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DETECTING DEMAND CHANGES 

1.  Introduction 

One of the foremost problems facing the Inventory manager Is that of 

anticipating changes In demand patterns and adjusting the Inventory level 

accordingly. If future demands vere exactly known then of course there Is 

no problem, for - then the Inventory level can be adjusted In anticipation 

of demand changes* The realistic case arises vhen demand is probabilistic 

over time, that is, a stochastic process. Even vhen one is villing to 

assume the mean value function of such a process as known, it is not 

possible to predict the exact demands and the best one can do is provide 

reasonable estimates of future demands. Then it is quite appropriate to 

adjust the Inventory level in accordance with those estimates in such a 

way as to effect rapid response to changes that may occur as time progresses. 

If the inventory level at any particular time is established as a 

result of analyzing the history of demands up to that time, then it is 

quite natural to view an inventory system as a servomechanlsm or "black 

box" in which the input is demand and the output is inventory. Such an 

approach to the study of inventory systems appears to have begun with Simon 

[k]  and Vassian [5] in the early 1950*8, was revised somewhat briefly by 

Howard [2] in 1963 and examined more recently by Reilly [3] and the writer. 

Except for a few isolated articles in the literature, no extensive appli- 

cation of the numerous tools developed in servo theory to inventory systems 

seems to exist. The purpose of this report is to direct attention to 



these techniques as a means of analyzing and designing Inventory control 

systems. 

No attempt vlll be made In this preliminary report to obtain numerical 

solutions to a particular problem. Rather, attention vlll be devoted to 

structuring a model vlthln vhlch It Is anticipated that several special 

problems can be solved. In particular, the basic problem of designing em 

Inventory system that vlll be sensitive to demand changes vlll be borne 

in mind at all times. Of special concern is that of an item vhose demand 

pattern changes from that of a slow mover to a moderate or fast moving item. 

Hopefully, there vill be an opportunity in the future to process some real 

demand data from a Naval supply system to test the model and possibly 

suggest changes in either the model or the supply system as a result. In 

this early stage, relatively simple examples vill be examined for further 

insight and for illustrative purposes. 

2.  Description of the Model 

The inventory model ve vish to adopt in this paper is a system vith 

periodic reviev and fixed order points. Such a system is videly used in 

practical inventory situations vhere periodic checks of stock are far more 

economical than continuous reviev. It is one that has actually been used 

in the past by the military for spare parts. For the sake of convenience, 

ve assume that order points are fixed and equally spaced. Without loss of 

generality, let the order points be designated by the positive integers on 

the time scale. We suppose a physically realizable system so that only 

the non-negative time axis is appropriate. 



To be more specific, ve assume that the t  demand period Is measured 

by real time between t-1 and t for t = 1,2,3,... . At the end of a 

demand period, and only then, a replenishment order 0. Is placed against 

future demands. Ve suppose a fixed lag time T In delivery vhere T Is 

measured In demand periods so that an order placed at time t Is delivered 

at time t + T and Is hence usable for fulfilling demands during the 

(t+T+l)st demand period. We further suppose that any oversupply at the 

end of a given period may be returned to vendor so that a replenishment order 

may be negative. 

As to the assumptions about the Inventory level, ve suppose that the 

system begins with a safety level or initial inventory I  at time zero. 

Since our primary concern will be whether or not the inventory level in 

future review periods is greater than or less than the safety level we shall 

henceforth, for the sake of simplicity, assume that the inventory level, I., 

at the end of the t  demand period is the difference between the actual 

Inventory and I  at that time. Moreover, if demand should exceed on hand 

Inventory we allow back orders to be placed against future deliveries. Thus, 

negative values of I. are permissible in the analysis to follow. 

As to the demand itself, the above conditions make it natural to assume 

that it can be described by a discrete parameter stochastic process. We 

will denote the total demand during the t  period by X., t = 1,2,3,... 

and we let X = 0 for the sake of completeness. It will be helpful in 

the analysis if we suppose that X. = m(t) + e  where m(t) is the 

deterministic mean value function of the process {X.) and e. is a random 

variable with E[€. ] = 0 for all t. The process (e.) is sometimes 



referred to as the noise component. 

