaa(tx)+ ax8(tx) aax(tx)) xx . (Ul-ZZa) 

J = (axi(tx) +aaa(tx))^rr + 
dta      '     ^ 

(-axx(tx)aa8(tx) + a^tx ) aax (tx )) xa . (Ul-ZZb) 

However,  if,  instead, we first eliminate variables and uncouple 
the differential equations 111-10 to obtain III-ll, and then make 
the frozen approximation, we obtain: 

daxx _ /a    /f v . ,.    It v . axa(tx) . dxx    . —r-= (axi(tx) + aaa(tx) +-—77-: ) -rr- + 
dt3 axaltx)     dt 

(-axx(tx)aa8(tx)+a1a{tx)aax(t1)+äxx(t1)-axX(tx)7iÄJ^4)xx, 

(IU-23a) 

<iaKa . .      /f » . .     tt v . äax(tx) .dxa 
—r- = (axx(tx ) + aaa(tx) +- 77~7)"^n~ + 

dt *•! ^i '     dt 

(-axx(tx)a83(tx)+ax8(tx)a8rftx)+a1x(t1)-aa8( i) f*1 !|l}) xa . a8x(tx) 

(m-23b) 
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where, in general, aia(ti ), äaiUi), ^^(tj), and a»(ti ) are not 
zero.    Thus equations III-22 differ from equations 111-23. 

For our purposes,   it is convenient to define the frozen solu- 
tion as that resulting from the former method.    Therefore,  the 
frozen approximation to equation 111-10 is obtained from equa- 
tion 111-22.    No terms dependent upon the rate of change of the 
coefficients will be present in the frozen approximation as de- 
fined. 

By defining the frozen approximation on this basis,  in the case 
of aircraft dynamics,  the frozen approximation will be closely 
related to the dynamics computed from the classical approach in 
steady flight.    They will differ only due to the fact that in un- 
steady flight an airplane may encounter flight conditions different 
from steady flight (Appendices I and III).    Thus, the frozen ap- 
proximation provides a useful reference point from which to 
evaluate the effects of acceleration and deceleration of the air- 
craft. 

28 2.      The Quasi-Steady Solution It might be expected that the range 
of validity of the frozen solution could be extended by allowing 
the characteristic roots computed by using the frozen approxima- 
tion to vary with time.    That is,  the solution of a variable co- 
efficient equation is approximated in the following way.     A char- 
acteristic equation is determined as though the differential equa- 
tion had constant coefficients.    The roots of this fictitious char- 
acteristic equation are computed as a function of time.    The 
solution is assumed to be 

e/r1(s)d8+ca Jra{s)dst (III_24) 

where ri(t) and r8(t) are the roots obtained from the fictitious 
characteristic equation at various times.    This approximate 
solution will be defined as the quasi-steady solution. 

Therefor'»,  the quasi-steady solution to the equation III-4 is: 

Ö = ex cos {/ b* ds + *! ). (Ill-25) 

The rationale for this approximate solution is based on the 
solution of a first order differential equation; e.g. , 

26 



~1 

— +a(t)e= 0, (111-26) 

which has the exact solution 
t 

-J   a(s)ds 
6=6    e    0 (III-27) 

Thus,  for a first-order equation,   the quasi-steady sob     on is 
the exact solution.    Unfortunately,  it is no longer exact for 
higher-order equations. 

Again,  the quasi-steady solution will be different,  depending 
upon how "roots" of the system are computed, using the coupled 
differential equations or the uncoupled differential equations for 
each variable.    We will define the quasi-steady solution as that 
resulting from the uncoupled differential equations,  thus includ- 
ing terms involving the rate of change of the coefficients in the 
computation of the "roots. "   The quasi-steady solution to the sys- 
tem of equation 111-10 is therefore defined as that obtained by 
computing the "roots" to the characteristic equations corres- 
ponding to III-23 at various instants of time in the time interval 
of interest and placing these "roots" in the assumed exponential 
form of the solution.    The qua si-steady solution will reflect a 
difference in the various variables in a multiple-degree-of-free- 
dom system. 

With this definition,  therefore,  in the following we will refer 
to the effects that appear due to these terms that appear upon 
decoupling these aquations,  still considering that the equations 
are solved as constant coefficient equations, as quasi-steady 
effects. 

The solution of a linear differential equation with variable co- 
efficients depends upon the fact that the coefficients are actually 
changing with time as well as the appearance of these new terms. 
Note that no effects on the nature of the solution are taken into 
account in the quasi-steady approximation.    We have only guessed 
that this form of the solution might be an improvement over the 
frozen solution, and it remains to be seen whether the quasi- 
steady solution reflects a real improvement over the frozen solu- 
tion.    This point is considered in the section on error estimates. 

We now wish to consider approximate methods of taking into 
account the influence of variable coefficients on the nature of the 
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solutions.    As might be expected,   it appears difficult to find any 
one approximate solution that is generally applicable; however, 
there are two approximate solutions that are useful for the prob- 
lem at hand. 

The Asymptotic Solution16,22 (Unsteady Effects).    If the coeffi- 
cients of the differential equations possess certain properties,   it 
might be expected that there are approximate solutions that apply 
for various time intervals.    In particular,   the approximate solu- 
tion that the exact solution approaches as t "• "o is called the 

16  22 asymptotic solution     ' 

For a second-order equation, application of the transforma- 
tions III-2 and 111-5 results in a differential equation in which the 
varying nature of the coefficients appears added to a constant. 
Transforming equation III-4,  first using transformation III-5, 

tx = / b* ds . (III-5) 

and then using III-2 to remove the damping term, 

t 

e1 =ee4Jobd8 8 = eb (III-2) 

the resulting differential equation is: 

dta 

1 
1 

da  ,.4. i —y —(b )} ex 
- dtf .4       » 

= 0 (111-^8) 

If 

as tx 

T<(b,'T^<b * 
b4        b4 

0,  equation III-28 approaches. 

daex 

-o. (m-29) 

^ 
+ ex = o (m-30) 
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The general solution of 111-30 is: 

e^d cos (tx  + *). (UI-31) 

If expression 111-29 has suitable properties,  then 111-31 is the 
asymptotic solution to III-4.    In terms of the untransformed 
variables,  the approximate solution is: 

1 t    i 
9 = -y {Ci cos [/   b? ds + *i ]}. (111-32) 

It has been shown in Reference 22 that 111-32 is the asymptotic 
solution to III-4 when 

T ^(b  ' dt < • b(t)>0. (m-33) 

This approximate solution,   111-32,  to equation III-4 is known 
as the WKBJ method (References 12 and 29), or in some cases 
as the Liouville-Green method (Reference 30). 

In many specific cases, the criterion 111-32 will hold.    For 
example,   if we obtain an approximate solution to Bessel's equa- 
tion in this way,  the asymptotic expansion cf Besscl functions 
will appear as solutions.    Equation 111-32 is the exact solution 
to III-4 when b ^ t    , and results in a constant error in frequency 
when applied to Euler's equation. 

Comparison of the asymptotic solution of III-4,  111-32, with 
th« quasi-steady solution 111-25,   shows that the asymptotic solu- 
tion learls to the same frequency term as the quasi-steady solu- 
tion, and in addition yields an amplitude variation,  or apparent 
damping,  due to the varying spring constant. 

Initial Value Approximaticn.    It might be expected that a simple 
approximation would apply when the time interval of interest is 
small compared to the average period of the motion. 
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If we consider the transformed differential equation III-28, 

d^x 

dt3 

1 
1     •: 
4. 

4 
i  dt2 öl   = 0, (III-28) 

to obtain the asymptotic solution,  we neglect the second term in 
the restoring force by comparison to 1.    Now consider the other 
extreme,  where this term dominates the restoring force,   such 
that we approximate equation III-28 by: 

1 
d% 1      d    /h4 \ fi   - _       (b ) e, _ 

Tdt> 

(111-34) 

The exact solution of equation 111-34 is; 

ex = CQ + Ci 
/ 

1 

ds 
4 

(111-35) 

In terms of the untransforrr^'l variable t,  the solution is: 

e = c0 + Cx t. (111-36) 

Thus,  this limiting case is equivalent to solving equation III-4 by 
neglecting the restoring force term. 

D.    Error Estimates for Approximate Solutions 

To apply the foregoing approximations,   it is desirable to have some 
estimate of their accuracy or criteria for our use.    Here we will con- 
sider the error incurred in using the various approximations. 

1.     Frozen and Quasi-Steady Approximations. 
equation 

4T +b(t)e = 0, 
dt 

Given the differential 

(HI-4) 
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it should be satisfactory to expand b(t) about its initial value 
using a Taylor series and retain only the first-order term,   since 
it is physically clear that the frozen approximation applies only 
for small coefficient variations.    Then: 

-^4 + (b0 + b t)0 = 0. (111-37) 
dt3 

Nondimensionalize the time by T = /b^ t, and let 

*-±£. („1-38, 

(2.11 e) is the fractional change of the coefficient b in one initial 
period.    Then; 

-^ +(1 +eT)e=0. (111-39) 
dra 

The differential equation 111-39 may be converted into an inte- 
gral equation by regarding CTd as a forcing term: 

T 
Ö = Ci sin T+Ca cos T+«J   sin(8-T) s 6 (s) ds . (111-40) 

o 

The zeroth approximation to 111-40 for small €   is obtained by 
neglecting the integral term to obtain 

eo = Cx   sin T+ Ca cos T. (111-41) 

This is the frozen approximation.    Now, we iterate,   to obtain 
a first approximation by placing 0- under the integral sign. 
Evaluating the integral results in the following expression for 

6i   = [ 1 -4-3 tCi   sin T + Ca cos T J  + 4 

C T3 r -i       Ca € 
—r- L Ci  cos T - Ca  sin TJ + —^— sinT. (Ill-42) 

The last term is a constant amplitude term,   reflecting no 
change in the nature of the solution.    The middle terms represent 
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a frequency change and are second order.    The first-order ef- 
fect is shown by the amplitude modification to the frozen solu- 
tion (111-41), due to the term iLl,  where € T is the total frac- 

tional coefficient change over the time of observation.    It is im- 
portant to note that the first-order effect is on the amplitude of 
the motion and not on the frequency. 

The quasi-steady approximation,  i. e. ,   taking into account the 
frequency change with time, would represent a partial improve- 
ment over the frozen approximation.    When the frequency varia- 
tion is large enough to be important, however,   there would also 
be a significant amplitude change. 

If it is desired to limit the amplitude error when using the 
frozen approximation to say 5 percent,  then the total coefficient 
change is limited to 20 percent.    This approximation,  as antici- 
pated,   is valid for a given total fractional coefficient change. 

Asymptotic Solution.    Error bounds for the asymptotic solution 
have been developed in Reference 30.    We restate only the result 
that applies to the oscillatory case (theorem 4).    b(t) >  0 and 
d'b 
—s- is continuous over the interval a £ t * b .    Then the differen- 
dta 

tial equation 

dta 
+ b(t) 0=0 (III-4) 

has conjugate solutions,  9,  6* ,  where 

o-i 
4   '- 

i r b^ ds 

+ c (111-43) 

where 
c %. eF{t) (III-44a) 

and 

F(t) = li dt3 (.') dt; (III-44b) 
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c is an arbitrary point in the interval; i. e. ,   the time at which 
the initial conditions are applied (the solution is then exact at 
this point).    Uniform bounds on the error may be obtained by 
evaluating the integral (III-44b) over the entire interval.    If we 
let the interval become infinite; i.e. ,  c ^ t iao,  then we note that 
the condition for F to be finite is the condition that the approxi- 
mate solution (111-32) is the asymptotic solution. 

H^C'O   i dt' 
parts to give 

s of uniform sign,  III-44b may be integrated by 

F(t) -^d^) Mi dt (IU-45a) 

or 

™-H 
■/ 

i_b_ 
4    3 

.2 

dt (III-45b) 

From III-45b we see that the parameter that determines the error 
and thus the applicability of the asymptotic solution is    g    ,  the 

3 

instantaneous fractional change in the restoring force per cycle. 

When this parameter is sufficiently small, we may use the ap- 
proximate solution 111-32 and estimate the error incurred by use 
of equations III-44. 

This approximate solution is only dependent upon the rate of 
change of the coefficient, and not on the total coefficient change, 
thus representing a definite improvement over the frozen and 
qua si-steady approximation. 

The two contributions to the error,  as indicated by equation 
111-45,  may be interpreted in the following way.    The integral 
term represents a frequency error due to the neglect of the term 
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1 J!l(j) in the restoring force term of equation III-28 when 

computing the frequency.    This error will increase with time, 
.r   b   . .    .        , even if —r is constant,   since it is a frequency error,   thus ac- 

counting for the appearance of the integral.    The increasing 
magnitude of this error with time is not of particular concern, 
since we are primarily concerned with the nature of the solution 
and not with the exact coordinates of the vehicle at any time. 

The first term corresponds to an error in the amplitude of the 
response,   since it is a measure of ehe variation in the restoring 
force term of the transformed equation,  III-28.    If the two trans- 
formations,  III-2 and III-5,  were applied to equation 111-28,   it 

can be seen that the variation in —r would be reflected as an ad- 

ditional amplitude change. 

In specific problems,   it may be possible to refine the solu' 
tions by repeating the transformations before neglecting any 
terms in the coefficients. 

Let us see what these results imply regarding the application 
of the asymptotic solution to the specific instance where h <*  t N 

The condition that the approximate solution be the asymptotic 
solution is from 111-33: 

00 /       \ m 

/I     da (   "4 1   ^       5    x     f     dt 5 

c t 

N 

c    t 

N 

(III-46) 

Thus,  whenever N > - 2,  the approximate solution is the 
asymptotic solution.    When N = -2, we have Euler's equation. 
When N < -2,  then the solution is no longer the asymptotic solu- 
tion.    However,   since this term is also an estimate of the error 
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we may still be able to use the approximate solution when N< -2, 
but now only for short times,   since the error is increasing with 
time. 

These three cases correspond to a different behavior of the 
fractional change in the coefficient with time.    The fractional 
change in the coefficient per cycle is 

3^ 
2 

N 

t 

N 
(1 + Z) 

(111-47) 

When N > -2,  then the fractional change per cycle decreases; 
when N = -2,  the fractional change per cycle is constant (the 
differential equation is Euler's equation),  and the original equa- 
tion can be solved exactly.    When N < -2,  the fractional change 
per cycle increases; the approximate solution is no longer the 
asymptotic solution,  but may apply over some range of time, 
depending upon the exact nature of the coefficient variation. 

We would therefore expect that the expression,  111-32,  ap- 
proximates the solution to equation III-4 quite well when the 
magnitude of the transformed spring constant is increasing,  and 
has limitations when the magnitude of the spring constant is de- 
creasing. 

For a system with an increasing spring constant,  the asymp- 
totic solution is a long-time solution,  and for a system with a 
decreasing spring constant it is a short-time solution. 

To obtain a numerical indication of the size of the error, we 
investigate a simple example where the spring constant varies 
linearly with time. 

Let b = 1 + € t, and evaluate the error for o <t < • 
fore, 

b     _ e 
3    = 3 

.2 .2 

There 

and FC  c) = 

(1 + et) 

00 

c    b 

41'') dta    N      ' 
dt = 24€ 

(1+Ct)   Jc 

(III-44b) 
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when c = o 

FC)=^€ 

Thus the error is proportional to e,  and if we require the error 
to be less than 5 percent,  then e — . 25 .    From foregoing con- 
siderations,   it is difficult to interpret exactly what this 5 per- 
cent error represents in the way of differences between the exact 
and approximate solutions.    This variation in b represents the CO' 
efficient increasing by a factor of 2^ in a cycle. 

When b(t) is decreasing with time (e < o) the error will in- 
crease with time, and so the criterion will give a final value of 
time up to which the asymptotic approximation applies,  since 
1 + €T is becoming smaller. 

Another interesting ramification of this approximate solution 
may be seen from the previous discussion.    Consider the second- 
order differential equation in terms of a damper and a spring 
constant: 

^■+ c(t)^ + k(t) x = 0, (III-l) 
dt dt 

and the transformed equation III-8: 

dae 
dsa (l  -(O3-^-) 0 = 0, (III-8) 

where 

c,=r_^L+i-i-^1. ,m-7) [zJ^Ö   4 k(B, d8J 
Thus,  it appears that we only require that in physical terms 

the resultant damping of the system be small to use the asymp- 
totic solution; i.e. ,  if the variable spring has a significant con- 
tribution to the damping of the system,  it still may be possible 
to use the approximate solution when c(t) is of such a magnitude 
to make the term C and its derivative small.    In other words, 
this implies that the asymptotic solution applies whenever the 
damping of the system is small. 
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3.     The Initial Value Approximation.    This approximation is the 
solution obtained when the spring constant is neglected and is 
the limiting case of very large percentage spring constant varia- 
tion. 

To estimate the error involved,  we convert the differential 
equation 

-^-| + b(t) e = o (iii-4) 
dt3 

into an integral equation: 

t 
Ö = Ci + Ca t +/   (s -t) b(s)e{8) ds . (111-48) 

the integral term being a measure of the error,   since it is 
neglected in the approximate solution   111-36 . 

To estimate the size of this term substitute 60 = Cx  + Ca t 
under the integral sign.    For simplicity, assume that b may be 
replaced by its average value b and obtain 

©(t) = (Ci * Ca t) (1  - jh ta). (111-49) 

Thus b  t* must be small compared to 1. 

b ta = 41^ (~)a . (111-50) 

P 

If the time interval of interest is less than one-eighth of a 
period,  the error incurred in this approximation is small.   This 
approximation is particularly useful when the restoring force is 
decreasing. 

If we wish to limit the error to 5 percent then we are limited 
to about 5 percent of the average period in time. This approxi- 
mation is directly dependent upon the time of observation, com- 
pared to the average frequency of motion. 
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E.   Relationships Between Approximate Solutions 

The regions of applicability of the various approximations to the dif- 
ferential equation III-4 may be displayed graphically in the following 
fashion. 

|V| ASYMPTOTIC 

FROZEN 

I 2 3 
TIME IN WHICH CHANGE OCCURS 

(CYCLES) 

i »». 

For a given system we move around on this graph, depending on the 
variation of restoring force term.    Thus, various approximations may 
apply over different intervals of time. 

How the quasi-steady approximation fits into this picture is more 
difficult to estimate.    Its validity is specifically tied to the nature of the 
coefficients in the differential equation under consideration. 

Comparison of the asymptotic approximation and the quasi-steady 
approximation indicates that the quasi-steady approximation does not re- 
flect the apparent damping caused by a variable restoring force term, 
while the asymptotic approximation does.    This indicates that, generally, 
for second-order equations, the quasi-steady approximation would be a 
reasonable approximation to a system with slowly varying coefficients, 
if the system had« reasonably high level of inherent damping. 
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The quasi-steady approximation and the asymptotic approximation 
will be the same for second-order systems with a constant restoring 
force.    This may be seen by applying the transformation, III-5, to equa- 
tion III-4: 

d^6     1 1   db  d6 

If we solve this equation using the quasi-steady approximation, neglecting 
the effects of the damping term on the frequency, we obtain: 

e=c1e costtx+fx). (m-52a) 

The exponent is an exact differential, and thus we have the asymptotic ap- 
proximation: 

~ ex  —r cos I   /    b   ds + $x / • e=cx  -ycosV   /    b   ds+^x/. (m-52b) 

bT 

Thus the quasi-steady approximation, when applied to an equation with a 
constant restoring force and variable damping, givois the same result as 
the asymptotic approximation.   However, different results are obtained 
when the system has a variable spring force (cf. equations 111-32 and 
m-25 as the solution of 111-4). 

The degree with which the quasi-steady approximation represents 
the first-order effects of time variation of the coefficients depends to a 
large extent on the nature of the time variable coefficients.    Let us con- 
sider the various possibilities with respect to the system of differential 
equations, 111-10.   We concentrate our attention on the restoring force 
terms in equations UI-ll. 

If the restoring force term can be approximated by axx *m»$ i. e., if 
the coupling is weak and if *xx Ms ia constant, then we would expect that 
the quasi-steady solution represents a good approximation,  since the re- 
storing force in each equation  UI-ll   is approximately constant.    If, how 
ever, we have the opposite situation,  largely typical of the dynamic sta- 
bility equations of aircraft, where coupling terms dominate the restoring 

39 
4 

-^i 



force such that the restoring force may be approximated by ax a &MI , then 
the apparent effect due to the presence of the new terms in the damping 
coefficient may be entirely spurious because of the influence of the vary- 
ing spring on the amplitude of the motion.    This effect becomes apparent 
by transforming the differential equations lU-ll such that the spring force 
is a constant, and then applying the quasi-steady approximation.   Apply- 
ing the independent variable transformation, equation III-5, assuming that 
the restoring force is approximately (-ax« aax )> to equations UI-ll, 

t 
tx =/ /-ax» aax   ds , (111-53) 

results in the differential equations 

^C-an-as.^^-^2-)],       1 -^xx  =0. (III-54a) 
dts z »si     »x»      /-axsasi    dt 

dxx 
dt 

+ XI = o, 

dxs 
JA + xa = 0. ^C-axx-a...!^-^)]—±==-^^.0. (m.54b) 

dt3 z  *X8   aai     /.ax8 aax 

The quasi-steady solution of equations III-54 will indicate quite dif- 
ferent effects on the amplitude of the solution than the quasi-steady fc->lu- 
tion of equations UI-ll,  particularly when the inherent damping of the 
system (axx + aaa) i* small, or when the system is near the boundary of 
stability. 

Therefore,  one must be very careful in estimating the first-order 
effects of time varying coefficients solely on the basis of the appearance 
of new terms in the differential equations.    These terms do give rise to 
differences in the functions of time describing the various variables, but 
in general will only reflect part of the first-order effects of varying co- 
efficients. 

To summarize, the frozen and quasi-steady approximations do not 
take into account any effects that the changing coefficients may have on 
the nature of the solutions to the differential equation.   Essentially,  the 
differential equations are solved as through they were constar.c coefficient 
equations.   In the frozen system, all the coefficients remain fixed at their 
initial values. 
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The qua si-steady solution includes c' anges in the appearance of the 
differential equations due to coefficient variations: but, when solving the 
differential equations, considers the coefficients stationary in time, and 
may or may not represent an actual improvement over the frozen approxi- 
mation. 

With regard to coupled systems, the foregoing investigation indicates 
the following trends with respect to the relative importance of quasi-steady 
and unsteady effects.    The quasi-steady effects are those dependent upon 
the appearance of new terms obtained in the process of uncoupling dif- 
ferential equations describing the motion, and the unsteady effects are 
those direct influences on the nature of the solutions of the differential 
equations due to the time varying coefficients.    For purposes of this dis- 
cussion we consider unsteady effects as those indicated by the asymptotic 
solution.    In the second-order case the primary effect is that of the varia- 
ble restoring force on the apparent damping of the motion. 

For example, if the coupling terms (axs aax ) in equations III-ll are 
varying, and also dominate the frequency of the motion, then the quasi- 
steady effects and the unsteady effects will be of a similar magnitude. 

If the coupling terms (axs *ai ) are varying, but the uncoupled terms 
(axx aas) dominate the frequency of the motion, then the relative size of 
the two effects would depend upon the relative size of the fractional rates 
of change of the coupling and uncoupled terms. 

If the coupling terms are constant, then there will be no quasi-steady 
effects in this case, but there may be unsteady effects from variation in 
the uncoupled terms (axx a8s) with time, assuming that they dominate the 
frequency of the motion. 

Thus we cannot,  in general, decide upon the validity of the quasi- 
steady or frozen approximation on the basis of the quasi-steady terms, 
as suggested in References 12 and 21.    Note that the short period equa- 
tions of an aircraft fall in the category in which the frequency of the 
motion is determined by coupling terms (Appendix III,  equations B-36 
and B-37). 

^ = ZwW + Uq. (B-36) 

|a=Mww + Mqq. (B-37) 
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The short period frequency generally is determined by the coupling terms 
1^ and Ü. 

A physical interpretation of the two variable transformations used is 
interesting.    Consider equation III-4: 

2-4 + b(t) e = o. (m-4) 
dta 

Transforming the independent variable by 

t 
ti  =/ /bds, (m-5) 

o 

the equation becomes a differential equation With a variable damping term 
and a constant restoring force. 

dta, dt» 

where C(tx ) = . .   7  -jr— .   Thus, we may consider that the changing spring 

constant gives rise to damping.   An increasing spring constant with time 
gives rise to a reduction in the displacement amplitude, and a decreasing 
spring constant gives rise to an increasing displacement amplitude.   When 
we transform the dependent variable so as to remove the damping terms, 
we obtain 

■^• + (1 -Ca- yr-)****. (in-55) 
dt* dti 

where we have the familiar effect of damping on frequency (Ca) and an ad- 

ditional effect due to the time variation of the damping term (-T~) . atx 

Thus, in this sense, the slowly varying coefficient case corresponds 
to a small C > or a small effect on the frequency in the transformed equa- 
tion, and a very rapid coefficient variation corresponds to a C » 1  or a 
heavy damping. 

The transformation to remove the damping term indicates a small 
additional effect of the damping varying with time on the character of the 
system. 
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Generally the variable spring effects on the amplitude of the motion 
would be of most interest and importance in studying physical systems of 
the type considered here. 

We note from these transformations that the importance of the varia- 
ble damping is shown by comparing the rate of change of the damping 
ratio with time to unity (see equation 111-55).    The importance of the 
variable spring is indicated by comparing the instantaneous values of the 
fractional change in spring constant per cycle to the instantaneous damp- 
ing ratio (see equation III-6). 

To conclude this chapter, we consider how the foregoing approxima- 
tions relate to the problem of interest. 

The differential equations describing the motion of an aircraft con- 
tain coefficients, i. e. .  stability derivatives, that are functions of velocity. 
We will assume that the equations of motion may be separated into two 
parts, one describing the variation of the velocity with time and the other 
linearized equations describing the perturbation motions.    This separa- 
tion is discussed in detail in Chapter V. 

One aspect of the problem is to evaluate how the perturbation re- 
sponse of an aircraft is affected by proceeding from one velocity to 
another in different time intervals. 

