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ABSTRACT 

Digital filtering is the process of spectrum shaping using digital components 

as the basic elements.   Increasing speed and decreasing size and cost of digital com- 

ponents make it likely that digital filtering, already used extensively in the computer 

simulation of analog filters, will perform, in real-time devices, the functions which 

are now performed almost exclusively by analog components.    In this paper, using 

the  z-transform calculus, several digital filter design techniques are reviewed, and 

new ones are presented.   One technique can be used to design a digital filter whose 

impulse response is like that of a given analog filter; another technique is suitable for 

the design of a digital filter meeting frequency response criteria.   A third technique 

yields digital filters with linear phase, specified frequency response, and controlled 

impulse response duration.   The effect of digital arithmetic on the behavior of digital 

filters is also considered. 
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DIGITAL FILTER    DESIGN TECHNIQUES 

SECTION 1 

a. Introduction 

Digital filtering is the process of spectrum shaping using digital hardware 

as the basic building block.   Thus the aims of digital filtering are the same as 

those of continuous filtering, but the physical realization is different.   Continuous 

filter theory is based on the mathematics of linear differential equations; digital 

filter theory is based on the mathematics of linear difference equations. 

Interest in digital filtering derives from recent work on computer simu- 

lation of speech communications systems '   '   '   '   '    and from problems arising 
7 

in the processing of geophysical data .    In addition, however, increasing speeds 

and decreasing costs of microelectronic digital circuitry make possible the 

conception of real time digitized systems which perform the filtering operations 

presently performed exclusively by analog hardware. 

The mathematical basis of digital filter theory is well known.   In addition 

to the mathematics literature on difference equations, a large body of work exists 

on the subject of sampled data systems and this work is of direct use in the design 

of digital filters.    Presently, no thorough treatment exists of digital filter design 

techniques and this paper is a start in that direction.   Emphasis will be placed on 

the frequency selectivity of filters rather than on the questions of stability and time 

response which are usually of interest in control systems.   However, it should be 

stressed that digital filters are mathematically equivalent to continuous systems 

with sampled data inputs and outputs.   In the continuous case, the sampling interval 

T usually depends on the nature of the discrete input, such as a pulsed radar return. 

The constraint on the sampling interval of a digital filter could also be caused by 

the computation time needed to execute the difference equations. 

The basic mathematical tool of digital filters is the z transform calculus, 
o 

used by Hurewicz   to develop his theory of pulsed filters.   We will first briefly 

review the z transform method and then present a number of design techniques with 

illustrative examples. 

Real time digital filters should have several advantages over continuous 

filters.   They should adhere to the design so that no tuning would be required.   A 

greater variety of filters should be feasible, since no realizability problems (akin 



to negative elements) arise. No special components are needed to realize filters 

with time varying coefficients. Aggregates of digital filters should be especially 

economic in the very low frequency band (.01 cycles per second to 1 cps), where 

the size of analog components becomes appreciable. 

b. Difference Equations of Digital Filters 

An m     order linear difference equation may be written as: 

■j- m 

y(nT) = E   L  x(nT-iT)- £    K. y(nT-iT) (1) 
i=o    l 1=1* 

The form of (1) emphasizes the iterative nature of the difference equation; given 

the m previous values of the output y and the r + 1 most recent values of the input 

x, the new output may be computed from (1).   Physically, the input numbers are 

samples of a continuous waveform and real time digital filtering consists of per- 

forming the iteration (1) for each arrival of a new input sample.    Design of the 

filter consists of finding the constants K. and L. to fulfill a given filtering require- 

ment.   Real time filtering implies that the execution time of the computer program 

for computing the right side of (1) be less than T, the sampling interval.   Simula- 

tion programs in which the computations are not carried out in real time are 

understood to be simulations of the real time digital filters and the original sampling 

interval T of the continuous input data remains the reference parameter.    It should 

be realized that quantization as well as sampling is performed on the continuous 

data before entry into the program and also, that the multiplications indicated in 

(1) contain an inherent round off error caused by finite register lengths, but for the 

most part these effects will be neglected.   The effect of quantization is an important 

consideration and we will study it, to some extent, theoretically. 

A useful pictorial representation of (1) consisting of unit delays (of time T), 

adders and multipliers is shown in Fig.  1. 

Many practical designs utilize arrangements of simple (1st and 2nd order) 

difference equations.   Arrangements can be serial, parallel or combinations of 

both.    For example, the two equations: 

yx(nT) = Knyi(nT - T) + K^y^nT - 2T) + Ln x(nT) 

y2(nT) = K21y2(nT - T) + K22y2(nT - 2T) + L^y^nT) 
(2) 



constitute a serial arrangement whereby the output  y,   of the first equation is 

used as input to the second equation, as seen in Fig. 2.   Similarly the equations: 

yi(nT)  =   K11y1(nT-T) + K12y1(nT-2T)+Lnx(nT) 

y2(nT)   =  K21y2(nT-T) + K22y2(nT-2T) + L21x(nT)   f (3) 

y3(nT)   = yi(nT) + y2(nT) 

shown in Fig.  3, constitute a parallel arrangement.   The sets of equations (2) 

and (3) can be rewritten as single   4      order difference equations; however, the 

significant properties of the digital filters are more readily understood via 

structures like Figs. 2 and 3. 

13 Substantial literature     exists on the problems of pre-sampling filtering 

of the input and ultimate filtering of the output sequence to convert it to a continuous 

wave.   We shall restrict ourselves to studying only the sequences. 

c.       The   Z   Transform 

In studying physical systems it is convenient to assume that the input begins 

at zero time and has magnitude zero beforehand.   Thus   x(nT)  =   0  for  n <  0  and 

therefore, in an inertial system such as that of equations (1), (2) or (3),   y(nT)   =   0 

for  n < 0. 

The   z   transform of a sequence   x(nT)   is defined as: 

X(z)   =   Z     x(nT)z"n (4) 
n=o 

For many sequences, the infinite sum of (4) can be expressed in closed form. 

For example, the  z   transform of the sequence   x(nT)   =   0  for  n < 0, x(nT)   =   1 

for  n;>0  is  X(z)  =   2     z"n  =   L_. 
n=o x_z-l 

The transformation variable  z   is, in general, a complex variable and  X(z) 

is a function of a complex variable. 



The   z  transform of a convergent sequence uniquely defines that sequence. 

By multiplying both sides of equation (4) by  z and integrating around any closed 

curve in the   z  plane which encloses all the singular points (poles) of  X(z)  and the 

origin, we obtain: 

x(nT)   =   2?T f X(z)zn_1dz 27TJ 

where   j  =  /- 1 

(5) 

The inverse   z  transform (5) explicitly determines the sequence   x(nT) asso- 

ciated with a given  X(z).    For sequences which converge to zero the unit circle 

can be the closed curve of integration. 

d.       Solution of Difference Equations by  z   Transform Techniques 

The   z  transform will now be used to obtain an explicit solution of the   m 

order linear difference equation (1).    First, rewrite (1) as: 

th 

m r 
T    K  y(nT-iT)  =   T     L. x(nT-iT) 
i=o     i i=o     l 

(6) 

where   K    =   1 o 

Next, take the   z  transform of (6), to obtain: 

m oo r °° 
T    K.   £     y(nT-iT)z"n  =   T     L.   D     x(nT-iT)z"n 

i=o     i n=o i=o     x n=o 
(7) 

Recognizing that the   z  transform of a sequence delayed by   i   samples is 

equal to the  z   transform of the original sequence multiplied by  z    , equation 

(7) reduces to: 

or 

m _; r 
Y(z)   L    K. z      =  X(z)   £     L. 

i=o     l i=o     i 
-l 

(8) 

X L. z"1 

Y(z)  =   X(z)   m0     1     ;   =   X(z) H(z) 
X K. z l 

1=0       1 



Thus   Y(z)   is explicitly determined as the product of the input   z   transform 

and a system function  H(z) which is a rational fraction in  z      and is a function of 

the constant coefficients in the original difference equation.   By the inverse  z 

transform (5), the output  y(nT)   may be written as the inverse transform of  Y(z). 

If we choose as the input sequence   x(nT)  =   { n  for    ^~ , then in Eq. (8) 

X(z)  =   1.   Clearly the response to this input is the inverse   z  transform of H(z). 

Thus the sequence   1,0,0,    plays the part in digital filter theory which the 

unit impulse plays in continuous filter theory.   We shall refer to the inverse   z 

transform of  H(z)   as the impulse response of a digital filter. 

