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DIGITAL COMPUTATION STUDY,
DYNAMIC V8 KINEMATIC EQUATIONS

ABSTRACT

At present, the simulation of a vehicle's motion is accomplished
py use of either dynamic or kinematic equations. This report presents
a2 method of simulating vehicular motion which is a compromise be-
tween these two methods. The equations developed here, although
very close to kinematic equations in form, contain terms which repre-
sent the dynamics of the motions being simulated.

Expressions are developed to simulate the motion of submarine,
surface vessel, and alrcraft. Those for the aircraft describe its
motion as 8 rigid body in space rceponding to the maneuvering orders;
those for the submarine and surface vessel duplicate the dccuracy and
flexibility now attainable with simple dynamic differential equations.
This latter is accomplished by using considerably less computer time
and with less restriction on the size of the iteration interval.

Distribution of this document is unlimited.

Reproduction of this publication in whole
or in part is permitted for any purpose
of the United States Government.
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FOREWORD

The simulation of vehicular motion has been the subject of many
investigations. These investigations have been mainly concerned
with the development of mathematical models for pilot training
and for simple target motion. The models used in these two
applications are presently well defined and widely used.

The model which is used in pilot training requires strict adherence

to Newton's laws, In this situation there is direct control of the
vehicle by the person receiving the training, Therefore the simulated
environment must accurately describe the actual environment; the
response of the simulated vehicle must closely approximate the
response of the operational vehicle. This necessitates full dynamic
simuiation of the vehicle. On the opposite extreme of the simulation
scale is the simulation of simple target motion. In this situation the
control of the vehicle is completely divorced from the trainee. He is
aware of the vehicle's motion by watching its path across a simulated
radar screen, for example, but is not concerned with the forces
causing the motion. Simple kinetic models are sufficient for this.
There is a wide gap between these two degrees of vehicle simulation.
The difference betw:en them is demonstrated not oniy in the required
accuracy and in their response characteristics, but also in their
respective costs in titme, money and in their computer requirements.

The cost of a model whose requirernent is more responsive than the
kinetic model, but vastly less than the full dynamic simulation is
unreasonably high when the dynamic model with all its complexities
must be utilized, Therefore this investigation was undertaken to
d.fine the area between the two extremes. Several models were
developed which reflected various levels of simulation within this
avea. The development is based on kinematic descriptions of the
moticn, i.e. descriptions which consider knowledge of the type of
maneuver being performed.

Four models are developed, two for which the control of the vehicle
is directly (operator control) or indirectly (command control) under
the contro! of the trainee and two for which the control is divorced
from the trainee (instructor and program control). In general, the
models differ with type of input, complexity of model and accuracy
of response,

Models are developed for surface ships, submarines and aircraft. The



characteristics of the specific vehicle being simulated is reflected by
the model so that, for example, the simulation of two submarines will
not necessarily exhibit the same response. Due to the very complex
nature of aircraft motion descriptions, the models for the aircraft are
not developed as fully as those for the other types of vehicles.

It is anticipated that the results of this investigation, viz the mathematical
modeils described in this report, will be of value in determining the least
costly mathematical model with respect to computer requirements which
will satisfy the requirements of simulating vehicles of varying accuracy
and response characteristics.,

The results obtained from programming the equations on a digital
computer are discussed and compared in the report, .hey are graphically
presented in a classified supplement which is available on special request.
However, the contents of this supplement are not necessary in understand-
ing or in utilizing the mathematical models.

N\ 7 S 207
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‘ Project Engineer
U.S. Naval Training Device Tenter
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SECTION I
INTRODUCTION

1.1 CURRENT SIMULATION MODELS

At present, two kinds of mathematical models are used for the simulation of vehicu'.
motion. They are the Dynamic Simulation Model and the Kinematic Simulation Model.

1.1.1 The Dynamic Simulation Model

The dynamic simulation model consists of three sets of equations. The first set
consists of the dynamic differential equations F = ma and L = In, where F, a, L, anda are
vector quantities and I is a diagonal matrix. These are written as a set of six simultaneous
differential equations for the six accelerations in the six degrees of freedom. Each of the
six forces or torques is a function of one or more of the six velocities and of certain forcing
functions such as engine thrust or rudder deflection angle. The constants of the six functions
vary from one vehicle to the next, and sometimes from one environment to the next.

The second set of equations are the difference equations which update each velocity
(at given intervals ¢. time) as a function of past values of that velo:ity and its corresponding
acceleration. These equations constitute a numerical solution technique of the type normally
used to solve differential equations on a digital computer. Their accuracy is sensitive to
the frequencies of the differential equations and to the interval between consecutive evalua-
tions of the velocities. The equations in this second set are really kinematic equations,
since they relate velocity to acceleration without taking into account the origin of the accel-
eration,

The third set of equations are kinematic, expressing displacement in the six degrees
of freedom as functions of the six velocities.

Thie type of simulation model is called dynamic because the inputs to the model as
a whule are the parameters of the forcing functions of the differential equations. The out-
put is the motion of the vehicle. A model which yields motion as a result of applied forces
is called dynamic,

1.1.2 The Kinematic Simulation Model

In a kinematic simulation model, the first set of equations used in the dynamic
simulation model is not used. The second set is often retained, but in a simplified form,
The third set of equations, which relates displacement to velocity, is the only one which is
employed intact. This means that acceleration and sometimes even velocity must be sup-
plied to the kinematic model from somewhere else in the simulation system. Unless
dynamic equations are used to do this, the form of the input accelerations will be very simple.

C e 1-1



The input generally takes one of three forms; acceleration as a linear function of time,
constant acceleration, or au abrupt change in velocity. All three forms must be monitored
and cut-off times supplies.

1.2 THE GAP LEFT BY CURRENT MODELS
1.2.1 Shortcomings of the Kinematic Model

It is clear from the form of the kinematic model that the accuracy of a kinematic
simulation depends entirely on the accuracy of the acceleration or velocity used as input.
At present, however, there is no systematic way of constructing this input. Curreat usage
takes into account neither the parameters of the maneuver being executed nor the response
characteristics of the vehicle simulated. Time delays between command and execution of a
maneuver are approximated grossly or not at all. As a result, there is little difference be-
tween the simulation of & maneuver executed by one vehicle and the simulation of that same
maneuver executed by any other vehicle., None are really wrong, but none are quite right.

It remains for seme method to be evolved to monitor simply and accurately the inputs
to the kinematic simulation model. This must be done in such a way as to reflect both the
maneuver being executed and the vehicle being simulated.