The matheinatical model for the inventory system that we have described 

can now he nicely summarized by the recursive relation, 

te'1) h " ^-i + et-i-T - V   * " i»2'*' • • • 

Such an inventory system has the feature that it is automatically controlled 

once ve decide on the form of the reorder rule 0.. We turn our attention 

to this matter in the next section. 

3.  Determination of the Reorder Rule 

There are of course infinitely many vays to specify a reorder rule 

consistent vith our model. To choose one as best requires some criterion 

for choice. An obvious criterion in the present case is to require an order 

rule vhich vill minimize the inventory variations about the safety level. 

It is not surprising that a solution among all possible choices of Ö cannot 

exist and ve must restrict our order rules to lie in some special class of 

functions if ve hope to find a solution. A natural restriction is to 

consider only those rules vhlch depend upon past demands and Inventory 

levels. To this end, ve restrict our attention to only those order quantities 

that can be expressed as a linear combination of past demands and inventories. 

However, as time progresses, ve would certainly vant to veight the early 

part of our history vith smaller and smaller values. This suggests that 

ve express a general reorder rule as follows, 



t 
(3-1)    0+ = t s ^ AJVj + ^ Vt-y  ^V,3,... 

The problem Is thus reduced to that of determining the sequences 

{A^AjjAg,...) and (B^Ej^Bn^*** )• Observe that the same weights are 

always given to the most recent observations while the weights given the 

early observations vary with time. Of course JO and I0 are both 

zero but it does no harm to write them in the expression for 6.    and makes 

for a certain degree of completeness in the sequel. 

Even with the additional restrictions it is not possible in general to 

find a unique order rule. Vassian [5] has given a partial solution to the 

problem in the sense of providing a rule which depends upon one's ability 

to forecast, at each time t, the total demand over the following T+l 

periods, i.e., demands during periods t+l through t+T+1. Indeed, this 

is about as close to a solution as one would expect to arrive, Vassian1 s 

claim for a solution notwithstanding, because of the random nature of 

demand. At any time t, past demands are of course known but future demands, 

hence inventories, are random. Consequently, the concept of minimizing 

inventory should be replaced with that of minimizing expected inventory and 

we require that at least  11m E[It] = 0 for any specified order rule. 
t -♦ 00 

It is then possible to find a family of order rules which will satisfy 

equations (2-l) and (3-l) subject to this condition. The details of the 

solution are important enough to be repeated here, not only to see how a 

solution is effected, but also to gain insight into the nature of our 

model as a servomechanlsm. 

Because of the recursive nature of equation (2-l) and the fact that 

both expressions in equation (3-l) are recognizable as the convolution of 



sequences. It Is clear that our conditions may be converted by means of 

z-transforms into equivalent and more algebraically tractable form. To 

this end, if V represents any sequence (VQ'^VVO' *") ve vil1 denate 

the corresponding z-transform,  J] V, z  by V(z). Recalling that the 

z-transform of the sequence CV. + ). .Q is, (for any integer r) z'rV(z) 

and that the z-transform of the convolution of two sequences is given 

by the product of their transforms, we can now rewrite equations (2-1) 

and (3-1) respectively as, 

(3-2)       I(z) = zl(z) + zT+16(z) - X(z) ,  and 

(3-3) e(z) - A(z) X(z) + B(z) I(z) 

By substituting the expression for 0(z) from (3-3) into (3-2) the 

inventory transform can be written, 

(3-^) x(z) . i£!^ii . x(8) 
l-z-z^^z) 

zT+1A(z)-l 
Or, letting   S(z) = ä+T   >   ve can vrite, more simply, 

1-z-z1 ^(z) 

(3-5) I(z) = S(z) X(z) 

thereby expressing the inventory at any time t as a convolution of 

a sequence {S^S^Sg,...) with past demands. Because of (3-5), it is 

quite appropriate to call S(z) a transfer function and to view inventory 



as the output of a "black box" the input of vhlch Is demand vhlch Is 

operated on by the transfer function. Since s(z) depends only upon 

A(z) and B(z) ve can define the latter to satisfy our criterion of 

minimizing expected inventory by appealing to veil known results from the 

theory of servomechanisms. 
t 

Since we can write 1^ = XL S1Xt-1 wliere si is non-random, we 

t t 
see that E(lt) = J] S. E(X..) = Fs, m(t-j) for t = 1,2,3,... . 