We can use Eq. (8) to derive a general representation of a digital filter 

which differs from that of Fig.   1.   We can define an intermediate variable  W(z) 

corresponding to an intermediate sequence  w(nT),    such that 

W(z)  =  X(z) 1 
m Zi 
T K. z l 

i=o i 

Y(z)  =  W(z)   £    L. z"1 (8a) 
i=o     i 

The equations of (8a)   result in simultaneous difference equations 

m 
w(nT)   =   x(nT) - £    K. w(nT - iT) 

y(nT)   =   V     L. w(nT - iT) 
i=o     l 

(8b) 

which lead to the structure shown in Fig. 4.   This structure requires fewer delays 

(less storage) and may, therefore, be preferred for some realizations. 

The primary importance of the system function  H(z)  for our purposes is in 

its interpretation as a frequency selective function.    Let us assume that the input 

is a sampled complex exponential wave. 

x(nT)  =  ejnwT (9) 



The solution to (6) for the input (9) is also a complex exponential wave 

which can be represented as: 

y(nT>  =   F(ejtüT) ejmüT (10) 

and, by substitution of (9) and (10) into (6) we quickly arrive at the result: 

*   L   -jio/r 

F(eJ*T) = ^jz— = H(eJwT) (11) 
°    K.e-JiCdT 
1=0        1 

The response   to a sampled sinusoidal input can be readily found from (11). 

e.       Representation and Geometric Interpretation of System Function 

We see that the system function   H(z)   of (8) is interpretable as a frequency 

response function for values of z   on the unit circle in the complex  z   plane.   Note 

that the radian frequency  a)  is a continuous frequency so that the physical signifi- 

cance of the frequency response function is the same as that for continuous systems. 

Furthermore, the system function is a rational fraction whose numerator and denom- 

inator can be factored, so that   H(z)   is uniquely defined, except for a constant 

multiplier, by the positions of its poles and zeros in the  z   plane, and its value 

for any point   z   determined directly by the distances of that point from the singu- 

larities.   We are thus led directly to the geometric interpretation of Fig. 5 whereby 

the value of the frequency response function for any frequency  to is obtained by 

rotating by an angle   ooT  about the circle, measuring the distances to the zeros 

R,, R2 , the distances to the poles   P,, P«    and then forming the ratio, so 

that in the example of Fig.  5, 

|H<eJa3T>l  "  m- (12) 

H(e^     )   also has associated with it a phase, which is given by: 

0   =    01 + 02-W>1 + 02 + *3) (13) 

The geometric basis for digital filter design is thus identical in principle 

with the geometric basis for continuous filter design with the following single and 

important difference:   in the continuous filter, frequency is measured along the 



imaginary axis in the complex s plane whereas in the digital filter, frequency 

is measured along the circumference of the unit circle in the z plane. 

f. Several Examples 

1st order difference equation 

The difference equation: 

y(nT) = Ky(nT - T) + x(nT) (14) 

has the system function 

H(z)=   L_ (15) 
1-Kz 

The frequency response function is then obtained by letting z = e*      in 

(15), which yields, 

H(eJwT)| = 

J 1 + K2 - 2K cos coT 

and * = angle of H(e^wT) = -tan"1  C0^
T_K 

(16) 

2nd order difference equation 

The difference equation: 

y(nT) = Kx y(nT - T) + K2 y(nT - 2T) + x(nT) (17) 

has the system function 

H(z)=   \ T2 (18) 
1 -K^z     -K2 z * 

and the resulting frequency response magnitude 

|H(ejcoT)|=  \ —     (19) 

("(1 - Kx cos ufT - K2 cos 2wT)2 + (Kj sin wT + K2 sin 2coT)2 1 
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and phase 

<Xeja,T) tan -1 Kx sin toT + K2 sin 2coT 

1 -K2 cos GOT -K2 cos 2coT 
(20) 

The pole positions y and  £ of H(z) are given by: 

, \ 
Kl 
~2~ + 

-        2 

T +  K2 

^+  K2 

(21) 

K 
For K9 negative and |K«| > -j-   the poles become complex conjugate and 

as they approach the unit circle, the well known resonance effect is evidenced. 
-4 Figure 6 is a plot of magnitude vs. ooT for T = 10    , a resonant frequency of 

1500 cps and several values of damping.    In the vicinity of the poles, the magnitude 

function behaves very much like a continuous resonator.   Of course, the magnitude 

and phase must be periodic in coT; this follows from the original premise of a 

sampled input and is embodied in the unit circle z plane representation.   We state, 

without proof, the well known facts that all poles of H(z) must lie within the unit 

circle for stability and that poles and zeros must occur on the real axis or in 

conjugate complex pairs.   Also, it should be clear from equation (8) that an m1" 

order difference equation has a z transform system function containing m poles 

and r zeros, r being the number of unit delays of the input. 

th 



SECTION 2 

a. General Discussion of Digital Filter Design Techniques 

Since much information is available on continuous filter design, a useful 

approach to digital filter design involves finding a set of difference equations 

having a system function H(z) which significantly resembles known analog system 
o 

functions.   The work of Hurewicz   provides a technique for doing this in an 

'impulse invariant* way.   By this we mean that the discrete responses to an 

impulse function (see section Id) of the derived digital filter will be the samples 

of the continuous impulse response of the given continuous filter. 

Digital filters can be specified from a desired squared magnitude function 

using procedures akin to that of Butterworth and Chebyshev continuous filter design 

procedure.   This method will be described and realizability conditions discussed 

in an Appendix. 
9  10  11  12 Another technique used by various workers  '     '     '      uses conformal 

mapping to transform a known continuous filter function into a digital filter.   We 

will refer to this technique as frequency invariant', since critical points on the 

continuous filter's magnitude vs frequency curve can be invariantly transformed 

into the z plane. 

Finally, a technique referred to as 'frequency sampling', makes use of the 

special properties of an elemental digital filter.   This elemental filter's frequency 
sin x response curve resembles a    function and has a linear phase vs frequency 

x 
characteristic.   By suitably combining these elemental filters, a simple design 

technique for a large variety of digital filters can be developed. 

Where the same filtering requirements can be adequately met by several 

different digital filters, the choice between them depends on the speed of execution 

of a computer program which performs the difference equation.   An important 

factor in this speed is the number of multiplications (not counting multiplications 

by such factors as ± 1 or 2  , which computers can do quickly).   Some digital filters 

are able to meet essentially the same requirements as others with substantially 

fewer multiplications per output sample, and these are to be preferred.   It is 

important to stress that speed of execution is the main limiting factor in the utili- 

zation of digital filtering methods. 



b.       Technique   1 - Impulse Invariance 

We first show that a digital filter with an impulse response equal to the 

sampled impulse response of a given continuous filter can be derived via the 

correspondence 

m      A. m A. 
Y<s> = li FTV * iii —hrrz = H<z> <22> 

l -i l      ~ J. 1 -e        z 

The impulse response  k(t)  of a continuous filter is defined as the inverse 

Laplace Transform of its system function  Y(s), given in general form* by the left 

side of (22).   Similarly, the impulse response  h(nT)  of a digital filter is defined 

as the inverse  z  transform of its system function  H(z),   which can be expressed 

generally by the right side of (22). 

Thus 

_i^m      A.     ^ m -s.t 
Kt)  =   L L(p=1 F^-)  =  iSl  A. e (23) 

If we desire that  h(nT)  =  k(t),   t  =   0, T, 2T  (24) 

m -s.nT 
h(nT)  =   £    A. e (25) 

i=l     * 

*To be completely general, equation (22) should also include terms of the form 

(s + s/ 

which correspond to terms of the form 

,<t-l     vt--l      , A. 

a = si 

1Ü 



Taking the  z  transform of (25) 

H(z)  =   E     h(nT) z n  = X,   A.   I    e z n =  E    ^=  (26) 
n=o i-l     i n=o i=l -s/T    ^ 

1 — e        z 

Thus the condition (24) that the impulse response of the digital filter   be 

equal to the sampled impulse response of a given continuous filter  Y(s)   leads to a 

digital filter defined by (26), where all constants  A.   and  s.   have already been 

specified from  Y(s).   Thus, by means of the correspondence (22)   z  transforms 
13 

can be tabulated    . 

Example: 

The simple one pole RC low pass filter is transformed to a digital filter via 

the correspondence: 

a      ^ a (27) 

s + a        ,       -aT   -1 1 - e        z 

System functions of various resonant circuits may be expanded by partial fractions, 

leading to the correspondences 

,       -aT         ,  „   -1 s + a v   1 - e        cos b T z  ,9ja 

O 9 '     ~HT        ^ ^   -1 ,    -2aT   -2 W (s + a)   + b 1 - 2e        cos b T z     + e z 

-aT                  -1 
b v  e sin b T z  (OQ\ 

(s + a)2 + b2        1 - 2e"aT cos b T z"1 + e"2aT z"2 

c.       Design of a Digital Lerner Filter which is "Impulse Invariant" 

14 The Lerner filter     is defined by the continuous system function 

m      B (s + a) 
Y(s)  =   I    —!—2 2 <30> 

1=1  (s + a)Z + b^ 

with Bi  =  j   >   Bm  =  ^   .   Bi  =  (~1)1+1   fori = 2,...,m-l 

11 



and the pole positions (-a + b.) shown in Fig. 7.   It has been shown that Lerner 

filters have a high degree of phase linearity and reasonably selective pass bands. 

