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PART I 

Building and Usiirj Linear Programming Models 



CHAPTER 1 

Introduction 

In the first chapter we will define Operations Research (OR.) and intro- 

duce some basic OR techniques and concepts. Among the concepts introduced 

is that of a scientific model which is the most important tool in an OR anal- 

yst's repertoire. This chapter is. aimed at serving as a building Mock for 

Thapter 2 by giving the reader a feel for Operations Research. It is not in- 

tended as a rigorous or theoretical presentation. 

Definition of Operations Research 

A very brief definition of Operations Research is the utilization of 

scientific techniques to provide the manager with quantitive information to 

aid in decision making. 

Phases of Operations 'Research 

The general procedure for conducting an OR study is described by the phases 

which follow: 

a) Formulation of the problem 

b) Construction of a model 

c) Derivation of a solution from the model 

d) Testing the model and solution 

e) Establishing controls over the solution 

f) Implementing the solution 

Formulation of the problem is a joint effort by the manager and the OR 

analyst. First of all, the existence of a problem is recognized by the man- 

iger. The manager and the OR analyst then decide upon the objective of the 

study; the restrictions which must be met (e.g., limited time, limited 



resources, etc.); and, a measure of effectiveness of the system to be studied. 

Once the problem has been formulated, the OR group attempts to construct 

a model which adequately expresses the effectiveness of the system in terms 

of the identifiable variables, both those under the control of management and 

those not under the control of management. 

Viewed generally, a scientific model is a representation of the subject 

area under investigation (objects, processes, systems, events, etc.) and is 

used for prediction and control. "It (the model) is intended to make possi- 

ble, or to facilitate, determination of how changes in one or more aspects 

1 
of the modelled entity may affect other aspects or the. whole."  This deter- 

mination is made by manipulating the model rather than the modelled entity. 

There are three types of models available: iconic, analogue and sym- 

bolic. An iconic model is characterized by the fact it "looks like" what it 

represents. This is the kind one encounters most in everyday life. For ex- 

ample, a model airplane or car, a world globe, and a model plant layout are 

iconic models. An analogue model is characterized by the fact that in it one 

property is used to represent another. For example a graph is an analogue 

model which uses distance to represent properties such as time, dollars, weight 

and quantity. Other examples are maps that use colors to represent geological 

configurations and slide rules that use distance to represent numbers. Sym- 

bolic models use mathematical or logical symbols to represent the componenets 

of the modelled entit3r and their interrelationships. The symbolic model is 

the most widely used because it lends itself so readily to available techniques 

Churman, Ackoff & Ackoff (6), p. 107. 



of mathematical analysis. 

The solution to a model constitutes the set of actions and procedures, 

relative to the controllable variables, which will result in an optimal 

overall system effectiveness.  A solution may be found by either analytic 

or numerical methods. An analytic solution utilizes mathematical methods 

such as the techniques from algebra and calculus. A numerical solution 

consists of trying different sets of values in an attempt to find a set 

of values which yields the best results. The complexity of a numerical 

solution procedure may vary from a simple trial and error situation to 

an involved iterative process. 

The solution to a model continues to be a feasible solution only as 

long as the effects and interactions of all variables remain constant and 

the uncontrollable variables remain within the domain of the model. The 

significance of a change in the parameters of the model depends upon the 

resulting change or inaccuracy of the measure of effectiveness. Estab- 

lishment of controls over the solution consists of the development of a 

set of rules for a) determining when a significant change occurs and b) 

modifying the solution if a change occurs. 

Prior to implementation both the model and solution should be tested 

for accuracy and adequacy. Such an evaluation can be accomplished by 

comparing results obtained when using the model and solution with results 

obtained without using the model and solution. These determinations can 

be made by using past data or by a trial run. 

^Jn terms of Game Theory the solution to a model is the selection of that 
strategy or those strategies which optimize the payoff function. 



Implementation requires that the model and solution be transformed 

into procedures which can be understood and applied by the personnel 

responsible for their use. This may require changes in existing pro- 

cedures and resources including the possible necessity for training of 

personnel. The OR Group makes recommendations regarding implementation. 

The decision, however, concerning implementation rests with the manager, 

not the Operations Research Group. 

Linear Programming and Nonlinear Programming 

Linear Programming and nonlinear programming are techniques for 

solving certain types of mathematical models. Linear Programming (LP) 

"... is a technique for allocating or using limited resources (such as 

plant capacity, storage space and material) to achieve a specific objective 

(such as least cost, highest profit margin and greatest quantity), where 

the limited resources have alternate uses and where a change in the amount 

3 
of resources brings a corresponding or proportional change in result". 

In a linear programming model the interrelationships between the variables 

which represent the system components are defined by linear equations of 

the general form a-jc. + a0x„ + a^x_ + ... + a nx _ + a x = b. A linear 
l ±  t z   3 3       n-i n-i  n n 

equation is an equation whose graph is a straight line. It is characterized 

by the fact that a given change in one variable always produces the same 

proportional changes in the other variables. Nonlinear programming is a 

technique for solving mathematical models where at least one of the equa- 

tions defining the interrelationship between the variables is nonlinear. 

^Ferguson and Sargeant (9) pp. 19-20. 



CHAPTER 2 

Introduction 

This chapter may be thought of as being divided into two parts. The 

first part details the concepts underlying LP, specifies the precise math- 

ematical nature of LP and presents a step-by-step method of model building. 

The second part illustrates these principles by showing how they apply tö 

a particular example. The example used is a least cost procurement prob- 

lem for .US  caliber ammunition. 

Basic Concepts 

Before going into the technique for model building to be presented it 

might be well to introduce some of the underlying concepts of Mathematical 

Programming and to detail explicitly the characteristics of a Mathematical 

Programming model. One of the basic concepts of mathematical programming 

is the concept of an "activity". An "activity" is a specific method of 

carrying out a task. Dantzig (7) suggests thinking of activities as "little 

black boxes" - whose detailed nature we willfully ignore - into which flow 

inputs and out of which flow outputs. The inputs and outputs of activ- 

ities are the items of the system. A second basic concept of mathematical 

programming is the concept of "alternatives". An "alternative" to an ac- 

tivity is another method of carrying out the same task or some part of that 

task. 

The quantity of an activity is called activity level or level of activ- 

ity.  In Dantzig*s terms an activity level is the quantity of flow into and 

out of an activity. Another basic concept is that of a measurable objective 



which is to be optimized. Examples of objectives in a scheduling problem 

might be l) to minimize cost, 2) to maximize machine usage, 3) to maximize 

profit, or U) to minimize idle time. 

Two facts follow immediately from the above definitions. First an 

activity represents a two way classification. In the ,U5 caliber model 

an activity will represent a vendor-destination classification - the ammu- 

nition purchased from a given vendor for a specific destination. Secondly 

negative quantities of activities (activity levels) are not possible. For 

example it is not possible to purchase a negative number of boxes of ammu- 

nition. 

Constructing a mathematical programming model is a process of stating 

the relation between alternative activity levels in the form of mathematical 

expressions (called constraints) and developing a mathematical expression 

(called an objective function) for the objective to be optimized. The math- 

ematical expressions, usually equations, express algebraically the interdepen- 

dences between the various alternate activities and activity levels. An 

activity level is represented in these mathematical expressions by an x or 

more generally an x.. 
J 

A linear programming model is a special type of mathematical program- 

ming model in which all the constraint relationships and the objective 

function are linear or capable of being expressed in linear form. There 

are several methods of converting nonlinear expressions into linear ex- 

pressions (or of approximating a nonlinear expression with a linear ex- 

pression) including the "least squares", using linear approximations and 



splitting the problem into several parts each of which is very nearly- 

linear. 

The Central Mathematical Problem of Linear Programming 

The standard form of the linear programming problem is the abstract, 

symbolic, simulation model which defines the precise nature of the central 

mathematical problem of any linear programming problem. Any representation 

of a real system as a mathematical system which exhibits the characteristics 

prescribed by the formal definition of the standard (form of the) linear 

programming problem is a linear programming model. However, the terms linear 

programming problem and linear programming, model are often used interchange- 

ably. 

A formal definition of the central mathematical problem of linear pro- 

gramming in terms of the basic concepts of LP might be "to determine those 

non-negative values for the various activity levels that simultaneously 

satisfy the given linear constraints and optimize the linear objective 

function".  Restated in symbols this is to 

Opt   C,Xn + C„X_ + ... +C.X, +... ex  =■& (l) 
1122        j j      nn 

^See Ferguson and Sargeant (9) for a more detailed discussion of this 
point. 

-'If the restriction of linearity is removed this (word) definition becomes 
a definition of the general mathematical programming problem] that is, it 
would then cover the nonlinear case. 



.Subject to 

^Ll*! + S12X2 + ••' + *ljXj + •'• + ainXn = V 
a21xl + a22X2 + "• + a2jXj + '•• + a2nXn 

= b2 

a x, + a x + ... + a x.+..♦+ a x =b 
ll 1   i2 2        ij J        in n   i 

j=l 

(2) 

a x + a x +...+a x +...+a x =b 
ml 1   m2 2       mj j       mn n   m 

x > 0 

i s lj 2, .. ♦, m 

j = 1, 2,   ...,  n 

or stated in a more general form 

Opt n 
51   c.x. - * (la) 
j=l   3 3 

Subject to n 
J~l  a. .x. = b. (2a) 
T=^   13 .1   i 

x > 0, i = 1, 2, ..., m 

j = 1, 2, ..., n 

x. = activity level whose value is to be determined. 

c. = cost of a unit of activity level. 
J 

b. = constant, given as the limit or value of a constraint (equation), 
1  sometimes called a stipulation or the stipulated amount. 