Letting E. ■ E(I. ) denote the expected inventory at time t, we see that 

E(z) ■ X(z) m(z) in terms of the same transfer function S(z). Now, 

since m(z) is deterministic, the requirement  lim E. = 0 is equivalent 

to requiring the poles of s(z) to be outside the unit circle. Since 

A(z) only occurs in the numerator of S(z), the latter requirement depends 

only upon the choice of B(z). As Vassian suggests, if we let 

B(z) = -(l-z)/(l-z  ), then S(z) will have no finite poles. Indeed, 

with this choice of B(z), it is easy to see that S(z) can then be 

/  T+l\ T 
written as (zT+1A(z)-l) ^r^"—^ = (zT+1A(z)-l) f   zk which becomes 

■ 1'z Ab 
infinite only as z does. We have thus been able to determine one of our 

unknown sequences, though the choice is by no means unique. 

As to the determination of A(z) we next observe that we may now 

T+lx      ,, T+l. 
write I(z) = z^1 A(z) &f ■ ? X(z) - ^ ) X(2). But 

1_ T+l   
T  k 

=~— ~   Tu z      is the z"'transform of "t116 sequence (Ui,)^^* where 

#     _^1    /. T+1% 
Uk = 1 if k < T; otherwise, Uk = 0. Letting A (z) = z^ACz) ^~—^ X(z), 

we have, from equations (3-^) and (3-3), l(z) = A (z) - ^^~ L X(z) 
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and   0(8) --igj ^|i --i^-j l(z).    Finally, we may vrlte 

T+l 
(3-5) i=|_ 0(Z) = z-WVfM - I(z) ,    and 

T+l 
(3-6) A*(z) - I(z) + i^— x(z) 

Or, in equivalent form, if   t > T, 

T # 
(3-7) I   0t.j - At+1+T - It     and 

* T t+l«   ^       0 

(3-8)     At+1>Kr - It+1+T +   L   xt+l+T-J != ^+1-^ + , V, Xj 
J=0 J«t+1 

* t+l+T 
Now, from (3-8)    E(At+1+!p) « Et+1+T +    T     m(j).    Since we want 

J — UTX 

lim E. =» 0, this requires that we choose At+1+T, in such a way that 

E(A.+1+_) - Y    m(j) -+0 as t -»». Let us call A.+1+T a forecast 
J^t+l 

of the demand from period t+l through period t+l+T, i.e., over the 

following T+l periods. 

We have thus reduced the problem to one of determining a suitable 

means of forecasting future demands. "Suitable" here means that the forecast 

ma.it be at least asymptotically accurate in the sense of the above limiting 

relation. We may now express our order rule in the form 

8 
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♦ 
(3-9) 9t - At+wp - £ 9^ - It 

where At+1+T Is any function of the process JL such that 

#      t+A+T * B(A+.14fl,) - Y,    m(J) "*0 aB t -♦0,>' Of course, once Al is specified 
' Are   J-t+1 

ve can, at least in principle, determine the sequence At from the 

definition of A (z). This is not required for the order rule, however, 

which now states that at time t, one orders an amount equal to the fore- 

cast of demand over the next T+l units of time less those orders placed 

at times t-1, t-2,...,t-T (which will be receipts at times 

t+l, t+2,...,t+T) and, of course, less the inventory at time t. 

All that remains for a given problem is to determine a forecaster, or 

equivalently, the function A (z). No further explicit expressions can be 

derived until more assumptions are made and, quite obviously, the deter- 

mination of A  will not be unique. 