From the correspondence (28), the z transform of the digital Lerner filter 

is 

m B.(l-e"aTcos b. Tz"1) 
H(Z)=  El   7~T^ h  T     -1+   -2aT   -2 <31> 1=1    l-2e        cos b. T z      + e z 

l 

Figure 8 shows the digital realization of a 4th order band pass Lerner filter. 

Each of the four parallel sub outputs y. is computed by the difference equation 

y.(nT) = e"aT cos b. T [ 2y.(nT - T) - x(nT - T)] - e"2aT y.(nT - 2T) + x(nT)       (32) 

i= 1,2,3,4 

and the output y(nT) is given by: 

y(nT) = j yi(nT) - y2(nT) + y3(nT) - \ y4(nT) (33) 

d. Gain of Digital Resonators 

The correspondences (28) and (29) define two digital resonators which are 

'impulse invariants' of given continuous resonators.   In practice, digital resonators 

can be specified without reference to continuous resonators.   Specification consists 

of placing the pair of complex conjugate poles and, in most cases, a single zero, 

from which the difference equation can be quickly derived.   Since many digital filters 

are simple serial or parallel combinations of these resonators, it is important to 

understand their behavior. 

The z transform of a resonator with poles at z = r e ^wr    and a zero at q 

is 

,          -1 
H(z) =  X-qz   .A y-^ (34) 

1 — 2r cos (o Tz     + r  z r 

The magnitude vs frequency function for (34) is |H(eJC0   )| and can be written 

down, by inspection, from Fig.  5, using the law of cosines. 

12 



|H(e^T)| = 
r                            2 

1 + q   - 2q cos COT 
1/2 

(35) 2                                                    2 
[1 + r   -2r cos (co - CO )T] [1 + r   - 2r cos (co + co^T] 

Case 1  q  =   cos CO T 

For values of r  close to unity, the value of   |H(eJ     )|   at the resonance   co 

can be approximated by 

In/ icoT\l                 * (36) lII(e      >l  "  2(l-r)/F 

which is independent of  CO .   Thus, this choice of q   makes possible the design of 

an equal gain bank of resonators (or filters composed of these resonators) covering 

a wide frequency range. 

For narrow band resonators in which   r  is close to unity, (36) shows clearly 

that the gain at resonance is usually appreciably greater than unity.    Knowledge of 

filter gains is required for determination of appropriate register word lengths. 

Case 2  q  =   r cos CO T 

For this case, the difference equation for (34) can be written 

y(nT)  =   r cos cOrT(2y(nT - T) - x(nT - T)) + r2 y(nT - 2T) + x(nT) (37) 

Execution of (37) requires only  2   multiplication instructions compared to 

3   multiplications for general  q   and this case is thus of special interest for real 

time applications and when total computer running time is inordinately lengthy. 

Sensitivity of the resonant gain with the resonant frequency is greater than for 

Case 1. 

Case 3  q  =   1 

This case yields zero gain at "d. c. ", when co = 0, which is often desirable. 

As in Case 2, two multiplications are needed. The gain for co T = -^ is pi times 

the gain for  co T  close to zero. 

Case 4   q   =   0 

In this case, the zero disappears. In the design of formant vocoders, it is 

desirable to design resonators without zeros, but with constant gain for co = 0, 

independent of  co .   This is obtained from the digital system function: 

13 



2 
1 -2r cos GO   T + r 

H(z)  =    ^ 2-^y (38) 
1 — 2r cos co Tz     + r   z 

e.        Design of Digital Filters from Continuous Filters Which Have Zeros at 
Infinity 

A large class of analog filters are defined by system functions of the form 

Y(s)  =             1 (39) 
~m  
n  (s + s) 

1=1 1 

where the denominator is a product.   Such filters have   m  poles at finite values of 

s  and an  m      order zero for infinite   s.    Included in this category are Butterworth, 

Chebyshev and Bessel filters. 

In order to design impulse invariant digital filters based on  (39), the pro- 

cedure outlined in Section   2b  can be used;   Y(s)  is expanded in partial fractions, 

the  A.   are found and  H(z)  is obtained from the correspondence (22).   In general, 

this causes zeros to appear in  H(z),   although there were no finite zeros in  Y(s). 

However, when the poles at  -s.   are close to the imaginary axis in the   s   plane, such 
i that  e is close to unity, the zeros of H(z)  can be ignored and   H(z)  may be 

approximated by 

H(z)  =    ^^^  (40) 
m   s i      -IN n    (l-e    1    z  l) 
1=1   v* / 

-s.T 
In fact, it can be shown that (39) and (40) correspond exactly if e 

can be replaced by   1 - s.T.   In practice, digital band pass filters several hundred 

cycles wide of the Bessel, Butterworth or Chebyshev type have been successfully 

programmed for   10000  cycle sampling rates, using the form (40). 

Example   3 pole Butterworth Low Pass Filter 

The system function of the continuous filter is 

Y(s)  =  (S + SlKs + s2)(s + s3) (41) 

14 



with sl  =  <°c' s2  = K1+J/3~X' s3 = i(l~i/T^U>c 

CO    being the cut-off frequency, defined by   |Y(jco )|  =   .707.   Expansion of (41) 

into partial fractions and the correspondence (22) leads to the  z  transform 

-co T/2. 1 1 1 1 
coc ~°*c + e cos Iv^acT+73"sin 2^ 60cT '°°cz 

-^rT   -i + -^rT/2 : ~       -co T   _2 
1-e    c    z        l-2e     c        cos 4/3 co   Tz     +e z z 

2 c 

which has the diagrammatic representation shown in Fig. 9. 

If a cascade representation is desired, (42) can be rewritten to give 

H(z)  =   CZ'^?Z'2  

(l-e"C°cTz-1)Cl-2e~r~cos^cocTz-1+e"a)cTz-2) 

with   C 

and 

-co T 

=  Wc[e"'°cT + e^_(7^sin4-WcT-cos4tocT)] 

-3w T 

D - wc[e WcT - e~Y~ (jTsin4" wcT + cos 4" wcT)] <43> 

H(z)   is seen to have two zeros, one at  z  =   0  and the other at  z  = — ^-.    This 

zero is on the real axis and increases as   co T  is increased from zero.   Note c 
that the denominator of (43) can be written down by inspection of the poles of the 

continuous filter, since an  s  plane pole transforms directly into a z   plane pole 
sT D via  z  =  e     .   Thus, the zero of (43) at  - ~- causes the only error in the assump- 

tion that an   s   plane serial system transforms directly into a  z   plane serial system. 

For small  ^-   the error is negligible, since the zero is nearly at the center of 

the  z  plane unit circle and has no effect on the magnitude of H(z).    Figure   10  shows 

a plot of -~r vs   co T.   We see, for example, that the zero moves about   5% to the 
\J c 

right of the origin for  co T =   .1,   which reduces the selectivity of the cascade 

approximation very slightly. 
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f.        Review of Butterworth and Chebyshev Filters 

In this section, we review briefly design procedures for continuous Butterworth 

and Chebyshev filters, which will be needed in the later discussion of digital filter 

design.    More complete treatments are available in standard texts    ' 

The Butterworth filter can be specified by the relationship. 

|F(jw)|2  = 2E (44) 

•♦Cat) 
where   to    is a cut-off frequency and   |F(JCO)|    is the squared magnitude of a filter 

transfer function.   The poles of equation (44) lie equally spaced on a circle of radius 

to    in the   s   plane, as shown in Fig.   11.    For  n  odd, there will be poles at angles 

of  0  and   it;  for  n  even, the first pole (beginning at angle   0) occurs at an angle 
Tf of  2~.   It can be shown that the desired transfer function   F(s)  is a rational func- 

tion with unity numerator and denominator determined by the left half poles of Fig. 

11.    Hots of   |F(jtO)|  of (44) for several values of  n  are shown in Fig.  12.    From 

these plots the selectivity properties of the Butterworth filter become clear. 