Equations (l) and (la) represent different forms of the objective function. 

Equations (2) and (2a) represent the constraints (restraints or limits) of the 

problem. 

8 



The authors have taken the liberty of putting the constraints in 

the definition of the central mathematical problem of LP in the form of 

equations. Strictly speaking they should have been defined as inequa- 

tions. However, this would have necessitated a detailed explanation of 

duality - which would not add to the reader's understanding of the rest 

of text. Also, of course, before solving an LP problem the inequations 

are converted to equations. 

The reader should bear in mind that constraints can, indeed very 

often do, occur in the modelled entity as inequations. 

Tihen constraints are inequations of the form "greater than or equal 

to" (^. ) or "greater than" (3>) they are generally called restrictions. 

For example in a procurement problem a vendor may impose a maximum num- 

ber of pieces he will or can supply. Constraints of the form "^" 

(less than or equal to) or " <T " (less than) are called requirements. It 

is also possible for constraints to be bounded on both.sides, that is to 

restrict the constraint to be less than (or equal to) a stipulated amount 

but to require that it be greater than (or equal to) a different stipu- 

lated amount. We might for example want to purchase at least 1000 boxes 

Although a detailed discussion of duality is inappropriate, a brief, if 
simplified, explanation is in order. The principle of duality is that 
related to every linear programming problem, called the direct or primal 
problem, is another linear programming problem called the dual problem. 
If in the direct problem the objective function is to be maximized (min- 
imized) then in the dual problem the objective function is to be min- 
imised (maximized). The Dual Theorem, which is the Fundamental Theorem 
of Linear Programming, states that if either the direct or the dual has 
a finite optimum solution then both have finite optimum solutions and the val- 
ues of their optimum solutions are equal. John von Neumann first conjectured 
this equivalence in October 19U7. The theorem was later stated and proved by 
D. Gale, H. W. Kuhn and A. W. Tucker (10). 



of ammunition to meet our needs but no more than 1|?00 boxes because of 

limited storage space. When constraints (constraining relationship) 

occur as inequalities they are converted to equations. The techniques 

for accomplishing this is discussed in step 11 of the Model Building 

Method discussed below. 

Characteristics of Linear Programming Problems 

Linear programming is a quantitative technique for solving management 

problems. However, not all management problems can be solved by linear 

programming. Therefore, before considering the problem of building lin- 

ear programming models it seems worthwhile to first consider the problem 

of identifying linear programming problems. Fortunately this is usually 

a relatively simple task. All linear programming problems have the fol- 

lowing characteristic: 

1. There is a goal to be reached - that is there is a desire to 

improve present conditions or to achieve the best possible conditions in 

the future. This goal is represented in the mathematical model by the 

objective function. Examples are the desire to reduce cost, to increase 

profit or to increase output. 

2. The situation places certain demands upon the solution - that 

is there are certain conditions of the problem that must be met. In ad- 

dition the problem imposes limits on certain factors or resources within 

the problem. The demands are the requirements and the limits are the re- 

strictions of the linear programming problem. They are represented by 

the constraint equations in the linear programming model. 

3. A number of different satisfactory courses of action - paths 

10 



to the goal - exist. A satisfactory answer is one that satisfies the 

requirements within the restrictions. 

k»  The factors of the problem are quantifiable.  Further there 

are real and measurable differences in the desirability of the various 

courses of action. 

£. ilt least one of the courses of action must be a best answer. 

That is, an optimum value of the objective function exists. 

A problem must have these characteristics or it cannot be solved by 

7 
the linear programming technique.  The first and second characteristics 

follow immediately from the preceding discussion of LP. The third char- 

acteristic follows from the fact that if there is only one way of meet- 

ing the requirements within the limits then LP is inapplicable because one 

of the basic assumptions underlying linear programming is that of alter- 

natives. Indeed, if there is only one possible way of fulfilling the re- 

quirements the solution to the problem is trivial. The fourth character- 

istic follows from the fact that linear programming is a technique for 

obtaining quantitative solutions. The fifth characteristic is self-explan- 

atory. 

Introduction to the Model Building Method 

In terms of the above discussion we might define linear programming 

as "... a technique that systematizes for certain conditions the process 

of selecting the most desirable course of action from a number of available 

7 
The characteristics describe any mathematical programming problem. To 

make the description apply specifically to linear programming the require- 
ment of linearity as per previous discussions must be added. 

11 



courses of action, thereby giving management information for making a 
o 

more effective decision about the resources under its control." 

The solutions to LP problems are used by managers as aids in decision 

making. The LP model is symbolic simulation of a real life system. The 

validity of the solution depends on how accurately the model describes the 

system. Determining the solution of the linear programming model is a rel- 

atively simple but time consuming and iterative process. This can be sim- 

plified by using a standard computer routine to solve the model. However, 

because the real world is often complex, ambiguous, and sometimes difficult 

to quantify the process of building a model is not always simple. The 

process of model building is, in fact, often extremely complex. Indeed, 

the process of building a model often seems to be more of an art than a 

science. 

Because' the validity and applicability of the solution depends directly 

on how accurately the model simulates the real life system the process of 

model building is of paramount importance. Yet model building is the aspect 

of linear programming most neglected in the literature. This is partially 

due to the fact that it is very difficult to isolate and identify the sep- 

arate steps that go into the model building process and partially due to 

the fact that the skilled analyst tends to come to regard model building 

as almost an intuitive process. 

Despite the complexity of the task it is possible to recognize certain 

principles which distinguish the separate steps in the model building 

o 
Ferguson and Sargeant (9) p.3. 
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process. The procedure outlined below is based on the basic concepts 

underlying linear programming and the formal definition of the general 

linear programming problem given above. The procedure is designed to 

decompose the model building process into separate and distinguishable 

steps, each involving a single, easily understandable task. 

As the reader acquires skill as a model builder he will undoubtedly 

perform two or more steps simultaneously. Indeed, he will not only com- 

bine several into a single step but he vrill  also consider the impact of 

each step on the final model. It is often possible to simulate part of 

a system (or a total system) with different and equally valid equations 

or sets of equations. For example a requirement for an item of GFM 

(Government Furnish Material) might be expressed as a single equation 

for the total amount or as several equations - one for each destination. 

The skilled model builder is able to recognize and evaluate these alter- 

native s. 

The reader may feel that the procedure presented is too micro. The 

authors, however, feel that the micro approach is more than justified by 

its procedural and conceptual simplicity. ;!e have tried to present a 

method that is general enough to be applied to any linear programming 

problem and detailed enough to be readily understandable and useful. 

The method presented will be especially useful to the novice in the field 

of LP. However, the more experienced model builder may also profit by 

gaining insight into model building by being forced to view it as a sys- 

tematic step by step procedure. 

13 



How to Build a Model 

The procedure outlined below is designed to incorporate the under- 

lying concepts of linear programming with the formal definition of the 

general linear programming problem while maintaining ease of understanding. 

The technique for model building will be demonstrated using the ,US> caliber 

ammunition problem mentioned earlier. 

Step 1 - Define the problem in words using the given parameters - 

requirements, restrictions, cost factors to be considered, etc. This re- 

quires a careful study and analysis of the purpose, form, content, and 

inputs and outputs of the system (situation) to be simulated by the model. 

The kinds of factors and the number of each should be very explicitly 

noted. This is the formulation or problem definition phase. 

The definition of the problem is given in the paragraph below. Mote 

how the requirements, restrictions, and the factors affecting cost were 

identified. 

,h$  Caliber Model - The problem that led to the formulation and solu- 

tion of the first model was the purchase of ,k%  caliber ammunition for dif- 

ferent destinations. For this problem there are 18 destination points. 

Each destination point has a given requirement. The total requirement 

for all destination points can be satisfied by any one of three vendors. 

The objective is to award contracts in such a way so as to purchase the 

given requirements for the minimum cost. This objective is influenced by 

the following factors: 

1) the unit price of the end item. 

2) the cost of shipping two different items of Government Furnished 
Material (GFM) to the vendors (i.e., packing boxes, propellant). 

Ill 



3) the cost of shipping the packaged end item to its destination 
point(s). 

Step 2 - Identify and list the requirements and restrictions which 

9 
involve the major principle items.  The reader should bear in mind that 

often separate constraints exist involving the same or identical items. 

The definition of the problem from Step one should be used as a guide. 

The principle item which the ,h%  caliber ammunition procurement prob- 

lem is concerned with is ,h$  caliber ammunition. Referring to the def- 

inition from Step 1, you will note that there are eighteen destination 

points each with its own requirement for ammunition. Therefore there are 

eighteen requirements for ammunition. Also, there are three vendors and 

thus three restrictions on capacity. TABLE 1 shows the list of require- 

ments and restrictions for ,h$  caliber ammunition.  A requirement repre- 

senting the total system requirement for ammunition is also listed. ■ 

Step 3 - Analyze the definition of the problem and the list of con- 

straints (from Step 1 and Step 2 respectively) for secondary, subsidiary, 
9 

constraints.  Subsidiary requirements/restrictions are often implicit 

and/or dependent on primary requirements or restrictions. For example 

procurement models for ammunition usually have (implied and dependent) 

9 
Dantzig (7) approaches the problems somewhat differently. He talks in 
terms of items instead of requirements/restrictions for items. He incor- 
porates Step 2 and Step 3 (above) into a single step which he describes 
as a process of determining "... the classes of objects, items, which are 
consumed .or. produced by the activities ...". The authors, however, feel 
the approach proposed above is better because it is procedurally and con- 
ceptually simpler. 