1.2.2 Shortcomings of the Dynamic Model

The dynamic eimulation model has none of the shortcomings of the kinematic model.
The output from the dynamic model has all the characteristics necessary for a simulation
faithful to the motion of the vehicle being simulated. In the dynamic model, however, the
entire set of differential equations and accompanying difference equations must be evaluated
at every iteration interval for the most simple as well as for the most complex maneuvers.

1t is possible to simplify the set of differential equations described in Section 1.1.1
to a set that is only half as large. However, unless the simulator is to be used for training
pilots for the vehicle, this is stili too large. For many simulation purposes, the simulator
nee. pe able to duplicate only three or four different types of maneuvers.

Consider one of these: the turn., The kinematic model does not differentiate between
the transition phases of different turns for the same ship or the same turn for different ships.
The dynamic model does not take advantage of the fact that, for a given ship, one turn differs
from the next only by its engine speed and rudder angle.

The same is true for the other types of maneuvers.

Thevefore, the dynamic model must be modified. This modification must retain the
fidelity of the original dynamic model while taking advantage of the extensive duplication of
a very few types of maneuvers inherent in the operation of most simulation systems,

1-2



SECTION II

STATEMENT OF THE PROBLEM

There are two aspects to the problem:

a. To what extent is it possible to develop a third category of
vehicle simulation models falling between the two that already
exist, with respect to both fidelity and computer requirements?

b. In what simulation situations would it be advantageous to use
models in this category?



SECTION I
METHOD GF PROCEDURE

3.1 PRELIMINARY CONSIDERATIONS
3.1.1 Dynamic Equations

An indication of what must be done was stated in the last paragraphs of Sections
1.2.1and 1,2,2, Either the dynamic differential equations must be simplified or the simple
kinematic equation must be modified. The simplification of a full set of dynamic differential
equations can be a very difficult tagsk. Fortunately, sets of simple dynamic equations are
available for both the surface vessel and submarine. Both of these are sets of three simul-
taneous differential equations in three variables.

For the submarine, the time derivatives of speed, turn rate, and dive rate are
presented as functions of the state of the system, engine speed, rudder deflection angle,
and stern plane deflection angle. These three variables sufficiently describe the submarine's
position and direction of motion at any time.

For the surface veasel, the time derivatives of speed, side-slip angle, and rate of
change of heading are functions of the present state of the system, engine speed, and rudder
deflection angle. These three variables completely describe the surface vessel's motion.

Both sets of dynamic equations give some indication of the vehicle's orientation, but
the emphasis is on the motion of the vehicle as a moving point.

The important agpect of both these dynamic models, however, was that the differen-
tial equations could be solved analytically with a minimum of simplifying assumptions. The
fact that the solutions were to be used for a limited number of maneuvers justified most of
the simplifying assuraptions.

The aircraft presented a more difficult task. The only differential equations availa-
ble were very complex equations in six degrees of freedora. As a result, the model devel-
oped here had to be built up in an ad hoc manner. An attempt was made to fit equations to
available response curves. The resulting model is incompletely developed, compared to
the models for the submarine and surface vessel. The concepts of degrees of simplifica-
tior and contrc situations, discussed in the next few sections, were not used. The construc-
tion of the model will be described in section 3. 3. 3.

3.1.2 Control Situations

Certain statements in section 1. 2 discussed improvements necessary to the existing
catalogue of vehicle simulation models, We implied that there are uses for simulation
models for which the existing models are not adequate. If this is the case, then these uses
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must be recognized before the improvements are developed. The following discussion is an
attempt to establish a correspondence between types of uses and types of simulation models.

One way of categorizing simulation models is in terms of the agency that controls
the motion of the simulated vehicle. In general, different control situations will call for
different degrees of accuracy and fidelity of output. In certain cases, different control
situations will demand different input parameters. No correspondence between control
situations, input, and output can be definitive, butthe one developed here will serve as a
good indication of the lines along which the improved simulation models are to be constructed.

Four different control situations are used. The first two place the controlling agency
on the vehicle itself, at the helm or on the bridge. They are called, respectively, the opera-
tor control situation and the command control situation. The last two place the controlling
agency outside the vehicle. Control either rests in the hands of the instructor or is built
into the program itself. These are the instructor control situation and the program control
situation.

From the brief descriptions just given, it is possible to make some preliminary
comments about the model that will correspond to each control situation. The model for
the operator control situation must have as input those quantities normally under control of
the helmsman. These are engine speed, rudder deflection angle and (where applicable)
stern plane deflection angle. The output from this model should have no discontinuities,
because the feedback to the helmsmen must be realistic.

The model used for the command control situation must be able to take input in either
the same form as the operator controlled model or in the form of maneuver commands.
The output need not have the same fidelity of response as that of the model used fox the
operator control situation.

In the instructor and program control situations, input is . he form of maneuver
commands. The vehicles be. 1g simulated in these s.luations will generally te target vehi-
cles. Fidelity requirements for target vehicles are not as great as for the other two situa-
tions; the emphasis here is on speed of computation. Both instructor and program, especi-
ally the latter, may be called upon to maneuver a large number of vehicles at once. The
speed of computation must therefore be close to that of present kinematic models. Greater
speed will be required of the program-controlled models than of the instructor-controlled
models.

3.2 APPROACH
3.2.1 Four New Models

The first step in constructing simple simulation models from the available dynamic
differential equations is to solve these equations and to present the solutions in the form of
difference equations. In general, this procedure will give rise to ihe following situation.
3-2



Differential equation v = fr ., p., v.p.)

Difference equations Voo 1™ hfl(vn-l’ m.p., v.p.)

where m,p. and v.p. stand for maneuver parameters and vehicle parameters, respectively.
A v(tn) ad v 4= v(tn_l) where t -t ,=h foralln.

Sometimes { will be the same as {;; sometimes it will be different. If it is different,
this is because knowledge of the expected behavior of the maneuver parameters, together
with certain restrictions on this behavior, has made possible the use of simplifying agsump-
tions as to the nature of f. By varying the restrictions on the maneuver parameters, we
arrive at the first two of the new simulation models.

In the first of these models, m.p. is allowed to vary in certain limited ways; in the
second it is kept fixed. This exhausts the possihilities for simplifying the difference equa-
tion while it is in this form. The next step is to make v, - v, _; independent of v ;.