The Chebyshev filter is specified by 

IWl2    ■      9     *9^N <45> ^2vn
2G0 

c 

where  V (x)  is a Chebyshev polynomial of order  n  which can be generated by the 

recursion formula 

Vn+1(x)-2xVn(x) + Vn_1(x)  =   0 (46) 

with Vx(x)  =  x    and    V2(x)  =  2x2 - 1 

The Chebyshev polynomial has the property of equal ripple over a given 

range, which, with added specification of  £,   leads to a magnitude function of a 

form given by Fig.  13, an equal ripple in the pass band and a monotonic decay in 

the stop band.   The ripple amplitude   6  is given by 
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6=1-    ,        , (47) 

The poles of equation (45) lie on an ellipse which can be determined totally by 

specifying   g,   n  and   co •    Figure 14 shows this ellipse, the vertical and horizontal 

apices being given by:  bto ,   aco    where 

1 1 

b..-J{C/€'2+l+Or ±0**+*+**)*}       <48> 
where the   b   is given for the plus sign and   a  for the minus sign.    The poles on 

the ellipse may be geometrically related to the poles of two Butterworth circles of 

radius   aoo    and  bco .   The vertical position of the ellipse pole is equal to the ver- 

tical position of the pole on the small circle, while the horizontal position is that of 

the horizontal position of the large circle pole, 

g.       Technique 2 - Digital Filter Specification From Squared Magnitude Function 

We have seen in Section  2f  that the Butterworth and Chebyshev filters are 

specified by choosing suitably selective squared magnitude functions such as in 

equations (44) and (45).   The same procedure is possible for digital filters and is 

described in this section. 

Having established in Section   Id  that the digital filter system function  H(z) 

is a rational fraction in  z    ,   it follows that   H(z)  for  z   on the unit circle is a 

rational fraction of e^      .   Thus, the squared magnitude   |H(eJ     )|    can always be 

expressed as the ratio of two trigonometric functions of  coT. 

An example of a squared magnitude function suitable for low pass filtering is 

|H(eja3T)|2  =    U— (49) 

1  + 

2n ooT tan T 
Or, W    T zn     c tan -j- 

IF Equation (49) is plotted in Fig.   15 for  to T  =  y   for several values of  n. 

The curves obtained are similar to those of the Butterworth filter of equation (44) 

plotted in Fig.  11.   The cut-off frequency   to    plays the same role in both con- 

tinuous and digital case. 

Letting  z  =  e^      ,   (49) may be rewritten 
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|H(z)|2   = 
tan 2n  WcT 

„   GO T ,       ,.211 2n    c     , ,  ,*n /z — IN tan     —+(-D   [STT) 

(50) 

We see that (50) is a rational fraction in  z  which has a zero of order  2n  at 

z  =  —1.   The poles are found by substituting, in (50) 

z-1 
P = z+ 1 (51) 

from which we can ascertain that the   2n  poles of p  are uniformly spaced around 

a circle of radius  tan —*—.   The poles of  z  are then readily found by the trans- 

formation inverse to (51), namely 

z =  \±2 (52) 

Letting  p  =  x + jy  and  z  =  u + jv,   we find from (52) the component 

relations 

1-x2-   2                                  2 u(x,y)   =    X 9   y  9  ;  v(x,y)   =    \ K 

(l-xr + yZ (i_x)^ + / 

The circle containing the poles in the   p  plane satisfies the equation 

(53) 

2       2 2   °>cT 

xz + yz  =  tanz  -§— (54) 

From (53) and (54) it can be shown that the circle of (54) maps into a circle in the 

z  plane centered at   (u,v)  with radius  p 

1 + tan 
n GO  T 
2    c 

u = —— =   sec   GO T    ,    v  =   0 
GO T c 

1 - tan 2    c 

2 tan 
"cT 

P  = 

1 -tan 
« GO  T 
2    c 

tan   GO T c 

(55) 
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For odd values of n,   the  2n  poles of p have the  x  and  y  coordinates 

,      '-°cT ml, t      =  tan -7,— cos   m 2 n 

co T c mTT /      =  tan -«— sin   m 2 n 

m  =   0,  1, 2n - 1 (56) 

For even values of  n,   the coordinates are 

X 
m 

m 

. cX 2m + 1 tan -^— cos   -^— 7T 

c 2m + 1 
tan —n— sin —*  77 

m = 0,  1, 2n- 1 (57) 

2n 

From (53) and (56) the corresponding poles in the  z   plane are computed to be 

1 - tan 2
WcT 

m ■OTT m77   , ^    2     c 
1—2 tan —TJ— cos  + tan    —«— z n z 

to T 
o ^ c mTT 2 tan —7,— sin   Z n 
 «TT ~ Turr i     o «. c mTT   ...    2     c 1-2 tan —n— cos  + tan    —«— 2 n I 

m = 0,  1...2n-l (58) 

Replacing   by  —~  ^   yields equivalent formulas for  n  even. 

Example   Find the poles and zeros of the squared magnitude function of a 

low pass filter with   3 db  attenuation at   1250 cps   and with at least   20 db  atten- 

uation at  2000 cps.    Let the sampling rate be   10000 cps. 

The cut-off frequency of   1250 cps   corresponds to  00 T  =  45 .   The fre- c 
quency  2000 cps   corresponds to  00T  =   72 . 

The squared magnitude function (49) becomes 
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NeJtdT>l2 = —-W <59> tan      -y- 

tan      g 

The appropriate value of n  in (59) is   n = 4,   obtained by setting 

coT  =   72    and   |H(eJ     )|    to   .01,   thus satisfying the   20 db  attenuation condition. 

The   8  poles in the  p  plane are found from equation (57).   Equation (58) can now 

be used to find the  z  plane poles shown in Fig.  16, which also shows the   2n  zeros 

located at  z  =  —1,   which are directly derivable from equation (50). The squared 

magnitude function is thus completely specified as pole-zero placements in the   z 

plane. 

In the Appendix, an analysis is made of the necessary relations between an 

assumed squared magnitude function and the digital filter specified by that function. 

It is shown that, in order for a filter to be realizable, any pole inside the unit 

circle (for example   z,   in Fig.  16), must have a mate outside the unit circle of 

inverse magnitude and the same angle.   Thus, if z.   =   r eJs   there must be a 

pole (in this case  zg)  given by  -eJ^.    In addition, all poles must occur in complex 

conjugate pairs.   Therefore, the digital filter derived from Fig.   16 has the conju- 

gate poles   z4,   Zr   and  z~,   z.. 

The above argument holds for the zeros as well including the special case of 

zeros on the real axis.   In Fig.   16, all   8  zeros   occur at  z  =  —1.   The derived 

filter has  4   zeros at  z  =  —1. 

If the squared magnitude function is given by 

|H(eJWT)|2  =  L~ 57TT (60) 

l + €2 V: 
tan 00T n 

tan "cT 

2 J 

z- 1 then it can be shown that the poles of p  =  z     ,    lie on an ellipse in the  p  plane 
Z "1    X 

which has the same properties as the Chebyshev ellipse of Fig.  14.   Using the nota- 

tion of Section  2f and Fig.  14, the  p  plane components can be written 

wcT 

x =  a tan —~— cos 9 

oü T 
y  =  b  tan  —*— sin 9 (61a) 
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Substituting (61a) into (53)  yields 

2( 1 - a tan —~— cos 9 
u  = 

o- co T c a tan —«— cos 
x2 oo   w T       9 

6J    + bz tan    -^— sin   9 

- 1 

(61b) 

^c7 

2b tan —^— sin 9 
v  = 

WcT >T      2       2   WcT       2 1 - a tan —~— cos 9 )    + b   tan    —*— sin   9 

Figure 17 shows the   z  plane mapping for  a tan -^— =   . 5  and 
co T Z 

b tan —|—   =   1.   The ellipse of Fig.   14 maps into the cardioid-like curve of 

Fig.   17 and the inner circle of Fig.   14 maps into the right-hand circle of Fig.   17. 

The outer circle of Fig.  14 maps into a circle of infinite radius, shown by the 

straight line of Fig.  17.   The points shown on the mapped ellipse of Fig.   17 are 

the actual computed points from equation (61b). 

h.        Technique 3 - Design of Digital Filters Using Bilinear Transformation of 
Continuous Filter Function 

Another approach, using design directly in the   s   plane will now be considered. 

Suppose we have a stable analog filter described by  H(s).   Its frequency response 

is found by evaluating  H(s)  at points on the imaginary axis of the   s   plane.    If in 

the function  H(s),   s   is replaced by a rational function of  z   which maps the imagin- 

ary axis of the   s  plane onto the unit circle of the   z  plane, then the resulting  Hf(z), 

evaluated along the unit circle, will take on the same set of values as   H(s) evaluated 

along the imaginary axis. 

Of course, this does not mean the functions are the same, for the frequency 

scales are distorted relative to one another.   This is illustrated by the simplest 

rational function which maps the  jco axis onto the unit circle, 

z- 1 
z+ 1 

(62) 

Let the analog frequency variable be   co. ,   and let the digital frequency variable 

be   conT.   Then the functions   H(coA),   H'(coDT)  take on the same values for 
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co  T 
coA  =  tan-^- (63) 

Note that the transformation (62) leads to a ratio of polynomials in  z.   Since 

it maps the left half of the   s   plane onto the inside of the unit circle we can be sure 

that it will always yield for   H'(z)   a realizable, stable digital filter. 