As an example, we consider the following simple case. 

The differential equation describing the perturbed motion of an air- 
craft in its simplest form is assumed to be 

+ (1 + ct)0 * 0, (m-56) 

where the parameter C is a function of the acceleration.   We are inter- 
ested in the solution of this differential equation over a time interval 
0 £ c t ^a which would represent a given percentage change in the flight 
speed of the airplane.    The time is nondimensionalixed so that the range 
of the dependent variable T is constant. 

dT* ea 
(O^T <a) (m-57) 

When e  is small, we have what could be called a high-frequency prob- 
lem; there will be a number of cycles present over the time interval of 
interest, 
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is small, and the asymptotic solution applies. 

If C  is large, then for the given range of T we would be investigating 
a small time compared to the average period of the motion and the initial 
value appi-oximation would apply, in what could be termed a low-frequency 
problem. 

Note that when the problem is phrased in these terms, the total co- 
efficient change is fixed and it occurs in a different number of "average" 
cycles. 

When the asymptotic solution applies, 111-32, the dependence of the 
amplitude of the motion upon the change in the spring constant is easily 
seen.    The amplitude of the motion is only dependent upon the instantane- 
ous value of the spring constant.    Thus, the apparent damping ratio in- 
creases as the time interval for the maneuver becomes shorter if the 
spring constant is increasing; i. e. , we always have the same amplitude 
change independent of the number of cycles.    If the spring constant is de- 
creasing, then we have the opposite effect. 

The asymptotic approximation, as we have noted,   restricts the ef- 
fects of a variable spring on the motion to fairly low damping vatios; i. e. , 
we can only apply the asymptotic solution when there is a sizeable co- 
efficient change, if there are a number of cycles present. 

F.    Summary 

For systems described by variable coefficient differential equations, 
different variables and the derivatives of the variables may involve dif- 
ferent functions of time.    For example, the amplitude of one variable 
may be decreasing with time, while the amplitude of another variable 
may be increasing with time. 

The asymptotic solution to second-order linear differential equations 
is a useful approximation, generally applying to systems where the frac- 
tional rate of change of the coefficients with time is small.    Physically, 
this approximate solution appears to apply to systems with light damping. 
The other approximations discussed in this chapter apply under special 
circumstances.    In particular, care must be taken in applying the quasi- 
steady approximation, as the only justification for its use is its simplicity. 
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The primary effect on the response of a second-order system due to 
variable coefficients is indicated to be an amplitude variation arising 
from a variation of the restoring force with time.    The influence of varia- 
ble damping on the frequency of a system appears normally to be rather 
small. 
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CHAPTER IV 

APPROXIMATE SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS 
OF HIGHER THAN SECOND ORDER WITH VARIABLE COEFFICIENTS 

For the application of approximate solutions of linear differential 
equations with variable coefficients to airplane dynamics, we examine a 
new interpretation of the asymptotic solution for second-order equations. 
We then develop new solutions for higher-order systems by a similar ap- 
proach. 

This approach has the advantage of eliminating the need for any varia- 
ble transformations.   We deal directly with the original differential equa- 
tion in evaluating the nature and magnitude of the unsteady effects. 

We commence with the basic idea that, to any linear differential 
equation of order n there corresponds a nonlinear differential equation of 
order n - 1 (References 16 and 17).   From the linear equation, we obtain 
the nonlinear equation by transforming the dependent variable from x to X 

t 
;ox(s)ds 

by relationship x = e 

The nonlinear first-order equation that corresponds to a linear 
second-order equation is called the Ricatti equation (References 16, 17, 
and 20). 

We may interpret this dependent variable transformation as an as- 
sumption that the linear equation has a solution of the form 

C e The differential equation describing A may then be con- 
sidered as the "characteristic equation" of the time-varying equation. 
We recall our basic premise, that the solutions to the problem of interest 
will be similar in form to the solutions of constant coefficient equations. 
A perturbation approach is used to solve this nonlinear equation in order 
to obtain an approximate solution to higher-order time-varying equations. 
This is the approach used by Jeffreys (Reference 20) to obtain the WKBJ 
solution. 

A modified root locus technique is developed to interpret these re- 
sults on the complex plane. 
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The second-order case is examined from this point of view and then 
an approximate solution for the n**1 order equation is developed.   Also, 
some specific remarks are made concerning third-order equations.    We 
will phrase the discussion of the second-order equation in physical terms 
and then formulate the n™ order approximate solution in precise terms. 

The Second-Order Equation 

First, consider the second-order equation 

^4 + a(t)^+b(t)x«0. (IV-1) 
dt* dt 

Transform the dependent variable by 

t 
/ X(s) ds 

x(t) » C e 0 (IV-2) 

Rather than calling this a transformation of the dependent variable, 
we prefer to think of this step as an assumption that the solution of IV-1 
takes the form IV-2.   We imply that we expect that the solution to equa- 
tion IV-1 will be similar to the constant coefficient case; i. e., we as- 
sume that the solution to IV-1 will be of the form 

t t 
/>x(«)ds f A.(s)ds 

x(t) «Qe +Cae0 (IV-2a) 

This assumption is quite reasonable for the problem under considera- 
tion where the physical system passes through a series of conditions, in 
which, at each of these conditions, it is described by a constant coeffi- 
cient equation.   Substituting expression IV-2a into the differential equa- 
tion IV-1, we obtain two identical nonlinear differential equations of the 
first order 

|^.+Xf+ a(t)Xl + b(t)«0 iM1.2) (IV-3) 

Equation IV-3 is the Ricatti equation as previously mentioned. 
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V. 

By analogy to the constant coefficient case we consider equation IV-3 
as an unsteady "characteristic equation" for equation IV-1 and still refer 
to the X. as "roots."   We will use this terminology in the following dis- 
cussion,  although neither of these descriptions is precisely true. 

It is,  of course, no easier to solve the differential equation, IV-3, 
than to solve the linear equation,  IV-1; in fact,  in general,  one would ex- 
pect that the linear equation is easier to solve.    However,  it is easier to 
develop approximate solutions to the nonlinear equation for the case of 
interest since A is assumed to vary slowly by comparison with the modes 
of motion of the system.    We give the procedure in some detail, although 
the same results were presented in Chapter III,  since we shall follow a 
similar procedure for higher-order systems. 

The assumptions will become clear as we proceed with the method. 
Basically, we assume that the X. ,  i.e., the unsteady "roots, " are close 
to the quasi-steady roots,   r^,   such that equation IV-3 may be linearized. 
We obtain two particular solutions,  one associated with each quasi-steady 
root.    These two particular solutions, Xl (t) and Xa(t),  may be combined 
to give the general solution to the Ricatti equation (Reference 17, page 64). 

JXx  dt / Xa dt 
X= 

ClXl e iCaXaj  (IV_4) 

/Xl dt /X» dt 
Ci  e Ca e 

Comparison of equation IV-4 with the form of the general solution to the 
second-order linear equation IV-1 and the variable transformation IV-2, 
indicates that the two particular solutions, Xx   and Xg,  may be associated 
with the two linearly independent solutions of IV-1.    The form of the gene« 
ral solution to IV-1 is: 

x = Ci Ux(t) + Ca Ua(t). 

Substituting into the transformation equation IV-2, 

dUx   , r   dUa 
idx_c^ drfC8 dT 
x dt Cx Ux + Ca Ua    * * ' 

Comparison of IV-5 with IV-4 shows that the solutions to IV-1 may be ex- 
pressed as: 

t t 
TXi(s)ds rXa(s)ds 

Ui = e Ua = e 
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Now, we proceed to determine approximate values for Xj and X8 .    First 
we write the differential equation IV-3 in factored form, 

^L= - (Xi - rxCt) ) (Xj - r8(t) ), (IV-6) 

and assume that 

Xi = rx  + öXx J6Xx I « | ri |   ,    In  - ra I , 

to obtain a linear differential equation 

6X + (rx   - ra) 6X= - rx • (IV-7) 

Also, assuming that jöXl «I rx   , we solve IV-7 for 6X: 

6X=--A—- (IV-8) 
rx - r» 

or 

Xx = rx --r^-r <IV-9) rx   - ra 

Now, to evaluate the consistency of the assumption regarding the small- 
ness of 6X, we find thftt 

6X=h {h -^ -—ä   . (IV-10) 
(rx   - ra) rx   - ra 

Therefore,  if the qua si-steady roots,   r^,  change with time in a 
reasonably linear fashion such that rx — 0, then 

6X~(6X)S, 

ri 
and we have a result that is correct to the first order in = .    We 

■T    rx   - ra 
may continue to develop further terms in a series        in this fash- 

rx - ra 
ion; however,  the first-order approximation will suit our purposes. 

The other solution is,  by a similar procedure, 

* 
X» = 'S -     ^ ,. (IV-il) ra  - rx 
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Now, it is convenient to evaluate these effects by use of an extension 
of the root locus technique (Reference 33).    From equation IV-6, with the 
assumption rj — Xi » note that this assumption implies that AX is small, 
so that only a small portion of the root locus, the branch near the root 
under consideration,  is valid.    The differential equation IV-6 becomes an 
algebraic equation, since rj   is known: 

ri + (Xx   - rxHXx   - r») = 0, (IV-U) 

or in root locus form 

71 wl rs-l. (IV-13) (Xi   - r! )(X1  - ra ) 

where rj  is considered as a gain. 

We have one difference from the conventional root locus technique in 
that rx may, in general, be complex, thus giving rise to angle conditions 
that are other than the conventional 0° and 180° conditions.    The rules for 

;rally they are 
equation IV-13 

becomes 

constructing these loci are discussed in Appendix IV.    Gene: 
similar to conventional loci,    li 'r\ - R(t)i e     ' '^, then eqvu 

(^  •r.HXf^) - e ,IV-14> 

The angle condition to be satisfied is ff - ♦j.    For the second-order sys- 
tem, if one root has a complex velocity, i. e. , not parallel to the real 
axis, then the other root must have the conjugate velocity.   The quasi- 
steady roots must always be conjugates, since the coefficients of the dif- 
ferential equation are real.    The angle condition associated with the other 
root is therefore ff + ♦j .    Comparison of the angle condition for two roots 
with conjugate velocities indicates that the locus corresponding to the 
second-angle condition will be the locus corresponding to the first-angle 
condition reflected about the real axis. 

Let us take a simple case where the quasi-steady roots are moving 
parallel to the imaginary axis: 

r' 
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This is the quasi-steady locus.    Then the unsteady locus at some in- 

stant of time for rx is: 

where we only retain the upper branch as consistent with the assumption 
Xx - Ti .   Reflecting this locus about the real axis gives the locus for r» . 
where only the lower branch is consistent with the assumptions. 

11« 

4 
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i. 
Thus, the unsteady locus at some instant of time is: 

We then compute the gain in the usual 'ashion to locate the unsteady roots 
at the particular time instant of interest.    A sample point is shown, as 
well as the quantities rj ,  ra  and öXj , 6AQ .    This locus then shows the 
effect discussed previously of a loss in apparent damping as the frequency 
decreases.    Recall that only the approximately straight portion of the 
locus is valid within the limits of the approximation. 

We then construct these loci about sufficient quasi-steady points,  such 
that we can draw the unsteady locus and the "roots" to be used in the ap- 
proximate solution. 

The magnitude of the deviation of the unsteady locus from the quasi- 
steady locus may be estimated by taking the magnitude of the terms in 
equation IV-14: 

R(t) 
jAx  - nj jXx - raj 

Linearizing the denominator of IV-15, 

JX1   -nl   =  |6X| 

Ai   - ra|   *   Iri   ■ 

and 
Ti - ra Zu) 

= 1 (IV-15) 

ra 

QS     ' 

where U)      is the frequency of the qua si-steady solution. 
US 
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So we have 

|6A|2«; 
QS 

H = ÜL 
2(u 

(IV-16) 
QS 

The fractional change of 6A is: 

6X IH 
2u) 

QS lrl 
(IV-17) 

That is, the fractional change in the magnitude of the "root" due to un- 
steady effects is the fractional change in the root per unit time divided by 
twice the instantaneous frequency (the root spacing on the complex plane). 

The results are exactly the same as obtained from the asymptotic 
solution. 

.th The ntn-Order Equation 

The approach for the second-order equation may be generalized to 
yield approximate solutions to an n*"-order linear differential equation 
with slowly varying coefficients.    The precise meaning of slowly varying 
coefficients will be defined by our result.    Given an n^-order differen- 
tial equation, 

d x 
,n-l ,n-2 ax a       x 

 +a     .(t)^ p + a    7{t)- y , n        n-1       , n-1 n^'       , n-2 
dt dt dt 

. + a (t) x = 0 
o 

(IV-18) 

We assume a solution of the form 

n 
L(t) =   S   Ci e 

i=l      1 

f Aiis) ds 
(IV-19) 

The n^-order derivative of x, considering only one X. , may be written 
as: 
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■^= X^ (n)(n - 1)^  1 ^       y+ (n)(n - l)(n - 2)^-^ j 

(K   xa\     4 
(n){n - l)(n - 2)(n - 3)1 ^+5^ I X.11-   +.... 

(Terms involving higher derivatives, and products 

(IV-20) 

of derivatives of X ) 

Substitution of these derivatives into the differential equation IV-18 yields 
the following nonlinear differential equation for X,  of order n - 1 : 

A .    1   Ö8A  ;    ,   1    aaA •;    %   l   Ö4A "c        la 
A+ Ti iFxi + 3T iXrxi+ 4Tixr(Al + 3Xi) • •'• 

+ (Terms involving higher derivatives, and products 

(IV-21) 

of derivatives of X ) =0 

where 

A = X^ + a     .(t) X""1 + a    .(t) X*-2 . . . a (t) . (IV-22) 
1 n-l i n-c        1 o 

In the development that follows it is useful to note that the function A 
and its derivatives may be written in factored form as: 

n 
A =   tr   (X. - r.) (IV-23a) 

dA =    »     (X     - r.)(    L      jr-l :J 
j=i  4   J U=i «vVy 

(IV-23b) 

-L^!L=   V   (X   -r)!    L        TT JJT rl        \i\l.        (IV-23c) 
21 ax8   j^i   i    r U.t=i <xi: 'k^^i " tjj        * 
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Using the above relationships we linearize the differential equation IV-21 
by assuming that each unsteady root, X., is near to a corresponding 
quasi-steady root,  r. , and that the quasi-steady roots are isolated. 
Therefore, 

X. = r. + 6X. 
111 

where IfiX. I <c    ir 
i i ri-rj 

Substituting this relationship into the expressions IV-23 and retaining 
only terms up to the first order in 6X. , we obtain 

A= A aA 
X. = r.+ öX" 

1    1 

n 
6Xi  =    IT   (r. - r.) 6X. , 

j=l      i       J       i X-r, 

1  &aA      J_ /saA 
2! ax3 =2' lax3 

X^r. 

a^_ 
ax3 

V-i / 

^J (IV-24a) 

n /  n 1 n 1 \ ff(r.-r)|    E       ; i r+       E rr—i : 6\ I . 
j=i   l    J^k.^i (ri-

r
k)(ri-r*)   k^.p.i^i-^H'i-^VV    W 

i^jjk^t^p (IV-24b) 

Denote the distance on the complex plane from the i"1 quasi-steady root 
to the jt" quasi-steady root by d.. .    To nondimensionalize expressions 
IV-24, we designate as the minimum of the distances dy and the dis- 
tances of any root from the origin,  rj, during the time interval of inter- 
est, as dg , and divide all distances involved by dg, and call the non- 
dimensional distances Dy, Rj , öAj.    The order of magnitude of these 
three quantities is taken to be: 

D...   R.       0(1), 

6A. 

The above expressions become 

.n 

0(c) 

n 
A= d"    ff   (D..) 6^ , 

»   j=l      iJ        i \ 
(IV-25a) 
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^ 

(IV-25b) 

Then, we write the differential equation IV-21 in these terms,  taking as 
the characteristic time the reciprocal of the maximum value of bX^ , 6^m> 
Recall that although we have referred to 6X| as a distance on the complex 
plane,  the units of 6A.| are sec"1.    Let T = 6Xmt •  and for equation IV-21 

n   n 

after division by d     IT   (D;i), we 
s j=i      ij 

have 

6A • +1   S   TT- +    2     ^   *        6A. 
1     ^^ij      j.k^^j^k      ^ 

dRi     dCöAJ l 

dr + -^rL- 6Am 

n 
1 

n 
L 1 

i k=l D..D.,       i  k ^  -1 D..D., D.f iJ,K  *     ij    ik      J. «,<.,-!     jj    ik   ^ ■^•^Vv 
n 
L 

n 
L 6A. 

ii  k  *_,   D   D.. D.,      .  k *   0_,   D..D.. D..D. i 

/dR.   d(6A.)\2 rdR.      <r(6A )\ 
+ —   (öA    )3+3   -—V-^   (6A    f 

•a df^   /        m \dr      dT     I       m .df- 
= 0 

j ^ P (IV-26) 

Neglecting  6A-   compared to 1 , and the derivatives of 6A| compared to 
the derivatives of R, , we obtain 
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fwrj^'"1»'""© "A-1") 
Since 6A^ and 6Am are assumed small, and the derivatives of R| in this 
time scale are the order of 1 , the approximate solution of equation IV-21, 
retaining only first-order terms in IV-27,  is: 

1   v^1 Dy / 
«A, * - l   E   fT- 1  — (6Am) . (IV-28) 

The basic requirement for this approximate solution to hold is then that 

dR. 

dF"1     0(1)- 

This may be expressed in the time scale of the dynamics of the sys- 

tem {-r—), as ds 

iJT dldTT     0(1, • m s 

and therefore 

dR dnR 
_* 0(e) ,  i- 0(€n) . 
^s0 d(d t)n 

s 

Thus we require that the fractional change in the quasi-steady roots is 
small in a time scale based on the smallest of the spacing of the quasi- 
steady roots or the distance of the quasi-steady roots from the origin on 
the complex plane. 

The phrase "slowly varying coefficients" means that ———    is 
small. d<d^ 
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The relationships between R^ and its derivatives will generally be 
true for monotonically varying roots as time becomes large. 

The solution, IV-28, may be expressed in root locus form, conveni- 
ent for calculations from equation IV-21: 

1 öaA   . 

2 TXrTi 
= - 1 , (IV-29) 

noting that only a small part of the locus will be valid, due to the assump- 
tions made in obtaining the approximate solution. 

The form of the result, IV-28,  indicates that the quasi-steady effects 
tend to increase with the order of the system because of the presence of 
the term involving the summation of the reciprocals of the root spacings. 
The time-varying effects are dominated by the lowest frequencies, as 
well as by the close proximity of roots. 

The Third-Order Equation 

We now apply the n^-order result to a third-order equation.    Given 
the differential equation 

^- + a(t) £5- + b(t) ^ + c(t) x = 0 . (IV-30) 
dt3 dta dt 

application of equation IV-29 gives 

-^~" W^wr^pr^r' ■ ^ ■ (IV-31, 

The poles for this locus are the quasi-steady roots,   rj; there is one 
a zero at - -sr, and,  in general, a complex gain,  r^ . 

For all real quasi-steady roots, the gain will be real.   For a com- 
plex pair and a real root, two loci will have complex gains,  similar to 
the second-order case discussed, where only the branch associated with 
the particular gain is retained.    The third locus corresponds to the real 
root, where only the branch originating at the real root need be con- 
sidered, and has a real gain. 
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Let us sketch these loci for a particular case.   Consider a third- 
order system where the quasi-steady roots consist of a complex pair and 
a real root, the complex pair moving towards the real axis and the real 
root moving away from the imaginary axis. 

t iw 

r,  * 

i 
The angle condition for the rj  locus is 270    - ir and we must con- 

sider the zero at - T' Thus the locus is: 
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Tha locus for  r» is the reflection of this locus about the real axis: 
iitf 

N 
The locus associated with the movement of the real root is a conven- 

tional locus drawn for the zero angle condition,   since the real root is 
moving in the negative direction. i im 

Thus,  the unsteady locus for this example is 

id) 

*-*- 
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where only the branch associated with each particular quasi-steady root 
hcT been retained. 

The magnitude of the deviation is computed in a conventional way, 
recalling that we use the root velocity associated with the particular 
root; i.e. ,  there will be a different gain associated with the real root 
branch from that associated with the complex branches. 

The importance of the root velocity and root locations in causing 
deviations from the quasi-steady locus may be seen directly by applica- 
tion of equation IV-28.    For this example,  equation IV-28,  in dimension- 
al form,  becomes: 

5Xi = " (T-—- + ,.    1 r   ) ri • (IV-32) ri - ra      Ti   - ra 

Comparison of equation IV-32 with IV-8 indicates an additional effect 
on the oscillatory motion in the third-order case, due to the factor 

(  +  ) .    If the real quasi-steady root, ra ,  is a considerably 
ri - ra      ri   - ra 

faster mode than the mode corresponding to the complex pair, rx ,   ra , 
then the second term in parenthesis is approximately zero, and we have 
the same result as the second-order case.    When the mode associated 
with the real root is slower than the frequency of the oscillatory mode, 
the magnitude of the deviation of the unsteady locus from the quasi-steady 
locus will be increased,   compared to considering the same complex pair 
as an isolated second-order system. 

It should also be noted that for the specific third-order case where 
a real quasi-steady root is constant we can reduce the third-order time- 
varying equation to a second-order time-varying equation by the follow- 
ing transformation. 

Given a third-order equation, with   - ri   a real constant quasi-steady 
root, the differential equation,  IV-30, becomes 

^+ Crx + dU)] ^—+ [rId(t) + f(t)3~ + n f(t) x = 0. (IV-33) 
dt3 dta dt 

The transformation 

- r  t 
x = e"   X  / y(8) ds (IV-34) 

o 
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transforms (IV-33) to 

-^+ [Zrx +d(t)]^.+ [f(t) + rx d(t) + rf ] y = 0. (IV-35) 
dts dt l 

We can determine the approximate solution to this second-order dif- 
ferential equation and then integrate the result to obtain x.    This simple 
case also indicates that the importance of the unsteady effects will in- 
crease as the order of the differential equation increases.   A further 
amplitude modification will result from a varying frequency when y  is 
integrated to obtain x . 

This might have been expected from our earlier discussion where we 
saw that the quasi-steady solution was exact for the first-order equation, 
but only a rough approximation to the second-order equation. 

To be specific,  consider the nature of the solution when rj  = 0, 
d(t) = 0 .    Assuming that the asymptotic approximation applies to the solu- 
tion of the differential equation IV-35, then 

y = Cl cos (T  r ds + ♦) ; (IV-36) 
1 ^o 

x is then determined from equation IV-34, 

x = Ci    /   f 4 cos    I  / f" dn + #| ds . |IV-37) 

The integral, IV-37, may be approximated by 

xzs^i- sin (/  f*dn + *) , (IV-38) 

S       0 

when f is slowly varying, as consistent with the asymptotic approxima- 
tion. 

The same result will be obtained by applying the root locus approach 
directly to the third-order equation. 
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We then see that in the third-order system similar effects to those 
obtained in a second-order system result.    That is, a decreasing fre- 
quency causes an apparent loss in damping.    We obtain an additional ef- 
fect from the third "root, " the magnitude depending upon the location of 
this real root with respect to the complex pair. 

The maximum loss in damping is associated with the case in which 
the magnitude of the real parts of all the roots are the same, as shown 
by the above example. 

Summary 

An approximate solution to a linear differential equation of order n, 
with time-varying coefficients 

,n ,n-l .n-2 
dx. ..dx ..dx 
 + a       (t   r + a    _ t) T + + a   x = 0 
JjLn        n-1       j^n-l n-2       j^n-Z o 
dt dt dt 

may be expressed in the following form: 

t 

/(VöXjlds 
x(t) =2:    C; e   0 

i=l 

where 

and the  r. are roots of the equation 

n . n-1 n-2 
r+a     .r        +a    .r ....a=0. 

n-1 n-2 o 

Thus for a given  r , as the order of the system increases, the unsteady 
effects increase, as shown by the coefficient of r. in the equation for 
6Aj.    The magnitude of the effects depends upon the separation of the 
roots on the complex plane  (r. - rj . 

Consider the change in the root 6Xj  compared to rj. 
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The change in the root  r^ due to unsteady effects is therefore the sum of 
the fractional change in the root  r^ per unit time divided by each of the 
root spacings on the complex plane.    The restriction on the approximate 
solution phrased in these terms is that the fractional change in the roots 
r:  per unit time must be small compared to the root spacings. 

Specific examples of the application of this result are given in 
Chapter V. 

The approximate methods presented in this chapter are readily ap- 
plied to the investigation of the following problem.    Determine the 
dynamics of a system as it passes continuously through or near to a 
series of equilibrium states,  when the frozen dynamics of the system 
are known at these equilibrium states.    The changes in the system 
dynamics are considered to arise from two soarces:    the first is the 
appearance of new terms in the uncoupled differential equations describ- 
ing each variable in a coupled system,  and the second is the direct ef- 
fect of the coefficients changing with time.    The former effect is re- 
ferred to as a quasi-steady effect,  and the latter as an unsteady effect. 
The quasi-steady effects are taken into account directly in the computa- 
tion of the   r-   ,  and the unsteady effects are taken into account by the 
approximate solution presented above.    These two effects may be inter- 
preted as distorting the frozen locus of roots on the complex plane. 
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CHAPTER V 

APPLICATION TO AIRCRAFT DYNAMICS IN UNSTEADY FLIGHT 

Before proceeding to the development of aircraft equations of motion, 
some preliminary considerations regarding the nature and implications of 
the approach to the problem are useful.    As anticipated,   the resulting 
equations of motion describing the dynamics of aircraft in unsteady flight 
will be linear differential equations with time-varying coefficients.    Let 
us consider,  in general, how linear time-varying differential equations 
arise in physical problems. 

One way in which the description of a system in terms of linear equa- 
tions with time-varying coefficients arises could be referred to as a true 
linear problem,  where the coefficients in the differential equation change 
due to external influences on the system.    A simple example is a pendu- 
lum with its length being varied continuously. 