Whenv, - v, _; 18 independent of v the difference equation has the form

n-1’
Vn - Vn_l = Ma(m.pn y Ve p.)

The advantage of this form is that, since m.p. is kept fixed, A is incremented by
a constant amount at each iteration. Since v, 4 has been removed from the right side of
the equation, however, A must be tested against some precomputed oV (ordered v) at each
iteration. This requires less computation time than the inclusion of Vi-1 in the increment
function,

The next step is to let S jump from its original value to oY after a certain precom-
puted time delay has elapsed.

vn=vofornh<~r

= =
Vh= oY fornh=7r

where 7 =, (m.p., v.p.) and v, is the value of v when t = 0.
f3 and { 4 are found in the following way:

When the differential equation is solved, there results an equation of the form v = F(t, m.p.,
v.p.). Expressions for f5 and { 4 are found by solving the following two equations:

X (ov'vo)/f3 X
lim -/F(t) dt + /(vo + f3t) dt + / oV dt 1 =0 (3-1)
X~ 0 (Ov-vo)/f3
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f4: X

lim fF(t)dt+/ vodt-o-f vidt]|=0 (3-2)
X--0

(o] f‘

As described above, the four models give velocityat each iteration.
Position as well as velocity is required as output from the complete model.
Position is provided by the simple integration formula:

Xy = Xy g+ (Vg + V) (3-3)

Although this formula is very simple, errors in x, do not feed back into the formulas for

Vn.

This formula for x, amounts to an approximation of the curves for v by straight-line
segments between the pcints A By examining Figures 3-1 through 3-4 in the next section
it can be seen that, for each of Cases 1 through 4, such an approximation is still more ac-
curate than the next, less accurate, case, Furthermore, all we really know about v is the
location of the points Vp 80 there is no loss in accuracy from using Equation 3-3 for X,.

3.2.2 A Name for Each New Model

Section 3.1.2 describes four control situations and the nature of the input and output
for each one, This description, not intended to be exhaustive, did however provide enough
information to set up a correspondence between the four control situations and the four types
of simulation models described in section 3.2.1. The correspondence is not unique or de-
finitive, but rather serves as a guide for the use and evaluation of the models.

Output curves (Figure 3-1 through 3-4) are presented for C. Curves
for v have the same shape and can be obtained by substituting v for C and

v for C . Curves for dive have certain differences which arg descroxbed in
section 3, 3.1, 3.

3.2,2.1 Operator Control

The equation for the first model is of the form

Vp - Vpo1 = hfl(vn_l, m.p., v.p.) (3-4)
where the m,p. are not fixed. Here, Vo = Vn-1 is proportional to oV " Vn-1’ where oV isa
function of m.p. The variation that is allowed in m.p. is limited; its value is computed
as a function of those quantities under the control of the helmsman. These quantities are
allowed to vary in the way they crdinarily would in the execution oi a single straightforward

maneuver.
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developed. This model has the properties required in a model for the operator contrul sit-
uation. Therefore, Case 1 will be known as the operator control model.

The output from the operator control model will resemble Figure 3-1.

0.

° TIME t

Figure 3-1. OQutput from Operator Control Equaticn for C

3.2.2.2 Command Control
The equation for the second model is of the form
Vp-Vpo1 T hfz(vn_l, m.p., v.p.) (3-5)

where m.p. is fixed. Yy~ Vn-1 turns out to be proportional to o' = Vn-1’ where o¥ 154
function of m.p. To make up for the variation that usually occurs in m.p. when a new
maneuver is started, a time delay is used before allowing v,to change. Thevalueof ra.p.,
however, is derived from the maneuver command.

Because m,p. is not allowed to vary, the output from this model is slightly lcss
accurate than the output from Case 1, the operator control model. This model satisfics
one of the two possible sets of requirements for the command control situation. The other
is ordinarily satisfied by the operator control model, although certain limited variations
are sometimes allowed in the m.p. in Case 2. Case 2 will therefore be known as the com-
mand control model.




The output from the command control model will resemble Figure 3-2.

C
C=C—}——— - —— — =
C=C,
o TIME t

Figure 3-2. Output from Command Control Equation for C

3.2,2.3 Instructor Control

The equation for the third model is of the form

Vp - Vpo1 = hfs(m.p. , VoPu) (3-6)
where the m.p. is fixed. The v.p. is always fixed since it is impossible to change vehicles
in the middle of a maneuver. v, is monitored so that it is always bounded by v, and AL

Since the values for m.p. are fixed, they must be a function of maneuver commands.

The removal of the Vio1 dependence changes the nature of the behavior of Vo In-
stead of approaching oV asymptotically, A\ changes linearly with time until it equals oV"
This makes the cutput from this model less realistic than the output from Case 2. Speed of
computation is much greater, however, because the increment in vy need not be recomputed.

Thus Case 3 satisfies the requirements that we were able to establish for a model
for the instructor control situation. It will therefore be called the instructor control model.

The output from the instructor control model will resemble Figure 3-3.



° TIME t
Figure 3-3. Output from Instructor Control Equation for o

3.2.2.4 Program Ccatrol
The equation for the fourth model is or the form
Vp =V, for nh-<f, (m.p., v.p.)

v for nh =1, (m.p., v.p.) (3-7)

= v
n o
where the m.p. are fixed. Vo is the vaiue of v whent = 0 and oV is a furction of m.p. and
v.p. The m.p. values come from maneuver command Szputs.

The output from this model is iess accurate than the output from the instructor con-
trol model, for values of time less than 2 14. For larger values of time, the {wo outputs
are usually equal. This model requires less computation time, however. It is easier to
count time than to compare the value of A\ with o’ Furthermore, it is easier to compute
displacement from a fixed v than from a varying one.

Thus Case 4 satisfies the requirements for the program control situation, and the
model will be known as the program control model. Its output is shown in Figure 3-4.
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Figure 3-4. Output from Program Control Equation for c

3.2.3 Kinematic Equations

Each of the four types of simulation modals developed in this report has been given a
name. (See section 3.2.2.) It remains for some sort of nomenclature to be associated with
the group of four. Consider, once again, the form of the equations.

The {irst two represent simplifications of the dynamic differential equations, which
were solved for a limited class of maneuvers. The solutions were put into the for n of simple
difference equations. These difference equations monitor acceleration as a function of the
differenze between current velocity and a fixed, pre-computed velocity.