15 



TABLE 1 

Requirements and Restrictions for Ammunition 

CONSTRAINT NO. 

Destination 1 Requirement 

Destination 2 Requirement 

Destination 3 Requirement 

Destination h Requirement 

Destination S> Requirement 

Destination 6 Requirement 

Destination 7 Requirement 

Destination 8 Requirement 

Destination 9 Requirement 

Destination 10 Requirement 

Destination il Requirement 

Destination 12 Requirement 

Destination 13 Requirement 

Destination lU Requirement 

Destination l£ Requirement 

Destination 16 Requirement 

Destination 17 Requirement 

Destination 18 Requirement 

Vendor 1 Restriction 

Vendor 2 Restriction 

Vendor 3 Restriction 

Total Requirements 

1 

2 

3 

k 

6 

7 
f 

8 

9 

10 

11 

12 

13 

Hi 

1$ 

16 

17 

18 

19 

20 

21 

22 

16 



requirements for GFM. In both Step 2 and Step 3 the list should include 

possible constraints as well as obvious ones. Later we will winnow out 

and eliminate unnecessary constraints. 

Ask yourself, "Are there any requirements or restrictions that are 

dependent on those for ,h$  caliber ammunition?" The definition of the 

problem shows that there is a requirement for two different GFM for each 

vendor. Thus we have a total of six requirements for GFM, two each for 

the three vendors. We also have a total requirement for each GFM giving 

us a total of eight additional requirements. These are listed in TABLE 

2. 

TABLE 2 

 Requirements/Restrictions for GFM  

REQUIREMENTS/RESTRICTIONS NO. 

Vendor 1 Requirements for GFM 1 1 

GFM 2 2 

Vendor 2 Requirements for GM  1 3 

GFM 2 k 

Vendor 3 Requirements for GFM 1 $ 

GFM 2 6 

Total Requirements for GFM 1 7 

Total Requirements for GFM 2 8 

Step li - Arrange the data in convenient tabular form. Because of 

the variety of potential areas of application of LP it is impossible to 

prescribe an exact format to follow. However, certain general guidelines 

17 



can be stated. The stipulated amounts (values) of the requirements and 

restrictions (the b. values) should be listed in separate columns or sub- 

columns and grouped by related item. Put the various "costs" in columns 

or subcolumns grouped by item. 

All columns, subcolumns and entries thereof should be specifically 

labelled and identified. Make sure you record all the data. At this point 

it is better to include too much than too little. Extraneous data can be 

culled out later. 

TABLE 3 shows the original data after being arranged according to 

the guidelines outlined in the instructions. The cost of shipping the end 

item was added to the cost of the end item for part 1. All the costs in 

part 1 were rounded to the nearest cent and in part 2  to the nearest one- 

tenth of a cent.  This was done purely as a convenience measure for the 

purposes of this paper. The original problem was solved using the data to 

OJ 
the number of digits given. Rounding did not-effect the solution because 

the differences in prices are large in comparison to the effect of rounding. 

Step 5 - The lists of requirements and restrictions from Step 2 and 

Step 3 contain the possible constraints that the model builder has iden- 

tified. Review the lists for accuracy and completeness. Taking into 

consideration the definition of the problem, the limits of the real sys- 

tem and the tabulated data, decide on the necessity and the desirability 

of each constraint. A necessary constraint is one that imposes a real 

limit on the model or that has a specific cost attached. The first thing 

to do is to identify constraints that are not necessary.  Unnecessary 

18 



TABLE 3 

Part 1: Requirements for and Costs of Ammunition - Includes Cost of Ship- 
ping End Item 

Destination No. No. Rec'd Vendor 1 Vendor 2 Vendor 3 

1 5,526 U6.68 U3.03 U3.08 

2 3,U78 U7.U9 UU.29 UU.60 

3 5,000 U7.08 U3.75 U3.26 

U 3,080 U6.79 U3.U9 U3.66 

$■ 
66 50.10 U5.9k U7.60 

6 150 U8.68 U5.03 U3.89 

7 9,OU3 U7.36 UU.25 UU.UO 

3 98 U8.75 )45.09 UU.83 

9 7U5 U6.99 U3.56 U2.59 

10 1U,U65 U6.99 U3.56 U2.5V 

11 1U,833 U7.36 UU.25 UU.UO 

12 1,000 U6.93 U3.U3 U3.21 

13 1,000 U6.79 U3.U6 U3.0U 

11* 1,000 U6.9U U3.50 U2.70 

1$ 1,000 U6.86 U3.57 U3.82 

16 1,000 U6.88 U3.U9 U3.61 

27 1,000 U6.U8 U3.18 U3.17 

18 1,586 U7.2y UU.25 UU.UO 

Total Requirement: 6U,070 boxes 

19 



TABLE 3 (Conf ) 

Part 2: GEM Requirements and Costs 

Vendor GEM No. 
$/Box 

1 GEM No. 2 
$/Lb. 

GFM No. 2 
$/3ox 

Total Cost 
GFM $/Box 

1 0.131 0.020 0.025 0.156 

2 0.087 0.016 0.020 0.107 

3 0.099 0.015 0.019 0.118 

Total Requirement GFM No. 1: 6)4,070 3oxes 

GFM No. 2: 80,666 Lbs. 

constraints should be eliminated unless they are be in-3 retained for other 

10 
purposes.   For example, an unnecessary requirement might be retained be- 

cause it yielded additional information - that is information in addition 

to the solution - or because it saves work in the evaluation and implemen- 

tation of the solution. If constraints are being retained to obtain addi- 

tional information or to save work in implementation of the solution it will 

be necessary at a later point to evaluate the necessity of adding variables 

and adjusting coefficients to accomplish this purpose. 

Limits imposed by a system can often be represented in a model by dif- 

ferent and equally valid equations or sets of equations. Review the lists 

for alternate methods of simulating part of the system. Evaluate the alter- 

natives. If only one alternative is valid retain it. If all are equally 

valid retain the one that offers the most in the way of additional benefits, 

and eliminate the other alternatives. The model builder should be very sure 

10 
In Step 10 we will again consider the possibility of modifying the model 

by eliminating equations. The problem will be approached in Step 10 alge- 
braically whereas in Step 5 the approach is analytical. 

?0 



that the alternate simulations are equally valid. Once the unnecessary con- 

straints have been eliminated the lists should be reviewed for completeness. 

That is, the model builder should assure himself that all the limits of the 

system are explicitly represented by a constraint. A final list of all the 

requirements and restrictions that are to be included in the model should be 

prepared. 

The requirements for the eighteen destination points listed in TABLE 

1 are necessary since they represent actual limits imposed on the model by 

the real system. On the other hand once these are included the total re- 

quirement constraint is not necessary since it does not further delimit the 

ranrje of possible solutions. The three restrictions on capacity arc not 

necessary because the capacity of each vendor is unlimited so far as wc 

are concerned in this problem. 

If one examines the list of requirements for secondary items in TABLE 

2 he finds that there are two ways of formating these requirements. The 

secondary requirements', could be included in the model as two constraints 

each representing the total requirements of all vendors for one GEM or as 

six constraints each representing the requirement of one vendor for ono 

GEM. 

The two methods are equally valid. That is neither is the required 

one, but at least one must be used. However, the second approach is more 

convenient.  If a variable is added to each of the equations representing 

the requirements for GM and coefficients assigned properly the final solu- 

tion will contain explicitly the amounts of GEM 1 and GEM 2  required for 



each vendor. This has the advantage of saving hand computations. It also 

has the advantage of serving as a reminder that these are indeed individual 

requirements. Consideration should be given to include both formulations. 

Since using the two total requirements offers us no additional information 

nothing is to be gained by including them. Therefore we eliminate them. 

TABLE h  shows the revised list of principle and secondary requirements. 

Step 6 - List and identify the activities of the system. An activity 

should be included in this list if and only if it is a possible activity. 

For example, if a certain vendor will not or cannot supply a given destina- 

tion then this activity is impossible. The decisions made in Step 5 

must be kept in mind. If constraints were deleted or one has decided to 

obtain extra information by adding constraints or variables the list of 

variables must be adjusted accordingly. For most problems it is easiest 

and best to summarize activities in the activity table. 

The possible activities for the ,kS  caliber procurement problem are 

listed and labelled in columns 1 of TABLE 5. Note how the principle of 

summarizing was used. For example, the purchases for all possible destin- 

ation points from one vendor are shown on a single line. The same data, 

not summarized, is shown in TABLE £A. Note how much longer this latter 

table is even using the mathematical shorthand convention of the ellipsis. 

