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ABSTRACT

This thesis considers the problem of synthesizing cyclic (or
periodic) sequences, with binary and no'nbinary (N-ary) symbols, for
special coommnication applications. For the applications considered,
the sequences are transmitted over channels with additive white Gaussian
noise. For correlation detection the autocorrelation function of a se-
quence or the cross-correlation function between sequences are required
for the evaluation of performance.

The first part of the thesis is concerned with the derivation
of new classes of sequences. Some new theoretical developments are
presented on the cyclic correlation properties of sequences containing
the NB complex roots of unity as symbols. These sequences are related
to real sequences contaiaing phase modulated sinusoids as symbols.

A class of sequences derived by the interleaving of two level
binary sequences is presented. These interleaved sequences are shown
to exhibit autocorrelation and cross-correlation functions with inter-
mediate peaks. The locations of the peaks can be controlled to synthe-
size autocorrelation functions which are "almost' two level or autocor-
relation functions with peaks of different magnitudes. The application
of these sequen.ces to synchronization is considered.

Classes of N-ary sequences (called cyclically orthogonal se-
quences), which exhibit cross-correlation functions which are zero for
all cyclic shifts are derived.

The second part of the thesis is concerned with the application
of the sequences derived in the first part, as well as other known

classes of sequences, to two special communication problems.
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The first application is a binary asynchronous linear multiplex
system. There are k transmiiter-receiver pairs, each using sequences
(which are sumed linearly) as carriers for binary information. Although
a particular transmitter is synchronized with the corresponding receiver,
the other transmitter-receiver pairs are asynchronous with this pair.

The average probability of error with additive white Gaussian noise 1s
evaluated when the carriers are the binary cyclically orthogonal se-
quences. The performance is also determined when the carriers are sinus-
olds of different periods,random binary sequences, and sequences asso-
clated with Bose-Chaudhuri Codes.

The second application is an N-ary synchronous "hard-limiting"
multiplex system. For this application there are also k transmitter-
receiver pairs, although the respective carrier sequences are not sumed
linearly, but "hard-limited" prior to transmission. It is shown that
the optimm set of carriers are the cyclically orthogonal sequences.

The system performance is determined for these seqQuences. This system
might be useful for satellite repeaters which usually employ "hard-

limiters."
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CORRELATICN PROPERTIES OF MULTI-LEVEL CYCLIC SEQUENCES

1. INTRODUCTION

Cyclic or periodic sequences are gaining increasing importance
in such commnications applications as synchronization, tracking and
ranging, multiplex carrier systems, and signalling over a continuous

1 This thesis is concerned with the derivation of some new

channel,
classes of sequences, and the application of these sequences to two
important multiplex problems.

An N-ary sequence S, of length L, is defined as an L-dimensional
vector, S = (8p,8;, ++s, 8-1), Wwith symbols as, 1 = 0,1, ..., L-1, taken
from a finite alphabet, usually the ring of integers modulo N, where N
is any integer greater than 1. For practical applications the symbols
are mapped onto quantities ag_m) , for which the ordinary addition and
multiplication operations are defined. A waveform or carrier, f(t) of

time duration Lt,, is then associated with the mapped sequence, of the

form
™ 0<t<t,
nim} t, St<2y
2t) =7,

;ﬁ’fi (I-1)%, <t < Lt,

If f(t+nLty) =0, for 0 <t < Lt,, n = +1,#2, ..., then the original se-
quence is referred to as an aperiodic sequence. If P£(t+Lt;) = f£(t), for
all t, then S is referred to as a periodic or cyclic sequence. Only

cyclic sequences are considered in the thesis.



Generally the terms sequence, mapped sequence and carriers have
been used interchangeably in the literature. This custom will be con-
tinued in this thesis when there 1s no possibility of ambiguity, as is
the case with binary sequences. However, when several types of mappings

are possible the correct term will be used.

1.1 Review of Pertinent Prior Vork

Several types of periodic sequences have been studied previously,
with the research divided into four phases: (a) theoretical derivation
of classes of sequences exhibiting particular autocorrelation and cross-
correlation functions, (b) proofs on the nonexistence of classe: of se-
quences exhibiting certain correlation properties, (c) methods of
generating particular sequences, and (d) applications of sequences to
special communication problems. A sampling of prior work in each of

these areas i1s now briefly described.

a. Theoretical Derivation of Classes of Sequences

Considerable effort has been devoted to the derivation of
sequences exhibiting autocorrelation functions which are two-level, i.e.
the autocorrelation function is constant (usually -1/L) for all nonzero
integral shifts. The best known of the two-level sequences, the maximal
length sequences witi binary or nunbinary components, have been studied

3

by Singer,2 Zierler,” and Golamb.h Other two-level Linary sequences

which have been synthesized are the quadratic residue seq_uence,5 twin

prime seq_uence,6 and Hall sequence.7



Perfect N-ary sequences with elements mapped onto the roots of
unity (the autocorrelation function is zero for all nonzero shifts) have
been studied by Heimiller® and Franck, et al.? Perfect ternary sequences
with elements mapped onto +1, -1, O have been found by Tompkinslo by a
camputer search. Titsworthll has derived a class of two-level sequences
with the elements contained in the field of irrational numbers.
Titsworth!? has also derived & class of "almost" two-level binary se-
quences for some lengths not covered by the known two-level sequences.

Extensive searches have been conducted for classes of sequences
which exhibit low cross-correlation. Classes of orthogonal binary se-
quences have been derived from the theory of Hadamard matrices.l The
theory is presently being extended to roots of unity seq_uences.l3 For
nonorthogonal s. “iences, bounds on the number of sequences with cross-
correlation bounded bty an arbitrary limit has been derived.lh Bounds on

the number of sequences, with the cyclic cross-correlation function,

bounded by certain limits have been derived by Gilbert.l?

b. Nonexistence Proofs

".‘urynl6 has presented proofs on the nonexistence of perfect
binary sequences beyond length 4. In addition, he has shownl® that two-

level N-ary sequences do not exist for many lengths.

c. Generation of Binary Sequences

The generation of many classes of binary sequences by linear

1,17,18

feedback shift registers has been considered. Some classes of se-

quences can be generated by the filteringlg of maximal length sequences.



d. Applications of Sequences

An important application of sequence theory has been the
use of the orthogonal binary sequences as a signalling alphabet for the
continuous Gaussian Cha.nnel.20 The theory has been extended to N-ary
sequences.21 S"ciffler22 has considered the use of sequences for the
synchronization of error-correcting codes. Binary sequences have been

considered as carriers for binary multiplex sys‘t:ern:&a.z3

1.2 Brief Review of New Develomments Presented in the Thesis

In Chapter 2 the background for the succeeding chapters is pre-
sented. In addition, several propcrtics of nonbinary
sequences are discussed. A theorem on the shift and add property of
nonbinary maximal length sequences is derived, from which the autocorre-
lation function of ternary (+1, -1, 0) maximal length sequences is
derived. A method of signalling with Nth roots of unity sequences as
carriers is outlined. Information is transmitted by sending a sequence
or one of its N-1 complements.

In Chapter 3 a class of binary sequences with useful autocorre-
lation and cross-correlation properties is presented. These sequences
are derived by the interleaving of two-level sequences, or two-level and
complement two-level sequences. It is shown that if n two-level sequences

are interleaved, the autocorrelation function of the resultant sequence

L -n+1
nL *

amplitude are obtained if scveral peaks occur at the same location.

has n(n-1) minor peaks of height

Fewer peaks of larger

Using this interleaving procedure, autocorrelation functions with (n-1)



peaks of different amplitude, and "almost" two-level autocorrelation
functions are synthesized. Classes of sequences exhibiting low velues
of cross-correlation at all cyclic shifts are synthesized by interleav-
ing. Autocorrelation and cross-correlation functions with positive and
negative peaks are synthesized by interleaving the camplement two-level
sequence along with the uncomplemented sequence. Interleaved mavimal
length sequences can be generated by the nonlinear flltering of a o le
maximal length sequence. A number of examples illustrating this tech-
nique are presented. The application of the interleaved sequences for
synchronization is considered.

In Chapter 4 methods are presented for the synthesis of N-ary
sequences (called cyclically orthogonal scquences), which are orthogonal
for all cyclic shifts. All of the binary sequences, derived by the tech-
niques presented in this chapter are of different least period. It 1is
conjectured that cyclically orthogonal binary sequences of the same least
period do not exist.

In Chapter 5 the application of cyclically orthogonal sequences
as carriers for an asynchronous linear multiplex system is considered.
In this system there are k users on a channel, with each transmitter-
receiver pair using a different sequence as a carrier. Although a par-
ticular transmitter is synchronized with its corresponding receiver, all
of the other transmitter-receiver pairs can be asynchronous with this
particular pair. The respective carriers are summed linearly on the
channel. The density function of the interference is determined and the

average probability of error is evaluated when the received signals are



corrupted by additive white Gaussian pnoise. Saveral other classes of
functions are considered as carriers for this system.

A diirerent type of multiplex system is considered in Chapter 6.
In this system there are k users on the channel, all transmitting synchro-
nously with N-ary sequences as carriers. Information is transmitted by
sending a sequence or one of its N-1 complements. However, the carriers
are summed and then passed through a hard-limiter prior to transmission.
The set of cyclically orthogonal sequences are shown to minimize the

average probability of error.



2. FPRELIMINARY DERIVATIONS

In this chapter some basic definitions, mappings, and theorems,
which will be reqaired in the succeeding chapters, are established.
Several types of sequences are described and the autocorrelation and
cross-correlation functions of the mappings of these sequences are de-
fined. The complements of sequences are defined and the application to
sigralling 1s noted. A theorem concerning the shift and add property of
the maximal length sequence is derived, and is then used to derive the
autocorrelation function of a mapped ternary (+l1, -1, 0) maximal length

sequence.

2.1 Basic Definitions and Mappings

An N-ary cyclic sequence, Sg, of length L, is defined in this

thesis as a vector, Sy = (ay,8,, ..., 8].1), Wwhere ay, 1 =0, ..., L-1,
can assune the values 0,1, ..., N-1. 8Sg can also be represented as a

polynamial Sg(x),
Sp(x) =agta;x +ax®+ ...+ aL_le'l (2.1)

where x 1s an indeterminate and xL = 1, mod L. For practical applica-
tions the symbols of S, are mapped onto quantities for which the usual
addition and multiplication operations are defined. Three useful map-

pings are described below.

a. Binary Mapping

For N =2 the mapping of the ajy's is 0 = +1, 1 = -1.



b. N Camplex Roots of Unity Mapping’

The N possible values of aj are mapped onto the Nth camplex
roots of unity, 0 ~ e30, 1 = &3(2%N) | (yqy o d(NV2n/n g
determination of correlation functions this mapping will be shown to be
equivalent to the mapping O = cos wt, 1 =~ cos(wt + 2a/N), ..., (N-1) =

cosfat + (N-1)2a/1].

c. Mapping Onto Positive and Negative Integers

As a generalization of the binary mapping the N values of
ai can be mapped onto positive and negative integers. For N odd 0 -~ O,
l =4 l’ cvey (N-l)/z = (I"‘l)/e, (N+l)/2 = -(N-l)/a, IR NN} (N-l) - "'lo The

only result obtained for this mapping is for N = 3.

The normalized cross-correlation, pah(2), between two mapped

sequences, (Sp) (m) and ( Sb)(m) delayed by )\ digits, where

(Sa)(m) = (a(m) (m)

0 ) ey aL-l )

()™ = @, .., b{®)y
bgm)

and

o

are the mappings of ay and bj, is defined as s+

*For N = 2 the NtB camplex roots of unity mapping and the binary mapping
ere identical.

e general time cross-correlation pgn(t), of two functions Sa(t) and
Sp(t) of period T is defined as

T
Pap(t) = —%— j Sa(t)Sg(t-'r) dt
o

For sequences the integral reduces to a summation.



pap(N) = ) a{™ (o{™)* (2.2)

(m), »

(m) are taken mod L, ard (by.3) indicates the

where the subscripts of b
camplex conjugate of b/,mi IT a = b, then (2.2) reduczs to the autocor-
relation functizn of S,.

For the tinary and roots of unity mappings, th2 cress-correlation
can be deterair=C irom the po'.momizl). rev.isente..ions otf Sg and Sp. For
the binary case form a polyncnial S,(x) = S,(x) ) x)‘Sh(x) mod (xL-l)

(where{(#) indicates modulo 2 sum). Then p,y(}) is seen to be:
Pap(M) = —%— [No. of 0's in So(x) - No. of 1's in Sc(x)-l (2.3)

If Sg and Sp are N-ary sequences mapped onto the complex roots
of unity, then form the polynami..l Sq(x) = Sa(x) - x)‘Sb(x) , mod (xL-i) A
(where the symbol subtraction is mod N). Then pgp()) is seen to be
N-1
paplMN) = % Z [No. of d's in Sc(x)] e‘j(aﬂd/m (2.4)
d=0
It can be shown that the mapping onto the phase modulated cosine
functions 1s related to the mcpping onto the camplex roots of unity.

The cross-corrclation function, pab( A\), for the roots of unity

mapping is
L-1

7 ool
i=0

2x (81'b1-x)]
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Under the mapping onto the phase modulated cosine functions the cross-

correlation function becomes

L-1 (i+l1)ty S
- R N
Pap( M Tts y J' cos | wt el cos | wt o dt

——

i=0 it

"

L T 2
T z cos [ 1\;‘ (ai'bi-)\)]
i=0

L-1
1 2n 2n
+ : Z {sin [(1+1)a)tl + T ai+1] * cos [( 1+l)wt, + - bi-)\+1]
i=0

sin [icutl + 2;‘ a1] * cos [iwtl + —2;‘— bi-)\] }

where t3 1s the duration of one time slot. The second summation can be
dropped if wty >> O, and thus the correlation function under the cos.ine
function mapping is proportional to the real part of the correlation

function for the roots of unity mapping.*

*#The analysis for the phase modulated cosine functions assumes that the
phases of the carriers of the two functions which are cross-correlated
are identical. However, if the phases are random, then the typical
correlation term becomes

1 2n
5 cos [tp-i- g (ai'bi-)\)]

where ¢ 1s uniformly distributed between O and 2x. For the applications
which will be considered, it will be assumed that ¢ 1s zero.
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It can be shown that all correlation functions of mapped se-
quences (real and complex) are linear between integral cyclic shifts,
indicating that the determination of the correlation function at in-
tegral cyclic shifts completely specifies the correlation function.*

A technique for binary signalling with binary sequences,
(called coherent phase shift keying, PSK) is to transmit the mapping
of a sequence or its complement (negative). If roots of unity (or
phase modulated cosine) mapped sequences are used as carriers, then
a generalization of the PSK case can be specified by defining comple-

h

ments of N-ary sequences. Tre rt complement sequence, qu‘r) of Sa

is defined as:
qur) = (2o-r, 8;-T, ..., 8p.3-r) mod N (2.5)

In polynomial representation the complement polynamial, s(‘lr) (x), is
seen to be:

{9 (4) - s,(x) - x(x) (2.6)

where r(x) =r + rx + ... + -2,

The cross-correlation function Paar( 0) between a mapped root

th complement is Paar(0) = e"j(am'/ N) .

From a recent report by Reed and Scholtz ,21 integral cxpressions for the

of unity sequence and its r

average probability of error for N*R roots of unity complement signal-

ling can be derived.

#The proof for binary sequences is a special case of Theorem 5.1.
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The complement sequence ccncept will be used in Chapter 4 for
the synthesis of classes of N-ary scquences which are orthogonal for
all cyclic shifts. The complement signalling concept w:ll be discussed
further in Chapter 6 when the N-ary "hard" limiting multipler system is
analyzed.

In the fcllowing section some new results are presented on the
characteristics cf maximal length p-nary (N = p where p is a prime number)

sequences.

2.2 Maximal length p-nary Sequences

The best known of th2 p-nary sequences is the maximal length
pP-nary sequence. Petersonah has shown that the polynomial representation
h.m(x) of a maximal length sequence can be derived from a primitive irre-
ducible polynamial, gp(x) , over GF(p). If gp(x) is of degree r, then the

coefficients of hy(x), which is of degree p' -l-r

r—
hy(x) = X2 =1 (2.7)

specify the first pr-r digits of the maximal length sequences of length
L= pr-l, the last r-1 digits being zero. The sequence corresponding to
hp(x) can be generated by an r stage p level shift register with feedback

connections prescribed by gp( x). It has been showneh

that in a maximal
length sequence, the field elerents, 1 through p-l, appear exactly p* "1
times and the field element O appears exactly pr-l-l times, It has also
been establishedeh that the pr-l r-tuples formed by teking r successive

digits of a maximal length sequence, a,,8), «¢v) 8B_15 8,83, -vsy 815
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ceed apr_l,al, 390 1 ar--a; are tne (pr--l) distinc*t nonzaro r-ivples over
GF(p) .

It is well knc'-mhthe.z maxiuil leagth tinary (I = p = 2) se-
quences exhibit the shift and modulo 2 add (or equivaiently the shift
and modulo 2 subtract) property. That is, if a maximal length binary
sequence is delayed an integral number of digits and the delayed se-
quence is added (modulo 2) tn the original sequence, the resultant se-
quence will itself be a delayed version of the original sequence.

The shift and add property may be written as:

s T(A)

s ( ) A = 1, sy L-l
hm(x)@x%(x) = z ' nod(xL-1) (2.8)

0(x) A=0

It can be shown that I(\) is unique for given A, and for
A7 Ay mod L, I(ny) # I(XJ) mod L. These properties of I(A) will be
used in Chapter 5 when the notlinear filtering of maximal length se-

quences is discussed.

26

25 using &« set of tables computed by Elspa~  de-

Wolf et al

scribed a method for determining I(A) as a function of the primitive

polynamial gp(x) , over GF(2).
The following theorem describes the shift and modulo p add

propexrty of p-nary maximal lergth sequences (p > 2),

THEOREM 2.1 If a p-nary maximal length sequence (p > 2) of length
L= pr -1 is delayed an integral number of digits, and the
delayed sequence is scded (mod p) to the original sequence,
the resulting sequence will itself be a delayed version of
the original sequencz, except for e shift of (p*-1)/2 = L/2
digits, in which case the resulting sequence is the all zero
sequence.



1k

2k has shown that the pr-l nonzero terms in the ideal

generated by hm{x) in the algzzhra of polynomials modul:> xL-l correspond

Proof: Peterson

to the pF-1 cyclic shifts of tie maximal length sequence. Since the
ideal is an additive subgroup, the addition (mod p) of hy(x) and a shifted
version of hyp(x) yields a unique shifted version of hy{x) except for the

sumation

hy(x) + (p-1)hy(x)

which will yield the polynamial O(x) corresponding to the all zero
sequence.

It will now be shown that the polynamial (p-1)hm(x) is congru-
ent to x/ 2hm(x) modulo (xU-1); the latter polynomial corresponding to

a cyclic shift of L/2 digits. We kmow:
ep(x)hy(x) = 0 mod(x"-1) (2.9)
Thus in order to show that
(p-Dhg(x) = x/2hy(x)  moa x5-1) (2.10)
it is sufficient to demonstrate that
(«2/2-p1) = (/242) = 0 mod gp(x) (2.11)
However, for (2.11) to be true, it is nncessary to show that
gp(x) | (x1/241) (2.12)

We know that gp(x) divides (xl’-l) , for no value of £ .ess than

p*-1 = L since gp(x) is primitive. Thus
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ep(X)I(xL/2+l)(xL/2-l) (2.13)

Since gp(:c) cannot divide xL/ 2.1 ;

gp(X)l(xL/2+l)
establishing the theorem.

The following corollary to Theorem 2.1 perteins to the shift
and subtract of p-nary maximal length sequences.
COROLLARY 2.1 If a p-nary maximal length seqQuence is delayed an
integral number of digits and the delayed sequence is subtracted
(mod p) from the original sequence, the resultant sequence will
itself be a delayed version of the original maximal length se-
quence for all nonzero shifts.
Proof: Since the subtraction Irom hy(x) of any term in the ideal gen-
erated by hm(x), yields a unique nonzevo term, except for the operation

hy(x) - hy(x), the shift and subtract property is evident.

From Theorem 2.1, Corollary 2.1, and the properties of maximal
length sequences, the autocorrelation functions of these sequences,
transformed by two mappings, are now presented.

THEOREM 2.2 The autocorrelation function, pa(A), of a ternary (p = 3)

maximal length seqQuence transformed by the mapping O - O,
l-1,2 -~ -1 is:

(2:3771) /(37-1) 0
=3 -(2:372) /( 1/2 (2.14)

A
5 31‘ 1 51'_1) A
A
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The proof of Theorem 2.2 is presented in Appendix A. A plot of pa(A) as

given by Theorem 2.2 is shown in Figure 2.1.

The autocorrelation function of a maximal length p-nary se-
quence (all p) transformed by the roots of unity mapping is

1 A=0 '
pa( M) =g (2.15)
-1/L A fO

The result is derived using Corollary 2.1 and Equation (2.4).
A plot of the autocorrelation is shown in Figure 2.2. This type of
autocorrelation function is known as a two-leve wocorrelation func-

tion aiid the maximal length sequence is lmown as a two-level sequence.