A second way that systems described by linear variable coefficient 
equations arise is in investigating the motion of a nonlinear system near 
a state of motion rather than a state of equilibrium.    Since we are in- 
vestigating a state of motion near another state of motion,  we may 
linearize the equations of motion by a perturbation approach,  about the 
original state of motion.    When the reference state is changing with time, 
we obtain linear variable coefficient equations to describe the perturbed 
motion.    Note that if the original system is linear, both of these situa- 
tions will be described by the same differential equation.    Again the 
pendulum serves as a simple example (Reference 13).    Consider the 
large amplitude oscillation of a pendulum, described by the nonlinear 
differential equation 

6 +|- sin 0 = 0. (V-l) 

We consider an established state of motion resulting from the initial 
conditions 

6(0) = a . 

6(0) = ß . (V-2) 

We call the solution to equation V-l with initial conditions V-2,  m(t), 
and wish to determine the differential equation describing the difference 
between this motion and some neighboring motion arising from slightly 
different initial conditions, 
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61(0) - O + 60 , 

k (o) = i3 + 6)3 . (V-3) 

We call the solution to equation V-l, with initial conditions   V-3 

n(t) = m(t) + 66 (V-4) 

where  66  is small.    Substituting V-4 into V-l, 

66 + m(t) + ^ sin (m(t) + 66) = 0 . (V-5) 

Expanding the restoring force term in a Taylor series, we obtain for 
small 66, 

66 + m(t) +|-[sin(m(t))+ cos (m(t)) 66] = 0 . (V-6) 

Using the fact that m(t)  is a solution to V-l,   the differential equation 
describing the perturbed motion is: 

66 + S.(cos m(t)) 66 = 0. (V-7) 

Thus,   since  m(t)   is a function of time,   equation V-7,  linearized about 
a state of motion,  is a linear time-varying equation. 

In studying the dynamics of aircraft in flight, with changing velocity, 
the time-varying nature of the coefficients is a result both of linear or 
external effects and the linearization of nonlinear equations about a 
variable state of motion.    Control motions and changes in power settings, 
for example, are linear effects. 

If the coefficients of the linearized differential equation are changing 
rapidly with time,  we must examine carefully the validity of the linear- 
ized approach as seen from the following considerations.    The form of 
the linearized differential equation V-7 is: 

6e+|g-  66 = 0, (V-8) 

where f is the nonlinear restoring force term  (& sin 6   in this case). 

The importance of nonlinear effects are indicated by the rate of 
change of ^3-with 6 times the size of the perturbation; i.e. ,  the 
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linearization assumption implies that 

daf     66^ 

aea    2 

ä^ (V-9) 

is small.    The importance of time-varying effects is shown by the para 
meter discussed in Chapter III, which here takes the form: 

öaf    de. 
aea   dt 

(V-10) 

We have assumed that f is not an explicit function of time; i. e. , we have 
no truly linear effects. 

Thus, as the parameter V-10 becomes large,  the time-varying ef- 
fects become important.    The cause of the parameter V-10 increasing in 
size may or may not cause an increase in thÄ size of the parameter V-9- 
If V-IO becomes large due to increases in _JE?  ,  i. e. ,  rate of change of 

the reference displacement with time, then we may have large time-vary- 
ing effects, and still.the linearization is valid.    If,  however,  V-10 be- 
comes large due to ^" "* ^ ,  V-9 becomes large as well, and it may be 

that linearization is not valid. In particular, it appears that care must 
be taken in studying nonlinear systems as linearized time-varying sys- 
tems near the zeros of important coefficients. 

Considerations relating to the above questions with regard to the 
stability derivatives of aircraft and the linearity of t' rms are discussed 
in Appendices II and III. 

For an aircraft, the time-varying approach therefore is expected to 
be generally more nearly valid when changes in dynamics arise from 
rapid changes in flight condition of the vehicle.    It would appear that a 
nonlinear approach may be necessary when the stability derivatives 
themselves are rapidly changing with flight condition.    Recall that this 
does not apply to the influence of control and power settings which are 
truly linear time-varying effects, but does apply to such effects as the 
rapid change of the stability derivatives with flight velocity. 
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A.    Development of Linearized Equations of Motion of Aircraft 

We now formulate the linearized equations of motion to study the 
specific problem of the effect of varying flight velocity on the dynamic 
stability and response characteristics of aircraft.    Dynamic motions will 
be restricted to the longitudinal plane of symmetry. 

We write the equations of motion with respect to an axis system fixed 
to the body of the aircraft.    The  X axis is roughly horizontal,  the  Z axis 
is vertical,  and the origin of the axis system is at the center of gravity of 
the airplane.    The equations of motion may be written,  then,  in the fol- 
lowing conventional form (Reference 14): 

du Q ~ +wq + g sin 6= X (u, w, q, 6,^ 6^,, i^) 

(V-ll) 

dw 
~ - uq - g cos 0 = Z (u,w,q,6T,6E. i^) 

^=M(u.w,q,öT,6E,iw) 

d0 
dF = q 

The terms on the left-hand side are the gravity and inertia forces. 
The term» on th? right-hand side are the aerodynamic forces per unit 
mass and moments per inertia,    u and w are the variables describing 
the motion of the vehicle with respect to the  X and Z   axes,   respective- 
ly,  moving with angular velocity  q.    ö-p ,  fig,  and  i^  are the parameters 
by which the pilot exerts control over the vehicle.    In the specific in- 
stance of a tilt-wing aircraft,  for example,   öm  represents propeller 
blade pitch,   fig  the longitudinal pitching moment control, and  i^ the 
wing tilt angle.    A conventional airplane normally has only two controls 
(fiT and ÖE ). 

It may be noted that no new aerodynamic terms are required for the 
case of nonsteady flight,  since we assume that unsteady aerodynamic ef- 
fects are not important.    The stability derivatives themselves,  i.e. ,  the 
terms in the Taylor series expansion of the aerodynamic forces,  may de- 
pend upon the nature of the maneuver being performed.    These points are 
discussed in detail in Appendices II and III. 

The set of differential equations,   V-ll,  is nonlinear and,   if the con- 
trol settings are not constant,   is also time varying. 
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The equations are nonlinear, due to the nature of the aerodynamic 
force and moment dependence upon the flight variables,  the inertia terms 
arising from use of a Eulerian axis system,  and the gravity terms. 

A particular set of solutions to equations V-ll represents large- 
scale maneuvers in which the airplane is not allowed to rotate,  or in 
which the rotation is prescribed.    Then,  the airplane is essentially con- 
sidered as a point maos,   the pilot having primary control over the motion 
of the point mass with two of the three controls.    The pitching moment 
equation provides the information as to what must be done with the third 
control to prevent the rotation or to attain the prescribed rotation.    We 
might imagine,  in considering these maneuvers,  an airplane with zero 
inertia and angular damping such that it responds instantaneously to con- 
trol motions. 

To be specific,  the accelerated flight of an aircraft is considered in 
the following way.    Certain prescribed control motions are made in order 
to perform a maneuver.    Then,  imagine this maneuver being repeated 
with exactly the same control motions,  but now the aircraft encounters 
disturbances.    We wish to investigate the response of the aircraft to these 
disturbances while performing the prescribed maneuver.    It may be 
imagined that the control motions are programmed to perform the maneu- 
ver.    This model has its counterpart in the stick fixed response of an air- 
plane in steady flight.    In many instances,   it is possible that these basic 
control motions are of considerable importance in the piloting task,  but 
they will not be considered here. 

As examples of these motions for flight vehicles,  the following may 
be enumerated. 

1. Steady,  level flight 
2. Accelerating or decelerating level flight 
3. The trajectory of a ballistic missile 
4. The transition of a VTOL aircraft from hover to 

forward flight 

To obtain the relationships between the flight variables and the con- 
trol settings for examples 1 and 2 is almost trivial for a conventional 
aircraft,   since the control over the movements of the center of gravity 
are approximately uncoupled.    The pilot has only two controls:   the thrust 
of the power plant which directly controls acceleration, and the elevator 
angle which controls rotation of the airplane and indirectly controls the 
flight velocity, maintaining the proper relationship between flight velocity 
and angle of attack.    Solutions to example 3 are studied in References 8 
and 9. 
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Item 4 is a more complicated dynamics problem, due to the strong in- 
fluence of engine thrust on vertical as well as horizontal force.    This inter' 
relationship causes deviations from steady flight conditions when the air- 
plane is accelerating or decelerating.    In order to obtain an estimate of 
the magnitude of the variation in the flight conditions encountered during 
this dynamic maneuver compared to steady flight,   two different VTOL air- 
craft are considered in Appendix I.    A tilt-jet and a tilt-wing, two types 
of aircraft that fly in the speed range where an appreciable portion of the 
vertical force is developed by thrust, are considered.    The former per- 
forms a fairly rapid transition, and the latter a relatively slow transition. 
The control required to trim is not considered in ihis analysis, and the 
transitions are restricted to level flight for simplicity.    A highly simpli- 
fied model is used to gain an understanding of the essential features of the 
motion. 

Having once determined the nature of this reference motion for a con- 
ventional or VTOL aircraft,we can proceed to investigate the basic ques- 
tion of interest.    That is,   if the airplane encounters a small disturbance 
while performing this evolution, we wich to predict this disturbed motion. 
We assume that the pilot takes no action to counter the disturbance, and 
only investigate the nature of the uncontrolled response. 

To obtain results of a general nature,  rather than solving equations 
V-ll as they stand, using machine methods, we will linearize the equa- 
tions about a prescribed path such that the transition maneuver will cor- 
respond to the trivial solution of the perturbation equations. 

The first step is to linearize the aerodynamic forces by expansion in 
a Taylor series about a prescribed point on the path.    This approach has 
been notably successful in the past as a means of treating the aerodynamic 
forces of conventional aircraft during a response (Reference 14).   It is 
suspected that this linearization is valid for VTOL aircraft at low speeds 
in steady flight, although further experimental data is required before 
linearization can be applied with complete confidence.    These questions 
in relation to VTOL aircraft are discussed in some detail in Appendix III. 

The equations of motion are: 

-^ +wq + g ein 6 = X (u,w,6T,iw) 

—•- uq - g cos Ö = Z (u. w, 6T, i^) 

^=M(u,w,q,6T.6E.iw) 
(V.12) 

dO 
= q 
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where we have neglected the dependence on X and Z on q and 6p. for 
simplicity. These terms usually do not exert a strong influence on the 
motion. 

Given the reference motion, described by  Up, Wp, 6~    ,  i^   ,  qp, 

6<p      at some instant of time, we assume that in the neighborhood of these 

values we rray describe the variation of the aerodynamic forces by re- 
taining only the first-order terms in a Taylor series expansion. 

X + AX = X(U„,WT1,6ft,   ,i     )+~ Au + |£Aw + ^A6,+—   Ai \   p»     p«   T   •        /    du dw 35       T    di        w 
P      P T w 

Z +AZ = Z(Ut, W^.ö^   ,i     ) + |5.Au+P Aw + lf A6^ + |?-Ai x   P,    P    T      w   '    du dw d6        T    di       w 

M +AM = M(UT,.Wö.q0,6^   ,6^   .i      )+^ Au+^ Aw+|^ Aq + \   p'     p'^p'   T   '   E       w 3u dw dq     n 

1MA6    +—A6     +—Ai    . (V-13) 
06    " T    36    " E     di       w lv       ; 

T E w 

The coefficients of Au,   Aw, and Aq are called stability derivatives, and 
the coefficients of A6m ,   A6„ , and Ai     are control parameters. 

T E w ^ 

We may now linearize the terms on the left-hand side, again assum- 
ing small deviations from the reference motion: 

dU 
-^~ + -5^ + WpAq + qpAw+g sin ep+g cos epAe = X + AX 

dW 
-^-+-5^- UpAq-qpAu-gcosep+g sin epAe = Z + AZ 

(V-14) 

^+^=Mt.M 

We consider near level flight where 6p is small,   Wp- 0,   q—— 0, 
8  — 0 ,  so that the following linearized equations result in: 
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(V-15) 

dU p dAu      Ao   v     öXA    ax.   .OX  ..    . ax   .. 
dt        dt       s P     du öw äi        w     36^       T 

w T 

d Aw      fT     . ,       dZ  .       .^Z   A        aZ   ..      t 3Z     .. 
—iT—L- U„Aq-g = Z„+^—Au + ^r-   Aw+—— Al     +--r   ^^r,, 

dt P   n    6       P    3u öw öi        w     dö^       T 
w T 

,n    =M„ +-—AWT-—Au+ -—Aq +:rr— A6rT,+-—-   Aö^ + 
dt P     öw 3u öq     M    d6_      T     o^.,       E 

r i^ 

Hl1    \; 
di 'w ' 

w 

Now again,  we assume that at any constant reference condition (Up = 
constant,   Wp = constant),   equations V-15 are valid.    And,  as the air- 

plane moves continuously through various sets of reference conditions 
we assume the equations still to be valid.    That is,  no additional assump- 
tions are necessary to linearize the equations about a varying set of flight 
conditions if the linearisation of the equations is valid about each flight 
condition encountered.    As the airplane changes flight condition,  the co- 
efficients of the Taylor expansions of the aerodynamic forces,   i.e. ,   the 
stability derivatives,  which are functions of the flight condition,  become 
functions of time. 

When there are no deviations from the prescribed path,  all of the 
perturbation quantities are zero,   and we have 

dU 

dt P 

-g = Zp (V-16) 

Mp 

Thus we may eliminate these terms from V-15,   resulting in: 

72 



■ ^l J ♦.■•". _ 

*WBfc» 

d(^xx) J    ,a   ax.    , OX .     ax ..      ax  A. 
dt     ft       aw        au       aö^   T   ai      w 

T w 

d(Aw)  „   A     az A     az.     az At      az  .. 
- U_ Aq = -—  Aw + —- Au + -r— A6_ + —-  Ai dt       p n    aw        au       aö,,,    T   ai     w (v-i?) T w v 

d(Aq)  aM .   L aM .   ^ aM .     aM A    L aM ..      hu .. 
,,   = -r—Au +—— Aw + ——Aq + ——Ai     +-r-j—  A6„ + ^-r— Aöm dt     au        aw aq       ai     w   as«    E   aö      T 

where the stability derivatives are functions of the path variables, and 
consequently, functions of time; e.g. , 

This approach is strictly true for infinitesimally small disturbances; 
however,  experience has shown it to be valid in steady flight for distur- 
bances of a sufficient magnitude to be of practical interest.    Physically, 
the phrase "small disturbances" implies that if the stability derivatives 
(the coefficients in the Taylor series) are computed along a prescribed 
path and then a disturbed path is computed on the basis of the linearized 
equations,  it is not possible to distinguish between the stability deriva- 
tives computed in the basis of the prescribed path plus the disturbed 
path compared to those computed along the prescribed path.    Mathe- 
matically, we have expressed each side of equations V-12 as a zeroth- 
order term and then equated the zeroth-order terms to obtain the path 
equations, and the first-order terms to obtain the equations of the 
dynamics. 

Practically speaking,  we must decide whether any second-order 
terms would be significant for finite disturbances.    Mathematically,  the 
order of each term is clear; however, when the disturbances are of 
finite size,  it becomes difficult to estimate precisely which higher-order 
terms will influence the solutions,  and which will not.    This would de- 
pend to a great extent on the detailed nature of the aerodynamic forces 
and considerations discussed at the beginning of this chapter. 

B.    Short Period Response 

"W> now investigate in detail the nature of the response of an airplane 
in unsteady flight.    The linearized equations of motion of an airplane with 
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no horizontal velocity perturbation (^u = 0) from Section A and Appen- 
dix II,  are: 

d?   =ZwW + Upq' (V-18a) 

—•= M    w + M    q. (V-I8b) dt w q 

These equations describe what is usually referred to as the short period 
motion of the airplane,   since they describe the initial,  comparatively 
rapid motion of the aircraft.    To the pilot, any serious deviations in the 
nature of the rapid motions of the aircraft would be of considerably more 
importance than effects on the slower motions,   since accelerating or 
transition flight would be performed with the pilot's attentions firmly 
fixed on the task of controlling the aircraft. 

Equations V-18 apply at constant velocity as well as when the flight 
velocity  Up,  is changing.    To simplify the notation,  the subscript on Up, 
the reference velocity,  will be dropped.    Equations V-18 are restricted 
to approximately leveA flight,   otherwise a gravity term will be present in 
the vertical force equation.    Control input terms are not included,   since 
only the response to initial conditions is investigated. 

The stability derivatives are,  in general, a function of flight velocity, 
power setting 6rp,  and wing tilt angle.    These relationships are discussed 
in detail in Appendices II and III.    For conventional aircraft as well as 
VTOL aircraft at low speeds,   it is a reasonable approximation to con- 
sider the stability derivatives determining the short period characteris- 
tics as only functions of velocity.    The term accounting for downwash lag 
(M^) usually included in airplane analyses (Reference 14) is neglected 
here.    It is considered that the presence or absence of this derivative in 
these equations will not affect the general nature of the results. 

The object of this analysis is to draw general conclusions regarding 
the influence of varying flight velocity on the transient response of an 
airplane.    In particular,  the discussion of Cliapter III indicates that we 
have important effects of varying frequency on the amplitude of the short 
period motion.    In addition,  each variable of interest in the problem 
must be investigated,   since each one,  in general,  will be a different 
function of time. 

Smooth and monotonic variations of the stability derivatives with 
velocity are investigated.    The major part of the study deals with 
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statically stable aircraft (M^, <0).    Some consideration is given to the 
case where  M^  changes sign, as typical of VTOL aircraft at low speeds 
(Reference 24). 

One objective 01 this study is to determine whether there are any un- 
usual,  or unforeseen phenomena that may occur due to variable velocity. 
Thus,  consideration of unsteady effects on statically unstable aircraft, 
whose steady flight characteristics are poor,   is not considered to be of 
particular importance at this time. 

First we examine the variation of stability derivatives typical of con- 
ventional airplanes,  where the stability derivatives are linearly propor- 
tional to flight velocity.    Then we will investigate other variations,  first 
with no airframe damping, and then with damping. 

We define no airframe damping as: 

L _ M 
aBH0H{f+^r -T3-3"- (v-19) 

xJ m       mu i 

This implies that the damping in pitch for a normal airplane is positive 
(unstable),   since vertical damping is usually present    (^f +   ^    > 0) . 

m       mu 
We consider the following cases: 

1.    Stability derivatives are linearly proportional 
to velocity. 

2a.    The attitude stability varies as a power of the 
velocity. 

2b. The attitude stability varies linearly with velocity 
and is nonzero in hovering. This is a reasonable 
approximation to the variation of attitude stability 
with velocity for many VTOL aircraft. 

1.    Conventional Aircraft 

We first study the short period response of a conventional airplane 
with the flight velocity varying in an arbitrary manner.    The pitch damp- 
ing  (Mq),  the attitude stability (M^,) • and the slope of the lift curve  (1^) 
are assumed to be proportional to velocity.    The drag is assumed to be 
proportional to velocity squared and the variation of drag with angle of 
attack is neglected. 
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Flight speeds down to and including zero are investigated.    While the 
case of very low flight speeds is perhaps physically unrealistic,   it will 
assist in understanding the effects of wide variations in unsteady flight 
conditions. 

Very low flight speeds may be thought of as a rough approximation 
to a deflected jet VTOL, where induced flow effects from the engines are 
neglected. 

The stability derivatives are: 

M 

"1 3-=c 
M_ 

q 

pSc 
21 

u = c M- 
q 

2uk 2 

.     y J 
u H    u 

I     " CM       21     U - CM      2Mk 2 

»L    J ^ L     y. 

m   = CLö [2mJ U = C
LQ [z^cj   U 

(V-20) 

^-D [£|  üS = C
D [lb] ^ 

where C M5 '  CMn. '   C j^    ,  and C-  are assumed to be independent of 

flight velocity. The relationships, V-20, are good approximations to 
the stability derivatives of an airplane at subsonic speeds without ap- 
preciable power effects (Reference 14). 

The differential equation describing the pitching velocity,   q,   is 
(see Appendix II): 

2^ dfq 
dt3 2|ic 

1 

HC^+CD C^ 'IT'   ) - ^ H dq 

4Mak; 

2MCMö-CM_(CLö+CD) 

(V-21) 

U^q = 0 
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The differential equation for the vertical velocity,   w ,   is identical 
to V-21.    Note that the fact that these two equations are identical is a 
special case,  and is not generally true.    This property of time-varying 
systems may be seen by observing that the differential equations for the 
angle of attack,   a , and the normal acceleration,   N2 -  are different 
from pitching velocity and vertical velocity: 

ä!£L+(2a  .^ud-^.U^^     ^]u)a=0j (v.22) 
dt2 B   u2     dt      ^     u B   u2 

d2N -        dN 3      " 
Z+(2ffT,-^)u-T-^+(-^-^-- UCZCT   - 3—]) N    = 0. (V-23) 

dt2       x     B    u^'      dt        M  rf     U u     B       ya-    Z 

where  a — -7 ,   N~ = [L... + 77] w ,  and Q^ and  1     are defined by V-24. 
U £ v*     U B o 

In particular,  the damping term differs due to the presence of the 

unsteady term  — which will be reflected by different time histories of 

these two variables as compared to the pitching velocity. 

We now nondimensionalize the velocity by U    = U    ■Jl+f     where 

U       is the initial flight velocity 

f       is the initial value of the parameter f = -—• 
o u)U 

U       is the initial acceleration 
uo 

u)       is the initial short period frequency = -— 
o '1 

o 

Therefore, 

U* - U     as   f    -' 0 
o o 

u* -u JT" - NUi 
oX  o • o 

as   f   -» « . 
o o 

Small values of fo correspond to low accelerations,  high initial velocity, 
and high frequencies, and large values correspond to low frequencies, 
slow initial velocities, and rapid accelerations. 
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We define 

'V 
Zük a 

a q a 

20" 
B     2^c 

fe ('-. • 
cM-(ir' 

q   y 
) 

(V-24) 

where   10  is the wavelength of the short period motion.    That is,   it is 
the distance traveled by the airplane while executing one cycle of short 
period motion.    This parameter is independent of flight speed and varies 
only with density for a given airplane. 

The particular form of the characteristic velocity  U     is taken for 
two reasons: 

1. U    will never be zero except for the trivial case 
of hovering with no acceleration. 

2. For small values of f ,  the effects of acceleration 
can be directly interpreted. 

The time is nondimensionalized by 

U* 
T  =   —-   t  = ÜÜ 

1 o 
o 

^7 (V-25) 

This form of the characteristic time is selected for the same rea 
sons as the selection of the characteristic velocity. 

The differential equation for  q  in terms of these parameters is: 

or 

dr 

_fq 
dra 

U 1 
26 

B U3 
ü^+U»q = o 

26    - 

dU 
dT 

B     ü3 
U^+Uaq = 0. 

(V-26) 

(V-27) 
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where   6p. ,  the steady flight short period damping ratio,   is a constant. 
The characteristic time and velocity selected do not apply when f0 = - 1 , 
corresponding to rapid decelerations.    This,  however,  is an extreme 
value of f0 and is not of particular significance for the following reason. 

Since f    = 
U UP        A U 

o o    o period 
o     uu    U U    2ff Zff U 

o     o o o 

a value of f    = - 1   indicates that in y— of an initial period,   the flight 

velocity is zero.    The dynamic motion is only of interest for positive 
flight velocities.    Therefore,  when f   ^ - 1 ,  we may neglect the spring 
constant entirely,   since the time interval of interest is only a very small 
part of a cycle.    Thus,  the ranee of interest off     is   -l<f   ^0». 

' 0 o o 

To solve equation V-27, we transform the independent variable 

T_ 
Ti   =/    U ds (V-28) 

' o 

I 
where  Ti   may be considered as the nondimensional distance traveled. 
Then 

dT  " U   dfx dTa " dTa    U       dTx    dT   ' 
1 

The transformed differential equation describing  q is: 

Jd!s  .,.    _dq 
r 
i 

i  +26    -£L +q = 0. (V-29) 
dT B  dTl 

Equacxon V-29 is a constant coefficient differential equation, and 
thus the differential equation V-21 is exactly integrable in terms of sim- 

| pie functions for any velocity time history.    Note that equation V-29 is 
r independent of the acceleration parameter,   f   , and the time history of 

the velocity of the airplane.    Variable flight velocity causes only a 
( stretching or shrinking of the time scale, as seen from equation V-28. 

The homogeneous solution to equation V-30 is: 

! qCn) = e fci  cos T ^1 -6g     Ti +»l| j .      (V-30) 
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For simplicity, numerical results are presented only for constant 
acceleration and deceleration.    However, the solution,   V-30,   is valid 
for any velocity variation with time. 

To determine the pitching velocity response, we proceed in the fol- 
lowing way.    On a graph of the transformed independent variable,   Ti , 
vs.  nondimensional real time,   T ,  the relationship between Tj   and T 
given by equation V-28 is plotted for the velocity time history of interest. 
The response of the airplane as a function of Tj    is plotted along the  Tj^ 
axis.    The response of the airplane in real time,  proportional to T   ,   re- 
sults from the particular relationship between Tj   and  T  for the given 
problem.    Comparison of the actual Ti   ,   T  curve to the line with unity 
slope indicates the distortion of the response in real time. 

Figure 2 shows the relationship between T and Tj   for various values 
of f    with constant acceleration.    Relationships are plotted both for 
f0 >  0 ,   representing accelerated flight, and f0 <   0,   representing de- 
celerated flight.    The curves for  Tj.   vs.   T  cease to have meaning when 
the slope becomes zero,   since the slope   S*l   is proportional to flight 

dT < 
velocity.    Note the small part cf a cycle that is of interest when f    = - . 5 . 

When f0  is small,  there is a range of T  over which little or no dis- 
tortion occurs.    Over this interval,  the effects of nonsteady flight on the 
response may be approximated by a simple time scale change.    The ap- 
plicability of this simple approximation depends upon the magnitude of 
f0 ,  as well as the time of observation.    As  f0  increases,  the time in- 
terval during which this approximation applies becomes smaller. 

