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ABSTRACT 

This thesis considers the problem of synthesizing cyclic (or 

periodic)  sequences, with binary and nonbinary (N-ary)  symbols, for 

special communication applications.    For the applications considered, 

the sequences are transmitted over channels with additive white Gaussian 

noise.   For correlation detection the autocorrelation function of a se- 

quence or the cross-correlation function between sequences are required 

for the evaluation of performance. 

The first part of the thesis is concerned vith the derivation 

of new classes of sequences.   Some new theoretical developments are 

presented on the cyclic correlation properties of sequences containing 

■fell the N     complex roots of unity as symbols.    These sequences are related 

to real sequences containing phase modulated sinusoids as symbols. 

A class of sequences derived by the interleaving of two level 

binary sequences is presented.    These Interleaved sequences are shown 

to exhibit autocorrelation and cross-correlation functions with inter- 

mediate peaks.    The locations of the peaks can be controlled to synthe- 

size autocorrelation .1 unctions which are "almost" two level or autocor- 

relation functions with peaks of different magnitudes.    The application 

of these sequences to synchronization is considered. 

Classes of N-ary sequences (called cyclically orthogonal se- 

quences), which exhibit cross-correlation functions which are zero for 

all cyclic shifts are derived. 

The second part of the thesis is concerned with the application 

of the sequences derived in the first part, as well as other known 

classes of sequences,  to two special communication problems. 
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The first application Is a binary asynchronous linear multiplex 

system.    There eure k transmitter-receiver pairs, each using sequences 

(which are sunned linearly) as carriers for binary infonnation.    Although 

a particular transmitter is synchronized with the corresponding receiver, 

the other transmitter-receiver pairs are asynchronous with this pair. 

The average probability of error with additive white Gaussian noise is 

evaluated when the carriers are the binary cyclically orthogonal se- 

quences.    The performance is also determined when the carriers are sinus- 

oids of different periods,random binary sequences, and sequences asso- 

ciated with Bose-Chaudhuri Codes. 

The second application is an N-ary synchronous "hard-limiting" 

multiplex system.    For this application there are also k transmitter- 

receiver pairs, although the respective carrier sequences are not summed 

linearly, but "hard-limited" prior to transmission.    It is shown that 

the optimum set of carriers are the cyclically orthogonal sequences. 

The system performance is determined for these sequences.    This system 

might be useful for satellite repeaters Which usually employ "hard- 

llmiters." 
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CORRELATION FROHfliTiKS OF MULTI-LEVEL CYCLIC SEQUENCES 

1. INTRODUCTION 

Cyclic or periodic sequences are gaining increasing Importance 

In such ccnoiunlcatlons applications as synchronization, tracking and 

ranging, multiplex carrier systems, and signalling over a continuous 

channel.  This thesis is concerned with the derivation of some new 

classes of sequences, and the application of these sequences to two 

Important multiplex problems. 

An N-ary sequence S, of length L, is defined as an Ir dimensional 

vector, S ■ (ao^, ..., a^.j^), with symbols ai, i « 0,1, ..., L-l, taken 

from a finite alphabet, usually the ring of integers modulo N, where N 

is any integer greater than 1. For practical applications the symbols 

are mapped onto quantities a^ , for which the ordinary addition and 

multiplication operations are defined. A waveform or carrier, f(t) of 

time duration Lt^, is then associated with the mapped sequence, of the 

fom 

0 < t < tj. 

tx < t < atj. 

^1  (L-lHi < t < Lt! 

If f(t+nLti)  ■ 0, for 0 < t < Lt», n ■ ±1/^  ..•> then the original se- 

quence is referred to as an aperiodic sequence.    If f(t+Lti) :3 f(t), for 

all t, then S is referred to as a periodic or cyclic sequence.    Only 

cyclic sequences are considered in the thesis. 



Generally the terms sequence, mapped sequence and carriers have 

been used interchangeably in the literature.    This custom vill be con- 

tinued in this thesis when there is no possibility of ambiguity, as is 

the case with binary sequences.    However, when several types of mappings 

are possible the correct term will be used. 

1.1   Review of Pertinent Prior Work 

Several types of periodic sequences have been studied previously, 

with the research divided into four phases:    (a) theoretical derivation 

of classes of sequences exhibiting particular autocorrelation and cross- 

correlation functions, (b) proofs on the nonexistence of classes of se- 

quences exhibiting certain correlation properties, (c) methods of 

generating particular sequences, and (d) applications of sequences to 

special connnunication problems.    A sampling of prior work in each of 

these areas is now briefly described. 

a.    Theoretical Derivation of Classes of Sequences 

Considerable effort has been devoted to the derivation of 

sequences exhibiting autocorrelation functions which are two-level. I.e. 

the autocorrelation function Is constant (usually -l/L)  for all nonzero 

Integral shifts.    The best known of the two-level sequences, the maximal 

length sequences witi binary or nonblnary components, have been studied 

2 5 h 
by Singer,    Zierler,    and Golomb.      Other two-level binary sequences 

which have been synthesized are the quadratic residue sequence,-^ twin 

prime sequence,    and Hall sequence.' 



Perfect N-ary sequences with elements mapped onto the roots of 

unity (the autocorrelation function is zero for all nonzero shifts)  have 

been studied by Helmiller8 and Franck, et al.^   Perfect ternary sequences 

with elements mapped onto +1,  -1, 0 have been    found   by Tcopkins 0 by a 

computer search.    Titsworth^1 has derived a class of two-level sequences 

with the elements contained in the field of irrational numbers. 

Titsworth     has also derived a class of "almost" two-level binary se- 

quences for seme lengths not covered by the known two-level sequences. 

Extensive searches have been conducted for classes of sequences 

which exhibit low cross-correlation.    Classes of orthogonal binary se- 

quences have been derived from the theory of Hadamard matrices.      The 

theory is presently being extended to roots of unity sequences.-^   For 

nonorthogonal sc uences, bounds on the number of sequences with cross- 

Ik correlation bounded by an arbitrary limit has been derived.      Bounds on 

the number of sequences, with the cyclic cross-correlation function, 

bounded by certain limits   have been derived by Gilbert.1-' 

b. Nonexistence Proofs 

,',uryn16 has presented proofs on the nonexistence of perfect 

binary sequences beyond length k. In addition, he has shown" that two- 

level N-ary sequences do not exist for many lengths. 

c. Generation of Binary Sequences 

The generation of many classes of binary sequences by linear 

1 17 10 
feedback shift registers has been considered. ' "   Some classes of se- 

19 quences can be generated by the filtering ^ of maximal length sequences. 



d. Applications of Sequences 

An important application of sequence theory has been the 

use of the orthogonal binary sequences as a signalling alphabet for the 

20 continuous Gaussian Channel.   The theory has been extended to N-ary 

sequences. "^ Sciffler" has considered the use of sequences for the 

synchronization of error-correcting codes. Binary sequences have been 

25 considered as carriers for binary multiplex systems. ^ 

1.2 Brief Review of Hev Develognents Presented in the Thesis 

In Chapter 2 the background for the succeeding chapters is pre- 

sented. In addition, several properties of nonblnary 

sequences are discussed. A theorem on the shift and add property of 

nonblnary maximal length sequences is derived, from which the autocorre- 

lation function of ternary (+1, -1, 0) maximal length sequences is 

derived. A method of si^nallinG with Nth roots of unity sequences as 

carriers is outlined. Information is transmitted by sending a sequence 

or one of its N-l conplements. 

In Chapter 5 a class of binary sequences with useful autocorre- 

lation and cross-correlation properties is presented. These sequences 

are derived by the Interleaving of two-level sequences, or two-level and 

conrplement two-level sequences. It is shown that if n two-level sequences 

are interleaved, the autocorrelation function of the resultant sequence 

has n(n-l) minor peaks of height     L • Fewer peaks of larger 

amplitude are obtained if several peaks occur at the same location. 

Using this Interleaving procedure, autocorrelation functions with (n-l) 



peaks of different amplitude., and "almost" tvo-level autocorrelation 

functions are synthesized.    Classes of sequences exhibiting low values 

of cross-correlation at all cyclic shifts are synthesized by Interleav- 

ing.    Autocorrelation and cross-correlation functions with positive and 

negative peaks are synthesized by Interleaving the canplement tvo-level 

sequence along with the uncomplemented sequence.    Interleaved maximal 

length sequences can be generated by the nonlinear filtering of a single 

maximal length sequence.    A number of examples illustrating this tech- 

nique are presented.    The application of the interleaved sequences for 

synchronization is considered. 

In Chapter h methods are presented for the synthesis of N-ary 

sequences (called cyclically orthogonal sequences), which are orthogonal 

for all cyclic shifts.    All of the binary sequences, derived by the tech- 

niques presented in this chapter are of different least period.    It is 

conjectured that cyclically orthogonal binary sequences of the same least 

period do not exist. 

In Chapter 5 the application of cyclically orthogonal sequences 

as carriers for an asynchronous linear multiplex system is considered. 

In this system there are k users on a channel, with each transmitter- 

receiver pair using a different sequence as a carrier.   Although a par- 

ticular transmitter is synchronized with its corresponding receiver, all 

of the other transmitter-receiver pairs can be asynchronous with this 

particular pair.    The respective carriers are summed linearly on the 

channel.    The density functl.on of the Interference is determined and the 

average probability of error is evaluated when the received signals are 



corrupted by additive white Gaussian noise.    Several other classes of 

functions are considered as carriers for this system. 

A dilferent type of multiple:: system is considered in Chapter 6. 

In this system there are k users on the channel, all transmitting synchro- 

nously with N-ary sequences as carriers.    Information Is transmitted by 

sending a sequence or one of its N-l complements.    However, the carriers 

are summed and then passed through a hard-llmlter prior to transmission. 

The set of cyclically orthogonal sequences are shown to minimize the 

average probability of error. 



2.    PRELIMDIARY DERIVATIONS 

In this chapter some basic definitions, mappings, and theorems, 

vhich will be required in the succeeding chapters, are established. 

Several types of sequences are described and the autocorrelation and 

cross-correlation functions of the mappings of these sequences are de- 

fined.    The complements of sequences are defined and the application to 

signalling is noted.    A theorem concerning the shift and add property of 

the maximal length sequence is derived, and is then used to derive the 

autocorrelation function of a mapped ternary (+1, -1, 0) maximal length 

sequence. 

2.1   Basic Definitions and Mappings 

An N-ary cyclic sequence, Sa, of length L, is defined in this 

thesis as a vector, Sa = ia.0,&lf  ..., aj^), where a^, 1=0,   ..., L-l, 

can assume the values 0,1,  ..., N-l.    Sa can also be represented as a 

polynomial Sa(x), 

Sa(x)   = a0 + ajX   + a^jX2 + ... + aiJ..13cL"1 (2.1) 

where x is an indeterminate and x " 1, mod L. For practical applica- 

tions the symbols of Sa are mapped onto quantities for which the usual 

addition and raultiplication operations are defined. Three useful map- 

pings are described below. 

a. Binary Mapping 

For N =2 the mapping of the ai's is 0 -• +1, 1 - -1. 



b. N n Complex Roots of Unity Mapping 

The N possible values of ai are mapped onto the N*11 complex 

roots of unity, 0 - e^0, 1 - e^2^  ...,  (N-l) - e^'l)2^n.    In the 

determination of correlation functions this mapping will be shown to be 

equivalent to the mapping 0 - cos cut, 1 - cos (art + 2n/u) t  ...,  (N-l) •* 

cosCajt + (N-l)2«/N]. 

c. Mapp5.ng Onto Positive and Negative Integers 

As a generalization of the binary jnappinc the N values of 

ai can be mapped onto positive and negative Integers,   For N odd 0 -• 0, 

1-1,  ..., (N-l)/2 - (N-l)/2, (N+l)/2 - -(N-l)/2,  ...,  (N-l) -* -1.    The 

only result obtained for this mappinc is for N = 3. 

The normalized cross-correlation,  Pab( ^) t between two mapped 

sequences, (SQ)^m^ and (S^^ delayed by X digits, where 

fa \(n)  _ /„(m) Jm). [b^        = la0    ,  ..., a-L-i)  , 

(Sb)^  .(b'»' b£>)  , 
and 

are the mappings of ai and b^, is defined as: 

For N = 2 the N*11 complex roots of unity mapping and the binary mapping 
are identical. 

++Tlie general time cross-correlation PabCx), of two functions Sa(t)  and 
Sb(t) of period T is defined as 

T 

Pab(T)  =4-   [ Sa(t)sJ(t-T) dt 
o 

For sequences the integral reduces to a summation. 



Pab(X)  =-f Lf a^ (bW)* (2.2) 
1=0 

where the subscripts of b    '  are taken mod L, ard (b^^)    Indicates the 

conrplcx conjugate of bj  y    If a = b,  then (2.2)  reduces to the autocor- 

relation function of Sa. 

For the binary and roots of unity mappings,  the cross-correlation 

can be deter.nlr:£fl fron the po*..vnomia?. repi^sentr. v Ions of Sa and Sb.    For 

the binary case form a polync-nial Sc(x)  " ^gi^) 5) ^ S^(x) mod (x -l) 

(where(f; indicates modulo 2 sum).    Then Pab(^)  is Been to be: 

Pab(x)   = -JT [No- of O's in Sc(x)   - No. of I1 s In Sc(x)l (2.3) 

If Sa and S"b are N-ary sequences mapped onto the complex roots 

of unity, then form the polynomial Sc(x) ^ Sa(x) - x Si3(x), mod (x -1), 

(where the symbol subtraction is mod N).    Then pa]D( X)  is seen to be 

N-l 

PabW  = -jr  I   [No. of d's in Sc(x)] eJ(2nd/N) (2A) 
d=0 

It can be shovm that the mapping onto the phase modulated cosine 

functions is related to the mapping onto the complex roots of unity. 

The cross-correlation function, Pab(M^ for the roots of unity 

mapptng is 

L-l 

-T-1exp b -f- (ai-bi-x)] 
1=0 
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Uhder the mapping onto the phase modulated cosine functions the cross- 

correlation function becomes 

L-l (i+l)ti 
pa*(x) s iir I    J cos G*+ -f- a0 *cos (^+ ^N

1
^ ) dt 

1=0      Itx 

L-l 

I 
1=0 

55 "ir I COS [^t (ai-bi-x) ] 

L-l 

I 
1=0 

+ Lc^1  ^ {sin [(i+Dcati + -Y" a1+1] • cos [(i+Dcoti + -y- bi-X+i] 

- sin [^iüjti + —j- aij • cos ||iafti + —j- bi-\j j 

where ti is the duration of one time slot. The second summation can be 

dropped if coti » 0, and thus the correlation function under the cosine 

function mapping is proportional to the real part of the correlation 

function for the roots of unity napping.* 

*The analysis for the phase modulated cosine functions assumes that the 
phases of the carriers of the two functions which are cross-correlated 
are identical. However, if the phases are random, then the typical 
correlation term becomes 

^cos [9 + ^L. (ai-bi-x)] 
2L 

where cp is uniformly distributed between 0 and 2«.    For the applications 
which will be considered, it will be assumed that (p is zero. 
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It can be shown that all correlation functions of mapped se- 

quences (real and complex)  are linear between integral cyclic shifts, 

indicating that the determination of the correlation function at in- 

tegral cyclic shifts completely specifies the correlation function.* 

A technique for binary signalling with binary sequences, 

(called coherent phase shift keying, PSK)  is to transmit the mapping 

of a sequence or its complement (negative).    If roots of unity (or 

phase modulated cosine) mapped sequences are used as carriers, then 

a generalization of the PSK case can be specified by defining comple- 

■fh (0)*) ments of N-ary sequences.    The r      complement sequence, Sa
v   of Sa 

is defined as: 

sa       = (ßo-r' ai-r'  •••' aL-i-r) "^ N (2-5) 

In polynomial representation the complement polyncmial, S ^ (x),  is 

seen to be: 

slqr)(x)   =Sa(x)  - r(x) (2.6) 

where r(x)  = r + rx + ... + nr1"1. 

The cross-correlation function Paar^ l>e'fcween a napped root 

of unity sequence and its r^1 complement is Paar^0)  ■ e"^      '   ^. 

From a recent report by Reed and Scholtz,    intccral expressions for the 

average probability of error for N " roots of unity complement signal- 

ling can be derived. 

*The proof for binary sequences is a special case of Theorem 5,1. 
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The complement sequence concept will be used in Chapter h for 

the synthesis of classes of N-ary scnuences which are orthogonal for 

all cyclic shifts.    The caraplement sinrnalling concept will be discussed 

ftirther in Chapter 6 when the N-ary "hard" limiting multipler system is 

analyzed. 

In the following section some new results are presented on the 

characteristics of maximal longth p-nary (N = p where p is a prime number) 

sequences. 

2.2   Mayima]  Length p-nary Sequences 

The best known of th3 p-nary sequences is the maximal length 

p-nary sequence.    Peterson     has shown that the polynomial representation 

ILJX)  of a maximal length sequence can be derived from a primitive irre- 

ducible polynomial, gp(x), over GF(p).    If gp(x) is of degree r, then the 

coefficients of l^n(x), which  is   of degree pr-.l-r 

,r 
P -1 - 1 (2.7) hjx)    =  -i y-l 

specify the first p -r digits of the maximal length sequences of length 

L e pr-l, the last r-1 digits being zero.    The sequence corresponding to 

hn^x)  can be generated by an r stage p level shift register with feedback 

connections prescribed by gp(x).    It has been shown     that in a maximal 

length sequence,  the field eleirents, 1 through p-1, appear exactly pr"" 

r-i times and the field element 0 appears exactly p     -1 times.    It has also 

2k r been established      that the p -1 r-tuples formed by taking r successive 

digits of a maximal length sequence, a0,a1,  ..., a^jj a1,a2,   ..., ar; 
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...J a^-i,«21!/ •••* a
r..a' Bre tiie ^   ^ distinct noozsro r-tvples over 

GF(p). 

It is well kncvn th«i.t nsaxiMtl lea-ith t^Tiar^ (N - p = 2)  se- 

quences exhibit the shift and modulo 2 add    (or equivaleritly the shift 

and modulo 2 subtract) property.   That is, if a maximal length binary 

sequence is delayed an integral number of digits and the delayed se- 

quence Is added (modulo 2)  to the original sequence, the resultant se- 

quence will itself be a delayed version of the original sequence. 

The shift and add property may be written as: 

^   V (*       h^x)      X =1,   ..., L-i 
hm(x)©xAhm(x) H ^ mod(xl'-l) (2.8) 

(^O(x) X = 0 

It can be shown that I(X) is unique for given X, and for 

Xj^ f Xj mod L, I(X1) ^ I(Xj) mod L.    These properties of I(X) will be 

used in Chapter 5 when the nonlinear filtering of maximal length se- 

quences is discussed. 

Wolf   et al   2 Using R set of tables computed by ELspa:"      de- 

scribed a method for determining I(X) as a function of the primitive 

polynomial gp(x), over GF(2). 

The following theorem describes the shift and modulo p add 

property of p-naiy maximal lertfth sequences (p > 2), 

THEOREM 2.1   If a p-nary maximal length sequence (p > ?j of length 
L = pr-l is delayed an integral, number of digits, and the 
delayed sequence is added (mod p) to the original sequence, 
the resulting sequence will itself be a delayed version of 
the original sequence, except for a shift of (pr-l)/2 = L/2 
digits, in which case the resulting sequence is the all zero 
sequence. 
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Proof:    Peterson     has shown that the p -1 nonzero terms in the Ideal 

generated by hj^x)  in the alß-sbra of polynomials modulo x -1 correspond 

to the pr-l cyclic shifts of the maximal length sequence.    Since the 

ideal is an additive subgroup, the addition (mod p) of ^(x) and a shifted 

version of h^x) yields a unique shifted version of ^(x) except for the 

sumnation 
hjx) + (p-lJlfcU) 

which will yield the polynomial 0(x) corresponding to the all zero 

sequence. 

It will now be shown that the polynomial (p-l)hni(x) is congru- 

ent to xI,/2hm(x) modulo (x
L-l); the latter polynomial corresponding to 

» cyclic shift of L/2 digits. We know: 

gpCxJhJx) H o  mod(xL-l) (2.9) 

Thus in order to show that 

(p-l)hni(x) = x
L/2l^(x)   mocKxL-l) (2.10) 

it is sufficient to demonstrate that 

(xL/2-pU) = (x^+l) a 0     mod gp(x) (2.11) 

However, for (2.11) to be true, it is necessary to show that 

gp(x)|(x
L/2+l) (2.12) 

i 
We know that gp(x) divides (x -1), for no value of 4 j.ess than 

p1"-! = L since gp(x) is primitive. Thus 
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gp(x)|(xL/2-KL)(xL/2-l) (2.13) 

Since Gp(:i) cannot divide xL'2-i, 

gpC^Kx^l) 

establishing the theorem. 

The following corollary to Theorem 2.1 pertains to the shift 

and subtract of p-nary maximal length sequences. 

COROLLARY 2.1 If a p-nary maximal length sequence is delayed an 
integral number of digits and the delayed sequence is subtracted 
(mod p) from the original sequence, the resultant sequence will 
itself be a delayed version of the original maxi mal length se- 
quence for all nonzero shifts. 

Proof: Since the subtraction from hj^x) of any term in the ideal gen- 

erated by hjafx), yields a unique nonzero term, except for the operation 

hjnfx) - ^(x), the shift and subtract property is evident. 

From Theorem 2.1, Corollary 2.1, and the properties of maximal 

length sequences, the autocorrelation functions of these sequences, 

transformed by two mappings, are now presented. 

THEOREM 2.2 The autocorrelation function, PA(M* of a ternary (p = 5) 
maximal length sequence transformed by the mapping 0 -• 0, 
1 - 1, 2 - -1 is: 

( (2.3r"1)/(3r-l)  X = 0 
PA(X) = ] -(2.5r-1)/(3r-l)  X = L/2 {2.1k) 

Co X / 0, L/2 
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The proof of Theorem 2.2 IB presented In Appendix A.    A plot of p^fM as 

given by Theorem 2.2 is shown in Figure 2.1. 

The autocorrelation function of a maxtinftl length p-nary se- 

quence (all p)  transformed by the roots of unity mapping is 

PA(X)  = ) (2.15) 

The rebult is derived vising Corollary 2.1 and Equation (2.U). 

A plot of the autocorrelation is shown in Figure 2.2. This type of 

autocorrelation function is known as a two-levr   «ocorrelation func- 

tion aud the maximal length sequence is known as a two-level sequence. 

Two-level binary sequences, besides the maximal length se- 

quence, have been derived for the following values of L. 

a. L - U (Perfect Sequence) 

b, L = hn-1 is prime n = 1,2, ... (Quadratic Residue Sequence)-^ 

6 
c, L = p(p*2) where p and p+2 are prime (Twifl Prime Sequence) 

d. L = lm2+27 is prime (Hall Sequence)7 

The out-of-phase autocorrelation of the first sequence is 0, 

and it is the only known binary sequence to exhibit this property. The 

out-of-phase autocorrelation function of the remaining sequences is 

-l/L. The two-level binary sequences with out-of-phase autocorrelation 

equal to -l/L will be used in Chapter 5 to derive, by interleaving, 

larger classes of binary sequences with various autocorrelation and 

cross-correlation properties. 
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L-l   L 

f   I G .   2.   I . 