The latter two equations are of the type usually contained in kinematic models, but
with certain significant improvements. In the first of these two a constant acceleration is
uvsed, computed from the characteristics of the vehicle and the maneuver being simulated.
The second of the two uses a discontinuous change in constant velocities. This change is de-
layed in such a way that the overzil displacement is very close to that using the constant ac-
celeration equation.

What we have, then, is a set of modified kinematic equations. 8Strictly speaking, a
kinematic equation relates two or more kinematic variables such as acceleration, velocity
and position. The models developed here are based on this type of equation, but with a sig-
nificant addition. Each has built into it a means of monitoring acceleration in accordance
with the manétiver being executed and the vehicle being #imulated,
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Every use of kinematic equations requires some algorithm to control the acceleration.
The equations developed here are kinematic equations with the acceleration algorithms built
into them, There is therefore ample justification for calling them kinematic equations.

3.3 MECHANICS OF SOLUTION

The methods used to derive equations for the command, instructor, and program con-
trol models from the equations for the operator control model are indicated in section 3.2.1.
Those cases which required a departure from these methods will be described below. The
main emphasis in this section, however, will be on the development of the operator control
difference equation from the dynamic differential equations.

The complete analytic development of all the kinematic models is presented in Appen-
dix A. Appendix B contains a full description of all the models, their equations, and the steps
involved in their implementation on a digital computer,

3.3.1 Submarine

Reference 1 names the document that contains the differential equations for the motion
of a submarine, equations which hold for all submarines. The properties of individual sub-
marines are reflected in the values of the constants Al through A1 1 These are constant for
all the maneuverings of any one submarine, but differ from one submarine to the next. The
exception to this is the surfaced submarine, When a submarine surfaces, not only do the
values of the constants Al through Au change, but probably the form of the equations as well.
Therefore, use of the submarine kinematic equations developed here is restricted to sub-
merged submarines,

The submarine dynamic equations are:

B=Ag { 8- (1+A506,)8H 8+ (1+Ag06,.| + Ag)S} (3-8)
Cm - {A8C + AgC|C| + A% | (3-9)
B ~{Ag8D + AD|D| + AgD + A;oC% + &, 8% | (3-10)

The units are yards, degrees, arnd seconds. 8 is speed, C is course angle and D is dive
angle. 5, 1s rudder deflection angle, and & g 18 stern plane deflection angle. oS 18 the speed
for which the engine is set.

3.3.1.1 Speed

The differential equation for speed was solved directly. The solution is an expression
of the form 8 = (a + be®)/(d + 1e%), Thisleads to a difference equation of the form

ch
Sn - sn_l = f(sn_l, e "),



For h sufficiently small, this can be expressed as h times a bilinear function of o.?. and 8h-1-
The latter is used as the operator control equation.

3.3.1,2 Turn

A graph was constructed which depicts the differential equation for a submarine turn
as a curve of & versus €. The portion of the curve representing the behavior of the submar-
ine during an actual turn is very nearly a straight line. The equation for this straight line
wa ' constructed, keeping the intercepts intact as a function of speed and rudder angle.

If speed is kept constant and rudder angle constrained to be a linear function of time,
then the equation for the straight line can be integrated directly for C. This was done, and
the curreat value of speed 8 lupstltuted for the constant 8 in the solution. This leads to the
desired difference equation for C, of the form shown in equation 3-4.

This method of solution involves the quantity 6 pe The use of this quantity is a graphic
example of the limitations of the kinematic models developed in this report. The kinematic
equations for turn are to be used for a definite submarine turn with a fixed rudder angle.

The rudder angle can vary while the submarine is moving into the turn or leveling out of the
turn., However, unless the rudder is held fixed for the greater part of the turn or, at most,
allowed to vary around some fixed value, the kinematic model will be inaccurate. That fixed
value which the rudder deflection angle has for the greatest part of the turn is denoted by 8 e

&, appears in the difference equation for the operator control model. The operator
control model therefore requires, as input, more than just the current value of the rudder
angle. It must also have, as input, the rudder angle which the operator intends to use as the
principal rudder angle of the turn maneuver.

3.3.1.3 Dive

The differential equation for submarine dive containg terms for dive angle, rate of
change of dive angle, and rate of change of rate of change of dive angle. This leads to
kinematic equations for submarine dive of a different form from all the other submarine and
surface vessel kinematic equations.

The term containing (‘:2 is ignored, since multiple maneuvers are not within the scope
of the kinematic equations developed here.

The development of the four kinematic models for dive is sufficiently
different from the corresponding development for the other submarine and
surface vessel maneuvers to warrant a detailed explanation. In addition,
the approach and results are different for each of the four cases.
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a. Submarine Dive; Case 1l

The curve of D and D was d-awn. As in the case of submarine turn, the curve is
very nearly a straight line over the expected range of activity, The D intercept, which is a
function of D and 5g is preserved by the straight line approximation. The slope of the line
is found by minimizing the integral of the square of the error over the expected range of ac-
tivity. This leads to a linear second-order non-homogenous differential equation for D.

The forcing function is proportional to & g The differential equation is solved assum-
Ing & to be a linear function of time. Since the differential equation is second order, two
starting values are needed for the difference equation. The difference equation is found from
the solution to the differential equation by the following technique:

The solution to the differential equation is of the form:

Alt Az't
D= Kle + Kze + f(és)

This leads to the following three equations, when the values nh, (n - 1)h and (n - 2)hareused

for t: Aqnh Agnh
Dn = Kle + Kze + £(6 sn)

Al(n-l)h e.l\z(n-l)h

D = Kle + Kz

h-1° + f(6 )

Sh-1

Al(n-2)h Ag(n-Z)h
D =Kse + Kqe + (8 )
n"2 1 2 Sn_z
Alnh Aznh
This is a set of three linear equations in the three unknowns Dn’ Kle and Kze It

Ah Agh
was solved for D interms of D, 4, D, 5, € ~ , € and the function of 6 rvzluated at

6, , 6 , and 6 .
5h Sh-1 5h-2

For h small enough, the exponentials can be approximated. The resuit is the equation:

= 5 2 2
l)n - Dn_l - (Dn'l - Dn_z)(l - 8A7$h) - h (AgDn_I + Alls ésn-l) (3"11)

This differs from equation 3-4, An equation analogous to equation 3-4 and which ex-
presses the form of equation 3-11 is the equation:

Vn ~ Vp1 =My Vg Xy mepe, Vo) (3-12)

where v = X. The correspondence comes from letting (Dn - Dn_l)/h =V etc. Thus the
acceleration algorithm referred to in section 3.2, 3 is now a function of position D as well as
velocity D. This new dependence is present in 1l the control situations for submarine dive.
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The equations for Case 2, the command control situation, are derived by holding D at
some fixed value. The formulas are most accurate when this fixed value is close to the aver-
age that D will actually have, Thus in a change in dive rate to some oD (ordered D), it is
best to use ;D/2.