When the airplane is decelerating,  the effects are more pronounced 
than when accelerating,  as seen by comparing the departure of the curve 
lor f0 = - . 1  from the f0 = 0  line to that of f0 = . 1 .    The percentage 
change in velocity increases as the flight speed decreases. 

The frequency of the motion changes with time,  increasing if the 
airplane is accelerating and decreasing if the airplane is decelerating. 
When the airplane has no natural damping, there is no amplitude change; 
neutral stability exists for any value of f0 .    Typical responses are 
shown in Figure 3. 

When the airplane decelerates to hover and stops,  then the motion 
at zero velocity is  q = constant,   w = constant;  i. e. ,  there are no aero- 
dynamic forces acting on the airplane,  and it continues to move at a con- 
stant angular rate and vertical velocity.    This simple phenomenon cor- 
responds to missile motions called tumbling (Reference 9), and is of 
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little physical significance in this problem.    This ultimate motion depends 
upon the initial conditions.    For one set of initial conditions, the airplane 
\vould be TT-ecisely at rest at zero flight speed. 

Because of the nondimensionalization used,  the time scale of motion 
of an airplane in different flight conditions must be carefully interpreted. 
The relationship between flight speed,  acceleration,  the physical para- 
meters of the airplane, and real time is given by V-25 as: 

lo^   o o T  = -^- JU     + U   lo 

For constant acceleration, the quantity under the square root sign is 
the velocity attained by the vehicle after traveling one-half a short period 

o wavelength,   -r— ,  and thus the characteristic time is the reciprocal of the 

instantaneous frequency of the short period motion after traveling one- 
half a short period wavelength.    It is roughly an average period of the 
motion. 

To determine the way in which the response of an airplane varies 
with initial flight velocity for the same acceleration,  note that the time 
scale changes, as well as the time function describing the response (due 
to f  ) .   As the flight speed is reduced, for example,   f0  increases,   re- 
sulting in a different transient motion in real time,  shown by a change in 
the relationship between T and Ti , and in addition,  corresponding values 
of T  represent a longer real time interval when the same airplane ( 10 

constant) and the same acceleration at each initial flight speed are 
studied.    Figure 4 presents responses vs. a modified characteristic time 

, presenting directly the variation of the response with the time 

of occurrence of a disturbance as an airplane accelerates from hover to 
some flight speed. 

The effects of airframe damping on the pitching velocity and vertical 
velocity responses will now be investigated.    It can be observed from 
Figure 2, that depending upon the value of f0 ,  the envelope of the re- 
sponse may be distorted either towards an apparent loss in damping as 
the  Ti   vs.   T curve lies below the f0 = 0 line,  or an apparent increase 
in damping as the Ti   vs.   T curve lies above the f0 = 0 line. 

One way of presenting the magnitude of the damping variation is to 
compare the time to half amplitude of the response when the flight 
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velocity is varying to the time to half amplitude when the flight velocity 
is constant. 

The percentage change, based on the steady flight time to half ampli- 
f 

tude,  is shown vs.   T-r^"-   ^n Figure 5.   A physical boundary occurs 
1    T   IQ 

where the flight velocity is zero at the time to half amplitude. 

The percentage variation is quite small,  particularly when the steady 
flight damping ratio is of appreciable magnitude, and f0  is small.    Signifi- 
cant changes occur when f0  is large and the damping ratio is either very 
small or very large.    The former case is physically not particularly 
significant since the time to half amplitude is long.    The effects at large 
damping ratios may be noticeable.    The values of f0  necessary for large 
effects would indicate very low flight speeds. 

Figure 6 shows a direct comparison of the envelope of the response 
for two damping ratios for the limiting values of f0 = 0 ,   steady flight, 
and f0 = •  .    At small values of time,  the response for fo = * appears 
somewhat less damped, and as time increases appears better damped,  in 
comparison to steady flight.    It should be recalled that the frequency of 
the motion is also changing,   so that in the stretched time domain,  what 
we might call the "instantaneous damping ratio" has not changed,   since 
the frequency is different, as well as the amplitude for f0 = *   compared 
to f0 = 0 .    That is, if we imagine plotting a constant coefficient response 
on a rubber sheet, and then stretch or shrink the sheet, we change the 
apparent frequency and damping, but do not change the "instantaneous 
damping ratio. " 

This is a useful way to visualize the effects of varying flight velocity 
on the short period dynamics of an airplane.    Recall that we have so far 
only investigated the response in pitching velocity and vertical velocity. 

In general, the time histories of other variables may be of signifi- 
cance, and will be different due to the time-varying nature of the problem. 
In a piloted airplane, for example, the variation of normal acceleration 
with time is a quantity readily sensed by the pilot that may be of impor- 
tance.    Angle of attack or fuselage attitude may also be of interest.   All 
of these variables will,  in general, be described by functions of time that 
are different from the pitching velocity and the vertical velocity. 

Thus, to obtain a complete analysis of the dynamic behavior of the 
airplane in nonSteady flight we must evaluate the response of all variables 
of interest.    We will restrict detailed consideration of other variables to 
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the angle of attack and normal acceleration.    The angle of attack response 
is determined by the relationship between angle of attack and vertical 
velocity; 

or = tan _i   w w 
U       U   ' 

or directly from the differential equation V-22.    The former approach is 
simpler.    We assume that the arc tangent may be replaced by the angle 
in radians.    While this approximation may not be valid at low speeds,  it 
will preserve the trends in   a   .    Errors incurred will not be of particu- 
lar physical significance. 

Then, the angle of attack response is 

i  -V1 
or = — e 

U 
Ci cos 

»B  ri + * 

For constant acceleration, equation V-31 may be expressed as 

[1 + f 1 l i 3 j 

a = - Ci  cos 
1               o 
  +  T 

1 + f 1 + i. 

(V-31) 

(^1 -fig    Tx +♦). (V-32) 

When i0-
m and T  = 0,  the flight velocity Is zero, and the angle of at- 

tack is undefined. 

The normal acceleration response is computed from the relationship 
between vertical velocity and normal acceleration: 

N    = Z    w, 
Z        w 

so 

NZ=tiII?]CCI-a+CI>]üe     ^ Ci cos (^■6B   Ti+*V (V-33) 
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and for constant acceleration 

-6 B 

N    =     7==- + T z   [^Tf7   i+fo 

ÜT^T    1+fo    /      1+fo 

Ci  c osUl -6^   Tx   + *j (V-34) 

Inspection of equations V-31 and V-33 reveals that the amplitude of the 
angle of attack motion will decrease more rapidly in accelerating flight 
than the amplitude of pitching velocity, and not as rapidly in decelerating 
flight. 

Normal acceleration exhibits the opposite tendency,  being less stable 
in accelerating flight than the pitching velocity and more stable in de- 
celerating flight. 

Thus, while the influence of changing flight velocity on the pitching 
velocity and vertical velocity is to distort the time scale,  the angle of 
attack and normal acceleration responses will have amplitude modifica- 
tions as well, as anticipated by the difference in the differential equations 
for these variables (cf.  equations V-21,  V-22, and V-23). 

Figure 7 is a contour map of the amplitude variation with time of the 
angle of attack and normal acceleration. 

B 

+ f 
vs. 

1 

1 + f. 1 +f. 
is plotted.    The former quantity 

depends upon the steady flight damping ratio, and the latter quantity is 
nondimensional velocity and is proportional to real time.    Recall that 
f   > - 1 o 

f     > 0 acceleration 
o f   <   0 deceleration, o 

6      > 0 stable airplane in steady flight. 

6     < 0 unstable airplane in steady flight. 

On Figure 7, as time increases, we move to the right for accelerat- 
ing motion and to the lext for decelerating motion. 

We are located in the upper half of the graph when the airplane is 
stable and accelerating or is unstable and decelerating.    We are located 
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in the lower half when the airplane is stable and decelerating or is un- 
stable and accelerating. 

In the upper half of the normal acceleration graph (stable-accelerat- 
ing, unstable-decelerating) or in the lower half of the angle of attack 
graph (stable-decelerating, unstable-accelerating), we have a time his- 
tory that during some time interval appears stable (unstable) and then 
appears unstable (stable). 

That is, the stable, accelerating airplane (moving to right) may have 
a normal acceleration response that initially increases with time (the in- 
creasing Zw dominating) and then decreases with time (the exponential 
damping term dominating),  even though the airplane is stable in steady 
flight.   Exactly the same phenomena may occur for the unstable,  de- 
celerating airplane. 

The angle of attack response possesses opposite tendencies.    A de- 
celerating,  stable airplane may exhibit a time history that initially de- 
creases in amplitude to a minimum and then increases.    Initially,  the 
damping term dominates, and as time increases  the velocity change 
dominates,  the amplitude of the angle of attack response always approach- 
ing «(90°) as the airplane approaches hover. 

Note that in the opposite regions of each graph,  relating to the nor- 
mal acceleration response for a stable, decelerating airplane, and the 
angle of attack response for a stable, accelerating airplane, the effects 
are quite orderly.    The modifying amplitude factors and the airplane 
damping act in the same sense.    Thus,  in both of these situations,  the 
normal acceleration in deceleration and the angle of attack during ac- 
celeration will be better damped than the pitching velocity and vertical 
velocity. 

This, then, gives a reasonably complete description of the influence 
of changing flight velocity on the short period response of a conventional 
airplane. 

For clarity, the response of the aircraft in the special case of f0 = co 

is shown separately in Figure 8.    The angle of attack is initially unde- 
fined.   Responses are shown for a damping ratio of 0 and  .4 .    The angle 
of attack response is stable with no airframe damping, and the normal 
acceleration response is unstable.    It would be expected that in low-speed 
flight the character of both of these curves is not particularly significant, 
since the flight behavior of the airplane is not strongly dependent upon 
angle of attack; i. e.,  the airplane is being lifted by jet thrust.    Possible 
occurrence of wing stall would not be important due to the low dynamic 
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pressures.    The lift curve slope is small,  so that the levels of normal 
acceleration encountered are small. 

To summarize these results,  two features should be carefully noted. 

1. There are compensating effects in the two-degree  of freedom 
short period motions of an airplane,   such that,  for an airplane 
with no natural damping, the changing frequency with velocity 
(i. e. ,  time) causes no amplitude change.    This is somewhat 
different than might be expected from the discussion in 
Chapter III on time-varying equations, where an increasing 
frequency results in an apparent damping.    This effect would 
be present in an airplane if the short period motion is approxi- 
mated by a single-degree-of-freedom motion; i. e. ,  if the center 
of gravity of the airplane is constrained to move in a straight 
line.    For two-degree-of-freedom motion,   the unbalance of the 
forces in the  X direction enters into the equations, causing the 
resulting effects discussed. 

2. The time histories of different variables are different functions 
of time.    This is in contrast to the properties of constant co- 
efficient systems where all variables are composed to the same 
functions of time,  but is a natural consequence of multiple- 
degree-of-freedom systems with variable coefficients. 

The unsteady effects might be thought of as being least on the pitching 
velocity and vertical velocity,  where only the time scale is distorted. 
Somewhat stronger and unusual effects are noted in angle of attack and 
normal acceleration, where there is an additional envelope change. 

The preceding method of presentation does not clearly show the ef- 
fects of acceleration on the dynamics of an airplane at conventional flight 
speeds,   so we present the identical results in an alternate form,  which 
will not apply as the initial flight speed approaches zero (f   "♦ o0). 

The characteristic time is taken as the initial frequency,   Uü0 ,  and 
the characteristic velocity is the initial flight velocity. 

Figure 9 presents the relationship between Ti ,  the transformed time, 
and T,   the nondimensional real time  (u)0 t).    Here the curves do not 
cross over the f0 = 0 line (cf.  Figure 2),  so that accelerating flight re- 
sults in a stretching of the time scale. 

Time histories with no airframe damping for various values of f0 

are shown in Figure 10.    The influence of different magnitudes of 
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acceleration and deceleration on the response of an airplane at a given 
initial flight speed are shown directly, since U) is constant for a pre- 
scribed initial flight condition. 

The frequency of the motion increases as velocity increases,  and de- 
creases as the velocity decreases. 

Large changes in the angle of attack envelope are present,  appearing 
as stable when f0 > 0 and unstable when  i0 < 0 .    When f0 = - . 2 ,   in fact, 
the angle of attack response diverges.     The actual motions of the airplane 
are quite mild,  as noted from the pitching velocity motion.    However,   it 
does not seem likely that this behavior of angle of attack is of real im- 
portance since a value of T = 4 at fo = - • ^   represents an instantaneous 
velocity of 20 percent of the initial velocity.    For this divergence to occur 
rapidly then,  the airplane initially would hav«. been at a very low flight 
speed,  where the angle of attack is not of particular importance. 

The counterpart of Figure 5 is presented in Figure 11.    The magni- 
tude of the fractional change in time to one-half amplitude for pitching 
velocity and vertical velocity is presented as suggested in Reference 2. 
(However, as discussed in Chapter II,  the analysis and graphs which are 
presented for angle of attack in Reference 2 are incorrect. )   Figure 11 
may be considered as indicative of under what flight conditions we may 
ignore the effects of acceleration or deceleration. 

Figure 11 results from the following relationships.    The percentage 
change in the time for the motion to damp to one-half amplitude is: 

E =-— — . (V-35) 

where  Ti   is the time to one-half amplitude in steady flight (equal to . 693 

divided by the damping ratio) and Ti,   is the time to one-half amplitude in 
s 

accelerating or decelerating flight.    For constant acceleration,  the re- 
lationship between Tj   and T is given by 

TX = r +-^— . (V-36) 

Solving V-36 for  T  in terms of Tx ,  the relationship between Tj ,   f , 
and E  is as follows: 
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f    Ti=     'ZK       . (V-37) 
0    *    (1 +E)a 

where E  is negative in accelerating flight,   (f0 > 0),  indicating a shorter 
time to one-half amplitude, and positive in decelerating flight,   (f0 < 0) , 
indicating a longer time to one-half amplitude. 

The relationship (V-37) is plotted in Figure 11.    Note the asymmetry 
of the diagram which can also be clearly seen from Figure 9-    The varia- 
tion in time to half amplitude is greater in decelerating flight for the same 
magnitude of f   ,  a natural consequence of the percentage velocity change 
increasing as the flight velocity decreases.    Also,  as before,  a physical 
boundary exists for deceleration,   since the time to half amplitude has no 
meaning when the flight velocity of the aircraft is negative at that time. 

Recall that this discussion only applies to pitching velocity and verti- 
cal velocity. 

We also evaluate the angle of attack response and the normal ac- 
celeration response as before. 

Thus, for constant acceleration,  in terms of the parameters used 
here, 

a =—^.  , (V-38) 
u (i + f  r) 

o o 

and therefore the envelope of the angle of attack response may be ex- 
pressed as 

— a T 

f 
o 

e 
o 2 

J 
(or) , (V-39) 

(l+foT) 

where 6     is the damping ratio of the airplane response in steady flight. 

T.   is the time (nondimensional) to one-half amplitude in steady flight. 
8 

Now,  in terms of this parameter we may express the angle of attack 
envelope as 
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("K 

— .     o (f ^n 
f    T + o 

•In (1 + f    T) 
o 

(V-40) 

For convenience, define r\i  = ^0 
Ti .   *)   = ^o T' an^ t*ie relation8hip 

between the amplitude ratio AR ,   T)   and T^X   is: 

TU, 
•   .693 (11+^-) 

In (AR (1 + 71)) (V-41) 

Also for constant acceleration, using the relationship between vertical 
velocity and normal acceleration,   N_ = Z    w, the envelope is 

f    T8 

_   -6B(T + -2r-) 

(N_)   ~ (1 +f   r)e ; (V-42) 
Zi e o 

we may develop a similar relationship between the parameters  r\i   and r] 
i nd the amplitude ratio of the response.    The result is 

Til 

.693(1!+^-) 

N„ ~ ""!    ,11 + 1. 
Z ln ( AR") 

(V-43) 

Figure 12 presents contour maps of the amplitude of the angle of attack 
and the normal acceleration based on equations V-41 and V-43.    The 
vertical axis  (T^ = f   TV) depends upon the acceleration parameter and 

the time to one-half amplitude in steady flight.    The horizontal axis 
(r| = f   r )  is proportional to real time,  the time scale being set by the 
acceleration parameter f   .   Since T > 0 , we move to the right when the 
airplane is accelerating, and to the left when the airplane is decelerating. 
When the airplane is stable in steady flight Ti > 0, and if it is unstable 

V0- 
Thus the steady flight stability and whether the airplane is accelerat- 

ing or decelerating locates us in different quadrants: 

89 



f 

t 

first quadrant     -stable,  accelerating 
second quadrant- unstable, decelerating 
third quadrant     - stable,  decelerating 
fourth quadrant  - unstable,  accelerating 

Figure 12 presents the same information as Figure 7 in a different form. 
Since Figure 7 has been considered in some detail, we will not discuss 
Figure 12 in detail.    We note that the unusual envelope behavior occurs 
in the first and second quadrants for normal acceleration,    f Ti > . 693 

before the apparent instability in normal acceleration appears. 

For angle of attack, the unusual envelope behavior occurs in the 
third and fourth quadrants.   We note here that if f Ti < - . 693 , the angle 

of attack response will always appear unstable in unsteady flight.    The 
significaice of these critical points is interpreted by recalling that 

8 B 

and thus normal acceleration will exhibit an instability over some time 
interval in accelerating flight when 

fo > 6B . (V-44) 

Angle of attack will always be unstable when 

fo < - 6B (V-45) 

for stable aircraft.    Note that V-45 is not a stability criterion for angle 
of attack,  since it is always ultimately unstable when f    is negative and 
the acceleration is constant.    Relationships V-44 and V-45 give an indica- 
tion of a way of estimating the significance of the size of f0  that will be 
discussed in more detail in the following pages. 

Some typical angle of attack and normal acceleration envelopes illus- 
trating the above phenomena are shown in Figure 12.    We again clearly 
see the additional complication of dealing with time variable systems, 
the fact that the envelopes of the various responses behave differently. 
Stability in an abstract sense is not particularly meaningful,  and we 
must consider the particular variables that are of concern in the problem 
and determine stability criteria for them. 
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For example,  in this case it is probably not of much importance that 
for the stable airplane,   decelerating,  the angle of attack response is es- 
sentially unstable.    Unless an airplane is capable of very large decelera- 
tions,   this would only occur at low flight speeds,   and should not be of 
much concern to the pilot.    However,  it may be of some importance that 
in accelerating flight for the stable airplane the normal acceleration may 
appear initially unstable,  although it is ultimately stable 

We must,  therefore,   in investigating the dynamics of aircraft or 
missiles in nonsteady flight,   consider carefully which variables are of 
significance in piloting the airplane,  or from structural or other con- 
siderations,  and study the nature of these variables.    In many of the 
missile analyses,  the distinction between angle of attack and normal ac- 
celeration has not been noted. 

This,  then,  gives a reasonably complete picture of the initial condi- 
tion response of the airplane for constant acceleration.    Variable accelera- 
tion will affect the details of the results and may be easily evaluated in any 
specific case.   Since the results are a function of the instantaneous value 
of the velocity,  constant acceleration and deceleration should point out the 
significant effects. 

Recall that other variables not discussed will have different time 
histories which may be of importance in specific situations.    For example, 

t 

4 us ,   ur ctiiguxctr eic^cxcrratiun   '— 
' O 

from q . 

airplane attitude,   J*   q ds ,   or angular acceleration  (-p) will be different 

For completeness,  we consider a practical situation,   resulting in a 
variable acceleration time history.    This is the following problem.    Con- 
sider an airplane in which the power is suddently cut off; the airplane de- 
celerates due to the drag force.    This example is equivalent to the mis- 
sile analyses with constant density, and is interesting since it i3 ap- 
parently one of the few physical problems which gives rise to Euler's 
differential equation. 

The equation describing the trajectory of the airplane (i. e. , the 
equation determining the velocity time history) is:   (It is assumed that 
lift is maintained equal to the weight of the airplane as speed decreases. ) 

D a 

mU    'U   ' U o       o o 

f   *   (Ü)a = U (V-46) o    o 
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The solution to equation V-46 is: 

Ü= ^-3. (V-47) 
1  - f   T 

o 

Defining CT     and 0    as: 

w q D 

o 

ZQ„ = 2a   - f tu   . 
B woo 

Here we note carefully the manner in which the drag enters into the 
damping term.    To be consistent,  the relationship between the drag and 
the acceleration parameter f0 must be considered.    These quantities are 
related by the trajectory equation.    When flight speed is varied by other 
factors,  then the simple relationship (V-46) between drag and the ac- 
celeration parameter does not exist. 

U    U 
Since f =  = f    , 

Oü0 U3        0 

f is a constant.    In other words,  the fractional change in the spring con- 
stant per cycle is constant, a property of Euler's equation mentioned in 
Chapter III. 

The differential equation for pitching velocity,  as given previously, 
is: 

—+(260 -f  ) U ^   +U3q = 0. (V-26) 
dfa B       0        d? 

We solve equation V-26, where  U is given by V-47,  by assuming a solu- 
tion of the form 

q = C (I  -f0T)N . (V-49) 

Substituting V-49 into equation V-26 gives an equation for  N: 

26 
N3 --7-2-N+ -^ = 0. {V-50) 
it 
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When the two values of  N obtained from V-50 are distinct,   the two 
linearly independent solutions of equation V-26 are: 

= (1 -ft) 
o 

^ 
B FW 1 - 6. 

Cxd-^T) + Ca (1 -f   T) o 
(V-51) 

wi 

where it is assumed that Nj   a  are complex. 

Taking the limit as  f    "* 0  ,  the deceleration approaches zero and 

■V 

w 
Ci  c OS   Jl   - 

"^^"  "' 1 a   — 
0«    T + Ca  sin ^1 -ö,,    T 

B B 
(V-52) 

and we recover the conventional steady flight result. 

From the relationships between a  and  N7  and w , the envelopes of 
the variables are: "^ 

B w      1 
_ f f        2 

(q)     (w)   -(1  -ft) 0 = (1  -f    T)   0 

e,       e o o 

(a)    (6)   ~(1 -f   T) 
e,       e o 

■4* 
o 

= (1   "f    T) 
o 

f       2 
—.   o 

(Nz)e~(l f   T) 0    = (1 
O 

w 3 
2 

for) (V-53) 

3 

The second form should be used to evaluate the effects of f   ,   since 
o 

6      is not dependent upon f   ,  while 6_   is. 
w r r        o B 

The parameter that determines the importance of deceleration is: 
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C 
- m— 
o Q a 

— - (D , (a  ~a      ) - T— ^  • (^^ 
o 0L      D

0    y 

For conventional aircraft with angular damping,  this will be quite a 
large number.    For typical values of this parameter,  the first-order ef- 
fects of deceleration due to drag may be obtained by expanding the envel- 
ope expressions in series in f   T ,   retaining only the first-order term: 

i      6 f 

- ■2 + r  -^w "T,T 
(q)    -(1  - f    T) o -.e 

e o 

i      ö f 
1        w       .. o, — 

_ 2+- -(6w+r)T 

(a)   ~(1 -f   T) 0-e (V-55) 
e o 

3        w .. 3 ,   . ~ 
2      f w     2   o 

(N_)   -(1  -f    T) 0-e 
Z e o 

for small f    T . 
o 

These first-order approximations show clearly the differences in the 
envelopes of the motion,  as well as the influence of the varying spring on 
damping.    In addition,  the difference between the quasi-steady solution 
and the true unsteady solution is clearly shown.    A quasi-steady solution 
of equation V-26 with the relationship V-48 gives a damping term that is 
to the first order: 

-2 (6     -f ) . 
w       o 

From the quasi-steady solution,  we would estimate the envelope of pitch- 
- (6     - f  ) f 

w       o 
ing velocity as    e Comparison of the quasi-steady expres- 
sion with the exact solution (V-55) shows that the varying spring constant 

o 
has decreased the apparent damping by y.   A similar difference is pre- 

sent in the angle of attack and normal acceleration envelopes.    (Compare 
the equation^ V-55 with the damping terms in equations V-22 and V-23. ) 
This points out the care with which we must interpret quasi-steady effects; 
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i. e. , effects seen by inspection of the coefficients only. The true damp- 
ing is less than the quasi-steady damping (f < 0), due to the decreasing 
spring constant. 

Now let us turn to the question of how important these effects are. 
From V-46, 

D 
f    =  =  . 
o m U   * o   o 

For a conventional airplane,   f0 ^ - . 1 .    The importance of the unsteady 
effects are shown by comparing f0  to the damping ratio (see equations 
V-53), thus indicating that changes in the response due to deceleration 
are negligible except for an airplane with very low damping in steady 
flight. 

Figure 13 presents response envelopes for very light airframe damp- 
ing.    For normal aircraft, with a typical lift curve slope,  these cases 
would correspond to unstable damping in pitch. 

Thus,  it appears that there are only small changes in the dynamic 
stability characteristics of aircraft due to deceleration by drag,   except 
in cases where the steady flight characteristics are already poor. 

The results in Reference 2 on the short period motion in level flight 
are inconsistent in relation to the importance of the various parameters 
in this problem.    The direct appearance of f0  in the damping coefficient 
of the angle of attack equation is neglected in this reference.    From the 
foregoing analysis,  however,  it can be seen that the influence of the 
varying frequency on the amplitude motion is the same order of magni- 
tude as this term.    Therefore, the results of Reference 2 are essentially 
incorrect.   As mentioned,  the resulting effects are not large,   so the 
neglect of the  f     term in the damping for a conventional airplane is per- 
haps reasonable, but inconsistent. 

Note that in contrast to the constant acceleration case,   the rate of 
change of the angle of attack envelope with time is always of uniform 
sign.    Here the airplane only reaches zero velocity as time approaches 
infinity. 

a.    Comparison of Results with Approximate Approach on 
Complex Plane 

To conclude the investigation of the short period motion of a conven- 
tional airplane,  we demonstrate the approximate approach developed in 
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Chapter IV.    The differential equations for pitching velocity and normal 
acceleration are: 

^-3. + [26^ - f(T) ]  U ^  + l? q = 0 . (V-21) 
d?a B dT 

daN7 _    _dN 
 =+ r26_-3f(T)]U  + U  [1 -f(T) (2ö_- 3f(T))]N_  = 0. (V-23) 
d?a B dT B Z 

For simplicity,  the term involving  U   in equation V-23 has been neglect- 
ed. 