AUTOCORRELATION   FUNCTION   OF TERNARY   MAXIMAL   LENGTH 
SEQUENCE  TRANSFORMED BY  MAPPING    O-^O, 1-^1.2-^-1 

p (X) 

L-l/L 

FIG,   2.2, 

AUTOCORRELATION    FUNCTION   OF  P - NARY   MAXIMAL   LENGTH 
SEQUENCE   TRANSFORMED  BY   ROOTS   OF   UNITY   MAPPING 
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Tvo-level perfect N-ary sequences, mapped onto the roots of 

unity, axe known8'^ for L = N2.    However, except for the maximal length 

sequences, the general theory of two-level sequences has not been satis- 

factorily generalized to N-ary sequences.    For N = 3 a two-level root of 

unity mapped sequence (01221) has been found by the author and it has 

been indicated27 that no two-level ternary roots of unity mapped se- 

quences exist for lengths other than 5* 8> 9 up to 25. 
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3.    SEQUENCES DERIVED BY THE INTERLEAVING OF TWO-LEVEL BINARY* SEQUENCES 

5.1   Introduction 

In Chapters 1 and 2 tae prior research in the derivation of two- 

12 level binary sequences vas ^uninarized.    Titsworth     has derived limited 

classes of "almost" two-level sequences (the autocorrelation function is 

close to zero for nonzero shirts),  by forming cither 

the tensor or term-by-term pioducts of the known two-level sequences. 

26 From the theory of cyclic codes, in particular, Bose-Chaudhuri Codes^ 

bounds on the autocorrelation functions of some additional sequences can 

be found.    Emphasis has been placed on the derivation of two-level se- 

quences because they provide simple and accurate methods for tracking, 

ranging and synchronization. 

With the major emphasis placed on the derivation of two-level 

and "almost" two-level sequences, the general problem of synthesizing 

sequences exhibiting arbitrary realizable autocorrelation functions has 

remained unsolved. 

In this chapter a large class of previously unknown sequences 

are synthesized by the arbitrary n-fold interleaving** of the sane two- 

level sequence.    It will be shown that the autocorrelation function of 

the interleaved sequence is similar to that of the original sequence 

* The discussion to follow is limittd to the interleaving of binary se- 
quences since many more binary two-level sequences are known than 
general N-ary two-level sequences.    However, the theory presented is 
applicable to the interleaving of N-ary sequences. 

**The interleaving method has been used previously^ to derive error- 
correcting codes with multiple burst error correction capability. 
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except for the addition of n(n-l) intermediate minor peaks of height 

(L-n+l)/nL.    A number of these peaks can occur at the same location to 

produce fevrer peaks of larger amplitude.    A formula for calculating the 

location of the minor peaks is derived.    Using the Interleaving tech- 

nique, a new set of "almost" two-level sequences are synthesized.    Also 

autocorrelation functions with (n-l) peaks of different amplitudes are 

presented.    The cross-correlation function between pairs of sequences, 

with these autocorrelation properties,  is considered.   The theory is 

extended to sequences formed "by the interleaving of two-level and com- 

plement two-level sequo/jces. 

An n fold interleaved sequence can be generated by the gating 

of sequences from n separate shift registers.    However, it is shown that 

a class of sequences formed by the interleaving of maximal length se- 

quences can be generated by a relatively simple nonlinear filtering 

technique.    Several examples of sequences derived by nonlinear filtering 

are presented. 

The application of interleaved sequences for synchronization is 

discussed. 

5.2   Derivation of Peak Locations 

It was shown in Chapter 2 that the cross-correlation function 

of two transformed binary sequences or the autocorrelation function of 

a transfoxmed binary sequence could be determined from the polynomial 

representations of the sequences.    Throughout the remainder of this 

chapter h(x) and xQ^(x) will be the polynomial representations of a 
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two-level binary sequence, with out-of-phase autocorrelation of -l/L, 

and a two-level binary sequence delayed by a digits, respectively. 

Hence, the polynomial h'U), h'U) E hWQAix) = h(x)[l©xa]; mod 

ir-l, has L zeros if a = 0, or (L-l)/2 zeros and (L+l)/2 ones if a / 0. 

Two definitions concerned with general interleaved sequences 

ara now presented. 

Definition:    If the polynomial Sa(x)  corresponds to the sequence 

(a0,  ..., aj^) then the polynomial JcnQffvSa(acn), where n is a positive 

integer, a = 0, 1,  ..., L-l, v = 0,1,   ..., n-1, corresponds to the 

sequence 

(0,0,  ..., 0,aIi_a,  0,0,   ..., 0,a£(_Cffl,   ..., 

v , n-1 

0,0,   ...,  O^.Q^,  0,0,   ..., 0) 

n-1 n-l-v 

Polynomials must now be taken mod (x    -l). 

Definition?    The sequence Sc resulting from the (2-fold)   interleaving of 

sequence Sa, and sequence S^ delayed by a digits is: 

Sc = (ao,b_Q;,a1,b1«Q,   •••^ &i,-2.f^li-2.-oi)' 

The polynomial Sc(x) can then be written as 

Sc(x) = Sa(x2)  + x20tflSb(x2) mod (x2L-l). 

The synthesis procedure presented is to interleave a two-level 

sequence with (n-1) shifted versions of the same two-level sequence. 
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The resultant sequence,  (in polynanlal representation), denoted as Sr(x) 

Is: 

n-1 
Sr(x) S h(xn)   ^   xnav+V , mod (x^-l) (3.1) 

where the Oy's, called the Interleaving constants,  can assume the values* 

0,1,  ..., L-l, and OCQ = 0. 

The procedure for deriving the autocorrelation function pr(n6+w), 

of the transformed binary sequence corresponding to Sr(x), for an arbi- 

trary integral delay (n6+w),  6 = 0,1,  ..., L-l, w = 0,1,   »,., n-1 is: 

a. Form the polynomial Sp(x) « Sr(x) ® xn6+vSr(x), mod (x^-l) 

b. Apply Equation (2.5)  to Sp(x)   [count the number cf O's and 
I's in Sp(x) ] replacing 1/L by l/nL. 

It is seen that: 

n-1 
„nS-tv, Sr(x) = h(xn)   V   ^(ov^+vHf f ^ ^nL.^      (3<2) 

v=0 

Thus the polynomial Sp(x) is: 

n-1 

I 
v=0 

Sp(x) x h(xn)   I   x(n0^v) [l©xn(6+Qfa-^v-0^Mwv)]mod (x^-l)      (3.3) 

where 

(l     v < w 

(0     v > w 

and subscripts are taken mod n. 

♦For the most general type of interleaved sequence Qo / 0.    However, as- 
suming 0^ = 0 does not reduce the generality of the autocorrelation 
functions. 
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The exponents of the terms x
n( 640b-w+v-av*Wwv) determine the 

value of the autocorrelation function for a particular delay (n6+w).    If 

no exponent is equal to zero (for a particular 6 and w)  then the sequence 

Sp consists of n interleaved sequences each containing (L-lV2 zeros and 

(L+l)/2 ones providing an autocorrelation value of pr(n6+w) « -l/L.    How- 

ever,  if <y exponents are equal to zero (for a particular set of 6 and w) 

then Sp consists of a all zero sequences plus n-a sequences, each con- 

tain^  % (L-l)/2 zeros and (L+l)/2 ones, providing an autocorrelation value 

of pr(n6+v)   = (aL-n-hT)/nL.    For this condition the autocorrelation func- 

tion is said to have a "a" order minor peak, a = 0,1,   ..., n. 

From (5«3)  it can be seen that an "n" order peak occurs at a 

delay of 0,  (corresponding to unity autocorrelation), and no peaks occur 

for delays of n,2n,   ..,,  (L-l)u. 

From (5.5)  it is detenained that peaks occur for 

^v s QSr " ^i-v+v - IVv , mod L il.h) 
where 

w * 1,2,   ..., n-1 

v = 0,1,   ..., n-1 
and 

ao = 0 

In order to identify each peak, subscripts have been placed on the para- 

meter 6.    For a given value of w there are n peaks providing a total of 

n(n-l) single order peaks.    However, a number of single peaks can occur 

at the same point to produce multiple order peaks. 

The n(n-l) peak locations cannot be arbitrarily chosen.    Since 

there are (n-l) independent parameters - the interleaving constants 
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Qc^a^, ..., Q^.J^ - only (n-1) "peak locations are cou^^^lable. 

It vlll be useful also to laiow the cross-correlation function 

between two Interleaved sequences. For two Interleaved sequences, 

n-1 
S^U) * h(xn)   J   ^ a)+v 

and v=0 

^       (2) 
Si.2j(x) . h(xn)   ^   x"^   +v , mod (xnL-l) (3.5) 

1 

cross-correlation peaks,  Sy. v, occur for: 

6w,v s ^   ' 4-i+v " h/v . *oa L (5-6) 

where w,v = 0,1,   ..., n-l and a^1', cr2'  are the interleaving constants 

of the respective sequences.    There are n2 single order cross-correlation 

peaks (some of which can occur at the same point to yield multiple order peaks) 

In the following section a number of constraint equations on the 

autocorrelation peak locations are derived and a synthesis technique is 

indicated. 

3.5   Constraints on Autocorrelation Peak Locations 

The following constraint equations are derived from (3.^). 

a.    If all of the peak locations for a given value of w are 
summed, mod L, it Is noted that: 

n-1 
Y   ^v = - w n! L - w , mod L (3-7) 

v=0 
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b. There is a syauietry relationship which the peak locations 
satisfy which ensures that pr(n6-»w) = pr{-n6-w). The re- 
sulting constraint equation is: 

^w,vH "''n-w^v-w " 1 ^ DKXI L (3«6) 

c. The peak locations &W y^ w !S 2'5>   ••./ n-1, can be easily 
calculated from the peak locations for w = 1 from the 
equation: 

v 

^v -       Y       6i,b > m0(i L (5.9) 
b=v-w+l 

Eqiwitions (3.7) and (5.9) can be used to synthesize sequences 

with various autocorrelation functions. The procedure used in the ex- 

amples to follow is to prescribe values for 61,0*^1 u •••> 6i n-zt 

utilize (5.7) to calculate 81 n-i* ^^ utilize (5-9) to calculate the 

remaining peak locations. Equation (3*^) is then used to determine the 

interleaving constants from b\tO}  •••>  6i,n-2» 

It is interesting to note that although there are L11'1 possible 

combinations of interleaving constants (i.e., L11'1 different interleaved 

sequences), there are fewer distinct autocorrelation structures. If the 

peak locations for w = 1 are written as a linear array, (63. o'^i 1.» •••' 

^1 n-aj' t^en from (5.9)/ any cyclic shift of the array or any cyclic 

shift of the reciprocal array (backwards array), will yield identical 

autocorrelation functions although the interleaved sequences will in 

general be different. The exact number of distinct autocorrelation 

structures is the number of unequivalent n-tuples in the ring of integers 

mod L, with the constraint that the sum of the elements of the n-tuple is 
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-1 mod L. Two n-tuples are defined as unequivalent if and only if one 

n-tuple cannot be derived from the other by a cyclic shift or a cyclic 

shift of the reciprocal. The number of such unequivalent n-tuples has 

not been determined. 

In the following two sections examples will be presented of 

two types of autocorrelation functions which can be derived by inter- 

leaving two-level sequences. In the first example the interleaving con- 

stants are chosen so that the highest autocorrelation peak is "2" order, 

providing an almort two-level autocorrelation function. In the second 

example, the interleaving constants are chosen so that all autocorrela- 

tion peaks are of different heights. 

5,h    "Almost" Two-Level Autocorrelation Function 

The synthesis procedure will be to choose ^ 0, ..., 6^^ n_2 and 

derive the remaining peaks from these values. Let L be a prime* and let 

n = L+l. Thus the length of the interleaved sequence will be L(L+l). 

Choose the peak locations for w = 1 as: 

6i,o - k**1' 6i,i " 0>  6i,2 - dJ 6i,3 -  2d' -••>  6i,L s (L-l)d >  mod L 
(5.10) 

where d « 1,2, ..., L-l, mod L. 

Since L is prime, the numbers 0,d, ..., (L-l)d are all of the 

distinct numbers mod L. It is easily verified that the peak locations 

given by (3.10) satisfy the constraint (5'7) since 

■*Most of the two-level binary sequences are of prime length. The quac- 
ratio residue and Hall sequences are always of prime length and the 
maximal length sequences of length 2r-l are of prime length if r is a 
Mersenne prime. 
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L-l 

y 6i,v = y v + (Lml)  " -1 > mod L 
v=0      v=0 

Tliere are then (L-l) single order peaks and one double order peak for 

w = 1. 

The remaining peak locations are calculated using (3.9)« In 

applying (3.9) consider the (L+l) peak locations for a given value of 

w divided into two groups. The first group contains those values of 

ß^v, which are not explicit functions of 63^ 0. The peak locations for 

this group will assume the value 

v v-1 

^v5  £   öi,bs  ^  vd H v(wd) --^- (v+l) ,   (3.11) 

b»v-w+l      v=v-w    mod L # 

From the above equation it is noted that all of the peak loca- 

tions in the first group are unequal since 

v(wd)  - —- (v+1) f v'(wd)  - -a^- (w+1)     mod L 
2 2 

for v ^ v1, mod L. 

The second group of peak locations contains those values of 

byf v which are functions of 6^^ 0.   For those values of v a typical peak 

location is 

6w,v -- v(wd)   - -^- (w+1) + (L-l)   , mod L . 

The peak locations in this second group  no are all distinct. However, 

a peak location in the first group can be equal to a peak location in 

the second group. Hence, the autocorrelation function will contain zero. 
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first and second order peaks. The magnitudes of first and second order 

peaks are 0 and +l/L respectively. The autocorrelation function of the 

sequence derived by the (]>l) fold interleaving of the length L = 7 max- 

imal length sequence, with d = 1, is shown in Figure J.l. 

L sequences instead of (I/<-l) can be Interleaved to provide auto- 

correlatlon functions bounded by double order peaks by choosing the peak 

locations for w = 1 as &! 0 = L-l, 6i i = d, (>1)2  = 2d, ..., 6i,L-i 

= (L-l)d. 

Fewer than L sequences can be interleaved to provide sequences 

with autocorrelation functions bounded by double order peaks. If a se- 

quence of length nL, n < L, is to be synthesized, a synthesis procedure 

would be to find a set of n numbers, v,v+d, ..., v+(n-l)d, which sum to -1 

mod L. There is always a unique number v for any d and n such that this 

congruence can be satisfied. These numbers (in order) are then the peak 

locations 6^^ 0,f>2.  i» ..., ^i n-i^ an^ ^ can ^e shown that the resultant 

autocorrelation function is bounded by double order peaks. It has been 

found that for certain values of n the autocorrelation function derived 

in this manner is bounded by single order peaks, although no general 

result to this effect was found. 

It can be shown that the cross-correlation function, for all 

cyclic shifts, between two "almost" two-level interleaved sequences, for 

n < L and n prime, is bounded by fourth order peaks. The proof for 

n = L has been presented elsewhere;™ the proof for n < L is given below. 

Consider an "almost" two-level Interleaved sequence with the 

peak locations ö^1^. for w = 1 chosen as 
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.(i)      (i)    fi)      d) i W Ai) (i) t .   ^Ai) 

Similarly a different "alaost" two-level sequence vill have peak locations 

(a) G„ « for w " 1 chosen as 

.(2) (2)      .(e) (2)   + ,(2) ,(2) (2)    .   ,     ...(2) 
6i,o " v     ' 6i,i * *       + d     * •••' 6i,n-i ^ v      + (n*1^       * 

where d^1), d^2) = 1,2, ..., L-l with d^1) ^ d(2), mod L,  v^1) and v(a) are 

determined from (3.7) setting w = 1. 

The cross-correlation peak locations, 6^ v, are given by (5.6) 

where the er1''s and er2' 's are the interleaving constants of the two 

sequences. 

From (5.^) it iß determined that 

and 

Define a variable g^v as g^ v = 6^v + p^. Thus g^^v is the cross- 

correlation peak location for v > w, and the peak location increased by 

one for w < v. Thus g^v is 

£ v = ^(i) + v(^l)d
(1) . (n.v+v)v(2) . (n-wfv)(n-wfv<-l)d(2) ^ 

mod L 

In order to determine the maximum multiplicity of peaks, it is 

necessary to determine the values of v' ^ v mod n for which S^ y - gy vii 
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mod L.    The procedure is to set gy v s g^ v,; mod L and solve for the 

values of v' mod n which satisfy the congruence.    It is apparent that a 

quadratic equation in v1 results, and if r is prime then only two solu- 

tions exist, one of which is evidently v' s v mod n.    Thus any value of 

6^v can occur with maximum multiplicity of two for a given value of w. 

However,  if the effect of Pw iß considered, it is seen that the first 

w values of g^ v are reduced by 1 to yield the cross-correlation peak 

locations 6^, v.    It is then possible that four values of 6^, v will be 

identical (for a given w), providing a cross-correlation function bound- 

ed by fourth or^er peaks. 

The class of sequences Just described has "good" autocorrelation 

and cross-correlation properties.    Thus these sequences can be used as 

a set of code words for a coomuni cation system with the transmitter 

asynchronous with the receiver.    The "almost" two-level autocorrelation 

property can provide a means for synchronization, and the "good" cross- 

correlation property for all cyclic shifts provides a low probability 

of deciding on the wrong code word. 

As a final remark on these "almost" two-level interleaved se- 

quence it should be noted that the class of sequences of length L2 forms 

a set of good error-correcting codes,  if the code consists of all cyclic 

shifts of all of the (L-l)  interleaved sequences.    A total of L (L-l) 

code words are formed with minimum distance,* ämin = t(L -3L+4).   Thus 

for large L the code consists of (approximately) L   code words of length 

*The minimum distance is easily evaluated by relating the marlmaa value 
of cyclic cross-correlation (equivalent to fourth order peav)  to the 
Hamming distance. 
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L   with an error-correction capability of if/k,    A Bose-Chaudhurl code, 

(the best of the knovn linear codes)  containing L3 code words of length 

2 2 / L   provides a guaranteed error-correction capability of only L /2 log2 L. 

Thus the code formed from the Interleaved sequences provides protection 

greater ihan a Bose-Chaudhurl code of equal length with an equal number of 

words. 

In the following section a class of sequences with autocorrelation 

functions containing intennediate peaks aU. of different amplitude will be 

synthesized. 

3.5   Autocorrelation Function with All Peaks of Different Amplitude 

The synthesis procedure is to choose the peak locations ö^y for 

w *• 1.    Choose öj^o « ^\fi = ...  = 6i,n-2 = vi where v can assume any 

value, mod L, except values for which the congruence vn ~ L-l, mod L,  is 

satisfied,* where n is any positive Integer.    The choice of allowable 

values of v provides an "(n-l)" order peak in the autocorrelation function 

at Cnv+l).    There is then a single order peak at (n6i^n-i+l) where 

6i,n-i - (L-l)  - (n-l)v, mod L. 

The remaining peak locations are calculated from (5.9)-    It is 

determined that 6W ^^ = 6v w = •••  ^ 5w n-2 s ^ mod **> BXi^ 6w.n-i 

= Nf 0 = •••  ~ ^v w-2 ~ (L-l)  - (n-w)v, mod L.    Hence there is an "(n-w)" 

order peak of (nwj+w)  and a "w" order peak at [n(L-l)  - n(n-l)v + w], 

mod L.   The autocorrelation function thus contains (n-l) peaks,  (exclud- 

ing the symmetric peaks), all of different order.    If n < L and nv and L 

•^Interleaved sequences for which v satisfies the concrusnce vn 5 L-l, 
mod L, reduce to n repeated versions of a cyclic shift of the ori^nal 
two-level sequence. 
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are relatively prime, the different order peaks correspond to distinct 

values of 6, This condition ensures that the (n-1) peaks are not 

"bunched" together. 

The autocorrelation function of the interleaved sequence derived 

from the length 15 maximal length sequence by choosing n = 7> v = 1 is 

shown in Figure 3«2. 

It will now be shown that the cross-correlation function, at 

all cyclic shifts, between twr "different" peak sequences, derived from 

different values of v for L a prime and n < L, is bounded by double 

order peaks. 

It can be seen that two different "different" peak autocorrela- 

tion functions result for interleaving constants o^, o^2' j 

QQ  -0,0^  =v  ,Q^  32v t  • •',  QQ-I = \n-l;v   , mod L , 

and 

42)  s 0, a[z) -• v(2),  ..., ofcl H (n-l)v(2)  , mod L , 

where 

n < L , v(l), v(2)  = 1,   ..., L-l , v(l)  t v(2) mod L . 

Cross-correlation peaks, 6^ v, then occur for 

6i,v 5 ^   '  ^-i+v - ^ mod L 

Defining again the variable g^v = 6^^ + Mvv^ ^ 
is seen tlia"t 

g^v = w
(l) - (n-w+v)v(2) m  (w-n)v(2) + v(v(l)-v(2)) mod L 

Hence, for a given value of w, g^ v ^ g^ vi, mod L for v ^ v' mod L. 
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Thus the values of ß^ v are  all distinct for a given v,  indicating, after 

considering the ^ function, the maxlman multiplicity of cross-correlation 

peaks is 2. 

The application of a simple "different" peak sequence for syn- 

chronization is considered in Section 3.8. 

3.6 Complement Sequence Interleavin«; 

A method of synthesizing sequences with useful autocorrelation 

properties "by the n-fold interleaving of the same two-level sequence was 

presented in the previous sections. Additional sequences can be synthe- 

sized by proper interleaving of a two-level sequence along with the coan- 

plement of that sequence   uch sequences will exhibit autocorrelation 

functions with positive ana. negative peaks. 

It is recalled that the complement sequence, lr^(x), of a 

two-level sequence, h(x) is, h^'Cx) = h(x)01(x). The polynomial, 

h"(x), h"(x) = htxX+W^fe H h(qi)(x)©xGii(x), mod (xL-l), has L 

ones if a = 0, or (h*-l)/2  zeros and (L-l)/'2 ones if a / 0. The poly- 

nomial h^Cx), hM,(x) = h((ll^(x)©xQh(qi)(x), mod (xL-l) is identical 

to the polynomial h'ix)  defined previously. 

The synthesis procedure used is the n-fold interleaving, with 

arbitrary shifts, of a two-level sequence of length L and its complement. 