!»■.  The Model as a Servomechanlsm 

The general inventory system which we have described, first by 

equations (2-l) and (3-l) and then, in a transformed version, by means of 

equations (3-2) and (3-3), can be considered a discrete-variable servo- 

mechanism. Indeed, as we have brought out in the preceding section, 

particularly with equation (3-5)^ the inventory may be thought of as the 

output of a system whose input is demand. In fact, in the present case, 

the system resembles an automatic control device with a feedback system 

which allows for taking past history into account at each decision-making 
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stage. These facts are borne out more clearly by standard servomechanism 

diagrams. Moreover, such diagrams often make It possible to replace one 

system by an equivalent one for purposes of further analysis. 

A few remarks concerning the meaning attached to various graphical 

forms In systems analysis may be helpful. First of all, whenever two 

transforms are connected In series, ve will always understand the output 

to be the product of the two quantities. Thus, the basic product relation- 

ship of our system expressed by equation (3-5)> I.e., I(z) ■ s(z)X(z) 

can be portrayed graphically as In Fig. k.l. 

X(z) S(z) IU) 

Figure ^.1:  Graph of   l(z) = S(z)x(z) 

On the other hand, whenever two quantities are connected in parallel, 

the result, usually depicted as a circle or node at the Junction of two 

directed paths,  is taken to be the sum of the two quantitites as shown 

In Figure U.2. 

WA. 

W\A- 

Flgure k.2:    Graph of   H(z) = F(z) + G(z) 

10 



MMMMM • 

With these conventions in mind, the inventory system described 

by equations (3-2) and (3-3) can be represented as in Figure ^.3.    In this 

form,  the 

Figure ^-.3:    The Inventory System 

feedback property of the order rule is dramatically displayed. 

In order to obtain a graphical viev of the role played by the fore- 

caster    A (z;    of our last section,  it is necessary to replace the original 

system represented by Figure 4.3    by an equivalent one.    This is accomplished 

by means of repeated applications of the two basic rules for displaying sums 

and products,  respectively, as parallel and series connections.    The results 

are displayed in Figure k.k vhlch displays an equivalent system free of 

loops. 

11 



Figure k.k:    Inventory System vlth Forecast 

Many other equivalent systems may be formed, depending on the various 

aspects of the system that need to be analyzed.    Also, a change from one 

form of pictorial representation to another often suggests definitions 

of quantities that may add to a deeper understanding of the system. 

Once a flow graph of a system is determined as in Figure k.3 it is 

possible to obtain the system transfer function   S(z)   by means of a few 

conventional definitions in a rather easy manner.    Indeed, the method 

often is a distinct advantage over the analytical solution which we 

determined in the last section. 

First of all, we shall refer to any function denoted by a square 

between input and output as a branch transfer function.    We have already 

referred to circled functions as nodes and a path is always indicated by 

arrows.    A loop is a closed path in the system and one or more loops always 

occur in feedback systems.    For any simple path between input and output, 

the path transmission,    P(z)    is the product of all branch transfer 

12 



functions in the path. For a loop, the product of all branch transfer 

functions in the loop is called the loop product. Finally, the system 

determinant A(z) is defined to be unity minus the sum of all loop 

products in the system. Each path with transmission P,(z) in turn has 

a path determinant A.(z) defined as unity plus the loop product of all 

loops in the system vhich have no node in that path. With these definitions, 

it turns out that the transfer function S(z) can be easily expressed 

by means of the equation, 

JPjCz) ^(z) 

^ M'1—^  

In the present case, using Figure 4.3, there is a single loop vith 

T+lg/   N T+l 
product   —=—*-*" = -       _ -    and hence the system determinant is given 

1'z l-zT ■L 

ZT+1    . 
by A(z) = 1 +  -^- ■  srr • There are two simple paths with 

l-z^1  l-zT 1 

respective path transmissions and path determinants given by, 
1 T+l./  N 

pl(50 - ^ ,    ^U) = 1    and   P2(z) = Z 1,^
Z' ,    ^(z) = 1.    Hence we 

r T+l./  \ ,1  /-   T+l\ 
have S(z) = •■ \  t'' t  \  ' L   as ve previously found. 