We wish to interpret the short period results obtained in tue previous 
section on the complex plane in accordance with the discussion of Chap- 
ter IV.    We proceed in three steps: 

1. Plot the frozen system locus.    This is the locus of roots that 
would be obtained from a conventional point-by-point stability 
analysis,  and would be identical for all variables.    (f(T) - 0  in 
equations V-21 and V-23.) 

2. Plot the qua si-steady locus.    This is the locus of roots,  taking 
into account any new terms that appear in the coefficients of the 
differential equations arising when the equations for each varia- 
ble are determined.    This locus will be different,  in general, 
for each variable.    For pitching velocity,  the quasi-steady 
locus differs from the frozen locus due to the appearance of 
[-f(f)]  in the damping term.    The terms {-3f(f))  and 
{ -f(T)[26tj - 3f(T)]} are included in the quasi-steady locus for 
normal acceleration.    Recall that we have a system in which 
the frequency of motion is primarily determined by the coupling 
terms,  so the quasi-steady solution does not necessarily re- 
flect an improvement over the frozen system. 

3. Plot the unsteady locus.    This is the modification to the qua si- 
steady locus that takes into account the effects of the varying 
coefficients on the nature of the solutions to the differential 
equation.    The root locus technique of Chapter IV is used. 

In detail then,  let us follow through a sample case for both normal 
acceleration and pitching velocity. 
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The frozen system equations are from V-21 and V-23, with f(T) s 0. 

—+26DÜ^= + Üa   q = 0, (V-56) 
dfa B       dT 

1 

daN dN 
_Z + 26    Ü ^# + Ü3 N    = 0 . 
dT dT 

(V-57) 

and the frozen roots are 

h» = - u 
'B* f —r 

6B    i 
(V-58) 

where the damping ratio is taken to be less than critical.    This locus is 
shown in Figure 14,  and represents the steady flight dynamics of the air- 
plane at various speeds. 

The unsteady system equations are V-21 and V-23: 

^-3- T [26^ - f(T)] U ^   + U3 q = 0 
dT' 

B 
(V-21) 

dT 

and 

d N7 _     - dN7     -3 
 -+ [26   -3f(T)] U—^ + U   [1  -f(T) (26_  - 3f(T))]N_ = 0.      (V-23) 
dfa B dT B Z 

The quasi-steady locus is obtained by considering equations V-21 
and V-23 as though they were constant coefficient equations and solving 
for the "characteristic roots."   Note that the quasi-steady roots for pitch- 
ing velocity are different from the quasi-steady roots for normal ac- 
celeration; i. e. , 

«U.» 
U («B -v) * i-k.-fh (V-59) 

N 
= -U 

Zi 
(vff(T)) "J1^ ("B-3^1) -(V^)*1 

. (V-60) 
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Now to evaluate the actual unsteady effects we use the root locus 
technique developed in Chapter IV.    Ina second-order system,  this step 
could be combined with the previous one.    Algebraically,  this combined 
procedure becomes complex when higher-order systems are examined. 
In addition,  a step-by-step procedure makes the source of the various 
effects clear.    In many physical problems,   it may be possible that either 
the quasi-steady or the unsteady effects are not important.    Usually, 
though,   it appears from the preceding discussions that both effects will 
be of a similar magnitude,   particularly with regard to the specific prob- 
lem we are studying.    Here,   the quasi-steady effects on pitching velocity 
are actually in the wrong direction and are canceled by the unsteady ef- 
fects. 

Now, we use the quasi-steady roots as the base for the root locus 
including unsteady effects. 

The unsteady "characteristic equation" is (see IV-12): 

(Xi   - nHXx  - r3)+ rx   = 0, (V-61) 

where the quasi-steady roots referring to a particular variable,   rj , will 
be different for different roots   (r8 will be the conjugate of  ri ,  for a com- 
plex pair).    Ti   is the "gain, " and is in general,  complex,   so the root 
locus drawn to evaluate the unsteady effects will not be the usual 180° or 
0    locus but will be some other angle condition. 

These loci are also shown in Figure 14. 

These approximate results agree with the exact results.    It should 
be recalled that this approach is not valid as the fractional change in fre- 
quency per cycle becomes large; however,  it does seem to give the pro- 
per indications,  even as the approximation breaks down. 

The effects of various flight velocity time histories are visualized 
directly from this approach,   since any variation of f(T)  can be easily 
included.    For the unsteady locus,  if the roots are only a function of 
velocity,   then 

dt " dU dt ' (v■62, 

and therefore the root locus gain is proportional to   -r— . 

This example shows again the difference between the stability of the 
pitching velocity response and the normal acceleration response.    The 
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particular parameters selected indicate a normal acceleration response 
that initially appears unstable.    The loci are shown only for increasing 
velocity. 

To conclude the discussion,  the response of a conventional airplane 
in unsteady flight,   in various variables,   in the short period mode,  may 
be written as 

T_ 
-s  r u ds 

B 
Cx cos ^1  - 63   /   U ds + «x 

*R/    Ude B 
w C3 cos y  - 6^ /    U ds + «fe, 

6_/   U ds 
B 

a 

U (T) 
Ca  cos ^1  - 6

B /  U ds +*J 

N. 

- 6„ F   U ds 
_ B" 
U(T) e C* cos 

^ 
6B / U d8 +** 

These equations are exact and apply for any velocity time history. 

Stability criteria may be obtained by applying the condition that the 
amplitude of the envelope of the motion always decreases with time. 

For q ,  w        6    (t) > 0 
B 

a 

N. 

6B(t) + f(t)>0 

6B(t) -f(t)>0 

Thus the importance of the unsteady effects on the stability is in- 
dicated by the magnitude of f(t) compared to the instantaneous damping 
ratio 6B(t) 
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2.    Unconventional Stability Derivative Variations 

a.    Power Law Variation of Attitude Stability With Velocity 

Now we investigate the importance of other variations of the attitude 
stability with velocity.    We will assume that the attitude stability varies 
as a power of the flight velocity.    Initially, we consider an airplane with 
no damping.    For the relationship between velocity and attitude stability 
we take: 

- M    = C3 UN. (V-63) 
w        o 

Note that when  N <0 ,  this form does not apply in hovering. 

The differential equations for q and w are: 

d^.Udw     Ca      N+lw 

dta       U dt o 

daq       NU dq a     N + 1 
■^ " IF -£+ C^ U q = 0 • (V-65) jj^a       U   at        o 

The differential equations for q and w are now different,  except when 
N = 1 ,  the cae investigated in Section 1. 

With the nondimensionalization used previously, the characteristic 
velocity and time are taken as: 

U* = U   (1 + f )N+3 (V-66) 
O O y i 

N+1 N+l 

T = u) (1 + f  )N+3 t = C    U*   2      t. 
O O o 

The differential equations V-64 and V-65 in nondimensional form are: 

daq       NdUdq       -.N+l A |     L^ 
—-»-- — ^ + (U) q = 0, (V-67) 
dTa       u   dT dT 

^.±^^ + (ü)N+1w = 0. (V-68) 
dra     ü   dT dT 
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And now we transform the time by 

T      N+l 

o 

Tx =  1   U   2      ds, (V-69) 

to obtain 

d3 q 1   - N    1   dU       dq 
a+^-^T^^ -^.+q = 0. (V-70) 

dTl U  dTl     dTX 

ü^iL^l^    ^+w = o. ,V-71) 

These are the differential equations in a distorted time scale.    When 
N = 1 ,  the middle term is zero,  and equations V-70 and V-71 are con- 
stant coefficient equations.    When   N ^ 1 ,  these are variable coefficient 

nations,  and we have additional unsteady effects.    These equations may 
L_ written in terms of the acceleration parameter f . 

f -J-L - J.  diL 

-4- + <^-^ f(Ti) ^3- + q = 0. (V-70a) 
dr ^ dTi 

i 

d3w       N - 1 dw 
-^ + ^V1) Wi > -^^  + w = 0 . (V-71a) 
dr • d^ 

We note that, when {{Ty) is a constant, these equations are constant co- 
efficient equations.    It can be shown that this implies that the original 
equation is Euler's differential equation. 

We now may proceed in two ways.    The first is to assume a velocity- 
time relationship and then try to solve V-70 and V-71 exactly.    Or we 
may use the asymptotic solutions,  in which case the solution can be ex- 
pressed directly without consideration of the velocity-time relationship. 

First we consider exact solutions for constant acceleration, and then 
show the correspondence to the second approach when the asymptotic 
solution applies and generalize our result. 
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With acceleration constant,  the instantaneous velocity is: 

U(t) = 

U(t) = U    + U    t 
o         o 

1 
f 

,        0 

2 1   1+f 

(l+f )N + 3 

o 

o 

dU   dTx 
f 
o 

dTj   dT 1 + f 

(V-72) 

and 

and so 

N+ 1 

(V-73) 

ü dTi N+3    T+f  ' 

ü    2 

(V-74) 

So the differential equations V-72a and V-70b become: 

^ + 

dT, 

daw 

1 - N 

dT, 

3 + N 

N - 1 

1 

o 

^- + -0- 

N + 3 
dw 

Tl +f   ^NTT 
o 

+ w = 0 

(V-75) 

(V-76) 

If f    = 0 ,  corresponding to steady flight,  the middle term is zero.    In 
the special case  N = -3 ,  these are constant coefficient equations and the 
original equation was Euler's equation. 

Equations V-75 and V-76 are a form of Bessel's equation (N = -3). 
The equations are placed in standard form by the following substitutions. 

Let 

o 
(V-77) 

102 



and transform the dependent variables by 

q = Q e 
2 *3+ N,J 

d£ 
s 

(V-78) 

1^-1 ds 

w = W e 

L_ .IN - i.  p      as 
"2 (N+ 3,i'        s 

Equations V-75 and V-76 become 

I 
d^Q_ 

3 
dTa 

d^ 
3 

dTa 

1  + 

1  + 

(1   - N)(5 4-3N)    1 

4(N + 3)a Ta 

(N - 1)(N -I- 7) _1_ 

4(N + 3)a        rl 

Q = 0, 

W = 0 

(V-79) 

(V-80) 

(V-81) 

From Reference 18,  page 146,  we see that the solutions to the differen- 
tial equations V-80 and V-81 are: 

Q=/^   K  JfN.l
(ra^CaJ     M.l/Ta)| 

1       (N+3' '{N + y       1 

jCi  J     2      (Ta) +Ca J        2      (Ta)| W =/ri 

(V-82) 

(V-83) 

where  J^ is a Bessel function of the first kind of order p.    The form 
P 

given is valid when  and —    are not integers (Reference 18). 

Thus, whenever the attitude stability varies as a power of the 
velocity, and the acceleration is constant, we can express the response 
in terms of Bessel functions. 

In terms of aircraft variables,  equations V-82 and V-83 become: 
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q = (r.)3^N|Z1+N(T,) 

3 +N 

(V-84) 

w = (Ta) 
N+3 

z 2      <r») 

3 + N 

(V-85) 

where Z    = Cx Jp + Ca J_p . 

The solutions are well behaved for all values of Ta . 
can be expressed in a series (Reference 18, page 128): 

q^Q'+C'T,    3+N. 

As Ta - 0,   Z, 

(V-86) 

w - Ca + C4   Ta (V-87) 

For large values of Ta ,   ZD can be expressed in terms of asymp- 
totic expansions (Reference 18,  page 138): 

q*(Ta)2   3+N   {CxMcos(Ta + 4i)J . (V-88) 

w2=(Ta)2   3 + N    {Ca" cos(Ta + ♦a)) (V-89) 

For large values of Ta , the asymptotic expansion is a good approxi- 
mation.    What we mean by a large value depends upon the order of the 
Bessel function, as well as the value of Ta .    If the order is reasonably 
small (p <  1), when T9 * 2 , V-88 and V-89 are reasonably accurate 
representations of the solution. 

There is a smooth connection between the expressions for small Ta 
and large Ta , but it is difficult to express this connection analytically. 
The range of validity of V-86 and V-87 can be increased by taking more 
terms of the series, and the asymptotic expansions can be extended by 
using asymptotic series (Reference 18), however we will not consider 
these refinements here. 
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Ta   is related to the physical parameters of the problem by equation 
V-77: 

2        1 
T8 = Tl + NTT T 

o 
(V-77) 

The initial value of f ,   f0 ,  determines whether the asymptotic ex- 
pansion applies over the time interval of interest.    As f0 ■* ^ ,  the asymp- 
totic expansion is not valid for small Ti , but will apply as Ti    increases. 

From V-77 and V-72, 

-mi-h 
N+3 

(V-90) 

so we can express V-84 and V-85 in terms of f    and the velocity: 

1 + N 

q = 
-    2 
U 

ri+f 
 2 Jl + N       f 

3TNL     0 

N+3 
2    TJ 

N + 3 ] (V-91) 

w = U /   Z 

3 + N 
L fo   N+3      J 

(V-92) 

The general nature of the response can be simply interpreted when 
asymptotic expanrions are valid.    In this case,  equations V-91 and V-92 
become: 

N-l 
~      4 M 

q_*(U) Ci   cos 

1 -N 
-     4 it 

w ■* (U) Ca   cos 

1+f 
N + 3 

f        N + 3 
o 

(V-93) 

1+f 
N+3 

2-2 
f       N+3 
o 

U + * (V-94) 

where   U is given by equation V-72. 
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The amplitude of pitching velocity and vertical velocity are different, 
and depend upon the power law.    For accelerating flight,   TJ   increasing 
with time,   if N > 1 ,   the amplitude of pitching velocity increases with 
time and the amplitude of vertical velocity decreases with time.    The re- 
verse is true in deceleration.    If  N < 1 ,  the pitching velocity amplitude 
will increase in accelerating flight and the vertical velocity amplitude 
will decrease, when no airframe damping is present.    The envelope 
growth is dependent upon the flight velocity change.    The above results 
include,  as a special case,   N = 1 ,  and there is no amplitude change. 

Physically, amplitude effects arise from the relationship between the 
amplitude change due to the varying spring constant and the damping co- 
efficient (quasi-steady terms) arising due to nonsteady flight. 

It is interesting to note that if we approximate the solution to the dif- 
ferential equations V-67 and V-68 directly by asymptotic solutions we 
will obtain results quite similar to V-93 and V-94 for any velocity time 
history. 

Returning to equations V-70 and V-71, 

H2n       1   - N    1    dU     dq + LTr£L±r-£r^L + q= 0, (V-70) 
3 2 -   dTi dTi 

dTi U 

d!wNiJ.L£L *,,_,,, (v.71) 

We transform the dependent variables by 

r 1  - N   1    dÜ   ^ 

q = Q e U   u i f (V-95) 

/.N - 1   1    dÜ   ^ 

-/—-drrdT' 
w = W e , (V-96) 

and then neglect the effect of the modifying terms in the restoring force 
term of the transformed differential equation to obtain: 

N-l 

q = (U)   4      d cos (Tj  +#x). 1/-97) 
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1 -N 
—     4 

w = (U) Ca cos (Tx   + *a). (V-98) 

or 
N- 1 

-      4 
q  = (U) Ci   cos 

T 

/ 
L O 

N+l 

U ds + 4»! (V-99) 

1 -N 
—     4 

w = (U) Ca cos 

l-T 

/ 
*- o 

N + l 

U ds + 4>a (V-100) 

applicable for any timf history,  as long as the initial value of   U  is not 
too small.    Comparison of equations V-99 and V-100 with V-93 and V-94 
shows that the envelope is the asymptotic expansion of the Bessel func- 
tions, and the only real change is the appearance of the integral in the 
frequency term. 

We present responses for two specific exponents so that the magni- 
tude of the effects may be seen.    We select the exponents zero and two, 
so as to present results on either side of the conventional case  (N = 1) . 

The first example,  where the exponent is zero, and therefore the 
attitude stability is independent of speed,  might be considered a rough 
approximation to a tilt-wing VTOL aircraft,   representing a limiting case. 
That is,  if we imagine a tilt-wing aircraft with the horizontal tail com- 
pletely immersed in the propeller slipstream,  taken with the fact that 
through a transition the sum of the downwash velocity and the freestream 
velocity is approximately constant,  the attitude stability would tend to be 
constant.    The conventional airplane represents another limiting case 
where the horizontal tail '.s entirely out of the wake.    These approxima- 
tions do not include any effects from the wing-propeller combination or 
the fuselage.   A form that includes these effects is considered later.   We 
have no particular physical model in mind when the exponent is two. 
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1.    Con»tant Attitude Stability 

cj 

u 

Attitude stability is independent of velocity, and there is no airframe 
damping.    The differential equation for pitching velocity from equation 
V-65 with N = 0 is: 

■^4 + C' U q = 0 . 
dt* 

(V-101) 

and the vertical velocity is determined simply from the moment equation 
V-18b. 

1     dq 

Co 
3   dt 

(V-102) 

We again present specific results only for constant acceleration and de^ 
celeration.    The characteristic time follows from equation V-66: 

T  = uü   (1 + f ) 
o o 

where 

u>U = 
U 

1 ^ 1- M    U w 

In nondimensional form, the equation for pitching velocity is 

dT' 
+ U q = 0 (V-103) 
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From equation V-72, 

U  = 

d+fo) 

1 + f 

The limiting case of f0 = 0 results in a constant coefficient equation 
with unity frequency. The value of f0 determines the value of the argu- 
ment when T = 0. 

Figure 15 shows the pitching velocity and vertical velocity response 
for various values of the acceleration parr -neter for initial conditions 
q(0) = 1, w(0) = 0. 

As would be expected, the frequency change is smaller than the con- 
ventional case (cf.  Figure 3). 

When f is positive, the amplitude of the pitching velocity decreases 
with time, and the amplitude of the vertical velocity increases with time. 
When f    is negative,  the variations are reversed. 

The apparent damping ratio is not large,  so the changes in the ampli- 
tude of the response due to variable velocity would be most evident when 
the airplane has little or no inherent damping. 

2.   Attitude Stability Proportional to the Square of the Velocity 

The characteristic velocity and time, from V-66, are: 

2 

U* = U   (1 +f )5 , o o 

r = u)   (i +f )  t 
o o 

(V-104) 

Figure 16 shows responses for various values of f0 .    Here, as ex- 
pected,  there is a rapid increase in frequency with time,  as well as a 
reverse in the amplitude variation with time of the two variables com- 
pared to the case  N = 0 .    When f0  is positive, the amplitude of the pitch- 
ing velocity increases with time, and the amplitude of the vertical 
velocity decreases with time.    Physically, the effect of the quasi-steady 
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M w damping term in the pitching velocity equation V-65,   —-—   ,  has in- 
w 

creased more rapidly than the effect of spring constant variation on the 
amplitude of the motion.   In the vertical velocity equation,  V-64,  there 

is no change in the quasi-steady damping term equal to — , while the 

rate of increase of the spring constant has become larger,  causing the 
apparent damping due to spring constant variation to be more powerful 

U 
than the direct effect of — . 

Thus we have a good indication of the importance of unsteady effects 
and how they depend upon the manner in which the attitude stability varies 
with velocity. 

We investigate at low speeds one other specific case that approxi- 
mates the variation of the attitude stability of VTOL aircraft with speed. 

b.    Attitude Stability Varies Linearly With Velocity, 
and is Nonzero at Hover 

Typically, for a VTOL aircraft at low speeds, the attitude stability 
is positive (unstable) in hovering, and as the flight speed increases, the 
attitude stability changes sign, ap shown in the following sketch (Appen- 
dix III). 

Mw 

f 

U denotes the velocity at which attitude stability changes sign. 
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In steady flight at velocities less than  U ,  the modes of motion, with 
no damping, are a convergence and a divergence, and at velocities great- 
er than  u are neutrally stable oscillation. 

We use nondimensional forms such thf t this case will reduce to the 
conventional aircraft case as  U approaches zero. 

We now have difficulty obtaining analytical solutions or using asymp- 
totic expressions,  due to the fact that the restoring moment coefficient 
has a zero in the time interval of interest.    Therefore,  these solutions 
were obtained using a digital computer. 

The differential equations are: 

'-■ . /;-"
,- 7  . -".(U -¥) Uci = 0. (V-10SI 

dta      1/ - U   dt      1 a 

daq  +       Ü      dq  +   I   ...     /\ 

dw     Ü dw       1    .,,    /v. ., _ ,,,   . Ä/, 
—r-7r"^: + —;(u -U) Uw = 0. (V-106) 
dt      u  at      ja 

o 

where 

M     =—  (^ - U). (V-107) 
w      . a 

o 

We nondimensionalize these equations with the following characteris- 
tic velocity and time: 

u = u (i +f r o           o 

o 

U    1 
f   =   0  0. 
0         "o" 

where as  U   - 0, 
o 

u" -» Ju   1 loo 

(V-108) 
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We define a new parameter as: 

U    1 
'^-     0    0 

Ua 
(V-109) 

These parameters are well behaved for all values of  U   , and reduce r o 
to the conventional case as   U -• 0 (£-••). 

dU 
daq dT      dq        -       ^   - 

dT 
a       ^-Ü dT 

(U - U) U q = 0, (V-110) 

dU 
d w       dT   dw        "*    ^  "" 2JZ .  ^- SZ + (u - U) U w 
dT"       U dT 

= 0. (V-Ul) 

where   U   is a constant. 

f > 

<M^   ' 
Tj mr 

(V-112) 

For constant acceleration, 

U = 
/rrr   i+u 

(V-113) 

as  U   - 0, 
o O 

^ 1 13'¥ U  - T 

Equations V-110 and V-lll may be written in an alternate form: 

üla + 

dU 
dT 

dT' f dT 

1 
-U 

T{i +{ ) 
o 

U -1 
f 

1^(1 +f) 
o 

U q = 0, (V-114) 
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dU 
daw dT dw 

a dT 
dTa U 

u -• It, 5=-. 
1+fo»J 

w ■= 0. (V-115) 

The parameter f may be interpreted in the following way: 

U   1       R"     o /*       o   o   A    o       U 

For constant acceleration,   -r-    is the time required for the airplane to 

accelerate from hovering to the velocity U .    ■:—    is the frequency of the 
1 0 _. 

1 + /5    A oscillatory motion at a steady velocity,    U =   (—r ) u  . 

Thus, 

As ^becomes large,   lA^ "* 0 when U = 0.    This i«Jhe situation when 
the time required for the aircraft to reach the velocity U is short com- 

1 + /5   /v. 
pared to the period of the motion at  U = (—s ) ü .   As the time interval 

during which lA^  is positive becomes shorter,  the effect of the insta- 
bility on the response is less significant.   As the time interval becomes 
long, the effects of the unstable region become more pronounced.    These 
effects are clearly shown in Figure 17 where the pitching velocity re- 
sponse is shown vs. T for various values of f- f = *   is included for com- 
parison to the conventional case. 

From equations V-114 and V-115 it may be seen that as long as 
f 

is constant,  the differential equations will be the same in non- 
^d+fo) 
dimensional time.    For example, the curve given for f = .5,   f0 = •  • 
will also be the response when f = . 25 ,   f0 = 1 , and f = . 0833 , f0 = .2 . 
Thus there is an equivalence in increasing the initial flight velocity from 
zero, and at the same time increasing the velocity  U.   However,  the 
time scale will change,  due to its dependence on f0 . 
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The nondimensional time at which the attitude stability (M   ) equals 
zero is given by 

CR # 
(V-116) 

as f   - • 
o 

CR 

This time is indicated on Figure 17. 

c.   Effects of Airf rame Damping 

We nov examine the effects of airframe damping on the preceding 
examples.   A transformation that is useful is discussed, and then some 
general features and specific examples are given. 

The differential equations for pitching velocity and vertical velocity 
are from Appendix II: 

a • 

w + [-Z    -M   --^Jw + r-UM   +Z    M  +Z   + T7 Z    ]w = 0. (V-117) 
wqU wwqwUw 

M M 
4'+ C- Z   -M   -rr^]'q+[-UM   +Z    M +M  -r^ +M   ]q = 0. (V-118) 

wqM wwqqM q^ 
w w 

In order to determine how airframe damping influences the solution, 
the following transformation will elucidate the possibilities that may 
arise. 

We will select for detailed comment only the most critical case.   We 
restrict discussion to aircraft with stable damping (Z     < 0 ,   M   < 0). 

The short period equations are: 

dw      _ 
-j-   = Z    w + U q, 
dt w 

(18a) 

^ = M   q + M    w. dt q w (18b) 
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7/ (Z   +M  )d8 
2 ^       w       q 

Let   q = Q(t) e w = W(t)c 

i;(zw+M)d. 
o ^ 

(V-119) 

and define A = 

come: 

Z     - M 
W Q 
 = ■*■ , and the transformed short period equations be- 

dW 
dt 

= A W + U Q . (V-I20a) 

■^■=-AQ + M    W. 
dt w 

(V-I20b) 

Therefore, the differential equations for Q and W are: 

daQ     Mw   dQ 
M 

.-^^.[M    U + Aa
+-^A.A]Q=0. 

w M 
w dta      Mw    dt 

(V-121) 

dta      U   dt w U 
(V-122) 

We can distinguish three possibilities for approximations to equations 
V-121 and V-122. 

1.   When 
M 

\ 

M 
Aa + -T^- A - A 

w 
» M    U 

w 
, V-121 and V-122 

have exact solutions: 
t 

Q = e 
•/Ad. t 2/  Adn 

Ci + Ca/ M   (s) e ds 
w 

W = J Ads * -2/ A dn 
Cs + C4 / U(s) e ds 

(V-123) 

{V-124) 

or in terms of the stability derivatives and the aircraft variables, 

t s 
t /(Z^-MJdn 

.•) « q(t) = e 
/   M   ds 
•»o     q d+C./M   (s) e w       q 

ds (V  125) 
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/z   d 
w(t) = e C3+C4 /U(8)e 

f (M  -Z   )dn 

ds (V-126) 

In this caae, the two degrees of freedom,   q and w, are weakly 
coupled.    Thi» solution is equivalent to considering the variables dynamic 
ally uncoupled.    If M^  is zero,  then the integral in the first equation 
would not be present,  resulting in a first-order uncoupled response de- 
scribing the pitching velocity.    Then the second term in equation V-126 
arises from the fact that any motion in q will be reflected by the term 
U q in the vertical force equation V-18a.    Then,  we may interpret the 
integral term in equation V-125 in a similar fashion.    Thus, the form of 
the solution represents solving the uncoupled first-order equations de- 
scribing pitching velocity and vertical velocity, and then considering 
these responses as disturbances upon each other,  due to the coupling 
terms. 