However, the longer table has the advantage of making it easier to identify 

the variables that represent the alternate activities when we write the 

mathematical expressions to represent the interrelationship between the var- 

iables in Step 8. 
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TABLE h 

Requirements for Ammunition and GM 

Reg Mo. Description 

5 

6 

7 

8 

9 

10 

11 

12 

13 

l)i 

15 

16 

17 

IB 

19 

20 

21 

22 

23 

2U 

Destination 1 Requirement for Ammunition 

tt               p             ti               u ii 

II           O          II           II II 

li        L                 n        it II 

II       £      II       II II 

II        £       II        II i' 

II        n                 n        II ii 

it        3       li        it ti 

II          o         II          II II 

li      -[Q                II        II II 

II      Y]_                "        " " 

II       ]_?       it        II n 

II      ]_3      II         II :i 

II      ]_J^      II        it .1 

II       ]_£                 n        II ;i 

n             2.6             "               " " 

II              yj              II                 it i 

II            ]_g            n               II n 

Vendor 1 Requirement for GH4 1 

Vendor 2 Requirement for G15M 1 

Vendor 3 Requirement for GSM 1 

Vendor 1 Requirement for GFM 2 

Vendor 2 Requirement for GFH 2 

Vendor 3 Requirement for GR'-i 2 
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TABLE g 

Explanation (Activity) Variables 

Ammunition from 

Vendor 1 to Destination 1 

Vendor 2 to Destination 1 

Vendor 3 to Destination 1 

GFM 

GFM 1 for Vendor 1 

GFM 1 for Vendor 2 

GPM 1 for Vendor 3 

GM 2 for Vendor 1 

GM 2 for Vendor 2 

GPM 2 for Vendor 3 

18 

18 

18 

TABLE 5A 

v - X18 
x19 " x36 

X37" xSk 

X# 

XS6 

XS7 
x58 

X^n 

^60 

Activities Variables 

Vendor 1 to 

Destination 1 

Destination 2 

Destination 3 

Destination 17 
"17 

& 



TABLE 5A (Conf) 

Activities (Conf) Variables (Cont1) 

Destination 18 

Vendor 2 to 

Destination 1 

Destination 2 

Destination 3 

L18 

"19 

"20 

l21 

Destination 17 

Destination 18 

Vendor 3 to 

Destination 1 

Destination 2 

Destination 3 

*35 
x36 

x37 

x38 

x39 

Destination 17 

Destination 18 

GFM 1 to 

Vendor 1 

Vendor 2 

Vendor 3 

AS3 

X5S 

x57 
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TABLE 5A (Conf) 

Activities (Conf) Variables (Conf) 

GFM 2 to 

Vendor 1 x^g 

Vendor 2 x^ 

Vendor 3 x,Q 

Step 7 - Assign variables to the activities listed to represent the 

unknown (and to-be-determined) activity levels. No variable should be 

assigned to an impossible activity. However, if an impossible activity 

has been listed and is assigned a variable it will take on a zero coef- 

ficient in Step 11. 

Column labelled "Variables" of TABLE 5> shows the assignment of vari- 

ables to possible activities. 

Step 8 - Develop a mathematical expression for each constraint that 

shows the relationship of the stipulated amount of that constraint to the 

sum of the terras formed by multiplying every activity level (representing 

alternate activities) in that expression by the associated coefficient. 

That is, write down mathematical expressions to express the interdependen- 

cies between the various X.. The table developed in Step 6 will be an aid 

in identifying the alternate activities. The coefficients and stipulated 

amounts will be as yet undetermined and appear in the form of a.. and b 

respectively. Write an equation for the objective function in the form 

specified in the definition of the general IP problem above. Any variable 
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that appears in any constraint will appear in the objective function with 

the appropriate "cost" coefficient. The C.,, cost values, will also be un- 

known at this point in time. 

The mathematical expression for the constraints and the objective 

function are shown in Figure 1. To illustrate how these mathematical ex- 

pressions are developed let us examine the first equation in Figure 1 which 

is a , x + a , x  + a-,».,7X-,7 
= D. • This says that the sum of the number 

of boxes of ammunitions bought from the three vendors for destination one 

must equal the required amount of ammunition for that destination. A sim- 

ilar analysis applies to the other constraints defining requirements for 

ammunition. 

Equations 19 - 2U are concerned with the requirements for GFM. Each 

equation represents the total requirement of a given vendor for one type of 

GFM. They state that the total amount of a particular GFM required by the 

given vendor must equal the sum of the individual requirements (one for 

each destination) of that vendor for that GFM. The extra term in each 

GFM equation is the additional variable mentioned in Step 5 that was ad- 

ded to enable us to use these equations to obtain the amount of each GFM 

required by each vendor directly from the solution. 

The objective function states that the sum of the number of boxes 

purchased from a vendor for a destination times the cost per box, for all 

possible vendor - destination combination, together with the amount of GFM 

for each vendor times its cost per unit equals the total cost. 
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FIGURE 1 

Constraints 
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(3 
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37 

= bl 
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3,3 3  3,21 21  3,39 39  3 
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b 

5,5X5 + a5,23X23 + a5,Ul\] 

6,6X6 + a6,2UX2U + a6,li2XU2 " b6 

7,7X7 + a7,25x25 + a7,U3xU3 ° b
7 

8,8X8 + a8,26x26 + a8,UU^i^ ° b8 

9,9*9 + a9,27X27 
+ \hS\S " *9 

10,10X10 + aiO,28X28 + aiO,U6Xii6 = b10 

11,11X11 + an,29X29 + aH,U7XU7 = bll 

a12,12X12 + a12,30X30 + ai2,U8XU8 = V 
a x+a x+a x3b 
13,13 13       13,31 31       13,1*9 k9       13 

a,     , x ,   + a x      +a x      =b 
Hi,lU 11*       Hi,32 32        lli,50 50       lli 

^,1^15 + al5,33x33 + al5,5lx*L " bl5 

"lö.lß^lö     al6,3Ux3li    al6,52x52     "16 
b 

] 

b. 
^nAf^H + al7,35x35 + al7,53X53 =   17 

^lS*]^ + al8,36x36 + ai8,5UX51i = bl8 
a. „    x    + a,^ „x    + a       x    + 
19,1 1       19,2 2       19,3 3 

+ a + a 

20,19 19       20,20 20 

a x+a        JC     + 
21,37 37       21,38 38 

19,18 18       19,55 &       19 

•••+a20,36X36+a20,S6X*6=b20 

...  + a x ..   + a     _ xj    = b 
21,& 5U       21,57 57        21 
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FIGURE 1 (Conf) 

(22) a22AXl ♦ a22j2x2 + ... + a^^g ♦ a22,$8**8 = b22 

(23) a23,19X19 + a23,20x20 + ••• + a23)36 
x
36 

+ a23,£Q
XS9 ' b23 

(2U) a„, 0-x._ + a . „0x-ö + ... + a . ,,x. + a , , x. = b , 
2U,37 37   2U,38 38       2U,^U SU   2U,60 60   2U 

Objective Function 

(25) ClXl ♦ C2X2 * C3X3 ♦ ... + CjXj + ... + 0^9  + C6oX6o - * 

Step 9 -  Determine the coefficients of the variables and value (stip- 

ulated amount) of the stipulation for each equation. The variables are 

all in one unit of measure. All of the terras (the products of the activ- 

ity levels by coefficients) for a given constraint and the stipulated 

amount of that constraint must be in the same unit of measure. To estab- 

lish the 3ame unit of measure within a constraint calculate conversion 

factors and then multiply either the stipulated amount or the terms by 

these factors. For example, the requirements (the b. values) might be given 

in numbers of pieces, the restrictions (b. values) in man/machine hours, 

and the variables in pieces. To establish the same unit of measure with- 

in a restriction we could calculate the hours per piece for each item in 

that equation and multiply each of its terms by the appropriate factor. 

This would convert all the units of measure in that restriction to hours. 

On the other hand we could calculate the pieces per hour for the item and 

multiply the stipulated amount given in hours by this factor. This would 

result in the using pieces for the unit of measure. The latter approach 

would not work if we had different items with different production rates 

in the same constraint. 
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The earlier decision (Step 5) to use or not to use the model to ob- 

tain extra information affects the determination of values for coefficients 

and stipulations. If we have decided or decide at this time to do this, we 

must add extra variables and adjust the values of the coefficients and/or 

values of the stipulation accordingly. Once the numerical values of the 

coefficients and stipulations have been found, rewrite the constraints 

replacing each a., and b. with the proper numerical value. 

The constraints with numerical values substituted for the coefficients 

and stipulated amounts are given in Figure 2. The stipulated amounts for 

the first eighteen equations are taken directly from TABLE 3. These are 

the requirements for the eighteen destination points. To see how the co- 

efficients for these equations were determined let us look at the first 

equation in Figure 1. This equation says that if we multiply the number 

boxes purchased from vendor 1 for destination 1 by a constant, add the pro- 

duct of the number of boxes purchased from vendor 2 by a second constant 

and add to this sum the product formed by multiplying the number of boxes 

purchased from vendor 3 by another constant the sum equals the stipulated 

amount, which is £,£26 boxes. For each box purchased from a vendor for a 

destination one box is shipped to that destination. Therefore each of the 

three constants must be a positive one. A similar analysis shows that all 

the coefficients of the first eighteen equations must be positive ones. 

To illustrate a situation where some of the coefficients might not be pos- 

itive ones let us assume that equation 1 represents a requirement for a dif- 

ferent kind of ammunition that is packed 2,000 to box. If the stipulated 

amount was given in boxes of 1,000 rounds we could either divide the 
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stipulated amount by two or use two as coefficients for all the terms in 

equation 1. 

The coefficients and stipulated amounts of the three requirements for 

GFM boxes present a situation that is somewhat different. The values of 

these stipulations are not known, only the total for the three vendors is 

known. The values of these stipulations, which will be the requirements of 

the vendors for GFM boxes, can be obtained from the solution to the model. 

