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Introduc:ti_clrl

The iiceratiure on this subject is extensive and diverse in treatment of
special cases, choice of reference coordinates, degrees of approximations,
forms of solution, symbols, and nomenclature One feature common to almost
al' references studied is the failure to emphasize the physical factors under-
lying the numerous aerodynamic coefficients. The result is that the relative
importance of these factors has received little cousideration This report is
prepared primarily for the benefit of those who are not experts in this field, but
who must employ computing machines for cbtaining numerical solutions to the
equaticns submitted by experts. The differential equations for the general case
~ will be derived from basic mechanical principles carrying as far as possible the
physicai factors before introducing the complicated dependencies of the numerous
aerodynamic ceefficients.

Insoivability of Generai Problem

It must b 2 realized that the general problem, taking into account all aero-
dynamic factors, is incapable of solution by analytic means The problem is
insolvable for several reasons: (a) exact physical laws governing the aerodv-
namic forces have not yet been found; hence, empirical relations have to be
used. (b) the aerodynamic forces depend in a complicated way upon the charac-
teristics of the air. the velocity, the size, and the shape of the missile; simpli-
fying assumptions and approximations for each special case have thus been
necessary to describe the motion in special cases, and (c) no analytic solutions
have yet been found for the nonlinea: differential equations describing this type
of moiion

In spite of these handicaps, the conventional differertial equations of
motion containing all available information have been solved by using cne or
mor approximations, depending on the nature of each particular special case
By numerical techniques, the motions of missiles are being predicted with a
bigh degree of success, from a practical point of view. In this report the attempt
will be made to describe the origin of each force and torque acting on a missile,
to provide a basis for judging the validities of approximations made.

Mechanical Factors

Attention is confined to a long, symmetrical missile (e.g , body of
revolution, which may or may not be spinning as it moves through the air. The
effects of gravity, wind, and the earth's curvature and rotation (Coriolis forces)
will be excluded These can he introduced later into the equations of motion,




independent of th. aerodynamic forces. In gene.al, the axis of the missile will
make an angle ©, the yaw angle, with the velocity relative to the air, V. The
plane formed by these two lines, which will be called the yaw plane, may rotate
about V, as shown in Figure 1. This produces combined pitching und yawing,
or complex yaw,

Figure 1

Motion of missile relative .o air, showing yaw aagle ©.

The missile axes a', b' (not shown in the figure) and ¢ are the principal
axes of inertia; * : A = B > C are the moments of inertia, C beir~ about the
axis of revolution. These axes are rigidly attached to the missile and spin with
it (if it has spin). An attempt is made in this presentation to adopt gymbols for
axes of reference that will require only a few subscripts for identification of
force, torque and spin components. The spin of the missile about its axis will
be designated by S,. ' -

The description of the effects of forces and torques on the missile is most
naturally described by employing the orthogonal axes shown in Figure 1. Axis b
lies in the yaw plane, and a is the line of nodes, the moving intersection of the
(@ b) plane with a reference plane perpendicular to V. The transformation to
other reference triads wiil be made later, when the most convenient coordinates
for particular problems will have to be chosen. .




Forces and Torques

The model shown in Figure 2 was built to iliustrate the forces and torques

acting vn &« missile. The long cylinder mounted in gimbals represents the missile.

Red plugs are attached to represent the forces and blue plugs the torques. The
coordinates for the missile framework are the (dbc) triad. The spinning missile
itself 18 represented by the first collar at the lower end, bauring *be axes a' and
b" which can be rotated about the axis . to represent the spin of the missile.
Rotatable on this is another collar bearing the jet factors, which rotate relative
to the missile triad (a'b'c).

Forces will be derived for missiles having increasingly complex motions.
In purely.forward motion at zero yaw angle the resultant aerodynamic force is tae
axial drag which opposes the motion and pecints backward. If the missile is spin-
ning, there will also be a spin decelerating torque TA directed backwards.

In the case of 'cross velocity', a motion in which the missile moves ob-
liquely at constant yaw angle, the resultant force is resoived into two compo-
nents, F, and Fy, parallel and perpendicuiar, respectively, to the missile axis.
In some treatmenis the resa..tion is parallel and perpendicular to V, as in ai~-
plane studies, where the plane flies nearly level, and where these two components
are called "drag" and "lift". These names have been carried over into the
general treatment The word "drag" still has the same mechanical significance,
i e., a resistance to forward motion. "Lift" is no longer confined to a vertically
upward force; it may act horizontally or even downward in some missile orienta-
tions.

The force F), called "normal force" or "cross force due to cross velocity"
may be derived from a consideration of the motion of air relative to the missile,
as shown in Figure 3, e.g., for a smooth artillery shell with zero spin.