Equations (62) and (63) yield a technique for designing a digital filter by analog 

techniques.   The procedure is as follows: 

(1) Note the critical frequencies and ranges (pass or stop band, maximum 

attenuation point, etc.) of the desired digital filter, and call them  ion T.   Compute 

a new set of frequencies,   coA , by 
Ai 

coA    =  tan—^—      . (64) 
i 

(2) Design a transfer function  H(s)  with the properties of the digital 

filter at the new frequencies and ranges.   There is, of course, no need to synthesize 

H(s). 

z — 1 (3) Replace   s  by ,   in  H(s),   and perform the algebra necessary to 
Z T   1 

express the resulting  H'(z)   as a ratio of polynomials - this yields the desired 

digital filter. 

This technique is illustrated by the following example, in which we design a 

digital filter for a   10 kc   sampling rate, which is flat to   3 db  in the pass band of 

0  to   1000 cps, and which is more than   10 db  down at frequencies beyond  2000 cps. 

The filter must be monotonic in pass and stop bands. 

From Fig.   12 we see that a Butterworth filter meets the above requirement in 

the analog domain.   The critical frequencies are   con T =  27T x . 1  and  to    T = 
1 2 

2TT x .2. 

(1)        Compute  toA    , toA Al       A2 

coA    =  tan 2lT 2   'X   =   °*3249 

^       =  tan 27r * ' 2    =  0.7265 
A2 Z 
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(2) We design a Butterworth filter with   3 db  point at   to    =   tOA     = 
C A i 

.3249.   ü)    /co    =   2.235.   To find the order  n we solve   l + (2.235)2n  =   10 
A2     c 

and obtain n  =  2.   A second order Butterworth filter with   to    =   . 3249  has poles c 
at   s  =   . 3249 x (-. 707 + j . 707)  =  -.23 + J.23,   and no zeros. 

H(s)  = S1S2 = 2  x   .232 .1058  
(s + sl)(s + s2)       (2 + . 23)2 + (. 23)2       s2 + . 46 s + . 1058 

z — 1 (3) We replace   s  by j , yielding  H'(z). 

H-<z) - '105S 

&£)*■*(&)*■ 1058 

H,(z)   m . 1058(z2 + 2z + 1) 

1.5658z2 - 1.7884z + .6458 

This is the required digital filter.   It requires   3   multiplications per output point, 

or if  DC   gain can be tolerated, only two multiplications. 

Problem:        Design a digital filter passing from   0  to   100 cps with   1/2 db   ripple, 

which falls off monotonically to at least  -19 db  at   183 cps.    Use   1000 cps    sampling 

rate. 

(1) The critical frequencies   100  and   183 cps  are transformed to analog 

frequencies. 

2lT  X    100 lo0 oo^no 
*c   ■  tan 2   x   1000  =  tan 18    ■   •32492 

ws = tanrirS= -6498~ 2wc 

(2) We now design an analog filter of the Chebyshev variety.   One-half 
2 

db   ripple corresponds to   6    =   . 1220184.   To find the required order we solve 
2     2 19 1 + €   V  (co /to ) =   10      .   The lowest order  n   satisfying this relationship is 

n  =   3. 

A unity bandwidth,    1/2 db  ripple Chebyshev filter is 
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r. , v constant 
Hi(s)  = -* 5  

s° + 1. 252913sz + 1. 5348954s + . 7156938 

Replacing  s  by   s/co    yields 

u/ , .0255842155 
H(S)  =  "3 Atn„A£ 2 s" + .4127346s" + . 16656307s + .0255842155 

where the constant has been adjusted for unity gain at   s  =   0. 

z — 1 (3)        We replace   s  by r   giving for the digital filter desired, after 
3 multiplying numerator and denominator by  (z + 1) : 

u,, v . 0255842155 (z3 + 3z2 + 3z + 1) H (z)   =    « ^ '-  
1. 60488218z   - 3. 169418zz + 2. 44628634z - . 728243953 

which is the required digital filter design. 

It is worth noting a useful geometric interpretation of Step 3.    Replacing  s 
z — 1 

by 4    is a mapping of points in the   s   plane onto points in the   z   plane.    The 

following short table gives the correspondence of some critical points in the   s 

and  z   planes 

s   plane z   plane 

0 +j 0 1 +j 0 

oo -1 + j 0 

0 +j 1 0 + j 1 

0-jl 0-jl 

- 1 +j 0 0 + j 0 

point on real axis point on real axis 

point on imaginary axis point on unit circle 

point on any line point on circle passing through  -1 + j 0 

A very similar mapping has been found useful in some applications, and graph 

paper which performs the transformation can be purchased under the name "Smith 

Chart".   To perform the mapping of our application we take a conventional Smith 

Chart and rotate it   180°,   giving a chart like Fig.  18. 

The location of any point  -a + j b   in the   s   plane (left half) is used to find 

the corresponding location in the  z  plane as follows: 
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(1) Locate   a,   a point along the centerline.   All points along the circle 

passing through this point correspond to points in the   s   plane with real part  = —a. 

(2) Locate  b,   a point along the perimeter of the outer circle.   For b > 0 

use the top semicircle; for b < 0  use the lower semicircle.   The circular arcs 

passing through this point correspond to points in the   s   plane with imaginary part 

b. 

(3) The intersection of the circle with the circular arc is the point in the 

z   plane corresponding to  —a + j b  in the   s  plane. 

The Smith Chart is useful when the function in the   s  plane is known in terms 

of poles and zeros or poles and residues, especially when the   z   plane representation 

is desired in that form. 

Example:   Design of a digital high-pass filter with stop band  (0 - 500 cps) 

attenuation greater than   36 db  and pass band (above   660 cps) ripple of   1. 25 db. 

Sampling rate is   2. 5 kc. 

(1) The critical frequencies are transformed to analog, giving as the stop 

band limit,   . 72654 rad/sec, and as the pass-band limit,    1. 09 rad/sec. 

(2) The specifications are met with a fourth order elliptic filter.   The 

design of elliptic filters is covered in the literature     and only the result is given 

here.   The poles are at   s  = -1. 1915812 jh jl. 5528835, and-. 11078815 + 

jl. 09445605,   and the zeros are at   s  =  0 (double), and + j0.69117051. 

These are located on a Smith Chart in Fig.  18.   Using a ruler and protractor 
+ i69 3° the zeros in the   z  plane are found to be at  z  =   1   (double), and  e— J ' and the 

4- iLSI  6° 4- i90 6° 
poles are found to be at  z  =   . 586 e-^-J and   . 895e-J .    The function of 

z  defining the filter is thus 

H(z)  = (z - l)2 (z2 - . 707z + 1) 
(z2 + . 777z + . 3434)(z2 + . 01877z + . 801) 

A prime difficulty with the Smith Chart method, illustrated by this example, 

is that the poles cannot be located with great accuracy.   In compensation, a good 

deal of insight into the operation of the digital filter is gained in the course of the 

design.   Where greater accuracy is needed, the  z  plane poles can be computed 

from the  s  plane poles using 

1 + s 
1 - s 
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which is the inverse of equation (62). 
z — 1 The transformation  s -        *   is not the only rational function of z  which 

maps the imaginary axis of the   s  plane onto the unit circle.   For example, another 

such transformation is 

2 
z   - 2z cos ih   T + 1 

s 5 5  (65) 
z   -1 

For this transformation the imaginary axis of the   s   plane maps onto the top 

arc of the unit circle, and also onto the bottom arc.   The origin of the   s  plane maps 

onto the two points  e— ^ ^o   . 

Thus, equation (65) maps a frequency function  H(oo.)   into  H^oOr^T)  with 

cos i[) T - cos ujjJT 
coA   =   ^°     ,  _     D (66) A sin coDT v    ' 

This means that equation (65) transforms a low-pass  H(coA)  into a band 

pass   H*(conT).   Equation (65) can thus be used to design band-pass digital filters 

as follows: 

(1) Decide on a center frequency  \j) T*  for the digital filter.   This may be 

forced by the specifications or it may be available to simplify the choice of other 

parameters.   Compute the critical frequencies of the desired analog filter from the 

critical frequencies in the specification of the digital filter using Eq. (66).   Equation 

(66) will often yield negative frequencies, which is alright since   H(coA)  will be an 

even function of coA. A 

(2) Design an analog filter  H(s)  with the translated specifications.   It is 

likely that one or more of the specifications will be superfluous. 

(3) Replace   s  by 

z   - 2z cos \b T + 1 
<?  -                           ° 
 2  z   - 1 

*A11 that is ever really needed is  cos 0 T. 
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. 

in   H(s),   and perform the required algebra to manipulate the resulting  H*(z)   into 

a ratio of polynomials; this is the required filter. 