To show how this is done let us look at equation 19 in Figure 2. The ini- 

tial value of b _ is set to zero, the coefficients of x. thru x . set to 

negative ones and the coefficient of x^ to positive ones. This forces 

x^u to assume a value equal to the sum of the values of x^ thru x^o. Thus 

x^ in the solution will take a value equal to the requirement of vendor 1 

for GFM 1. A similar analysis applies to equation 20 and equation 21. The 

requirements' for the propellant poses a different problem. For equations 

22-2U in Figure 1, a similar analysis to that used for equations 19-21 seems 

to apply. However, an adjustment in units or in unit cost must be made be- 

cause costs and total requirement was given in terms of pounds whereas the 

variables are in terms of numbers of 1,000 round boxes. We can either con- 

vert the cost to dollars per box or convert all the terms in these three re- 

quirements to pounds. If the former approach is used then the values of x^o - 

x, in the solution will be in terms of boxes and would have to be multiplied 

by pound per box to convert these figures to pounds in order to implement the 

solution. The second approach involves using decimal coefficients for all the 

terms in equations 58-60. For convenience sake we decided to use the first 
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Figure 2 

(1) *i ♦ Xy ♦ x37 

(2) x2 + x20 + x38 
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13 
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Figure 2 (Conf) 

(22) -x^ - x2 - x^ - x^ - x^ - x^ - x? - Xg - x^ - x10 - x-^ - x12 - x^ - 
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X
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X
30 
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method - converting costs to dollars per box.   This allows us to use the 

same coefficients as are used for variables 55-57 by using adjusted cost 

figures. The conversion factor, to convert $/lb to $/box is 1.259 lb/box. 

The converted figures are shown in the column labelled "GFM 2 $/Box" in 

part 2 of TABLE 3. 

Step 10 - Check the list of constraints for unnecessary, redundant 

or contradictory (inconsistent) constraints in order to reduce and simplify 

the model. An unnecessary constraint is one that can be excluded from the 

model without affecting the solution. There are no simple tests that can 

be applied to decide whether or not a given constraint is necessary. A 

rule-of-thumb is if a constraint imposes no limits on the variables of the 

problem or if the value of all the variables in it can be obtained from the 

solution to the model without that constraint the constraint is unnecessary. 

For example if a vendor can supply all the requirements, in general, an 

equation for his capacity is unnecessary. If, however, unused capacity 

Actually the cost is in dollars per amount of propellant required for one 
box of ammunition. 
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carries a cost then the constraint would be necessary. This constraint 

might also be included to obtain extra information about the system. Un- 

necessary constraints are eliminated unless retained for additional in- 

12 
formation. 

A formal discussion and explanation of redundance and inconsistency 

13 
is beyond the scope and intent of this paper.   For our purposes it is 

sufficient to say that a mathematical expression is redundant if it can 

1U 
be obtained by multiplying another mathematical expression by a constant. 

For example the equations (l) x + 2x = $  and (2) 2x^  + Ux = 10 are redun- 

dant, because one can be obtained by multiplying the other by two. Another 

way of viewing redundancy is that all but one of the redundant constraints 

in a model can be eliminated without affecting the solution. That is, when 

equation (l) is in the model equation (2) above adds no new information and 

does nothing to further limit the possible solutions. Eliminate all but one 

of each set of redundant constraints. 

For our purpose two or more mathematical expressions are inconsistent 

if there exists no values for the variables that satisfy the mathematical 

12 
Step 5 also discusses elimination of unnecessary requirements and re- 

strictions. The reader may also find the discussion Reinfeld or Vogel (13) 
on the elimination of equations and substitutions of variables enlightening. 

11 
Consult Dantzig (7) pp. 71-72 for a formal definition of redundancy and 

inconsistency. 

The mathematically sophisticated reader may note that equations are redun- 
dant when they are not linearly independent. 
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expressions simultaneously. This really says that contradictory or mutu- 

ally exclusive requirements have been placed on the variables. For example 

x ^ 5 and x ^ 6 are inconsistent. It is impossible for a variable to be 

simultaneously less than or equal to five and greater than or equal to six. 

Another example is x + x    m $  and x. + x. = 6 which would require a quan- 

tity of x, + x„ to be simultaneously equal to five and six. 

Inconsistent constraints tell us that the model was improperly formu- 

lated or that there is no solution to the system because the limits on the 

system are self contradictory. If inconsistency is encountered either the 

model must be reformulated or the limits of the real system must be changed. 

If one of these cannot be done then there is no solution to the model. 

An examination of Figure 2 reveals no redundant or inconsistent math- 

ematical expressions. Since we have already (in Step 5) eliminated those 

unnecessary constraints that we decided we did not want there is nothing 

more to do in this step. 

Step 11 - Convert any inequations to equations.   The procedure is 

simple. If the inequation is of the form of "less than or equal" (<C ) 

or "less than" (\ ) an additional variable called a slack variable is 

added. For those cases where the inequations are of the form "^ " (greater 

than or equal to) or "> " (greater than) a slack variable is subtracted 

and a variable called a dummy or artificial variable is added. 

The reason for doing this will be explained in the section on solutions. 
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In a constraint equation the values determined for the variables must 

be such that the sum of the terms in each constraint exactly equals the 

stipulated amount of that constraint. In an inequation the sum of the 

terms differs from the constant (b.) value. The slack variable added or 

subtracted represents this (unspecified) difference. 

The variables that represent the activity levels in the original equa- 

tions and inequations are called real or structural variables to distinguish 

them from slack and artificial variables. The condition (requirement) of 

non-negativity imposed on real variables applies to slack and artificial 

variables. 

The problem as formated in Figure 2 shows all the constraints in equa- 

tion form. To verify that this is indeed the case an examination of the 

problem and problem definition is in order. The problem, as presented for 

analysis, is to purchase exactly the specified number of rounds for each 

of the destinations. These requirements must be met exactly. Therefore the 

requirements for ammunition are equations. The requirements for GFM for a 

vendor are determined by the number of rounds of ammunition purchased from 

that vendor. That is, each round (or box) of ammunition requires exactly 

so much of each of the GM. Therefore the GM requirements are equations. 

Since the constraints are already in equation form we can proceed to Step 

12. 

Step 12 - Construct a coefficient table. The body of this table will 

be used to record the values of the coefficients of the variables. Each 

row in the body of the table will represent an equation, each column will 

represent a variable. Each equation and each variable should be labelled. 
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To the left of the body of the table create a column for labelling the 

constraints and a column for recording the value of the stipulation, the 

b., for each row. Label each row and column. Insert the values of the 

stipulations in the stipulations column. Record the values of the coeffi- 

cients in the appropriate column within the row for that equation. 

The coefficient table is shown in Figure 3. The body of the table is 

obtained by rewriting the coefficients of the variables without the asso- 

ciated variables each in the proper row and column. The stipulated amounts 

are from TABLE 2. The labels are from TABLE U. 

Step 13 - Determine the coefficients of the variables in the objective 

function and record these along the bottom of the coefficient table. The 

cost of a variable in the objective function is in general the sum of the 

costs of that term for all the rows (equations) in which it appears. This 

data is obtained from the table of data prepared in Step U. It should be 

noted here that cost may have been given in one unit of measure and in Step 

8 the unit of measure may have been changed. If this has been done it is 

necessary to convert the cost to the proper unit. 

The bottom line of Figure 3 shows the cost coefficients. These co- 

efficients are the cost of the variables. The cost of each of the vari- 

ables x- - x^, includes the cost of one box of ,U5 caliber ammunition and 

the cost of shipping it to the appropriate destination. The cost of each 

variable x^^ - x  is the cost of shipping the appropriate GFM to the 

appropriate vendor. These latter costs could have been included in the 

costs of X- - X^, and a zero cost assigned to !.„  - X. . However, we 
1   5U 55   60 
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wanted to identify the costs of the OFM separately. Figure 3 shows the 

whole model displayed in tableau form. 

Step 1U - Check the model against the problem definition and the real 

system being simulated. Make sure that all the activities have been de- 

16 
fined, all the constraints stated, and all the costs included.   Ask your- 

self "How well does this model simulate the problem?" If it is necessary 

to modify the model because it is not adequate return to the proper step. 

If,the reader carefully tries carrying out this step he might, if 

he has not already, come to the conclusion that equations 19 - 2U and var- 

iables X^ - X, could be eliminated and the costs of X^^ - X/-0 could be 

added to the cost of the appropriate variable for the principle items with- 

out affecting the validity of the solution. However, we retain them for 

the same reason we decided to back in Step S> to use these six equations to 

represent the requirements of each vendor for each GFM separately instead 

of two equations to represent the requirements for GFM - to obtain the 

precise total amount of each GFM required for each vendor directly from 

the solution. 

The total model in equation form including all the equations and the 

objective function after the values for all the coefficients and the stip- 

ulated amounts have been determined is shown in Figure U. 

Although the word all is used here it should be kept in mind that, as 
Ferguson and Sargeant (10) point out, in formulating a linear programming 
model you neglect the negligible. 
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Notice that except for inclusion of the objective function in Figure 

h  it is exactly the same as Figure 2. This will not always be true. It 

is true in this case because Steps 10, 11 and lU required no changes in 

the model. 

The Nature of Solutions 

The constraints of a linear programming problem are a system of simul- 

taneous linear equations and linear inequations. The central mathematical 

problem of linear programming tells us that the solution to a linear pro- 

gramming problem is the solution to these simultaneous mathematical expres- 

17 
sions which optimizes the objective function.   Thus solving a linear pro- 

gramming problem requires identifying the feasible solutions - the sets of 

non-negative solutions which satisfy the constraints - and isolating the 

solution which optimizes the objective function. The first step generally 

is to convert the inequations to equations. This results in the constraints 

becoming a set of M equation in N unknowns where N:> M. 