If Mq and  Zw are appreciable then,  these responses would repre- 
sent over critically damped cases.    This result would be typical of a 
vehicle with heavy damping and is not considered to be a critical case. 
If the damping is light,  then the period is also long {M^ very small) and 
the dynamic motion is slow, or the aerodynamic forces on the airplane 
may be neglected. 

M 
2. M     U w 

» Aa + w 
M 

w 

The transformed differential equations are 

daQ M w dQ 
-rr^-<M   u)Q = o, ^ta      M     dt w (V-127) 

w 

^[     "f. (M   „,„ = 0 
dta       U   dt w (V-128) 

The effects of airframe damping appear only as an amplitude modifi- 
cation through the original transformation (compare V-127 and V-128 
with V-64 and V-65 when N = 1 ).    Thus, to determine the influence of 
the damping we need only to add ehe aerodynamic damping effects to the 
unsteady effects.    The frequency of the motion {My, U) is of a significant 
magnitude, and the airplane damping is not large,  so this would be a 
critical situation. 
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Note that this case is exact when Zw = Mg , which in many instances 
is approximately true. 

3.    The third case is the situation in which the terms involving 
A are of similar magnitude to those of M^ U .    This would represent the 
transition from the uncoupled situation discussed under case 1 and case 2. 
This is a reasonably well damped case and thus is not a particularly 
critical situation and will not be considered further.    This situation would 
most likely be significant when either M- or Zw are zero and the trans» 
formation V-119 is not useful, and either V-117 or V-118 will be simpli- 
fied. 

Let us proceed to examine case 2 in some detail where we can add 
the damping effects directly to the previous results; i. e. , the solutions 
to V-127 and V-128 with the transformations   V-119  are: 

q = e [solution with no damping], (V-129) 

t 

w=e [solution with no damping]. (V-130) 

Now nondimensionalize the exponential term due to damping.   We re- 
call that 

N-U 
*     2 

T  = C   (U ) t , (V-66) o 

so that the exponential term may be written 
t 

e       ^ (V-131) 

Now we define 

{B = 

- (Z     -I- M ) w q 

{■ 2 J- M    U 
w 
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and recall that 

and that 

M    =CauN (V-63) 
w        o 

N+l 

- = m\ 
dT 
^- = (U)    2     . (V-73) 

so that in terms of the stretched time,   Tj ,   equation V-131 becomes 
Ti 

-/   6B(s)d8 

e    0 (V-132) 

for the exponential term,  so that the solutions V-129 and V-130 may be 
written as: 

-/   6B(s)ds 

q = e [solution with no damping] , (V-133) 

-/    6B(s) d3 
Or 1 w = e [solution with no damping] . (V-134) 

We are now in a position to evaluate the complete solution. 

In order to estimate the importance of the aerodynamic damping com- 
pared to the unsteady effects,  it is particularly enlightening to consider 
the asymptotic solutions expressed in terms of {{Ti ). 

We have previously obtained equations in the transformed time scale, 
in terms of the acceleration parameter f(Ti): 

daQ .  ,1  - N4 „_ 4   dQ 
|+ (:1-?-

:) f(fx) ~- + Q = 0, (V-70a) 
^ dTi dTx 

d3W      N - 1 dW 
—a+(

iVi)f<ri)—+W = 0- (V-Tla) 
dT, 2 dTi 
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The asymptotic solutions to these equations are: 

-;Tlc^f(s)]ds 

q = e     0 Cx  cos (Tx  + 4i ) , (V-135) 

W=e    0 Ca cos (Tx + *8 ), (V-136) 

and so the complete solution from V-133 and V-134 is: 

"/     [6B(s)+-4^f(s)]ds 
q = e    0 Cx  cos (Tx +*x). (V-137) 

Jl N - 1 
-I    [6B(3) + ^T

if(s)]ds 

w = e    0 Ca cos (Tx  + ♦a) • (V-138) 

While the term (f(o)d8)  is an exact differential (cf.   V-137,  V-138 
with V-99 and V-100 when 6g 5 0),   it is perhaps more convenient to 
think of the results in the above terms.    Largely,  then,  the importance 
of the unsteady flight condition in causing changes in the apparent damp- 
ing can be thought of in two ways.    First, the above results indicate 
directly a way in which to estimate the importance of damping alterations 
due to unsteady flight by comparing the magnitude of f(T) throughout the 
interval of interest with the magnitude of the instantaneous value of the 
damping ratio  6T>(T) .    Both quantities are nondimensional,   so that they 
may be computed in real time and compared on that basis.    Their varia- 
tion with time will be different, depending upon whether they are com- 
puted as a function of real time,  or the stretched time,   T . 

The second effect,  that is the  only effect present when  N = 1  (the 
conventional aircraft),  is due to the distortion of the time scale discussed 
in some detail in Section 1 of this chapter. 

When asymptotic solutions are not valid, then it is not so easy to 
generalize; however, the previous results would lead us to believe that 
the effects would not be large or unusual. 
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One other aspect of the usefulness of the asymptotic solutions is 
worth mentioning. Consider the untransformed equations V-117 and 
V-118: 

da ^      d 
-4+[-Z    -M   -T~]-4+[-M    U + D]q=0. (V-113) 
dta w        q     Mw     dt w q    n 

—+[-Z    -M   -^-J-r + C-M    U + D   ]w = 0, (V-114) jta w        q    U      dt w w 

where 

D     =Z    M+Z     +^Z    , (V-139) w w      q        w      U     w 

M 
D    =Z     M    +M   77^+ M   . (V-140) q        w     q q M q w 

a    N The nondimensionalized equations, when M     = - C    U    , are: wo 

^ + t»Birl) + ^nrl)l$ +li *£LjU-o. (V-HD 
dTx w 

us + [MB(ri)+(ii^f(ri)^ + a .^i w = o, (v.142) 
dTj w 

so in cases where  f(Tx)  is large, it still may be possible to use the 
asymptotic solutions to V-141 or V-142 to describe the response if either 

26B(Tl) + (l-^)f(Tx) 

or 

26B(TI) -(■Lr^f(T*) 

D D w q 
are small,  if the terms 77—rr and ——^7   are small compared to 1 . 

M     U M     U w w 
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Thus,  it is possible to estimate the importance of unsteady effects, 
at least in the transformed plane,  by comparing the magnitudes of ogC^ ) 
or 6g(t)  to f(Tx ),   [f(t)] ,  even when f(Ti) is large,  if the sum of the 
aerodynamic damping and this term are small. 

The distortion of the time scale due to the independent variable 
transformation is most easily visualized by the method suggested earlier 
of drawing a curve of the relationship between Ti and T ,  and noting the 
deviation from the line with a slope of 1,  representing no distortion aris- 
ing from the transformation. 

d.    Other Stability Derivative Variations 

We have discussed specific stability derivative variations in order to 
obtain an estimate of the magnitude and importance of the effects of varia- 
ble flight velocity on the short period motion.    We can proceed in a 
similar fashion to analyze any stability derivative variations using the 
approximate approach on the complex plane developed in Chapter IV. 

Qualitatively the important effects arise in two ways.    We re- 
strict our discussion to motion that is oscillatory.    The primary changes 
from the frozen system arise from the varying spring constant and give 
rise to: 

1. A distortion of the time scale of the motion. 
2. A contribution to the damping of the motion. 

They may be viewed as resulting from the two transformations 
leading to the asymptotic approximation.    The actual form of the ac - 
celeration parameter will be slightly different when more general varia- 
tions in attitude stability are considered.    The equation for pitching 
velocity is V-118: 

-^ä + CZa'D^i+COq^, (V-143) 
dta dt 

where the primes indicate that these coefficients are different at any in- 
stant of time than the frozen system coefficients.    We then transform the 
time by 

T 
Tj  = J* «)' ds (V-144) 

o 
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to obtain 

[^^—^^-o- 
UJ 

The first effect arises from the transformation,  V-144,  and the second 
effect of importance arises from the appearance of the fractional rate of 
change of the frequency appearing in the damping term in equation V-145. 
Since the first term may be interpreted as the instantaneous damping 
ratio,  then the size and importance of the second effect may be estimated 
by comparing the fractional rate of change of the frequency with the in- 
stantaneous damping ratio. 

When  Mw  dominates the restoring for^e term,  as is generally the 
case when the motion is less than critically damped,  the unsteady para- 
meter is: 

TT      d M 

3 L M dU   J 

2 
uu 

When the approximate solutions do not apply,  it becomes more dif- 
ficult to draw general conclusions about the nature of the response. 

The approximate representation will describe with reasonable ac- 
curacy the behavior of the vehicle wherever the transient motion is on 
the borderline between stability and instability, the case of critical inter- 
est. 

For the case where the problem of interest is such that the total co- 
efficient change is constant, and occurs in different time intervals, we 
may place limits "on the dynamic behavior for very rapid coefficient 
changes by using the approximate solution obtained by neglecting the re- 
storing force term. 

It must be carefully noted that the above comments apply only to the 
nature of the time histories of pitching velocity and vertical velocity, and 
any other variables such as angle of attack and normal acceleration must 
be considered as well.    The effects on these variables due to unsteady 
flight are more pronounced than the effects upon the pitching velocity and 
vertical velocity and must be investigated to provide a complete under- 
standing of the motion of the airplane in unsteady flight. 
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C.    Higher-Order Systems 

We now investigate the nature and magnitude of the unsteady effects 
on a specific higher-order system.    In Section B a detailed investigation 
of the short period motion has been made. 

We will use the approximate method developed in Chapter IV to com- 
pute the magnitude of the effects.    The third-order system describing the 
attitude-velocity motion will be investigated and should provide a good 
description of the longer time response of VTOL. aircraft at low speeds. 

When studying the longer time response,  one might expect larger 
changes in the character of the motion from varying flight velocity,  due 
to the fact that the parameter indicating the importance of unsteady ef- 

becomes larger as the "frequency" of the motion,   UJ fects,   f 
uuU 

be 

comes smaller.    In the motions of a conventional aircraft, for example, 
|f | based on the short period frequency will be considerably less than  |f| 
based on the phugoid frequency.    While this is true, alterations in the 
character of the phugoid will not be of 30 much significance to piloting 
the aircraft as will alterations in the short period motion,  since the 
motions are slower.    Phugoid characteristics are of more importance in 
the cruising flight of an aircraft, when instabilities are primarily 
fatiguing to the pilot and not dangerous. 

For VTOL aircraft in particular, we are not in a position to obtain 
the results in quite so general a form as in the case of the conventional 
airplane,  due to the relatively complicated nature of the stability deriva- 
tives of these vehicles.    We will use, as numerical examples,  stability 
derivatives that are relatively typical of VTOL aircraft as determined 
from experiments at Princeton and elsewhere.    The stability derivatives 
and their expected behavior are discussed in some detail in Appendix III, 
on the basis of experimental results presently available. 

We now proceed to the investigation of the two-degree-of-freedom 
motion typical of VTOL aircraft near hovering.    This description is ex- 
act when M^ = 0 and  Xw = 0 . 

The differential equations describing the linearized dynamics of a 
VTOL aircraft at slow speeds and in hovering (Reference 14) are: 

X    u-u-g6 = 0, 
u 

M U + M e-e = o, 
u q 

(V-146a) 

(V-146b) 
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where for simplicity the usually small term X_  has been neglected.    As 
discussed in Appendix III, the stability derivatives are complicated func- 
tions of power setting, wing tilt angle, and flight speed.    It seems a rea- 
sonable approximation to consider the pitch damping as only a function of 
velocity,  since the horizontal tail produces the primary contribution to 
this derivative.    It is perhaps more plausible to consider the velocity 
derivatives as only functions of wing tilt angle.    This is equivalent to 
assuming that the velocity derivatives are linear,  a reasonable assump- 
tion except for rapid decelerations, where the wing, a primary contribu- 
tor to these derivatives, may stall, for reasons discussed in Appendix I. 
For a first approach, we will not take into account the differences In 
these functional dependencies, but will consider all three derivatives as 
a function of a single parameter,  velocity in this case.    This approxima- 
tion and its implications are discussed in more detail in Appendix III. 

We now proceed to investigate the nature of the unsteady effects on 
this motion,  using the approximate methods of Chapter IV. 

First, we determine the differential equations describing the time 
history of the two variables  6 and u from V-146a and V-146b. 

We recall that the differential equations for each variable will be 
different, due to the stability derivatives changing with time (velocity). 

Then the differential equations for u and 9   are: 

d ^J 1 d3e d3e   r i   d (Mu) 1 d3e 
dt3       L        U ^      Mu       dt J   dt3 + 

r d(M  )     M d(M n     fl 
M   X ^ +—* "    Mn-+ gM   0=0. (V-147) I     q   u dt M dt       I    dt     6    u x ' 

dt3    L   u    qJ dt8     L q u     J^i J dt 

r <Mä  j ax-. 
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where the underlined terms are new terms due to unsteady flight.    When   0 

the flight condition is steady,  these terms are zero, and the differential 
equations V-147 and V-148 are identical. 

These additional terms give rise to what we have referred to as 
qua si-steady effects.    That is, changes in the coefficients of the differ- 
ential equations compared to the steady case.    Again, this is a system 
with strong coupling; i. e. ,  the frequency of the oscillatory motion is pri- 
marily determined by (g My), and so the qua si-steady effects may be a 
poor reflection of the total unsteady effects.    It is the quasi-steady effects 
that give rise to the differences in the time histories of different varia- 
bles. 

The source of differences between these two variables,   indicated by 
the presence of additional terms depending upon the rate of change of the 
stability derivatives with time, may be interpreted if we consider the 
case in which Xu is zero.    Then the relationship between u and 6   from 
V-146a is: 

u = g/ eds. 
o 

When Xu = 0 ,  the differential equation V-147 may be integrated with 
respect to time,   resulting in: 

dt^ 
(/ eds) - M   "—(/ Öds) + gM   /ed8 = 0, 

* dt 
(V-149) 

and the equation for u , when X    = 0 ,  is from V-148, 

d u 

dta 
M     ^-~ + g M   u = 0 

1   dta u 
(V-150) 

The differential equations for j   9 ds and u are identical,   even in 
the unsteady case, 

t 
Thus J B da and u(t) are composed of the same time functions when 

Xu is equal to zero.    Since these are time variable equations,  however, 
differentiation to obtain 6 will result in different functions of time.   For 
the oscillatory mode,  for example,  if the frequency is increasing,  the 

t 
amplitude of 6   will grow at a faster rate than J   0 ds , and consequently 
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also at a faster rate than u .    The converse will be true if the frequency 
is decreasing.    This difference is reflected by the additional terms in 
the coefficients of the differential equation for 6   (compare V-149 to 
V-147, with Xu = 0). 

First we consider the nature of the solutions of equation V-14 7 for 
d (M  ) d (M  ) 

pitch angle.    The new terms are 
u and ,  the first term ap- 

dt dt 
1      d ^J 

pearing as a ratio,   i. e.    r-j—   —-r-  ,  due to the fact that it is a coupling 

term (cf.  equation 111-13).    As this quantity becomes very large,  indicat- 
ing small values of M    ,  the differential  equation for   6   approaches 

d3© d6 
—5-+ M    -r- - 0 ,  the differential equation describing the pitching motion 
dt q dt 

when M    = 0 . 
u 

The quasi-steady roots show the influence of these additional terms 
on the dynamics of the system.    The root locus equation to determine the 
quasi-steady effects on pitch angle is obtained by considering equation 
V-147 as a constant coefficient equation and therefore  assuming that 
de    A   d3e    3Ä     , d3e 
1*='*' dt4 = r39   and ——= r B.    Rearranging, 

dt 

d M 
u 

M 
u 

dt [•■ 
M   n 

M   -M   r-^ 
q       q M 

u 

r3+[-X    -M]r3+[M    X]r + gM 
u        q q    u u 

= - 1 (V-151) 

is negative,  and a zero degree 
,     d(M  ) 

A  180    locus is required when rr-   ——  
Mu       dt 

1     d^J 
locus when .-r-   —i    is positive.    Typically,   M     is positive at low 

M^       dt 'r ' u 

speeds, and therefore the 180    locus will represent the case where  My 
is decreasing with time,  and the 0° locus  M^  is increasing with time for 
an accelerating transition. 

A typical frozen locus of roots near hovering (stability derivatives 
typical of a tilt-wing airplane of 40, 000 pounds gross weight are used; 
the derivatives are given in Figure 28) is: 
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A decreasing   Mu with time, typical of increasing speed from hover- 
ing,  causes an increase in apparent damping of the oscillatory mode,  and 
an increasing  M^ , as experienced in deceleration, causes an apparent 
loss in damping of the pitch angle response. 

This is the first step in obtaining the approximate solution.    There 
is a further modification to this locus due to the unsteady effects; i. e. , 
the actual change in the nature of the solutions due to varying coefficients. 
We use the modified root locus technique discussed in Chapter IV to dis- 
play these effects; denoting the quasi-steady characteristic equation as: 

A = X3 + c' Xa + Ci' X + C» . (V-152) 
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The unsteady effects are shown by the root locus drawn using equation: 

3r^+-f) 

X3+C ' X^d' X +  Ca' 
o 

= - 1 . (V-153) 

where the gain of the root locus is  r ,  in general, a complex nurrber,   so 
that we have other than the usual 180° or zero degree angle conditions. 
Since the qua si-steady roots change we do not have a continuous locus for 
the unsteady roots.    That is, the poles of equation V-153 are dependent 
upon the root velocity.    Only one point on each unsteady locus will be 
valid.    Figure 19 shows the locus of unsteady roots for this case.    Com- 
parison of the unsteady roots shown in Figure 19 and the quasi-steady 
roots shown in Figure 18 indicates that the unsteady effects are opposite 
to the quasi-steady effects and roughly cancel for the pitch angle response, 
The general tendency of the unsteady effects on the oscillatory mode is an 
apparent loss in damping with decreasing frequency, and an apparent gain 
in damping with increasing frequency,  as noted for the second-order sys- 
tem. 

We then investigate the time-varying effects on the velocity perturba 
tion in a similar fashion.    The quasi-steady effects are displayed first, 
by constructing a root locus based on the equation V-150,  obtained from 

du 
V-148, assuming that -77= ru, 

d*u_ 

dt3 
rau. and 

dt3 

3 = r   u 

- 2 
dt 

M 

2    +      dX 
2ir 

u 

daX 

r3+ C    ra + Ci   r + Ca o 

u 

dta 

= -1. (V-154) 

and obtain 
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as a modification to the frozen roots.    In the usual case,   X,,  decreases 
with velocity and Xu is negative; the accelerating case would be reflected 
by a loss in damping of the oscillatory mode, and the decelerating case 
by an increase in damping, as well as a change in frequency as shown. 

Now then, we evaluate the unsteady effects by using the quasi-steady 
roots as poles, and the unsteady "characteristic equation" is 

3r[A+.°  ] 

X3 + Co" Xa + Cx" X + C." 
= - 1. (V-155) 

where we have the same form for the locus as for 6 , but the starting 
roots are now the quasi-steady roots for u.   Here we see that in the 
typical case shown, the unsteady effects will cause the unsteady locus to 
depart even more from the frozen locus in contrast to the 6   motion where 
the two effects were in opposite directions (cf. Figures 18 and 19).   Fig- 
ures 18 and 19 show the two complete loci separately; first, the quasi- 
steady loci, and then the unsteady loci, as discussed. 

We note that the unsteady locus for pitch angle essentially indicates 
only a small change in the unsteady "roots" from the frozen roots; except 
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at the low frequency part of the locus where the departures are quite 
large,   stretching the validity of the first-order theory.    The locus for 
the velocity perturbation "roots" shows a definite improvement in the 

I stability of the response in a decelerating transition and a loss in sta- 
? bility in the accelerating case. 

Figure 20 shows response time histories computed by numerical in- 
tegration using a digital computer compared to the envelope of the oscil- 
latory motion based on initial values of the frozen roots.    It can be seen 
that the trends indicated by the approximate root loci show up quite clear 
ly. 

In the case of the pitch angle response in the accelerating case,   the 
instability in the response is not quite as large as the frozen case,  due 
to the decreasing exponential term. 

The envelope of the velocity perturbation remains quite close to the 
frozen envelope,   as indicated by a roughly constant exponential term in 
the unsteady locus for velocity. 

In the decelerating case we see that the pitch angle response is some- 
what more unstable than the frozen case,  due to the increasing expon- 
ential. 

The velocity response initially appears somewhat more stable than 
the frozen case,  as indicated by the unsteady locus, and ultimately is less 
stable. 

These results indicate how in higher-order systems, the approxi- 
mate approach developed may be used to estimate the effects of changing 
flight conditions on the dynamics of aircraft. 

D.    Summa ry 

To conclude this chapter,  we summarize some of the important fea- 
tures of the effects of varying flight velocity on the dynamics of airplanes. 

The most unusual aspect of the phenomena investigated relates to the 
basic property of linear differential equations with time-varying coeffi- 
cients; that is,  different variables in a problem generally hive different 
time histories.    With respect to the short period motion of an airplane, 
for example, the pitching velocity and vertical velocity responses are 
least affected by variable velocity, and generally are influenced in a 
manner that might be expected.   Angle of attack and normal acceleration 

130 



are more strongly affected and may appear quite different from pitching 
velocity and vertical velocity. 

For an airplane with stability derivatives that are linearly propor- 
tional to velocity,   the only influence of variable flight velocity is a dis- 
tortion of the time scale when considering the variables, pitching velocity, 
and vertical velocity.    These responses are independent of flight velocity 
when expressed in terms of distance traveled.    This would lead us to be- 
lieve that,  in general,  the effects on the short period motion are of a 
rather orderly nature,  except for very unusual stability derivative varia- 
tions. 

The most important additional effect on the pitching and vertical 
velocity responses appears to be the influence of the variable frequency 
on the damping of the motion.    The importance of this effect roughly de- 
pends upon magnitude of the fractional change in frequency per cycle com- 
pared to the quasi-steady damping ratio,  when the short period frequency 
is proportional to other than the first power of the velocity. 

For other stability derivatives,   in most cases of interest,   approxi 
mate methods may be used to investigate the nature of the time-varying 
effects,   i. e. ,  when the steady motion is relatively fast and lightly 
damped.    The approximate methods are restricted to cases where the 
fractional changed in the frequency per cycle is reasonably small.   Physi- 
cally,  the approximations are restricted to reasonably high frequencies. 
Whenever the change in frequency with time is such that,   during an "in- 
stantaneous cycle, " the frequency less than doubles,  we can use approxi- 
mate methods.    It generally appears that only for extremely low steady 
flight frequencies would this relationship be violated,   so that any rea- 
sonably fast phenomena which would be of importance in piloting and con- 
trolling the airplane can be handled by approximate methods. 

The slow motions of the airplane would be most strongly influenced 
by varying velocity,  and these are precisely the ones of least concern in 
piloting the airplane. 

In higher-order systems,   similar effects appear to be present.   Due 
to the additional number of parameters entering the problem,  it is more 
difficult to generalize the results.    Again,  it would be expected that the 
approximate methods discussed here would cover the cases of most inter- 
est; that is,  the cases when the steady flight motion of the airplane is 
reasonably rapid.    Unsteady effects would become more pronounced when 
the motion is slow,  but would be of less importance  to the pilot. 
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These ideas are drawn from a limited investigation of certain speci- 
fic cases; however, the approximate methods presented here can be used 
to obtain many specific conclusions quite easily. 

It generally appears then, that with regard to piloting the airplane, 
as judged from the response of the vehicle to disturbances,  there would 
be no particularly severe or unusual phenomena due to variable flight 
velocity that would not be foreseen on the basis of a careful investigation 
of the frozen characteristics of the vehicle and use of the approximations 
presented here.    We are considering the dynamic motions of an aircraft 
during a maneuver in which the pilot would be paying careful attention to 
the task of flying the aircraft.    Thus,  in this type of situation,   only rapid 
and unusual phenomena would be of primary concern.    Problems of sta- 
bility associated with the slower modes of motion of the airplane are of 
little concern in this situation, and thus would only be of interest in 
periods of long,  steady flight that can be treated by conventional theory. 

It is difficult to estimate at this time the importance of the differ- 
ences in the different vehicle coordinates during accelerating and de- 
celerating flight and how these various cues may affect the piloting task. 
The instabilities in angle of attack that may occur at low speeds are pro- 
bably of little importance to the pilot.    However,  the apparent instabili- 
ties that may occur in normal acceleration in accelerating flight may have 
some effect on piloting technique.    Effects such as this would tend to be 
most important on vehiclep with light aerodynamic damping,  when it is 
desirable to pay particular attention to the possible importance of unsteady 
effects. 
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CONCLUSIONS 

1. The analysis of the dynamics of systems described by linear differ- 
ential equations with variable coefficients should include considera- 
tion of all the coordinates, as well as the derivatives of the coordi- 
nates, since, in general, each of these quantities will exhibit a dif- 
ferent amplitude variation with time, 

2. For a given percentage change in the characteristic roots of a sys- 
tem per unit time,  the departure of time-varying characteristics 
from frozen (constant coefficient) characteristics increases as the 
order of the system increases,  and as the spacing between frozen 
roots on the complex plane decreases. 

3. Frequency variation as a function of time gives rise to apparent 
damping. 

4. The WKBJ approximation,  generally speaking,  applies to second- 
order systems with light damping. 

5. The effect of varying flight velocity on the short period motion of an 
aircraft with stability derivatives linearly proportional to velocity 
may be summarized as follows: 

The alteration of the time histories of vertical velocity 
and pitching velocity from frozen characteristics is a dis- 
tortion of the time scale. 