When D is fixed, we can say that for any given stern plane angle bg there is a value
for D ( ﬁ) at which D = 0. This gives an equation relating 5 and D Using this equation,
the 1nput to the command control model can be either D or 6

With D fixed, the linear equation which approximates equation 3-10 is easily solved
forD - D _,=hiy (l')n gy M.p., v.p.). D approaches the fixed value D. This D or the
correspondlng value of Sg must be part of the input. D must also be po,rt of the input 0D
(ordered D) is the value of D at which D is returned to zero. This is much more important
for dive angle than for course angle, because of the disastrous effects on submarine and sim-
ulator if D grows too large.

c. Submarine Dive; Case 3

In the development of control situations for other maneuvers, the instructor control
equation is of the form Vo< Vpo1 = hfa(m.p., v.p.). For the submarine dive maneuvers,
however, the equation is of the form usually associated with Case 4. That is,

b, = D, for nh <f, (m.p., v.p.)
D, = oD for nh?f4 (m.p., v.p.)
where f)o is dive angle rate whent = 0,

One of the reasons for this is that, in a dive maneuver, depth is more significant than
dive angle. Since depth rate is proportional to sin D, D is actually a velocity rather than a
displacement, and D an acceleration rather than a velocity. Any dive maneuver must consist
of two applications of the instructor control formulation in order to achieve a given dive angle,
followed by two more such applications when it is time to return the dive angle to zero.

d. Submarine Dive: Case 4

The program control model changes the dive angle abruptly from its original value
D0 to its ordered value oD. The appropriate time delay is found by integrating the depth
change the submarine undergoes during two consecutive applications of the instructor control
formulation. In the first of these, D goes from D to D where D is usually zero. In the
second, it goes from D to zero in such a way as to make the final value of D equal to D

Note that the input for both the instructor and program controi models consists of

Do’ Do’ C,D, and oD'
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3.3.2 Surface Vessel

The document named in Reference 2 contains the dynamic differential equations for the
surface vessel. These equations contain constants ay through ag. The equations hold for all
normal, single-hulled surface vessels. Their applicability to hydrofoils and double-hulled
vessels has not been established. Different surface vessels will have different values for the
constants 2y through ag. Reference 2 contains values of these constants for a nuraber of dif-
ferent surface vessels. These values are listed in Appendix C.

The surface vessel dynamic equations are

V= (ala + a12¢s)V2 +agVy (3-13)
a=(a 0 +2g8)V +agy (3-14)
O= a7(a4a + a56)2V2 + aa(voz - V2) (3-15)

The units are feet, radians, and seconds. y is rate of change of ship’s heading angle, o is
side-slip angle, course angle change (C) is y - &, 6 is rudder deflection angle, and V is speed.
v, corresponds to the 0S of the submarine formulation. It is the speed for which the engine

is set, or ordered speed. In the derivations, \Z is used to denote the speed at the start of a
maneuver.

3.3.2.1 Speed

The differential equation for speed can be solved directly only if the term
(a a+a 6) V2 is approximated in some simple way. According to equatmn 3-14,
(a 4 + a56 W=&- A6y In any steady turn, & goes to zero and y goes to C the ordered
course rate. The first agsumption then, is that (a 4ata 6)V goes quickly to -ag, C. Thus,
the accuracy of the simulation of speed in a turn depends on the relative size of the portion
of the turn for which 6, and therefore oé’ is fixed.

With this assumption, equation 3-15 can be solved directly and the solution put into
the appropriate difference equation form by letting ekh = 1 + kh for the suificiently small
iteration interval, h.

The integral of V used to find the models for the instructor control and program con-

V + V
trol situations involves the approximation of log(—-z-——) By making the assumption of

positive values for all velocities, a series expansion uf this function can be used.
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If V is held constant in equations 3-13 and 3-14, then they become a pair ol Suuuilas
eous linear first-order differential equations. As such they are easily solved. The solution
technique constrains the rudder angle to change as a linear function of time. The expression
used for this is & = ry + Tot.

The difference equations are found by letting ekh = 1 + kh for kh smaller than one.
The current value of V is used in the difference equations.

The integral of C (see equations 3-1 and 3-2) is found as follows. First the formula
for C is written with & = ot (i.e., ry= 0) and integrated fromt = Qtot = T, where T =_§/r2.
& is the principal value of & in the turn (see section 3.3.1.2), and T is the time it takes for
the rudder to move to that angle,

Then the formula for € is written with 5 = § (i.e., ry = 5 and ry = 0) and integrated
fromt = Ttot =x., The equations for the models for the instructor and program control sit-
uations are found by using this integral.

The command control difference equations are very similar to the difference equations
for the operator control situation, when ry = 0. A time delay is used for the time when § is
changing. The theoretical value for this time delay gave results that were consistently
smaller than Case 1 by about 10 percent or more, so another was found by trial and error.
The new time delay gave good results for the seven cases tested (see Appendix C). It was
therefore incorporated into the command control model (see section 5.3. 2. 2).

3.3.3 Aircraft

The motion of an aircraft is described as that of a rigid body moving in space in a
way that is somewhat restricted in its freedom of movement. As a point, it can accelerate
or decelerate in the direction of motion, climb or dive at a limited angle, and turn in a cir-
cular arc. As a rigid body, its pitch angle will vary with its speed and climb rate, and its
roll angle will vary with its turn rate. The order of causality is not fixed, but there is a
separation of the six degree-of-freedom variables into two mutually independent but internally
dependent categories. The development of the models for the two categories differs signifi-
cantly. The categories will be called motion in the vertical plane and turn. Equations in the
first category relate speed, climb rate, pitch angle, and thrust. In the second, they relate
roll angle and turn rate as a function of speed.