5.  Special Cases 

One of the primary purposes of finding the system transfer function 

S(z) as discussed in Sections 3 and k is to be able to examine the 

system response to various demand inputs. Now, with the inventory system 

expressed in the form l(z) ■ S(z) X(z), once it is assumed that the 

13 



demand Is random. It follows that the Inventory level Is also random. 

When this is the case, It Is of course not possible to exercise deterministic 

control over the Inventory level. For one thing, there can be no explicit 

expression for the demand Input function X(z) In this case. However, 

we saw In Section 3 that the expected Inventory level responds to 

average demand In a precisely analagous fashion. I.e., E(z) ■ S(z)m(z) 

Is a system with exactly the same transfer function and a deterministic 

Input given by m(z), the z-transform of the mean value function of the 

process. With this In mind, we now proceed to examine the response of 

expected Inventory to average demand In some special Instances. 

Certainly one of the simplest cases we can examine Is that of a 

constant mean value. I.e., we suppose that m(t) s a where a > 0. For 

/ \   a 

such a case then m(z; = TT • What Is the response of the system to such 

an Input? In order to answer the question It Is necessary to know the 

transfer function explicitly and this In turn depends upon the particular 

method of forecasting adopted. 

Because of the basic feedback property of the system -we have defined, 

every bit of past history Is available whenever a decision on the order 

quantity must be made. It would therefore seem natural that we would want 

any method of forecasting we adopt to be efficient In the sense of utilizing 

all of the Information available at a given order time. One such method Is 

that of exponential smoothing developed somewhat extensively by Brown 

[1] and others. With this method of estimation, some credit Is always 

given to each past demand with the least credit going to the oldest demand. 

Moreover, as time progresses, the credit allowed for early demands becomes 

negligible. 

Ik 



If ve apply exponential smoothing to the present case, then, at any 

time t, we must forecast the demand over the next T+l periods. 

Since our best estimate of demand at any future period is given by mean 

demand which in turn is the constant a, the smoothed estimate of a 

multiplied by T+l will do. For the demand history X,,]^,...^Xf, the 

exponentially smoothed estimate of a is given by a = a £ ß X. , 
k=0 

where a ic the chosen smoothing constant (typically 0.1 to 0.3) and 

ß = 1 - a. We define our forecast as At+T+1 = (T+l) fi and observe that 

E(A*+1+T) - (T+l) E(Ä) = (T+l) a £ P^W = a(T+l)(l-ßt+1) and 

t+l+T 

J 
* t+l+T t+1 # 

E(A   1>fT) -     V     m(j) = -(T+l)ß       -»0   as    t "♦«.    Consequently,    A ^ 

J]     iii(j) = (T+l) a    in the present case so that 
=t+l 

satisfies our basic requirement of asymptotic accuracy for a forecast as 

was established in Section 3. 

It is instructive to observe that in the present case, defining 

At+1+T s (T+1) ^    l8 e<luivalent t0 letting   A(z) -   -^i2Lk£i_    . 
z  (l-ßz)(l-z  ) 

Then the explicit transfer function is determined as 

S(z) s .. *g" ' - ^ "   ' . From servo theory, the steady state behavior of 

the system E(z) = S(z) m(z) is defined as  lim E. and may be computed 
t ->« 

in the transform domain as  Um (l-z)E(z).  In the present case, 
z -»1 

(l-z)E(z) = S(z) and, since  lim S(z) = (T+l) - (T+l) = 0, it 
z -»1 

follows that  lim (l-z)E(z) = 0, verifying the fact that  lim E. = 0. 
z ->! t ->« 

In such a case, we say there is no steady state error. 
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As a second example, let us consider the problem mentioned in 

Section 1 of accounting for changes in demand vhen an item changes from 

a slow mover to a moderately fast mover to eventually a fast mover. A 

first approximation to describing this situation in the present model is 

to assume that m(t) = bt for some small positive constant b. For such 

an item, mean demand would be negligible at first and would begin to 

become serious at some future time depending on b. 