The apparent damping of the normal acceleration response 
and the angle of attack response is changed. 

For an aircraft that is stable in steady flight, the angle 
of attack response may be unstable in decelerated flight. 
The normal acceleration response may be unstable in 
accelerated flight. 

?{ 6.     Other stability derivative variations with velocity produce changes in 
the apparent damping of the vertical velocity and pitching velocity 
responses. 

I 7.     For conventional fixed-wing aircraft with present horizontal accelera 
f tion capabilities,  time-varying effects arising from changing flight 

velocity appear small at normal flight speeds. 

•  «► 
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8.     Significant variations from frozen characteristics are possible at 
low speeds,   such as encountered by VTOL aircraft,  particularly in 
the angle of attack and normal acceleration time histories. 

RECOMMENDATIONS 

1. Further experimental data are necessary to ascertain the depend- 
ence of the stability derivatives of VTOL aircraft on flight condi- 
tion to aid in understanding the effects of rapid transitions on the 
nature of the stability derivatives as functions of velocity,  tilt 
angle,  and power. 

2. The effects of control motions and sustained disturbances on the re- 
sponse of aircraft in accelerated flight should be investigated.    In 
most cases of interest,  the approximate methods developed here 
can be used for investigation of forced response.    The objection 
raised to the use of the WKBJ method in studying the forced re- 
sponse of systems in Reference 37 is not valid.    The relationship 
between the impulse response and the step response of a time- 
variable system has not been expressed correctly. 

3. Once a firm picture of the steady flight dynamics of VTOL aircraft 
has been established, experiments to verify these effects should be 
investigated. 

4. Further consideration of the relative importance of the validity of 
the linearized time-varying approach as contrasted to the nonlinear 
approach,  and the implications of each approach to the system are 
desirable. 
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APPENDIX I 

TRANSITION EQUATIONS 

We consider a simplified approach to the prediction of the level flight 
transition time histories of VTOL aircraft.    For comparative purposes, 
we investigate simplified models of a deflected jet and a tilt-wing VTOL. 

In particular,  we present results showing how velocity and thrust 
(power setting) vary with tilt angle as a function of a uniform tilt rate. 
The results indicate additional effects that may influence the perturbation 
dynamics of VTOL aircraft during a transition,  but have not been taken 
into account in this study.    It is considered that more experimental data 
are desirable before going into further detail than is presented here.   Also, 
the pilot has considerable flexibility in performing this maneuver, a fac- 
tor not easily taken into account in an analytical treatment. 

Therefore,  these results are presented to give an estimate of the 
magnitude of the variation in flight conditions that may be encountered at 
low speeds when performing a transition. 

The mathematical models, although highly simplified,   should indicate 
significant trends in this maneuver. 

The problem is formulated by prescribing the time histories of the 
following quantities: 

*«,  (t)       t^t angle of thrust producer wp 

8  (t) fuselage attitude 

w   (t) vertical velocity 
P 

Equations of motion are developed,  and the following quantities are deter- 
mined: 

u (t) flight velocity 

6   (t) power setting (thrust) p 

The pitching moment equation is not considered, and the relationship 
between Ö (t) and w (t) is selected so that transition takes place at con- 
stant attitude. 
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A.    Deflected Jet VTOL 

First,  we consider a configuration with the ability to rotate 
engines or deflect the jet exhaust.    Any aerodynamic forces in- 
duced by the inlet or exhaust flow are neglected.    Only the mo- 
mentum drag of the jet engine is taken into account.    Induced 
flow effects may have significant effects on the pitching moments, 
but should not significantly influence the balance of forces. 

From Figure 21,   summation of vertical and horizontal forces 
yields: 

L X ^ T sin i     - D = mil , (A-l) w 

I Z = V - L - T cos i     = 0 . (A-2) 
w 

The solution of equations A-l and A-2 will determine the transi- 
tion time history.    The transition flight path is level,  and it is 
assumed that airplane angle of attack is held constant through a 
transition. 

We assume that the lift can be expressed as 

L = |pSU2CL . (A-3) 

where  C     = C   (a ) . 
La i_, 

The drag consists of two parts:   one due to the airframe,  and 
one due to the loss of the inlet   nomentum of the air used by the 
jet engine. 

AC        M 

The momentum drag,   DJ^J ,   may be determined from the follow- 
ing diagram: 

DM 

1 
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Therefore: 

where 

and so 

T = mVj. . 

DM = li,U ' 

E   E   E 

'1 E   ^PEAEVE 

Then,   the total airplane drag may be expressed as; 

D =£PSU3CD + JPjÄg/r    U. (A-4) 

The characteristic velocity is defined as: 

*        I 2W 

The characteristic velocity associated with the jet engine is: 

^ 
V-JÄ:- 

This is the exit velocity of the jet engine when thrust equals 
weight. 

The characteristic time is taken as —- , and the velocities in 

the problem are nondimensionalized by  U 

Equations A-l and A-2 become: 

(JV~)lr = (^)sin i
w-

c^^^r — (A-7) ^-f? 
1 - ^= ^cos v • (A-8) 
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The independent variable may be considered as  i   (t) . 
w 

The nondimensional tilting rate is denoted by: 

i     U w 
n = • 

g 

This parameter is directly proportional to the average accelera. 
tion in a transition from hover to the velocity  U 

It  ~ 

We eliminate the thrust from equation A-7 by using equation 
A-8, and obtain: 

dU                     -.                       -*       I '%|1"CLU2     - 
11 ~ = (1-C. U)tani   -C^U--!—   1 =    U.        (A-9) di                   L                w      D          —« cos i w                                                         v w 

i 
This first-order,  nonlinear differential equation gives the re- 
lationship between  U   and iw  during a transition.    The thrust 
required for vertical equilibrium is determined from equation 
A-8.    When the tilt rate is variable,   r|   is a function of time. 
The variation in lift coefficient with time must be specified, 
and we only consider the simplest case in which the lift coeffi- 
cient is constant.    Steady state flight conditions are found by 
setting  n   = 0  in equation A-9,   f]  > 0 for an accelerating transi- 
tion, and ^i < 0 for a decelerating transition. 

Typical solutions to equation A-9 for transition from hover to 
forward flight at various tilt rates,  obtained using a digital com- 
puter, are shown in Figure 22.    The airplane is assumed to have 
a lift-drag ratio of 10 and a jet exit velocity typical of turbojet 
engines.    This figure clearly shows the wide variety of flight 
conditions that may be encountered during a transition,  depend- 
ing upon the tilt rate and the lift coefficient during the maneuver. 
By flight condition, we mean the flight velocity and thrust setting 
at a given tilt angle. 

Admittedly,  the maneuver has been treated in an idealized man- 
ner; however,  the results serve to indicate what may be an im- 
portant factor in the dynamics of aircraft during a rapid transi- 
tion.    If the stability derivatives at a given flight speed are 
strongly dependent upon the deflection angle and thrust setting, 
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then the frozen stability characteristics will be dependent upon 
the maneuver performed. 

Since the pilot has considerable flexibility in selecting the angle 
of attack variation during a transition, the results presented in 
Figure 22 may be viewed as providing boundaries on the flight 
conditions encountered during a level flight transition.    It is in- 
teresting to observe that if the airplane is flown through a 
transition at a low lift coefficient, the transition will be ac- 
complished very quickly.    Figure 23 shows the relationship be- 
tween nondimensional velocity and tilt angle,  for a given tilt 
rate,  at different lift coefficients.    A nondimensional velocity of 
1 might be considered the end of a transition,  since a lift co- 
efficient of 1 will produce lift equal to weight.    Note that at a 
CT   = . 16 ,  for example,  this velocity is reached after tilting the 
thrust only 30°,  indicating that the transition maneuver is essen- 
tially completed in a relatively short time. 

There is not sufficient experimental data at the present time to 
consider further the nature of the aerodynamic forces and mo- 
ments on these vehicles and the detailed implications of these 
results. 

B.     Tilt-Wing Aircraft 

We also formulate a simplified analytical model of a tilt-wing 
aircraft during a transition.    The main difference between the 
treatment of the tilt wing and the deflected jet is the assumption 
in the case of the tilt wing that the wing lift is proportional to 
slipstream dynamic pressure and acts normal to the wing chord 
line.    This should be a satisfactory assumption for the low speed 
part of transition Where the propeller slipstream velocity is con- 
siderably greater than the freestream velocity. 

The equations of motion of this airplane resolved normal to and 
parallel to the thrust axis are (from Figure 21): 

mü cos i     = W sin i     - L    - D, cos i     , (A-10) 
w w s        f w 

mil sin i     = T - W cos i     - D, sin i     . (A-11) 
w w        f w 

To compute the lift on the wing due to the slipstream,   Ls , as a 
function of flight variables, we need additional relationships.   An 
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approximate relationship between thrust and slipstream velocity 
suitable for transition is (Reference 39): 

qg^q+I. (A-12) 

We also assume that wing lift may be expressed as: 

L    = q    S    a        a     . (A-13) 
s     ns    s    vvs     e 

We consider at low speeds that only those portions of the wir;, 
that are immersed in the slipstream will produce significant 
aerodynamic forces.    Additionally,  we assume that any effects 
of span loading may be included in the computation of the slope 
of the lift curve,   a      , and that aw     is constant throughout the 

s s 
transition.    This last assumption is made for simplicity.    Ac- 
tually,   it would be expected that the lift curve slope based on 
slipstream dynamic pressure would be reduced in low-speed 
flight due to the finite extent of the slipstream compared to its 
value in a uniform flow (Reference 41,  page 236),    The effective 
angle of attack of the wing is taken as the angle between the wing 
zero lift line and the vector sum of the propeller induced velocity 
far downstream and the freestream velocity as shown in Figure 2l 
(Reference 40). 

Assuming that a^  is a small angle,  the law of sines yields: 

v 
cos  i      = -rr-   cos i (A-14) w      V w 

s s 

The resulting expression for wing lift (from A-12, A-13,  and 
A-14) is: 

(A-15) 

Where for simplicity we neglect fuselage drag as not important 
at low flight speeds,  equations A-10 and A-11 may be written as: 

S a w __ 
-i = .a„iw—^-s(q+r)^-i. (A-16) 

1 . T — u sin i     = -^7 - cos i (A-17) 
g w      W w 
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Then we may eliminate the thrust between equations A-16 and 
A-17,   resulting in the following first-order nonlinear differ- 
ential equation for the velocity: 

• do' U' i   I      1 ,2     z    l-~' 
ri   —— =tani    +T—sini     - U .J ^-+ U    (R   +TSin 

di w     ^ w ^cos i 4 
2i      )      . 

W 
w ' w 

(A-18) 

ere 
1   = ^ r 

u = — 
r 

R            A 

"   _Sa*s 

"S*   awQ       ' 

where   r) and U   are defined in the section on the deflected jet 
aircraft. 

The differential equation A-18 was solved    numerically on a 
digital computer for values of the nondimensional parameters 
typical of tilt-wing aircraft.    The results for one specific case 
are presented in Figure 24. 

We note the typical behavior of these curves.    For an accelerat- 
ing transition,  the freestream velocity is always lower and the 
thrust higher than in steady flight at the same tilt angle.    For a 
decelerating transition,  the flight velocity is always higher and 
the thrust lower than the corresponding steady flight case. 

The variation in flight conditions encountered does not appear to 
be so wide as that encountered by the tilt jet vehicle, but is of 
such a magnitude that the variation in stability derivatives with 
the transition flight path may be significant.    The decelerating 
transition is probably the most significant in this regard, due 
to the tendency to encounter higher flight velocities and lower 
thrust settings at high wing angles.    Inspection of equations A-12 
and A-14 indicates that both of these tendencies lead to higher 
wing angles of attack and thus to increased areas of separation 
over the wing.    Presently available data indicate that the lateral j 
stability characteristics are more sensitive to this phenomena ' 
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than the longitudinal characteristics (Reference 35,  Reference25, 
Reference 31). 

For a level flight transition,  the jet vehicle has greater flexi- 
bility during a transition,  as a result of control of airplane angle 
of attack.    Variation in angle of attack at low speeds with the 
tilt-wing vehicle should not have a particularly strong influence 
on the aerodynamic forces at low speeds,   since the major wing 
forces are produced by the slipstream velocity.    The effective 
"drag" of the tilt-wing vehicle is very high at low speeds,  since 
the wing lift, being dependent upon slipstream velocity,  acts ap- 
proximately normal to the propeller thrust line,   rather than nor- 
mal to the freestream velocity,   resulting in a considerably slower 
transition.    Compare the shape of the acceleration time histories 
of Figure 22 with Figure 24.    Figure 23 shows a direct compari- 
son between a tilt-wing transition and the deflected jet transitions 
at the same tilt rate. 

At the high-speed end of the tilt-wing transition, as the free- 
stream velocity becomes larger than the propeller induced 
velocity, the pilot does have the flexibility to vary the angle of 
attack of the airplane and produce significant changes in the aero- 
dynamic forces.    We do not consider those effects here,  and thus 
our simplified model only applies for perhaps 60° of wing tilt. 

Decelerating transitions are also shown for the tilt wing in 
Figure 24.    Note that in this continuous maneuver the airplane 
is still at some forward speed when the wing reaches vertical. 
It is probable that towards the end of the decelerating maneuver, 
the pilot would adjust the wing rate so as to arrive at zero veloci- 
ty with the wing vertical. 
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f APPENDIX II 

CONVENTIONAL AIRPLANE EQUATIONS OF MOTION IN UNSTEADY 
FLIGHT 

We now determine the conventional airplane equations of motion for 
the general case of varying flight velocity.    Considerations relating to the 
linearization of these equations are discussed in Chapter V.    For com- 
pleteness, we formulate the equations in both wind and body axes,  to show 
the equivalence of the two approaches. 

First we consider the force equations in the plane of symmetry,   ex- 
panding the aerodynamic forces in a Taylor series,   retaining only first- 
order terms (Reference 14,  Chapter XI),  and then discuss any changes 
that arise due to variable flight velocity. 

With respect to an axis fixed to the wind,  the inertia and gravity 
terms are (Reference 38,  page 383f): 

X^. = - mV 

zw. = + mVy 
1 (B-l) 

Xw    = - W sin y 

z^   = + w cos y w 
g 

Summation of forces normal and parallel to the wind, from Figure 21, 
yields: 

Zw    = - L - T cos (i,   - A), (B-2) 
'a w 

x™    = - D + T sin (i     -A). (B-3) wa ' w 

Expanding the vertical aerodynamic force (equation B-2),  retaining only 
zeroth and first-order terms, 

Z«,  +AZ   =-L   -T   cos(i   -A  )-AL-T   sin(i   -A  ) Ao - AT cos (L„   -A  ) wp        wpp wp p wp p      P 

(B-4) 

where the subscript p  refers to the predetermined path and LA = Aor . 
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We separate equation B-4 into zeroth-order and first-order terms, 
the zeroth-order terms determining the path dynamics and the first-order 
terms the perturbation dynamics. 

The path forces are: 

Zw    = - L    - T    cos (i     - A   ). (B-5) wp P        P w p 

The perturbation forces are: 

AZ     = - AL - T    sin (i    -A   ) ba  - AT cos (i     - A   ) . (B-6) 
w p w       p w p 

Similarly,  we obtain two parts to the horizontal force.    Linearizing the 
inertia and gravity terms from equation B-l,  with y    = 0 ,  and then equat- 

ing zeroth-order and first-order terms on each side,  we obtain the wind 
axis equations. 

a. The path equations are: 

mV    + W sin y   =-D    +T    sin (L,,    -A), (B-7) 
P P P        P ^P        P 

- W cos y   = - L    - T    cos (i       - A   ) . (B-8) 
P P        P wp        P 

b. The perturbation equations are: 

mAV +W cos y   Ay = -AD - T   cos (iw   -A   ) Aa +AT sin (iw   -A  ) ,       (B-9) 
P P WP      P P      P 

-mV   Ay + W siny Ay =-AL-T   sin(i     -A   )Ao-ATcos(i      -A   ).     (B-10) 
P P P wp      P WP      P 

We now develop    the body axis equations.    Resolving the aerodynamic 
forces along the body axes,  from Figure 21,  we obtain: 

X„ = L sin A  - D cos A + Tsini     , (B-ll) 
B w 

Z_ = - L cos A - D sin A  - T cos i (B-12) 
B w 

Expanding equations B-ll and B-12, and separating zeroth-and first- 
order terms, the path forces are: 

X,,    = L    sin A    -D    cos A    + T    sin i       , (B-13) 
Bp        P P        P P        P wp 
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Zr,    = - L    cos A     - D    sin A    - T    cos iw    ,       (B-14) 
ap P P        P P        P P 

and the perturbation forces are: 

AX   = AL sin A    -ADcosA   + (D    sinA    +L   cosA   )Aa+ATsini      ,        (B-15) 
B p p        p p       p p wp 

AZT,= - ALcos o    -ADsinQ'    -Aa{D   cosA   -L   sina   )-ATcosi      .      (B-16) 
B p p v   p p      p p' wp        v ' 

Using the linearized gravity and inertia terms,  as given in Chapter V, 
j we obtain the body axis equations. 

c.    The path equations are: 

mU    + W sin 9    =L    sin A     -D    cos A    +T    sin L,,    , (B-17) 
P PPPP PP^p 

\ 
| mW     - W cos 6   =-L   cos A    - D   sin A    -T   cos ^    . (B-18) 

d.    The perturbation equations are: 

-ALcosA   -ADsinA   -Aa[D   cosA   -L   sinA   ]-Wsin6   AÖ = 
P P P P      P P P 

m(Aw-U   6). (B-19) 
P 

ALsinA   -ADcosA  + (D   sinA   +L   cosA   ) Ao + AT sinL.,   -WcosS   A9 = 
P PPPPP ^p P 

m(A{i) . (B-20) 

In studying the short period motion,  i. e. ,  the motion with no velocity per- 
turbation, we use only the vertical force equation.    Now,  we jan show that 
equations B-10 and B-19 will be identical when there is no horizontal 
velocity perturbation if we apply the same constraint to both equations. 
For example,   if we apply the condition of prescribed velocity along the X 
body axis, the constraint relationships are: 

Au = AV cos A    -(V    Aa + V    Äa)sinA    =0 (B-21) 
P P P P 

and 
AX^    = - W    8    . 

Ba P    P 
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Equations B-10 and B-19 will be different if the condition AV = 0 is ap- 
plied to the wind axis equation and the condition  Au = 0 applied to the body 
axis equation,  if the axes are not aligned (A    ^ 0) . 

If the body axis is aligned with the wind  (A    — 0), then the body axis 
equations {B-19 and B-20) become: 

- mU   + T   sin i„.   - W sin 0 
P        P wp P 

AL+Ao^ J+Wsinö   Ae = -m(Aw-U   9). 

^p. P P (B-22) 

-TpC08iwp 

- AD-W cose   AÖ + Aof ,„        0 3 = mAÜ ; (B-23) 
p L   - W cos Ö 

P P 

and the wind axis equations (B-9 and B-10) become: 

mV  +D  +W siny 
P      P P 

AL+Ao-f . }+W siny    Ay= mV y, (B-24) 
T« sin Sv P P 

P P 

-L +Wcosy 
P P 

-AD-W cos y   Ay-f ^ } Aa = mAV , (B-25) 
P Tp cos l

Wp 

where for simplicity  AT = 0. 

The important thing to note is how the appearance of the equations 
may change,  depending upon whether or not the path relationships are 
used to express some of the terms in an alternate form.    For conveni- 
ence,  these alternate forms are given in parentheses (equations B-7, 
B-8,  B-17, and B-18).    The form of these equations, using the under- 
lined terms,  indicates that there will be no direct effects of varying 
flight velocity in the equations of motion.    For example,  if the thrust of 
the airplane is varied to accelerate the airplane,  the only way it would 
appear in equations B-22 and B-23 would be through power effects on the 
lift and drag.    When the axes are initially aligned to the first order,  the 
vertical force equations B-22 and B-24 are identical when Aii = AV = 0 , 
and so the same short period equations will be obtained with either axis 
system. 
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In this form the drag equations are identical and this equivalence, 
in accelerated flight,  can be shown by recalling that: 

Aw = Ao V 
P 

and 
Aw = Ao-  V    + Aa V    , 

P P 

by using the path relationship,   equation B-8. 

References 3,   5,  and 8 use wind axes and consider a missile without 
thrust.    Laitone,   in Reference 5,   comparing equation B-24,  derived for 
the case of zero thrust, to equation B-22,  considers as an example that 
the drag of the vehicle is large and the acceleration is small.    This is no., 
physically possible,  because the path equations are not satisfied and there- 
fore the equations do not agree.    We will use a body axis system and as- 
sume that the path motion is near level flight,  such that  cos 6_ — 1   and 
sin 9_ Ay   is second order. 

We assume,  for this conventional case,  that the lift and drag are not 
dependent upon power, and may be expressed as: 

L = ip S U3 C.   , (B-26) 
Li 

D=*PSUa(CDo+—^-1. (B-27) 

Expanding these expressions in a Taylor series and placing them into 
equations B-22 and B-23, we obtain equations B-28 and B-29.    The pitch- 
ing moment equation may be written as equation B-30.    The assum^t'on 
that there are no significant power effects results in Cm    = 0,  and for 
simplicity we have taken Cm^ - 0 (Reference 14,  Chapter XI).    It is 
physically clear that there are no direct effects of acceleration on the 
pitching moment equation,  since the origin of the axis system has been 
taken at the center of gravity of the vehicle. 

The differential equations describing the motion of an airplane with 
no power effects are (we drop the  A'a with the understanding that any 
quantity without a subscript p is a perturbation quantity): 

CL 

-i-8e = ^(<upcD 'u+upcL'
1-rsF;>w}-       (B-28' 

P s       P 
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, 1 u 

-nr'+U    q=— {(U   C.    )u+-/(CT     +Cn   )w}  , (B-29) 
dt        p ac P    L d.       L, D 

^ --  —   f C        U    w + C        c U    q]  . (B-30) 
at      ->    ,   2 m       p m— p 2Mky a    ^ q ^ 

^=q. (B-31, 

These equations are identical in appearance to the equations of motion in 
steadv flight (Reference  14,   Chapter XI).    In general,   U   ,   CQ    ,  and 
CT      are functions of time. P 

LP 
Since the flight velocity  U     is a function of time,  we denote the non- 

dimensional time as   x ,   and relate it to real time in the following fashion: 

t 
x = f   U  (s) ds . (B-32) 

Jo      P 

When   Up  is constant,   equation B-32 differs from the classical definition 
of aerodynamic time (Reference 14,   page 187) by the factor  (|jc).    x  is 
the distance traveled by the airplane. 

We consider 
q(t) = q(x) . 

u(t) = u(x), 

w(t) = w(x) , 

and apply transformation B-32 to equations B-28 through B-30 to obtain: 

.dü..J_   rX^- = -^{CD   u + CL   (1  -—^L)w}, (B-33) 
dx     U      J      U |ic       Dp Ln 77 AR e ' pop ^ r 

-zf+q=^{CL  U + ^<CL    +CD)W}, (B-34) ox M
C

      •"p a p 

T3-= —l—^iCm    w + C        c q]  . (B-35) dx     2Mky
a      ni0 m^     ^ 
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Only the appearance of the gravity term (the second term on the left- 
hand side of equation E-33) prevents the exact integration of these equa- 
tions for flight at constant lift coefficient.    This case is artificial for the 
conventional airplane,  but we may consider these equations as a first- 
order approximation to a tilt jet vehicle at low speeds when the jet engine 
provides no appreciable contributions to the stability derivatives.    In the 
following,   due to the algebra involved,   it is convenient first to determine 
the differential equations describing each variable considering the inde- 
pendent variable as   x and then to transform the independent variable back 
to time.    We consider briefly some aspects of the equations of motion 
when the flight velocity is changing. 

A .    Short Period Motion 

The short period equations are obtained immediately upon drop- 
ping the terms involving the perturbation velocity,    u,  and re- 
taining only the vertical force and moment equations (Reference 
14). 

^.q = -L {|(CL     +C   )w}  . (B-36) 
dx MC L. D 

dq 
^C™     w + Cm    c q}   . (B-37) 

These equations and the interpretation of their solution are dis- 
cussed at length in Chapter V.    Equations B-36 and B-37 are 
constant coefficient equations and therefore the differential equa- 
tions for pitching velocity and vertical velocity are identical and 
are: 

  + [-r—{CT     +C     -C-— }]—+ 
dx3 Z\ic      La        D        mq   k dx 

C 
m . 

[- 2L i  (C       +CJC       ]w = 0. (B-38) 
a     z Li U     m— 

2M ky2       4M   ky « q 

Using the relationship,   B-32, we transform equation B-38 into 
the time domain: 

at *-       p 
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The equations for pitching velocity and vertical velocity are 
identical in the time domain although this is not necessarily true 
in a coupled system with variable coefficients (see Chapter III). 
It is interesting to note that although there was no difference in 
the equations of motion due to unsteady flight,  there is a differ- 
ence in the differential equations describing pitching velocity and 
vertical velocity, due to the appearance of the term U   / U    in 
equation B-39. P      P 

Now,  let us consider the equation for angle of attack.    Using the 
relationship between a  and w,  we obtain for O'(t); 

Ü      .       U U    a 

Bpu U U BpBp 
P P P 

Equation B-40 differs from equation B-39.    The reason for this 
is clear if we examine the relationship between vertical velocity 
and angle of attack given above.    The angle of attack as a func- 
tion of time will appear quite different than vertical velocity, 
since  Up  is a function of time. 

The differential equation for normal acceleration is obtained 
from the relationship 

N    =   ' z ^— (CT     + C^) U    w 2|ac      ^Q       D'     p 

daN U      dN Ü U 
Z+(2a   U   -3Tr^)-r^ + (üüT,3Ua -rr^-Ü   TZCT    -3-|])N    =0. a      '     B   p      U       dt B    p     U P        B      TT 2        z 

P P Up dt 

(B-41) 

Again, equation B-41 differs from equation B-39 when U     is a 
function of time. 