The resultant sequence (in polynomial representation), denoted as Sri(x) 

is: 

n-1 
Sr,(x) s   y   xnCV+vbv(xn)  , mod (x^-l)   , (3.11) 

v=0 

where h/x)  is either h(x)  or h^i^x). 
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In order to find the autocorrelation function, it is necessary 

to form the polynomial, Spi(x), 

Sp.(x) s Sr.(x)0xn64vSri(x) , mod (x^-l) . 

Thus 
n-1 

I 
v=;0 mod (x^-l) (3.12) 

Peaks will occur in the autocorrelation function for 

6 + Oh-y+v - 0^ + Mv-/ H 0 , mod L . 

However, the peak can be either positive or negative.    A positive peak 

occurs if hv(x)  and hn-v+yCaO  are both uncomplemented or both comple- 

mented polynomials.    A negative peak occurs if one of the polynomials 

is uncomplemented and the other complemented.   The peak locations satis- 

fy (3«7K  (5.8) and (5.9).    No peaks occur for w = 0, (excluding of 

course v * 0), and the autocorrelation function for these delays is 

-l/L. 

It can be shown if a weight of +1 is assigned to a positive 

peak and a weight of -1 to a negative peak, then the total weight of 

the peaks of a sequence interleaved from m two-level sequences and m 

complement sequences (ni+ng = n)  is (ni-ng)2 - n. 

In Figure 5.2 an autocorrelation function with (n-l)  peaks of 

different amplitude was presented.    By interleaving complement sequences, 

autocorrelation functions with positive and negative peaks, all of dif- 

ferent amplitude,  can be synthesized.    The procedure is to choose h^x) 

= h(x) for v = 0,2,4,  .,., and h^x)  = h^'U) for v = 1,5,   ...    The 
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peak locations fcr w = 1 are again chosen as 61 o = ... = 6^^ n_2 = v. 

Negative peaks occur for w = 1,5,  ..., and positive peaks for w = 2,4, 

....      A positive and necative "different" peak autocorrelation func- 

tion for n = 7, L = 15, v = 1 is shovm in Figure 3»5. 

In the following section it is shown that sequences generated 

by the interleaving of maximal length sequences can be generated by the 

simple nonlinear filtering of a maximal length sequence. 

5.7   Generation of Interleaved Sequences by Nonlinear Filtering 

19 Raphael ^ has described a technique for synthesizing binary se- 

quences (which axe recognized as interleaved maximal length sequences), 

with autocorrelation functions containing minor peaks, by the nonlinear 

filtering of a maximal length sequence.    The filter* (shown in Figure 

5.4) forms the mod 2 sum of a maximal length sequence, of length L, 

(with each symbol repeated n times, n = 2,3,   ...),  and this sequence de- 

layed by ny+y digits, y = 1,2,  ..., L-l, y = 1,2,   ..., n-1.    Raphael 

found the autocorrelation function of the output sequence for a few val- 

ues of L, n, 7 and y, by computer simulation.    The generalization of 

these results are presented as an example at the end of this section. 

First a multiple nonlinear filter which can be used to generate 

a wider class of interleaved maximal length sequences is presented.    The 

filter, as shown in Figure 3«5, consists of n delay elements, delaying 

the input repeated maximal length sequence n70, n/x+l,  ..., n7n_i+n-l 

*The filter operation is nonlinear because the mod 2 sum of binary se- 
quences is isomorphic to the product of mapped binary sequences. 
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digits respectively, (7y = 0,1, ,.., L-l, y « 0,1, ..,, n-l), and a mod 2 

siimmer. There is also the provision that particular delay elements can 

be switched out of the circuit by the operation of switches SW^SV^, ..., 

SWn.1. The opening of switch SWy Is equivalent to adding, (mod 2), an 

all zero sequence In place of the Input sequence delayed n/y+y digits. 

The analysis of the multiple nonlinear filter is as follows. 

The input maximal length sequence, with each symbol repeated 

n times, is represented as the polynomial S^x), 

n-l 

I 
a=0 

SaU) - hjx11) ^ xc , (3.13) 

where ^(x) is the polyncmial representation of a maximal length sequence 

of length L. 

The output of the y"1 delay element, ^(x), in polynomial repre- 

sentation, is 

n-l 

a=0 

Syfx) = x^ayU*) ][ xa , mod (x^-l) 

n-l 
. n. 

v=0 

where 

ay(x
n) I   xn(V^)+V , mod (x^-1) (3.l4) 

(1  v <y 

(0  v > y 

and 

if SWy is closed (KM 
ay(x) = j 

(0(x)   if SWy is open 
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Then the polynomial representation of the output of the mod 2 

summer, S0rp(x), Is 

SOT(X) = So(x)©S1(x)©...0Sn.1(x) , 

n-1  n-1 

1 xV la ^n(ry+^)ay(xn) > mod ^-v >   ^'^ 3 

v=0   y=0 

where E^   Indicates nod 2 summation. 

Since the mod 2 sunmatlon of n arbitrarily shifted maximal 

length sequences yields either a shifted maximal length sequence or an 

all zero sequence, SQTCX)  can be represented as 

n-1 

I 
v=0 

,T(x) = ^ xnGV+Vav(xn) , (modxnL-l) ,        (5-16) 

vhere the o^'s and ayCx) 's are functions* of 7y and ay(x) , y = 0, ..., 

n-1. Hence the output sequence Is an interleaving of shifted maximal 

length sequences and all zero sequences.** There are L possible states 

of the delay element (n7y+y), corresponding to '.he L values of 7y ^"th 

SV/y closed, and one extra state corresponding to SWy open, providing a 

total of (L+l) states. Hence there are (L+l) states of the nonlinear 

filter. However, there are also (L+l) possible n-fold interleaved 

*av(x) is either l^Cx) or 0(x) 
**The autocorrelation functions of sequences Interleaved from binary two- 

level sequences and all zero sequences were not considered in the pre- 
vious sections. However, it can be shown that these autocorrelation 
functions have similar minor peak structures as thosj- sequences consid- 
ered previously except for the occurrence of an "i" order peak at delays 
of n,2n, ..., (L-l)n, where i  is the number of all zero sequences inter- 
leaved. 
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sequences, suggestinß the possibility that every interleaved sequence 

can be generated by the multiple nonlinear filter.    It is proved,  in 

Appendix B, that this is indeed the caee for n = 2, by demonstrating 

that each filter state yields a different interleaved sequence as an 

output.    It is conjectured that th« result is true for all n, although 

the method of proof appears involved for n > 2. 

Two examples of sequences derived by nonlinear filtering are 

now given.    In the first example the general solution to the filter 

(Figure 5.h),  consisting of a single arbitrary delay, ny+y,  is given. 

In the second example the synthesis of a certain type of "different" 

peak sequence is presented. 

Example 5«1   With a single delay element, ny+y, the output sequence, 

SOTMJ ^ polynomial form is 

SoT(x)  H S^Qx^S^x)  , mod (x^-l)  , (3.1?) 

y-1 n-1 

SoT(x)  S h(xn) {xnI^+1^   £   xb + xnI(7)   I  x^}     mod (x1*-!)   . 

b=0 C=y (3.1B) 

Thus the interleaving constants, Oy, are 

Q^ = % = ...  = o^.i = 1(7+1) 

(^ =ay+1 = ...  »G^^ = 1(7) 

Applying the theory' of Section 5^2, it is found that autocorre- 

lation peaks occur at shifts of n6+w, with the following peak orders. 
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a. For w < mlnLy, n-y] the. peak orders ore: 

V order peak at 6 = l(r+l) - 1 - 1(7) 
V order peak at 6 - 1(7) - 1(7+1) 
M(n-2w)" order peak at 6 = 0 

b. For y < w < n-y, with y < n/2,* the peak orders are: 

V order peak at 6 = 1(7+1) - 1 - 1(7) 
"y" order peak at 6 » 1(7) - 1(7+1) 
"(n-y-w)" order peak at 6 = 0 
"(y-w)" order peak at 6 = L - 1 

c. For w > max [n-y, y] the peak orders are: 

"(n-w)" order peak at 5 = 1(7+1)  - 1 - 1(7) 
"(n-w)" order peak at 6 = .':(7)  - l(7+l) 
"(^-n)" order peak at 6 = L - 1 

It Is noted that the peak locations 1(7)  - 1(7+1) and 1(7+1) 

- 1 - 1(7) correspond to synnetrlcal peaks.    A plot of the autocorrela- 

tion function of S0IJ is shown in Figure 3.6 for arbitrary values of n, 

(n even), and L, and three values of y, yx « 1 < y2 
< Ya = n/2.    The 

19 case y B 2n is the situation investigated by Raphael. ^ 

Example 3.2   Consider the multiple nonlinear filtering network. Figure 

3.5* with all switches closed and 70 * 7i » •••  = 7^! = 0.    For n odd, 

S0rp becooes 

n-1 n-2 
SoT(x)  = h(v*) {I    xb + x11     Y     xb} (5.19) 

b=0 b=l 
b even b odd 

♦For y > n/2, then y is replaced by~n-y in all relationships in case (b). 
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Thus the interleaving constants, Oy, are 

Qb -Ofe - ...  »Q^.i =0 

Ot « Oj - ...  = o^.2 = 1    . 

The peak locations, ^ v, for w = 1 are then 

6i,o ■ 6i,2 » ... - 6i,n-i = L"1 

6i,i a 6i,3 = ... = 6i,n-2 " 1 

There is a "[(n+l)^]" order peak at a delay of n(L-l)+l and a "[(n-l)^]" 

order peak at (n+1).    Then applying (5.9)^ the peak locations ftvr^v for 

aurhitrary w < n/2 are: 

w odd: 6V^0 = 6V^ = 6V,2 = ... = ^tVml = L-l 

6w,w a 6w,v+2 = ••• " 6w,n-2 = 1 

^w,w+i a °w,w+3 ■•»»'= ^w,n-i = ^"1 

There is then a "[(n-hr)^]" order peak at n(L-l)-Hf and a "[(n-w)/2]" 

order peak at (n+w) 

veven:   6W,0 = 6V,2 = ... = 6w^_2 = L-2 

6W,1 = 6W,3 = ... = ^w-S = 0 

^w-i = 6w,w = ^w^w+i = •.. = 6v,n-i = 0 

There is then a "{v/2)" order peak at n(L-2)+v> and a "[n-v/2]" order 

peak at v.    This is a "different" peak autocorrelation, although the 

peaks are "hunched" together.    The plot, for n = 7, L = 7 is shown in 

Figure 5.7. 
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3.8   Synchronization with Sequences 

In order to detect, by correlation techniques, the lnfom.tion 

carried by most signals, the correlator receiver and transmitter must be 

synchronized.    Synchronization Information can be transmitted on the 

22 channel carrying the signal or on a separate channel.        For separate 

channel synchronization a two-level sequence (or "almost" two-level 

sequence), whose period Is equal to the duration of the Information 

signal, can be transmitted on the separate channel.    The two-level prop- 

erty of the sequence provides unique synchronization with a low probabil- 

ity of error. 

A two-level sequence can also be used for synchronization when 

the synchronization information is carried on the channel with the signal. 

In this case the two-level sequence, used as a subcarrier,  is phase 

nodulated by the signal. 

Several techniques for utilizing the two-level sequence (lo 

either the separate channel or same channel method.) are possible, asswi 

Ing that symbol synchronization is known for the sequence. 

a.    The tranCTitted sequence, with unknavn delay,  is cross- 

correlated with all cyclic shifts of Itself, and all of the correlator 

outputs are stored.    The shift which provides the largest output deter- 

mines the synchronization decision.    The probability of correct synchro- 

nization is determined by noting that the set of L sequences resulting 

from L cyclic shifts of two-level sequence, form a set of simplex codes. 

20 The error probability for these codes has been derived. 
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b.    The transmitted sequence is cross-correlated with successive 

cyclic shifts of itself.    The shift vhich provides a correlator output ex- 

ceeding a predetermined threshold specifies the synchronization decision. 

Fewer correlation operations, on the average, are lequired for 

case (b).    The number of operations can be reduced further by using inter- 

leaved sequences as synchronization carriers, and "locking-onto" a minor 

peak or the peak at zero delay.    The average probability of correct syn- 

chronization is now derived, when a two-level sequence is used with the 

tftchnique specified in (b). and when two classes of interleaved sequences 

are used. 

Consider the application of the two-level sequence, of length L, 

with the autocorrelation function shown in Figure 3.8, for synchronization. 

Assume the transmitted sequence is initially delayed by b digits, b = 0,1, 

..., L-l, with respect to a reference sequence.    The first shift which 

yields a correlator output above the threshold Mi determines the synchro- 

nization.    If the average sequence power is S, the tine duration of the 

sequence T, and additive white Gaussian noise with zero mean and two-sided 

power spectral density No/2 is assume^ then the average probability of 

correct decision, PCl, is: 

(5.20) 
where 

y 
2      ^      -s 

I-- erf(y) =-y~- J   e "    dt    . (3.21) 
o 
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p(\) 

L-l, -t 

F  I   6 .  3. 8, 

TWO - LEVEL    AUTOCORRELATION    FUNCTION 

F   I   G . 3. 9, 

AUTOCORRELATION     FUNCTION    OF 
h ( x2 )  + KL,   h ( A2 ) 
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It is necessary to find the threshold value, Mi, which maximizes PCl. 

For high values of ST/N0, the quantity [l + erf (Mi MJ*0) ], can be 

approximated by 

Then retaining only the first two terms in the expansion of 

2 " TST" exP G^ "IT") 
u, /J^L    ^   Noy 
MlV N0 

the expression for PCl becomes 

p  a- rci   2L 
1 v^T (3.23) 

For given values of L and ST/N0, (3*23) can be maximized by a trial and 

error procedure. 

Now consider the application of two-fold interleaved sequences 

for synchronization. The sequence with polynomial representation, 

R(x) a h(x2) + xL,h^qi^(x2) exhibits the autocorrelation function shown 

in Figure 3.9.  If the delay of the transmitted sequence, b, is , b > L', 

then synchronization can be achieved by "locking-onto" the negative peak 

at a delay of L1. If b < L', then synchronization is achieved by "locking- 

onto" the positive peak at zero delay. For thresholds ±*fe, the average 

probability of correct synchronization, PC2 is derived 

L'-l          b 

b=0 
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Then PC2 can be approximated as, for large signal-to-nolse ratios, 

P    «    _ 

'r*°~ (5.25) 

If L1 *■* L/2, then the expression for PCl and P^ are Identical, although 

the use of the Interleaved sequence requires only half the number of de- 

lays (on the average) for synchronization. 

As a final example consider the Interleaved sequence R(x) ■ h(x ) 

+ x2a'+1h'q^(x2). If a Is properly chosen, the autocorrelation function 

shown In Figure 3.10 can he realized. For this sequence synchronization 

can be achieved by "locklng-onto" either of the negative minor peaks. 

However, when a particular minor peak Is "locked-onto". It is necessary 

to perform one additional operation to achieve synchronization. 

The synchronization procedure, referring to Figure 5.10, is as 

follows. If the initial delay corresponds to region III, the reference 

sequence is shifted until a minor negative peak is detected. Then the 

reference sequence is shifted L"+l digits, and the correlator output 

should indicate no peak. If the initial delay corresponds to region II, 

the reference sequence is shifted until a minor peak is detected. Then 

the reference sequence is shifted I/'+l digits, and the correlator output 

should Indicate a large positive peak. For region I the reference se- 

quence is shifted until a large positive peak is detected. With thresh- 

olds Ife and -M4 the average probability of correct synchronization PC3 

for large slgnal-to-nolse ratios is approximated by: 
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»    «   1  i in       L"(L"-1)    r «'^ *!*   ^   e-4 ST/Hp 1 cs   ~i    "  -.J^P   I 5 + iü J 

• [l - «f («,-!) y^-] + -^r [l - erf (fU-i) /f-]} (J.86) 

The number of operations required to synchronize with this se- 

quence Is approximately one-third the number required with a two-level 

sequence, or two-thirds the number required with the single negative 

peak sequence.    However, a significant decrease In average probability 

of correct synchronization Is observed with the reduction in synchroniza- 

tion time.    For ST/N0 = 100, L = 63, L» = 51, L" = 20, the values of PCl 

and ?czf maximized over Mi and Ma are each 1-6* lO"11.   The value of 

?C3> maximized over M3 and M4 Is only 0.999* 

The general "different" peak sequence, analyzed in Section 3.5 

can be used to further reduce synchronization time by "locking-onto" a 

minor peak, although there will be a corresponding decrease in the proba- 

bility of correct synchronization. 
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If.    N-ORifflOQONAL AND CYCUCAUX N-ORTÖOGONAL SlftUEMCES 

ktl   Introduction 

In this chapter sequences with eynbols napped onto the N     com- 

plex loots of unity, which are N-orthogonal and cyclically N-orthogonal 

will be derived. 

Definition;   A class of N-axy sequences is N-orthogonal if given any two 

sequences in the set, the cross-correlation function at zero delay, 

between the mappings of 

a. the sequences 

b. one of the sequences and any conplement of another sequence 

c. any complement of one sequence and any complement of another 
sequence 

is zero. 
For the roots of unity mapping sequences Sa and S^, 

are N-orthogonal if 

ab       L   lib 
(WD 

th th where r, t = 0, 1,,,., N-l to yield the r     and t     conplements of S 

and S.  respectively. 

Definition;   A class of N-azy sequences is cyclically N-orthogonal if the 

class is N-orthogonal for all cyclic shifts of all sequences. 
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Then Sa and & are cyclically N-orthogonal, for the roots of 

unity mapping. If 

for all \, r and t. 

In this chapter techniques will he presented for the derivation 

of sets of cyclically N-orthogonal sequences. A subset of the set of 

cyclically N-orthogonal sequences form a basis for a set of N-orthogonal 

sequences. The relationship between N-orthogonal sequences and the 

generalization of Hadamard Matrices Is Indicated. 

All of the techniques for the synthesis of blnaxy cyclically 

orthogonal sequences produced a claus of sequences all of different least 

period. It Is conjectured that cyclically orthogonal binary sequences of 

the sane least period do not exist. This conjecture, along with the 

Fourier analysis of binary sequences, is discussed. 

K2   Derivation of CycllcaUy N-orthogonal Sequences 

In this section some theorems will be derived on the construction 

of cyclically N-orthogonal sequences, with symbols napped onto the roots 

of unity. Most of the proofs will be established by noting the symbol 

structures of a sequence which is the nod N difference between the two 

sequences which are to be shown cyclically orthogonal. Modulo N arith- 

metic is used for all arithmetic operations with the symbols of sequences. 

A lemma is now presented on the symbol structure of N-ary sequen- 

ces. 



57 

Leana 4.1   Given any N-ary sequence, Sa of length L, then the sequence, 
S.' of length NL which consists of a conpleoent of Sa followed 
by all 
itself 

other distinct complenents of Sa, and the sequence 8 
(in any order) has each symbol appearing exactly L times. 

Proof; The sequence S^ can be denoted as 

8.. . [8e< V. S.K > 8>»..>], 

where S^^y is the ij conplenent of Sa and Ij/ij' for j/j1.    If the ith 

symbol of S   is a , then the i, l&±f 2L+i, .,,,  (N-l)l^l,  symbols of S 

are aj-lo, a^-i^  ,,,, aj-ij^, which are all distinct modulo N.   Hence 

each symbol appears exactly L times in S ' and the lemma Is true. 

A method of constructing two cyclically N-orthogonal sequences 

is given by the following theorem. 

THEOREM k,l   Given any two N-ary sequences Sa and S^, of length L, then 
the sequences Sa* and S^1, of length NL, 

abt ■ L8^ V "•' SJ ' 

are cyclically N-orthogonal, 

Proof;    Pom the sequence Sc' - (Sa
,)^qr' - x***1^*r**', where 

x^^Sb^^t) represents the tth canplcment of ^ shifted by nl/fi digits. 

Noting that xnI/fX(Sb
,)^<lt^ 1« Just the sequence x^S^^t) repeated N times. 

S * reduces to c 
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8c' " [(S.-xXab)
('V*-t), (8|l.x

i8b)
('lll*»t))  ..., 

(VxVV»«"*)] 
% • •  • 

Thus from Lemma 4.1 each symbol in 8^ appears exactly L times indicating 

that Sa
f and Sj,' are cyclically N-orthogonal. 

It is noted that the sequences S ' and S^1 defined in Theorem k.l 

are of different least perl' 1.    Theorem k,2 gives a procedure for construc- 

ting non-binary sequences of the same least period which are cyclically 

N-orthogonal. 

THEOREM k,2   Given the sequence 8 H, 

S."   -[Sa'Sa{qi)'Sa('s)'-'S.(,H-,)]' 

noting that the complements of Sa are taken In a specific order - 
not the arbitrary order of 8^. Then the sequences ßSa" and ß

,8a", 
ß, ß • «0,1,.,., N-l, 0/ ß *, are cyclically N-orthogonal. 

Proof; Form the sequence Sc", 

Then the 1, L+i, ..., (N-l)Lfl, (l < i) symbols of S " ere 
C 

ßCa^r) - ß'[a1-r(N-n.l)-t], ßCa^r-l) - ß»[ a^L-vN-n.l).t-l], 

...,  ßCa^rfi) - ßfra1-r(N-n-l)-t+l] , 

respectively,    These terms, using ring of integer mod N operations, reduce 
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to X+0(ß'-ß), X+l(ß'-ß),  ...,  X+(».l)(ß'-ß), where ^ß(*1.r) - ß1^^- 

(N-n-l)-tJ.   In order to complete the proof it is neceisaxy to show that 

31 However, Van der Waerdan     shows that the sum of all powers of any root 

of unity (except l), is zero, thus establishing the theorem for i < X. 

The proof for i > i is similar and hence is omitted. 

It is of interest to note which of the sequences ßS ", all ß, are 

of the same least period.    üVo sequences ßS " and ß'S " are of the same 

least period if the roots of unity eu N   and ew N     are of the same order. 

If N«p is prime all of the non-real roots are of the same order and thus 

all of the sequences ßS ", ß»l,  ..., p-1 are of the same least period, KL. 

If N/ prime then only the values of ß corresponding to primitive roots, 

yield sequences of least period NL, 

From Theorems k.l and lf.2 a general class of .(N-l)k+l cyclically 
k 

N-orthogonal sequences* of length N L can be derived from an arbitrary 

sequence Sa of length L. The set of sequences are: the all zero sequence 

plus ß^ , ß «1, ..., N-l, i«0, .,., k-1 where Sa is 

repeated a     " times. 

SSEe least perioa of all of the sequences is not IFL, 
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An laportant special set of (N-l)k+l cyclically N-orthogonal 

sequences of length n   is derived by letting S-(0),    Then the sequence 

Sa   reduces to 

■     SH " [^ • • • i ®t N-l, 

4 

• 9 • 0   AvX^    * * * /   ^"p • • •!    ^ 

H* H1 si 

repeated IT"       times. 

It is easily shown that the set of reciprocal sequences, are 

also cyclically N-orthogonal.    Examples of cyclically N-o- .hogonal sequen- 

ces are presented "below. 