One example will probably suffice to illustrate the method. 

Problem:   Design a digital band-pass filter for a   1000 cps   sampling rate, 

to pass   100  to   400 cps  with ripple free attenuation between   0  and   3 db.   At   45 

and  450 cps  the filter must be at least   20 db  down, and must fall off monotonically 

beyond both frequencies. 

(1) 0 T  can be chosen so the two analog  3 db  points are negatives of 

each other.   If the digital   3 db  points are   L,   and   L2>   we can see from (66) 

that   \h T   should be chosen so that ro 

cos «-(L, + L9) 
cos *oT  =   \ ±- (67) 

cos y (Li - L2) 

Using (67) yields   cos 0 T  =   0  for this case.   This means that the trans- 

formation from digital to analog critical frequencies becomes 

WA  =  ~COt  WDT 

The   3 db  points now translate to 

"3db  =  ±  L3764 

The   20 db  points are not equal in magnitude.   They are 

CO      =  -3.442 
sl 

co      =   3.078 
s2 

(2) The problem is now to design a monotonic filter with   0-3 db  in the 

region   0 < co < 1.3764.   The filter must be   20 db  down by   co  =   3.078,   which will 

automatically satisfy the requirement at   co  =   3.442.   A Butterworth design seems 

to be called for, with   co    =   1. 3764. 

For  — =   2. 23  we demand  20 db   attenuation.   We calculate the order  n: 
CO c 

l + (2.23)2n  =   100 
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It is clear that  n  =   3  will suffice.   A unity bandwidth Butterworth filter of order 

3   is 

H,(8)    =    -g 1  
s   + 2s"1 + 2s + 1 

H(s)   is found by replacing  s  by  -r—^TKÄ' 

„, v 2.6075581 
H(s)  "  ~"3—n _n 2 

s   + 2. 7528s" + 3. 788954s + 2. 6075581 

z2
+l 

(3)        To find the required digital filter we let  s  =  —*  in  H(s).   Note 
2 z   - 1 that since this is going to yield a function of z  ,   the resulting digital filter will be 

quite simple. 

H,(z)   =   2. 6075581z6 - 7. 8226743z4 + 7. 8226743z2 - 2. 6075581 

10. 1493121z6 - 5. 8588283z4 + 4. 2809203z2 - 0. 5714041 

If the gain of the filter is not important, this can be programmed with   3 

multiplications per output point, plus a moderate number of additions. 

It should be obvious how the techniques of this section can also be used to 

design high-pass and band-elimination filters, 

i.        Technique 4 - Frequency Sampling Technique 

The difference equation 

y(nT)   =   x(nT) - x(nT - mT) (68) 

has the   z   transfer function   1-z      ,   which has   m  zeros equally spaced 

around the unit circle, at points 

zk  =  ej2ff m    ;    k =  0,  1, ...., m - 1     . (69) 

If, in equation (68), the subtraction is replaced by an addition, the transfer func- 

tion becomes 

unit circle, at 

tion becomes   1 -I- z      ,   for which the zeros are also equally spaced around the 
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z.    =  e m ;    k  =   0,   1, , m-1     . (70) 

2TT The magnitude versus frequency curves of these filters repeat with period — 

radians, and the filters are often referred to as comb filters.   These filters can 

be incorporated into an especially appealing type of design.   Before presenting 

this design, let us examine the practical significance of (68).    If successive values 

of x(nT)  are thought of as contents of registers in computer memory, it is clear 

that  m  registers must be set aside for buffer storage in order to execute (68). 

This is usually a substantial amount of memory compared to that needed for 

execution of second order difference equations.   Thus possible practical use of 

the filters we are about to describe is limited to systems where the necessary 

memory is available, or to systems where many filters share a common input. 

It is important to note that the delays implied by (68) can be effected by digital 

delay lines, which are presently relatively cheap forms of memory. 

A simple resonator can be placed in cascade with the comb filter.    Let the 

resonator be of the type considered in Section  2d, case 4, except that the poles 

lie directly on the unit circle.    Further let the angle,   co ,   of a resonator pole 

be such that the pole is coincident with a zero of the comb filter. 

1'" w    ={2it(k + l/2\\   for a comb filter of the < ^ type (71) 
m        I (second 

2nk_ 
m 

The poles of the resonator cancel the k zero of the comb filter, and its con- 

jugate. In what follows, we shall refer to the resonator which is used to cancel 

the   k      zero as the   k      elemental filter. 

The cascade of an elemental filter with a comb filter is a composite filter 

with the following properties: 

(1) The impulse response is of finite duration,   mT. 

(2) The magnitude versus frequency response is 

|H/pJwTvi        ,      sin mooT/2       , (72. 
lH(e      'I  "   Icos coT-coscorTl (72) 
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which is zero at all the radian frequencies for which the comb filter is zero, 

except at  GO .   The magnitude at  co    is  -j esc GO T. 

(3) The phase versus frequency is exactly linear except for discontinu- 

ities of 7T radians. These discontinuities occur where the magnitude response is 

zero. 

(4) The phase difference between two composite filters with resonant 

frequencies   GO    and  GO  , ,   is   it   for  co   < GO < GO  , ,   and is zero outside these ^ r r-f-i r r+i 
bounds. 

(5) The amplitude of any composite filter is zero at the resonant fre- 

quencies of all the other composite filters. 

As   m   is made large, the magnitude response of a cascaded filter becomes 

like 

- sin(GO - GOr)T sin(G0 + G0r)T -. 

!_   (00-GOT +       (GO + CO JT      J 

in shape.   These properties suggests that any desired magnitude response could be 

obtained by adding together the weighted outputs of cascaded comb and elemental 

filters, just as any "band-limited" time function can be formed from a weighted sum 

of delayed  —-— functions.    Let us examine this idea, which we call frequency 

sampling, in some detail. 

A sufficiently "narrow band" frequency response function (one for which the 

frequency response is a sufficiently smooth function of frequency) is sampled at equally 

spaced points, with radian frequencies: 

"k 
2fk   or  2u(k+l/2)    .    k = 0jl m_1 

m m 

depending on which kind of comb filter will be used.    Let the sample value of the 

amplitude at frequency   GO, T  be  W, .   An elemental filter of resonant frequency 

GO, ,   cascaded with a comb filter of delay  mT  and a gain of W,  sin GO, T  are used 

to provide an "elemental frequency response" of W,    at radian frequency   GO, T  and 

zero at the other sampling frequencies. 

Since the phases at resonance of the consecutive elemental filters differ by   77, 

the gains of the odd numbered elemental filters are to be multiplied by  — 1.   The 

desired input to the filter is applied to the comb filter, which is shared among all 
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the elemental filters, followed by the gains (and sign changers for odd numbered 

elemental filters).   The outputs of all the elemental filters, with proper gains, are 

added together to give the desired filter output.   The resulting filter has an impulse 

response of duration  mT,   a frequency response with linear phase, and an amplitude 

response which agrees with specifications at the sampling frequencies and connects 

the sampling points smoothly.   The variety of filters which can be programmed with 

this technique is quite large. 

There are some practical problems to be considered before the frequency 

sampling method is applied.    For one thing, the resonant poles of an elemental filter 

cannot exactly cancel the zeros of a comb filter because of quantization.   Thus it is 

wise to move both the zeros of the comb filter and the poles of the elemental filters 

slightly inside the unit circle, with a radius of something like   e"        =1-2 

We have successfully programmed filters with the poles and zeros at radii 
-12 -27 ranging from   1 — 2  ' '  to   1-2      ,   with little change in the behavior of the filter. 

Another change, while not necessary, is useful to keep in mind for band-pass 

filters.   In the pass band it is common for the samples  W,    to be equal.   Thus it 

would be desirable if all the elemental filters had the same gains at resonance.  If 
-aT a zero is put at (cos oxT) e       ,   the gain of each elemental in cascade with the 

comb filter becomes   m/2.   This has a slight effect on the magnitude and phase 

response, negligible for large   m.   The modified comb filter  z   transform thus 

becomes 

uz \        i       -maT   -m ,_0v H(z)  =   1 - e z (73) 

and the modified  k      elemental filter becomes 

i       -aT -   -1 1 - e        cos GOT z 
Hk(z) =   ,     ,   -aT _   -i       -2aT   -2 <74> 1 — 2 e        cos CO, T z     + e z 

It is worth noting that the introduction of the additional zero does not require 

another multiplication since twice the numerator coefficient is also present in the 

denominator.   The response of a filter of the form of equations (73), (74) is shown 

in Fig.   19. 
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Example:   Bank of Band Pass Filters 

It was desired to design a bank of band-pass filters (with a common input), 

each  400 cps  wide, covering the band  300 cps   to  3100 cps.   The filters are to be 

as selective as possible but with minimum ringing time.   A further requirement is 

that the contiguous filters cross at  -3 db of the midband gain.   None of the standard 

designs had satisfactory selectivity combined with short ringing. 