B.     Phugoid Motion 

We briefly consider the long period motion of an airplane.   When 
the airplane has a high level of attitude stability, we may ap- 
proximate the long period motion of an airplane by neglecting the 
perturbation in vertical velocity and retain only the force equa- 
tions (equations B-28 and B-29). 
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+ q = CT     u . (B-43) 
MC       Lp 

It is interesting to note that if the drag term is neglected,  than 
the velocity does not appear in these equations,  and the nature of 
the motion will depend upon how  CT      varies with time.    The 

equations for the two variables are: 

—+-S-   CT     u = 0 , (B-44) 
dt3      ^c      LP 

,3, 

-^■+-S- CT     0=0, (B-45) 
dt3     MC     LpY 

where 

0 = / e(s) ds . (B-46) 
o 

Note that if we consider flight at a constant lift coefficient, then 
equations B-44 and B-45 are constant coefficient equations. 

For flight at constant lift coefficient with varying velocity, the 
phugoid and short period equations can be exactly integrated but 
most easily in different coordinate systems. 

The short period equations are constant coefficient equations 
when the independent variable is distance traveled; i.e. , the 
wave length of the short period is independent of flight speed. 

C.     Three-Degree-of-Freedom Motion 

We now consider briefly the differential equation for pitching 
velocity for the complete three-degree-of-freedom motion.   Upon 
eliminating variables between equations B-28 through B-31, we 
obtain the differential equation describing  q  (C.   constant): 

i 
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q + [AU-3^-]qi [ 3 (^+H. - AU + BU3 ]q +Clfq + D\J2J q ds = 0 , 
o 

(B-47) 

where  AU ,   BU2 ,   CU3 ,   DU2 are the coefficients of the charac- 
teristic equation in steady flight. 

The deceptive nature of quasi-steady terms may be noted from 
the fact that when  C  and  D  are equal to zero,  we may integrate 
the remaining three terms once to obtain the equation for pitch- 
ing velocity in the form of equation B-39. 

q + [AU  --^"Iq + BU3 q - 0 . 

The additional terms appearing in equation B-47 arise due to the 
fact that upon dropping the terms involving   C  and  D ,   an equa- 
tion in terms of pitching acceleration results,  which is,   in gene- 
ral,  different from the equation for pitching velocity (see Chap- 
ter III).    Equation B-47 may be written as: 

■^•[q + (AU  -^-) q + BlTq]  =  - CU3 q - DU2/  q ds , (B-48) 
o 

or as 
ri   • t t 

q +(AU -^-)q + BU2q= -C/ U3qds -ü/  0(s) U2 ds . (B-49) 

Thus,   we are assuming that the attitude change is small and that 
its integral is small when we make the short period approxima- 
tion.    Roughly,   it would appear that the short period approxima- 
tion is satisfactory as long as the motion is of reasonably high 
frequency such that the terms on the left-hand side dominate. 
A  and   B  are typically much larger than  C and  D . 

Downwash La i. 

To conclude this section,  we briefly consider the downwash lag 
term,   since certain peculiarities arise in unsteady flight.    The 
downwash lag derivative,   M: ,  is usually reflected as an in- 
crease in the damping of the short period motion.    It should also 
be recalled that the term M^,   is an approximation to a nonlinear 
eff«ct,  accounting for the lag in wing downwash arriving at the 
tail.    If we wish to consider this term at very low flight speeds 
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where the time delay is large,  it may be necessary to take the 
nonlinearity into account to properly represent this effect. 

In the formulation of this term in accelerated flight,   note that the 
downwash velocity is delayed,  and not the downwash angle,   so 
that the effect would be approximately represented by (Refer- 
ence 14): 

Ax>r 5M      ,w(t-T).      dM       1    r    .^     dw -, 

Therefore, 

w      öa U(t) 

where  T  is the time taken for a dov/nwash change at the wing to 
reach the tail. 

The presence of varying flight velocity will affect the relationship 
between the vertical velocity derivatives and the angle of attack 
derivatives; i. e. , 

AM(w,  w) = -— Aw + —r-   Aw , 
öw 3W 

äM(a ,  a) - -— La +   ha , 
äa go 

and as we have seen above,       is directly computed. 

Since   a = —   , 

P 

w        w     • 
a = U 

%  upa  p 

We have 

lM=r——   Up SM ] 
öw ' 'Up öo " u a   ai 

3M _ J_   SM 
aw     Up    off 

for the relationships between derivatives when the downwash lag 
is included. 

159 



APPENDIX III 

STABILITY DERIVATIVES OF VTOL AIRCRAFT 

Here we discuss some general features of the aerodynamic forces and 
moments acting on a VTOL aircraft at low speeds, and how they influence 
the analysis presented.    Specific comments are restricted to tilt-wing air- 
craft; however, much of the discussion is applicable to propeller driven 
VTOL aircraft in general. 

There are two aspects of the flight of VTOL aircraft at low speeds 
which are distinctly different from th ; conventional airplane that relate 
to this investigation.    The first is the fact that the configuration of the air- 
plane is variable,   so that,   in particular,  the moment arms of the wing and 
propeller forces vary with the tilt angle of the wing.    The second is the 
fact that the flight condition of the airplane, and thus the aerodynamic 
forces acting on the vehicle,  are dependent upon the time history of the 
transition motion of the vehicle.    The conventional airplane in level flight 
possesses a single relationship between angle of attack and flight velocity, 
while the VTOL aircraft, obtaining lift from the thrust of the propellers, 
has a relationship between wing tilt angle and velocity that depends upon 
whether the motion is steady flight or a flight condition encountered during 
a transition.    This particular problem is discussed in Appendix I. 

We define the flight condition of a VTOL aircraft by the following 
quantities (in level flight):   the flight speed, fuselage attitude, wing tilt 
angle,   power setting (e.g. ,   propeller pitch),  and longitudinal control 
setting.    We consider only motions in the plane of symmetry,  and, for 
simplicity, do not include additional features that may be present,  such 
as flap setting and programmed tail incidence,  or variable propeller ro- 
tational speed. 

Then, the flight condition,  and therefore the aerodynamic forces and 
moments and the stability derivatives will be determined by the instan- 
taneous values (no unsteady effects are included) of the flight speed, wing 
tilt angle,  power setting, and longitudinal control setting.    The particular 
relationship that exists among these four quantities at any instant of time 
depends upon the time history of the motion.    That is, at a given wing tilt 
angle,  the flight speed,  power setting, and longitudinal control s .„ting 
will depend upon whether the vehicle is in steady flight,  accelerating or 
decelerating, and so will the stability derivatives. 
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Let us examine some of these effects in detail,  particularly in rela- 
tion to the linearity of the derivatives.    For simplicity we neglect the in- 
fluence of the longitudinal control setting (this may be an important effect, 
with respect to the influence of elevator setting on velocity stability),  so 
that the stability derivatives are then functions of three quantities:   flight 
speed, wing incidence, and power setting.    Then, the change in a particu- 
lar stability derivative in going from one flight condition to a neighboring 
one may be expressed in a Taylor series as: 

öXk öx^ dx^ 

x-   = x.    + —-i Au +-4  A i     +7-7^-^6    •••• (C-l) Ca       €1       äu ä i w     86 p w p 

We wish to consider which of these changes are linear,  or external effects, 
and which are nonlinear, as discussed in Chapter V. 

The second term on the right-hand side is a nonlinear change.    The 
third term includes both nonlinear effects and linear effects.    Since a 
change in wing incidence is equivalent to a change in wing angle of attack, 
variations of this nature associated with the wing-propeller combination 
are nonlinearities.    Contributions to the change in a stability derivative 
because of changing moment arms or a variation in the downwash field at 
the tail are linear effects.    The last term,  due to a change in power set- 
ting,  is purely a linear or external change of the stability derivative and 
does not influence the linearity of the description. 

Thus the stability derivatives will change with flight condition.   These 
changes may be either due to nonlinear effects or linear (external) effects, 
and in a specific case,  the various sources should be investigated to deter- 
mine the validity of a linearized description of the perturbation motion. 

At the present time there is a lack of experimental data necessary to 
give a complete and detailed description of the variation of the stability 
derivatives in the manner indicated by equation C-l. 

The trends of the important stability derivatives determining the 
initial response of the vehicle, the damping in pitch, the attitude sta- 
bility,  and the variation of vertical force with angle of attack of the air- 
plane are reasonably clear. 

Let us consider the damping in pitch and the attitude stability, and 
then other derivatives that may be important. The emphasis of the de- 
scription is to point out the general features of the stability derivatives 
without resorting to detailed calculations. 
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A.     Variation in Vertical Force With Angle of Attack (Z0) 

In addition to the dependence of this derivative on the flight con- 
dition,  there will be a direct contribution in accelerating flight, 
since the forces in the X direction are no longer balanced. 

First,  consider a conventional airplane,  with thrust,   T, a body- 
fixed force,  and drag,   D ,  parallel to the wind by definition.    Then 
the variation in vertical force with angle of attack is: 

lf = -<^+D'' <c-2' 
and the horizontal equilibrium equation is: 

T    - D    = m Ü . (C-3) 
P        P 

An alternate form of equation C-2 is obtained by using equation 
C-3: 

|Z = .(|L  +T    .m u) . (C-4) 
bo do p 

Since lift varies linearly with angle of attack below stall,  the lift 
curve slope of the airplane in steady level flight is: 

dL W 
da     a - Q 

(C-5) 
0L 

Therefore, 

where,  usually. 

— = -W( +^-). (C-6) 
0L      (^ 

1 »-T- • (C-7) 
Q  ' 00L (3) 

Given the flight velocity in level flight,  the angle of attack is de- 
termined, and the rate of change of vertical force with angle of 
attack is not dependent upon acceleration,  unless the airplane is 
decelerated by increasing drag. 

Now, for a tilt-wing airplane or other VTOL at slow flight speeds, 
a similar expression may be developed.    However, due to the 
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complicated aerodynamics of the vehicle we do not distinguish 
between thrust and drag. 

The majority of the vertical aerodynamic force on a tilt wing is 
developed by the propeller-wing combination with a well defined 
angle of zero lift,  when there is no flap deflection.    Experimental 
data indicates that the variation of the lift force with angle of at- 
tack is reasonably linear when propeller blade angle and rota- 
tional speed are maintained constant (References 25 and 35). 
This  result should not be confused with one method of wind tunnel 
testing in which propeller thrust is held constant as the angle of 
attack is varied (Reference 39) when there is the appearance of 
stall.    Assuming that the variation of the total vertical force per- 
pendicular to the wind is linear,   then 

3X _ W 
da     tan(i    -a      ) (C-8) 

w 

in steady,   level flight.    Equation C-8 includes the thrust force. 
Tbr  t^ng^nt is useH,  since this quantity approaches zero as the 
flight velocity approaches zero  (i^ "* 90  ) .    This relationship 
shows good agreement with experimental data, as shown in 
Figure 25. 

The same relationship would be expected to be a good approxima- 
tion on any other vehicle with tilting components and a well de- 
fined angle of zero lift. 

Experimental measurements on a ducted fan configuration also 
agree with equation C-8 at low forward speeds where there are 
no significant aerodynamic forces from the fixed wing (Refer- 
ence 26). 

Nov. the rate of change of vertical force with respect to angle of 
attack includes the effect of an unbalanced horizontal force.    Let 
X denote the net horizontal force parallel to the wind.    The hori- 
zontal equilibrium relationship for level flight is: 

X = - m U (C-9) 

and 

||=-(|i+X,. (C-10) 
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(C-12) 

Therefore: 

da vtan (iw - o-^)        g ' 

Now at low speeds the horizontal acceleration may have an ap- 
preciable effect on this term,  as o£./ba   is small.    In hovering, 
this approximate form is exact and SZ/ da   is equal to zero. 

Thus, we have the derivative in steady flight, 

dZ _ W 
da tan (i     - Q-      )   ' w        oL 

modified by the horizontal acceleration term, . 
g 

Agreement between equation C-ll and experimental data is shown 
in Figure 25.    Available experimental data indicate that areas of 
separated flow on the wing do not particularly influence this 
derivative,  such that,  tentatively,  no unusual behavior of this 
derivative is expected during rapid decele   ",fion (References 25 
and 35). 

B. Damping in Pitch  (Mq) 

Very little experimental information is available on the damping 
in pitch of VTOL aircraft.    Unpublished data taken on the Prince- 
ton Dynamic Model Track indicate that for a high disc loading, 
conventional propeller tilt-wing aircraft  in hovering,   the damping 
in pitch,   for practical purposes,   is negligible.    Neither the wing, 
located close to the center of gravity,  nor the highly loaded pro- 
pellers provide any significant contribution.    Then,  the important 
contribution to this derivative would arise due to the increase in 
free stream dynamic pressure at the horizontal tail.    Thus, we 
assume that this derivative will increase approximately linearly 
with flight velocity from a value of zero in hovering and is in- 
dependent of power setting and tilt angle. 

With low disc loading machines,  or with tandem configurations, 
this may not be a reasonable assumption.    However, at the pre- 
sent time there is no further experimental information available. 

C. The Attitude Stability (M^,) 

At very low speeds the attitude stability is due to the interactions 
of the wing and propeller forces on a tilt-wing configuration, as 
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well as the relative location of these components with respect to 
the center of gravity. 

The general trend for vehicles of this type is shown in Refer- 
ence 24,   page 33.    At very low flight speeds the aircraft tends 
to be statically unstable with attitude, and as the speed increases, 
the increasing dynamic pressure over the tail provide'., increas- 
ing attitude stability. 

In general,  this derivative is a complicated function of the wing 
tilt angle,   the flight velocity,  and the power setting,  and there- 
fore would depend upon transition rate.    However,  experimental 
data from Reference 25 for a tilt-wing aircraft with a high hori- 
zontal tail indicate that the attitude stability is primarily a func- 
tion of flight velocity,  as shown in Figure 26.    If the horizontal 
tail is located out of the downwash field of the wing-propeller 
combination,  the contribution of the horizontal tail would be ex- 
pected to vary in this fashion.    A limiting case would be no con- 
tribution from the wing-propeller,   representing the conventional 
airplane. 

Another limiting case would be the horizontal tail completely im- 
mersed in the wing-propeller slipstream.    Theoretical calcula- 
tions indicate that the slipstream dynamic pressure is roughly 
constant during a large part of the transition (Reference 40), and 
therefore,  to the first order,  the attitude stability would be con- 
stant.    This is a rough approximation, but gives an indication of 
another possible variation in this derivative. 

These three variations,  the conventional airplane, an approxima- 
tion to the curve shown in Figure 26, and a constant value, are 
investigated in Chapter V. 

Further experimental data are required on the nature of the down- 
wash field at the tail and the wing propeller forces before more 
accurate estimates can be made.    However,   it is considered that 
the approximations discussed,  adequately represent the important 
trends. 

Therefore,  a reasonable approximation to the variation of the 
stabiliiy derivatives affecting the short period motion of VTOL 
aircraft is to assume that they are only functions of flight 
velocity. 
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Other important derivatives necessary to predict the complete 
longitudinal motion are the velocity stability (M  ) , the rate of 
change of horizontal force with velocity  (X  ) ,  the rate of change 
of vertical force with velocity (Zu) ,  and the rate of change of 
horizontal force with vertical velocity  (X   ) . 

These derivatives are more complicated functions of the flight 
conditions than those previously discussed. 

The velocity stability depends, at low speeds,  to a large extent, 
on the moment of the wing forces about the center of gravity. 
This dependence arises from the fact that at high wing angles an 
horizontal speed perturbation causes a change in wing effective 
angle of attack (Reference 40). 

The moment of the wing forces is a function of the tilt angle and 
so this derivative has a relatively strong dependence on tilt angle, 
decreasing as the tilt angle is reduced.    If we consider the wing 
and propeller forces only,  the velocity stability is reasonably in- 
dependent of speed and primarily a function of tilt angle.    A pos- 
sible exception is a rapid deceleration when the wing may stall, 
with resulting unusual behavior.    The velocity stability also de- 
pends upon the horizontal tail lift coefficient, when the horizontal 
tail is not providing pitching moment trim, as well as downwash 
variation.    Programming the horizontal tail incidence with wing 
tilt angle will have considerable influence on the variation of this 
derivative with tilt angle. 

The rate of change of horizontal force with velocity is primarily 
dependent upon the wing forces at low speeds and again would 
primarily depend upon the tilt angle. 

Typical variations of these two derivatives are shown in Figure 27. 
Experimental data are from Reference 25 and unpublished data 
from the Princeton dynamic model track.    Figure 28 shows the 
variations used in the example in Chapter V. 

The last two derivatives, the rate of change of vertical force 
with speed and the rate of change of horizontal force with attitude, 
tend generally to be made up of a number of small contributions, 
and are difficult to estimate.    The latter derivative  (Xw) is 
usually not too important and generally is quite nonlinear (Refer- 
ence 25).    Further experimental data are needed before detailed 
comments on these derivatives can be made. 

166 



We must also consider the existence and possible importance of 
the lag derivatives such as  M^ ; however, the complex nature of 
the flow field around the tail,   taken with the lack of experimental 
data,  makes it difficult to estimate the possible importance of 
this quantity.    Separated areas on the wing may contribute to this 
derivative (Reference 31), as well as the usual effect of the lag 
between a change in wing-propeller angle of attack and the time 
at which the downwash change is experienced at the tail. 

If the tail is out of the downwash, as indicated by the experimental 
data for one configuration (Figure 26), this derivative is probably 
small at low speeds,  due to the low dynamic pressure at the tail. 
It might be argued that at low speeds the effects would become 
more important,  due to the longer time taken for the downwash 
to be propagated from the wing to the tail.    This would, of course, 
depend upon whether the effects are moving downstream with the 
downwash velocity or the flight velocity.    It should also be re- 
called that this derivative is only an approximation to a time de- 
lay effect,  and thus,  if the delay time is long,  then this should be 
treated as a nonlinear effect. 

This discussion indicates general trends of the stability deriva- 
tives of tilt-wing aircraft.    It should be realized that the discus- 
sion is based on relatively limited experimental data. 
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APPENDIX IV 

ROOT LOCUS TECHNIQUE FOR COMPLEX GAIN 

Given an equation in root locus from (Reference 33), 

- 1  . (D-l) 
K(X - Z! )(\  - z2 ) 

(X - piHX -p3)(X - pa) 

where  Zi   and za  represent the zeros and  pi  ,    ps ,  and  ps   represent the 
poles of the function,  we wish to consider how the rules for sketching root 
loci are influenced by the fact that  K  is a complex number.    We denote 

icp! 
(A - Zi ) = o-x   e 

(A - pi ) = 01   e 

K = k e171  , 

and so we may write the equation D-l in polar form as 

CTtra
te } = e <D-2) 

The gain is therefore computed in the usual way by measuring the dis- 
tances from the poles and zeros to the location of interest and computing 
the magnitude of the gain,   k; 

k-.hlih., (D.3) 
Qi aa 

The angle condition depends upon the argument of the gain; i.e., 

til  +0a) -(Cpi +CP8 +r3) = (2k + Dtr -T) . (D-4^ 

Thus, we subtract the sum of the angles from the poles to the point in 
question from the sum of the angles from the zeros and equate the result 
to (2k + l)ir - n.    The locus is drawn in a conventional fashion.    The locus 
is no longer symmetrical about the real axis; however,   since we are,  in 
general,  finding the roots of a polynomial with a complex coefficient, 
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complex roots are no longer necessarily conjugates.    Given the locus for 
the complex gain  K  ,  the locus for tho conjugate gain  K is the locus for 
the gair   K  reflected about the real axis. 

The asymptotes for a locus with complex gain are found from the 
equation describing the angles of the straight line segments of the asymp- 
totes. 

We find the asymptotes by taking only the highest order term X ,  to 
obtain 

K (2k+l)7r 
— e 

Xp-Z 

^ = (2k_LUL1Jl ) k^.l.Z....^ -p-l) 
z  - p 

(D-5) 

where  cp  is the argument of X,  and  r] is the argument of   K .    z is the 
number of zeros,  and  p  is the number of poles of the function on the left- 
hand side of equation D-l. 

To obtain the point of intersection of the asymptotes on the real axis, 
we approximate equation D-l by taking the two highest order terms in X, 
noting that  p > z ,   so that 

k e" ^ . i. 
XP"Z + (L Real Parts of Zeros -L Real Parts of Poles)XP ■z-1 

These first two terms may be considered as approximating a system with 
multiple poles and zeros all at the same location,  i. e. , 

and this location is the location of the intersection.    It is thus unaffected 
by the complex gain and is located at what may be termed the center of 
gravity of the poles and zeros. 

c     ZRe (z) -S Re(p) 
p - z 

In general, when the gain is complex such that the angle condition is 
other than   0  or ff ,  there will be no locus on the real axis. 
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We may compute the departure angles as in the conventional locus, 
using the suitable angle condition for the gain. 

In conclusion,  therefore, we proceed as with a conventional root locus, 
just taking into account the special angle condition. 

Various angle loci for systems with two poles and no zeros and three 
poles and no zeros are shown in Figures 29 and 30. 
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APPENDIX V 

PHYSICAL INTERPRETATION OF THE ASYMPTOTIC 
SOLUTION 

It is interesting to consider a physical interpretation of the asymp- 
totic solution for mechanical systems. 

An elegant interpretation of the asymptotic solution has been given in 
terms of wave transmission through a variable medium that is not par- 
ticularly enlightening for our purposes (Reference 32). 

Let us consider,  then,  the differential equation 

dafl 
^-+ b(t) 6 = 0 (E-l) 
dta 

as a force equation describing a unit mass suspended by a spring whose 
spring constant is varying with time. 

The energy equation may be obtained by multiplying this equation by 
the velocity  d6/dt, and integrating with respect to time to obtain 

i(^)3+ H(t) e2(t) = EO + i/ ea (s) g ds. (E-2) 
o 

The first term on the left-hand side is the instantaneous value of the 
kinetic energy and the second term is the instantaneous potential energy. 
Their sum is equal to the initial value of the energy of the system plus an 
integral arising from the variable spring constant. 

The integral in the last term indicates that the energy of the system 
is changed by the varying spring.    That is,  if we increase the spring con- 
stant by a small amount,   Ab ,   suddenly at some displacement,   8^, there 
will be an increment in energy added to the system equal to ft6? Ab. 

The energy equation before the change was 

i A  +U   e3=E    . (E-3) at o o 
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and after the change 

a 
d8 a a 

t(-d) +t(b +ilb)8 =E +~8 . ilb 
t 0 0 1 

(E -4) 

The amount of energy change depends upon the particular value of 
the displacement at the instant at which the spring constant changes. 

The tota energy of the system would remain constant if the spring 
constant change occurred at zero displacement. At any other value of 
the displaceme nt , an energy increment would be added to the system, the 
maximum increment occurring when the spring constant change takes 
place at maximum displacement. Thus if the spring constant changes in 
a stepwise fashion, the variation in the energy of the system will depend 
upon the displacement of the system when the chang e occurs . 

Now, let us examine the other extreme, when the coefficient b(t) is 

a slowly varying funct ion of time, or more precisely, (l/b
3

/ 
2

) db/ dt is 
smalL The energy at any instant of time is 

a 
.J.. d6 .l.. a 

E<t> = 2 <cit> + 2 b(t) e . (E -5) 

The asymptotic solution to equation E-1, applicable when (l/b
3

/ 
2

)db/ dt 
is small (Cha..., t P. r III) is: 

c t ~ 
8 = 

0 
cos ( J b ds + q>) , 

b 1 I 4 
(E -6) 

and the ref ore 

d8 1 I 4 . Jt 1 I 2 1 b t 1 I 2 -
dt =- b [C

0
sln( b ds + ~)+ 4 b 312 C

0
cos(J b ds+cp)J. 

(E -7) 

The assumption that the coefficient, b, is slowly varying enables us to 
neglect the second term in equation E -7. Substitution of equations E -6 
and E-7 into equation E-5 results in the follow ing expression for the 
energy: 

E(t) = bl/Z(t)C, 
0 
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and therefore 
E(t) f        E(t) 
; ,V— = const.   = —r- 

il/2(t) a)vt) (E-9) 

Thus,   the energy divided by the frequency is constant in the slowly vary- 
ing case.    This is a result that was recognized many years ago in connec- 
tion with the problem of a pendulum with slowly increasing or decreasing 
length (Reference 34). 

Note that the latter case,  with slowly varying coefficients,   is reversi- 
ble,   the amplitude of the response is only a function of the magnitude of 
the spring constant,  where in the former case of the very rapidly changing 
spring constant,   the amplitude variations depend upon the instant at which 
the spring constant changes. 

These points are illustrated by the following example.    Consider a 
system which ha?; a spring constant variation with time as follows: 

be   • 

t. t "1 '2 
The ratio of the amplitude at t > ta  to that at t < ti   can be displayed in 
the following graph as: 

A 

At>tt 

At<t, 

7M 

iff)" 
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The shaded area indicates possible displacement amplitudes for t > ta 
compared to the amplitude  t < tj ,  indicating the dependence of the final 
amplitude  (t > ta)  upon the magnitude of the displacement when the change 
occurs.    As b "• • ,  the limiting cases are: 

1. The spring constant is changed when 6 = ömax •    So ömax   re- 
mains constant and there is no change in the amplitude.    Maximum 
energy input. 

2. The spring constant is changed when 9 = 0, and so the energy re- 
mains constant and the displacement amplitude changes propor- 
tional to /b . 

This simple example illustrates that when we leave the range of para- 
meters over which the asymptotic solution applies, we can no longer ex- 
pect to describe the response by a single amplitude function times oscil- 
latory terms of unit magnitude     This may,  in many cases, be due to the 
fact that the system is not oscillatory. 
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FIGURE I        SOLUTIONS     TO     AIRY*S     EQUATION 
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FIGURE 2     THE   TRANSFORMED   INDEPENDENT   VARIABLE.   T,, 
VERSUS  NON-DIMENSIONAL   REAL   TIME.   T,    FOR 
CONSTANT   ACCELERATION   (EQUATION   V-28),   AS 
A   FUNCTION   OF   to 
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