Example;    N«3, lt=2, S »(0) a 

S. - (021021021) 
28^ - (012012012) 
S- - (000222111) 

2Sj/ • (000111222) 

Example; N-U, k«l, S »(0) 

S. » (0321) 
28^ « (0202) 
38^ - (0123) 

It can be proven that the set of sequences, Sa ,  1=0, 1,  ..., 

k-1 are a basis for a sot of N-orthogonal sequences.    For the special case 

of 8afc(0), the set of IT N-orthogonal sequences of length Nr result. 

For N»2 this set reduces to the set of 2^ bi-orthogonal sequences known 

as the Walsh functions.1   The set of binary sequences Sa   will hereafter 

•or—. 
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be denoted as the Basic Walsh functions. 

The set of sequences Sa . [with Sa«(0)], ai-e not the oniy set of 

cyclically N-orthogonal sequences in the set of IT N-orthogonol sequences. 

The set of sequences ßi,Sa *, 1-1, ,,., k-1. 

S„.' - Z^'V    >    ßj/i" « 0, 1, ..., N-l, 'ai   L "0 "aj 
J-O 

ß  " *  1, 2, ..., N-l    (U.3) 

are also cyclically N-orthogonal.* It can be shown that the set of sequen- 

ces SD ' form a basis for the set of n N-orthogonal sequences. 
ai 

It is shown in the following theorem that there are no additional 

k 
sequences in the set of N N-orthogonal sequences which are cyclically 

orthogonal with each of the sequences ßi'Sa '. 

THEOREM U.3 There is no set of cyclically N-orthogonal sequences in the 
set of Ir N-orthogonal sequences which contains more than 
(N-l)k+l sequences. 

Proof; The proof will demonstrate that there are no sequences, (except 

the all zero sequence), in the set of IT N-orthogonal sequences, which are 

cyclically N-orthogonal to ßiSa , [with Sa«(0)]. The more general proof 

which demonstrates that there are no sequences which are cyclically orth- 

ogonal to each of the sequences ß.S ' is similar to the proof which 

follows, except for a more complicated notation. Hence, this more general 

♦For IV'-O, J«0, i, ..,, 1-1 and PJVl, the set £a ' reduces to Sa . 

Mt'..wssBifrjaru 
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proof is not given. 

Consider the sequence 8^ generated by linear combinations of the 

basis elements S . Then Sd Is 

d " I hfr    '    h < hn    '    ^ - k-1 

übe sequence S , which has the same least period as 9. Sa , Is of the form 

repeated « " *"' times, where S Is a sequence which has the property 

that the sum of the sequence symbols (mapped onto the N  complex roots 

of unity) Is zero, and the. first SJITDOI of Sa Is zero also. 

Consider the cross correlation function between S, and ß^ Sa 
*     At 

shifted by one place.    This Is done by considering the structure of the 

sequence S    ■ Sd - x1! ßj,Sa    J, which Is found to be: 
At 

Se - rs0 ,  S0,...,  Sal + r^ (N-l),  0,...,  0,  ßi  (K-l),  0,..., 

o.   ßljt(!T-l),  0,   ..., O] 

with the ß^ (N-l) term occurring In the 1, N ^+1,..., IT-N ^+1 places. 
& 
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Thus the structure of S   Is Identical to the structure of Sa repeated 

a      I times except that the first tera of Sa Is changed from 0 to 

ß.,  (N-l)/0,    Thus the sum of the symbols of S_ mapped out the roots of 
*i e 

unity, is   not zero and S. is not cyclically orthogonal to R. Sft   ,  indl- 

eating that there are no sequences cyclically orthogonal to every sequen- 

ces in the set ß4Sa . 1 Bi 

In Section U.3 the relationship between N-orthcgonal sequences 

and generalized Hadamard matrices is discussed. 

^.3   N-orthogonal Sequences and Generalized Hadsmard Matrices 

It has been shown   that the theory of bi-orthogonal sequences 

(N=2) is closely related to the theory of Hadamard matrices.   A Hadamard 

matrix is a square mxm matrix whose elements are ones and minus ones, and 

whose row vectors are mutually orthogonal and whose column vectors are 

also mutually orthogonal.    The dimension of a Hadamard matrix must be* 

niftl, 2, kr, r*l, 2,   ...    For every known Hadamard matrix of dimension m 

there is a set of m binary bi-orthogonal sequences of length m.    Many 

techniques for the construction of Hadamard matrices exist. 

The concept of Hadamard matrices can be logically generalized 

to square matrices whose elements are the N     roots of unity.    The theory 

of these generalized Hadamard matrices is at this point practically non- 

existent, although some theorems have been suggested by related work. *' 

Throughout the remainder of this section the elements of the generalized 

Hadamard mat rice will be indicated to be the ring of integers mod N, 

«Although the dimension of a Hadsmard matrix must be 1, 2,  Ur, Hadamard 
matrices are not known for every value of r. 

r* 
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although It la understood that the elements should be the napping of these 

Integers onto the complex roots of unity. 

Generalized Hadanard matrices of dimension M exist since It has 

been shown that a set of IT N-orthogonal sequences of length N^ exist. 

As an example consider two possible matrices [Hi ], [Ha ], for N-p»3, h-1. 

[Hx] 
roocTi 

[Ha] -021 
L012j 

If generalized Hadamard matrices [Hi] of dimension mx, and [Hg] 

of dimension OQ,  are known then a generalized Hadamard matrix [Ha] of 

dimension n^aiVB^is derived by forming the Kronecker product written 

[Hal-CHx^Hg], of [Hj,] and [H2]. The Kronecker product matrix is formed by 

substituting« [Hg] for each zero in [Hx], the first complement of [I^] 

for each one in [Hx], ..., the (N-l) complement of [Ha] for each N-l in 

[Hx]. As an example consider the Kronecker product of the two three by 

three matrices indicated above. Then 

[Ha] 

000;000"000 
021;021 
012.012 

000;222 
021 210 
012;201 

000I111 
02i;102 
012:120 

021 
012 

111 
102 
120 

222 
210 
201 

*The proof of this result follows immediately from the proof for the 
ordinary Hadamard matrices^ and hence is omitted. 
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where the Kronecker product formation Is indicated by the dotted partition 

lines.    It is noted that the Kronecker product of matrices of dimension 

IT1 an«». Jsh to yield a imitrix of dimenstlon Nkl+ka does not yield a new 

class of N-orthogonal sequences since a class of N-orthogonal sequences 

is known for N1^, all k. 

However, new classes of N-orthogonal sequences can be generated 

from generalized Hadamard matrices derived from certain two-level N-azy 

sequences.    From a two-level N   zy sequence of length L,  (for the roots 

of unity mapping) with out of phase autocorrelation -l/L, a generalized 

Hadamard matrix of dimension L+i is derived whose rows are the all zero 

row, plus all cyclic shift of the sequence with an extra zero at the 

beginning.    For example consider the matrix [H|], derived from the two 

level sequence (01221), 

000000 
001221 
010122 

[Hi] » 021012 
022101 
012210 

The set of sequences derived by forming the Kronecker product of the 

above matrix with the matrices of dimension IT will not be of length IT1. 

All of the Kronecker products considered previously were between 

two matrices each with elements in the same ring (same value of N), How- 

ever, some additional classes of N-orthogonal sequences can be derived by 

forming the Kronecker product of generalized Hadamard matrices with ele- 

ments contained in the ring of integers mod N1, N3 respectively. The re- 

sultant matrix will contain elements in the ring of integers mod 
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[L.C.M, (Nx^Na)].    For exanple the generalized Hadamard matrix [Ife ],  shown 

below, with elements in the ring of integers mod 6, is derived by forming 

the Kronecker product of [H*], (shown previously) and [H5] with elements 

in GP(2), 

Thus [%] is 

[*]-[£]• 

[%] 

"boooocxxxxxxF 
030303030303 
00O0kk2222kh 
0303U12525^1 
00i^00^2222 
034103U12525 
0022W*OOl+l422 
0325^105^125 
0022221^0044 
032525U10341 
00442222 W*00 
034125254103 

4,4   Cyclically Orthogonal Binary Sequences of the Same Least Period 

In Section 2 of this chapter BOB>.H techniques were presented for 

the synthesis of sets of cyclically orthogonal sequences.    The sets of 

binary cyclically orthogonal sequences, synthesized by these techniques, 

contained sequences all of different least period.    For example the 

periods of the three Basic Walsh functions of length 8, 

Jao 
Se 

01010101 
oonoon 
00001111 

are 2, 4, and 8 respectively.    The all zero sequence, which is cyclically 
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orthogonal to each of the Basic Walsh functions,  Is of period 1. 

It Is conjectured that cyclically orthogonal binary sequences 

of the same period do not exist.    This conjecture Is discussed by noting 

the Fourier series of mapped binary sequences.    The following theorem 

gives necessary and sufficient conditions that two periodic functions 

must satisfy If they are to be cyclically orthogonal. 

THEOREM h,h   Two periodic functions are cyclically orthogonal if and only 
if th respective Fourier series of the two functions have no 
terns in common. 

Proof;    Let f^'ft), of period (not necessarily lesist period) T, be repre- 

sented in the complex Fourier series 

Vis+» ,. v    v2TTt 

f(l)(t)=   I   4 V"^, {k.k) 
V=-ao 

with Fourier coefficients C ,    Similarly fv '(t) is represented in the 

series 

.v2nt 
'(3)(t) =   ^   C^e   T (4.5) 

VB m* 

The cross-correlation function^ P13(TH) between these two periodic 

functions, at a delay of T3 is then 
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Pw^-ff f(1)(t)rf(a)(t-Ta)]*dt 
J o 

«    -   (i)r(3)f j^i^ U      Icrtr^e^Jexp^Cv^t 
T 

V= •• as y = w oe 

W=oo - -j.    W2TTT 

l c<;l)Lc<=)]*eJ-T- (W) 
W=-o» 

However, Equation {k.6) is equal to zero for all T3 if and only if either 

C1)     r (2)-i* r ran* Cy     or ICW    J.  is zero for eveiy w.    Since    Cv  'I   = 0 if and only if 
(a) 

C       = 0, the theorem is established, w 

From Theorem k,k it is immediately established that if two 

binary sequences are cyclically orthogonal then at least one of the sequen- 

ces must have an equal number of I's and O's since otherwise both sequences 

would possess D.C, (w=0) components. 

It is clear that the theorem,  as presented, does not prove that 

cyclically orthogonal functions of the same least period do not exist. 

The least period T   of a function with a Fourier series gives by k,k, with 
L 

non-zero Fourier coefficients Cv , Cv ,   ..., Cv , is 

TL = T/CG.C.D (V^ V2,   ..., vk)] (4.7) 

Thus for example the functions f  (t) = sint, r '(t) = sin 2t + sin 3t 

of the same least period are cyclically orthogonal. 
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Consider the binary sequence S   of length ]>2a which is j ones 

followed by a zeros.    If we set T=2at1 (where tx  is the duration of one 

time slot), then it is easily verified that the non-zero Fourier coeffic- 

ients of the mapping of S   are C.,. C._,  ...    Then any sequence cyclically 

orthogonal to Sa can only have even Fourier coefficients indicating that 

its period is an even fraction (J, i, J,  .,,) of the period of S .    Thus 

there is no sequence cyclically orthogonal to S   with least period 2at1 a 
In order to consider more general sequences it is necessary to 

derive the Fourier coefficient of an arbitrary mapped binary sequence. 

Consider the mapped binary sequence 3, 

S = [flo, ax,  ..., a^x]   ,      a* * ±1    . 

Then the Fourier coefficient Cv is 

Lti   /, N Lv2TTt 
Cy.-i-P      fl  ;(t)e     LtTdt 

Lti   I ^ Lt^o 

L-l        (Ml)*, 
_L_r) aT exi,| ..g£\t 
"TLbib   Jw. ^   LtlJ 

b=0 bal 
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Equation (U.8) can be simplified to 

i- [x-e-^W^ (M) C, "      ! '       J ^ 1 v 

2TTJV      W Jy^j 

In attempting to prove the existence or non-existence of cyclically 

orthogonal sequences it is necessary to establish only " aether a particu- 

lar Fourier coefficient exists.    The following remarks on the existence of 

Fourier coefficients are noted. 

a.    A particular coefficient, C    is zero if and only If 

L-l bv2Tr 

b=0 

b. If Cv=0, then Cy+mir0* n^0*  1*  ••• 
Thus it is only necessary to consider the values of V,  mod L, 

c. Assume C =0.    Then from (^.9) it is noted that 

I     ^e' 
•Jb 

2TT *v 2TT 

0 

all b mod L all b mod L 
such that such that 
ab=+l v1 

(^.10) 

Substituting the indicated values of a. in (U.10)J 

(^.11) 

a particular the subset, R, 
subset Q of of Integers 
the integers mod L disjoint 
mod L with Q 
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However, from the property of the sum of all powers of any root of unity 

(see proof of Theorem k.2) It is noted that 

>-       e"^*      )      e-^-O (U.12) 
- L 

all bcQ all beR 

But (U.ll) and (4.12) contradict each other unless each of the summations 

of (U.IO) are zero. Thus C is zero if and only if 
v 

-Jbv2l 
1 abe 

all "b 
such that 
v+1 

indicating that only the components of a mapped sequence which are +1 

need be considered in dctemlninc  the existence of a particular Fourier 

coefficient. 

Clearly if two sequences, Si and Sa of Icncth L are to be cyc- 

lically orthogonal, then for at least one of the sequences the funda- 

mental, Cx (or Ci), must be zero.   However,  if C.x  is zero then 

^    eJbT: = 0 (4.13) 

all beQ 

If Equation (4.13) is to be satisfied a sum of a subset, Q, of the L 

complex roots of unity must be zero.    For the following situations 

Equation (4.13) is satisfied. 
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a.    Q contains all of the Integers mod L.    Then the components 
of mapped sequence associated with the subset Q are all +1. 

h.    Let I^pi'Pa where pj and pa are different prime numbers. 
Then (U.13) is satisfied If Q contains b, b+pi, b+2p1,,.., 
b+(pa-l)px. 

The least period of the sequence derived from (a) is 1.    The least period 

of the sequence derived from (b) is px.    In case (c), below, a technique 

for synthesizing sequences with least period L for which 0.1=01=0 is 

presented 
M 

c.    Let L^IJiPi , where the pj/s 1=1,   ..., M, are primes not 
all the same.    Then If p^ and pm are different prime factors 
of L,  let Q contain the Integers of the following 2 subsets 
(b, b+L/p, , b+2L/p£ ,   ..., b-l/pj); (V, b'+l/pm , V+2L/pm , 
..., b'-l/pm); with b/b', and b+Xp^V+mpm , mod L for all 
Integers I and m. 

As an example of the procedure outlined in (c), let L=2,2*3=12,   indicating 

Vi^f 1^=2.    Ihen let b^O and b*«!; the integers contained in Q are 0, h, 

8; 1, 7.    The corresponding sequence (unmapped) is 001101100111,    It is 

easily shown that the above sequence is of least period L, and C.i=Ci=0. 

It appears that the synthesis techniques outlined in (a),   (b) 

and (c) are the only techniques*which will yield (mapped) binary sequences 

which do not possess fundamentals.    The technique outlined in (c) cannot 

be used if L=2pi  since the two subsets are not disjoint.    The subset 

(b, b+l1)      and        (b1, V+L   ,  b'+Ji   ,   ..., b'-M respectively contain 
Fl cPi Pi 

one even integer and one odd integer, and all of the even integers or all 

of the odd Integers mod L. Hence, it appears that cyclically orthogonal bi- 

nary sequences of the same least period of length L=2p, do not exist. 
M 

If J>2 TT ip± , where M > 1 (eg.  b«12) then the synthesis tech- 

*Additional subsets of Integers, b(r), b(r)+L/pr .   ..., b(r)-L/pr ,  can 
be added to the two subsets already in Q (case c) provided all of the 
subsets remain disjoint. 
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nlque outlined in (c) will yield a sequence. Si,  of least period L,  for 

which Ci=0.    However,  for Si   it can be shown that the Fourier coefficients 

Cv        (v=nipm m=l, 2,   ..., and v=Jep, ,  Jtl,  2,   ...) will not be zero.    Hence 
fa) 

if a sequence Sa is to be cyclically orthogonal to Sj then CN   ' must be 

zero.    It was found that if the components of Sa were chosen such that 

(a) 
C      =0 and the sequence was of least period L, then the Fourier coeffl- 

1 (8) 
cients of Sa, C     ,  v=rpr (where p    is a prime which could be equal to 

V (*) I*) P«) were not zero.    Thus the Fourier coefficients C_ ' ,  CJ, '    are not 
*"' PiPr     PiPr 
zero indicating that Si and Sg  are not cyclically orthogonal. 

As a final remark it should be noted that classes of sequences, 

all of the same least period, with "good" cyclic cross-correlation prop- 

erties can be derived by choosing the sequence components such that the 

mapped sequences have few Fourier coefficients in common.    Utilizing this 

technique a set of 3 sequences of length 2k were derived which exhibited 

a cyclic cross-correlation,   (between any pair of sequences) bounded by 

±l/U. 

These sequences are 

(nuniniiioooooooooooo) 
(inioiooioioonnioooooo) 
(lonooioiioiooioioionoo) 
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5     BINARY ASYNCHRONOUS SIGN.iLLING 

5.1    Introduction 

Sißnificant attention is presently being directed towards the 

derivation of techniques for the simultaneous transmission of many bi- 

nary messages on the same channel      Most of these multiple-access systems 

under consideration operate as follows      There are k users on the channel 

with each transmitter-receiver pair assigned a different carrier       In- 

formation is transmitted by sending the carrier or its negative.    Correla- 

tion detection is usually specified,  with the polarity of the correlator 

output determining the decision on whether the carrier or its negative 

was transmitted      The only external noise is assumed to be additive white 

Gaussian noise with mean zero and tv;o-sided power spectral density N /2. 

Several types of systems with different constraints can be specified- 

a.     Linear Summation of Carriers,  All Carriers Synchronous 

The carriers from the different transmitters are summed on 

the channel,  and the transmitters are all synchronized with each other, 

and with the corresponding receivers.     The optimum set of binary carriers 

for this system are the bi-orthogonal carriers specified by rows of 

Hadamard matrices      The performance is specified by the usual binary 

PSK probability of error relationship since there is no interference 

between carriers. 

*In this chapter a carrier will be the unmodulated signal emanating 
from the transmitter.    The carrier can be the mapping of a binary 
sequence. 
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b. Hard Limiting of Carriers,   All Carriers Synchronous 

For satellite repeater applications the linear summation 

of carriers is inefficient because of the nonlinear characteristic of 

travelling wave tubes - the usual satellite transmitter.     The linear 

sum of the carriers,   for this application,   is usually hard limited 

prior to transmission over the channel.     This problem with the carriers 

33 * synchronized has been studied      in great detail. 

c. Linear Summation of Carriers, All Carriers Asynchronous 

Each transmitter is synchronized vith the corresponding 

receiver but the set of k transmitter-receiver pairs are asynchronous 

with each other.     The carriers are summed linearly on the channels. 

Interference amonc carriers then arise from two sources: 

1. if the carriers are not mutually bi-orthogonal 
for all cyclic shifts, 

2. the complementing or "flipping" of an asynchronous 
carrier. 

d. Hard Limiting of Carriers,  All Carriers Asynchronous 

This  is a combination of cases (b) and (c). 

In this chapter the communications system described under 

case (c) will be analyzed.     First,  some preliminary derivations are 

presented and then the system performance is analyzed for four dif- 

ferent choices of carriers -  mapped cyclically bi-orthogonal Basic 

Walsh functions,   sinusoids of different periods,  mapped randomly 

*    In Chapter 6 some aspects of the problem of the hard limiting 
of mapped N-ary sequences are considered. 



76 

chosen binary eequence and mapped cyclic error-correcting codec. 

Consider the asynchronous  linear multiplexing of k carriers, 

S (t), S^t),   ..., Sj^.^t),  of period T.    The receiver synchronously 

correlates with S (t) and the phase of the other carriers with re.ipect 

to S.(t) is random.    (As previously stated a carrier or its negative 

is sent by each transmitter. )    A block diagram of the system is shown 

in Figure 5.1.    Then the received signal,   r.(t) at the  input to the 

i      receiver is 

k-1 

ri(t) = di si(t) + '    [d;1)s/(t"'rx) + 42)s/(t"T/) + n(t) (5'1) 

where:  n(t)  is white Gaussian noise with zero mean and two-sided 

power spectral density N /2,  T^,  is a uniformly distributed random 

variable over the interval 0 < T^  < T, and zero elsewhere;  if and 

T,,  are statistically independent  for JM ."  (T.   is by definition 

zero), 

and / ± 1 with equal probability over the 
, .  \  interval    0 < t < T. 

dC1) = -   -  1 
f ) /   0 elsewhere , 

i 1 with equal probability over the 
interval        T. < t < T 

/ 0 elsewhere. 
,(3)   ,    ' ^ "^ *'   ~~~ 

Or) io') 

H. / X' or c / a', 
d^,      and dv ,      are statistically independent  for 

d    = i 1 with equal probability. 
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If d^1)/ d(a),  then it will be said that carrier SAt) has been con- 

plemented or "flipped".     The detection procedure is to cross-correlate 

r.(t) with S (t) with the polarity of the correlator output determining 

the decision on d .    The output of the 1     correlator is then 

Zi = f      f Si(t)  rl(t) dt 

O 

= -i     \   S^t) n(t) dt -^     [ d1 Sa(t) dt 

o o 

k-1 ^ 
+ ? I { J 41)si(^M^)dt 

/=o        o 

T 

+     r d^2) S.U) S/t-Tj) dt  }      . (5.2) 

T£ 

E-iuation (5.2) can be written in a more simplified notation as follows: 

k-1 
Zi = Pin + S   I   d^i£ (5-3) 

vrtiere 
T T 

\      ?       .   .     .  . i      P ... 
dt 

X 1 

pln =f     \ Si(t) n(t) dt +^     T di Si(t) 

is Gaussian distributed with means ± S and variance N S/2T, where S, 
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the average signal power (assumed equal) for all carriers, is 

S = ■£ 

T 
1      P Sj(t) dt (5.10 

and 

"it. 

»it W - ¥    j Si«*' Sii't-Ti> dt' 

»il'^i) 
i   r 
T  .1 

o 

with probability l/2, 

Si(t) S^t-x^)  dt 

T 

i      j   Si(t) S,(t-Tj dt      , 'i^-'i* 

with probability l/2 . (5.5) 

The cross-correlatioi; functions  p)^ (O and ^ii (T,) are the"un- 

flipped" and "flipped" cross-correlation functions between S.(t) 

and S,(t)  delayed by x. seconds,  respectively, and d^ = ± 1 with 

equal probability. 

The probability density function of P.i «(T*)   is dependent upon 

the characteristics of the carriers. 