Of course we do not know the value of b, but then our inventory system 

is set up in such a way as to respond to changes in demand as we go along in 

time. Indeed, we appeal to exponential smoothing once more as a means of 

estimating b at each point in time utilizing all of the past data. Other 

techniques such as least squares might also be used to estimate b. One 

of the reasons we prefer exponential smoothing to least squares is the fact 

that far less information has to be stored in order to compute a running 

estimate as shown in Brown [l]. 

For the present case, Brown [l] and Reilly [3] have shown that, for a 

demand history of X,,^,. • .,X., an appropriate estimator for b, based 

A      a rA   TV 1 
on exponential smoothing, is given by   b = - LX.-X. J    where 

X   = a   5"   ß X   ,     and   X   = a   Y   ß X   , .    Here again,    a    is the smoothing 

constant and    X.     is often referred to as the double exponential smoothing 
.A A 

operator.    Reilly [3] has shown that      lim   E(ß; = b    so that    ß    is 
t -* <» 

asymptotically unbiased. 
t+l+T A 

Because of the above results, we define A. ., .m =  >  ß k as our 
t+1+T      k=t+l 

forecast at time    t    of demand over the next   T+l   periods.    Now, for   t 

t+l+T' 

* t+l+T 
sufficiently large,    E(A++l4JT1) = b     J^     k   and, of course 

k=t+l 

16 



t+l-HP t+l-HT # t+l-HP 
J"    ni(k) * b    J*     k   so that   E(A. .njJI1) -     T    m(k) -»0   as   t ->« 

kA+l k»ft+l t+1+T      k=T+l 

as required*    If ve use this procedure, ve can be sure once again that 

our system   E(z) = S(z) m(a)   has no steady state error.    Indeed, the 

requirement that ve adopt an asymptotically accurate forecaster vas 

imposed for precisely this reason. 

6.      Summary and Recommendations 

We believe that the theory of servomechanisms provides some powerful 

tools for analyzing dynamic inventory systems.    The present report has 

been devoted to making a case for that point by treating one particular 

model as a discrete-variable servomechanism vith automatic feedback.    Servo 

techniques vere helpful in finding explicit .-solutions by converting 

recursion relations to z-transforms vhere the mathematics vas more tractable. 

Even more important, the graphical representations are extremely helpful in 

obtaining an overview of the system as a whole, one which is otherwise often 

difficult to realize. 

There are several directions in which recommendations for further 

research in this area can be made.    As previously mentioned,  it would be 

of great practical interest to process a real inventory system In which 

the present model applies.    Using real data, numerical answers could then 

be analyzed toward supporting or suggesting changes in the model.    Also, 

the examples treated in this report are relatively simple ones - perhaps 

oversiniplified for practical use - in which case further effort should be 

devoted toward applying the same sort of analysis to more complicated 

inputs. 

IT 



As regards the model itself, changes can always be suggested that 

would typically complicate the analysis but approach reality more closely. 

For example, we have treated the lag in delivery as deterministic whereas 

it is typically random in reality.    The model could be changed to a 

continuous review system in which case z-transforms would be replaced by 

Laplace transforms.    Presumably, an analysis similar to the one we have 

outlined would apply to that case. 

Another point to be made is that the solutions we have arrived at 

are explicit only up to specifying a forecast of future demands at any 

given time.    Now there are many ways in which such a forecast might be 

specified even in the isolated examples we have treated.    Exponential 

smoothing was the technique adopted in this report for the particular 

reasons mentioned.    Nevertheless, other methods of forecasting might well 

compare more favorably on further reflection of the desired output in the 

model. 

We have imposed the restriction that forecasters be asymptotically 

accurate.    This may be too severe and, in any case, one without that 

property may very well do better in the early stages than one meeting the 

requirements.    If such forecasters were to be admitted, then explicit 

expressions would have to be derived for the Inventory level at any given 

time and the various techniques for inverting z-transforms would very likely 

play an important role in such an analysis. 

As a final remark it should be observed that there is a natural 

extension of the servo techniques discussed in this report to vector- 

valued functions.    This suggests that a more complex multi-echelon model 

might possibly be treated from an analogous point of view as given here. 
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Since this Is a preliminary report, all of the above remarks may be 

taken as suggestions for further research In this area. 

19 
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