. ———r— e gy

A




\/&_.__(_‘T{n
CANL

Figure 3
Normal Forces Acting on Missile

The vectars along the missile represent the forces due to cross velocity
of the air against the shel'. Their resultant {s the normal force Fy, which in
this case acts at a distance Ly forward of the center of gravity. It is inconven-
ient for analysis when the line of action of a force ¢ »es not pass through the cen-
ter of gravity; therefore, the line of action is transferred to the center of gravity,
employing the standard procedure found in mecharics: A null pair (Fy and -Fy)
is applied at the center of gravity., The original F\ is then combined with -Fy to
form a couple whuse moment is LNFN leaving a new Fy acting at the center of
gravity. This is the procedure for deriving all the other torques in this problem
and need not be described again. Because of the difficulty of measuring the lever
arm L for a force, the practice in aeroballistica is to measure the corresponding
torque in a wind tunnel, assigning to it a separate coefficient K. Strictly speak-
ing this experimental value of torque should equal LF.

The aerodynamic forces aud torques being considered are collected in
Table 1. All are functions of air density and speed of sound, velocity V, yaw
angie ©, and the shape and size of the missile. These functional dependencies
are tacitly understood during the derivation of the equations. They will be brought
into consideration later, when it becomes necessary to take them into account.
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Subscripts attached to the force symbols will be those conventionally
adopted for the ballistic coefficients, just to relate cur simplified sy: bols with
existing usage. The subscript N refers to effects of cross velocity, and S to
cross spin  Torques, contrary to convention, are given the same subacript as
the corresponding force

The complex notation adopted by most writers on this subject nee seon}ea e
r /i
explanation., The cross velocity is usually denoted by é‘ =Vg' + Vpn ré any
two perpendirnlar axer In the present choice of ~xes the crcss valocity iies

entirely in the yaw plane, hence g lies in this planc and becomes equal to Vy,.

The "cross spin", which is considered uext, is represented by 7 =S, * iSp;
however; unlike é , it may have any direction, depending on the cross
gpin components, and can be confined to neither the node line nor the yaw nlane.
Hence, the combined effects of both components S, and S, must be included in
this analysis

Cross spin S, about the node line produces forces against the missile which
are perpendicular to the axis These forces, shown in Figure 4, decrease from
a maximum at either end v zero at the center of gravity, having different senses
at opposite ends The resultant Fgp may be either fore or aft The torque will
be represented by a vector T, in the direction a, in a sense opposing the spin Sg.
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Figure 4

Force Due to Cross Spin




A spin about the b axis will produce a similar force and torque, represented
by Fg, and Tgp

In general, the cross spin will be about some intermediate axis, and its
effects will be the vector sums Fg, + Fgp, and Tg, + Tgp. In any case the torque
will oppose the change in ©, and is cailed the damping torque.

Magnus Factors

If the missile spins about its axis, the cross velocity and cross spin motions
produce Maguus forces and torques. The additional subscript U is used to distin-
quigh them from the factors previously derived.

Consider again the cross velocity, where the missile is now spinning about
its axis. In Figure 5, the velocity of air against the missile is shown as Vy
(normal to the axis ¢) The front view shows the air entrained by the spinning
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Figure 5
Mzgnus Factors are to Cross Velocity

missile (the boundary layer) moving counter to Vi on the left side, producing
~ higher pressure at h than on the other side. The pressures on the two sides
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of the missile are thus unbalanced, producing a net force Fy,, in the negative
sense along the a axis. This is the ""Magnus cross force due to cross velocity".
Here again, the resultant force may be located either fore or aft, and is re-
placed by FNu at the center of gravity and a torque Tau = INu Fvu about tiie

b axis. The torque may have either sign, depeuding upon whether the center of
pressure is fore or aft. Ty, is negative if the center of pressure is forward.

Finally, the Magnus fa tors due to cross-spin are considered. Here
again, the cross spin may be along any axis perpendicular to ¢. If the cross
spin is considered to act about the node line a, as shown in Figure 6, the air
velocity relative to the missile will oppose the motion of the air entrained by

Figure 6
Magnus Factors Due to Cross Spin

the rotation of the missile on the side marked h. On tt~ other side the pressure
ie lower; heuce, there is an unbalanced force toward the right if the center of
pressure is fore. The corresponding torque is Tgp,, Which will have the same
sensc, whether Fgyy, acts fore or aft, because Fgyg bas opposite senses in these
twc positione.

If the spin is about the b axis, the resulting force is Fsup: and the torque
is Tg;ga. In the general case, the resultants of these two factors will have to be
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considered. A "negative'" Magnus effect seems to exist for smooth spheres
and cylinders at mach numbers below one-half, according to reports from
several investigators, the latest from Lyman A. Briggs, Amercian Journal of
Physics, 27, 589-96 (1959).