*    If carriers S (t) and S^(t) are cyclically orthogonal,  then 

and 

'uW 2 
T 

n^   -  0 "li     "  0 

Si(t)   ^£(t-T£)   dt (5.5a) 
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Assuming a zero threshold,  the average probability of binary 

error in the i      channel, P(e ),   is 

oo 

P^) =-|     [ p(2i|di=+l) dz +|     I   p(z1|di«-l) dzi (5.6) 
-00 

where p(z   |d =+1) and p(z  |d =-l) are the conditional pdf s of 

the output of i      correlator given that d.  = +1 and -1 respectively. 

These conditional density functions are given by the convolution of 

the pdf s of the k terms of (5.3). 

Most of the carriers to be considered in the following sec- 

tions are mapped binary sequences.    It was stated in Chapter 2 that 

the cross-correlation function of mapped binary sequences between in- 

tegral delays is linear.     It is now shown that the "flipped" cross- 

correlation function between integral delays is also linear. 

THEOREM 5.1     Consider the mapping of two binary sequences,  A and 
B,  of length L,  where,  A = (a0,  a^,   ..., ar-^) and 
B = (b0,  bx,...,  bL-!) and ai,  bi = 0,1.    (The mapped 
elements are a.\m' and bim).)    The "flipped" cross-correlation 
function,   ?&£'t*+c)>  (X=0,1,  ...,  L-l, 0 < G < 1)  is linear 
between Integer values of X + c. 

Proof:      The "flipped cross-correlation function at a delay of (X+r) 

is 
X X-l 

ab ' L     Li        L-\+J L L     J       L-X+J+i 
J=o J=o 

L-l L-l 
r    (m)    (m) (1-r)      \      (m) ,(m) 

' L       Z. aj      Vx+j " T"       /    aJ      Vx+J^-i    * 
j=,+l J=X 
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'l pab  (>)  +^r' pab (Vrl) 

Thus the "flipped'   crocs-correlation function is linear between in- 

tegral values of X +  r. . 

The noise or interference  (in the determination of d ) 

due to the presence of the other carriers on the channel is related 

(u) ff) 
to the values of P, « (X«) and n. ,  (\.).     In the selec-cion of binary- 

sequences  for the   binary   asynchronous signalling application the 

goal is to find sequences for vhich the ''unflipped'" and "flipped" 

cross-correlation functions ar'3 low for all cyclic shifts.    Since it 

is difficult to deterministic ally derive sequences for which both 

types of cress-correlation functions are low,  the basis  for choosing 

the sequences analyzed in the following sectionc was that the value 

of p. , (XJ   be low for all i,   X,  and } ,. 

5. 2    Signalling With Basic V/alsh Functions 

In this section the performance of the mapped cyclically 

bi-orthogcnal Basic Walsh functions,  as carriers for the asynchro- 

nous signalling system,   is determined.    The "flipped" cross-correla- 

tion function is determined ^rom i/hich an integral expression for the 

probability of binary error, P(e.),   is derived.     3y application of the 

Central Limit Theorem P(e )   is determined for k - oo,   and all i.     The 

probability of error for finite k is found by asymptotic series ap- 

proximation and computer evaluation of the probability of error in- 

tegral. 
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It wajs shown In Chapter k that the set of k sequences, 

,   i = 
i 

Sa ,  i = 0,1,  ...,  k - 1 of length 2 , where SQ    is 
a ai 

Sa    = 0 0 .   .   .  0    1 1 ... 1     repeated 2 tiroes. 

21 E1 

are cyclically bi-orthogonal.    Hence for the mapping of these se- 

quences p)« Uj^)  =0,  i / A,   for all X,. 

It is now necessary to derive an expression for the  "flipped" 
(f) 

cross-correlation,  pi« U*)«    ^»e procedure is 

a. form the sequence Sg = Sai©x £ S^y,  mod (x^-l), 

where x * Sa      is a sequence which is the last X. 

digits of Sajt    followed by the first L - ^ digits of 

Sa« complemented. 

b. count the number of zeros and ones in the first in the 

first \e digits of S . 
 *  g 

Then from Equation (5.5a), the "flipped" cross-correlation is 

{f)fX\ZiWo.of zeros in first ^ digits of S    - 
il     *       L   No.  of ones in first \. digits of S ] (5.7) 

* 6 
(f) 

The derivation of o)« i^e)  ^r the Basic Walsh Functions 

is outlined in Appendix C.    A general plot of pjjj Uj^  for    ^ > i 

is shown in Figure 5.2.    It is thus seen that the maximum value of 

1+i-k the "flipped" cross-correlation for X > i is    2 .    Thus,  the 

interference a particular uscrcan expect,  due to the presence of the 

*    For i > jf the plot is~similar ^except the roles of i and i are 
interchanged. 
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"flipping" of other carriers is dependent upon the sequence he 

is using.    The longer the period of the sequence    (i.e.   the 

higher the value of i), the larger is the interference. 

Before determining the average probability of error in the 

presence of white Gaussian noise,  it will be useful to determine the 

noiseless channel performance of these carriers. 

Without the external additive Gaussian noise,  the output of 

the i     correlator z. is 

k-1 
zi = dis + s   I d*^)(xx) • (5-8) 

It is assumed that d. = +1 and the minimum value of z., (z,) . , i i       i mi n 

under the "worst* flipping conditions is found.    An error will occur 

(f) if (z.)  J    < 0.     From the maximum value of o;/(Xj  indicated in x  i min il      " 

Figure 5.2,  (zi)mln is 

i-1 

^iUn = S ■ ^'^     1    2'   " ^-l-i^1"^1 S    . (5.9) 
r=o 

i  Ir /        / i -k+l 
The interference term,   2   KS    £    2    + (k-l-i)21      i S,   is maximized 

for i = k -  1 or k - 2.    Substituting i = k - 1 in (5.9),  (z^i) 

is 

k-2 
(zk-l )min = S - 21-k S     ^   2/,■ = S - S(l-2l-k)  > 0 (5.10) 

<Uo 
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Hence,  an error cannot occur,  even under the "worst flipping" condi- 

tions for a noiseless channel. 

Now the average probability of error In the presence of white 

Gaussian noise will be determined.    In Section 1 of this chapter,   it 

was shown that the average probability of error,  P(e.) when correlating 

synchronously with the carrier associated with Sa    is given by Equation 

(5.6).    However,  since all of the noise phenomena are clearly symmetric, 

and the apriori probabilities that d    = +1 and d^ = -1 (all /.) are the 

same,  the expression for P(e.)  is simplified to 

o 

PUj)  =      [ p(zi|di=+l) dzi (5.11) 

-00 

where p(z   |d.=+l)  is given by the k fold convolution of the proba- 

bility density functions,  p(p    ) and p[S. p.,],   r  =0,  1,  ...,  k-1,   i^i. 

But, 

T                        (P.  -3)% 
p(; .)  =      ==-= exp -  i-lS J , ( 5.12) 

p[Sp.   ]  is the probability density function of S* p        assuming T 

is uniformly distributed between 0 and T,  sind Prob  ["flip" in Saj(,] = 

Prob  [no "flip" in Sa  ] = -^ .     We can then represent pfS'p..] as the 

sum of the two density functions 

P^'P.J =   ipfS-p^tT,)]  +   ~T>iS.p[f{t?)] (5.13) 

Since pL (T ) = 0,  all x,,  then 
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pfSp^^)] = 6[pu]        . {5.1k) 

The density function of the "flipped" cross-correlation function for 

T, uniformly distributed,  is uniformly distributed between +2 

i+i-k and -2 .    Ohas 

1 0-i-a+k 0i+i-k 0 ^ ^ 0i+i-k 
S 
x g-i-axn _2x^   - S < p      < 2AT'  " S 

—    1" — i < <e 

PCS-P^T))- 
0 elsewhere 

|2-,.-3+k       .2''+1-ks<pu<2
f+1-kS(    l>t 

elsewhere 

(5.15) 

Substituting (5.15) and (5.14)  into (5.13) the expression for 

pfS'p.fl] becomes 

26(piP+s2 -2        S^pi.e-2 
PO-P^) = (^    -     ö .  -  x.- i<x 

/O elsewhere 
(5.16) 

or 

P(S-P4J = ; 2    ^     s -  " i>/ 'i/' 
elsewhere 

(5.17) 

The result of convolving the k density functions,   p    , 

p   »i. = 0,   1,  ..., k-1,  t ^ i,    to  form p(z|d =+1) and then per- 

forming the integration of p(z|d.=+l) to derive P(e  )  is not easily 

derived in closed form for k > 2.    Ihe derivation of P(e  ) = P(e1) 
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for k » 2 by the convolution method Is presented in Appendix D.  It 

is shown that 

P(.o) . He,) ^ . * erf y| - | erf   (| Jf 
> 
y 

Herf Vä^iT^ "   r   'ST 
e +   r   /ST

6 
'o -   n 

(5.18) 

A convenient integral expression for P(e.) with k > 2 is ob- 

tained using the characteristic functions of the cross-correlation 

functions.    The characteristic function M (jv) of a variable x with 

pdf p(x) is defined as 

oo 

p 
Mjjv) = exp (Jvx) p(x)  dx (5.19) 

-00 

The characteristic function M0    (jv) of the Gaussian distributed 
^in 

variable,  P.    is '    in 

Mp^Jv)  = exp [JvS - ^-^B—]    • (5.20) 

Similarly the characteristic function Mp. .(jv) of the random variable 

S* p. t is for 1 < /:, 

1 3+k 
MpljC(jv) = -I + ^  [exp (jvS21+1-k)  - exp (.JvS2i+1-k) ]    .       (5.21) 
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For 1 > c, Mn   (Jv) is obtained from (5.21) by replacing i with ".. 

Ttie characteristic function M_ (jv) of the correlator out- zi 
put, i*  given that d.  = +1,   is given by the product 

M-ÜV)-M0  (jv)[  ir1 MD  (jv)"]^    (jv)!^1-1 {5.22) 
zl pin       L /»Q    pi*        J L Pit J 

£<1 i>i 

Then the conditional pdf p(z. |d.=+l) is derived from V^ (jv) by the 

integral 

00 

p(z1|di«+l)  = ~     f Mz (Jv) exp (-JvZi)  dv . (5.23) 

•CO 

Thus,  the expression for the probability of error,  when correlating 

th with the i     carrier becomes 

n ? r        v2 1^ s3 

P(ei)   =       1   dzi ^    J(dv) exP [^ - V   ^    ] *   exP (-Jvz^ 
-00 -00 

^  {| * ^^ [^ (Jv^"1-11)  - exp (-JvS^-*)]} 

This integral can be transformed by noting some simplifications and 

substitutions.     First it should be noted that 
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I   dzi exp (-JvZi)   = - -L. + TT6(v)      . (5.25) 

Then the exponentials with complex arguments can be replaced by sine 

and cosine functions,  the odd function terms of the integrand deleted. 

Then, P(e.)  reduces to 

1-1    r_-._   *+l-K *f     \      1 1 Pfsin Gv 1 r        /    v%1    n    riilL2___Gv+ .1 

r =■«», 9i+1-kr„        4c-i-i fsin 2 Cv + 1, dv    ^ (5<26) 

L      2itl-kGv 

where ß -     /Si 

It is clear from the above integral that P(e,)  is a function 

of (a) the carrier in question,   i,   (b) the number of carriers on the 

channel,  k,   and   (c) the signal-to-noise ratio G'  = ST/N .     It is also 

noted that PCej^j )  = PCe^.^). 

No technique was found for evaluating (5.26)  in closed form. 

Some computer derived curves which 6ive the probability of error as a 

function of the parameters G,  i,  and k, will be presented later.  How- 

ever,  first some indications of the performance can be noted by evalu- 

ating the asymptotic behavior of P(e.). 

a.     For large signal-to-noise ratio (G - oo) 

Gv 
First evaluate,  lim    sin — considered as a generalized func- 

G- oo 
tion.    Thus 
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lim Bin Gv 

n— nr> dv „ 
sin Gv 

Gv d(Gv) 

dv lim 
n-oc 

nv 
sin x dx = ||jSgnv 

f 6(v) 

Substituting this result into (5.26)  it is found that 

lim   ?{e±)  = | - 

oo 

G-'oo ,k-i 
6(v)  •2k"1  dv = 0 

b.  For small signal-to-noise ratio (G-»©) 

It is seen that 

U,   li*LGv = 0 

G-*o 

llius lim P(ei)  = | 
G-*o 

c.    For an unbounded number of carriers on the channel (k -• oo), 

when we are correlating with carrier associated with Sa.,  i finite 

it is seen that 
sin Z^^Gv 

lim      rr-r.     = 1. 
k-*oo ?U-kGv 

Thus 

11m   P(e ) 
k-^oo 

1 
2 

oo 
sin Gv 

exp (- y2/k) dv (5.27) 
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The integral in Equation (5.27)  is noted to be -x erf (G). 

Ihus 

lim   P(e1)  = I - | erf (G) (5.28) 
Ic-oo 

Summarizing the results derived in (a),  (b) and (c),  it is seen that 

the limiting values of P(ei)  for high and low values of signal-tc- 

noise ratio (any k,  i) are 0 and -x,  respectively.    As the number of 

carriers on the channel becomes unbounded, then P(e.),   (i finite), ap- 

proaches the probability of error value that would be realized if there 

were no interfering signals on the channel.» 

For large values of k and relatively small values of i, an 

asymptotic series approximation to the integral expression (5.26) can 

be derived.     In Appendix E an asymptotic series approximation to P(e ) 

which yields accurate results for k > 4 is derived. 

_t was shown that the probability of error when correlating 

with the i      carrier (i finite) approaches the PSK error probability 

as k -• oo.    Using the Central Limit Iheorem, the limiting probability 

of error curves for i = k-E, k — oo  and E « 1,  2,  ...,  can be derived. 

As k -♦ oo, the correlator output z* s \ v becomes Gaussian 

distributed with mean m     and variance oa   , zi zi 

k-1 

m  = m   + 
Zi   Pin   "  " rU 

Jl=o 
I "S-P.. (5-29) 
:=o 

* This is referred to as the coherent binary PSK error probability. 
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where m     ,  the mean of Pin;  is + S 

and     nu,       ,  the mean of S« p.. is 0 

Thus 

m     = S, 
Zi 

k-1 

where 

and 

zi        pin        A   S'PU 

a8   = N S/2T 
pin      0 

S8
02i-ak^ i < i 

=      I2' 
S* PijC    )  S2 ^aJl-ak+i ,   . . 

3   d ^ " 1 

Performing the summation indicated by (5.30),  a8   = a2        is found 
Zi       Zk-E 

to be for E = 1,  2 

00 0C v   c 
„a MoS + Sa     T    22(k-c)-sk-h _ 2Sf. , 1 .   ST 2-ad + -2- 

k-E c=2 d=o 

.a        _ S2   ,  N0S 

<-is + w   ' (5-31) 
k-E 

and for E = 3,   k,  ... 
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k-E 
= V+|1[(E.1)2*(*-E)-^   .    "    z ,2(k-c)-2k^ ] 

c=E+l 

0|     .V^j-^^^Ka-aE-.,"!    . 
k-E 

(5.32) 

The conditional jxif,  p(z   |d =+1),  for unbounded k becomes 

11m   p(z  |d =+1) = 
k-oo       1 2n ö' 

exp -fe^] (5.33) 

Hence the error probability, P(ei) = P(ek _), for k - oo Is 

li» P(ek.E) = 
k-*co 

-00 
k 

'k-E 

^ - ^ erf 2  2 ri 

'■"i-C-v.-*)- 
(5.34) 

/ ST 
Plots of 11m P(e, _), as a function of G = hsr ,  for E = 1 % k-E V N 

k-* oo o 
(or 2),  3, h,  5,  and oo, are shown In Figure 5.3 for ranges of 

probability of error down to 10'5. 

The  curves shown in Figure 5.3 indicate the maximum proba- 

bility of error, P(e.  ), maximized over k for given values of E and 

G. The minimum of P(e  ), (also for a given E and G) occurs for 
K-ri 

k = E. Plots of P(e ), as a function of G, for E = k = 2, 3, 4, 5, oo. 



9^ 

lO 

10 

^ 

CO 
4 
CD 
O 
(C a 
a. 
o 
x 
a 

.d41 

-9| 
10 

10 

~'~~" ^^"" ~^^ ■—■— ^^^ 

>N. 
N. 
^\ 

\v 

« 
\ v.   7 

vvV \ \ 
VI A v X aV s 
^.N s 
\\ \ \ ■ 

\ \ s \ ^ 'CORRELATING   WITH   j 

N 
^ V \ 

"^    S      OR   S 
k-l             k- 2 

^ 
N 1 

\ 
%' \   ■ V V L\ \ \ 
\\ \ \. 
u\ \ S 
\\\ \ V 
\\\ \ 

^S
k-3 

V 
\\ 

> ■^ 

V 

\ \ \ 
\ 1 5 

\ 

\ 
\\\ \ 
\\^ i   < V v 

^,^\\ \ \r 
e   ^^*)\ \ \ V 

I 

-RPMT     DC 
\\\ \ s. 

( rriMi KlVK > s 
\\\ v '\ w \ w \ 

\ 

\ m ^^ 

\\ \ '                    I                               .      J        i      L                               1 \\ \ -i- - 4- e r f    3           1 
\ \ t     i. 
\ \ 
\   \ 

\ 

PROBABILITY     OF 

8 

G  ■ 

F    I 

ERROR 

ST 

6 

10 12 14 16 

IN   Ob 

.   5 . 3. 
VS    SIGNAL   TO   NOISE    RATIO 

18 

(PER   BIT) /NOISE   POWER   DENSITY      WHEN 
CORRELATING   WITH    S 

k-l Vz- Vs* s
k.4. k - S 

WHEN   ALL   SEQUENCES   ARE   OF LENGTH    2"     AS 
(ALL    CURVES   THEORETICALLY    DERIVED) 

A o' 
K-^OO 



95 

are shown in Figure 5.k.    The values of P(c  }  for k = 2 are calcu- 

lated from Equation (5.18).     The values for k = ^,   5 are calculated 

from the asymptotic series approximation derived in y\ppendix E.    The 

values for k = 3 were obtained by numerical evaluation of the integral 

expression (5.26) on the PDP5 and IBM 709^ computers. 

The curves shown in Figures (5.3) and (5. U) are the limiting 

curves of P(e,   _).     In Figure (5.5), P(ek.1)   = P(er, g) is plotted for 

k = 2,   3,  kf 5, 6,  oo.     The curves for k = 2,  oo were taken from Figures 

(5. U)  and (5.3).    The probability of error values  for the remaining 

curves were obtained by numerical evaluation of (5.26).    In Figure 

(5.6), P(e      ) is plotted for k = 3,  k,  5, oo.    In Figure (5-7)* 
k-3 

P(e      ) is plotted for k = U,  oo. 
k-4 

The error probability curves not Included in these plots, 

P(e.   _), E = 5, 6,   ..., were omitted because the curves (for a given 
K-iJ« 

E)  for k = E and k = oo (and hence the curves for all k between E and 

oo) were indistinguishable.     From the given plots,   it is possible to 

determine the error probability curves for any carrier (S    ) with any ai 
number of interfering carriers on the channel. 

It was noted in the previous analysis that the highest error 

probability occurs when we are correlating synchronously with carriers 

associated with S or Sni as k - oo.     If the carrier associated 
ak-i a^-2 

with S is removed from the channel (providing k-1 carriers on the 
ak-l 

channel), then the maximum error probability occurlng for S or 
ak-3 

S will be significantly lower.    Similarly,  if S and S 
ak-3 ak-i ak-3 

are removed (providing k-2 carriers on the channel),  then the highest 
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error probability occurs for S«       or S„      .    The maximum error 

probability curves when there are k, k-1,  k-2 carriers of length 

2 ,vith k - co o i the chemnel axe shown in Figure 5.8. 

For futore conqparison of the performance of the k Basic 

Walsh function carriers with randomly derived mapped binary sequences 

for asynchronous signalling,  the probability of error,  Pw, averaged 

over all k carriers will be determined.    It is shown in Appendix F that 

P^ = -i - |erf (G)      , (5.34) 

for all values of G2 < 9. 

5. 3    Asynchronous Binary Signalling With Sinusoids 

In the previous section the performance of the k Basic Walsh 

functions of length 2 ,  as the carriers for the binary asynchronous com- 

munications system, was analyzed.    In this section another set of cy- 

clically orthogonal signals   - the set   of sine functions whose fre- 

quencies are all different and all multiples of some fundamental fre- 

quency - will be   analyzed  for this application,  and the asymptotic 

performance will be compared with the asymptotic performance of the 

Basic Walsh functions. 

Consider the set of sinusoids S (t) of period T, 

Si(t) =    /is sin i a) t      , 0 < t < T (5.35) 

where 
ü) = 2n/T 

i = 1,   2,   . ..   , 

S is the average signal power assumed equal 

for all i. 
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A set of these sinusoids are considered as carriers.     It Is 

clear that S.(t) and S (t),   1 / / are cyclically bi-orthogonal.    The 
1 A. 

(f) "flipped" cross-correlation function,  pj, (TJ  between S (t) and 

S (t) at a delay of T , 0 < T   < T,  is derived as follows.    Since 

SAt) and S (t) are cyclically orthogonal the "flipped" cross- correla- 

tion is, from (5.5a), 

o 

•^1       I    [sin i cjt][sin JC u)(t-T    )] dt . (5.36) 

o 

Performing the indicated Integration,  it is seen 

(r\             lifi  r  sin[(i-i:)ü)t + it OD T  ] 

Pi/^P  = ^ ( —^ - 

sin((i+X)uJt - JC CD T J  . Tje 

— I Mi+x) 

or 

P<f (O =  ~  [1 sin Jt oü T,  - £ sin i GU T  ] (5.3?) 
U      l        «(i3-^) £ x 

Pbr noiseless channel consideration, we are interested in the 

maximum interference resulting from the presence of other carriers on 

the channel,  when correlating synchronously with S (t).     It is thus 



103 

necessary to find the maximum value of the flipped cross-correlation, 

maximized over T .    Differentiating (5.37),  the following expression 

is obtained; 

d Pif (O      2S cu i £ 

—TT— = 7ÖF1?) Ccos ^h'COB±ai TxJ (5-3ö) 

Thus local extremum points are found for 

COS   jU   03   T,    -    COS   i ü>  T      =   0 , 

or equivalently. 

-  2 sin kiH)~ T. -sin ^(/.-1)Cü T, = 0      . (5.39) 

Equation (5.39)  is satisfied for 

m = 0,   1,   ... . 

It is still necessary to determine which value of x., or equivalently 

* T , given by (b.kO), absolutely maximizes pi-vf.). This can be de- 

rived by substituting the values indicated by (5.^*0) Into (5.37). 