3.3.3.1 Motion in the Vertical Plane
a. Sources

The equations in this category were developed to fit curves of speed versus climb rate,

pitch versus climb rate, and thrust versus speed. Curves were available for each of these
dependencies.
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engine setting, altitude, and aircraft weight. In addition, there is a set of speed-versus-
time curves varying according to the same parameters, which were used to check the accel-
eration and deceleration equations. These curves are all found in Reference 3. Of some
help in fitting these curves were certain equations found in Reference 4. In addition, certain
curves showing the interdependence of various aerodynamic coefficients at various Mach
numbers were used. These are found in Reference 5.

b. Develogment

The acceleration equations are the only ones in this category that are developed to
any degree of completeness. The curves of thrust versus airspeed are approximated by
hyperbolas. These lead to simple differential equations for speed. Attempts have been made
to express the parameters of the hyperbolas as functions cf altitude.

Equations were set up to fit the curves of climb rate versus speed and climb rate
versus pitch angle. It was necessary to postulate some algorithm for changing only one of
these quantities since the interdependence equations cause the others to change accordingly.
It was decided to change the pitch angle in such a way that the g-force experienced by the
pilot would remain constant until the desired pitch angie was attained. Alternate algorithms
might uge a constant rate of change of pitch angle or a constant rate of change of climb rate.
These possibilities were not explored because of the lack of information about the realism of
any one of the algorithms as opposed to any of the others.

3.3.3.2 Turn

The equations for turn are completely geometric. They depend on the characteristics
of the aircraft for only one parameter. The assumption is made that the turn is coordinated
throughout its duration. This means that there is no lateral slippage, so whatever the air-
speed, v, and the turn rate, w, the following equation will hold

Z =tan¢ (3-18)

where ¢ is the bank or roll angle of the aircraft and g is the iicceleration due to gravity at
that point.

The turn is accomplished as follows.
1. The order for course change and turn rate is given.
2, The aircraft rolls to the appropriate bank angle at the appropriate roll

rate. The former depends on speed and ordered turn rate, the latter
on the aircraft' s characteristics.
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change is the ordered course change minus the course change
while the aircraft rolls out of the turn.

4. The aircraft rolls out of the turn,

3.4 TESTING AND EVALUATION

Once the formulas for the kinematic models were developed, they had to be tested.
This was necessary to refine the models and to determine whether or not they could accom-
plish their purposes. Accuracy must increase as computer requirements increase. Com-
puter requirements must decrease as accuracy decreases.

Appendix C contains at least one response curve for exch of the kinematic models,
with the exception of aircraft climb (see section 3.4.8). Wherever possible, tha outputs
from the simple dynamic equatiois is indicated on the graphs, as is any tactical trial data
available for the same maneuvers. The emphasis, however, is on comparison with the dy-
namic equations. This is because no more accuracy can be expected from the kinematic
equations than is inherent in the dynamic equations from which they are derived. Any closer
fidelity to the actual tactical trial data on the part of the kinematic models is accidental.
This would not be true if the kinematic models were modified in any way to conform to tacti-
cal trial data. Such an undertaking was beyond the scope of this study, however, so the
most significant comparison remains that between the dynaniic and kinematic models.

The kinematic equations used to gererate the response curves appear in Appendix B.
They will be referred to by section rather than by equation number, since an extensive set
of equations were used for each set of response curves. References to specific equations
for each curve are in section 4. 2.

The curves will be discussed in Sections IV and V.

3.4.1 Kinematic Response Curves: Submarine

All submarine maneuvers were run for a submarine of the SS(B)N598 class. Reliable
coefficient data was not available for the other submarines (see section 3. 5).

3.4.1.1 Speed

Figure C-1 is an acceleration from 2 knots to 15 knots and Figure C-2 a deceleration
from 20 knots to 2 knots. Poth show response curves for all four cases as well as points
generated by the dynamic equations (Reference 1). The formulas appear in section B. 1.2.1
of Appendix B.
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pendix B. The dynamic data points that appear on the graph are from Reference 6.

3.4.1,2 Turn

a. Response Curvesg

Figure C-3 is for the same turn maneuver as Figure C-4: 10 knots and 20 degrees
rudder. Figure C-3 shows course angle, course angle rate, and position. All the equations
used are from section B.1.2.2 of Appendix B. These equations are for speed as well as rate
of change of course. Speed in a turn can be generated withouvt any reference to the course
rate equations. Equations for course rate, however (Cases 1 and 2), use current speed at
every iteration. Thus all the equations in Appendix B, section B.1.2.2 are used, plus those
in section B. 3.1 for position updating.

Dynamic data points come from Reference 6.

b. Advance, Transfer, and Tactical Diameter

Figures C-5, C-6, and C-7 provide a good way of evaluating the accuracy of the kine-
matic equatione for submarine turn. Reference 1 contains a comparison between certain sets
of data generated by the simple dynamic equations and the corresponding tactical trial data.
This data consists of turning characteristics for nine different turns. Speeds entering the
turns are 5, 10, and 20 knots, and rudder angles are 10°, 26°, and 30°. The various
combinations of these quantities provide data on a total of nine turns.

Advance, tranuter, tactical diameter, time to turn 360 degrees, speed in turn, and

average course change per minute are the quantities compared. Advance is tlie component of
the displacement of the vessel, when it has changed 1ts course by 90 d:grees,

which is in the direction of its motion before entering the turn. Transfer is the
component of this displacemant perpendicular to the original direction of motion.
Tactical diameter is the perpendicular distance between the original and final
directions of motion when it has changes its course by 180 degrees.

These same quantities are generated for the same nine turns by the kinematic equa-
tions. Case 4 is used for two reasons. First, it is the least accurate; this gives a worst-
case evaluation. If the kinematic equations give satisfactory results for Case 4, they should
give even more ratisfactory results for the other cases.

Second, if Case 4 is used, all the necessary quantities can be calculated by hand in a
few minutes. Use of any of the other cases would require an extensive computer program.
Case 4 provides two time delays. One is between the time at which the maneuver is initiated
and the time at which the spe¢ed is changed from oS to 5. The other is between the initiation
time and the time at which the course rate is changed irom zero to c,C. The necessary formu-
las are derived from these time delays.
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Let T  be the time delay for speed and ’r'c the time delay for course rate.