Two-level binary sequences, besides the maximal length se-
quence, have been derived for the following values of L.

a. L = L4 (Perfect Sequen;:e)

b. L =in-11s prime n = 1,2, ... (Quadratic Residue Sequenc:e)5

c. L = p(p+2) where p and p+2 are prime (Twin Prime Sequence)6

d. L = n®+27 is prime (Hall Sequence)7

The out-of-phase autocorrelation of the first sequence is O,
and it is the only known binary sequence to exhibit this property. The
out-of-phase autocorrelation function of the remaining sequences is
-1/L. The two-level binary sequences with out-of-phese 'autocorrelation
equal to -1/L will be used in Chapter 3 to derive, by interleaving,
larger classes of binary sequences with various autocorrelation and

cross-correlation properties.
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Two-level perfect N-ary sequences, mapped onto the roots of
unity, are known8’9 for L = Nz. However, except for the maximal length
sequences, the genersl theory of two-level sequences Las not been satis-
factorily generalized to N-ary sequences. For N = 3 a two-level vroot of
unity mapped sequence (01221) has been found by the author and it has
been :I.ndica.t'.ed27 that no two-level ternary roots of unity mapped se-

quences exist for lengths other than 5, 8, 9 up to 25.
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3. SEQUENCES DERIVED BY THE INTERLEAVING OF TWO-LEVEL BINARY* SEQUENCES

3.1 Introduction

In Chapters 1 and 2 the prior research in the derivation of two-
level binary sequences was sumnarized. Titsworthle has derived limited
classes of "almost" two-level sequences (the autocorrelation function is
close to zero for nonzero shifts), by forming ecither
the tensor or term-by-term products of the known two-level sequences.
From the theory of cyclic codes, in particular, Bose-Chaudhuri Cod.e.'s.;?8
bounds on the autocorrelation functions of some additional sequences can
be found. Emphasis has been placed on the derivation of two-level se-
quences because they provide simple and accurate methods for tracking,
ranging and synchronization.l

With the major emphasis placed on the derivation of two-level
and "almost' two-level sequences, the general problem of synthesizing
sequences exhibiting arbitrary realizable autocorrelation functions has
remained unsolved. .

In this chapter a large class of previously unknown sequences
are synthesized by the arbitrary n-fold interleaving** of the same two-
level sequence. It will be shown that the autocorrelation function of

the interleaved sequence is similar to that of the original sequence

% The discussion to follow is limited to the interleaving of binary se-
quences since many more binary two-level seqQuences are known than
general N-ary two-level sequences. However, the theory presented is
applicable to the interleaving of N-ary sequences.

##The interleaving method has be:n used previously?9d to derive error-
correcting codes with multiple burst error correction capability.
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except tf'or the addition of n(n-l) intermediate minor peaks of height
(L-n+1)/nL. A number of these peaks can occur at the same location to
produce fewer peaks of larger amplitude. A formula for calculating the
location of the minor peaks is derived. Using the interleaving tech-
nique, a new set of "almost" two-level sequences are synthesized. Also
autocorrelation functions with (n-1) peaks of different amplitudes are
presented. The cross-correlation function between pairs of sequences,
with these autocorrelation properties, is considered. The theory is
extended to sequences formed by the interleaving of two-level and com-
Plement two-level sequznces.

An n fold interleaved sequence can be generated by the gating
of sequences fram n separate shift registers. However, it is shown that
a class of sequences formed by the interleaving of maximal length se-
quences cen be generated by a relatively simple nonlinear filtering
technique. Several examples of sequences derived by nonlinear filtering
are presented.

The application of interleaved sequences for synchronization is

discussed.

%.2 Derivation of Peak Locations

It was shown in Chapter 2 that the cross-correlation function
of two transformed binary sequences or the autocorrelation function of
a transformed binary sequence could bé determined from the polynomial
representations of the sequences. Throughout the remainder of this

chapter h(x) and x®h(x) will be the polynomial representations of a
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two-level binary sequence, with out-of-phase autocorrelation of -1/L,
and a two-level binary sequence delayed by a digits, respectively.
h(x) (1@ x%], mod

xL-l, has L zeros if ¢ = 0, or (L-1)/2 zeros and (1+1)/2 ones if a £ 0.

1]

Hence, the polynomial h'(x), h'(x) = h(x)(® x%(x)

Two definitions concerned with general interleaved sequences

ar® now presented.

Definition: If the polynomial S,(x) corresponds to the sequence

(Bgs -+ey 87-;) then the polynomial x"®*Vs,(x"), where n 1s a positive
integer, =0, 1, ..., L-1, v = 0,1, ..., n-1, corresponds to the
sequence

(0,0, te0y O,QL_a, O,o, vy O,EL_wl, 00y

v . n-1l

0’0, ...’ o,aL-a—l, o,o, ..., O)

n-1l n-l-v
Polynomials must now be taken mod (an-l).

Definition: The sequence S; resulting from the (2-fold) interleaving of

sequence Sg, and sequence Sp delayed by « digits is:

Sc = (8o,b-qs83,b1-qs +«+» 8L-1,bL-1-0) -
The polynomial S,.(x) can then be written as

So(x) = Sg(x®) + xawlsb(xa) mod (x2P-1).

The synthesis procedure presented is to interleave a two-level

sequence with (n-1) shifted versions of the same two-level sequence.
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The resultant sequence, (in polynoasial representation), denoted as Sp(x)

is:

n-1
sp(x) = 0 ) MY, moa (x"-1) (3.1)
=0 '
vhere the ay's, called the interleaving constants, can assume the values*
0,1, ..., L-1, and ag = O.

The procedure for deriving the autocorrelation function pp(nétw),
of the transformed binary sequence corresponding to Sy(x), for an arbi-
trary integral delay (né+w), 6 = 0,1, ..., L-1, v = 0,1, ..., n-1 1is:

a. Form the polynomial Sp(x) = 5p(x) @xn&wsr(x) , mod (an-l)

b. Apply Equaticn (2.3) to Sy(x) [count the number cf 0's and
1's in Sp(x)] replacing 1/L by 1/nL.

It is seen that®

n-1
B (%) = n(£M) Z Plotd)v e (1) (3.2)
v=0

Thus the polynomiel Sp(x) is:

n-1l
sp(x) = 0(x) Y <PV [1@ @ Smwervavtien) ] pog (1) (3.)
v=0
where
{ 1l v<w
v = ( 5

vZ2w

and subscripts are taken mod n.

*For the most general type of interleaved sequence o # O. Hewever, as-
suming &, = O does not reduce the generality of the autocorrelation
functions.
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The exponents of the terms xn( b+an-wtv-Cy+iarv) determine the
value of the autocorrelation function for a particular delay (né+w). If
no exponent is equal to zero (for a particular 6§ and w) then the sequence
Sp consists of n interleaved sequences each containing (L-1'/2 zeros and
(1+1) /2 ones providing an autocorrelation value of pp(né+w) = -1/L. How-
ever, if o exponents are equal to zero (for a particular set of & and w)
then Sp consists of o all zero seQuences plus n-o sequences, each con-
tain® 4 (L-1)/2 zeros and (1+1)/2 ones, providing an autocorrelation value
of pp(né+w) = (ocl-n+o)/nL. For this condition the autocorrelation func-
tion 1s said to have a '"o" order minor peak, g = 0,1, ..., n.

From (3.3) it can be seen that an "n" order peak occurs at a
delay of O, (corresponding to unity autocorrelation), and no peaks occur
for delays of n,2n, ..., (L-1l)u.

From (3.3) it is determined that peaks occur for

bw,v = Oy = On_y+y = tyy , mod L (3.4)
where
w =12, ..., n-1
v=0,1 ..., n-1
and
a, =0

In order to ideatify each peak, subscripts have been placed on the para-
meter 6. For a given value of w there are n peaks providing a total of
n(n-1) single order peaks. However, a number of single peaks can occur
at the same point to produce multiple order peaks.

The n(n-l) peak locations cannot be arbitrarily chosen. Since

there are (n-1) independent parsmeters - the interleaving constants
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0,0, «vop Q,_; - only (n-1) peak locations are cou....lable.
It will be useful also to lnow the cross-correlation function

betw=en two interleaved sequences. For two interleaved sequences,

n-1
Sg-l)(x) s h(xn) xnasrl)*"
and v=0
(2) n-1 (2),
s (x) = h(x") ) K™Y o (xEe1) (315)
=0

]
cross-correlation peaks, &, y, occur for:

1) _ (2)

be,v = a£ O Sty - gy » mod L (3.6)

where w,v = 0,1, ..., n-1 and a(l), a(a) are the interleaving constants

of the respective sequences. There are n® single order cross-correlation

peaks (some of which can occur at the same point to yield multiple order peaks).
In the following section a number of constraint equations on the

autocorrelation peak locations are derived and a synthesis technique is

indicated.

3.3 Constraints on Autocorrelation Peak Locations

The following constraint equations are derived from (3.k4).

a. If all of the peak locations for a given value of w are
sumed, mod L, it is noted that:

z: S,y =-w=L-wv,mdlL (3.7)
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b. There is a symmetry relationship which the peak locations
satisfy which ensures that pp(né+w) = pp(-né-w). The re-
sulting constraint equation is:

bw,v= -fn-w,v-w - 1 , mod L (3.8)

c. The peak locations 5w,v: v=2,3 ..., n-1l, can be easily
calculated from the peak locations for w = 1 from the

equation:
v
& ,v = }: 61,b , mod L (3.9)
b=v-wtl

Equations (3.7) and (3.9) can be used to synthesize sequences
with various autocorrelation functions. The procedure used in the ex-
amples to follow is to prescribe values for 61,0,61’1, ceey 51,n-25
utilize (3.7) to calculate 61,n-1, and utilize (3.9) to calculate the
remaining peak iocations. Equation (3.4) 1s then used to determine the
interleaving constants from 6; 0, ..., 81,n-2-

It is interesting to note that although there are 17! possible
combinations of interleaving constants (i.e., LP™' different interleaved
sequences), there are fewer .distinct autocorrelation structures. If the
peak locations for w = 1 are written as a linear array, (6, 4,61 1, ...,
51,n-1): then from (3.9), any cyclic shift of the array or any cyclic
shift of the reciprocal erray (backwards array), will yleld identical
autocorrelation functions although the interleaved sequences will in
general be different. The exact number of distinct autocorrelation
structures is the number of unequivalent n-tuples in the ring of integers

mod L, with the constraint that the sum of the elements of the n-tuple is
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-1l mod L. Two n-tuples are defined as unequivalent if and only if one
n-tuple cannot be derived from the other by a cyclic shift or a cyclic
shift of the reciprocal. The number of such unequivalent n-tuples has
not been determined.

In the following two sections exanples will be presented of
two types of autocorrelation functions which can be derived by inter-
leaving two-level sequences. In the first example the interleaving con-
stants are chosen so that the highest autocorrelation peak is "2" order,
providing an almort two-level autocorrelation function. In the second
example, the interleaving constants are chosen so that all autocorrela-

tion peaks are of different heights.

3.4 "Almost" Two-Level Autocorrelation Function

The synthesis procedure will be to choose 61,0, eeey 83 n-p and
derive the remaining peaks from these values. Let L be a prime¥* and let
n = I#l. Thus the length of the interleaved sequence will be L(I+1).

Chicose the peak locations for w = 1 as:

) o = L-l, 61 1 N o, 61’2 = d, 61,3 = ad} eeey 61,L = (L-l)d ’ mod L
(3.10)

Where d = 1,2, se0y L-l, mOd La
Since L is prime, the numbers 0,4, ..., (L-1)d are all of the
distinet numbers mod L. It is easily verified that the peak locations

given by (3.10) satisfy the constraint (3.7) since

*Most of the two-level binary sequences are of prime length. The quac-
ratic residue and Hall sequences are always of prime length and the
maximal length sequences of length 2Y¥-1 are of prime length if r is a
Mersenne prime.
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L s
z by v = z v+ (L-1) = -1, mod L
v=0 v=0

There are then (L-1) single order peaks and one double order peak for
w=1.

The remaining peak locations are calculated using (3.9). In
applying (3.9) consider the (L+l) peak locations for a given value of
w divided into two groups. The first group contains those values of
84,v, which are not explicit functions of 6; o. The peak locations for

this group will assume the value

v v-1l
b ® ) bpt ) vaEvnd) - e, (3a0)
b=v-wt+l V=V-W mod L .

From the above equation it is noted that all of the peak loca-

tions in the first group are unequal since

v(wd) - Led- (wtl) # v'(wa) - —"2-‘1— (wl) mod L

for v # v', mod L.

The second group of peak locations contains those values of
84,v which are functions of 6, ,. For these values of v a typical peak
location is

by,v = v(wd) - __%Q._ (w#l) + (L-1) , mod L .

The peak locations in this second group 30 are all distinct. However,
a peak location in the first group can be equal to a peak location in

the second group. Hence, the autocorrelation function will contain zero,
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first and second order peaks. The magnitudes of first and second order
peaks are O and +1/L respectively. The autocorrelation function of the
sequence derived by the (I+1) fold interleaving of the length L = 7 max-
imal length sequence, with 4 = 1, is shown in Figure 3.1.

L sequences instead of (I+1l) can be interleaved to provide auto-
correlation functions bounded by double order peaeks by choosing the peak
locations for w =1 as & o = L-1, 6, =d, 6, =24, ..., §;,1-1
= (L-1)d.

Fewer than L sequences can be interleaved to provide sequences
with autocorrelation functions bounded by double order peaks. If a se-
quence of length nL, n < L, is to be synthesized, a synthesis procedure
would be to find a set of n numbers, v,u+d, ..., v+(n-1)d, which sum to -1
mod L. There is always a unique number v for any 4 and n such that this
congruence can be satisfied. These numbers (in order) are then the peak
locations 6; 0,61,15 -++» 81,n-1, and 1t can be shown that the resultant
autocorrelation function is bounded by double order peaks. It has been
found that for certain values of n the autocorrelation function derived
in this manner 1is bounded by single order peaks, although no general
result to this effect was found.

It can be shown that the cross-correlation function, for all
cyclic shifts, between two "almost" two-level interleaved sequences, for
n <L and n prime, is bounded by fourth order peaks. The proof for
n = L has been presented elsewhere;50 the proof for n < L is given below.

Consider an "almost" two-~level interleaved sequence with the

peak locations 6&?% for w = 1 chosen as
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(1) 6(J.) (1) (1) 6(:.) (1)

(1)
61,0 =V [} 1,1 =V + d ) ooy 1,n-1 =9y + (n-l

)d(l)

Similarly a different "almost" two-level sequence will have peak locations

6‘(,?2, for w = 1 chosen as
2 (D), e (@) ) ) @ ()

where a(1), a(®) = 1,2, ..., 1-1 with a(}) # a(2), moa 1, v(*) and v(?) are
determined from (3.7) setting w = 1.

The cross-correlation peak locations, 6,:,,‘,, are given by (3.6)

5‘;,‘,54’-) ‘af:feﬁv'“w G EESE

vhere the a(") 's and a( 2) 's are the interleaving constants of the two

sequences.

From (3.4) it is determined that

o)) o (2 e)a®

and

Q,(,i),.,,v = (n-wtv)v(®) + (n-wV)(n-zw*'v*ﬂ)d(a) , mod L

! 1 At J -
Define a variable &y,v 88 &y,v = sw,v + W, Thus &, v is the cross
correlation peak location for v > w, and the peak location increased by

one for v < v. Thus gy v 18

(1) i . (2)
s‘;,v = W(l) + V_(_\H’la)d - (n_wv)v(a) = (n w*l-v)(nzwq.vq.l)d ,
mod L
In order to determine the maximm multiplicity of peaks, it is

necessary to determine the values of v' # v mod n for which 3':r,v = 8w, v



mod L. The procedure is to set g",’v = g",’v., mod L and solve for the
values of v' mod n which satisfy the congruence. It is apparent that a
quadratic equation in v' results, and if r is prime then only two solu-
tions exist, one of which is evidently v' £ v mod n. Thus any value of
6,,',,,, can occur with maximum multiplicity of twc for a given value of w.
However, if the effect of iy is considered, it is seen that the first
v values of g",’v are reduced by 1 to yield the cross-correlation peak
locations 6,,',,‘,. It is then possible that four values of 6;,\, will be
identical (for a given w), providing a cross-correlation function bound-
ed by fourth order peaks.

The class of sequences just described has "good'" autocorrelation
and cross-correlation properties. Thus these sequences can be used as
a set of code words for a coomunication system with the transmitter
asynchronous with the receiver. The "almost" two-level autocorrelation
property can provide a means for synchronization, and the "good" cross-
correlation property for all cyclic shifts provides a low provability
of deciding on the wrong code word.

As a final remark on these "almost" two-level interleaved se-
quence it should be noted that the class of sequences of length I? forms
a set of good error-correcting codes, if the code consists of all cyclic
shifts of all of the (L-1) interleaved sequences. A total of L2(L-l)
code words are formed with minimum distance,* dpiy = #( L2-5L+1&) . Thus

for large L the code consists of (approximately) 12 code words of length

#The minimmm distance is easily evaluated by relating the mavimum value
of cyclic cross-correlation (equivalent to fourth order peai) to the

Hamming distance.
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L? with an error-correction capability of Lz/h. A Bose-Chaudhuri code ,28
(the best of the known linear codes) containing L® code words of length
L2 provides a guaranteed error-correction capability of only L2/2 log, L.
Thus the code formed from the interleaved sequences provides protection
greater ‘han a Bose-Chaudhuri code of equal length with an equal number of
words.

In the following section a class of sequences with autocorrelation
functions containing intermediate peaks all of different amplitude will be

synthesized.

3.5 Autocorrelation Function with A1l Peaks of Different Amplitude

The synthesis procedure is to choose the peak locations &,y for
w = 1. Choose 61,0 = 83,1 = +v. = 83,n-2 = v, vhere v can assume any
value, mod L, except values for which the congruence vn = L-1, mod L, is
satisfied,* where n is any positive integer. The choice of allowable
values of v provides an "(n-1)" order peak in the autocorrelation function
at (nvtl). There is then a single order peak at (ndy,n-1+l) where
81 ,n-1 = (L-1) - (n-1)v, mod L.

The remaining peak locations are calculated from (3.9). It is

determined that & = veo = 0 = wv, mod L, and 6, .,

=
W,w=1 W,W? w,n-2

¥ 6w,o =loonl & 6w,w-a

order peek of (nwv+w) and a "w" order peak at [n(L-1) - n(n-1)v + w],

(L-1) - (n-w)v, mod L. Hence there is an "(n-w)"

mod L. The autocorrelation function thus contains (n-1) peaks, (exclud-

ing the symmetric perks), all of different order. If n<1IL and nv and L

#Interleaved sequences for which v satisfies the congrusnce vn & L-1,
mod L, reduce to n repeated versions of a cyclic shift of the orig.nal

two-level sequence.
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are relatively prime, the different order peaks correspond to distinct
values of 6. This condition ensures that the (n-1) peaks are not
"bunched" together.

The autocorrelation function of the interleaved sequence derived
from the length 15 maximal length sequence by choosing n = 7, v = 1 is
shown in Figure 3.2.

It will now be shown that the cross-correlation function, at
all cyclic shifts, between twc "different" peak sequences, derived fram
different values of v for L a prime and n < L, is bounded by couble
order peaks.

It can be seen that two different "different" peak autocorrela-

tion functions result for interleaving constants as,l) » ag,‘?) s

o~
)
N
III
’\
v

al Ev( ), aél) 52\a(1), Jp— (1) = (n- l)v(l) ,mod L,

ac(,"’) s0,a® =3 oé,a) (0-1)v{3) | mod L,

1

where

n<L, v(l), W2 o 1, ..., -1, v(2) ;év(2) mod L .

Cross-correlation peaks, 6,,},\,, then occur for

6' (1) (i)ﬂ-v by mod L

Defining again the variable gy v = Oy v + iy, 1t 1is seen that

By v E w(l) - (n-w+v)v(2) ™ (w-n)v(z) + v(v(l)-v(z)) mod L

VvV

Hence, for a given value of w, Gé,v # g,",’v., mod L for v £ v' mod L.
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Thus the values of gy  are all distinct for a given w, indicating, after
considering the iy, function, the maximm multiplicity of cross-correlation
peaks is 2.

The application of a simple "different" peak sequence for syn-

chronization 1s considered in Section 3.8.

3.6 Complement Sequence Interleaving

A method of synthesizing sequences with usefu). autocurreiztion
properties by the n-fold interleaving of the same two-level scqueice was
presented in the previous sections. Additlonal sequences can be synthe-
sized by proper interleaving of a two-level sequence along with the cam-
plement of that sequence uch sequences will exhibit autocorrelation
functions with positive anu negative peaks.

It is recalled that the complement sequence, h(q")(x), of a
two-level sequence, h(x) is, h(q'l)(x) = h(x)@l(x). The polynomial,
h"(x), h"(x) = h(x@xah(q-l)(x) = h(ql)(x) ®x%(x), mod (x-1), has L
ones if a = 0, or (141)/2 zeros and (L-1),2 ones if a # O. The poly-
nomial h'"™(x), h"(x) = h(q'l)(x)®xah((h)(x), mod (xL-l) is identical
to the polynomial h'(x) defined previously.

The synihesis procedure used is the n-fold interleaving, with
arbitrary shifts, of a two-level sequence of length L and its camplement.
The resultant sequence (in polynomial representation), denoted as Syr1(x)

is:
n-l
Spi(x) = Z SV (P, mod (xL-1) (3.11)
v=0
where hy(x) is either h(x) or h( q1)(x) .
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In order to find the autocorrelation function, it is necessary

to form the polynamial, Spi(x),

Sp'(x) & Spr(x) @ xP**spe(x) , mod (xL-1) .

Thus
n-1 ,
Sp(x) = z X" [hv(xn)@xn(bm"'wvww") hn-w-i-v(xn)] ,
v=0 mod (xL-1) (3.12)

Peaks will occur in the autocorrelation function for

6’?%_W-av+|&w.,50,m0dlo.