To the above for zes and torques must be added the "lag'" factors (See
BRL 858) due to accelerations in the corresponding originating motions. As
these "lag" factors are too small to be measured, they are usually oraitted frem
the equations of motion, except in certain special cases.

Missile Asymmetry

Each missile possesses a slight asymmetry which spins with the (a',b’, ¢)
triad. The resultant force may be resolved into axial Fg and normal Fyg com-
ponents. The latter causes the missile to wobble as it spins. The treatment of
this eccentricity factor is not completely satisfactory, and cannot be given in
general terms because each missile has a different asymmetry. Fortunately,
this factor is usually small, and can be treated as having only minor effect.

Jet Factors

The forces and torques exerted by the rocket motor spin within the missile
triad (a',b’,¢), and will be designaied by the subscript J.

In an ideal rocket motor the gases ejected from the nozzle exert a per-
fectly aligned axial force Fja driving the missile forward along the tangent to
its path, and there would be no torque, However, in actual rockets this ideal
condition does not exist.

In an actual rocket the reactive forces exerted by small unit masses of
gas are not constant in time, are not all parallel to the axis, and are not even
concurrent, Such a collection of randomly directed forces has for its resultant
a force zlong a "central! axis'" and a torque about this axis - a combination some-
times called a "wrench'. This derivation is Jmown in vector analysis as the
"central axis theorem". Owing to the space and time fluctuations of the reactive
forces the resultant wreach will fluctuate in magnitude, direction, and point of
application. The torque may even change its sense. Fortunately, the fluctua-
tions in gas flow are not very great, and the "average' performance is wiithin
practical limits. In general, the certral axis of the wrench does not intersect

11
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the rocket axig and is not parallel to it, a condition called malalignment, Rocket
enginecrs usually treat this condition empirically and characterize it by two
numbers: 'linear" and "angular' malalignment. The linear factor is the distance
Ry, from the central axis to the center of gravity. The angular factor is derived
from the angle B between the central axis and the rocket axis, and is the thrust
component normal to the rocket axis. Neither of these names is appropriate as

a description of source or effect, because the linear factor is an oblique torque
tending to turn and spin the rocket, and the angular factor is a normal force. The
effect of these factors is to make the rocket move in an erratic path, erratic be-
cause of the fluctuations in gas flow. The torque factor in the wrench is not
mentioned in rocket engineering, probably because it is relatively small, and
averages out to zers.

Guidance Facturs

On jet-driven missiles with zero or very slow spin, there may be devices
for steering by means of adjustable fins, lateral jets or some equivalent device.
The forces and torques exerted by these devices must also be included in the
equations of motion. Whatever the mechanism used, it may produce both axial
and normal forces, as well as related torques, and these will be designated as
Fga and Fgy, etc. They will of necessity rotate with.the missile triad (a',b',c).

Tuis compietes the catalog of forces and torques acting upon a missile in
flight. Their influences on the motion will be reviewed next.

Discussion of Mechanical Eifects For Non-Spinning Missile

A nonspinning missile, and the effect of Ty are considered first. If the
center of pressure is for'.ard, the missile will overturn. That is, yaw angle @
will increase and the motion will be unstable, as would be the case with a smooth
nonspinning artillery shell. For this reason nonspinning missiles must be
stabilized by fins or other surfaces to assure that the center of pressure be aft,
and that Ty have a restoring ra_her than overturning effect. Arrows, javelins,
spears are examples of nonspinning missiles having surfaces (e.g., feathers) aft
to provide stability.

These additional surfaces provide stability in the form of a torque Tg (or
Ty in ballistic nomenclature) which opposes any changes in the yaw angle. This
damping torque thus slows down the response of the missile to the re=toring
moment.

12
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During flight on the upward branch of its trajectory, such a (non~spinning)
missile will have little yaw. But at the apex of its path the relative air velocity
changes direction, more rapidly with increased steepnese of the upward path,
This amounts to an increase in the yaw angle, which is partially remedied by the
action of Ty, tending to turn the missile axis toward the new direction of the
trajectory Of course, the damping-torque will act to oppose this change, with
the net result that the missile will be slowiy oriented toward the tangent but will
never get quite parallel to it. This is called "mushing in".

There is a possibility that the yaw plane may rotate, owing to some initial
disturbance. This produces an anguiar momentum, which will be conserved,
thus causing the continued rotation of the yaw plane, This angular momentum .
will be changed by the external torques Ty and Tg.

The forces Fyy and Fg lie in the yaw plane and procuce a lateral accelera-
tion, causing the missile to deviate from its normal trajectory. This deviation
will be steadily in one direction if the yaw plane does not rotate. But if this
plane rotates, these forces rotate also, causing the missile to follow a helical

path.