A system of M equations in N unknowns; where N^M has, in general, an 

infinite number of solutions. Indeed, it is this very fact that allows for 

the existence of alternative activities or conversely this is the result of 

the fact that the tasks of the system can be carried out in more than one 

17 
A linear programming problem may have more than one optimum solution. 

That is, more than one set of variables may optimize the objective function. 
These are referred to as alternate optimum solutions. The value of the ob- 
jective function is the same (optimum) value for all the alternate optimum 
solutions. 
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way. 

A system of simultaneous linear equations where the number of unknowns 

does not equal the number of equations or where there are a large number 

of either - say more than three - is most conveniently solved by the applica- 

tion of certain techniques and principles from matrix algebra. Specifically 
-I Q 

the properties of the inverse of a matrix  are applied to the matrix of 

coefficients. This explains the tableau in Figure 3. The reader will note 

that this tableau is the matrix of the coefficients of the constraint equa- 

tions with an additional column for the b (constant) values and an addi- 

tional row for the cost values (cost coefficients).   Because of the im- 

portant role played by matrix algebra in solving linear programming problems 

the variables - represented by columns in the coefficient matrix - are often 

referred to as "vectors". 

The problem of solving a linear programming problem reduces to the prob- 

lem of finding solutions to a system of simultaneous linear equations and 

then systematically evaluating these solutions. From this it should be ob- 

vious that all methods of solution are essentially formalized trial and 

error processes. Indeed, this explains the highly iterative nature of the 

solution process. 

1R The reader unfamiliar with matrix theory is referred to Kemeny, Snell 
and Thompson (ll) for a simple, concise, and understandable explanation of 
the application of matrix algebra to the problem of solving systems of 
linear equations. 

19 
Now that we have introduced the idea of thinking of a linear programming 

model as a matrix we are in a position to explain how the dual problem is 
obtained. The dual problem is obtained from the direct by interchanging 
the rows and columns of the coefficient matrix and by interchanging the 
constant column with the cost row. 
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The Geometry of Solutions 

Prom algebra the reader may recall that any linear expression can 

be represented graphically as the locus of all points that satisfy it. 

For example: 

1) 2xi  + x2 - 2 

is the equation of a straight line. All those points and only those points 

on the given line satisfy equation (l). The strict inequation 

2) 2x. + x <^ 2 is satisfied by all those points and only those 

points below the line representing equation (l). The inequation 

3) 2x. + xJ05t2 is satisfied by all and only those points on and 

below the given line. 

The set of points that satisfies a linear expression (its locus) is 

called a convex set or a convex region. The intersection of two or more con- 

vex sets, each of which represents a linear expression, forms a polygonal 

convex set or, if the area is finite, a convex polygon. A theorem from the 

Geometry of Convex Sets tells, us that optimum - maximum or minimum - value 

of a linear function defined over a convex region occurs at a corner or 

vertex. This fact, as the reader will see, plays a crucial part in obtain- 

ing optimum solutions to linear programming problems. 

The preceding discussion has been concerned with two dimensions - 

that is linear expressions in two unknown. Although the terminology 

20 Although the proof is elementary it will not be given here. If the reader 
is interested he can find the proof and details on the subject in the books 
listed in the reference. Kemeny, Snell and Thompson (ll) have a particularly 
good - simple and concise - proof of this theorem. 
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must be modified to reflect the geometry of n-dimensional space the same 

principles apply to linear expressions in n unknowns. In other words it 

is true for linear expressions in more than two unknowns that their loci 

(or truth sets) are convex regions, the intersection of two or more convex 

regions is another convex region which is a convex polyhedron if the area 

of the intersection is finite, and a linear equation defined.over a convex 

region has its minimum or maximum value at a vertex. 

Methods of Solution 

Several methods of solution are available. Some are general - that is 

they can be used to solve any LP problem - and others are specific - that is 

they can be used to solve only certain types of LP problems. In addition, 

some methods are exact - that is, they guarantee a best (an optimum) solu- 

tion to a properly formulated linear programming problem - and some methods 

are approximation techniques. While differing widely in computational pro- 

cedure all methods are essentially formalized trial-and-error techniques. 

They all involve the same general process of selecting a firät solution, 

evaluating that solution, modifying the solution and calculating the im- 

provement yielded from the modification. This process is continued until 

no further improvement can be made. The procedures for selecting the next 

solution generally assure that each solution is at least as good as the 

previous solution. A solution is modified by bringing a new vector into 

the solution to replace one that goes out of solution. This is sometimes 

referred to as "trading off". Briefly then all methods start with a feasible 

k2 



answer and iterative ly approach the best answer. 

Leonid Hurwicz and George B. Dantzig in the summer of 19U7 developed 

21 
the "Simplex Method" for solving linear programming problems.   The Simplex 

was the first method developed for solving linear programming problems. 

Indeed, all other methods are derived or have evolved from it. The simplex 

method uses matrix algebra to identify feasible solutions and a method of 

moving along edges of a convex polyhedron from one vertex to the next, based 

22 
on an approach suggested by Fourier, to isolate the optimum solution. 

The simplex method is awkward and cumbersome to use. It is lengthy 

and iterative. Consequently other methods have been developed. Two of 

the general and exact methods that have been developed are the Modified 

Simplex Method and the Dual Method. The Modified Simplex Method, also called 

the Inverse Matrix Method, was developed and presented by A. Charnes and 

C. E. Lemke (U) in 1952. As the name suggests it effects certain modifica- 

tions in the simplex routine. The objectives of the modified simplex are to 

simplify the computational procedure by reducing the number of calculations 

necessary and to reduce and localize errors in calculations and round off. 

The Dual Method was first presented by C. E. Lemke in his doctoral dis- 

sertation in 1953. The dual method solves the problem of the dual instead 

"xhe term "linear programming" was suggested to Dantzig by T. C. Koopmans 
to replace the longer term "programming in a linear structure" originally 
used by Dantzig. 

In 1826 Fourier was faced with the problem of finding the least maximum 
deviation fit to a system of linear equations. He suggested finding the 
lowest point of the convex polyhedral set by a vertex-to-vertex descent to 
a minimum. 
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of the direct. 

Among the exact but specialized methods of solution are the Trans- 

portation or Distribution Method, the Modified Distribution or Modi Method, 

and the Ratio-Analysis Method. The Transportation Method was developed to 

solve problems involving the distribution of a single product from several 

sources to several destinations. It assumes equal supply and demand and 

a common unit of measure. The Transportation Method is basically a compu- 

tational simplification of the Simplex applied to transportation and dis- 

tribution problems. The Modi Method expanded the areas of application and 

refined the computational procedure of the Distribution Method. The Ratio- 

Analysis Method provides a way of decreasing the number of computations by 

selecting and solving the heart or core problem of certain kinds of linear 

programming problems. The ratio-analysis method is a procedure for allo- 

cating limited resources among competing demands. 

In addition to the exact methods of solution approximation techniques 

are available. Among these are the VAM (Vogel1s Approximation Method) and 

the Index Method. These can be used either to find near optimum (suboptimum) 

solutions or as a method of obtaining a better starting basis to be used in 

one of the exact methods. 

Computer programs generally use one of the general methods - especially 

the Simplex and the Modified Simplex Methods. The Distribution and 

•Partiett and Charnes (l) point out that dual method applied to the dual 
problem coincides with the simplex method applied to the direct problem. 
They further point out that this is not the same as saying that the Dual 
Method is the simplex method applied to the dual problem. 
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Modi-Methods were developed at least partially to enable persons untrained 

in mathematics to solve LP problems by hand computations. However, for 

large matrices both methods are extremely tedious and time consuming. Either 

the VAM and the Index Method can be used in conjunction with the Modi and 

Distribution Methods as a means of obtaining a better starting point and 

thus reducing the number of iterations necessary to arrive at an optimum 

solution. Of course, approximation techniques are valuable in their own 

right where time is an important factor, frequent changes in the system 

occur, or the cost"of an exact solution is prohibitive. Here as every- 

where the law of diminishing returns may be a factor. That is, the ad- 

ditional savings reaped from an optimal solution over those reaped by a 

suboptimal solution may not justify the cost of using an exact method of 

solution to obtain an optimal solution. 

It was stated above that some methods are exact methods. While this 

is true mathematically it is not necessarily true arithmetically. The 

reason for this is that computation almost inevitably involves decimals. 

In hand computations or in machine solutions this means that at some point 

in time rounding or truncation must be resorted to. This introduces into 

our exact method of solution computational errors. This fact is one of the 

factors that led to the development of the modified simplex. Generally, 

however, the errors are small in proportion to the total values involved. 

Solution 

The problem was originally solved on a RCA £01 using a standard com- 

puter routine. The RCA 501 linear programming routine employs the modified 
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simplex method. After the solution was determined it was analyzed and eval- 

uated to assure that indeed the model was formulated so that the answer ob- 

2k 
tained was the answer to the question we wanted to ask.   The solution is 

shown in TABLE 6. The reader will note that all the requirements were ex- 

actly met. 