However, the peak can be either positive or negative. A positive peak
occurs if hy(x) and hp-y+y(x) are both uncomplemented or both comple-
mented polynomials. A negative peak occurs if one of the polynomials
is uncomplemented and the other complemented. The peak locations satis-
£y (3.7), (3.8) and (3.9). No peaks occur for w = 0, (excluding of
course v = 0), and the autocorrelation function for fhese delays is'
-1/L.

It can be shown if a weight of +1 is assigned to a positive
peax and a weight of -1 to a negative peak, then the total weight of
the peaks of a sequence interleaved from n; two-level sequences and np
complement sequences (ni+nz = n) 1is (n1-nz)> - n.

In Figure 3.2 an autocorrelation function with (n-1) peaks of
different amplitude was presented. By interleaving complement sequences,
autocorrelation functions with positive and negative peaks, all of dif-

ferent amplitude, can be synthesized. The procedure is to choose h,(x)

= h(x) for v = 0,2,4, ..., and hy(x) = W) (x) for v=1,35 ... The
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peak locations fcr w = 1 are again chosen as & 1,n-2
Negative peaks occur for w = 1,3, ..., and positive peaks for w = 2,4,
eee « A positive and negative "different' peak autocorrelation func-
tion for n =7, L = 15, v = 1 is shown in Figure 3.3.

In the following section it is shown that sequences generated
by the interleaving of maximal length sequences can be generated by the

simple nonlinear filtering of a maximal length sequence.

3.7 Generation of Interleaved Sequences by Nonlinear Filtering
Raphaell9 has described a technique for synthesizing binary se-

quences (which are recognized as interleaved maximal length sequences),
with autocorrelation functions containing minor peaks, by the nonlinear
filtering of a maximal length sequence. The filter* (shown in Figure
3.4) forms the mod 2 sum of a maximal length sequence, of length L,
(with each symbol repeated n times, n = 2,3, ...), and this sequence de-
layed by nry+y digits, ¥y = 1,2, ..., L=, ¥y = 1,2, ..., n-1. Raphael
found the autocorrelation function of the output sequence for a few val-
ues of L, n, 7 and y, by computer simulation. The generalization of
these results are presented as an example at the end of this section.
First a multiple nonlinear filter which can be used to generate
a wider class of interleaved maximal length sequences is presented. The
filter, as shown in Figure 3.5, consists of n delay elements, delaying

the input repeated maximal length sequence ny,, ny;+l, ..., nrp.ytn-1

*The filter operation is nonlinear because the mod 2 sum of binary se-
quences is isomorphic to the product of mapped binary sequences.
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digits respectively, (74 = 0,1, ..., L-1, ¥y = 0,1, ..., n-1), and a mod 2
sumer. There is also the provision that particular delay elements can
be switched out of the circuit by the operation of switches SWq,SWy, eees
SWp.;. The opening of switch SWy is equivalent to adding, (mod 2), an
all zero sequence in place of the input sequence delayed nyyty digits.
The analysis of the multiple nonlinear filter is as follows.

The input maximal length sequence, with each symbol repeated
n times, is represented as the polynomial Sp(x),

n-1
Su(x) = gl ) %, | (3.13)
0=0
where hy(x) is the polynomial representation of a maximal length sequence
of length L.
The output of the y'!! delay element, Sy(x) , in polynomial repre-

sentation, 1is

n-1l
Sy(x) E xn7y+ya,y(xn) z < , mod (an-l)
0=0
n-1
= o) Y PV g (g (3.1
=0
where
l v<y
= 0 v2vy
and

g hy(x)  if SWy 1s closed

(x) =
kAN (O(x) if SWy 1e open
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Then the polynomial representation of the output of the mod 2

summer, Sop(x), is

Som(x) = So(x) @81 (x) D ... ®Sp-a(x) ,

n-1 n-1
D) O‘H(Vr“w)ay(x“) , mod (xML-1) ,  (3.15)
v=0 y=0 ~

where Z@ indicates mod 2 summation.
Since the mod 2 summation of n arbitrarily shifted maximal
length sequences yields either a shifted maximal length sequence or an

all zero sequence, SoT(X) can be represented as

n-1l
Son(x) = z PV Var (™, (mod xPF-1) (3.16)

v=0
where the a,'s and a,(x)'s are functions* of 7y and a.y(x) 7 A =R0, TS
n-l. Hence the output sequence is an interleaving of shifted maximal
length sequences and all zerc sequences.** There are L possible states
of the delay element (nyy+y), corresponding to “he L values of 7y with
Sty closed, and one extra state corresponding to SWy open, providing a
total of (L+l) states. Hence there are (L+1)" states of the nonlinear
)n

filter. However, there are also (IL+l) possible n-fold interleaved

*a.(x) 1s either hp(x) or 0(x)

#*The autocorrelation functions of sequences interleaved from binary two-
level seauences and all zero sequences were not considered in the pre-
vious sections. However, it can be shown that these autocorrelation
functions have similar minor peak structures as thos= sequences consid-
ered previously except for the occurrence of an "£" order peak at delays
of n,2n, ..., (L-1)n, where £ is the number of all zero sequences inter-
leaved.
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sequences, suggesting the possibility that every interleaved sequence
can be generated by the multiple nonlinear filter. It is proved, in
Appendix B, that this is indeed the case for n = 2, by demonstrating
that each filter state yields a different interleaved sequence as an
output. It is conjectured that the result is true for all n, although
the method of proof appears involved for n > 2.

Two examples of sequences derived by nonlinear filtering are
novw given. In the first example the general solution to the filter
(Figure 3.4), consisting of a single arbitrary delay, ny+y, is given.
In the second example the synthesis of a certain type of "different"

peak sequence is presented.

Example 3.1 With a single delay element, ny+y, the output sequence,

Sor(x), in polynamial form is

Sor(x) = Sp(x) @ ™ Vep(x) , mod (x*-1) , (3.17)

or

y-1 n-1
Sor(x) = h(x?) {xnI('}'H-) z x° + xnI()') 2 xy} mod (an-l) .
b=0 e=y (3.18)

Thus the interleaving constants, «,,, are

Oy =0 = ... = Gy = I(7+1)
Q =Gy = coo =0y = I(7)

Applying the theory of Section 3.2, it is found that autocorre-

lation peaks occur at shifts of ndé+w, with the following peak orders.
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a. PFor v < min(y, n-y] the peak orders are:

"w'" order reak at § = I(y+l) - 1 - I(7)
"w" order peak at 6 = I(7) - I(7+1)
"(n-2w)" order peak at 8§ = 0

b. For y <w < n-y, with y < n/2,* the peak orders are:

':y" order peak at § = I(7+1l) - 1 - I(7)
"y" order peak at § = I(7) - I(y+1)
"(n-y-w)" order peak at § = 0

"(y-w)" order peak at 6 = L - 1

c. For w > max[n-y, y] the peak orders are:

"(n-w)" order peak at 5 = I(7+1) - 1 - I(7)
"(n-w)" order peak at & = I(7) - I(y+l)
"(2w-n)" order peak at § =L -~ 1

It is noted that the peak locations I(y) - I(7+l) and I(7+1)
- 1 - I(7) correspond to symmetrical peaks. A plot of the autocorrela-
tion function of Sop is shown in Figure 3.6 for arbitrary values of n,
(n even), and L, and three values of y, Y1 =1 <Y<Yy = n/2. The

case y = 2n is the situation investigated by Rapha.el.19

Example 3.2 Consider the multiple nonlinear filtering network, Figure

3.5, with all switches closed and 7, = 71 = ¢es =73 = 0. Forn odd,

SoT becomes
n-1 n-2
sop(x) =n(x) { ) L ) 0 (3.19)
b=0 b=l
b even b odd

*For y > n/2, then y is replaced by n-y in all relationships in case (b).
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Thus the interleaving constants, o, are

o

b =% = =iy =0
a1=a._,=...=an_2=l .

The peak locaiions, 6‘,,,,, for w = 1 are then

61,0 = 61’2 2 .., ® 51,n_1 = L-1
81,10 28,3 =0 =8 npp=1
There 1s a "[(n+1)/2]" order peek at a delay of n(L-1)+1 and a "[(n-1)/2]"

order peak at (n+l). Then applying (3.9), the peak locations &,y for

arbitrary w < n/2 are:

w odd: aw,o = 6‘“1 = Gw,a = ... = 6w,w-1 = L-1
5w,w = 5w,w+2 SR o = 6w,n-2 1
%’WI = 6“,%3 T eee = 6w,n-l = L"l

There 1s then a "[(n+w)/2]" order pesk at n(L-1)+w and a "[(n-w)/2]"

order peak at (n+w)

v . = =1y sl =
even bw,o 5w,2 6

1
5
n

W,w-2 =
6w,1 = 6w,3 = Lee = 6V,W'3 = O

5w,w-1 = 5w,w = 5w,w+1 =l 6w,n-J. =0

There is then a "(w/2)" order peak at n(L-2)+w, and a "[n-w/2]" order
peek at w. This is a "differcent” peak autocorrclation, although the

peaks are "bunched" together. The plot, for n =T, L = 7 is shown in

Figure 3.7.
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3.8 Synchronization with Sequences

In order to detect, by correlation techniques, the inform.tion
carried by most signals, the correlator receiver and transmitter must be
synchronized. Synchronization information car be transmitted on the
channel carrying the signal or on a separate <:ha.rme1.22 For separate
channel synchronization a two-level sequence (or "almost' two-level
sequence), whose period is equal to the duration of the information
signal, can be transmitted on the separate channel. The two-level prop-
erty of the sequence provides unique synchronization with a low probabil-
ity of error.

A two-level sequence can also be used for synchronization when
the synchronization information is carried on the channel with the signal.
In this case the two-level sequence, used as a subcarrier, is plase
modulated by the signal.

Several techni:ues for utilizing the two-levei sequence (fi:
either the separate channel or same channel method) ars possible, asswu
ing that symbol syachronization is known for the sequence.

a. The transritted sequence, with unknowm delay, is cross-
correlated with all cyclic shifts of itself, and 211 of the correlator
outputs are stored. The shift which provides the largast output deter-
mines the synchronization decision. The probability of correct synchro-
nization is determined by noting that the set of L sequences resulting
from L cyclic shifts of two-level sequence, form a set of simplex codes.

The error probability for these codes has been derived..gO
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b. The transmitted sequence is cross-correlated with successive
cyclic shifts of i1tself. The shift which provides a correlator output ex-
ceeding a predetermined threshold specifies the synchronization decision.

Fewer correlation operations, on the average, are :equired for
case (b). The number of operations can be reduced further by using inter-
leaved sequentes as synchronization carriers, and "locking-onto" a minor
peak or the peak at zero delay. The average probability of correct syn-
chronization is now derived, when a two-level sequence is used with the
technique specified in (b). and when two classes of interleaved sequences
are used.

Consider the application of the two-level sequence, of length L,
with the autocorrelation function shown in Figure 3.8, for synchronization.
Assume the transmitted sequence is initially delayed by b digits, b = 0,1,
essy L-1, with respect to a reference sequence. The first shift which
yields a correlator output above the threshold M; determines the synchro-
nization. If the average sequence power is S, the time duration ol the
sequence T, and additive white Gaussian noise with zero mean and two-sided
power spectral density No/2 is assumed, then the average probability of

correct decision, T’cl, is:

o T G e B - e D)

(3.20)

where

Yy

2

erf(y) ="/2T ‘[ e“t at . (3.21)
o
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It 1s necessary to find the threshold value, My, which maximizes P, .
For high values of ST/N,, the quantity (1 + erf (My 45T/Ny)], can be

approximated by

1+ erf (M;, %}~ 2 - - lNo exp [-M"{’ —}S%- (3.22)

Then retaining only the first two terms in the expansion of

b
exp(na

N No
the expression for 'f becomes

5o, ~ {-1 - erf ((M;-l) J@X l_;_, : J_'(_IL exp ( gy ___)]

Pe
(3.23)

For given values of L and ST/N,, (3.23) can be maximized by a trial and
error procedure,

Now consider the application of two-fold interleaved sequences
for synchronization. The sequence with polynomial representation,
R(x) = h(x®) + xI"'h(‘h)(x"’) exhibits the autocorrelation function shown
in Figure 3.9. If the delay of the transmitted sequence, b, is , b > L',
then synchronization can be achieved by "locking-onto" the negative peak
at a delay of I'. If b < L', then synchronization is achieved by "locking-
onto" the positive peak at zero delay. For thresholds Mz, the averuge

probadbility of correct synchronization, §C2 is derived

L'-l

Be, = —2%,— [exr (% %} [2- err ((Me-1) «/%f‘)] (3.24)
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Then -f"ca can be approximated as, for large éigna.l-to—noise ratios,

e [t - o (o D] [v - 2 n (o2 )
o .
o (3.25)
If L' ~ L/2, then the. expression for P, and fca are identical, although
the use of the interleaved sequence requires only half the number of de-
lays (on the average) for synchronization. |

As a final example consider the interleaved sequence R(x) = h( x2)
+ xaaﬂh(q;)(xa). If a is properly chosen, the autocorrelation function
shown in Figure 3.10 can be realized. For this seqQuence synchronization
can be achieved by "locking-onto" cither of the negative minor peaks.
However, when a particular minor peak is "locked-onto", it is necessary
to perform one additional operation to achieve synchronization.

The synchronization procedure, referring to Figure 3.10, is as
follows. If the initial delay corresponds to region III, the reference
sequence is shifted until a minor negative peak is detected. Then the
reference sequence is shifted L"+1 digits, and the correlator output
should indicate no peak. If the initial delay corresponds to region II,
the reference sequence is shifted until a minor peak is detected. Then
the reference sequence is shifted L"+1 digits, and the correlator output
should indicate a large positive peak. For region I the reference se-
quence is shifted until a large positive peak is detected. With thresh-
0lds Ma and -M; the average probability of correct synchronization §c3

for large signal-to-noise ratios 1s approximated by:

- — - ——— ———— -
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2 - ert (wo-1) ST s [2 - ext (M) /:f;::-]} (3.26)

L"(L"-1) e-)g ST/No e-Mf ST/No ]

The number of operations required to synchronize with this se-
quence is approximately one-third the number required with a two-level
sequence, or two-thirds the mumber required with the single negative
peak sequence. However, a significant decrease in average probability
of correct synchronization is observed with the reduction in synchroniza-
tion time. For ST/N, = 100, L = 63, L' = 31, L" = 20, the values of P,
and P, maximized over My and Mo are each 1 - 6+ 10"*'. The value of
Pog, maximized over Ma and M, is only 0.999.

The general "different" peak sequence, analyzed in Section 3.5
can be used to further reduce synchronization time by "locking-onto' a
minor peak, although there will be a corresponding decrease in the proba-

bility of correct synchronization.
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L, N-ORMHOGONAL AND CYCLICALLY N-ORTHOGONAL SEQUENCES

4,1 Introduction

In this chapter sequences with symbols mapped onto the Nth

plex .oots of unity, which are N-orthogonal and cyclically N-orthogonal
will be derived,

Definition: A class of N-ary sequences is N-orthogonal it givén any two

sequences in the set, the cross-correlation function at zero delay,
between the mappings of
a, the sequences
b, one of the sequences and any complement of another sequence
c. any complement of one sequence and any complement of ancther
sequence

is zero.
For the roots of unity mapping sequences S, and &,

8a = (85,80,.0081.1) - Sb"'(bO:bh"-:bI.-xy

are N-orthogonal if

PP

I=1 oq '
L (0) =2 ze*i' Lag-r) - (bp-t)] (k1)

i=0

wherer, t = 0, 1,..., N-1 to yleld the rth and tth complements of Sa

and sb respectively.

Definition: A class of N-ary sequences is cyclically N-orthogonal if the

class is N-orthogonal for all cyclic shifts of all sequences,
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Then sa and Bb are cyclically N-orthogonal, for the roots of
unity mapping, if

=1 : : :
pab(k) -}I: 1zbed(2“/N)[(ai'r) - (bi-)\-t)]- 0 , (lh?-)

for all A\, r and t.

In this chapter techniques will be presented for the derivetion
of sets of cyclically N-orthogonal sequences. A subset of the set of
cyclically N-orthogoneal sequences form a dbasis for a set of N-orthogonal
sequences, The relationship between N-orthogonal sequences and the
generalization of Hadamard matrices is indicated.

All of the techniques for the synthesis of binary cyclically
orthogonal sequences produced a class of sequences all of different least
period. It is conjJectured that cyclically orthogonal binary sequences of
the same least period do not exist, This 'éonJectur;, a.loné with the

Fourier analysis of binary sequences, is discussed.

4,2 Derivation of Cyclically N-orthogonal Sequences

In this section some theorcms will be derived on the construction
of cyclically N-orthogonal sequences, with symbols mapped onto the roots
of .unity. Most of the proofs will be established by noting the symbol
structures of a sequence which is the mod N difference between the two
sequences vhich are to be shown cyclically orthogonal, Modulo N arith-
metic is used for all arithmetic operations with the symbols of sequences,

A lemma is now presented on the symbol structure of N-ary sequen-

ces.



57

Lezma k.1 Given any N-ary sequence, S, of length L, then the sequence,
8y' Of length NL which consists of a complement of 8, followed
by all other distinct complements of S,, and the eequence 8
itself (in any order) has each symbol appearing exactly L t

Proof: The sequence Sa' cen be denoted as

§'a= [Sa(qjo ), sa(qil )’”., .Sa(qiﬁ-l)} ,

where S (qia) 1s the 1, complement of sa and 14414' for J#3'. If the e

symbol of 8, is a,, then the 1, I+, 2m1, veey (N-1)I#1, symbols of 8,
are a;-i,, a4-1y, ..., 84-iy,, which are all aistinct modulo N. Hence
each symbol cppears exactly L times in S,' and the lema is true,

A method of constructing two cyclically N-orthogonal sequences
is given by the following theorem,

THEOREM 4.1 Given any two N-ary sequences S, and Sy, of length L, then
the sequences Sg' and Sp', of length NI,

8! a [Sa(qio): Sa(qii )’ s Sa,(qiN-l )]

S L e 1L

are cyclically N-orthogonal.

Proof: Form the sequence S,' -'(sa')(q'r) - xnm"(

t‘bh

5,")(%), wnere
P "(sb')(q-t) represents the complement of S, ' shifted by nl+4 digits.
Noting that x"*%(5 )(%) 1s just the sequence x*(5,)(%t) repested N tines,

S - * reduces to



' . [(s‘-x‘sb)(qio*i‘-t), (s‘_x‘sb)(‘l:.,#r-t), ooy

(8&4:‘8.b ) ( qin.; +r-t) ]

3

Thus from Lemma 4, l each mn'bol in 8,' eppears exactly L times indicating
that 5,' and 8,' are cyclically N-orthogonal.

It 1s noted that the sequences S ' and S’b defined in Theorem k.1
are of different least peri- 1, Theorem UL. 2 gives a procedure for construc-
ting non-bina.ry sequem_es of the same least period which are cyclically
N-orthogonal, .

THEOREM 4.2 Given the sequence 8, "
[s 8, (@), g (‘12),..., 8 (qN-t)]

noting that the complements of S, a.re taken in a specific order -
not the arbitrary order of S,'. Then the sequences BSy" and B'Sy",
B8,8'=0,1,...,N-1,BfB", are cyclical]y N-orthogonal,

Proof: Form the sequerce §,",
scll — B(sa")(qr) - xnIr.'LBl(Sa")(qt)
Then the 1, It ..., (N-1)I+1, (1< £) symbols of 5." e

B(ai-r) - B! ai_z-(N-n-l)-t], B(ai-r-l) -B'[ ai_L-(N-n-l)-t-l],

vesy Blag-r+l) - B'[e, z-(N-n-l)-t+l] ,

respectively. These terms, using ring of integer mod N operations, reduce
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to M0(B'-B), A1(P'~B), ..., A+(N-1)(p'-p), where Mmp(a,-r) - 5'[‘1-&"
(N-n-l)-t]. In order to complete the proof it is necessary to show that

N=1
eJaTmZ‘ [e"?ﬂ%ﬂ]" =0
0 .

However, Van der WM.-z'dm:31 shows that the sum of all powers of any root
of unity (except 1), is zero, thus establishing the theorem for i < £,
The proof for 1 > £ is similar and hence is omitted.

It is of im;.erest to note vhich of the sequences S,", all B, are
of the same least period. Twc sequences Bsa" and ?'sa" aré of the same
least period if the roots of unity e and ed—zﬁi are of ?.he same order,
If N=p is prime all of the non-real roots are of the same order anéd thus
all of the sequences asa", B=1, ..., p-1 are of the same least period, NL,
If Nf prime then only the values of B corresponding to primitive roots,
Yield sequences of least period NL,

From Theorems 4.1 and 4,2 a general class of .(N-1)k+l cyclically
N-orthogonal sequences#* of length NkL can dbe derived from an arbitrary
sequence 8, of length L The set of sequences are: the all zero sequence

plus Bisai’ si-l, 'XX¥) N"l, i-O, seey k-l where 881 is

8"1 = [Sa, veey Suy Sa(q‘l.), coey Sa(q-x), sesy Sa(qN-x): voey sa(qN-l)] ’

-

Nt . Nt

repeated 11 tines.