The filters chosen were frequency sampling filters, each composed of seven 

elemental filters.   The consecutive zeros were   100  cps  apart.   Since the sampling 

rate was   12. 5  kc,   m  was   125.   The general form of such a filter has   z  transform 

*** 1-   "aT        *0lL   _1 

*" m 

The design of the filter is completely specified by choosing  r and the set of 

W,    in (75).   Since   3 db  crossovers   400 cps  apart were required,   W    .   and 

W^  were chosen to be   .707.   The three center terms had W,   =   1.   The end 

term gains,   W     and  W _^  were found empirically to be   .221  for satisfactory out 

of band rejection. 

The design of the   300-700 cps  filter is illustrated in Fig. 20, and the exper- 

imental frequency response of it and the next higher filter  (700-1100 cps)   are shown 

in Fig. 21. 
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SECTION  3 

Quantization Noise of Digital Filters 

When a digital filter is realized with a digital arithmetic element, as is the 

case with a computer, additional considerations are necessary to describe the per- 

formance of the filter.   There are three obvious degradations:   1) quantization of 

the coefficients of the difference equation,   2) quantization of the input, and   3) quan- 

tization of the results of computations.   The first two effects, although important, 

are simple to understand.    Quantization of the coefficients changes them to slightly 

different coefficients.   This happens once and for all, resulting in a new, slightly 

different filter.    For very high  Q  filters this may be important; even instability 

may result.    Quantization of the input is equivalent to adding a noiselike term which 
18 has been well described in the literature.   We rely heavily on the results of Bennett 

in treating this and similar effects of quantization in a statistical manner. 

Quantization of results of computation is more complicated because these 

results are used in later computations, and thus the effect of the error on future 

computations must be understood.    Let us first note that quantization of the results 

cannot be avoided because after each iteration of the difference equation, the number 

of bits required for exact representation of the result increases by about as many 

bits as in the representation of the coefficients.   Thus, without quantization, the 

number of bits required would grow without bound. 

In the following, we define quantization as the replacement of the exact value 

of a quantity by the value of the nearest of a set of levels differing by steps of  E . 

Thus, the maximum error introduced by a quantization is   E /2,   and, except for a 
2 ° few degenerate cases, the mean squared error is   E   /12. 

Figure 22 shows a representation of a digital filter in which the output is 

quantized before being used in further iterations. 

We can write a "linear" difference equation describing this device if we 

represent the quantization error by v(nT). 

N M 
r(nT)  =  v(nT) + X    a. x(nT - iT) + E    b. r(nT - IT) (76) 

i=o     i i=l     i 

This equation has a  z  transform form: 
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N.M. 
R(z) = V(z)+.Jo  atz     X^+.Ej  b. z     R(z) (77) 

V(z) + £ aj z"1 X(z) 

R(z)  =   ^ —- (78) 
lSi biZ 

We notice that the   z  transform of the output consists of two terms, one of 

which is the desired output.   The other term depends only on the poles of the filter 

and on the noise sequence  v(nT). 

In what follows, assume that the input to the filter is of such level that the 

output with no quantization noise has a mean squared value of unity.   Assume that 

this output is large compared to   E  ,    so that the samples  v(nT)  are independent 
18 and uniformly distributed from  - E /2  to   E /2    .    Let us call the denominator 

of the right side of (78)  Q(z).   Our aim is to determine the mean squared value of 

the noise term of (78) in terms of E ,   the quantization step size. 

13 
For this determination, the two-sided  z  transform     of the autocorrelation 

function of a sequence is needed.   If a one-sided sequence has  z  transform  A(z) 

then its autocorrelation function has a two-sided   z   transform   A(z)   A(-).    It z 
follows that a sequence with  z  transform  V(z)/Q(z)   has an autocorrelation func- 

tion whose  z  transform is the ratio of the  z  transforms of the autocorrelation 

functions of v(nT)   and  q(nT). 

We are really interested in a normalized autocorrelation function, 

lim     1    k_1 

k^cE   g0   g(iT) g(nT + i T) 

which, for  v(nT)  is the sequence 

Ay(nT)  =   0,...,0, E^/12, 0,... . , 0,... 

with  z  transform  A (z)  =   E   /12. vx ' o' 

For the noise output, the normalized autocorrelation function has   z  transform: 

E2/12 o' 

Q(z) Q4> 
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The mean squared output noise is, of course, given by the coefficient of  z° 

in the  z  transform of its autocorrelation function.    For a two-sided  z  transform 

this coefficient is given by 

E2 

M.S.O.N.   = -Är^y residues of r^) (79) 
UK^ zQ(z)Q(i)y 

where only the residues at poles inside the unit circle are to be included in the sum. 

Example: 

Consider a one pole filter with  H(z)  =   -..   Then  —A/ \ (V1 / \   nas 

a pole at   z   =  a   and a residue of    j   at tnat pole.    The mean squared output 

noise for a digital realization of this fiÄer is proportional to this residue, which is 

plotted versus pole position in Fig. 23, with the constant of proportionality being 

Eo
2/12. 

Two filters, one using  36 bit arithmetic and one using a variable number of 

bits fewer than   36,   were simulated, with a common input to both filters, and 

with  H(z)   as above.   The   36 bit case was considered unquantized and the differ- 

ence in the filter outputs was thus a good approximation to the quantization noise 

introduced by the less precise filter.   The mean squared value of this noise was 

measured for a random noise input with  28  and  29 bit arithmetic, and for a 

sine wave input at about   0. 1   of the sampling frequency, using  29 bit arithmetic. 
2 

The measured results, normalized with respect to  E   /12,   are shown along with 

the theoretical result in Fig. 23. 

We have arrived at a very fortunate expression since we can quickly solve it 

for  (~log2 E )  which is the number of bits of quantization needed below the output 

signal level, for a given amount of mean squared output noise.    Say we require 

that the mean squared output noise be   Fdb  below a unit output signal level.   Then 

E2 

F  =   10 log10 [-^- (T residues)} (80) 

b  ,   =  -log9E^  =-.166 F- 1.79 + 1.66 log,/sresidues of r^) (81) 
~l 2 UV zQ(z)Q(i)y 

b  ,   is the number of bits which must be retained below the unit signal 

level; an additional   3-5 bits ought to be retained above the unit signal level to protect 

against overflow. 
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The preceding description of quantization noise is valid for digital filters 

realized in the form of Fig.  1.   If the realization is in the canonical form of Fig. 4 

then quantization noise is added to  w(nT)   rather than to   r(nT),    since it is 

w(nT)  which is used in further computations.    Figure 24 shows the digital arrange- 

ment of the canonical form.   We write the two difference equations: 

M 
w(nT)   =  x(nT) +  £    b. w(nT - iT) + v(nT) (82) 

i=l     1 

r(nT)   =   S    a. w(nT - iT) (83) 
i=o    i 

These may be   z  transformed, giving 

W(z)  =   (X(z) + V(z))/Q(z) (84) 

R(z)  =   P(z)W(z) (85) 

N _i 
where P(z) =   £    a. z 

i=o    * 

Combining these into a single equation 

R(z)  =   X(z)  jjjg- + V(z) *&- (86) 

we see that in the canonical representation the quantization noise is filtered by 

both the poles and the zeros of the filter.   If desired, the procedures leading to 

equations (79), (80) and (81)  could be repeated, giving as the mean squared output 

noise 

M. S. O. N.   =4 E residues of ( 5_^ ) (87) 
12 VzQ(z)Q(i)y 

and giving the number of bits required below a unit signal level as 

r p(z)p4> > 
b 1=-.166F-1.79 + 1.66 log10n: residues of ^T) <88) 

zQ(z) Q(|) 
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APPENDIX 

REALIZABILITY OF DIGITAL FILTERS WITH CERTAIN SQUARED 

MAGNITUDE FUNCTIONS 

In the following we shall find it useful to define polynomials of the form 

k_i_       k-1 az   +a,z       + . . . + a,z + a       , o 1 1 o 

r k- r such that the coefficient of z     is equal to the coefficient of  z      ,   as mirror 

image polynomials of order k,   and to summarize some of the properties of the 

polynomials. 

(1) A mirror image polynomial of order  k  has roots which occur in 

reciprocal pairs for  k  even. 

Proof:   Let  z  be replaced by   1/z   in the original   M. I. P.   and 

equate it to zero. 

-k -k+1 -1 n az     +a^ +a,z     + a    =0 o 1 1 o 

If we multiply by  z ,   which introduces no new roots to the equation, we see that 

the roots of the polynomial in   1/z  are the same as the roots of the polynomial in 

z.   Thus, the roots either occur in reciprocal pairs, or are self-reciprocals.    For 

k  odd, one of the roots cannot be part of a reciprocal pair.   This root is its own 

reciprocal, and since it must be real, it is either  +1   or  -1.   We will generally 

not be interested in odd order   M. I. P. *s. 