Consider first the case where T < ’I‘ . The turn maneuver will be performed

in three stages. While t <Tc, the submarme is gomg straight ahead. While

T. ¢ t¢Tg, itis turning with speed oS and turn rate oC. During this interval it
turns through an angle (Tg-T¢) oC with turning radius oS. When Tg ¢ t, it is
turning with speed S¢ and turn rate oC. oCl

The radius of this S¢ .

loCl

When the submarine has turned 772 radians:

. S ’ - ¥
Advance = oST_+ 0S sin . T )/oC £(1 - cos ~(T_- oC /) (3-17)
oo =o8Te + o8 i [{r, - 7 )/0/] 4 1 - cos [r-(x,-T,)/oE])

Transfer -/‘_;og/[l'- cos E’I‘s - Tc)/oé@ +/,;é/ sin L_;ZZZ‘ (Ts - Tc)/Oé_/:7

providing (Ty - T ) /oC/< g_ (3-18)
If (T, - T ) /oC/> _Zg

Advance = ST, + oS
/oG
Transfer = oS
/oC/
These equations can also be derived from 3-17 and 3-18 by letting (T -T, /oC/ v,

<
Thus for Tc >t < Ts

Advance = oST_ + 08 sinBTs-Tc) o(:IJ +3f (1l - cos (7 -(T_-T )/oC/:)
/C/ . ._.) ) s 2 s c » '
Transfer ‘/c_?g_/ u - cos /(T - Tc)/ocg ;gé/sm!—_éz - (TS - TC)IOC_IL,

with (T, - TC)/oé/ equal to min ( @‘, (TS - TC)/Oé)

Tactical Diameter = Transfer +

/oC/ (3-19)

Tirse to Turn 360° = 360° + T (3-20)
70C/ c o

Average Turn Rate = 360°/Time to Turn 360 G-21)

Advanced and transfer equations can be simplified by letting sin(Ts-Tc) oC={Tg-T )OC.
""The angles are small enough so that any error will be very small compared to the
dorinant.terms in the equation. Tables C-1, C-2, and C-3 «f Appendix C list the
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following six quantities for the nine turns under discussion.

Advance

Transfer

Tactical Diameter

Time to Turn 360°

Degrees per Minute

Final Speed for the Nine Turns

Table C-1 relates to the actual submarine, Table C-2 to the dynamic equations, and
Table C-3 to Case 4 of the kinematic equations.

Consider now the case where Tg¢T.. While o < TC the submarine moves
in a straight line; for T, ¢ t{ Tg it turns with radius Sf

/oCy
Thus
S
Advance = oST_+S_(T_-T )+ f
S TR s’ =
ot/ (3-2.
Transfer =if_
/ o0&/ (3-2.
2S
Tactical Diameter = &

/ o€/

Where /oé/ is in radians, Equations 3-19, 3-20 and 3-21 are still valid,

Figures C-5, C-6, and C-7 of Appendix C display advance, transfer, and tactica
diameter as generat:d by these equations. The same quantities as generated by the
dynamic equations and the actual submarine are also shown on the graphs.
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3.4.1.3 Dive

Response curves are presented in Appendix C for two dive maneuvers. In the first,
shown in Figure C-8, the stern plane angle is changed from zero to -15° in three seconds,
held at -15° for another eighteen seconds, and then changed to +25° at the rate of 5° per
second. The speed of the submarine is 20 knots. This is run for all four cases of the sub-
marine kinematic equations. In the equations for Case 3, oD was 10° (i.e., the real ordered
dive angle divided by two; This is explained in section A.1.4.2.2 of Appendix A,) For
Case 4, oD, the real ordered dive angle, is 20°. This is because the maneuver is an over-
shoot maneuver, and the stern plane was made to begin moving when D reached 20°. 015 for
Case 4 is obtained from the figures for Case 3 (i.e., using bg = -15° and oD = 10°). The
formulas used for the kinematic models are in section B. 1, 2.3 of Appendix B. Both the
tactical points and the points from the dynamic response curves came from Reference 1.

The response curves for the second dive maneuver are displayed in Figure C-9 of
Appendix C. This is a dive and level-up maneuver. The stern plane angle changes too often
for the terms oD and 015 to have any meaning; accordingly, Cases 3 and 4 are not used.

The formulas for Case 2 are used with oD equal to zero. Once again, the kinematic equa-
tions are in section B.1.2.3 of Appendix B, and the tactical and dynamic data points are
from Reference 1,

3.4.2 Kinematic Response Curves: Surface Vessel

The surface vessel runs are all of the same type. The rudder is moved to the de-
sired rudder angle as a linear function of time, then held at that angle for the duration of
the run, This is done for several values of speed-entering-the-turn and for several rudder

angles for each of three surface vessels. The surface vessels are a destroyer of the
DD-445 class, a cruiser of the CA-68 class, and a long-hull destroyer of the DD-692 class.

The only available response curve generated by the dynamic equations is for a 14.7-
degree rudder angle turn at 24 knots for the DD-445 (Reference 7). The curves for course
change, course change rate, and trajectory for this maneuver are shown in Figure C-10 of
Appendix C. Figure C-10 also contains points representing tactical trial data for this maneu-
ver (again from Reference 7). The speed change in the turn for this maneuver (kinematic
and actual) is shown in Figure C-13,

Figures C-11 and C-12 show course change, course change rate, and trajectory for
two more DD-445 turns. The first enters the turn at 15 knots and uses a 10-degree rudder;
the second enters the turn at 34. 4 knots and uses a 33.3-degree rudder. Tactical data points
come from Reference 8. The speed in the turn for these two maneuvers is shown in Figure
C-13.
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rigures C-14 and C-15 show course change, course change rate, and trajectory for
two DD-692 turns. They are at 33 knots and 10-degree rudder and at 15 knots and 25-degree
rudder, respectively. Speeds during both turns are shown in Figure C-16. Tactical data
points all come from Reference 10,

The course and trajectory curves for the two CA-68 turns are in Figure C-17 and

C-18. The turn in Figure C-17 is entered at 15 knots and uses a 14, 5-degree rudder angle.
The one in Figure C-18 is entered at 32 knots and uses a 15-degree rudder. Reference 9 is
the source of tactical data points. Speed changes are shown in Figure C-19. All surface
vessel maneuvers are run using all four sets of kinematic equations. These equations ap-
pear in section B. 2.2, 2 of Appendix B. Position updating is accomplished using the formu-
las in section B. 3.1 of Appendix B. A variety of maneuvers is used to show the variety of
accuracy differences between the four cases and between the kinematic model and true tac-
tical data.

3.4.3 Kinematic Response Curves: Aircraft

Only three curves were generated for the aircraft simulation models, and only one
of these can be compared to any other response curves. Figure C-20 of Appendix C dis-
plays two aircraft acceleration maneuvers; both are at sea level with the same weight load
on the aircraft. One is an acceleration from 260 knots to 580 knots, the other from 260
knots to 650 knots. Both use a five-second iteration interval, and are compared to 4p-
proved Performance Data from Reference 3.