¥The least period of all of the sequences is not e



An important special set of (N-1)k+l cyclically N-orthogonal
sequences of length Nk is derived by letting 83-(0). Then the sequence

S

a reduces to
i

! Sai = [O, °vey o, N'l’ ey N"l, seey l, (XXX} l] )
N n NE

repeated n-i-1 times,
It 1is easily shown that the set of reciprocal sequences, are
also cyclically N-orthogonal, Examples of cyclically N-o- hogonal sequen-

ces are presented below,

Example: Ne3, k=2, 8 =(0)

8, = (021021021)

28y, = (012012012)
Sa, = (000222111)
2331 = (000111222)

Example: Nek, k=1, 8,=(0)

S, = (0321)
28q, = (0202)
' 3Sa° = (0123)
It can be proven that the set of sequences, S, 4’ i=0, 1, ...,
k-1 are a basis for a sot of N-orthogonal sequences, Jor the special case
of 8y=(0), the set of N N-orthoéonal éequences. of length NE result.21
For N=2 this set reduces to the set of 2k bi-orthogonal sequences known

as the Walsh mnctions.hl The set of binary sequences S, . will hereafter
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be denoted as the Basic Walsh functions.
The set of sequences Sai’ (vith Sg=(0)], are not the only set of
cyclically N-orthogonal sequences in the set of Nk N-orthogonal sequences,

The set of sequences Bi'sa.i" i=1, ..., k-1,

)
sai. ] JZ‘OBJ"SGJ % 83*1" =0, 1, ..., N1,

B " a 1, 2’ svey N"l (ho3)

J=1
are also cyclically N-orthogonal.* It can be shown that the set of sequen-
ces S, ! form a basis for the set of Nk N-orthogonal sequences.
i
It is shown in the following theorem that there are no additional
k :

sequences in the set of N N-orthogonal sequences which are cyclically
orthogonal with each of the sequences Bi'Sa e
THEOREM 4,3 There is no set of cyclically N-orthogonal sequences in the

set of NX N-orthogonal sequences which contains more than

(N-1)k+1 sequences.
Proof: The proof will demonstrate that there are no sequences, (except
the all zero sequence), in the set of Nk N-orthogonal sequences, which are
cyclically N-orthogonal to aisai: [(with Sg=(0)]. The more general proof
vhich demonstrates that there are no sequences which are cyclically orth-

ogonal to each of the sejuences § 1Sai' is similar to the proof which

follows, except for a more. complicated notation. Hence, this more general

¥for ﬁJ"-ﬁ, J=0, I, ..., I-1 an 4 =1, the set Sai' reduces to Sai.
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proof is not given,

Consider the sequence 8 -8enerated by linear combinations of the

basis elements 8, . Then 84 1s

/)
sdnzaijsaij y iy <y, 1, <k-1

The sequence Sd’ vhich has the same least period as Bizsau, is of the form

(
sd = [S_a_’ (sa)\qail'): (Sd)(qeaiz): veey (su)(Q(N-l )Biz)]
Nis |

repeated i times, wvhere S 1s a sequence vhich has the property

that the sum of the sequence symbols (mapped onto the Nth

complex roots
of unity) is zero, and the. first symbol of S, is zero also.

Consider the cross correles:ion function between S q and Bizsai
shifted by one place, This 1is done by considering the structure of the

sequence Se = 54 - 11[81 Lsaiz]’ which is found to be:

Se = [Sa F) Sa,ooo’ sa] + [Biz(N-l), o,o-o, 0, BIL(N-I)’ O’oon,

=y

o, By (1-1), O, ..o, o]

i i
with the Biz(N-l) term occurring in the 1, N "+1,..., Nk-N by places,
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Thus the structure of 8, 18 identical to the structure of 8, repeated
N*"12 tines except that the first term of S, 1s changed from O to
Biz(N-l);‘_O. Thus the sum of the symbols of S, mapped out the roots of
unity, is not zero and § a is not cyclically orthogonal to By S‘il,’ indi-
ceting that there are no sequences cyclically ortlrogonal to every sequen-
ces in the set Bisa1°
In Section 4.3 the relationship between N-orthogonal sequences

and generalized Hadamard matrices is discussed,

k.3 N-orthogonal Sequences uwnd Generalized Hadamard Matrices

It hae been shawnl that the theory of bi-orthogonal sequences
(N=2) s closely related to the theory of Hadamard matrices. A Hadamard
matrix is & square mxm matrix whose elements are ones and minus ones, and
whose row vectors are mutually orthogonal and whose colwnn vectors are
also mutually orthogonal, The dimension of a Hadamard matrix must be#*
m=l, 2, 4r, r=1, 2, ... For every known Hadamard matrix of dimension m
there is a set of m binary bi-orthogonal sequences of length m., Many
techniques for the construction of Hadamard matrices exiat.32

The concept of Hadamard matrices can be logically generalized

th

to square matrices whose elements are the N~ roots of unity. The theory

of these generalized Hadamard matrices is at this point practically non-
existent, although some theorems have been suggested by related vork.l3
Throughout the remainder of this section the elements of the generalized

Hadamard matrice will be indicated to be the ring of integers mod N,

¥AIThough the dimension of a Hadamard matrix must be 1, 2, ir, Hadamard
matrices are not known for every value of r.

—_— - ———n s g -
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although it 1is understood that the elements should be the inapping of these
integers onto the complex roots of unity.

Generalized Hadamard matrices of dimension N© exist since it has
been shown that a set of Nk N-orthogonal sequences of length N exist.

As an example consider two possible matrices [H, ], [H,], for Nep=3, k=1,

o [

If generalized Hadamard matrices [H,] of dimension my, and [H,]
of dimension m,, are known then a generalized Hadamard matrix [Hy) of
dimension my=my°m,is derived by forming the Kronecker product written
[Ha)=[B; Ix(H,], of [H,] and [H,]. The Kronecker product matrix is formed by
substituting* [H,] for each zero in [H;], the first complemert of [H,]
for each one in [H;], ..., the (N-1) complement of [H,] for each N-1 in
[(H,]. As an example consider the Kronecker pméuct of the two three by
three matrices indicated above. Then R |
| 000, 000'000
021, 021.021
012:012 012
000; 222111

(Ha] = | 0212101102
012,201, 120
- obe o = L .

ooo.m-zee
021,102,210
012!120 /201 | ,

¥he proof of this result gliows Tnmediately from the proof for the
ordinary Hadamard matrices”“ and hence is omitted.,
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where the Kronecker product formation is indicated by the dotted partition
lines., It is noted that the Kronecker product of matrices of dimension
N ant N to y1eld a matrix of dimenstion N**2 does not yield a new
class of N-orthogonal sequences since a class of N-orthogonal sequences

is known for NX, all k.

However, new classes of N-orthogonal sequences can be generated
from generalized Hadamard matrices derived from certain two-level N-ary
sequences, From a two-level N ry sequence of length L, (for the roots
of unity mwapping) with out of phase autocorrelation -1/L, a generalized
Hadamard matrix of dimension L+l is derived whose rows are the all zero
row, plus all cy:lic shift of the sequence with an extra zero at the
beginning. For example consider the matrix [H,], derived from the two

level sequence (01221),

000000
001221
010122
(K] = |021012
022101
o12210f .

The set of sequences derived by forming the Kronecker product of the
above matrix with the matrices of dimension Nk'w:lll not be of length et
All of the Kronecker products considered previously were between
two matrices each with elements in the same ring (same value of N), How-
ever, some additional classes of N-orthogonal sequences can be derived by
forming the Kronecker product of generalized Hadamard matrices with ele-
ments contained in the ring of integers mod N;, N, respectively. The re-

sultant matrix will contain elements in the ring of integers mod
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(L.C.M. (Ny,N;)]. For example the generalized Hadamard matrix [Hs ], shown
below, with elements in the ring of integers mod 6, is derived by forming
the Kronecker product of [H,], (shown previously) and (Hs] vwith elements

in GF(2),

med = [ og J -

Thus (K] is

000000000000 |
030303030303
0000L4k22224L
030341252541
00LLooklz222
(He ] = | 034103412525
002244004422
032541054125
" | 002222440044
032525410341
004422224400
| 034125254103 |

L.4 Cyclically Orthogonal Binary Sequences of the Same Least Period

In Section 2 of this chapter soms techniques were presented for
the synthesis of sets of cyclically orthogonal sequences. The sets of
binary cyclically orthogonal sequences, synthesized by these techniques,
contained sequences all of different least period. For example the

periods of the three Basic Walsh fuactions of length 8,

Sa, = 01010101
Sa, = 00110011

S, = 00001111 ,

are 2, 4, and 8 respectively., The all zero sequence, which is cyclically
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orthogonel to each of the Basic Walsh functions, is of period 1.

It 1s conjectured that cyclically orthogonal binary sequences
of the same period do no% exist. This conjecture is discussed by noting
the Fourier series of mapped binary sequences, The following theorem
gives necessary and sufficient conditions that two periodic functions

must satisfy if they are to be cyclically orthogonal.

THEOREM 4.4 Two periodic functions are cyclically orthogonal if and only
if th respective Fourier series of the two functions have no
terms in common,

Proof: let f(l)(t), of period (not necessarily least period) T, be repre-

sented in the complex Fourier series

V=4 o vamt
) - § ST, (hb)

v=-m

(2
vith Fourier coefficlents C . Similarly £ )(t) is represented in the

series

o vomt
£ ey = Z c‘(f)e"-'T— (4.5)

Ve -®

The cross-correlation function, p,,(t,)between these two periodic

functions, at a delay of 1, is then
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a(1a) = J"Tr(’ Je)e(eery) Tae
0

© o * w2ﬂ1’2 T
7_[.]: Z‘ C(I)L ()7 J'o exp[ag_;_rt_ (v-w)]dt

=-°w=-

V= w2n'rg
-y Lc(“ J2 (4.6)

W=eom

However, Equation (4.6) is equal to zero for all 7, if and only if either
1

( ) or [C( )T is zero for every w. Since [C( )]_ = 0 if and on]y if
( )

= 0, the theorem is established.

From Theorem 4.4 it 1s immediately established that if two
binary sequences are cyclically orthogonal then at least one of the sequen-
ces must have an equal number of 1l's and O's since otherwise both sequences
would possess D.C, (w=0) components.

It is clear that the theorem, as presented, does not.prove that
cyclically orthogonal functions of the same least period do not exist,
The least period TL of a function with a Fourier series gives by L.k, with

non-zero Fourier coefficients CVJ. ’ CV2 y eees c"i;’ is

= T/[G.C.D (v, Va, weey )] (4.7)

1
Thus for example the functions f( )(t) = sint, f(a)(t) = gin 2t + sin 3t

of the same least period are cyclically orthogonal,
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Consider the binary seqguence Scr of length =25 which is g ones
followed by g zeros., If we set T=2gt; (where t; is the duration of one
time slot), then it is easily verified that the non-zero Fourier coeffic-

ients of the mapping of So are C $17 C Then any sequence cyclically

430 e
orthogonal to So can only have even Fourier coefficients indicating that
its period is an even fraction (%4, 1, 3, ...) of the period of S, Thus
there 1s no sequence cyclically orthogonal to SG with least period 20t,
In order to consider more general sequences it is necessary to

derive the Fourier coefficient of an arbitrary mapped binary sequence,

Consider the mapped binary sequence 3,

S = [ag, 81, eee, 8,] , 85 =41 .

Then the Fourier coefficient Cy is

Lty _v2mt
oy = L[ el )g)e I, dt
Lty Jo
I~1 (b+1 )i,y e
= _]'_[Z J ' e:q)!_ j-ﬁl _;lt
Lty b=0 bt,
bvon bvan
1 I-1 P-J“ i L o e-.jT— (4.8)
2njv Za'b' Z e
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Equation (4.8) can be simplified to

&' -1 -
.2 - T =Jbv—
Cy = Znre T l-e "L | g ape '"'L (4.9)

In attempting to prove the existence or non-existence of cyclically
orthogonal sequences it is necessary to establish only - “wether a particu-
lar Fourier coefficient exists, The rfollowing remarks on the existence of

Fourier coefficients are noted.

a. A particular coefficient, C is zero if and only if

L-1 bvan

SR s
Z a.be =0
b=0

b. If Cv=0, then Cv+mL=o’ m=0, l, XK}
Thus it is only necessary to consider the values of V, mod L.

c. Assume C =0, Then from (4.9) it is noted that

% -Jbvw— - -

Z; ay © L + Z ay, e Jbvhi =0 (4,10)
all b mod L all b mod L
suca that such that

Substituting the indicated values of & in (L.10),

- 2n
Z e "0V > . -Jbvg-;:
= s (4,11)
a particular the subset, R,
subset Q of of integers
the integers mod L disjoint

mod L with Q
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However, from the property of the sum of all powers of any root of unity
(see proof of Theorem 4.2) it 1s noted that

n
o JovaD

N e"’bvg% + =0 (4.12)

all beQ all beR
But (4,11) and (4,12) contradict each other unless each of the summations

of (4.10) are zero, Thus Cv is zero if and only if

= - Jpv2T
e L .

b

2

all b
‘such that

%+l
indicating that only the components of a mapped sequence which are +1
need be considered in determining the existence of a particular Fourier
coefficient,
Clearly if two sequences, S; and S; of length L are to be cye-
lically orthogohal, then for at least one of the sequences the funda-

mental, C; (or C.;), must be zero, However, if C., is zero then

= 2
y I | (4.13)
all beQ

If Fguation (4.13) is to be satisfied a sum of a subset, Q, of the L
complex roots of unity must be zero, For the following situations

Equation (4.13) 1s satisfied.
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a. Q contains all of the integers mod L. Then the components
of mapped sequence associated with the subset Q are all +1,

b. Let L=p;°pa vwhere p; and p; are different prime numbers.
Then (4.13) is satisfied if Q contains b, b+p;, b+2p;, ...,

b+(pa-1)p:.
The least pericd of the sequence derived from (a) is 1. The least period
of the sequence derived from (b) is p;. In case (c), below, & technique
for synthesizing sequences with least period L for which C_.,=C;=0 is
presented

M . .
c. Let L=;Mlp; , where the p;'s i=1, ..., M, are primes not
all the seme. Then if py and p, are different prime factors

of L, let Q contain the integers of the following 2 subsets
(b, b+L/:£} )b+2L/p , seey D=L/pg); (b', b'+L/p, , b'+2L/py
Pm

cve, b ; with bfb', and b+zp,fb'+mpm , mod L for all

integers /. and m.
As an example of the procedure outlined in (c)\, let L=2+2+3=12, indicating
Py=3, Pp=2. Then let b=0 and b'=1; the integérs contained in Q are 0, &4,
8 1, 7. The corresponding sequence (unmapped) is 001101100111, It is
easily shown that the above sequence is of least period L, and C_,=C,=0,

. It appears that the synthesis techniques outlined in (a), (b)

and (c) are the only techniques*which .will yield (mapped) binary sequences

which do not possess fundamentals, The techaique outlined in (c) cannot

be used if L=2p, since the two subsets are not Jisjoint. The subset

(v, b+§‘) and (v, b'+§‘71 - b'+2_ll;1 — b'-%l) resnectively contain

one even integer and one odd integer, and all of the even integers or all
of the odd Integers mod L. Hence, it appears that cyclically orthogonal bi-
nary sequences of the same least period of length L=2p, do not exist.

M
Ir L=2 TT Pi , where M > 1 (eg. I=12) then the synthesis tech-

*Additional subsets of integers, 'bW') b(r)+L/pr ceey b(r)-L/pr , can
.be added to the two subsets already in Q (case cs provided all of the
subsets remain disjoint.
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nique outlined in (c) will yield a sequence, S,, of least period L, for

which C,=0., However, for S, it can be shown that the Fourier coefficients
1

Cs ), (V=mpm m=l, 2, ..., and v=$pz , k=1, 2, ...) will not be zero, Hence

if a sequence S5; is to be cyclically orthogonal to S; then C(z) must be

Pg
zero, It was found that if the components of S; were chosen such thet
2
Cg )=O and the sequence was of least period L, then the Fourier coeffi-
L

(s)

cients of 53, Cv » V=IP, (where P, 1s a prime which could be equal to
P,) were not zero, Thus the Fourier coefficients Cél%r, nggr are not
zero indicating that S, and Sg are not cyclically orthogonal,

As a final remark it should be noted that classes of sequences,
all of the same least period, with "good" cyclic cross-correlation prop-
erties can be derived by choosing the sequence components such that the
mapped sequences have few Fourier coefficients in common. Utilizing this
technique a set of 3 sequences of length 24 were derived which exhibited
a cyclic cross-correlation, (between any pair of sequences) bounded by
x1/L,

These sequences ere

(1111111111211000000000000)

(111101001010011111000000)
(101100101101001010101100)
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S BINARY ASYNCHRONOUS SIGN.LLING

5.1 Introduction

Significant attention is nresently being directed towards the
derivation of techniques for the simultaneous transmission of many bi-
nary messages on the same channel Most of these multiple-access systems
under consideration operate as follows There are k users on the channel
with each transmitter-receiver pair assigned a different carrier * In-
formation is transmitted by sending the carrier or its nezative. Correla-
tion detection is usually specified, with the polarity of the correlator
output determining the decision on whether the carrier or its negative
was transmitted  The only exterhal noise is assumed to be additive vhite

Gaussian noise with mean zero and two-sided power spectral density NO/Z.

Several types of systems with different constraints can be specified.

a. Linear Summation of Carriers, All Carriers Synchronous

The carriers from the different transmitters are summed on
the channel, and the transmitters are all synchronized with each other,
and with the corresponding receivers. The optimum set of binary carriers
for this system are the bi-orthogonal carriers specified by rows of
Hadamard matrices The performance is specified by the usual binary
PSK probability of error relationship since there is no interference

between carriers.

*In this chanter a carrier will be the unmodulated signal emanating
from the transmitter. The carrier can be the mapping of a binary
sequence.
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b. Hard Limiting of Carriers, All Carriers Synchronous

For satellite rencater anplications the linear summation
of carriers is inelficient because of the nonlinear characteristic of
travelling wave tubes - the usual satellite transmitter. The linear
sum of the carriers, for this applicaticn, is usually hard limited
prior to transmission over the channel. This problem with the carriers

synchronized has been studied33 in great detail.*

¢c. Linear Summation of Carriers, All Carriers Asynchronous

Each transmitter 1s synchronized with the corresponding
receiver but the set of k transmitter-receiver pairs are asynchronous
with each other. The carriers are summed linearly on the channels.
Interference among carriers then arise from two sources:

l. 1if the carriers are not mutually bi-orthogonal
for all cyclic shifts,

2. the complementing or 'flipping" of an asynchronous
carrier.

d. Hard Limiting of Carriers, All Carriers Asynchronous

This is 2 combination of cases (b) and (c).

In this chapter the communications system described under
case (c) will be analyzed. First, some vreliminary derivations are
presented and then the system nerformance is analyzed for four dif-
ferent choices of carriers - mapped cyclically bi-orthogonal Basic

Walsh functions, sinusoids <f different periods, mapped randomly

* 1In Chapter 6 some aspects of the problem of the hard limiting
of mapped N-ary sequences are considered.
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chesen binary sequence and mapped cyclic error-correcting codes.

Consider the asynchronous linear multiplexing of k carriers,
So(t), Sy(t), ..., Sc1(t), of period T. The receiver synchronously
correlates with Si(t) and the phase of the other carriers with repect
to Si(t) is random. (As previously stated a carrier or its negative
is sent by each transmitter.) A block dicgram of the system is shown
in Figure S.1. Then the received signal, ri(t) at the input to the

:lth receiver is

k-1

ri(t) =4, s,(t) + y [d'(,l)sf(t-'tL) - d;a)Sf(t-'rf) + n(t) (5.1)

f=0
L1

vhere: n(t) is vhite Gaussian noise with zero mean and two-sided
power spectral density NO/Z, T, is a uniformly distributed random

and

variable over the interval 0 < 1, < T, and zero elsevhere; T,

1,, are statistically independent for 4# ' (7, is by definition

i
zerc),

and 4 1 with equal probability over the

interval 0 < t < TL

< 0 elsewhere ’

+ 1 vith equal probability over the
interval 7, <t<T
d(a) ¢

0 elsevhere,

d( 9) and d( ')

’ g1 are statistically independent for

207 N | al# oty

d, = + 1 with equal probability.
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If d?){ df,a), then it will be said that carrier Sr(t) has bheen com-
plemented or "flipped". The detection procedure is to cross-correlate
ri(t) vith S 1(t) vith the polarity of the correlator output determining

the decision on di' The output of the ith correlator is then

T
1
2, = 3 ‘r Si(t) r,(t) at
(o}
m T
1 1 3
=T | Si(t) n(t) at * 3 ‘[ d, Si(t) dat
o] (o]

T,

' dgl) 5,(t) 8,(t-1,) at

k-1
1l
50 .
£=0 o
441
T
+ Jr

Tt

a(?) 5.(t) 5,(t-1,) at } . (5.2)

Ejuation (5.2) can be written in a more simplified notation as follows:

k-1
Zy = P4p * S Ei dg iy (s.3)
f=0
i1
vhere
[‘}‘ T
21 1 3
Pyn = T | Si(t) n(t) dt + 7 kr 4, Si(t) dt
O (0]

is Gausgian distributed with means + S and variance NOS/ZT, vhere S,
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the average signal power (assumed equal) for all carriers, is

T

S = % Lr S;(t) at (5.4)
(o]

and T
r Si(t) Sﬁ(t-rl) dt,

(o]

9
[N
=

~
-

b Y
g
L]
3|+

with probability 1/2,

T4
f Si(t) Sz(t-rz) dat

il

o

T
r\
i Si(t) Sz(t-Tz) at |,

| .
\ Te

]
Sl

with probability 1/2 . (5.5)

(u) (f)

The cross-correlatior functions os g (Tl) and o) (TL) are the'"un-
flipped" and "flipped" cross-correlation functions between Si(t)
and Sz(t) delayed by 1, seconds, respectively, and 4, = * 1 with
equal probability.
The probability density function of pil(Tﬁ) is dependent upon

the characteristics of the carriers.