In this problem it is very easy to test the solution. Look at either 

Figure 3 or TABLE 3 for a minute. Note that Vendor 1 submitted a higher 

bid for all destinations than either Vendor 2 or Vendor 3. Since any of 

the vendors can meet all our requirements it is obvious that Vendor 1 has 

priced himself out of consideration. Comparing Figure 3 (or TABLE 3) to 

TABLE 6 it will be noted that the vendor with the lower bid price was a- 

warded the contract for that destination in all cases except destination 17. 

A glance at part 2 of TABLE 3 and a little arithmetic explains this appar- 

rent contradiction. If we add the cost of shipping the GFM to the bid 

prices, we find that the Vendor 2 price is $U3.287 whereas the Vendor 3 

price is $U3.288. This tells that while the difference between the two 

prices is slight, Vendor 2 should be awarded the contract. 

From the above analysis it should be obvious that the solution is 

indeed the least cost solution. Thus our model was properly formulated. 

The reader will also know why we earlier stated that the solution to this 

problem was trivial once it was formulated properly. Indeed, once TABLE 3 

2k 
A linear programming model will always give us the correct answer to the 

problem we pose. However, if the model does not properly simulate the real 
system we are asking the wrong question and thus will get the "wrong" an- 
swer. This is why it is so important to test and evaluate the solution be- 
fore implementing.it. 
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was constructed the problem could have been solved by inspection. This 

is not always, indeed is very seldom, the case with LP problems. 

Two things were done to the problem data for convenience of presentation 

that did not effect the validity of the model or the analysis thereof. In 

the original problem the data was presented with costs for two possible modes 

of transportation of the end item from vendor to destination. The lower of 

the two'was used in our presentation and the higher ignored. Since this is 

a least cost problem and the capacities of the vendors and transportation 

facilities are not factors, this does not effect the solution. 

In solving a real problem one might consider carrying both modes of 

transportation because at implementation it may not be possible to use the 

least cost source. This would make it easy to identify the next cheapest 

source.   When the problem was originally solved both modes of transportation 

were carried. However, this was not really necessary and the decision to 

carry both costs should consider that this would double the time to prepare 

the input to the computer and increase the running time to solve the problem. 

This cost should be weighed against possible loss of savings that would re- 

sult from trial and error adjustment of solution if the optimum solution 

could not be implemented. 

It is the general practice of procurement personnel to supply the 

2< 
""This is especially easy if the problem was solved on a computer. Most 
computer routines for solving linear programming problems include shadow 
prices and replacement costs so that one can easily evaluate the cost of 
different suboptimum solutions. 
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vendor with more than the required number of boxes. The rationale behind 

this is that some will be damaged in shipment and some may be sent that are 

damaged. The excess is thus an allowance for damaged boxes. The practice 

is to decide on the number of boxes to be allowed and prorate them to the 

vendors awarded contracts in direct proportion to the percentage of the to- 

tal requirement of ammunition they are awarded contracts for. This was ig- 

oJ   , 
nored in the example  (but not the  original model)  because it did nofsffect 

the solution and would have required using decimal coefficients.    We could 

have easily corrected the cost figures and GM requirement figures in TABLE 

6 by multiplying the two requirements for boxes by a correction factor. 

26This factor is  73,337/61;, 070 where 73,337 is the total number boxes al- 
lowed and 6Uj070 is the number really needed - which is the figure we used. 
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(22) -xx - x2 - x3 - xu - x^ - x6 - ^ - x g - X9 - x10 - ^ - x^ - x^ - 

Xm-^-Vxi7-xi8+58a° 
(21)   -X.-X        -X        -X        -X        -X        -X        -X        - X        -X        -X        -X u;>;    ^9    x20   x2i     ^      23      2U     ^      ^     27     2Q      29     30 

x31 - X32 " x33 " X3U " X35 " X
36 + *59 = ° 

(2U) - x37 - x38 - x39 - xU0 - xu - x^ - xU3 - x^ - xU5 - xu6 - xki - xUQ 

xli9 " X*> " x5l " X52 " x*3 " X$h + X60 = ° 

Objective Function 

U6.68x.j_ + U7.69x2 + 67,08x. + U6.79x,4 + $0.10xr + U8.68x6 + U7.36x + U8.75x8 + 

U6.99x9 + U6.99x10 + U7.36xi:L + h6.93x12 + h6.79x13 + h6.9kxlh + 66.86x ^ + 

66.88xl6 + U6.U8x17 + h7.29xlQ + U3.03x19 + liH.29x20 + h3.75x?1 + h3.h9x?2 + 

.US.9)-ix23 + '^.03x2j+ + Ulu2^x25 + U5.09x?6 + )43.83x27 + H3.56x28 + UU.25x29 + 

U3.U3x30 + U3.U6x + )i3.50x + U3.57x33 + U3.U9x > + U3.l8x^ + )4lu2£xfi + 

U3.08x37 + )tU.60x3g + )43.26x39 + U3.66xli0 + l^.öOx^ + li3.89xj 2 + hh.hOx^ + 

U4.83xj4,; + U2.6).pc^ +'l;2.59x,6 + iiU.liO::^ + U3.21x,Q + H3.0Ux^9 + U2.70xr,Q + 

U3.82X^-L + U3.6lx£2 + U3.17x^3 + bh.hOxy + 0.131x^ + 0.087x^6 + 0.099x + 

0.02$x^g + 0.020x^    + 0.019x,    = % 
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TABLE 6 

Solution to ,U5 Caliber Problem 

Vendor 2 Vendor 3 ■ 

Destination Points Units Cost Units Cost 

1 5,526 $237,783.78 

2 3,1*78 l51*,0l*0.62 

3 5,000 $216,300.00 

U 3,080 133,9k9.20 

5 66 3,032.01* 

6 150 6,583.50 

7 9,01*3 1*00,152.75 

8 
J 

98 I*, 295.31* 

9 71*5 31,766.80 

10 ll*,l*65 616,061*. 35 

11 ll*,833 656,360.25 

12 1,000 1*3,210.00 

13 1,000 1*3,01*0.00 

H* 1,000 1*2,700.00 

15 1,000 1*3,1*70.00 

16 1,000 1*3,1*90.00 

17 1,000 1*3,180.00 

18 1,586 

1*0,612 

70,180.50 

$1,785,739.11* 

_,--.,,,  

23,1*58 $1,003,959.99 
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TABLE 6 (Conf) 

Vendor 2 

OM Items 

#1 - Boxes UO,6l2 boxes 3,533.2U 

#2 - Propellant 51,131.7 lbs. 8l8.ll 

Total Cost GFM U,351.35 

Total Cost $1,790,09049 

Vendor 3 

GEM Items 

#1 - Boxes 23,U58 boxes 2,322.3U 

#2 - Propellant 29,53U.3 lbs. UU3.01 

Total Cost GFM 2,765.35 

Total Cost $1,006,725.3U 

GRAND TOTAL $2,796,815.83 

Summary 

The reader has been introduced to Operations Research, its purpose 

and some of its methods. One of these methods, linear programming, has 

been discussed in some detail. The underlying concept and the mathematical 

nature of linear programming have been detailed. While the author has not 

always been mathematically rigorous every effort has been expended to insure 

the mathematical precision (validity) of the material presented. 

In addition a detailed method of model building was presented. Fol- 

lowing this method of model building results in the problem being stated in 
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its matrix form. Some methods of solution - especially the specific 

methods - require that the problem be formated differently. Inequations 

are handled somewhat differently in some methods. Most computers program 

use a general method and require the problem be stated in its matrix form. 

Even if the method used requires formating the problem differently we rec- 

ommend first building a tableau as per the method of this paper because it 

is a relatively simple task to transform the model to the required form 

and the tableau offers an excellent visual aid to help the builder see the 

interrelations between the variables. Sometimes, in fact, the problem can 

be solved by inspection once it is formulated into a matrix. 
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PART II 

Nonlinear Programming 



CHAPTER 3 

Introduction 

Linear programming is a very useful technique that can be used to 

solve (least cost) procurement problems. Unfortunately, however, not all 

procurement problems are linear. . The present chapter will be devoted to 

presenting a solution to a nonlinear programming problem. 

A numerical analysis approach will be used. While the method presen- 

ted will not be completely general the general principles underlying the 

approach vail be pointed out. 

The Problem 

For this problem we have a single total requirement for a certain num- 

ber of rounds of 7.62 mm (NATO-round) ammunition. While all of the vendors 

collectively 'can supply the total requirement none of them can supply it 

individually. There are five (5) vendors that submitted bids, two (?) sub- 

mitted bids at more than one level. The objective is to purchase exactly 

the required number of rounds at the least cost. The objective is influ- 

enced by the following factors: 

1) the unit price of the end item. 

2) the charge for the use of government owned property 
that is used by the vendor in the manufacturing of the 
end item. 

3) the cost of shipping OFM to the vendors. 

NOTE: The cost of shipping the packaged end item is not 
an influencing factor in this model. 

5k 



An unusual characteristic of this model is the cost factor for 

each of the vendors. It is expressed as a. + b:?x.. The a. represents 

the use charge (the charge for the use of Government owned property) 

which is incurred when the .th vendor is brought into solution. The b. 
l i 

represents the combined unit price of the end item which is the unit cost 

of shipping GEM to the .th vendor and the bid price for the .th level (if 

a multilevel bidder). Therefore, the equation a. + b.x. states that when 

a vendor is brought into solution for whatever amount "x." (a quantity of 

the end item for the jth vendor) there is a constant cost a. (which is 

different per each vendor) plus a variable cost b.x.. 