_ 2mrt 

(f) (f)        I The local extremum values of p^, (T,) written as pi, ("O are then 
'ext 

pir^p 2S f.  o.      ,   £2m\      t m.    f i2nw VI 
Lisin ^Tfl> £sin(.Ti7>)J ext      n(i3-,C2) 

2S(i+jr)      .    / ^2mn 2S        .    / jf,2mn /c • ,N 
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Prom (5.41), it is seen that the maximum absolute value of "flipped" 

(f) 
cross-correlation, Ip.,. (T )|   , is achieved for the value of ra, 

max . 2 

for a given i and i,  for which the angle -777 is "closest" to n/2 or 

3n/2.    For (i+X)  > 10 the maximum "flipped" cross-correlation for 

2mn . 

max 

i + ; > 10 

_ . 2mn Case b. a) T = -r~r 
                                                  JC      Ä-i 

For this case the local extremura values of p^    (T )  are 

pi/(TP I      = TTP^FJ L1 sxn ^ TT V " ^ sin C "TTi ^J 

2S(i-i)       .      /" je2mji > _     2S in   I  ' : '.■   1 =    A .^„s   sin (     ;   .    ) (5.40) JTi^F)        V-TT y = ^n+xT 

As in Case (a)  the maximum absolute "flipped" cross-correlation is 

achieved for ~~ "closest" to n/2 or 3n/2.     For i + jj > 10,  the maxi- 

mum absolute value for CD T   = -r—r   is 
£      jß-i 

max ' 

i + £ > 10 

Clearly for i + /. > 10,  the absolute maximum value indicated by (5.42) 

is greater than the value indicated by (5.44).    However,  it can be 



105 

verified that for all i,  JC,  the maximum value achieved by Case (a)   is 

always greater than that achieved by (b). 

It is now of interest to compare the noiseless channel per- 

formance of k Basic V/alsh functions, k -* oo with a similarly chosen 

set of sinusoids.    The frequencies of the Basic Walsh functions, 

Sa      ,  S        , ...   , S        ,  are proportional to 1,   2,   ...  , 2*" ,  re- 
ak-i      ak-2 VE 

spectively.    Uhus,  a similarly chosen set of sinusoids would be S1(t), 

S2(t),   ...   , S2p(t) (F = 0,   1,   ...  , k - 1, k - oo) where S (t) is 

given by (5.35). 

Without any external noise, the output of the i     correlator 

z., given by (5.8),  can be represented aß 

zi B Z2F = ^F'S + I2F      ' (5.45) 

where I^p is the interference term due to the presence of the other 

sinusoidal carriers. 

The maximum value of the interference   11 p|        for the 
a    max 

sinusoid carriers is 

k-1 
.(f) y 

max        F'^O 
F'/F 

P3F,aFW 
(5.46) 

max 

(f) 
Pbr F > 4,  the value of |p p    F'(TJI        specified by (5.42) can be 

' 3  ■'3        ""   max 

used.    Thus,  for F > 4 and F < < k, k - oo , 
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* oo 

a=l c=i 

A lower bound on jl pj   , denoted as X p , vhich i" an 
' 2 'max 3 

accurate representation for F > 6 is found as 

d=l c=o 

An upper bound for 11 pi  ,  denoted as I F , is found as 
max 

00 

V   n L  Z. 2F-1 
+ 2F  2. 2 J n     2^-1  ' V  ^ 2 

d=l c=o 

For the Basic Walsh function carriers the maximum interference 

S £ 
has been determined (es a modification of 5.9) as ■ ■ .,, when we are cor- 

2E-l 

relating with the carrier associated with sequence S   , E = 1, 2, ... , 
VE 

k, k -• oo.  A comparison of maximum interference of the two types of 

carriers, for several small values of E, and for large E, where 

E = F + 1, is presented in Table 5.1. 
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TABLE 5.1 

Maximum Interference For Basic Walsh 
Function and Sinusoidal Carriers 

E I P        -Walsh 
a^ max h pi      -sinusoids 1« 'max 

S 1 0.92 • s 

2 S 1.04 •  S 

3 0.75 • S 0.73 • s 

> > 0 SE 
2E.1 

2SE 

n2E-1 

It is concluded then that the sinusoid carriers provide slightly- 

less maximum interference for large E.    However, the interference for 

the sinusoid carriers can introduce an error in the absence of addi- 

tive noise, when the   'eceived asynchronous signal is correlated syn- 

chronously with Ssit). 

In order to determine the average probability of error, when 

correlating with sinusoid S (t) in the presence of white Gaussian noise, 

it is necessary to determine p(z  |d.=+l) and then apply (5.11).    However, 

the determination of p(z. |d =+1), for a finite number of carriers, re- 

quires the derivation of the pdf of the cross-correlation function be- 

tween two sinusoids.    This derivation appears difficult. 

However, as the number of carriers increase without limit,  then 

p(z   |d =+l) approaches a Gaussian distribution with mean S, and variance 

aa   as derived below. 
zi 
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The variance,  oZ(f\ of the "flipped" cross-correlation func- 

tion between sinusoids S1(t) and S (t),  is 

0
p

a(f)-|   Hbn^h    ■ (5-60) 

(t) Substituting for pi* (T£)> it is seen that 

US 

ijj v '     o 

ia sin2jC ü> T    + .C3 sin3 £ cu T. 

- 2ijl sin i (jo T    •   sin / u> T . Id T 

= 2gl.   (i3^3) ^ (5(51) 

n3      (i3-£3)3 

If it is considered that the probability of a "flip" in S (t) is 1/2, 

then the variance of the correlation function, ö
3
 , between SAt) and 

S (t) (considering both "flipped" and "unflipped" cross-correlation) is 

then 

"  " E     Pi!'   "   B8   (i3-«3f 

Then the variance o^   is zi 

N S 
3   -    0    ' 7       oft (5.53) 

all Lji 
\=W + 

*Kote that T^  is uniformly distriibuted over the interval 0-T and the ir.san 
of the flipped cross-corrolation function is zero. 
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P 
If we set 1, >e = 2 , F = 0,  1,  ...  , k - 1, k - oo, then for F < < k - 1, 

oa    = 
Nos , s3 r   Y        22F + z**-3* 

\ 0ZaF     2T       n2  "-     ^     24F + 24F-4C - 24F-ac+1 

c=l 

L     24F+td + 24F _ 24F+ad+i       J 
(5.54) 

d=l 

A comparison of the corresponding variances of the Basic Walsh Func- 

tion Carriers (see 5.32) and the sinusoid carriers (see 5.54)  for 

E = F + 1 = 1, 2,  3 and U,  is presented in Table 5. 2. 

Table 5.2 

Values of Corresponding Variances for 
Basic Walsh Functions and Sinusoids 

E Variance-'walsh Variance-Sinusoid 

1 0.055 •  S8  + N0S/2T 0.066 •  S3  + N S/2T 

2 0.055 *   S2  + N S/2T 0.073 •  S3  + N S/2T 

3 0.024 •   S3  + N S/2T 0.026 •   S3  + N S/2T 

k 0.0087-  Sa  + N S/2T 0.0081-  S3  + N S/2T 
0 

The average probability of error,    given by (5.34) is plotted 

for sinusoids S^t), Sa(t), S4(t) and SeU) in Figure (5.9).    Comparing 

these curves with the corresponding curves of Figure (5.3) it is seen 

that for k -♦ oo the Basic Walsh functions provide a lower probability 
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of error than the sinusoids for the carrier of longest period, al- 

though the error probabilities are approximately equal for the re- 

maining cases. 

5. k   Asynchronous Binary Signalling V/ith Random 31nary Sequences 

In this section the average performance of the binary asyn- 

chronous signalling system will be determined,  when the carriers are 

mapped randomly chosen binary sequences.    The results will be compared 

with the results derived in Section 5. 2 for the Basic Walsh functions. 

The cross-correlation function Pui^f) between the mappings of 

randomly chosen binary sequences S and S of length L (considering the 

possibility that SÄ is "flipped") will now be determined. 

Let S^  ' and S^      be random rhosen mapped binary sequences, 

5    - ra(i)    a.(i) a(l)] S    - Fa*'>    a(£) a^l 5i ~ Lao   ' **    '   "•   '  aL-iJ       '      ^      L o    ' ai    '   ••■   '  VxJ ' 

where a     , a^     = ±1,    o = 0,  1, ...   ,  L - 1,  with equal probability 

and a^ ' and or,    are statistically independent,  for o = o',  i / / 

and for o / o1,  all i and i.    Then the cross-correlation function be- 

tween Sp and Sy) at a delay of X^ is 

d(1)s    Vi 
p    (X)  -^-i      \     a,(l) a(i5) Pi/%/  -      L /      %      aL-A 

b=o 
L-X.+b 

d(a)s      L-l      ,   x     ,   x 

b=XJl 
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(x)      (3) where S is the signal power,d      , ä       - .il with equal probability and 
(O (a) t        i , 

d.      and d       are statistically independent. 

The mean value of 9jÄ^t)  iß zero.    Hence the variance,  o^ 

is 

Xrl      Xrl 

b=o       c=o 

S3 
L-l      L-l 

+ _     \ \        fa,(i) a(i)  a(e)        ^      1 r !      ^ / i/b      ac      aL-X,+b Vx.+cJ La     Z 

+ 

b=Xj,      c=Xi, 

J1)   ,(s)  qa     Xx-1 L-l     

b=o    c=XÄ 

Since the symbols of the carriers were chosen randomly, each of the ex- 

pectations taken over the ensemble of carrirers,   is non-zero only if 

b = c.    Thus oa    reduces to 
9u 

Xjj-l    X^-l L-l    L-l 

b=o      c=o b=X/,    c=X. 

a(>) d(») s=    V1 L-1 

b=o c=X. 
IF 

*It. is recalled that if d^1) and d(2) are of opposite sign then Sj. has 
"flipped" at a delay of X^ digits. 
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where 6.     is the Kronecker delta function.    Thus 
DC 

oa      . I- [Xx + L-   Xx +o] «   f.      . (5.56) 

It can be shown that 9*Ä^f)  is in general binomially dis- 

tributed, but for large L the binomial distribution approaches Gaussian. 

The output,  zi    of the i     correlator for L - oo,  is then Gaussian dis- 

tributed with mean ± S, and variance o2   , 
zi 

N S        k(I
1       a N S      ..   ...a 

03   =^_+     y      0
3     .    o    +%Ü£      . (5.59) 

Bie average probability of error, P(e1)  is then 

P^) - | - | erf 
7 2(^1)   ,  1 
^      L G 

(5.60) 

Uhus,   if the ratio of the number of sequences on the channel 

(k) to sequence length (L) approaches zero as L -• oo,  then the aver- 

age probability of error approaches the binary PSK error probability. 

Although the Basic Walsh functions provide em average probability of 

error (averaged over all k carriers)  approaching the binary PSK re- 

iST suit (for G = 7 jj- < 3), only loga L carriers, L -♦ oo,  are used. 

Equation (5.60)  indicates an "average" set of randomly derived mapped 

binary sequences will provide this error probability although permitting 
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many more than loga  L carriers on the channel. 

Some questions have been raised by Wolf and Elspas"    on the 

validity of determining the performance of random carriers In the 

manner specified in this section.    The analysis appears to Indicate 
2       N0S      (k-l)S£ 

that z. Is Gaussian distributed with known variance o     = -5=7- + ■>—=-»— 
1 Zj^        ci L 

However, the variance of the Interference o^ due to the presence of 

the other carriers is not a known factor but a random variable with 

mean, of « ikiliL^ ^4 variance (o^0!)3 = 2^k^a^S • For a large 

number of carriers on the channel,  the fluctuations around the mean 

of o^ are smaU since the ratio of [(oj-oj)  j to of Is  [2/(k-l)]" • 
2 th Thus, we can approximate o* by its mear and then the output of the 1 

correlator Is approximately Gaussian. 

5. 5   Asynchronous Signalling with Linear Error-Correcting Codes 

In this section the noiseless channel performance of the 

asynchronous signalling system with mapped eye He error-correcting 

codes as carriers will be determined.    The "unflipped" cross-correla- 

tion function will be shown to be related to the minimum distance of 

the code.    A bound on the "flipped" cross-correlation function will be 

related to the solid burst error-correction capability of the code. 

The theory will then be used to derive the performance of several 

Bose-Chaudhuri codes, the largest known class of cyclic codes,   for 

the asynchronous application.    A brief description of binary cyclic 
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codes is first given. 

A linear code C is called a cyclic code,   if for each code 

word Cx  = (a ,  ax,  ...   ,  aL-j)  in C'  the ^^ word Cg  = (aL_i, 

a ,  ...   ,  aL_2) is also in C. 

Every cyclic code can be generated by a monic polynomial, 

g(x),   in the algebra of polynomials modulo x -1,  where L is the length 

of each code word.    If g(x) of degree r, divides x -1,  then g(x) gen- 

k' erates a cyclic code of dimension k'  = L - r.    Each of the 2     code 

words is expressible in the form g(x)[b   ©bxx©... ©^j-t.! x   "   ] 

vrtiere b.,   i = 0,  1,  ..., k'-l,   is either 0 or 1. 

2k It has been shown      that each code word can be generated by 

a k' stage shift register with feedback connections corresponding to 

the polynomial h(x) = (x -l)/g(x),  with the proper initial loading. 

For the asynchronous signalling application we are only interested in 

code words which are inequivalent under any cyclic permutation.    The 

number of "inequivalent" code words (hereafter designated as root words) 

in a cyclic code,  is related to the cycle set      structure of h(x). 

A cycle    of the polynomial,      h(x),  is the set of polynomials 

x   hi(x),  mod h(x) where d = 0,   1,   ...,  and hi(x)   is any polynomial of 

degree less than the degree of h(x).    The length of a cycle is the 

smallest integer v,  (v always divides 2    -l),  such that x   hi(x)  5 

hi(x), mod h(x).     [The root code word,  considered as a periodic se- 

quence,  generated by the k'  shift register with feedback connections 

prescribed by h(x) and initial loading corresponding to x   h1(x), will 

have a minimum period or length v. ] 
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As an example, consider the cycles of the polynomial 

\ h(x) »-• x4 + x3 + x2 + x + 1, over GF(2), shown in Table 5.3. 

i 

Table 5.3 

Cycles of h(x) = x4 + x3 + x2 + :: + 1 

hx(x) 0 1 X  +  1 x3 + 1 

x hi(x) 0 X xa  + X x3  + xa  + 1 

x3h1(x) X3 3           2 
X     +  X x3   +1 

A^x) x3 x3   + X + 1 
3 

X     +  X 

x*hi(x) 
3 

X + xa  + X + 1 x3  + x2  + X x3   + X + 1 

X^JCX) 1 X  +  1 x3  +1 

PX-om Table 5.3 it is seen that x* + x3 + x3 + x + 1 has k 

cycles (l of lenßth 1 and 3 of length 5). ühe cycle set structure is 

denoted as l(l) + 3(5). From this cycle set analysis it can be deter- 

mined that the cyclic code of length 15 with generating polynomial 

g(x) = (x15-l)/(x4 + x3 + x3 + x + 1) =(x + l) (x2 + x + 1) (x4 + x + 1) 

(x4 + x3 +1) has h  root words, one of which is the all zero code word. 

In general, an irreducible polynomial of degree k' will have 

1 cycle of length 1 and n' of length v', denoted as l(l) + ^'(v'h 

where ii' and v' are in general difficult to determine. However, if 

h(x) is a primitive irreducible polynomial of degree k1, then n' = 1 

k' iß and v' = 2    -1.    Elspas     has shown that a polynomial h(x) \/hich is 

the product of two different irreducible polynomials, hi(x) and ha(x). 
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with cycle set struct-ires l(l)  + m(vi) and l(l)  > M9(va)  respectively, 

will have a cycle set structure of l(l) + m(vi)  + MB(V8)  + M(V)I  vrtiere 

\x a nj  Ma   [G.C. D.   {\>i,  V8) ] 

V  =   L. C. M.    ( Vi ,   Vg ) 

Ulis technique is easily extended to derive the cycle set 

structure of a polynomial which is the product of an arbitrary number 

of different irreducible polynomials. 

If the minimum distance of a cyclic code is known then the mini- 

mum distance between cyclic shifts of root words is known.    However,   for 

binary signalling a root word or its complement is transmitted,  and only 

if the complement of each code wer'"' is in the code will the minimum dis- 

tance between cyclic shifts of any root word and the complement of another 

root word be known.    The following theorem gives the condition for a cyc- 

lic code to contain the coraplenent of every code word. 

THEOREM 5.2       The complement of every code word of a binary cyclic code, 
is a code word if the generating polynomial, g(x) does not con- 
tain 1 + x as a factor. 

Proof:      Since the code is a linear code the theorem can be established 

by proving that the all zero and all one code words are in the code. 

If 1 + x is not a factor of g(x), then 1 + x is a factor of h(x) = 

(x -l)/g(x).     The polynomial 1 + x has two cycles of length 1.    Hence, 

by the product rule of cycle sets, h(x) contains two cycles of length I. 

However, the lengths of distinct cycles are the lengths of distinct root 

words,  and the only two root words of length 1 are the all zero and all 

one code words. 
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It will be shown in the succeeding analysis that the magnitude 

of the "flipped" cross-correlation between mapped root words can be re- 

38 duced by using repeated mapped code words  as carriers. The  following 

theorem relates to the structure of a repeated cyclic code. 

THEOREM 5.3 The code formed by repeating m times each code word of 
a cyclic code of length L with generating polynomial g(x) is 
also a cyclic code, but of length m L with generating polynomial 

m-1 bL 

g'Cx) = 2. x  g(x) 
b=o 

The number of root words in the repeated code is identical to 
the number in the original code.    If the original code had 
minimum distance d,  then the resultant code has minimum dis- 
tance md. 

It will now be shown that the "flipped" cross-correlation 

function is related to the solid burst error-correction capability of 

the cyclic code.    Consider the "flipped" cross-correlation funct^ 

(f) p^    (\.) between the mappings of code words (in polynomial represe'ica 

tion) C.Cx) and C,(x) at a shift of X   digits.    Then ?)* iK) is deter- 

mined as 

pil ^ V  = I^n0,  0f    ,S in A^  " no'  0l 1,s in A^x^ ^5"61 

X
<> -   ^ L-i-X, 

where 

A(x)   =Ci(x)0x^ Cj£(x)0x/V£[l + x + ...   + xL"X"^],  mod (xL-l) 

(5.62) 

Since C.(x)  and C (x) are the polynomial representations of code words 
X A* 

from a cyclic code, A(x) can be reduced to 

A(x) = C (x)0x/[l + ...   i- x1"1'^], mod (xL-l)      , (5.63) 
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where C (x) corresponds to a code word of minimum weight d and maximum 

weight L - d, provided 1 + x is not a factor of g(x). 

It is thus seen that A(x)  is formed by adding the polynomial 

representation of a solid error burst   of length L -  V    A theorem on 

the correction of solid bursts follows. 

IHEOREM 3.^     A double error correcting cyclic code (d > 5) can correct 
all solid bursts that do not "wrap" around the end of the code, 
provided the generating polynomial g(x) does not contain 1 + x 
as a factor. 

The above theorem is generalized to multiple solid burst error 

correction by the following theorem. 

THEOREM 5.5     At error correcting cyclic code (t evcu) can correct all 
error patterns that consist of t or fewer solid bursts,  each 
starting at the beginning of the code word,  provided g(x) does 
not contain 1 + x as a factor. 

Proof;      Since the code can correct t or fewer errors, then the error pat- 

tern E(x), 

E(x)  =       ^~(x + x f+i)      , (5.610 

f=o 

where t' < t 

\f < L -  1     , 

is correctable by reducing the received vector E(x)  + C (X) (in poly- m 

nomial form), icdulo g(x). However, E(x) can be represented as 

*A solid error burst^ is defined as an error burst where every digit 
in the burst is in error. 
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E(x) =  )_(1 + x)(l + x + ... + x^"). (5.65) 

f=o 

Since 1 + x and g(x) are relatively prime, the error pattern E'Cx), 

E'(x)-f^.  y.d + x + ... +x f)      (5.66) 1 x   - Qy 
f=o 

is correctable, indicating that t or fewer solid bursts starting at 

the beginning of the code word are correctable. 

From the preceding theorem, upper and lower bounds on the weight 

of a vector formed by adding (mod 2) a solid burst, starting at the be- 

ginning of the code word, to a code word (except the all zero or all 

one code words) is now derived. 

IHEOREM 5.6  Consider the vector which is formed by the mod 2 addition 
of a code word [from a t error-correcting(t even) cyclic code 
for which 1 + x is not a factor of g(x)] and a solid burst 
starting at the beginning of the code word. .The minimum and 
maximum weights of the resultant vector are 7 + 1 and L - * - 1 
respectively. 

Proof;  Jbr t even, it has been shown that t or fewer "beginning" solid 

bursts are correctable. Hence, the vector. A, corresponding to a code 

word (which is not ehe all zero or all one code word8)plus t "beginning" 

solid bursts must be different from the vector corresponding to the all 

zero code word plus t or lees "beginning" solid bursts. However, any 

*The bound when a solid burst starts in the middle of a code word and 
proceeds to the end will be identical to the bound which is derived 
for the "beginning" solid burst. 
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vector of weight t/2 can be forraed by the proper mod 2 sunmatlon of t 

"beginning" solid bursts.    Hence,  for A to be different from the all 

zero code word plus any t or few "beginning" solid bursts, A must have 

weight at least -s + 1.    If the conparison is made with the all one code 

word, then the maximum weight of A is derived as L - -r -  1. 

From the preceding analysis it is now possible to specify the 

bounds on the "unflipped" and "flipped" cross-correlations for a cyclic 

code of length L,  for which 1 + x is not a factor of g(x), with a minimum 

distance d = 2t + 1, t even. 

The "unflipped" cross-correlation function is bounded by   i —^  

Prom Theorem 5.6 it can be shown that the "flipped" cross-correlation is 

bounded by 1 — — . 
L 

For the repeated cyclic code, theorem 5.3, the "unflipped" cross- 
T PA 

correlation is still bounded by ± —^ . However, the bounds on the 
JL» 

"flipped" cross-correlation are lowered vhen the cyclic code is repeated 

m times.    The maximum absolute value of "flipped" cross-congelation occurs 

when the relative delay of the code words, \^ is either 0 < X, < L, or 

(m - 1)L < X, < m L.    It is then determined that the "flipped" cross-cor- 

relation is bounded by 

For large values of m, the "flipped" cross-correlation approaches the 

"unflipped" value. 

Prom the bounds on the "flipped" cross-correlation, the maxi- 

mum number of carriers which can be asynchronously multiplexed, on a 
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noiseless channel with zero probability of binary error can be derived. 

It should be noted if t Is odd then t Is replaced by t - 1 In all of 

the cross-correlation bounds. 