* If carriers Si(t) and Sz(t) are cyclically orthogonal, then

piz) =0
and - o
oD () =2 (80 5 (ter,) at (5.5a)



Assuming a zero threshold, the average probability of binary

error in the 1" channel, P(ei), is

o] (o0
.1 f - 1 r _
Pley,) =5 | p(zi|d1-+l) @+g p(zildi— 1) dz, (5.6)
-CD o

where p(zildi=+l) and p(zildi=-l) are the conditional pdf's of

the output of ith correlator given that 4, = +1 and -1 respectively.

-
These conditional density functions are given by the convolution of
the pdf's of the k terms of (5.3).

Most of the carriers to be considered in the following sec-
tions are mapped binary sequences. It was stated in Chapter 2 that
the cross-correlation function of mapped binary sequences between in-
tegral delays is linear. It is now shown that the "flipped" cross-
correlation function between integral delays is also linear.

THEOREM 5.1 Consider the mapping of two binary sequences, A and

B, of length L, where, A = (a5, &, ..., a5_,) and

B = (b, b;,.. bL 1) ?al, by = O,l The mapped

elements a.rz ?% a.nd biM The "flipped” cross-correlation

At+e

function, pyf; ), (A=0,1, ..., I-1, 0 < ¢ <1) is linear
between integer vuolues of A + .

Proof: The "flipped cross-correlation function at a delay of (A+c)

15() N (o) (>H<)(>
f c < 1-
‘oab ()\"‘6) =-L~ 2ajm er_n\_’_J +-————-—Le Z aJm Ll'n>"'J"l
J=o J=
L-1 L-1

za(m) plm)  (1-¢) >. gm) I(Jr_an"jﬂ



g 00+ B 0000

Thus the "flipped' cross-correlation funciion is linear between in-

tegral values of A\ + .

The noise or interference (in the determination of di)

due to the nresence of the other carriers on ile channel is related

u
gz)(XL) anc. ngi)(hﬁ). In the selectinn of binary

to the values of p
sequences for the binary asynchrcnous sicnalling application the
goal is to find sequences for *thich the "unflipped” and "flipped"
cross-correlation functions are low for all cyclic shifts. Since it
is difficult to deterministically derive sequences for which both

types of crcss-correlation functicns are low, the basis for choosing

the sequences analyzed in the follcving cectionc was that the value

(

iz)(kz) be low for all i, £, and ..

A
A

of p

5.2 Signalling Vith Basic Valsh Functions

In thic section the pnerfornance of the mapped cyclically
bi-orthogenal Basic Woish functionc, as carriers for the acynchro-
nous cignalling cystem, is determined. The "flipped" cross-correla-
tion function is determined from vhich an integral expression for the
probability of binary error, P(ei), is derived. By applicetion of the

Central Limit Theorem P(e,) is determined for k = oo, and all i. The

i
probability of error for finite k is found by asympiotic series ap-
proximation and computer evaluation of the probability of error in-

tegral.
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It was shown in Chapter 4 that the set of k sequences,

S ,1=0,1, ..., k - 1 of length 2%, where S, 18
1

k-i

Sg, =00...0 11...1 repeated 2 ™ tines,

21 21

are cyclically bi-orthogonal. Hence for the mapping of these se-
u
quences pﬁz)()\z) =0, 1 # 4 for all X g
It is now necessary to derive an expression for the "flipped"

2o
r)

a. form the sequence Sg = Sai @xu s,gz , mod (xL-l),

cross-correlation, l.)' The procedure is

vhere x)"' S‘("i) is a sequence which is the last )‘L

digits of Saz followed by the first L - )\!‘ digits of
Sgy complemented.
b. count th2 number of zeros and ones in the first in the

first Ay digits of Sg'

Then from Equation (5.5a), the "flipped" cross-correlation is

[No. of zeros in first A, digits of Sg -

2
o5p (\g) =%
No. of ones in first A, digits of Sg] (5.7)

The derivation of n:(li)()\z) for the Basic Walsh Functions

is outlined in Appendix C. A general plot of pif)(xz) for* £ > 1
is shown in Figure 5.2. It is thus seen that the maximum value of

the "flipped" cross-correlation for £ > i is pl*i-k Thus, the

interference a particular uscrcan expect, due to the presence of the

* For 1 > L the plot is similar except the roles of i and £ are
interchanged.
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"flipping" of other carriers is dependent upon the sequence he
is using. The longer the period of the sequence (i.e. the
higher the value of i), the larger is the interference.

Before determining the average probability of error in the
presence of white Gaussian noise, it will be useful to determine the
noiseless channel performance of these carriers.

Without the external additive Gaussian noise, the output of

the ith correlator z, is

1
k-1
z, =4,5+5 2 a, pﬁ')(xz) . (5.8)
L=0
A1

It is assumed that d, = +1 and the minimum value of z,, (zi)min’

under the "worst'flipping condicions is found. An error will occur
(£)

if (zi)min < 0. From the maximum value of o, (A,) indicated in

Figure 5.2, (zj)min is

i-1
_ 1- \ 7’ 1-k+1
(2,) , =85-2 kg 2 2" - (k-1-1)2 s . (5.9)
f=0
1k, 351 s ~k+1
The interference term, 2~ S & 2" + (k-1-1)2" S, is maximized
L=0

for { =k - Lor k - 2. Substituting i{ = k - 1 in (5.9), (zk~1)min

is

k-2
(2k1) = S - 2ks Vo2 lgs.s2vE >0 (5. 10)
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Hence, an error cannot occur, even under the "worst flipping" condi-
tions for a noiseless channel.

Now the average probability of error in the presence of vhite
Gaussian noise will be determined. In Section 1 of this chapter, it
wvas shown that the average probability of errcr, P(ei) when correlating

synchronously with the carrier associated with S is given by Eguation

a1

(5.6). However, since all of the noise phenomena are clearly symmetric,
and the apriori probabilities that d = +1 and 4, = -1 (all £) are the

same, the expression for P(ei) is simplified to

O
P(£,) = Y p(zildi=+l) dz, (5.11)

(9

-0

where p(zildi=+l) is given by the k fold convolution of the proba-

bility density functions, p(pin) and p[S-pi,], £ =0, 1, ..., k-1, 444,

But,
(p,_-8)*
I S __in
p(.m)- Jﬂzs_em LNS/T ], (5.12)
q (o]
T

p[SpiF] is the probability density function of S° assuming T

Pin )

is uniformly distributed between O and T, and Prob ["flip" in Saﬂ] =

Prob [no "flip" in Sg,] = 3 .

sum of the two density functions

We can then represent p[S-pizl as the

plS:p,,] = '—%pfs'pﬁz)('r_,,,)] & %p[s-pgf)(r,‘)] (5.13)

u
Since p( )(1 ) = 0, all 7,, then
197 j A L



86

p[Spg)(rL)] =8p,) . (5. 1k)

The density function of the "flipped" cross-correlation function for

T, uniformly distributed, is uniformly distributed between +21+1-k
and -221°K mus
= = - - -
%zizﬂ. _21+1ksfpi‘521+ ksg
- i<z
o elsewhere
f
p[s"’gr)("r)] ] K r41-Kk 1-k
’ 0 - + - =
2277 2P s <o, <2 s 1>
0 elsewhere
(5.15)
Substituting (5.15) and (5.14) into (5.13) the expression for
p[S'piﬁ] becomes
-1- -k B
l‘.&(p )+—1-213+k ..2i+1 S <p <21+1ks
2 "1 S . o= "ie —-
0 elsewhere
(5.16)
or
-éé(p ) + 1 2-£-a+k _2ﬁ+1-k S <o < 20.+1-k S
2 ‘i S - 12 -
p(S:py,) = 1>
0 elsevhere '
(5.17)

The result of convolving the k density functions, Py’
pif’i =0, 1, ..., k-1, 4 % i, ¢to form p(zldi=+1) and then per-
forming the integration of p(z|d1=+l) to derive P(ei) is not easily

derived in closed form for k > 2. The derivation of P(eo) = P(ey )
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for k = 2 by the convolution method is presented in Appendix D. It

is shown that

STz '3 [ST
P(eo)=P(e,)=%-%erfJﬁ2- erf k-f‘ﬁ’—/
o o

N
1 18T~ No -sT/uNy , 1 o -9ST/!N,
+-8erf(,\No/- /""STe * F 57 © .
n R
(5.18)

A convenient integral expression for P(ei) with k > 2 is ob-
tained using the characteristic functions of the cross-correlation
functions. The characteristic function Mx( Jv) of a variable x with

pdf p(x) is defined as

00
M (V) = | exp (Jvx) plx) ax (5.19)
LS
-0
The characteristic function Mpi (jv) of the Gaussian distributed
n
variable, pin is
2 2 g3
- A" S_]
Mp, (3V) = exp | Jv8 e (5.20)

Similarly the characteristic function Mpi z(Jv) of the random variable

S- pu is for 1 < £,

-1-2+k .
Mo, (3V) = 5 + -2—3-;——— lexp (3v82!™ ™) - exp (st H)] L (s.21)



a8

For 1 > 0, Mp“(av) is obtained from (5.21) by replacing i with ‘.
The characteristic function Mzi(JV) of the correlator out-

put, zi given that 4, = +1, is given by the product

|

i1
M () = my ()] T o (0] [ (gv) Je2 -1 (5. 22)

£<i >1

Then the conditional pdf p(zi|d1=+l) is derived from Mzi(jv) by the

integral

p(z Id =+1) = r M, (Jv) exp (-Jvzy) av . (5.23)
-oo

Thus, the exprescsion for the probability of error, when correlating

with the ith carrier becomes

(o] 1 a0 - vz ]@ Sa
P(ei) = ‘r dz, = tr(dv) exp LJVS - ———Eig——] .+ exp (-jvzi)

-00 -00

ia - f+2+k
1 2 241 -k f41 -k

T EeEg lexp (3v82"7K) - exp (-gvs2™™4) ]}
-i-2+k ' 8

. {% " 3—37“ [exp (3vs2 1 7K) . exp (-vaz“l‘k)]} . (5.24)

This integral can be transformed by noting some simplifications and

substitutions. First it should be noted that
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(o]
gr dz, exp (-Jvzy) = - %—; + mo(v) . (5.25)

=00

Then the exponentials with complex arguments can be reploced by sine
and cosine functions, the odd function terms of the integrand deleted.

Then, P(ei) reduces to

® .
. 2 ig . +1-k
1 1 sin Gv v Ml'sin 2 Gv
) =3 - ([ ] [exp (- ] o +1]
i 2 ﬂzk.1 . v 120 L 2f+1-kGV

i+ -k ~k-i-1
. [ 8in2 &0 1 | av (5.26)
L Jd

zi+1-kGV

where G = ,/

o3l

It is clear from the above integral that P(ei) is a function
of {(a) the carrier in question, i, (b) the number of carriers on the
channel, k, and (¢) the signal-to-noise ratio G° = ST/NO. It is also
noted that P(ey_;) = Plex..).

No technique was tound for evaluating (S.26) in closed form.
Some computer derived curves which give the probability of error as a
function of the parameters G, i, and k, will be presented later. How-
ever, first some indications of the performance can be noted by evalu-
ating the asymptotic behavior of P(e i).

a. For larpge signal-to-noise ratio (G — o)
First evaluate, lim sin gX considered as a generalized func-

G~ oo
tion. Thus
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v
n 2L . S yyp J S5V a(ov)
C=on G oo
o
i
d sin x _nd
= d‘; lim ! —i——dx--é-aVSgnv
n-oc
n
=3 6(v)

Substituting this result into (5.26) it is found that

®
lim P(ey) = % - J\-T{l_—l‘ e 8(v) 253 gy = 0
2

G~ o
o

b. For small signal-to-noise ratio (G—o)
It is seen that

sin Gv

1in 5 =0
G—o
1
Thus lim Pey) = 3
G—o

c. For an unbounded number of carriers on the channel (k - o00),
vhen we are correlating with carrier associated with Sai' i finite

it is seen that

sin 21+£'ka
koo 2 ““gv

Thus

(e 0]
1 in G
if'?.’o Ple) Sata f P—-:;——Vexp (- V¥ /u) av (s.27)

o)
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The integral in Equation (5.27) is noted to be % erf (G).Sh
Thus
lim P(e,) = 1L (6) (s.28)
i 2 2
k~o0

Summarizing the results derived in (a), (b) and (¢), it is seen that
the limiting values of P(ei) for high and lov values of signal-tc-
noise ratio (any k, i) are 0 and —;’-, respectively. As the number of
carriers on the channel becomes unbounded, then P(ei) , (1 finite), ap-
proaches the probability of error value that would be realized if there
vere no interfering signals on the channel.*

For large values of k and relatively small values of i, an
asymptotic series approximation to the integral expressicn (5.26) can
be derived. In Appendix E an asymptotic series approximation to P(eo)
vhich yields accurate results for k > 4 is derived.

-t was shown that the probability of error when correlating

with the 1°P

carrier (i finite) approaches the PSK error probability
as k = oo. Using the Central Limit Theorem, the limiting probability
of error curves for { =k - E, k oo andE=1, 2, ..., can be derived.

As k = 00, the correlator output z { = % becomes Gaussian

distributed with mean mz and variance o: ’

i i
k-1
m =m + (5.29)
z, ~ ™p 2 s p
i in r=0 iz
L#1

* This 1s referred to as the coherent binary PSK error probability.
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wherem , the mean of p, , is + §
in in

c‘.
and ms,pin, the mean of S pi£ is O

Thus
m = S,
%
k-1
2 3 \ 2
c =0 + ); (¢)
2 P L "sp
1 in o 7y
L#
vhere .
o = Ns/fer
pin
and
5% ei-akn 1<y
2 3
Og., =
Pig ) 82 Al-2kh ,
. —— 1 L i
3
Performing the summation indicated by (5. 30), o: = o; is found
b k-E
to be for E = 1, 2
o oc
2 NS 8 T e(kec)-akn _ 282 Ly § e, NS
2 B T 27 3 Z 3 ‘16 2T
- c=2 d=o
2 N,S
k-E

(5.30)

(5.31)
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N,S 2 ). 0.9 L
0f =g+ 3 [(rn) FUCEE LN 2 (k-e)-zkt ]
k-E c=ﬁ+l
NaS 3 = by, -2aF-1
o =+ S [(e1) 2+ (p(@FF )] (5. 32)
2 o 2T 3

The conditional pdf, p(z i|di=+l), for unbounded k becomes

3
1 (z,-8)
1im p(z,|d,=+1) = — exp - [——i-‘,——] : (5.33)
k- 171 Eﬂ OZ 2021
.|

Hence the error probability, P(ei) = P(ek-E)’ for k - co is

)
1 ! S
1im P(e, .) = [‘ plz, _la _=+1)dz _ =5 - 3 erf [——-—-—-:]
oo k-E P %-E k-E "2 "2 % o,
k-E
=-% o % erf r . = (5.34)
J@ + 2 (oa _ B8
_ S zk-E 2T
. | ST
Plots of lim P(ek E)’ a8 a function of G = / T for E = 1
k- 00 ) " 7o

(or 2), 3, 4, 5, and co, are shown in Figure 5.3 for ranges of

probability of error down to 107°.

The curves shown in Figure 5.3 indicate the maximum proba-
bility of error, P(ek-E)’ maximized over k for given values of E and
G. The minimum of P(ek_E), (also for a given E and G) occurs for

k = E. Plots of P(eo), as a function ot G, for E=k =2, 3, 4, 5, oo,
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are shown in Figure 5. 4. The values of P(coj for k = 2 are calcu-
lated from Equation (5.18). The values for k = 4, S are calculated
from the asymptotic series approximation derived in Appendix E. The
values for k = 3 were obtained by numerical evaluation of the integral
expression (5.26) on the PDP5 and IBM 7094 computers.

The curves shown in Figures (5.3) and (S.L4) are the limiting

curves of P(e In Figure (5.5), P(ey_y) = P(ey_p) is plotted for

k-E).
k=2, 3 4 5 6, co. The curves for k = 2, ® were taken from Figures
(5.4) and (5.3). The probability of error values for the remaining

curves vere obtained by numerical evaluation of (5.26). In Figure

(s5.6), .‘r?(ek 3) is plotted for k = 3, 4, 5, oo. In Figure (5.7),
P(ek_‘) is plotted for k = 4, oo.

The error probability curves not included in these plots,
P(ek-E)’ E=5 6, ..., were omitted because the curves (for a given
E) for k = E and k = oo (and hence *he curves for all k between E and
oo) were indistinguishable. From the given plots, it is possible to
determine the error probability curves for any carrier (Sai) wvith any
number of interfering carriers on the channel.

It was noted in the previous analysis that the highest error
probability occurs when we are correlating synchronously with carriers
associated with S or S as k ~ occ. If the carrier associated

ak-1 ) ak—2

with Sak is removed ﬁl-om the channel (providing k-1 carriers on the
-1
channel), then the maximum error probability occuring for Sg. or

ko

-

S willl be significantly lower. Similarly, if S and S
ax.3 ak-y o

are removed (providing k-2 carriers on the channel), then the highest
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error probability occurs for S or S . The maximum error
8x-a 8k-1
probability curves when there are k, k-1, k-2 carriers of length
2k, vith k = o 01 the channel are shown in Figure 5.8.
For future comparison of the performance of the k Basic
Walsh function carriers with randomly derived mapped binary sequences
for asynchronous signalling, the probability of error, i':, averaged

over all k carriers will be determined. It is shown in Appendix F that

- %—erf (¢) , (5.34)

<7
"
V|-

for all values of G < 9.

5.3 Asynchronous Binary Signalling With Sinusoids

In the previous section the performance of the k Basic Walsh
functions cf length Zk, as the carriers for the binary asynchronous com-
munications system, was analyzed. 1In this section another set of cy-
clically orthogonal signals - the set of sine functions whose fre-
quencies are all different and all multiples of some fundamental fre-
quency - will be analyzed for this application, and the asymptotic
performance will be compared with the asymptotic performance of the
Basic Walsh functions.

Consider the set of sinusoids Si(t) of period T,

5,(t) = [esetntwt 0<t<T (5.35)
where
o = 2n/T
i = l, 2’ L B ,

S 1s the average signal power assumed equal
for all {.
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A set of these sinusoids are considered as carriers. It is
clear that Si(t) and S'c(t), 1 { 7 are cyclically bi-orthogonal. The
"flipped" cross-correlation function, pii)(f,") between Si(t) and

Sz(t) at a delay of 7,, 0 <1, <T) is derived as follows. Since

£
Si(t) and Sz(t) are cyclically orthogonal the '"flipped" cross- correla-

tion is, from (5.5a),

Y
pgf)('cz) =:,f.- f 5,(t) 8,(t-7,) at
(o]
T2
= -"% J‘ [sin 1 wt](sin £ w(t-'rL )] at . (5.36)
o

Performing the indicated integration, it is seen

sin[(i-2lwt + £ @ TI]

(f) 4s
Pip (1) == {

2u(1-£)

sin{(i+2)wt - £ w 7,1 }Tz
- b
2.1+2) o
or
p(f)(1)=—ﬁ—[i sin fwt, - £sinfwrt ] (5.37)
A SRS ) L

For noiseless channel consideration, we are interested in the
maximum interference resulting from the presence of other carriers on

the channel, when correlating synchronously with S,(t). It is thus

i
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necessary to find the maximum value of the flipped cross-correlation,

maximized over 7 Differentiating (5.37), the following expression

Iz
is obtained:

d p(f")(rz) 25 wil

e =n(13-£3) [cos L wr

4 - co8 iwr,) (5.38)

Thus local extremum points are round for

cosﬂ:n'rf -cosiwt, =0 ,
or equivalently,

sn L 1, E
- 2 sin E(w,)w T, *6in 2(,,-i)w T, =0 . (5.39)

Equation (5.39) is satisfied for

2mt 2mx
*T£=m or , w1£=z-_—1- » (5-)-*0)
m=0, l’ o e

It is still necessary to determine which value of TL’ or equivalently

“ Ty given by (5.40), absolutely maximizes pgztz). This can be de-

rived by substituting the values indicated by (5.40) into (5.37).

C . Zmx
ase a. ®T, =T
The local extremum values of pgi)(r,) written as p(if)(T”) are then
Lz /v ext
i) | m =B [1eim (AR e (222
ext n(i°-£2) ’

2S(1i+2 L2mnt 28 f2mn
o) BT ey e T s (5.41)
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From (5.41), it is seen that the maximum absolute value of "flipped"

cross-correlation, 'p(ig)(Tn)l , 1s achieved for the value of m,
max
for a given 1 and £, for which the angle ’G?TE is "closest" to n/2 or

3n/2. For (i+f) > 10 the maximum "flipped" cross-correlation for

2mn
= Ty At
f) 2S
B SUCH -k (5.42)
iz v - n.|1—~|
i+72>10
2mn
Case b. w TL = 1
For this case the local extremum values of pgj)('rf) are

(f) | _ 25 [ . (..”,Zmrr S ( i2mn >
pip (1)) ey (P sin (G ) - tein (T ]

ext
2s(i-¢) . f2mn N 28 42ms <
(i2-17) sin 1) = Wi sin e (5.43)

As in Case (a) the maximum absolute "flipped" cross-correlation is

[
A2WT no)osest” to x/2 or 3n/2. For i + £ > 10, the maxi-

achieved for 71

mum absolute value for w 7T P = %{1—? is

(£) .28 :
lpie (Tz)lmx—m (5. bk)

i+42>10
Clearly for i + £ > 10, the absolute maximum value indicated by (5. 42)

is greater than the value indicated by (S.L4k4). However, it can be
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verified that for all i, £, the maximum value achieved by Case (a) is
always greater than that achieved by (b).