Historical Note

We come now to the consideration of spinning missiles, but before studying
them in detail we might digress for a moment to consider their early history and
the part played by Magnus in explaining their behavior. The rifling of small arms
to fire a spinning bullet came into general use on the European ccntinent in the
16th Century; the "Kentucky" rifle (made in Pennsylvania) was of this type.
History neglects to relate just why or hew or by whom the first spinning bullet was
fired, but it was soon learned that such a bullet stuck to its line of flight instead
of veering from side to side as did a ball fired from a smooth bore.

In early days of artillery cannon balls were used for missiles, but their
accuracy was somewhat limited. Benjamin Roberts early in the 18th Century
predicted that cannon would some day be rifled to improve their accuracy, the
same as small arms; also, he was the first to prove that air currents affected
the flight of a cannon ball.

At the beginning of the 19th Century it was noticed that cannon balls did not
travel in their expected trajectories, and the discovery that they inadvertently

13

ri




possessed cross spin was correctly assigned as the cause of their deviations,

via the Bernoulli effect. To increase the effectiveness of cannon balis they had
to be made bigger, but the increase in gun calibers to shoot them had its limita-
tions, hence cylinders or 'lang'" rounds were introduced. In 1846 Cavelli, in
Italy, finally fulfilled Roberts’ prediction by making the first rifled cannon, which
fired a "long' round. In the 1850's ''nearly everyone" experimented with rifled
cannon. Most cannon are rified to produce right-handed spin, although Cranz
mentions a left-handed Italian field piece. In 1852, Magnus performed some re-
vealing experiments on air flow past rotating cylinders, and established the exis-
tence of the lateral force that was later named after him, the Magnus force. The
practice of firing spinning missiles is thus only a hundred years old, and there is
still a great deal to be learned about their behavior,

Discussion of Mechanical Effects for Spinning Missile

Returning to the discussion of the motion, we first dispose of the Magnus
factors. The Magnus cross force Fyy due to cross velocity, and the torque
Tyyp are the ones established by Magnus in 1852, The second set of factors due
to cross spin were overlooked by ballisticians for nea~ly a century, and were
only recently recognized by John L. Synge in 194%, when he demonstrated that
the force system previously used had been incomplete.

The two forces lie along the node line a, and oppose each other if Fsu is
aft of the center of gravity. They tend t. make the missile follow a spiral path,
because the node line rotates, as we shall see later. The two torques lie in the
yaw plane, and are in ooposition if FNU is aft; being resolved along the oblique
axes V and ¢, they are seen to produce rotation of the yaw plane (precession)
and spin about the missile axis.

The effects of the Magnus factors Fg, and Tg, due to cross spin are hard
to measure because they are relatively small; hence, it is permissible to neglect
them in most problems.

The other forces F)y and Fg lie in the yaw plane and are in opposition if
Fg acts aft. They tend to make the missile travel in a spiral.

The torques Ty and Tg lie along the node line &, and tend to change the
yaw angle. Ty is now an overturning torque because Fy acts on the nose of the
shell; it is opposed by only Tg, the damping torque, which is {n general not
great enough to prevent overturning. As noted above, the two Magnus torques

14
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have no effect on the yaw angie and therefore cannot prevent tumbling. The
question now arises as to why spinning shells, subject to an overturning torque,
have stable motion, i.e., do not tumble. The answer to this question is found
in the gyroscopic effects of the spinning shell, which will be treated only quali-
tatively.

The spir momentum of the shell tends to make it maintain its direction in-
space. However, the torques Ty and Tg aciiag on the spin momentum produce
a precession about V, i.e,, they make the yaw plane rotate. This is the same
kind of motion as that executed by a heavy top precessing under the influence of
the gravitational torque. Thus, instead of the yaw angle increasing, the shell
axis rotates, producing the complex yaw motion.

In common with other missiles, spinning shells are initially well aligned
with the tangent and behave fairly well on the upward branch of their trajectory.
Trouble begins at the apex of the path, where the tangent changes rather rapidly
(depending upon the steepness of the trajectory) from an upward to a downward
direction. This amounts to an increase in the yaw angle, and unless a shell is
properly designed and spun, it will have unstable motion on the downward branch
of the trajectory.

Ballisticians have isolated from the solutions of the equations of motion two
characteristics which qualify the performance of a spinning shell: ¢ the stability
and f the tractability. Cranz defines these as &= C 802/4 ATy, which must ex-
ceed unity if nutations are to be suppressed, and f = VgTy/ CgSe, which also must
exceed unity if the shell is to remain parallel to the tangent of the path. (Vgis
the speed at the apex, and g is the acceleration of gravity.) Since these two
factors oppose each other, a compromise must be made in designing a shell that
shall have both stability and tractability.

15
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