As an illustrative example consider the (31,11) Bose-Chaudhurl 

code for which t » 5 and d = 11.    The generating polynomial for this 
llO 

code is 

g(x) » (l+xa+xB)(l+xa+x3+x4+x6)(l+x+x3-Hx4+x5)(l+x+x2+x3+xB)    (5 67) 

The shift register polynomial is then 

h( x)  = ^^jj . (i+x) (i+x^+x* +x
6) (i+x

3
+xB) (5.68) 

Hie number of root words (not including complements) are the number of 

cycles of the polynomial h^x), 

h'U) = (l+x+x3+x4+xB)(l+x3-»-x6) 

Since each of the factors of h'(x) are primitive polynomials,  it is 

Immediately apparent that the cycle set structure of h^x)  is 

1(1)     +    1(31)    +    1(31)    +    31(31) 

Hence, there eure 2k root words in the code. 

Under the no "flipping" condition, the bound on the maximum 

number of carriers is k.    Under the "flipping" condition,  the maximum 

number which can appear is 2.     If the repeated code is used with m = 3 

(code length = 93) then 3 code words can appear.    The code length must 

be increased to (ll)(31) = 3Ul to enable k code words to appear with 

zero probability of error.    In Table 5. k the bounded asynchronous 
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performance of several other Bose-Chaudhurl codes,which give the 

"optimum" performance for the given length, are tabulated. 

Table 5.h 

Asynchronous Performance of Root Words 
of Bose-Chaudhuri Codes 

Code t No.  of 
Root 

Words 

Max.  No. 
for "un- 
flipped" 

Case 

Max. No. 
for 

"flipped" 
Case 

Length for 3 
Words 

Length for k 
Words 

(15,7) 2 6 U 2 3-15 » k5 00 

(31,11) 5 Zk k 2 3- 31 = 93 11-31 = 5kl 

(63,10) 13 10 8 2 2-63 » 126 4-63 = 252 

The performance characteristics listed in Table 5.h indicate 

that the noiseless channel performance of the mapped Bose-Chaudhuri codes 

is inferior to the performance of the Basic Walsh functions, under the 

"flipping" condition,  in that fever carriers can appear on the channel 

with the assurance that the probability of error is zero.    However, an 

advantage of "Tine Bose-ChaudiurL codes is that root words can be chosen 

which have least period equal to the length of the code.     (The Basic 

Walsh functions do not exhibit this property.)    Since the autocorrelation 

function of the mapped root words is low for non-zero delays (it is 

bounded by ± —^—),  synchronization of a particular transmitter- 

receiver pair can be gained. 

It should be noted that the bound on the "flipped" cross-cor- 

relation is a pessimistic bound.    By proper choice of the root words. 



12k 

the absolute maximum value of "flipped" cross-correlation will be sig- 

nificantly reduced.    It was found that by choosing a preferred set of 

root wrods of the (15,7) code,  it was possible to place 3 code words 

on the channel when the word length was 30,  Instead of the value of 

k5 Indicated in Table 5. U. 
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6.     HARD LIMITING MULTIPLEXIIIO OF N-ARY SEQUENCES 

6.1    Introduction 

12 23 Tltsworth    '      has described a binary synchronous multiplex 

system   which is applicable for 

a. the transmission of several signals from several 
different transmitters over the same channel. 

b. the simultaneous transmission of messages to several 
receivers in a single sequence stream. 

There are k users on the channel, each using a different 
It 

binary mapped Basic Walsh function of length 2    as a carrier.     Infor- 

mation is sent by transmitting either :he mapping of the sequence it- 

self,  or the mapping of the complement sequence.     (Hence,  1 bit of 

information is sent by each carrier in 2   time slots.)    The multiplex- 

ing operation is performed by operating on the sum of the k mapped se- 

quences (with the provision that some may be complemented) with a Boolean 

logic device.    The output of the logic device Is 

a. plus one If there is a majority of plus ones in the k 
mapped sequences during a particular time slot, 

or 
b. minus one if there is a majority of minus ones in the 

k mapped sequences during a particular time slot. 

For an equal number of plus ones and minus ones, the output is arbitrary. 

For k odd,  the logic operation can be performed by a hard limiter.     {The 

use of a hard limiter is particularly desirable for multiple access to 
33 

a satellite     because of the nonlinear characteristic of the travelling 

wave tube usually used for economical transmission.) 

The single sequence binary stream Is then transmitted to k re- 

ceivers,  which are k filters (or correlators) matched to the k mapped 
• 
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basis sequence used as initial carriers.    The output of a particular 

correlator is a positive or negative value,  depending upon whether a 

mapped basis sequence or its complement was initially transmitted,  in- 

dependent of the information state of the other carriers. 

It will be shown in this chapter that a hard limiting syn- 

chronous multiplex system can be designed with N-ary sequences with 

symbols mapped onto the roots of unity or phase modulated cosine func- 

tions.    The k (mapped) cyclically N-orthogonal basis sequences,  S    , 

S    ,   ...   ,  S       ,  of length «    are the carriers* to be multiplexed.     A 
*! ak-: 

mapped sequence or one of its N-l complements is transmitted.    (Hence 

loga N bits of information are transmitted with each carrier in IT time 

slots.)    As in the Boolean system, the optimum multiplexing is achieved 

by a logic device operating on the sum of the components of the carriers. 

The output of the logic device,  f^      ) during time slot g, 

g = 0,  ...   , w-l,  is 

a. a unit amplitude vector with a phase angle equal to the 
angle of the vector which is the linear sum of the com- 
ponents of k carriers (arbitrarily complemented) during 
the particular time slot,  for the roots of unit mapping, 

or 
b. a unit amplitude cosine function phase modulated by the 

angle defined in (a) above. 

It can be seen that the logic device for the roots of unit mapping acts 

as a "hard-limiter", provided G. C. D. [N,k] = 1.** The interpretation of 

the optimum logic for the phase modulated cosine mapping will be discussed 

* Throughout the remainder of the chapter, the word carrier will be used 
to indicate a mapped sequence and complement carrier will be used to 
Indicate a mapped complement sequence. 

** This provision ensures that the linear sum of the components of the 
carriers is not zero. The  output of the logic device is arbitrary 
if the sum of the components is zero. 



127 

in the succeeding sections. 

The receiver which is to decide on the information contained 

In the i     carrier is 

a. A cross-correlator between f(Sji) and S^ mapped onto the 
roots of unity     The phase of the correlator output 
determines the decision on which complement of S^ was 
sent, 

or 
b. A set of N cross-correlators between t{S^) and 8^ and 

Its N-l complements all mapped onto phase modulated 
cosine functions.    The correlator which yields the 
largest output determines the decision on the  Information 
contained In the particular carrier 

The complete multiplexed system Is shown in Figura (   1   for 

roots of unity mapped sequences. ' In the  following sections,   the results 

summarized In this  Introduction are derived and the system performance 

Is analyzed.    For the development of the theory it will be assumed that 

the N-ary sequences are mapped onto the roots of unity     When allusion 

Is made to real sequences the theory will be appropriately qualified 

to the phase modulated cosine mapping. 

6.2   Transform Analysis of N-ary Sequences 

A transform pair will be derived which will be used to evalu- 

ate the performance of the multiplexed N-ary system.    The transform 

pair will be shown to relate to the optimum logic function and the mag- 

nitude of the correlator output. 

Define a function,  *(s,x) of the vectors 

x = (xo,Xi,   ...  , xj^x) ,  xi = 0,1,   ..., N-l , 
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cK8,x) = irk/3 exp[J |* (soxo + ...   + 8k.i xk.x)) (6.1) 

It Is apparent that there are w    1 unctions (^(s .x) of 

x for a given vector s .   It is easily verified that ^(s ,x) and c c 

H<(8.,x) are orthonormal,  that is: 

- r 0 c ^ d 
)    V(8e,x) 9#(8d,x)  ={ , (6.2) 

all ll c=d 

l^x 

where c,d = 0,1,  ...  , a-1, and <i>*{B.fx) is the complex conjugate of 

^(s^x). 

Similarly 

#-«-. 0 e^f 

)    9(s#x, ) cp (8,xJ  = \ , (6.3) 
all f        ll e-f 

ft 
k 

\rtiere   e,f   =0,1,   ...   , h -1 . 

An interesting transform pair can be derived with function 

^(s,x) as the kernel.     Define a function F(s) by: 

F(8) = rkA   N      f(x) 9(ö,X) (6.10 
La 

all- 

where f(x) is a unit amplitude vector vhich is a function of the k 

components of x. 

The inverse transform f(x) is derived as follows.    Consider 
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^    F(8)   (p»(8,Xf)   -  irk/a     ^ ^f(xe)   V(s,xe)^8,xf) 

all all   all 

xe        s 

irk/J y    f(xe)    ^   (p(s,xe) 9*(s,xf)    . 

all all 

xe 

Applying the orthonormal property (6.3)  it is seen that 

)     P(8)   9*(8,Xf)   =  N-k/2   f(xf)        , 

all 

or 

f(x) = W3 ^    F(s) cp*(8,x)    . (6#5) 

all 
s 

The equivalent to Parseval's formula is derived as 

^F(s) F*(3) =     )    f(x) f*(x) = 1 (6.6) 

all all 

S X 

6.3    Derivation of the Optimum Logic and Correlator Output 

Consider the multiplexing   of k N-ary sequences, S , 

Sx,  ...   ,  S^-i (at present arbitrary) of length Ir,  mapped onto the 

th N     complex roots of unity.     Then if the N-ary sequence S. has components. 

+Note the change in notation from the definition of a sequence given 
in Chapter 2. 
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S^ =(^§.    ,fe.    ,  ...  lij^        M then the component of the mapping of S. 

during time slot g, g = 0,1,  ...   , 1^-1,   is s[g^ = exp [J2n ^ß]. 

The output of the logic network during time slot g will be denoted as 

f(?g').    It is clear that f(?g') is strictly a function of 

\J>Q   t  •••   *  ^»k-lj the sy*0!8 of eacl1 of the ^ sequences during time 

slot g. 

A set of sequences,  S , will now be specified and the result 

of cross-correlating f(v    )  (for all g) with the mapping of a particu- 

lar sequence will be determined.    Choose the K sequences to be the set of 

k cyclically N-orthogonal basis sequences of the w    N-orthogonal sequences 

of length IT.    Thus,  in the notation of Chapter k, we have S    * S    , ...   , o       a o 
SJ^J = S       , with a typical sequence 

S    = S      = (0,0,  ...  , 0, N-l,  ...   , N-l,  ...   ,  1,   ...   1,)  , 1        *i        _        
N1 N1 N1 

repeated N^1'1 times. (6-7) 

At the receiver, let p_     be the cross-correlation of fa. 

f{v& ) and the mc.pping of S    .    Thus,   p-     becomes 
ai rai 

1^-1 

Pfa    = ~     l    f(C(ß))  exp  [-J2n4ß)/Nl • (6.8) 
g=o 

Noting that f(^g0  is given by 

f(^g))  - ^/3    y    F(s) <p*{ll[g)) 
ell 
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I   F(B) exp [-^k8o 4*> + s, ^ + ...   + Bkml 4?J)] , (6.9) 
all 

is 

p _     is found to be 

all g=o 
? (6.10) 

Nbv define a vector, v.,  in the s space as 
i 

v   « (0, ...   , N-l, ...   ,0) 

"Hi 
where the only non-zero term occurs in the i      place.    Hence, the ex- 

pression for p.     can be reduced to fai 

^-1 

all g=o 
— >   . —♦ 

... + (s^l) 4ß) + .-. + Sk-i 4?i)j   ' (6-11) 

vhere 
F(vi)  = If1''*    ^   f(x) cp(vi,x) 

all 

However, if the sequences are chosen as the k cyclically N-orthogonal 
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basic sequences with components given by (6.7) then 

I   exp[-J f<so ^
8)  + ...   + (Vl)  ^ *...  * 4?hj ■ 0 

g=o 

since for all s / v., the symbols 

so ^o8^ + ••*  + (si
+1)  4g^ + ••'  + sk-i  4?W n104 N' 

for g « 0,  ...   , «-1 are the IT symbols of one of the a   N-orthogonal 

sequences. 

Uhus, the value of the correlator output for the k cyclically 

N-orthogonal sequences is 

pfa   " ^J (6,12) 

The value of the correlator output will now be derived if the 

mapping of the r     (r=l,  ...  , N-l) complement of S      is multiplexed 

instead of Sa .    Uien,   ^s' is replaced by ^    -r in Equation (6.7). 

Also under the condition, the r     complement is transmitted the expres- 

sion for f(^g0, Equation (6.9)  is changed to [fU'g')]r , 

[f(?g))]r =   I  PC«) expL-J f<so ^ + ...   + s1 4^-s^ 4ß) + 

all 
-* 
s 

••• + *k.i 4?i)j   • (6.13) 

Then repeating the operations defined by Equations (6.10) and (6.11) 

with the substitution [fU^^Jpin place of f(^g^), the output of the 
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i  correlator, [p _ ] , under the condition that the r  complement was ra1 r 

transmitted is 

[pfa ]r - Pfa   expL-J 2n r/N) . (6.1U) 

XL. 

It is noted then that the information carried by the i      carrier 

is determined uniquely by the phase of the correlator output,   independent 

of the Information content of the other k-1 carriers.    The contribution 

th 
of the  1     sequence to the total output is then maximized by maximizing 

the value of F(v ) over all possible logic functions,   f(x),  under the 

condition that the k cyclically N-orthogonal sequences are used.     However, 

it can be shown that for any set of input sequences,  F(v.)  should be maxi- 

mized to maximize the contribution of the i      input independent of the 

condition of the other inputs.* 

Now it is necessary to determine the logic function f(x) which 

maximizes F(v.), where f(x)  is specified as a, unit amplitude complex 

vector.     If we assume that the magnitude o£ the outputs from all cor- 

relators is to be identical,  then F(vi)  = F(v ,),  for all i,   i'.    We 

can then set 

k-1 _k k-1 

F^)  ^   )    F^) - V   i     5  ^  e^^TX±] '''        ' 
i=o i=o  all 

—♦ 

x 

or _k k-1 

all i=o 
x 

*The proof is similar to the proof for the Boolean multiplexed system' 
and hence is omitted. 

23 
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Now the x's, i = o,  ...   , k-1 are the symbols of each of the k multl- 
k-1 2n 

plexed sequences during a particular time slot.    Hence    £   exp[-J TJ- X ] 
i=o "     1 

is a complex vector which is the sum of the mapped symbols of the k se- 

quences during the time slot.     Thus, F(v.)  is maximized if for all IT 
-   k-1 2n 

values of x the complex vectors f(x)    E   exp[-J -rr x  ) all have the same 
i=o M     1 

phase angle.    If the phase angle of F(v )  is to be zero (this is an ar- 

bitrary,  but practical choice),  then PCv.)  is maximized if f(x)  is a 

vector (unit amplitude) with a phase angle equal to the negative of the 
k-1 2ff 

phase angle of   Z   exp[-J •=- x. ].    Uhus, the optimum logic can be inter- 
i=o "     1 

preted as a hard limiter on the sum of the complex components of the in- 

put mapped sequences,  so that the output vectors of the logic network 
k-1 2n 

during each time slot are all of unit amplitude.     If h   exp(j "üT x.)  = 0, 
i=o "     1 

which can only result if 0.CD. [N,k] ^ 1, then f(x)  can be chosen to be 

any unit amplitude vector since there is no contribution to the maxi- 

mality of F(vi). 

It is of interest to note the nature of the optimum logic net- 

work under the condition that phase modulated cosine functions are used 

as a mapping instead of the N roots of unity. From the discussion in 

Chapter 2 on the relationship between the correlation function with co- 

sine function and roots of unity signalling, it can be seen that the 

output of the logic network rf(x)] which maximizes the correlator 

outputs for cosine function signalling is 

(f(x)]cos = cos (ü>t + 9L)      , (6.16) 

k-1 2 
where 0T  is the phase angle of    £   exp(j -=- x.).    However, 0T  can be 

^ l=o Hi L 
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written as 

... 

I Sln (T Xi) 

0L = tan-x ^f        . (6.1?) 

I C08 (f xi) 
i=o 

Substituting (6.17) in (6.16), and expanding co8(üJt + 9^),   [f(x)]cos 

becomes 

k-1 
[f(x) ]coB =   ■ 1 zzr      I cos f x. cos cut 

/k-1 —— —     — ~     ^ 

[IC08lrxija + L ^ 8inf xi]3 

i 
=o 

i=o i=o 

k-1 
7 2« sin -=■ x. sin cut 

i=o 

k-1 k-1 
3 

k-1 

^ cos (ajt + Y *±) 
i=o /rr        2«    '.*     r v    .   2n    i* 

71) C0STxiJ  +L) 8inTxiJ 
i=o i=o (6.18) 

Thus the optimum output of the logic network,  under the cosine func- 

tion mapping,   is proportional to the linear sum of the mapped components 

of the sequences during a particular time slot.    Then the optLnum logic 

for this condition can also be interpreted as a hard limiter.    The in- 

strumentation of the logic can either be em "infinitely" fast acting AGC, 
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or a bandpass limiter. 

For either mapping it has been shown that the value of F(vi) 

(which is the correlator output when the cyclically N-orthogonal se- 

quences are used),   specifies the system performance.    It is seen from 

(6.15) that F(v.)  is a function of N and k.    Values of F(vi)  for 

N = 2,3,1+ and several values of k are given in Table 6.1.    The values 

for N = 2 are taken from Titsworth's papers. 

Table 6.1 

N » 2 

Values of F(vi) 

k N = 3 N = U 

1 1 1 1 

2 0.5 0.667 0.60U 

3 0.5 O.U96 0.68U 

k 0.375 0.U55 0.U39 

5 0.375 0.UO5 O.kOk 

6 0.312 0.358 0.362 

7 0.312 0.3i«0 

It has been noted previously that there is no crosstalk 

in the reception of the information in the i      carrier due to the 

complementing of the other signals on the channel.    However,  from 

Table 6.1 it is noted that the correlator output (normalized) de- 

creases as the number of users increases,  resulting in an effective 
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decrease In the signal to noise ratio.    Tine loss in signal to noise 

ratio due to the hard limiting appears to be lower for non-binary sig- 

nalling.    An interesting comparison can be made between the performance 

21 for N » 2 and N = U.    It has been shown     that the probability of error 

per bit of information is lower for N = U than for N = 2 when the sym- 

bols for N = i* are mapped onto phase modulated cosine functions.    Since 

the signal to noise ratio loss due to hard limiting is lower for N = U, 

it is apparent that significant improvement in multiplexed performance 

is obtainable by using quaternary encoding instead of binary encoding. 
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7.    SUMMABY AMD CONCUJSIONS 

7.1   Summary of Major Results 

The major objectives of the thesis were 

a. The synthesis of new classes of periodic sequences, with 

binary and non-binary symbols, which exhibit useful autocorrelation and 

cross-correlation properties, when the symbols are appropriately mapped. 

b. The analysis of two types of multiple-access systems 

using, as carriers, these sequences along with some known classes of 

sequences. 

In Chapter 3 the method of interleaving two level binary sequences 

was analyzed as a method for synthesizing lazge classes of sequences with 

prescribed correlation properties,    A large class of almost two-level 

sequences with low cyclic cross-correlation function was synthesized. 

These sequences are applicable for synchronization, some asynchronous 

carrier systems or as a set of non-linear error-correcting codes with good 

data rates.    A class of sequences exhibiting autocorrelation functions with 

Intermediate minor peaks all of different amplitude and cyclic cross-corre- 

lation functions which are uniformly low was synthesized.    These sequences 

are applicable for synchronization under high signal to noise conditions 

and also as carriers for the asynchronous multiplexing system.    It was 

shown that some classes of interleaved sequences are easily generated by 

a non-linear filtering technique. 

In Chapter k classes of binary and N-ary sequences which are cyc- 

lically orthogonal (orthogonal for all cyclic shifts) were derived. A set 

of binary cyclically orthogonal sequences are the k basis sequences,   (re- 
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ferred to as the Basic Walsh functions) for the set of 2^ Walsh functions. 

All of the classes of "binary cyclically orthogonal sequences derived, con- 

tained sequences all of different least period. It Is conjectured that 

binary cyclically orthogonal sequences of the same least period do not 

exist. This conjecture was discussed "by noting the Fourier components of 

mapped binary sequences. 

In Chapter 5 the problem of multiplexing, on a linear channel with 

additive white Osussian noise, the carriers from k different tranbmltter- 

receiver pairs, when each transmitter is synchronous vith its corresponding 

receiver, although the various transmitter-receiver pairs are asynchronous 

with each other, was analyzed. Information is transmitted "by sending a 

carrier or its negative. It was shown that the average binary error prob- 

ability when the k carriers are a set of mapped randomly chosen binary 

sequences, reduces to the binary PSK formula when the ratio of number of 

sequences to sequence length is zero as the sequence length becomes un- 

bounded. The average probability of error when the carriers are mapped 

Basic Walsh functions was derived, and it was shown that the result Is a 

function of the particular sequence assigned to a user, and the number of 

users sharing the channel. The average probability of error, averaged over 

all of the cariers, approaches the PSK formula as the iiumber of users (and 

of course the sequence length) becomes unbounded. However, only logaL 

(with L -• «O users, can be present when the carriers are mapped Basic 

Walsh functions, while a greater number can be present if mapped random 

binary sequences are used. The average probability of error was computed 

when the carriers are a set of sinusoids of periods comparable to the 
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periods of the Basic Walsh functions.    Hie average probability of error 

was higher for the sinusoid carriers. 

A set of mapped Bose-Ghaudhuri error-correcting codes was consid- 

ered as carriers.    The noiseless channel performance of these carriers 

appeared to "be significantly worse than the performance of the Basic Walsh 

functions. 

Chapter 6 dealt with the "hard-limiting" multiplexing, prior to 

transmission, of a" set of mapped N-ary sequences, with, all carriers     «.r 

synchronous.    Information is transmitted "by sending the mapping of a 

sequence or one of the N-l complements.    The optLaum set of sequences were 

the k cyclically N-orthogonal sequences of length IT derived in Chapter k. 

It was shown that the signal to noise ratio degradation due to "harcl- 

limlting" multiplexing was lower ft)r K=3 and k than for the binary case. 

7.2    Problems :ret to Be Solved 

In this section a number of unsolved problems suggested by 

the research described in this thesis are listed. 

a, The synthesis of two-level N-ary sequences for both 

mappinss presented in Chapter 2. 

b, A listing of all of the autocorrelation functions which 

arbitrarily interleaved two-level sequences can exhibit. 

c, A search for large classss of sequences (binary and N-ary) 

which exhibit good cyclic cross-correlation properties^ besides the Bose- 

Chaudhuri codes,   interleaved sequences and cyclically orthogonal sequences 

considered in the thesis.    It appears that the technique of choosing 
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sequences with distinct Fourier components will be useful for the synthe- 

sis of binary sequences. 

d. Investigation of cyclically orthogonal binary sequences 

of the same least period. 

e. Additional searching for sequences for the asynchronous 

linear aultiplexing system which provide performance comparable to the set 

of "ave^rage" randomly chosen sequences. The computer derivation of the 

"flipped" cross-correlation function of mapped Bose-Chaudhuri codes, and 

the interleaved sequences considered in Chapter 3, might indicate that 

these carriers are applicable for this system. 

f. An analysis of the asynchronous linear multiplexing of 

mapped non-binary sequences, with a mapped sequence or complement sequence 

sent as information. 

g. Derivation of sequences for an asynchronous "hard-limiting" 

multiplexing system. 