It is now of interest to compare the noiseless channel per-
formance of k Basic Walsh functions, k — oo with a similarly chosen
set of sinusoids. The frequencies of the Basic Walsh functions,

SRS , are proportional to 1, 2, ... , 257!

S S
g’ T8g-a %-E
spectively. Thus, a similarly chosen set of sinusoids would be S,(t),

y re-

S,(t), ... , s,p(t) (F=0, 1, ... , k - 1, k = 00) where Si(t) is
given by (5. 35).
Vlithout any external noise, the output of the 1th correlator

z,, given by (5.8), can be represented as

zi=ng=d‘gF'S+IzF q (5.45)

vhere I p is the interierence term due to the presence of the other
sinusoidal carriers.

The maximum value of the interference 'I.,F' for the
as E
sinusoid carriers is

k-1
I ) ?Ipigﬂ,,(m) (5.46)
F'=0
i F'#F

max

For F > Lk, the value of |p£lf7‘?2F' specified by (5.42) can be

(",c)‘
max

used. Thus, for F > 4 and F <<k, k = o0 ,
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F (o)
_ 28 N 1 1 1
lIaF' on [ 2. F Foa * 2 F+c F J (5.47)
a=

(L)

A lower tound on II F‘ , denoted as I'fF’, which is an
-l MR 2

accurate representation for F > 6 is found as

(L _251 ¢ 1 1 R e .28 el 18
LF -=[ 2 PR ) 2 T 5248}
d=1 c=0
An upper bound for lI F' , denoted as I(g), is found as
2 tmx 2
F o]
(u)_§[ 1, 1 -c]_gg THL -
Lr ™% ekl B (S (5.49)
d=1 c=0

For the Basic Walsh function carriers the maximum interference

-

has been determined (es a modification of 3.9) as §—%I, when we are cor-

oE

reiating with the carrier associated with sequence Sak s E=12, ...,
-E

ky, k ® 0c0o. A comparison of maximum interference of the two types of

carriers, for several small va_ues cf E, ard for large E, where

E=F + 1, is presented in Table 5. 1.
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TABLE S.1

Maximum Interference For Basic Valsh
Function and Sinusoidal Carriers

E II; E |mx-Walsh 1,5 Imax-sinusoids
1 S 0.92 * S
2 S 1.04 - 8
3 0-75 o S 00 73 * S
G szl 2;31
2B~ n 2

It is concluded then that the sinusoid carriers provide slightly
less maximum interference for large E. However, the interference for
the sinusoid carriers can introduce an error in the absence of addi-
tive noise, when the -eceived asynchronous signal is correlated syn-
chronously with S;(t).

In order to determine the average probability of error, when
correlating with sinusoid Si(t) in the presence of white Gaussian noise,
it is necessary to determine p(zi‘di=+1) and then apply (5.11). However,
the determination of p(zildi=+1), for a finite number of carriers, re-
quires the derivation of the pdf of the cross-correlation function be-
tween two sinusoids. This derivation appears difficult.

However, as the number of carriers increase without 1limit, then
p(zi|d1=+l) approaches a Gaussian distribution with mean S, and variance

g: as derived below.

i
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The variance, oasf) of the "flipped" cross-correlation func-
Y

*
tion between sinusoids Si(t) and Sﬂ(t), is
’ (f)
2 1 f 'T
o0 T T Jﬂ[piz (1) faT, - (5.50)
iL 0

Substituting for p(f)(Tz), it is seen that

iz

2 T
9(f) = 45 ‘f[ia sin®L o T + 2 sin® £ o T,
Py, T(1%-47) L

L
- 2i/ sin i w L sin L w Tﬂ]d T,
_ (77 , (5.51)
P (12-42)2

If it is considered that the probability of a "flip" in Sﬂ(t) is 1/2,
then the variance of the correlation function, ofz, between Si(t) and
SL(t) (considering both "flipped" and "unflipped" cross-correlation) is

then

2 1

o] 22 .§i Ml (5. 52)

2
=g =
ig 2 éf) 2 (i2-£2F

Then the variance o;; is

2 NOS 3
S 77t 5; iy (5.53)

all L#1

*Note that 7: is uniformly distributed over the interval O-T and the mean
of the flipp:d cross-corrvlation function is zero.



If weseti, £=2,F=0,1, ... , k-1, k=co, then for F<<k - 1,

NS 2 ~2F F-23c¢c
o:=o§ =-°—-+-S—[ }: 2+ 2 e
1 9F ar 2t L T e piee
00
+ Z 2l 4 2F ] . (5.54)
4F+ed 4F 4F+3d+
d=1 2 + 2 - 2

A comparison of the corresponding variances of the Basic Walsh Func-
tion Carriers (see 5.32) and the sinusoid carriers (see 5.54) for

E=F+1=1, 2, 3 and 4, is presented in Table 5. 2.

Table 5.2

Values of Corresponding Variances for
Basic Walsh Functions and Sinusoidsw

E Variance-%a.sh Variance-Sinusoid
1 0.055 - 8° + N,8/2T 0.066 + s + N s/eT
2 0.055 * S° + N S/2T 0.073 . §° + N_S/2T
3 0.024 + §% + N S/2T 0.026 + §° + N _S/2T
4 0.0087- % + N_S/2T 0.0081: s? + N_s/2T

The average probability of error, given by (5.3L) is plotted
for sinusoids S,(t), Sa(t), S,(t) and Sg(t) in Figure (5.9). Comparing
these curves with the corresponding curves of Figure (5.3) it is seen

that for k = oo the Basic Walsh functions provide a lower probability
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of error than the sinusoids for the carrier of longest period, al-
though the error probabilities are approximately equal for the re-

maining cases.

5.4 Asynchronous Binary Signalling Vith Random 3inary Sequences

In this section the nverage performance of the binary asyn-
chronous signalling system will be determined, when the carriers are
mapped randomly chosen binary sequences. The results will be compared
with the results derived in Section 5.2 for the Basic Walsh functions.

The cross-correlation function piz(kz) between the mappings of
randomly chosen binary sequences Si and SL of length L (considering the
possibility that Sz is "flipped") will now be determined.

Let ng) and ng) be random ~hosen mapped binary sequences,

> g
- [0, a0, L] s [, 0, L ],

where agi), agn) =+, 0=0,1, ... , L -1, with equal probability

(1) and a £)

Al o1  are statistically independent, for ¢ = o', i # ¢

and a
and for 0 # 6', all 1 and £. Then the cross-correlation function be-

tween S(m) and S(m) at a delay of X£ is

i ?

)

a, s £
1) (2
() =g ) al(a ) ag,-ifb
b=0
al®lg L1 0
o °'t(>i) al(',:g\£+b ’ (5.55)
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1 2
where S is the signal power,di ), di ) = :1 with equal probability and
(1) 2
d, and di ) are statistically independent.®
. ge
The mean Vélue of piL(Kz) is zero. Hence the variance, Pis
is
)\L-l )\L-l
£ T (1) (1) () (2) ]
2 =
c’niz T ) ) ["‘b % PL-Aeb BLengte
b=0 c=0
- I-1 L-1
S \ (i) (Z) (2)
Ty 3 [. )\+baL—)\+C
b=A c=A
L
(1) (=) Ae-1 L-1
a ‘a ‘s M
L s T (1) (i) (%)
* s ) ) % L-}\,,+baL-)\+c-} (5.56)
b=o c=}, ~

Since the symbols of the carriers were chosen randomly, each of the ex-
pectations taken over the easemble of carrirers, is non-zero only if

b=c. Thus 62 reduces to

1g
A=l Ag-l I-1 L-1
o2 =5 ; Z 6 +§:- E )
p %3 L be be
i b=o c=0 b=A, c=A
- W L
dgl) dgz) g2 )E-l L-1
=" ) ) e s (5.57)
b=0 c=K!

#It is recalled that if d&l) and dﬁz) are of opposite sign then S; has
"flipped" at a delay of Kz digits.
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where 6bc is the Kronecker delta function. Thus

(A

[4
A

82
+L-M+0]=i— . (5.58)

Q
L]
%%

It can be shown that pu( Xf) is in general binomially dis-
tributed, but for large L the binomial distribution approaches Gaussian.
The output, z4 of the ith correlator for L —~ o, is then Gaussian dis-

tributed with mean + S, and variance 0: ’

i
k-1
NS . NS
3 _ o __o Lk-llsa
VR S . *@m T ' (5.59)
is
fL=0
1

The average probability of error, P(ei) is then

~1_1 N 1 1 5.6
P(ei) =3 -35erf . (s.60)

Jz o

+

Ql

k
L

Thus, if the ratio of the number of sequences on the channel
(k) to sequence length (L) approaches zero as L - 0o, then the aver-
age probability of error approaches the binary PSK error probability.
Although the Basic Valsh functions provide an average probability of
error (averaged over all k carriers) approaching the binary PSK re-
sult (for G = %’f < 3), only logg L carriers, L = co, are used.
Equation (5.60) indicates an "average' set of randomly derived mapped

binary sequences will provide this error probability although permitting
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many more than logg L carriers on the channel.

)
Some questions have been raised by Wolf and Elspas U on the

validity of determining the performance of random cairiers in the

manner specified in this section. The analysis appears to indicate
NoS = (k-1)§°

that z1 is Gaussian distributed with known variance o 24 = 37 + I

However, the variance of the interference of due to the presence of

the other carriers is not &a known factor but a random variable with

— "
mean, of = k'i Sa, and variance (o °1) i kr:l S . Fora large

number of carriers on the channel, the fluctuations around the mean

of cJ1 are small since the ratio of [(0 ) ] to °i is [2/(k-l)]‘

Thus, we can approximate a3 22

1 by its mear and then the output of the i

correlator is approximately Gaussian.

5.5 Asynchronous Signalling with Linear Error-Correcting Codes

In this section the noiseless channel performance of the
asynchronous signalling system with mapped cyclic error-correcting
codes as carriers will be determined. The "unflipped" cross-correla-
tion function will be shown to be related to the minimum distance of
the code. A bound on the "flipped" cross-correlation function will be
related to the solid burst error-correction capability of the code.
The theory will then be used to derive the performance of several
Bose-Chaudhuri codes, the largest known class of cyclic codes, for

the asynchronous application. A brief description of binary cyclic



codes is first given.

A linear code C is called a cyclic code, if for each code
word C; =.(ao, 8y, -+« , &[.y) in C, the code word C3 = (ap-),
By v a[-2) is also in C.

Every cyclic code can be generated by a monic polynomial,
g(x), in the algebra of polynomials modulo xL-l, where L is the length
of each code word. If g\x) of degree r, divides xL-l, then g(x) gen-
erates a cyclic code of dimension k' = L - r. Each of the Zk' code
words is expressible in the form g(x) [bo®b1x@... (Dbk,_1 xk’"l]
vhere bi’ i=0,1 ..., k'-1, is either O or 1.

It has been shownzu that each code word can be generated by
a k' stage shift register with feedback connections corresponding to
the polynomial h(x) = (xL-l)/g(x), with the proper initial loading.
For the asynchronous signalling application we are only interested in
code words which are inequivalent under any cyclic permutation. The
number of "inequivalent" code words (hereafter designated as root words)
in a cyclic code, is related to the cycle se‘t:]'8 structure of h(x).

A cycle of thc polynomial, h(x), is the set of polynomials
xd hy(x), mod h(x) where d = 0, 1, ..., and h;(x) is any polynomial of
degree less than the degree of h(x). The length of & cycle is the
smallest integer v, (v always divides 21"-1), such that x° Ly(x) =
hy(x), mod h(x). [The root code word, considered as a pericdic se-
quence, generated by the k' shift register with feedback connections

prescribed by h(x) and initial loading corresponding to xd hy(x), will

have a minimum period or length wv. ]
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As an example, consider the cyclcs of thc polynomial

h(x) = x* + x> + ¥ + x + 1, over GF(2), shown in Table 5.3.

Table 5.3

4 3 2 i

Cyeles of h(x) = x* + x° + x* + x +

hy (x) 0 1 x+1 x* +1
x hy (x) 0 X X +x X+ +1
£h, (x) e x>+ X X +1
*hy (x) x> X +x+l X+ x
x*hy (x) X+ +x+1 x> +x° +x L +x+l
x°h, (x) 1 x+1 L o+ 1

From Table 5.3 it is seen that x* + x> + ¥ + x + 1 has 4
cycles (1 of length 1 and 3 of length 5). The cycle set structure is
denoted as 1(1) + 3(5). From this cycle set analysis it can be deter-
mined that the cyclic code of length 15 with generatirg polynomial
glx) = (5-1)/(x* +x® + %X +x+1) =(x+1) (® + x+1) (x* +x+1)
(x‘ +x° + 1) has 4 root words, one of which is the all zero code word.

In general, an irreducible polynomial of degree k' will have
1 cycle of length 1 and p' of length v', denoted as 1/1) + u'(v'),
where u' and v' are in general difficult to determine. However, if
h(x) is a primitive irreducible polynomial of degree k', then p' =1
and v' = 25 -1, Elspas’® has shown thet a polynomial h(x) vhich is

the product of two different irreducible polynomials, h;(x) and ha(x),
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with cycle set structures 1(1) + pu3(v;) and 1(1) + we(vg) respectively,

will have a cycle set structure of 1(1) + u3(vi) + wo(va) + u(v), where

wm e [G.C.D. (vi, v2))

=
]

Lo Co Mo (v1, Va)

<
n

This technique is easily extended to derive the cycle set
structure of a polynomial which is the product of an arbitrary number
of different irreducible polynomials.

If the minimum distance of a cyclic code is known then the mini-
mum distance between cyclic shifts of root words is known. However, for
binary signalling a root word or its complement is transmitted, and only
{f the complement of each code wor” 1is in the code will the minimum dis-
tance between cyclic shifts of any root word and the complement of another
root word be known. The following theorem gives the condition for a cyc-
lic code to contain the complement of every code word.

THEOREM 5. 2 The complement of every code word of a binary cyclic code,
is a code word if the ‘generating polynomial, g(x) does not con-
tain 1 + x as a factor.

Proof:  Since the code is a linear code the theorem can be established

by proving that the all zero and all one code words are in the code.

If 1 + x 18 not a factor of g(x), then 1 + x 1s a factor of h(x) =

(xL-l)/g(x). The polynomial 1 + x has two cycles of length 1. Hence,

by the product rule of cycle sets, h(x) contains two cycles of length 1.

However, the lengths of distinct cycles are the lengths of distinct root

words, and the only two root words of length 1 are the all zero and all

one code words.
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It will be shown in the succeeding analysis that the magnitude
of the "flipped" cross-correlation between mapped root words can be re-
duced by using repeated mapped code worcm:58 as carriers. The following

theorem relates to the structure of a repeated cyclic code.

THEOREM 5.3 The code formed by repeating m times each code vord of

a cyclic code of length L with generating polynomial g(x) is
also a cyclic code, but of length m L with generating polynomial

m-1 bL

g'(x) =2 x  g(x)

b=0
The number of root words in the repeated code is identical to
the number in the original code. If the original code had
minimum distance 4, then the recultant code has minimum dis-
tance md.

It will now be shown that the '"flipped" cross-correlation
function is related to the solid burst error-correction capability of

the cyclic code. Consider the "flipped" cross-correlation funct:-
(£
Pit

tion) Ci(x) and CL(X) at a shift of )\z digits. Then p:(li)(kz) is deter-

) ()\L) between the mappings of code words (in polynomial represe-ice

mined as

p:(l:)(kz) = %[no. of 7's in A(x) - no. of 1's in A(x)] (5.61

vhere
A A
A(x) ECi(x)@x f' Cn(x)®x ﬁ[l + Xt ..+ xL'l-)‘f'], mod (xL-l)
(5.62)

Since Ci(x) and CL(X) are the polynomial representations of code words

from a cyclic code, A(x) can be reduced to

A -
C(N@x? 1+ e+ M, ma (1) (5.63)

A(x)
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where Cq(x) corresponds to a code word of minimum weight d and maximum
weight L - d, provided 1 + x is not a factor of g(x).

It is thus seen that A(x) is formed by adding the polynomial
representation of a solid error burst* of length L - x’,'. A theorem on

the correction of solid bursts follows.

THEOREM 3.4 A double error correcting cyclic code (d > S) can correct
all solid bursts that do not "wrap" around the end of the code,
provided the generating polynomial g(x) does not contain 1 + x
as a factor.

The above theorem 1s generalized to multiple solid burst error

correction by the following theorem.
THEOREM 5.5 A t error correcting cyclic code (t evecu) can correct all
error patterns that consist of t or fewer solid bursts, each

starting at the beginning of the code word, provided g(x) does
not contain 1 + x as a factor.

Proof: Since the code can correct t or fewer errors, then the error pat-

tern E(x),
tl
. Af-u
E(x) = ZG’)(X + x ) (5.64)
f=0
where t'<t
Af .S L - l 3

is correctable by reducing the received vector E(x) + Cm(x) (in poly-

nomial form), modulo g(x). However, E(x) can be represented as

*A 50l1id error burst>’ is defined as an error burst where every digit
in the burst is in error.
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t" )‘f
E(x) = (L+x)(1+x+... +x*) (5.65)

=0

Since 1 + x and g(x) are relatively prime, the error pattern E'(x),

t'
E'(x)z%.i%lx = S®(l+x+... +x)‘f) (5. 66)
£=0

is correctable, indicating that t or fewer solid bursts starting at

the beginning of the code word are correctable.

From the preceding theorenm, upﬁer and lover bounds on the weight
of a vector formed by adding (mod 2) a solid burst, starting at the be-
»*

ginning of the code word, to a code word (except the all zero or all

one code words) is now derived.

THEOREM 5.6 Consider the vector vwhich is formed by the mod 2 addition
of a code word [from a t error-correcting(t even) cyclic code
for which 1 + x is not a factor of g(x)] and a solid burst
starting at the beginning of the code word. _The minimum apd
maximum weights of the resultant vector arez +l and L - ¥ - 1
respectively.

Proof: TFor t even, it has been shown that t or fewer "beginning" solid

bursts are correctable. Hence, the vector, A, corresponding to a code

word (which is not che all zero or all one code words)plus t "beginning"
solid bursts must be different from the vector corresponding to the all

zero code word plus t or less "beginning" solid bursts. However, any

*The bound when a solid burst starts in the middle of a code word and
proceeds to the end will be identical to the bound which is derived
for the "beginning" solid burst.
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vector of weight t/2 can be formed by the proper mod 2 summation of t
"beginning" solid bursts. Hence, for A to be different from the all

zero code word plus any t or few "beginning' solid bursts, A must have

-
2

wvord, then the maximum weight of A is derived as L - -;- - 1.

weight at least % + 1. If the comparison is .made with the all one code

From the preceding analysis it is now possible to specify the
bounds on the "unflipped" and "flipped" cross-correlations for a cyclic
code of length L, for which 1 + x is not a factor of g(x), with a minimum
distance 4@ = 2t + 1, t even. |

The "unflipped" cross-correlation function is bounded by = L L o

From Theorem 5.6 it can be shown that the "flipped" cress-correlation is

bounded by = Z—to=2
L .
For the repeated cyclic code, Theorem 5.3, the "unflipped" cross-
correlation 18 still bounded by = 2 - 24 yowever, the bounds on the

"flipped" cross-correlation are lowered when the cyclic code is repeated
m times. The maximum absolute value of ';flipped" cross-co.relation occurs
vhen the relative delay of the code wvords, )\1-,' is either O < KL <L or
(m- 1)L <A ¢ <mL It is then determined that the "f1ipped" cross-cor-

relation is bounded by

M(m-1) [1-2d)
=1 mL

1 i
+E[L-t- 2]j .

For large values of m, the "flipped" cross-correlation approaches the
"unflipped” value.
From the bounds on the "flipped" cross-correlation, the maxi-

mum number of carriers which can be asynchronously multiplexed, on a
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noiseless channel with zero probability of binary error can be derived.
It should be noted if t is odd then t is replaced by t - 1 in all of
the cross-correlation bounds.

As an illustrative example consider the (31,11) Bose-Chaudhuri
coude for which t = 5 and 4 = 11. The generating polynomial for this
code 18“0

g(x) = (10 +®) (1@ +x3 43 138 ) (L+x#n® +x 435 ) (L4t +x3+x5) (5.67)

The shift register polynomial is then

h(x) = L’%ﬁl = (1+x) (L+x+v2+x* 438) (1453 +55) (5.68)

The number of root words (not including complements) are the number of

cycles of the polynomial h'(x),
h'(x) = (L+x+x®+x* +35) (1+x°+x°)

Since each of the factors of h'(x) are primitive polynomials, it is

immediately apparent that the cycle set structure of hf(x) is
1(1) + 1(31) + 1(31) + 31(31)

Hence, there are 34 root words in the code.

Under the no "flipping" condition, the bound on the maximum
number of carriers is 4. Under the "flipping" condition, the maximum
number which can appear is 2. If the repeated code is used withm =3
(code length = 93) then 3 code words can appear. The code length must
be increased to (11)(31) = 341 to enable 4 code words to appear with

zero probability of error. In Table 5.4 the bounded asynchronous
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performance of several other'Bose-Chaudhuri codés,which give the

"optimum" performance for the given length, are tabulated.