Background 

The use charges are fixed costs associated with a given vendor. A 

use charge is incurred as soon as one unit is purchased from a given ven- 

dor and the amount is not dependent on the number of rounds purchased from 

him. These are easily handled. 

The multilevel bidding presents a different problem. Multilevel bids 

are those bids that quote different prices for different quantities of end 

item. The term bidder level will be used to refer to either a particular 

level of a multilevel bid or to the bid of single level bidder. Two types 

of multilevel bidding are possible. These are the graduated multilevel 

bid and the discrete multilevel bid. In the case of discrete multilevel 

bids the price changes for the total quantity purchased as one goes from 

one quantity level to the next. In graduated bids the different price 

applies to only the increment of quantity when one goes from one quantity 

level to the next. 
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The NATO-round problem involves discrete bids. This fact, together 

with the fact that one of the bidders submitted a minimum quantity that 

was different from zero made the 7.62 round problem nonlinear. 

When the problem was first presented for analysis it was set up in 

standard linear programming format. The nonlinear characteristic of the 

problem became obvious when it was attempted to solve the problem by LP. 

The authors then attempted to express the problem in linear form. Lack 

of time forced abandonment of the attempts to simulate the system with a 

linear model. Since no general method for solving nonlinear programming 

problems exist a review of the technical literature was undertaken in an 

attempt to find a method of solution. 

Bellman's Dynamic Programming algorithm could be modified to solve 

the problem. However, it would not guarantee an optimum solution and would 

require a prohibitive amount of time to solve the problem. The only other 

method suggested was to break the model up into a series of models each 

model containing one and only one level from each bidder. This would have 

27 
required setting up and solving eight models.   It was decided therefore 

to use a method of numerical, analysis. 

Method and Underlying Assumptions 

The method discussed is a numerical analysis method. The general pro- 

cess involved is similar to that of solving a linear programming problem. 

First the problem is defined, then the data is formated, a first solution 

2'The optimum of the optimum solutions of the smaller models would be an 
optimum of the larger model. See Vadja (lU) for details. 
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is computed, a modification is made of the solution, and the effect of the 

modification is evaluated. This is continued until no further improvement 

is possible. 

Two assumptions regarding the handling of the costs have been made. 

The quantity of GM needed by a vendor is dependent on the quantity of end 

item allocated to him. The first assumption, therefore, is that the cost 

of shipping GM can be put on a per unit basis. The costs of shipping GM 

were originally given as total costs for the maximum number of rounds for 

each bidder. To put these costs on a per unit basis divide, the total cost 

(for that bidder) by the maximum limit of that bidder. Secondly, it is 

assumed that use charge can be prorated over the maximum quantity for each 

bidder level. 

The problem data is presented in TABLE 7. Note that the GM cost was 

prorated over the total (maximum) quantity whereas the use charge was pro- 

rated over the maximum quantity for each level. The use charge is a flat 

rate that applies regardless of number of units bought whereas the GFM 

(shipping) cost is a per unit charge. In other words the use charge per 

unit is inversely proportional to number of units purchased and the GSM 

cost per unit is constant. The total use charge is constant and the to- 

tal GM cost is directly proportional to the number of units purchased. 

Prorating the use charge will sometimes (when less than the maximum quantity 

for a bidder level is involved) introduce errors. However, in our problem 

(and in general) the use charge is very small in comparison to the total 

cost.™ Therefore, this error will not hinder the process of selecting 

28 
Note that in this problem that total use charge is in the magnitude of 

$lii£ thousand dollars whereas the total minimum cost will be greater than 
$lli.6 million. 
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the proper bidder level. The cost figure will be corrected after each 

iteration to reflect the fact that the total use charge may not be included 

in it. 

In addition, two assumptions regarding the procedure to be used 

were made. First, the various levels of a multilevel bidder can be 

treated as individual bidders with the proviso that no more than one 

level from any given vendor can be in the solution at one time. The 

second assumption is that the bidder levels can be ranked on the basis 

of total unit cost and a first solution derived by assigning the 

maximum possible quantity to each bidder level beginning with the 

least expensive bidder level. 

It should be pointed out the total unit cost is used only for the 

purpose of ranking the bidder levels. In evaluating a solution or 

determining gain or loss resulting from a modification the formula 

j 
as + b is used where a is the total use charge for the th bidder 

i i i 
and b*? is the sum of the per unit price of the end item and the per 

unit oost of shipping the GPM (column labelled a + b in Figure 5). 

The Solution 

The first step is to determine the appropriate per unit costs for 

use charges and shipping GfM. These figures are shown in TABLE 7. The 

next step is to combine the three costs - the unit price of the end 

item and the per unit cost of shipping GFM, and the per unit use charge - 

into a single total unit cost or value. The various bidder levels are 

then ranked on the basis of the total unit cost. Figure 5 shows the 

bidder levels arranged properly. The quantity range covered by each 
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bidder level, unit price, unit cost of shipping GJM, and total unit price 

are all shown. 

Now the problem is set up and we are ready to begin. The fourth 

step is to assign to each bidder level beginning with the bidder level 

with the lowest total unit price the maximum quantity for that level. 

The total requirement is for 239.6 x 10° rounds. We assign 33.0 x 10 

to Vendor A and l6£.6 x 10 to Vendor B. This accounts for 198.6 x 10 

rounds. Note how this assignment also agrees with our intuition. This 

is Ul.O x 10 rounds below the requirement. The first three levels of 

Vendor C and the first level of Vendor E cannot be considered because 

their minimum quantity levels are greater than our unfulfilled requirement. 

The fourth level of Vendor C is next lowest priced. This level has a min- 

imum less than and a maximum greater than our requirement. Therefore, we 

allocate the entire 1*1.0 x 10 rounds to the fourth level of Vendor C. 

This completes our first solution. This solution is shown in Figure £ - 

together with its total cost - under column labelled Trial 1. 

The existence of a better - lower cost - solution is based on the 

fact that it may be worthwhile to reduce or eliminate Vendor A or 

Vendor B in order that C-U can be replaced by E-l, C-3, C-2 or C-l. 

We shall successively bring these into solution and evaluate the effect 

of the modification on the objective function. 

The cheapest way to eliminate C-k and bring E-l into the solution 

is to reduce the number assigned to Vendor B. This has been done and 

the result evaluate in trial 2 of Figure £. Note.that "vendor" E-l 
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was brought into solution for its minimum quantity. To bring it into 

solution for any more than the minimum would - in this case- be a less 

optimum solution because it would mean replacing Vendor A or Vendor B 

with "vendor" E-l on a one for one basis at a higher unit cost. 

The trial and error process is continued with "vendor" C-3 replacing 

"vendor" E-l in trial 3,"vendor" C-2 replacing "vendor" C-3 in trial k, 

and "vendor" C-l replacing C-2 in trial 5. The resulting total evaluated 

costs are shown along the bottom of Figure £. The results of the modifi- 

cations could be evaluated by comparing total costs or by calculating 

gain or loss. For example, trial 3 is not as good as trial 2  because 

it requires buying U2.0 x 10" rounds at a savings of $0.00222 per round 

and buying 28.0 x 10° rounds at a cost of $0.00^03 per round plus the 

additional ol25>,80lu8U set up cost incurred. 

The solution in trial 5> is to purchase 33.0 x 10° from Vendor A, 

£6.6 x 10° from Vendor B, and l£0.0 x 10^ from Vendor C-l. This is an 

optimum solution. To see that this is an optimum solution let us examine 

the solution and analyze the possibility of further changes. V7e have 

already shown in trials 1 - h  that increased amounts purchased from Vendor 

B instead of from Vendor C result in less optimal solutions. It remains 

only to evaluate the possibility of eliminating Vendor A and purchasing 

the rounds from Vendor B - thus saving the $3,855.8U use charge associated 

with Vendor A. A look at Figure f? assures us that this will result in a 

less optimal solution because the total cost of a round from Vendor 3 
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before the use charge is included is greater than the cost of a round 

from Vendor A with the use charge included. Therefore, the solution to 

trial $  is an optimum solution. Trial 6 shows the results of eliminating 

Vendor A entirely from the solution. Indeed, a purchase of any number of 

rounds from Vendor B instead of Vendor A will adversely affect the solution. 

Note that if the unit cost of Vendor B is less than Vendor A (when use charg- 

es are not included in unit cost) then eliminating Vendor A would indeed pro- 

vide a better solution. This is why it is very important to evaluate each 

iteration on the basis of actual costs. 

Summary and Remarks 

We have presented a method of solution to certain kinds of nonlinear 

problems. A similar approach can be used to solve other types of nonlinear 

programming problems. The approach was based on the assumption that the 

costs of shipping GFM and the use charge can be prorated, that once these 

are prorated on a per unit basis a total per unit cost can be calculated, 

and that a first solution can be determined by ranking the bidder levels 

on the basis of total unit cost and allocating the maximum possible quantity 

to each bidder level beginning with the bidder level with the least cost per 

unit. An optimum solution can then be determined by successive trial and 

error. While the method presented is not completely general and has not 

been rigorously proved the authors have tried to make the general princi- 

ples involved sufficiently obvious so that the reader can apply the method 

to a large variety of problems. 

One word of caution should be interjected regarding use charges. The 
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total cost for use of government owned property is generally small in com- 

parison to the total cost of the requirement and the per unit cost for use 

of government owned property is generally small when compared to the total 

per unit cost. This may not always be true. However, our method of eval- 

uating solutions on the basis of actual costs was designed to preclude the 

possibility that the use charge will hinder the determining of the true op- 

timum solution. 
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