7.3 Relationship Between Thesis Problems and Prior Work 

In this section the problems, results ana proofs presented 

in this thesis are related to the prior work which hat appeared in the 

literature. 

In Chapter 2 the concept of the N-l complement sequences of an 

N-ary sequence was Introduced. Although the existence of complement 

21 
sequences has been "hinted" at in the literature,  the technique of sig- 

nalling with mapped complement sequences has not been analyzed to the ex- 

tent that binary signalling has. The proof of the shift and add property 
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of p-nary maximal length sequences and the derivation of the autocorre- 

lation function of the   aximal length sequences with symbols mapped to 

-1, 0, •♦•1 has not appeared previously.    The shift and subtract property is 

probably known. 

The analysis of the correlation functions of mapped interleaved 

two-level sequences, presented in Chapter U, appears to be a problem 

which has not been previoulsy solved.    Interleaving has been used pre- 

29 viously for the derivation of large classes of error-correcting codes ^ 

and the product "almost" two-level sequences which Titsworth has derived 

are recognized as interleaved complement sequences.    The large class of 

"almost" two-level sequences and "different" peak sequences derived in 

Chapter k were not previously known.    The non-linear filtering technique 

as a method for generating certain classes of interleaved sequences is an 
19 extension of the work of Raphael, 

It is probable that the cyclically-orthogonal property of the Basic 

Walsh functions is known.    However,  the general techniques for the synthesis 

of cyclically N-orthogonal sequences, presented in Chapter kt have not 

appeared previously in the literature.    No work has appeared on the Fourier 

analysis of binary sequences or on the existence of cyclically orthogonal 

binary sequences of the seme least period.    The results presented on the 

generalized Hadamard matrices are probably known. 

Although a significant effort has been directed towards the solu- 

tion of the multiple access problem, J the problem of the binary asynchro- 

nous linear multiplexing of carriers has not been previously considered. 
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The technique used for the asymptotic series approximation to the proba- 

bility of error Integral for the Basic Walsh functions was suggested by 

the work on a similar Integral.35*36    ^g derivation of the asynchronous 

performance of the random sequences Is similar to a derivation of the 

performance for a synchronous system, 3' 

The transform analysis of N-ary sequences, presented In Chapter 6, 

utilized In the derivation of the "hard-limiting" performance of N-ary 

sequences mapped onto the roots of unity is an extension of the work of 

Tltsworth.12,23 
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APPENDIX A:    Proof of Theorem 2.2 

The noroalized autocorrelation, p/^CX) was defined in Section 2 

as 

i=0 

For the mapping, 0-0, 1 -• 1, 2 -• -1 of the ternary maximal length se- 

quence. Equation (A.l)  is formed by the   sun of products of the form, 
r-i r-i 

0 • 0, 1 • 1,  (-1)  •  (-1).    However, since there arc 5     ' 2,8 and 3 

I's in a ternary maximal length sequence it is seen that 

From ^Theorem 2.1 it is noted that the mod 5 sum of the maximal 

length sequence ani the maximal length sequence shifted by L/2 digits, 

yields the all zero sequence.    Hence, for X = L/2, Equation (A.l)  is 

formed by the   sum of products of a mapped symbol and its mapped additive 

inverse.    The products appearing are 1 *  (-1),  (-1)   *  1, 0 ' 0 resulting 

in 

-2 ■ S1"1 

The result for the remaining integral shifts will now be proven. 

It is noted if any two ternary sequences are summed, (mod 3) > there are 

three sub-sums which generate each of the three symbols in the resultant 

sequence. These sub-sums are 

0 * l) 1 + l) 
1 + 0) = i  0 + 2) E 

2 + 2 )     2 + 0) 
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It (fill now be established that if a ternary maximal length se- 

quence Is summed with a shifted version of Itself (except for shifts of 

0, L/2), each of these sub-sums will occur 3r"2 times, except the last 

sum,  (OK)) which will occur 3r'2 - 1 times.    Once this Is established. 

It will be clear that p (X)  =0,  X ^ 0, L/2. 

Write the original may 1 mal length sequence, and Its first (r-l) 

cyclic shifts as the rov vectors of an r x L matrix M. 

M = 

»o 

aL-i 

ag 

a. 

aL-i 

aL-2 

^-r+i     ^-r+a     ^-H-a ••• ^L-i 

The row space of M Is a basis for the L cyclic shifts of the original 

sequence, where the vector generated by twice the first row Is the se- 

quence shifted by L/2 digits. 

From the characteristic of the maximal length sequence, the 

L = 5    - 1 columns of M are the 3    - 1 nonzero r-tuples over GF(3). 

Hence, If we consider the corresponding elements of row 1 and any other 

row as forming L 2-tuples.  It Is clear that In this set of L 2-tuples, 

each of the 9 possible 2-tuples over GF(3) will occur 5r"2 times except 

(0,0) which will occur 5r"2 - 1 times.    Thus the result is established 

for X = 1,   ...  ,  r-l. 

Next, form a new matrix M1, of the form 
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M' 

^ (L+l)/3 
fo   0 ... 0 

0    0   0 1 ... 1 

(L+l)/9 

2 ... 2 
(L+l)/9 

[012 ... 2 

(l^l)/3 
1    1 

0    0 

...  1 

2 2 

0    1    2 ...  2 

2    2 

0    0 

(L-H)/5 
...   2 

2 2 

0    1    2  ...  2 

by permutation of the rows and columns of M; and the addition of a column 

containing all zeros.    It is apparent that M'  can be formed   from the 

characteristic of the maximal length sequence.    Replace any row of M1, 

except the first rov, by a vector, V, which is any linear combination of 

the r rows except twice the first row.    If the vector is viewed as divided 

into 5 segments - the first (l^l)/3 symbols, the second (L*-l)/5 symbols 

and the last (L+l)/3 symbols - then each of these segments will contain 

(L+l)/9 ones, (L+l)/9 twos, and (l/*l)/9 zeros.    Thus in the set of (L+l) 

2-tuples which are formed by taking corresponding elements of row 1 and 

V, each of the 9 possible 2-tuples over GF(5) occurs 5r"2 times.    Discard- 

ing one of the (0,0) 2-tuples, which results from the addition of the all 

zero column in M1, it is seen that the 9 possible sub-sums, resulting 

from the summing of a maximal length ternary with any shifted version of 

the sequence, (except L/2),  occur 5r"2 times except the 0+0 sub-sum 

which occurs 3r"2 - 1 times.    Hence Equation (A.l),  for the mapped se- 

quence, reduces to 

ir-z 
PA(X)    *-^— [l- 1 + (-1) '(-1) + (-1) ' 1 + 1* (-1)] = 0    . 

X/0,L/2 
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APPENDIX B:    Proof that Every 2-Fold Interleaved Sequence Can 
Be Generated by Multiple Nonlinear Filtering 

For n = 2, the output sequence of the multiple nonlinear filter, 

In polynomial representation, reduces to 

SoT(x) s r27o[a0(3c2)©x2(^+1-^)a1(x
2)] 

(B.l) 
+ xi2yo+i[ao(x2)0x2(7i-7o)ai(x2)] t mod (^Lml)   t 

In order to simplify (B.l), let 7i  = 7i - 70-    Then SoT(x) becomes 

S^x) = x^[a0(xs)©x2(',i+1'ai(x
a)] 

t (B 2) 
+ x^^CaJx^Qx^^^^x2)] , mod (xeL-l)     . 

It will new be shown that each of the states of the filter gen- 

erates a different output Interleaved sequence. Since there are as many 

filter states as Interleaved sequences, the proof will be complete. The 

following cases will be considered for 70, 7^,  a0(x), a^x). 

Case a. a0(x) = 0(x) , a^x) = 0(x). Then SoT(x) = 0(x2) + xO(x2), in- 

dicating that the output sequence is the all zero sequence. 

Case b. a0(x) = 0(x), ai(x) = hu/x). Then SoT(x) = x
2 h (x2) 

+ x2'b'1^hm(x
2), mod (x2][i-l), where b = 7o + 7^ + 1, where b = 0,1, ..., 

L-l. The Interleaved sequences for different values of 7i are all differ- 

ent,* and for no value of 7i can the all zero sequence of Case (a) result. 

♦The result is independent of 7o since sw0 is open (b = 7o+7i+l = 7i+l). 



Case c. a0(x) = h^x), Ej^Cx) = 0(x). Then 

SoT(x) H x
2Chffi(x

2) + x^^Cx2) , mod (x21-!) , 

where c = 70, c = 0,1, ..., L-l. The interleaved sequences for different 

values of 70 are all different, and for no values of 70 can the sequences 

of Cases (a) or (b) result. 

Cased. a0(x) =hm(x), ajx) = h^x). Then 

SoT(x)Sx
2[yo+I(7i+l)]hm(x

2) 

+ x
2[7o+I(7i)]+1hn(^) , aod(^.l) 

(B.3) 

It is clear that this polynomial cannot reduce to the polyncmial repre- 

sented in Case (a). In order to establish that Case (b) cannot result, 

it is necessary to demonstrate that 

70 + 1(7^1) ^ 7o + K/i)  + 1    , 

or equivalently that, 

I(7>1) f I(7l) + 1 

The properties of the function I(X) defined by (2.8) will now be used. 

From (2.8) we know that 

xI(7i+i)hm(x) s K{%) ©x^i+^x) , mod (x^l) , 

and 

x^^J^hnCx) «xhm(x)©x^
+1hn(«) > »od (xL-l) . 

However, from the uniqueness of the shift and add property it is clear 
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that xI(7l+l)hm(x) f xI(7l)+1hm(x)/mo<i (xL-l)   Indicating that I(yi+l) 

/ I(7l+1). 

In order to show that Case (c)  cannot result from Equation (B.3) 

it is only necessary to indicate, because of uniqueness, that T(71
+l) 

/ Kyi). 
As a final step it will be shown that the L   different combina- 

tions of 7o ancl fi) in (B.5) each generate different interleaved sequences. 

For /i = L-l, S0T(X) reduces to 

SoT(x)  H o(x2)  + x2[7o+I(L-l)J+1hni(x
2)  , mod (x21-!)   , 

which, for the L values of y0) represents all cyclic shifts of the maxi- 

mal length sequence in the  "second" position and the all zero sequence 

in the "first" position. 

For I-L - 0, SoT(x)  reduces to 

SoT(x)  = x2[7o+I(l)]hin(x
2) + xOCx2)   , mod (x^-l)  , 

which represents, for the L values of y0} all cyclic shifts of the maxi- 

mal length sequence in the "first" position and the all zero sequence in 

the  "second position. 

For 7^ / 0, L-l the output sequence S0rp is an interleaving of 

shifted maximal length sequences.    In order to show that these Interleaved 

sequences are all different,  it is necessary to establish that,  if 70 / 60, 

and 7^ / 61, then both of the following equalities cannot be satisfied 

simultaneously. 



151 

70 + i(yi+i) = 50 + I(6i+1) ) 
? (B.h) 

This Is accoorplished by showing that only d = 0 satisfies the equality 

i(7i+i) - i(7i) = KrI+i+d) - i(yi+d) (B.5) 

Equation (B.5)   can be transformed to 

I(7l+1) + I(7i+d)   = I(7i+l+d) + I(7l)   • (B.6) 

From the definition of I(X), (B.6)  Implies 

I(7i+1)[V*) ©/1+\W] - x^^'lVx) ©/^^(x)] , mod (X
L-:) , X 

or 

l(Vi+1)+Yi+cl,   ^('2vl( ;i)+Vi,+l+cL  /   N   -    l(Y^+1)v. /   w    l(Yi)u  /   ^      * f  l> ,\ 
-n^^ m^x'  ^ x Vx'    x h

m(x)*inod (x -!)* 

or 

xdr
Lx
l(^,+1)+^h.a(::) 0xl(^)+^,+\(x)] - x1^^© xl(Y4m(xi r^d (xL.l) 

(B.?) 

However,   (B. 7)  can be transformed to 

xd {x^ rhm( x) ©::''1 +\( x) 1 © xY* +1[hm( x) © x^' hj x) ]} 

H [hj x) © xY* +1hra( x) ©hm(::) © xY* hm( x) ]    ,      mod (xL-1) 

or 

xd;'x^h (x) ©::Yl,+1h (x)"1' = fx^'h (x) 0xYi+1h (x)" ,    mod (xL-l) 
L       m       ^^ m     J     L       m       v^ ml ' 

(B.8) 

From (B.3)  it is  seen that only d = 0 satisfies (B.5),  ectablisliinG 
the proof. 
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APPENDIX C: Derivation of "Flipped" Cross-correlation Function for 
Basic V/alsh Functions  

(f) 
In this appendix, PJ^ U^) vill be derived for X > i and 

^ = n 2i+l + w vhere n = 0,1, ... , Z^1'1-i,  and w = 0,1, ... , 2 . 

The derivation for the values of \, not included above is quite similar 

and only the final result will be indicated. 

Let Sa =■- [(a^^ ... , (a.)^ ... , (a^J, S^ = [(a.)o, 

•*• ' (aJc'   '"   '   (ajL-ll and Sß 
= ^o' "* ' ^ "• ' gL-1 ^ '  Then 

the first \. synbols of S , [(a.)., b = 0, ... ,  \0 - 1],  are 
~ a. i  o xt 

>i  ,     ^i+i ., „i 

^i\ ■ 

D     —     U/  -L^       •  •  •  ^       C     — Xp       £ m      m  •  •  f       O*  C     — Xf      •  •  •       f 

n2i+1, n2i+1+l,   ...,  nS1"^   + w-1 

O     ~     b      ^       C      * X.}      •  •  •  y       C* — ^1       *^* ^       " * # I       *rC     *-L^       *  *  *   9 

(2n-l)21,   (2n-l)21-i-l,  ...,   n2i+1-l . 

\ ',    If) 
The first \, symbols of x ^ Sv    ,   [(a,)T . c = 0, ...   , \, -  1], 

are (a )T ,        =1,   c = 0,1,  ...   ,   \,-l.       The  first \0 symbols of 
'J     ]j-\  fl+C A/ Xt 

S    = S      + *L sS^  are 
ß      ai .aU 

/ 

6ds 

i i+' i 
X O.   =   \Jj X,    •    • ^    o   — X,    o ,«..^Oc   — X|    ...     f 

n2J- -,   ...,  ntx -   + v-1 

d  =  2i,   2i+l,   ...,   2i+1-l;   S^1,   ...,   li^1-!;   ...; 

(2n-l)21,   ...,   n2ill-l . 
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From the symbol structure indicated above,  it is seen that there are ' V 

more ones than zeros in the first \    = nl,i+1 + w digits of S .    Thus 
ß 

from (5.7),   ■.;. (n2i+1 + w)  = - 2:;/! (L = 2k)  for n = 0,   ...   ,   Z*-1'1-!, 

and u B 0,1,   ...   ,   2 . 

Pbr the spjoe constraint on n,   but v/ith v;=2,2    + 1,  ..,, 2    l, 

the "flipped" crocs-correlation is found to be,  .:. , (n2i+-   + v)  = 

- 2(2i+--v)/L. 

For n = Z*"1"1, Z1'1'1  + 1,  ...   ,  Z*"1 - 1, 

+ 2v/L w = 0,1,   ...   ,   2 

pjf)[n2i+i
+w] = 

2(2i+1-v;)/L v = S1,   ...   ,   2i+ 

Finally for n = 2a(2A'-i_1),  2a(2j:;"i"1) + 1,   ...   , 

2a(2i-i-1 ) + 2';'-i-1   - 1,  (a = 0,1,   ...   ,   Z^'^'-- 1), 

/ - 2w/L \/ = 0, ],   ...   ,  2 

)   - 2(2i+l-u)/L w = 2i,   ...   ,   2Ul, 

and vith n = (2cj-!-l)2i'-i-1,  ...   ,   (2a:l)2i-i-1 + 2X"i"1-  1, 

+ 

p(f)(n2i+l
+v)  = 

2v/L w = 0,1,   ...   ,   21 

1* 

I  + 2(2i+1-u)/L u = 2i,   ...   ,   2i+x 
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APPENDIX D:    Derivation of Probability of Error With Basic Walsh 
JVinctions For k»2 

In this appendix,  the average probability of error, when corre- 

lating with the carriers associated with the Basic Walsh function 

sequences S«   or Sa , with two carriers on the channel,  (k»2) is deter- 

mined.    We are given the density functions,  for i=0,  i=l, 

p(pon) = —^ exp. ri^l | , (D.l) 

and 

P(p0) = p(Poi) = {J 6(p01) + J: - S < p01 <S (D.2) 
IX, l 2S 2 2 

0 elsewhere 

Then p(Z  | clo=+l)  is given by the convolution of p(pon) and 

p(poi)i  or 

u 
P(Z  | d^+l) =       p(Poi)Pon(Z-Poi)dPoi 

.00 

pS/2 

-Js/2 fc      sJ   yj^s 

-fe^>- (.3) 
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Thus the expression for the probability of error, PCCQ ) = P(ey) becomes 

P0 

P(ex) = PCeo) =       p(Z  1 d^+l)^^ = 
m 00 

/■   ■        o    s/2 , v2 

y2TlNo.Jco.4/2 ItS/T      J 

v T^S J       L     NQS/TJ 

nS/2 — 

-S/2 -s/^ S/T 

where,  erf(u);  the error function of y is defined as 

U        3 

erf(v) = 4.   f e"X dx    . (D.6) 
VTT ^o 

The integration of the error function in (D-5) is performed by parts, 

ühe final result for the average probability of error is then 

P(e0) = P(e1)=i-ierfy|.|.er<fv^ 

8        V -/ 1^   y    /n V ST /n 7 ST 

(D-T) 
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APPENDIX E:    Asymptotic Series Approximation to P(e0) 

An asymptotic series approximation to the integral expression 

(5-26) for i = o, which yields accurate results for k > k will now be 

derived.    For i = o (5.26) can be transformed to 

The procedure to be used for the above expression is sirr '       to the pro- 

35,36 
cedure previously used for the asymptotic series approximation to 

oo 

( ÜH 
\     x 

o 

f /^ sin x "N    , dx    • .   -   ^   y 

An approximation to   -=—^ + gj       will first be derived.     It 
2y 

is noted that 

dy L     V   2y        2 yj y sin y + y^ v       • 

Writing the series approximation to the right hand side of (E.2) we 

find 

ib^4)J =   , > . ,       <-' 
dr        31        51        7- 

Performing the long division and integration,  ana retailing the first 
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three terras 

fa^4)~-^^Ä (E-U) 

Thus: 

K—sr + z)   -e e 

which can be approximated as 

(E.5) 

Nk-i -(k-l)r/l2 
( sir^ + 1 Y"1       e'^>r/" r       (k-l)y^ + U~l)fl (E 6) 

Substituting (E.6) into (E. 1) the expreseion for P(e ) is approximated 

as 

oo 

p(eo)-2 -« j —r"^expL"r ^"12 +
-G5-;J^ 

o 

-i    J(.ln2K-VI[%^]e«pr-y=(^ + ^)]ay 

00 

(E.T) 
O 

Bae contribution of the third integral can be shovn to be negligible 

for 0 < G0 < 20.    Also for G3  in this range and It > it '.,e can use the 
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approximation 

(E.8) 

Incorporating these upproxinations into (E.7) and performing the inte- 

gration vrith the aid of integral 337-2b in Grobner,      we get the approxi- 

mation 

P(eo).i-iorf(G)+(f|i)(3^)r(|   ,e G- 

(k-l)       G&    „ /^ 5 N    -G-       JT    ,    3    nal 

+ (l77i5oR2tr^^r^2y e n."   2'   2'   G J (E-9) 

where      F[x,y, z]  is a confluent hypergeoraetric function. 

It iG seen that the resultant approximation for P(e  )   is 

the binary PSK error probability plus some error terms which approach 

zero for k - 00. 
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APPENDIX F:    Probability of Error Averaged Over k Basic Walsh 
Function Carriers 

In this appendix the probability of error averaged over all k 

carriers on the channel,  for k -• », will be derived.    When correlating 

with the carrier associated with SD =S0      . the output of the itft corre- 
a4      or-   «•' 

lator becomes Gaussian distributed with mean zero and variance, a«      , 
^k-E 

E=l,  2,   ,.., k -• ao   , 

Let 

VE - ^
+ f [(^)2'2E+1^XS-2E-1)] •       '*■* 

a».,,»        -M    , (F.2) 
E        ^k-E     2T 

Then the probability of error P(e  ) when correlating with the i=k-E 

carrier is 

«VE)-*-ierf[-^^J . (P-3) 

where 
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We are interested in P,rl the error probability averaged over all of the 

carriers. Thus 

or 

E=l 

'•■-Uf'-'-fcfe ]j        ^ 

Expand the error function in the series 

erf(x 

co 2c-l 
2     r   -     .c+1     xt 

E) = ~   )   (-1)      2  (F 6) E       ^cti (2c-l)(c-l)I U-   j 

where 

XE = ri  42n = r   ^2G2ii (F*7) 

2CTE
3
G

2 

If -^-__— < i then x-, can be expanded in a power series in 

ascending powers c   —-g— .    Now      a       achieves its maxiraum value for 
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E=l or E=2, with ^21- = ZSJL. . i , Hence for all G3 < 9*. X-, is equiv- 
c3    c3   o E 

alent to 
S3    S8   9 

^-i^c^^t-^f-       (-8) rn2 cl=0 

Then 

Since all of these infinite series are uniformly convergent we can inter- 

change the summation and limiting operations in an arbitrary manner.    Thus 

the expression for P   CP-I "be reduced to 

- e+1   Pel K.       co J 

1 ^ et'! (2c.l)(c-l):      l^kLlLo   fä^t/ 

2aE
3G%d-12c-l 

•*The average probability of error for "binary PSK signalling with G3=9 
is 1.1 • IQ"6. 
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It will now be shown that 

k     " Skr/G^.d-Cc-l 11m l  r r r'   (-1)  / 2d Y*E 
u fj0-1 a •, ,       , 

The first term of the above summation is 1, 

A typical remaining term is of the form 

lim ci V (<*%    »P 

E=l  ^ 

where ß is a positive integer and Ci is a finite constant. 

But, 

c^)e-(|/*-e2ni^>-«Tj 
m=0 

It is then verified that 

k ß lim^y   -ß2E\   (ßVl)m^m= 0 

(F.13) 

E=l m=0 

Hence the probability of error,  P . averaged over the k Basic Walsh 
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functions, k -♦ «,  is 

for Ga < 9. 

P   . i . J . 1 S Ü)      0  

J - i erf (G)    , 
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