Table S.L

Asynchronous Performance of Root Words
of Bose-Chaudhuri Codes

Code t No. of Max. No. Max. No. Length for 3 Length for 4

Root for "un- for Words Words
Words flipped" '"flipped"
Case Case
(15,7) 2 6 4 2 3:15 = 45 ®
(31,11) 5 34 4 2 3.31 = 93 11.31 = 341
(63,10) 13 10 8 2 2-63 = 126 h. 63 = 252

The performance characteristics listed in Table 5.L4 indicate
that the noiseless channel performance of the mapped Bose-Chaudhuri codes
is inferior to the performance of the Basic Walsh functions, under the
"flipping" condition, in that fewer carriers can appear on the channel
vith the assurance that the probability of error is zero. However, an
advantage of »iing Bose-Chaudhuri codes is that root words can be chosen
vhich have least period equal to the length of the code. (The Basic
Walsh functions do not exhibit this property.) Since the autocorrelation

function of the mapped root words is low for non-zero delays (it is

L - 24
L

receivel pair can be gained.

bounded by % ), synchronization of a particular transmitter-

It should be noted that the bound on the "flipped" cross-cor-

relation is a pessimistic bound. By proper choice of the root words,
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the absolute maximum value of "flipped" cross-correlaticn will be sig-
nificantly reduced. It was found that by choosing a preferred set of
root wrods of the (15,7) code, it was possible to place 3 code words
on the channel when the word length was 30, instead of the value of

45 indicated in Table 5. k.
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6. HARD LIMITING MULTIPLEXING OF N-ARY SEQUENCES

6.1 Introduction
12,23

Titsworth has described a binary synchronous multiplex
system which is applicable for

a. the transmission of several signals from several
different transmitters over the same channel.

b. the simultaneous transmission of messages to several
reqeivers in a single sequence stream.

There are k users on the channel, each using a different
binary mapped Basic Valsh function of length Zk as a carrier. Infor-
matiun is sent by tra.nsmitting either the mapping of the sequence it-
self, or the mapping of the complement sequence. (Hence, 1 bit of
information is sent by each carrier in Zk time slots.) The multiplex-
ing operation is performed by operating on the sum of the k mapped se-
quences (with the provision that some may be complemented) with a Boolean
logic device. The output of the logic device is
a. plus one if there is a majority of plus ones in the k
mapped sequences during a particular time slot,
o b. minus one if there is a majority of minus ones in the
k mapped sequences during a particular time slot.
For an equal number of plus ones and minus ones,the output is arbitrary.
For k odd, the logic operation can be performed by a hard limiter. (The
use of a hard limiter is particularly desirable for multiple access to
a satellite33 because of the nonlinear characteristic of the travelling
wave tube usually used for economflcal transmission. )

The single sequence binary stream is then transmitted to k re-

ceivers, which are k filters (or correlators) matched to the k mapped
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basis sequence used as initial carriers. The output of a particular
correlutor is a positive or negutive value, depending upon vhether a
mapped basis sequence or its complement was initially transmitted, in-
dependent of the information state of the other carriers.

It will be shown in thie chapter that a hard limiting syn-
chronous multiplex system can be designed with N-ary sequences with
symbols mapped onto the roots of unity or phase modulated cosine func-
tions. The k (mapped) cyclically N-orthogonal basis sequences, Sa ’

o

Sa‘, co0 49 S&k » of length Nk are the carriers® to be multiplexed. A
-1

mapped sequence or one of its N-1 coxﬁplements is transmitted. (Hence
logz N bits of information are transmitted with each éa.rrier in l‘l‘k time
slots.) As in the Boolean system, the optimum multiplexing is achieved
by a logic device operating on the sum of the components of the carriers.

The output of the logic device, f( Jg)) during time slot g,
g=0, .v. , Nk-l, is

a. a unit amplitude vector with a phase angle equal to the
angle of the vector which is the linear sum of the com-
ponents of k carriers (arbitrarily complemented) during
the particular time slot, for the roots of unit mapping,

or

b. a unit amplitude cosine function phase modulated by the
angle defined in (a) above.

It can be seen that the logic device for the roots of unit mapping acts

%

as a "hard-limiter", provided G.C.D.[N,k] = 1. The interpretation of

the optimum logic for the phase modulated cosine mapping will be discussed

*  Throughout the remainder of the chapter, the word carrier will be used
to indicate a mapped sequence and complement carrier will be used to
indicate a mapped complement sequence.

** This provision ensures that the linear sum of the components of the
carriers is not zero. The output of the logic device is arbitrary
if the sum of the components is zero.
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in the succeeding sections.

The receiver which is to decide on the information contained
in the ith carrier is

a. A cross-correlator between £(S;) and 5, mapped onto the
roots of unity. The phase of ghe correlator output
determines the decision on which complement of 84 was
sent,

or

b. A set of N cross-correlators between r(sd) and 84 and
its N-1 complements all mapped onto phase modulated
cosine functions. The correlator which yields the

largest output determines the decision on the information
contained in the particular carrier.

The comnlete multiplexed system is shown in Figure 6 | for
roots of unity mapped sequences. ' In the following sectionsa, the results
summarized in this introduction are derived and the system performance
is analyzed. For the development of the theory it will be assumed that
the N.ary sequences are mapped onto the roots of unity. When allusion
is made to real sequences the theory will be appropriately qualified

to the phase modulated cosine mapping.

6.2 Transform Analysis of N-ary Sequences

A transform pair will be derived which will be used to evalu-
ate the performance of the multiplexed N-ary system. The transform
pair will be shown to relate to the optimum logic function and the mag-
nitude of the correlator output.

Define a function, ¢(s,x) of the vectors

8 = (30131: vy Sk-x) » 8y =0;1, ..., N-1,

X = (XO,X;, ces g Xk_;) ’ Xi = O,l, seey N-1 »
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W5, %) = KK/ exply £5 (8 x) + 00 + o xgey)] (6.1)

It 1s apparent that there are Nk tunctions ¢( ;c’;) of
x for a given vector ;c. It 18 easily verified that ¢ ;c’;) and

W(;d,;(‘) are orthonormal, that is:

N - - Hyr I 0 c #d
2 Q(BC:X) ¢ (sdax) = L ’ (62)
all 1 c=4d
R X
where c,d = 0,1, ... , Nk-l, and q'*(sd,;é) is the complex conjugate of
q’(;d’;)'
Similarly
N - - ¥, - - 0 e # £
) WE%,) ¢ (5,X) =4 , (6.3)
all 1 = Ol
N5
X
where e,f =0,1, ... , N-1.

An interesting transform pair can be derived with function

@(s,x) a8 the kernel. Define a function F(s) by:

£(x) ¢(s,x) (6.4)

where f(;c‘) is a unit amplitude vector which is a function of the k

components of ;

The inverse transform f(;) is derived as follows. Consider
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) HE) w(@E) = Wk ) 2(R) WEE) ¢TEX)

all all =all
3 -

= WY 23 Y eER) MG,

all all
Xq s

Applying the orthonormal property (6.3) it is seen that

F(’s') HEE,) = VR

% Eq\/!

or

£(x) = ¥/2 5 R(s) HMEX) (6.5)
all
5

The equivalent to Parseval's formula is derived és

) FE) FE) = ) f(0) £ =2 (6.6)
all all
8 X

6.3 Derivation of the Optimum Logic and Correlator Output

Consider the multiplexing of k N-ary sequences, So’
Syy «++ » Sk-1 (at present arbitrary) of length Nk, marped onto the

Nth complex roots of unity. Then if the N-ary sequence Si has components,+

+Note the change ia notation firom the definition of a sequence given
in Chapter 2.
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31 =(\§§°),s§1), co ,Si(Nk'1{> then the component of the mapping of S1
during time slot g, g = 0,1, ... , Nk-l, is Sgg) = exp [Jen sgg)/N].
The output of the logic network during time slot g will be denoted as
f(z(g)). It is clear that f(EKS)) is strictly a function of
(ﬁgg), ves 5£§{>,the symbols of each of the k sequences during time
3lot g.

A set of sequences, Si’ will now be specified and the result
of cross-correlating f(EKS)) (for all g) with the mapping of a particu-
lar sequence will be determined. Choose the Kk sequences to be the set of
k cyclically N-orthogonal basis sequences of the Nk N-orthogonal sequences
of length Nk. Thus, in the.notation of Chapter U4, we have So = Sa Plobo P

)
Sk-1 = Sak ,? with a typical sequence

S, = Sa = (0,0, cee O, N"l, cos N'l’ tee l, coe 1’) ’

1
i A
N Nt Nt
repeated NK-1-1 times, (6.7)
At the receiver, let Pea be the cross-correlation of
= i
f(g(g)) and the mepping of S. . Thus, p becomes
a, fai
-1
vea, = Y ) exp [-gns{E ] (6.8)
1 N
g=o

Noting that f(%ﬁg)) is given by

f(8)) - w2 5 RG) oG58l
all

-

5
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= E F(s) exp [—J—%’E(s
a_];l
8

o 0

is found to be

-—t -t
Now define a vector, Vi in tke 8 space as

v, = (o, ...

where the only non-zero term occurs in the

pression for Peg can oe reduced to

() L, 8) ,

, ml, e

. , 0)

th

i place.

,s(g)

(o Je)

i
N1
- 1 - 2n
Pe. = F(v,) += F(s) exp| -J (s
fai ' Nk 8.2.1 Z [ "
) g=0
3,
ces *+ (si+l) §§g) t oo t 8K Ql(ggb] ’

where

all

Wy

) ) 9V,

oo + Bk.1 é(gz)] ’

(6.9)

(@), .

i .+ By Sk-l)_j

(6. 10)

Hence, the ex-

+

(6.11)

However, if the sequences are chosen as the k cy:lically N-orthogonal
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basie sequences with components given by (6.7) then

N1
exp[-,j -%—“(s (8) oo + (si+l) ggg) + ... + sl((gb__' 0

since for all s # ;;i’ the symbols
o ‘;f)g) + ... + (Bi+1) sgg) + ... + sk_l Ql(‘gg)_, Md N,

forg=0, ... , Nk—l are the Nk symbols of one of the Nk N-orthogonal
sequences.
Thus, the value of the correlator output for the k cyclically

N-orthogonal sequences is

pfai = F(;;) (6.12)

The value of the correlator output will now be derived if the
mapping of the rth (r=1, ... , N-1) complement of Sa is multiplexed

i

instead of Sai. Then, sgg) is replaced by §§g)-r in Equation (6.7).
Also under the condition, the rt'h complement is transmitted the expres-

sion for f( S(g)), Equation (6.9) is changed to [f(z(g))]r ’

[f(g(g))] Z F(8) expL-J %’-‘-(s Q(g) oo+8 b ig) s, T é(g)
all

o+ By, §§§2)J : (6.13)

Then repeatiny; the operations defined by Equations (6.10) and (6.11)

with the substitution [fY( Q(g))]rin place of £ ‘>( 8)), the output of the
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th

i correlator, under the condition that the rt'h complement was

[P ] ’
fai r

transmitted is

[pgg 1y = Ppy exp[-J 2r x/N] . (6.14)
i i

It is noted then that the information carried by the 1th carrier
is determined uniquely by the phase of the correlator output, independent
of the information content of tfxe other k-1 carriers; The contribution
of the :lth sequence to the total output is then maximized by maximizing
the value of F(;i) over all possible logic functions, f(x), under the
condition that the k cyclically N-orthogonal sequences are used. Hovever,
it can be shown that for any set of input sequences, F(;i) should be maxi-
mized to maximize the contribution of the ith input independent of the
condition of the other inputs.¥

Now it is necessary to determine the logic function f( ;) vhich
maximizes F(W-r'i), vhere f(x) is specified as a unit amplitude complex
vector. If we assume that the magnitude of the outputs from all cor-
relators is to be identical, then F(;i) = F(;i')’ for all i, i'. Ve

can then set

k-1 k-1
- 1 . - RO - 2n
Fv,) = % 5_ F(Vi) 7 Z } £(x) expl-J T %) oy
i=0 i=0 all
X
or _k k-1
- < - - ] A
F(vi) = EE' 2 £ x) >. exp(-J i’l xil (6.15)
all i=o
X

*The proof is similar to the proof for the Boolean multiplexed system23
and hence is omitted.



Now the xi's, 1=0, ... , k-1 are the symbols of each of the k multi-
k-1 2

plexed sequences during a particular time slot. Hence I exp(-J _Nl xil
i=o0

is a complex vector which is the sum of the mapped symbols of tne k se-

-t

gquences during the time slot. Thus, F(vi)

values of X the complex vectors f(;) £ expl-4 -ZN—" xi] all have the same
i=0

phase angle. If the phase angle of F(Vi) is to be zero (this is an ar-

is maximized if for all N‘k

bitrary, but practical choice), then F(;i) is maximized if f(x) is a
vector (unit amplitude) with a phase angle equal to the negative of the
phase angle of Ei exp(-J %:_g xi]. Thus, the optimum logic can be inter-
preted as a hard limiter on the sum of the complex components of f.he in-
put mapped sequences, 80 that the output vectors of the logic network
during each time slot are all of unit amplit.ude. Ifl:_):.-.: exp(J -r;—“ xi) = 0,
vhich can only result if G.C.D. [N,k] # 1, then £(x) can be chosen to be
any unit amplitude vector since there is no contribution to the maxi-
mality of F(?r‘i).

It is of interest to note the nature of the optimum logic net-
work under the condition that phase modulated cosine functions are used
as a mapping instead of the Nth roots of unity. From the discussion in
Chapter 2 on the relationship between the correlation function with co-
sine function and roots of \inity signalling, it can be seen that the
output of the logic network [f( ;c.) ] = vhich maximizes the correlator

outputs for cosine function signalling is

[f(sa]cos = cos (wt + GL) F (6.16)
k'l 2“
where eL is the phase angle of exp(J == x.). However, 0, can be
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written as
k-1
3 on
Zsin (F *1)
- -1 i=0
0, = tan™t = . (6.17)
icos (ﬁ x, )
N i
i=0

Substituting (6.17) in (6.16), and expanding cos(wt + GL), [£(x) ]cos

becomes
, k-1 2
[f(x)] 1 Z cos —NE X, CO8 wh
/ k-1 s i=
2n
[zcas —xi_l + L 3 sinT xi]
i=0
k-1
en
+ y sin N xi sin wt
i=0
k-1
1l
= — z‘cos (wt + G x,)
N i
k-l i'—
T o2 0
Scos-—x [)sm-——xJ
i-o . (6.18)

Thus the optimum output of the logic network, under the cosine func-
tion mapping, is proportional to the linear sum of the mapped components
of the sequences during a particular time slot. Then the optimum logic
for this condition can also be interpreted as a hard limiter. The in-

strumentation of the logic can either be an "infinitely" fast acting AGC,
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or a bandpass limiter.

For either mapping it has been shown that the value of F(‘—;i)
(wvhich is the correlator output wien the cyclically N-orthogonal se-
quences are used), specifies the system performance. It is seen from
(6.15) that F(V,) is & function of N and k. Values of F(v,) for
N = 2,3,4 and several values of k are given in Table 6.1. The values

for N = 2 are taken from Titsworth's papers.

Table 6.1

Values of F(;i)

k N=2 N=3 N=tb
1 1 1 1

2 0.5 0. 667 0. 60k
3 0.5 0. 496 0. 684
4 0. 375 0. 455 0. 439
5 0. 375 0. 405 0. Lok
6 0. 312 0. 358 0. 362
7 0.312 0. 340

It has been noted previously that there is no crosstalk
in the reception of the information in the ith carrier due to the
complementing of the other signals on the channel. However, from
Table 6.1 it is noted that the correlator output (normalized) de-

creases as the number of users increases, resulting in an effective
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decrease in the signal to noise ratio. The loss in signal to noise
ratio due to the hard limiting appeers to be lower for non-binary sig-
nalling. An interesting comparison can be made between the performance
for N =2 and N= 4. It has been shown21 that the probability of error
per bit of information is lower for N = 4 than for N = 2 when the sym-
bols for N = 4 are mapped onto phase modulated cosine functions.l Since
the signal to noise ratio loss due to hard limiting is lower for N = L,
it is apparent that significant improvement in multiplexed performance

is obtainable by using quaternary encoding instead of binary encoaing.
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T. SUMMARY AND CONCLUSIONS

T.1 Summary of Major Results

The major objectives of the thesis were

a. The synthesis of new classes of periodic sequences, with
binary and non-binary symbols, which exhibit useful autocorrelation and
cross-correlation properties, when the symbols are appropriately mapped.

b, The analysis of two types of multiple-access systems
using, as carriers, these sequences along with some known classes of
sequences,

In Chapter 3 the method of interleaving two level binary sequences
was analyzed as a method for synthesizing large classes of sequences with
prescribed correlation properties, A large class of almost two-level
sequences with low cyclic cross-correlation function was synthesized.
These sequences are applicable for synchronization, some asynchronous
carrier systems or as a set of non-linear error-correcting codes with good
data rates. A class of sequences exhibiting autocorrelation functions with
intermediate minor peaks all of different amplitude and cyclic cross-corre-
lation functions which are uniformly low was synthesized. These sequences
are applicable for synchronization under high signal to noise conditions
and also as carriers for the asynchronous multiplexing system., It was
shown that some classes of interleaved sequences are easily generated by
a non-linear filtering technique,

In Chapter 4 classes of binary and N-ary sequences which are cyc-
lically orthogonal (orthogonal for all cyclic shifts) were derived, A set

of binary cyclically orthogonal sequences are the k basis sequences, (re=-
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ferred to as the Basic Walsh functions) for the set of 2° Walsh functions.
All of the classes of binary cyclically orthogoneal sequences derived, con-
tained sequences all of different least period. It is conjectured thrat
binary cyclically orthogonal sequences of the same least period do not
exist. This conjecture was discussed by noting the Fourier components of
mapped binary sequences,

In Chapter 5 the problem of multiplexing, on & linear channel with
additive white Gaussian noise, the carriers from k different transmitter-
receiver pairs, when each transmitter is synchronous with its corresponding
receiver, although the various transmitter-receiver pairs are asynchronous
with each other, was analyzed, Information is transmitted by scnding a
carrier or its negative, It was shown that the averasge binary error prob-
ability when the k carriers are a set of mepped randomly chosen binary
sequences, reduces to the binary PSK formula when the ratio of number of
sequences to sequence length is zero as the sequence lcangth recomes un-
bounded. The average probability of error when the carriers are nzpped
Basic Walsh functions was derived, and it was shown that the result is a
function of the particular sequence assigned to a user, and the number of
users sharing the channel, The average probability of error, averaged over
all of the' cariers, approaches the PSK formula as the uumber of users (and
of course the sequence length) becomes unbounded, However, only logyL
(with I, = ») users, can be present when the carriers are mapped Basic
Walsh functions, while a greater number can be present if mapped random
binary sequences are used. The average probability of error was computed

vhen the carriers are a set of sinusoids of periods comparable to the
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periods of the Basic Walsh functions, The average probability of error
was higher for the sinusoid carriers.

A set of mapped Bose-Chaudhuri error-correcting codes was consid-
ered as carriers, The noiseless channel performance of these carriers
appeared to be significantly worse than the performance of the Basic Walsh
functions,

Chapter 6 dealt with the "hard-limiting" multiplexing, prior to
transmission, of a’'set of mapped N-ary sequences, with, all carriers .-
synchronous, Information is transmitted by sending the mapping of a
sequence or one N{ the N-1 complements., The optlimum set of sequenccs were
the k cyclically N-orthogonal sequences of length Nk derived in Chepter L,
It was shown that the signal to noise ratio degracdation due to "herd-

limiting" multiplexing was lower #or K=3 and U4 than for the binary case,

T.2 Prctlems Vet to Be Solved

In this section & number of unsolved pro:lems suggestcd by
the research described in this thesis are listed.

a., The synthesis of twoelevel N-a:y seqicnces for both
mappinzs presented in Chapter 2,

b. A listing of all of the eutocorrelation functions which
arbitrarily interleaved two-level sequences can exhibit,

c. A secrch for large classss of cequences (binary end N-ary)
which exhibit good cyclic crosz-correlation properties, besidcs the Bose-
Chaudhuri codes, interleaved sequences and cyclically orthogunal seguences

considered in the thesis, It eppears that the technique of choosing
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sequences with distinct Fourier components will be useful for the synthe-
sis of binary sequences,

d. Investigation of cyclically orthogonal binary sequences
of the same least period.

e. Additional searching for sequences for the asynchronous
linear multiplexing system which provide performance comparable to the set
of "average" randomly chosen sequences, The computer derivation of the
"flipped" cross-correlation function of mapped Bose-Chaudhuri codes, and
the interleaved sequences considered in Chapter 3, might indicate that
these carriers are applicable for this system.

f. An analysis of the asynchronous linear multiplexing of
mapped non-binary sequences, with a mapped sequence or complement sequence
sent as information,

g. Derivation of sequences for an asynchronous "hard-limiting'

multiplexing system,

7.3 Relationship Between Thesis Problems and Prior Work

In this section the problems, results and proofs presented
in this thesis are related to the prior work which hat uappeared in the
literature,

In Chapter 2 the concept of the N-1 complement sequences of an
N-ary sequence was introduced, Although the existence of complement
sequences has beer "hinted" at in the literature,zl the technique of sig-
nalling with mapped complement sequences has not been analyzed to the ex-

tent that binary signalling has., The proof of the shift and add property
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of p-nary maximal length sequences and the derivation of the autocorre-
lation function of the raximal length sequences with symbols mapped to

-1, 0, +1 has not appea.réd previously. The shift and subtract property is
probably known.