(2) The sum of mirror image polynomials of the same order is a M. I. P. 

of that order. 

(3) A mirror image polynomial of order  k  plus   z    times a mirror 

image polynomial of order  (k - 2r)  is a mirror image polynomial of order  k. 

(4) The product of mirror image polynomials is a mirror image poly- 

nomial. 

(5) A polynomial whose roots occur in reciprocal pairs is an M. I. P.   (5) 

is proved by multiplying together the factors which are reciprocals, noting that 

each product is   =   M. I. P. ,   and applying (4). 

We shall use the above properties of mirror image polynomials to prove the 

existence of digital filters with certain squared magnitude functions.   Suppose a 
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squared magnitude function,    F(coT),   is given.   We can always replace   coT by 

- j log z,   equivalent to  z   =  e^      ,   to give a function  G(z)  which is equal to 

F(coT)  when evaluated along the unit circle.   For our purposes  G(z)   must be a 

rational function of z   with real coefficients.   We can guarantee this if, in the 

squared magnitude function,   coT  only appears as part of the following expressions: 

.  2 coT 2a)T     f    2tOT 2 oüT 2 ^T 2 coT - .-,, sin   —7y-,   cos   —Y~>   tan   —^—,   cot   —~—,   sec   —*-,   esc   —~—,   and if these expres- 

sions are combined only by addition, subtraction, multiplication and division.   This 

is because the squared triginometric functions of -y— yield rational functions of 

z,   and rational functions form a field with multiplication and addition.   The corres- 

pondence of squared trigonometric functions of —^— with rational functions of  z 

is given below: 

TABLE   1 

•  2 coT sin   -T- .  (z - I)2 

-42 

2 coT cos     2 4z 

tan   -T 
-<z - l)2 

(z + I)2 

cot   -T- - -<z + l)2 

(z - l)2 

2 coT sec     2 
4z 

(z + I)2 

2 coT 
CSC          -7y — 

-4z 
-:—75 (z - IV 

Now let us assume that we have been given an   F(coT)  with the preceding 

restrictions, found  G(z),   and found all the poles and zeros of G(z).   To find a 

transfer function,   H(z),   with squared magnitude function   F(coT),   we should like 

to use the following procedure: 

(1) Discard any poles or zeros at the origin. 
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(2) Put the remaining poles in one to one correspondence with each other 

in such a way that for each pair of poles the distance from one pole to any point on 

the unit circle is in constant ratio to the distance from that point on the unit circle 

to the other pole of the pair. 

(3) Repeat step  2  for the zeros. 

(4) Discard one of each corresponding pair of poles and zeros, making 

sure that the retained poles are all within the unit circle. 

(5) Form  H(z)  from the retained poles and zeros only. 

This procedure works only if steps  2   and  3  are possible.   The magnitude 

of H(z)  is proportional to the product of the distances from the unit circle to retained 

zeros divided by the product of distances to the retained poles, and thus is propor- 

tional to the square root of  F(ooT).   Note that the singularities of G(z)  at the origin 

contribute nothing to a magnitude function since the distance from the origin to the 

unit circle in always one. 

Steps   2   and  3   are possible if the poles (and zeros) occur in pairs whose 

locations are equal or, more commonly, conjugate reciprocals of each other, 

reJ    and -eJ .   Since the singularities of G(z)  occur in conjugate pairs it is 

enough to require the roots to occur in equal or reciprocal pairs.   By the following 

proof we show that the ratio of distances from any point on the unit circle to two 

singularities which are conjugate reciprocals is constant.   Proof:   Let the two fixed 
iß 1   i9 singularities be   reJ    and -eJ .   By the theorem of Appollonius the locus of points, 

the ratio of whose distance to two fixed points is constant, is a circle whose center 
10 is colinear with the two fixed points.   Consider the ratios at the two points  eJ 

and  e^      '.   The ratios are equal to  r  at both points, and the only circle passing 

through both points whose center is colinear with the two fixed points is the unit 

circle.   Thus, the unit circle is the circle of Apollonius, and the ratio of the dis- 

tance to the singularities is constant. 

The corresponding proof for equal singularities is trivial. 

If after discarding poles or zeros at the origin the numerator and denominator 

of G(z) become mirror image polynomials, it is possible by following the five step 

procedure given above to find  H(z)  with squared magnitude function   F(coT)*.   We 

*This is not strictly correct if the mirror image polynomials have simple roots on 
the unit circle, which are then their own conjugate reciprocals. Subsequent state- 
ments should be qualified by taking this possibility into account. However, this is 
a limiting case, unlikely to occur. 

39 



shall now enumerate a few types of  F(coT)  which yield mirror image polynomials 

for numerator and denominator of G(z). 

Consider   F(ooT)  a rational function of  sin   -x—.   Then  G(z),   by substitu- 

tion from Table   1,   is of the form: 

G(z,, 4^-} ' 4^-]  *■■■■ 
r-/       i\2 -,m ^       1X2 _m-l 

which can be put in the form 

_   (ao(z - l)2)n + Ä1((z - l)
2)n_1( -4z) + a2((z - l)2)n-2(-4z)2 + . . . )(-4z)m_n 

bo((z - l)2)m + b^z - l)2)m~ X(-4z) + b2((z - l)2)m-2(-4z)2 + . . . 

The   (-4z) contributes only poles or zeros at the origin and is discarded. 
2 

Note that powers of (z - 1)    are mirror image polynomials by property (5), and 

thus the entire numerator of  G(z)  is a mirror image polynomial by property (3). 

The same reasoning holds for the denominator. 

Exactly similar reasoning shows that rational functions of  cos   -*— also yield 
9 1 VT 

realizeable digital filters.    Rational functions of tan   -*— yield  G(z)   of the form 

ao(z - I)2" + al(z - l)
2<n- % + I)2 + ... - an(z + l)2n 

G(z)   =    7Z. -wm   iv * 071 (z + 1) ' 
bo(z_l)2m + bi(z_l)2(m-l)(z + 1}2 + ... + bm(z + i)2m 

Here we note by repeated application of property (4) that again both numerator 

and denominator are mirror image polynomials and therefore a digital filter exists 

with the desired squared magnitude function.   Again exactly similar reasoning 

suffices to extend the proof to rational functions of  cot   -5—,    sec   -y— and 
2o)T ll 

CSC     -J-. 

Similar discussions show that rational functions of sums of products or ratios 

of the squares of the trig functions of Table 1, i. e., (sin   -*—+ tan   —*—)  also 

yield  G(z)  which is a ratio of mirror image polynomials.    Further extensions can 

be made, but we shall be content here with these few examples and techniques. 
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Fig.  1.      Pictorial representation of m      order linear difference equation. 
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Fig. 2.      Serial arrangement of difference equations. 
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Fig. 3.      Parallel arrangement of difference equations. 
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Fig. 4.      Alternate representation of digital filter (drawn for  m = r). 
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Fig. 5.      Geometric interpretation of digital filter frequency response 
function. 



C62-570 

4- 
00 

0 

Lü 
O 
Z> 

< 

-20 

-40 

FREQUENCY (cps) 
Fig. 6.      Response of digital resonator for several values of damping. 
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Fig. 7.      Pole positions for Lerner filter. 
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,th Fig.  8.      Configuration of  4      order (8 pole) digital Lerner filter (dotted 
box shows configuration of pole pair  G.(z)). 
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Fig. 9.      Impulse invariant   3-pole Butterworth low pass filter. 



C62-557 

0.06 h 

0.04 h 

C 

0.02 h 

Fig.  10.    Graph of ^-   showing position of extra zero introduced by impulse 
invariant design technique. 
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S PLANE 

Fig.  11.    Poles of Butterworth squared magnitude function, equation (44) for 
n = 5.   Poles are equally spaced with angular separation  36°.   The system 
function   Y(s)   is defined by the poles in left half plane. 
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Fig.  12.    Magnitude vs frequency of Butterworth filters. 
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Fig.  13.    Magnitude vs frequency of  4      order Chebyshev low pass filter 
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Fig.  14.    Poles of Chebyshev squared magnitude function for  n = 4. 
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Fig.  15.    Magnitude vs frequency of frequency invariant digitized Butterworth 
filters. 
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Fig.  16.    Poles and zeros of squared magnitude function for example of 
section  2g. 
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Fig.   17.    Bilinear mapping of Chebyshev ellipse into  z   plane for 
u>cT cOcT 

a  tan  —*—   =   . 5,   b  tan  —*— =   1-    Points shown are mapped from   20 

degree increments of  9. 
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