The analysis of the correlation functions of mapped interleaved
two-level sequences, presented in Chapter L, appears to be a problem
which has not been previoulsy solved. Interleaving has been used pre-
viously for the derivation of large classes of error-correcting code829
and the product "almost" two-level sequences which Titsworth has derived
are recognized as interleaved complement sequences, The large class of
"almost" two-level sequences and "different" peak sequences derived in
Chupter L were not previously known. The non-linear filtering technique
as a method for generating certain classes of interleaved sequences is an
extension of the work of Raphael.l9

It is probable that the cyclically-orthogonal property of the Basic
Walsh functions i1s known. However, the general techniques for the synthesis
of cyclically N-orthogonal sequences, presented in Chapter 4, have not
appeared previously in the literature. No work has appeared on the Fourier
analysis of binary sequences or on the existence of cyclically orthogonal
binary sequences of the same least period, The results presented on the
generalized Hadamard matrices are probably known.

Although a significant effort has been directed towards the solu-
tion of the multiple access problem,33 the problem of the binary asynchro-

nous linear multipiexing of carriers has not been previously considered,
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The technique used for the asymptotic series approximation to the proba-
bility of error integral for the Basic Walsh functions was suggested by
the work on a similer 1ntegral.35’36 The derivation of the asynchronous
performance of the random sequences is similar to a derivation of the
performance for a synchronous system.37
The transform analysis of N-ary sequences, preéented in Chapter 6,

utilized in the derivation of the "hard-limiting" performance of N-ary
sequences mapped onto the roots of unity is an extension of the work of

Titsworth, 12,23
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APPENDIX A: Proof of Theorem 2.2

The normalized autocorrelation, pp(A) was defined in Section 2

as

L
oM =L Y o} (r.1)
i=0

For the mapping, 0~ 0, 1 ~ 1, 2 — -1 of the ternary maximal length se-
quence, Equation (A.l) is formed by the sum of products of the form,
0°*0,1"°1, (-1) * (-1). However, since there are 3r-1 2's and Sr-l
1's in a ternary maximal length sequence it is seen that

2 .)r-l o - }r-l
L T T (3F-1)

pA( 0) =

From Theorem 2.1 it is noted that the mod 3 sum of the maximal
length sequence ani the maximal length sequence shifted by L/2 digits,
yields the all zero sequence. Hence, for A = L/2, Equation (A.1) is
formed by the sum of produc.ts of a mapped symbol and its mapped additive
inverse. The products appearing are 1 * (-1), (-1) * 1, O * 0 resulting

in
r-1

pA(é'): = .LB ’

The result for the remaining integral shifts will now be proven.

It is noted if any two tevnary sequences are summed, (mod 3), there are
three sub-sums which generate each of the three symbols in the resultant

sequence. These sub-sums are
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It will now be established that if a ternary maximal length se-
quence 1is summed with a shifted version of itself (except for shifts of
0, L/2), each of these sub-sums will occur 3¥"2 times, except the last
sum, (0+0) which will occur 32 - 1 times. Once this is established,
it will be clear that pA( \) =0, A £O, L/2.

Write the original maximal length sequence, and its first ( r-1)

cyclic shifts as the row vectors of an r x L matrix M.

Fo 81 8.2 s e aL_l—

aL_l ao al eeo e aL_a
M = L] L] ® *

8-r+1  8L-r+2  BL-rts ** 8L-r |

The row space of M is a basis for the L cyclic shifts of the original
sequence, where the vector generated by twice the first row is the se-
quence shifted by L/2 digits.

From the characteristic of the maximal length sequence, the
L= 51‘ - 1 columns of M are the 3 - 1 nonzero r-tuples over GF(3).
Hence, if we consider the corresponding elements of row 1 and any other
row as‘ forming L 2-tuples, it 1;3 clear that in this set of L 2-tuples,
each of the 9 possible 2-tuples over GF(3) will occur 3¥~2 times except
(0,0) which will occur 32 - 1 times. Thus the result is established
for A =1, ... , r-1.

Next, form a new matrix M', of the form
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- (L+1)/3 (1+1)/3 (L+1)/3 -
0 O exelel© 1l & AOO S 2 2 g &
M'=]0 0 O il ensr AL 2 ... 2 0 0 22 00 22

(L+1) /9 (L+1)/9

0 1 2 veo 2 01 2...2 r.:12...2j

o

by permutation of the rows and colums of M, and the addition of a column
containing all zeros. It is apparent that M' can be formed from the
characteristic of the maximal length sequence. Replace any row of M',
except the first row, by a vector, V, which is any linear combination of
the r rows except twice the first row., If the vector is viewed as divided
into 3 segments - the first (I+1)/3 symbols, the second (I+1)/3 symbols
and the last (L+l)/3 symbols - then each of these segments will contain
(L+1)/9 ones, (1+1)/9 twos, and (L+1)/9 zeros. Thus in the set of (IL+1)
2-tuples which are formed by taking corresponding elements of row 1 and

V, each of the 9 possible 2-tuples over GF(3) occurs 3r-2 times., Discard-
ing one of the (0,0) 2-tuples, which results from the addition of the all
zero column in M', it is seen that the 9 possible sub-sums, resulting
from the suming of a maximal lergth ternary with any shifted version of
the sequence, (except L/2), occur 37~2 times except the 0 + 0O sub-sum
which occurs 3¥™2 - 1 times. Hence Equation (A.l), for the mapped se-

quence, reduces to

oM =114 (-)-(-) + (D142 (D]=0 .
A£O,L/2
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APPENDIX B: Proof that Every 2-Fold Interleaved Sequence Can
Be Generated by Multiple Nonlinear Filtering

For n = 2, the output sequence of the multiple nonlinear filter,

in polynomial representation, reduces to-

SoT(x) = x270[8.0(x2) @ x2( 71+1-70) al(xz) 3

(B.1)
+ X201 g (x2) @x2(7170)a (x2)] , mod (x2L-1) .
In order to simplify (B.1), let 7y =7, - 7. Then S p(x) becomes
Sor(x) = &7 lay(x%) ®"2(7i+1)31(“2)] (B.2)

+ x27°+1[a°(x2)@xz(h)al(x‘e)] , mod (x?L1) .

It will now be shown that each of the states of the filter gen-
erates a different output interleaved sequence. Since there are as many
filter states as interleaved sequences, the proof will be complete. The

following cases will be considered for 7,, 71, ao(x), a,(x).

Case a. a,(x) =0(x) , a;(x) = O(x). Then Syp(x) = o(x?) + x0(x%), in-

dicating that the output sequence is the all zero sequence.

Case b. ag(x) = 0(x), ay(x) = hy(x). Then Sop(x) = x2Ph (x®)
e xZ(b-l)hm(xz), mod (x2V-1), where b =7, + 7, + 1, where b = 0,1, ...,
L-1. The interleaved sequences for different values of 7, are all differ-

ent,* and for no value of 73 can the all zero sequence of Case (a) result.

*The result is independent of 7, since sw, 15 open (b = 7g+7,+1 = 7,+1).
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Case c. a,(x) = hy(x), a,(x) = 0(x). Then
Sop(x) = xzchm(xa) + x2°+1hm(x2) , mod (x3L-1) .

where ¢ = 75, ¢ = 0,1, ..., L-1. The interleaved sequences for different
values of 7, are all different, and for no values of 7, can the sequences

of Cases (a) or (b) result,

Case d. a,(x) = hy(x), a,(x) = hy(x). Then

2 [YotI(71+1) ]hm(xa)

. x.2|:7o+I(7;) ]ﬂhm(xz) , mod (x2L-1)

S, m(x)
of (B.3)

It is clear that this polynomial cannot reduce to the polyncmial repre-
sented in Casc (a). In order to establish that Case (b) cannot result,

it is necessary to demonstrate that

Yo + I(7,91) £ 7o + I(7,) + 1,
or equivalently that,

I(7,+1) £ 1(7,) +1

The properties of the function I(A) defined by (2.8) will now be used.

From (2.8) we know that

xI(71+2) hy(x) = hy(x) ®x" (%) , mod (x-1) ,

and

xI(7i)+1hm(x) = xhy(x) @x71+1}\m(x) , mod (xP-1) .

However, from the uniqueness of the shift and add property it is clear
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that <Xy () 2 (TP (4 nos (xDo1) indtcating that I(yi+1)
# I(7,41).

In order to show that Case (c) cannot result from Equation (B.3)
it 1is only necessary to indicate, because of uniqueness, that I(7;+l)
£ I(7,).

As a final step it will be shown that the L? different combina-
tions of 7o and 71, in (B.3) each generate different interleaved sequences.

For 7; = L-1, Sop(x) reduces to
Sor(x) = 0(x®) + 27otI(L1) )0 hp(x3) , mod (x2E-1) ,

which, for the L values of 7,, represents all cyclic shifts of the maxi-
mal length sequence in the 'second" position and the all zero sequence
in the "first" position.

For 7; = 0, SOT(x) reduces to
Sop(x) = x2[7°+1(1)]hm(x2) + x0(x?) , mod (xaL-l) s

which represents, for the L values of 75, all cyclic shifts of the maxi-
mal length sequence in the "first" position and the all zero sequence in
the "second position.

For 7; # 0, L-1 the output sequence Sgp is an interleaving of
shifted maximal length sequences. In order to show that these interleaved
sequences are all different, it is nccessary tc establish that, if 7o £ 6,
and 7; # 6,, then botl of the following equalities cannot be satisfied

simultaneously.
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5o + I(63+1) {

I(75+1
70 ¥ (71+ ) (B.h)

6, + 1(6,)

Yo *+ I(7;)
This is accomplished by showing that only 4 = O satisfies the equality

I(7,41) - I(7;) = I(7,+1+d) - I(7,+4d) (B.5)
Equation (B.5) can be transformed to

I(7,+1) + I(7;4d) = I(y;+1+d) + I(7;) . (B.6)
Fram the definition of I(1), (B.6) implies

xI(7l+1)[hm(x) @x71+dhm(x)] = xI(h) (hy(x) @x71+1+d‘:1m(x)] , mod (xL-l) -

or

L)+ --‘d_hm(: Q@::I( .'1')*‘\'£+l+dhm(x) = I(v! +1)rh( =00 X Y{)hm(x),m a (xL-1),
or

xl(ﬂg)hm(x)@ xI(Yi')nm(x) mod (xL-l)
(B.7)

dexI( Y+ hm( x) ® ):I( )+ +lhm( ::)1

However, (B.7) can be trensformed to

= {x‘“' !:.hm( %) @ 1 ﬂhm( ::)j‘ ® xY’: +l[hm( x) () Gl hm( %) ]}

= [hm( x) @th' +lhm( x) @hm{::) @x."’fhm( x)j‘ , mod (xL-l)

or
ar v, mr B R R PR O
X X hm( x) @)= ]‘hm(x)j = | x l.m( x) &x lhm( x)

, mod (xL— 1)

(B.8)

From (B.3) it is seen that only d = O satisfies (B.5), ectablishing
the proof.
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APPENDIX C: Derivution of "Flipped" Cross-correlation Function for
Basic Valsh Functions

In this appendix, pg_i)(,\i) will be derived for £ > i and

zﬁ-i-l ol

k'=nziﬂ+‘,memn=o’1, e sie )y "l) andw=o,l’ v e ,2-

&
The derivation for the values of A L not included above is quite similar

and only the final result will be indicated.

Let Sai = [(ai)o’ cee (U-i)by cee (ai)L_‘. ], Sa£ = [(a;)o,

® o0 , (uN‘)c, L ) , (a;)IF1] and Sg = [go’ * & , Cd, L AR 4 ’ GL-I ] L] 'I'l]en

the first \. symbols of S , [(a,),, b =0, ... , A, - 1]}, are
. ay i’b

o b = 0,1, LA ] 21"1; 2i+l, LRI } 3.21-1; e 00 ;

nelh ) peitiiy L) pel™ 4w
(a,),, =
i’

1 b = 21, 21+l, Y 21“-1; 3-21, 500 ¢ 1&'21-1; ey

(2n-1)2*, (2n-1)27+1, ..., n2i*t.1 .

&4 |s(iE)
s
=1, ¢=0,1, ... , ’\L'l' The first )\f’ symbols of

The first A, symbols of x , [(aL)L-.\ P T 1],

c
X

are ( a’,.‘) L-)\ g+c

S =8 +x'b S(f) are
& % e 97

4 .
= O,l, . L3 ] zi"l; 21+-, s 00y 3. 21"1; L) ;

o]
[oJ]
1l

- vy
n2d*t ., naitt 4 oyal

) 0 = 21, 21+l, Sr Zih—l; 3'2i, ceny 1,1‘21—l; 500 F

[=]]
!

K (2n-1)2%, ..., nei®r_y .
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[ A 1}

From the symbol structure indicated above, it is seen that there are 'v

more ones than zeros in the first \ = nzi*! + v digits of S . Thus
from (5.7), ;.gf)(nzi“ +w) = -21/L(L=2% forn=o0, .., 2w,

and w = 0,1, ... , 21.

i

For the seme constraint on n, but with v = 2%, 2% + 1, ..., 2i*1,

the "flipped'" cross-correlation is tound to be, ,;(ii,‘)(nzi’“- +v) =

- 2(2i* ) /L.

’

For n = 2~1-1, p4-1-1 1, ..., 2o,
p :
+ 2w/L Ww=0,1, ec. , 2"
pgf) [n2it: +r] =
2(21" vy /L we=at ..., 2l
. b=i-1 Ledery -
Finally for n = 20(2 ), 20(2 ) +1, c.. ,
20(2%1-1) ¢+ 2~ir _ 3 (6 =0,1, ... , 2K 1),
[ - 2v/L w=0,1, ... , 2%
ps?(rﬂiﬂw) -}
l - 2(2in -u) /L v = 21, ves 5 2V72
. dom i1 . S i} b-i-y
and vith n = (20+1)2 , «ee 5 (2011)2 + 2 -1,
+ 2u/L w=0,1 ... , 2"
p(i.f)(n21+‘+v) =

( + 2(2“1 -v) /L we=2, ..., 2in



APPENDIX D: Derivation of Probability of Error With Basic Walsh
Functions For k=2

In this appendix, the average probability of error, when corre-
lating wvitn the carriers associated with the Basic Walsh function

sequences S, oOr Sa;: with two carriers on the channel, (k=2) is deter-

8
mined., We are given the density functions, for 1=0, £=1,

. Pyn=S)°-
Pifon) = 1 _ exp. [1_15____J , (D.1)
]ﬁg;% - NoS/T
and
p(p,,) = P(Por) = {3 6(00y) + 2 -5<py <8 (p2)
14 \ 2s 2 2
0 elsewhere
Then p(Z | do=+1) 1s given by the convolution of p(p,,) and
p(pOI)} or

@

‘[ P(Po1 )Pop(Z-Po1)dpos

I

=s/2

P(Z | dy=+1)

s/2

I
&

%[6(901)+é5:J A= .

/

- [%—Sﬁ-’—sf] dpo1 (D3)

’—:15'
w
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Thus the expression for the probability of error, P(e,) = P(e,) becomes

(o}
Pley) = P(eo) = ] p(2 | dy=+1)dz =

0 s/2 2
exol - {Z-Po3=8)"
B [ [

—L cxp‘; - LZ_'S.LZ:] az (D-4)
oS o, NS/T

)]dpm ﬁ[l-erf ST] (D.5)

= -l— l-erf
2 -J;/z [ «/N.“S/T

vhere, erf(v), the error function of v is defined as
& P
erf(v) = == J‘ e dx . (D.6)
Jm Yo

The integration of the error function in (D-5) is performed by parts.

The final result for the average probability of error is then

P(ey) = P(ey) = 3

Loere [ST 3 err(2 FI
CUAF (h/no)

+
gy

erf( /i_? P SR LA VAT R /f‘;; -9ST/ i,
( No> fn»/STe +./n STe

(D7)
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APPENDIX E: Asymptotic Series Approximation to P(e,)

An asymptotic series approximation to the integral expression
(5.26) for i = o, which yilelds accurate results for k > 4 will now be

derived. For i = o (5.26) can be transformed to

o0
2
Ple.) = l_1 sin Zk'ly sin y . "rk 1 y~28k-4/G e
ol "2 y L 2y & Z2J dy ;
o}
The procedure to be used for the above expression is sim®” to the pro-

cedure previously used for the asymptotic series approximation t035’36

dx

2 n
/ sin x \
-/

(o]

-k-1
An approximation to [E%ﬁ-l + %J will first be derived. It

is noted that

4 ‘siny 17 ycosy-siny .
’lY[ K ey 2/.] y 8in y + y2 (E.2)

Writing the series approximation to the right hand sids of (E.2) we

find
LR FR B
s Sin - ’3_] [5 _I + ...
[n\ * -2-/_] s A - (E.3)
2y° - = +%T T +

Performing the long division and integration, ana retafaing the first
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three terms

f.n Sin >~-l£;+—l%+-m%uu (E. &)

/= € ’

(x-1)y?/12 k 1[ y: Y ]
i -(v-1 12 k- +
(81!1 Y . 1 " 1450 ° 18,14k (E. 5)

vhich can be approximated as

i -1 -(k-l)y:'/l?.‘ !k-l ;:4 k-1
ol i) =~ 2+ L *115,‘531)& D

—

Substituting (E.6) into (E.1) the expression for P(eo) is approximated

as
(0 0)
Hepwi-t [ en [ (G 55" )] @
o _
(o0}
-% !‘sin Zk“’y] [ﬁﬁ—%‘?—ﬁ] exp T- C(- +Ea—z:-: }dy

The contribution of the third integral can be shown to be negligible

for 0 < G° < 20. Also for G® in this range and i > L we cau use the
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approximation

T k-l 2k-Nq o Aotk o yB(k-1)T
e.ch-rC12+ & )~‘L°"P T T® jJ!_l' 12

)

(E. 8)

Incorporating these approximations into (E.7) and performing the inte-
gration with the aid of integral 337-2b in Grdbner, 34 we pget the approxi-

mation

11 (BN SE (2] o6
P(eo) ~% -3 erf(G) + 15 —.,1{:7:
(k-1) ¢° (5\ -G” 3 2
-~ Thlox 2k v [ 2 J° F{‘ 1, 3 G }

1\" ) <
a'%m%ﬁmf\ F{ 2, % G] (E.9)

vhere Flx,y,2] is a confluent hypergeometric function.
It is seen that the resultant approximation for P(ea) is
the binary PSK error probability plus some error terms vhich approach

zero for k - oco.
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APPENDIX F: Probability of Error Averaged Over k Basic Walsh
Function Carriers

In this appendix the probability of error averaged over all k
carriers on the channel, for k — =, will be derived, When correlating

with the carrier associated with sai=S , the output of the 1*8 corre-

8k.E

lator becomes Gaussian distributed with mean zero and variance, c;k £

E=l, 2, sesy k-‘CD P

2 _NS & 2B+l hns =217 (F.
g " 12‘!&- : [(E—l)a (2 /] (F.1)
Let
o;: = cazk-E - Ezg'é . (F.2)

Then the probability of error P(ek E) vhen correlating with the i=k-E

carrier is

(F-3)

P(ek_E)=z-3erf[l lﬁgf ],
55

s?

where
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We are interested in P,, the error probability averaged cver all of the

carriers, Thus. .

K
ke N (F.4)

or

k A
E, = iﬂ% E;{%'- %erf[c ;OEJD% ]j (F.5)

T =

Expand the error function in the series

- 1 2c=-1
< c+ X
ert(xg) = £ ) (-1) E (. 6)
Vol (2¢-1)(c-1)!
where
1 G
X, = = S—
E  ~ 2o LT 20 GF 11 (F.7)
LE?+ g2 ] Ll * ) ]
205 G
If < 1 then x_, can be expanded in a power series in

2,3 :
ascending powers ¢ 20E G . Now 2°E?G? achieves 1ts moximum value for
S° 53
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3 3
E=1 or E-2, with E‘ﬁsa- =208 -2, pence for all ¢° < 9%, x_ is equiv-
9 )
alent to
2.4
od dx‘QOE
- GZ Ol e (F.8)
d=0°
Then
k - +1,2c-1
Bo-lml Vg2 ¢ ()76
V keok & 7— 2 (2¢-1)(c-1)!
E=1 e=1

}, [LL Gg}?f:i]dfc'l} (F.9)

Since &all of these infinite series are uniformly convergent we can ih‘ter-

change the summation and limiting operations in an arbitrary manner, Thus

the expression for ?w c?1 be reduced to

N °*12°'1,11m1kr: )% 2
& {% T >: (2¢-1)(c-1)! WEE;%%O z’d\(?
255 GO d-2e-1.
T (7. 10

¥The average gro‘ba‘bility of error for binary PSK signolling with G°=9
is 1,1 ¢ 107
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It will now be shown that ' ' \ %

iﬂi 521[ S'—l-)— fc . (F.11)

The first term of the above summation is 1,

A typical remaining term is of the form

%Z(aE X (F.12)
E=1

where B i1s a positive integer and ¢, 1s a finite constant.

But,

B _
B= (g)a 2-32}3-6[ Zq>(E_l)%mJ GRS
m=0

It is then verified that

lim ¢ _}_> 2-[32EZ (e >(E 1)5® -

k—= k

Hence the probability of error, ?w, averaged over the k Basic Walsh
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functions, k = «, is

+ -
C 1G2c 1

B,-4-1. %if'”
=1

K (2c-1)(c-1)!

=% - % exf (G) ,

for G° < 9.
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