Figure C-21 depicts bank angle and total course change versus time. Figure C-22
shows displacement perpendicular to the original direction of motion versus displacement
parallel to the original direction of motion. Both are for a five-degree-per-second turn at
500 knots airspeed. On the curve, these displacements are called respectively transfer
and advance. This is for the sake of brevity only, as they are not actually transfer and ad-
vance. The definitions of transfer and advance are in section 3.4.1.2. There were no
performance curves available to compare with these curves.

Similarly, there were no performance curves available for any maneuvers in the
vertical plane. Any curves that could be generated by the kinematic model for this aspect
of aircraft motion would show nothing that could be used for evaluation purposes.

3-21



3.5 MODIFICATION OF SUBMARINE CONSTANTS

Reference 1 contains values for the constants of the submarine equations of motion
(.1*.1 through Au, section 3. 3. 1) for three submarines. Close inspection of these constants
showed that there are mistakes among them. If the constants are used in the differential
equations, the results are quite different from the results claimed in the reference. In
particular, the constant relating speed entering a turn to speed during the turn was wrong
for all three submarines; this was easy to correct. There was no obvious way, however,
to correct the constants of the dive equation for the submarines Attack Cer .er II and Attack
Center III. The mistakes in these constants cause the dive angle to diverge very quickly;
they serve to cast doubt upon the validity of all the constants for these two submarines.
This doubt was reinforced by the zero value for A5 for one of them and the same value for
A 4 for the other. For this reason, the turn equations were not run for either,

3.5.1 Speed During Turn

The constant Ay, relating S to S; by the formula S; = S/ 1+ Azlérl), was corrected
by taking values of oS, 8, and 6., for several turns. This was done for all three submarines.
For the first two, only the position of the decimal point had to be changed. The value of A2
for Attack Center III however, had to be changed from 0.0403 to 0.0271,

3.5.2 Dive

Section A. 1.4 of Appendix A contains a discussion of the differential equation for
dive. In this discussion, it is pointed ~at that certain values of the constants will lead to
unstable behavior of the submarine during an attempted dive. The curve of D versus D has
a maximum and a minimum. It is shown in section A. 1.4 that if the D axis is not between
the two, a small deflection of the stern plane angle will lead to a divergent pitch rate.

The maximum and minimum are at D = +A7S/ 2A8 and D = ~A7S/ 2A8’ respectively.
Subatituted into equation 3-10, this gives the maximum and minimum points as, respectively
(since A7 is positive and AB negative),
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} 'zra ,-W‘FAQD'FAIIS 68 and —W, "_H'é—'PAgD'FAIIS 68 .

If the D axis 18 to separate these two points, then the inequality
(Ag9)? | s (4,97
—W- <A9D + AHS bg <= -11—8—-
must hold. Expressed otherwise,
2
AnS)
E{F (3-24)

Inequality 3-24 can now be used as a rough estimate nf the validity of the constants,
The values of Ag and A, were almost identical for the three submarinea, so they will be
assumed valid and values A7 and Aa examined. A rough check is to let D = 0. This changes
the inequality to

2
|AgD + A;;8% | <

2
Agglegl < -%
For Attack Center I , l6g] < 15°
For Attack Center I, |6_| <0.000003°
and Attack CenterIII, |6,| <0.000625°
As the actual values of ) and D approach the maximum (or minimum point), D grows
with a sign opposite to that of 6. Thus it is possible for [é| to be greater than 15° for At-
tack Center I while |AgD + A; (8% | is still less than -(A,S)2/4A5. Where -A,%/4Ag i

very small, however, this effect is of very little help. Consider the constraints on D for
bg = -10° and 8 = 10 knots.

Attack Center I , -20.6° <D <103°
Attack Center IT, 47.54534° <D <47.54536°
Attack Center I, 95.0848° <D <95.0966°

The impossibility of attaining the conditions for Attack Centers Il and IlI is obvious. If
they are not attained when D and D are near the maximum or minimum points on the graph,
then D will grow without limit (see ssction A. 1.4 in Appendix A).

Thus, A7 and/or AB are completely erroneous for Attack Centers II and IU.
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3.6 COMPUTER REQUIREMENTS

The kinematic models presented in this report are of a general nature, ond may be
programmed on a great variety of digital computing devices. This being so, an analysis

of running time or computation time per iteration for running the kinematic equations on
any one particular computer is of less interest than an analysis of the number of operations

of various kinds necessary to perform the mathemitics involved., All computer operations
are therefore put into four categories: transfer operations, addition, multiplication, and
division, By transfer operations we mean to include data transfers as well as program

transfers. Thus Clear and Add, Move, Transfer on Zero, and Store are all called trans-

fer operations. Since they take the same time in most computers, this will not lead to any

ambiguity.

Storage requirements are also given. This includes both fixed storage for the
instructions, any necesaary constarts, and temporary storage. The storage requirements

for each of the four cases are stated separately.
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SECTION 1V
RESULTS

4.1 INPUT AND OUTPUT

Appendix B of this report contains a list of equations and the rulesfor their use. These
equations are designed todescribe the motion of three types of vehicles. There are certain
inputs necessary for this description, consisting of vehicle parameters (v.p), maneuver
parameters (m.p.) and initialization information.

Another type of input is also necessary when a submarine or surface vessel is to be
simulated. For every maneuver of one of these vehicles, there are four possible simulation
models. Before any simulation can be performed, a choice must be made as to which of the
four models will be used.

In order to make this choice, the nature of the four models and their differences must
be known and understood. Consider the input and output of each.

4.1.1 Inputs to the Four Kinematic Models

Section 3.1, 2 describes a tentative correspondence between the four models and four
types of uses of simulation models. This correspondence is based on the form of the input
from the four types of uses and on the expected accuracy of the outputs from the four kine-
matic models. The models have much more flexibility with regard to input than is implied
in that section, however.

4.1.1.1 Acceleration/Deceleration

The equations for this maneuver are shown in sections B.1.2.1 and B.2.2.1 of
Appendix B, It is obvious from these equations that the inputs to all four models (or rather
all three, since Cases 1 and 2 are identical) are the same.

4.1,1,2 Turn

These equations, for submarine and surface vessel, are listed in sections B.1.2.2
and B.2,2.2 of Appendix B. The input to Case 1 requires the current value of the rudder
angle; the input to the other three cases do not. The input to Case 1 also rgquires b or ér
(see section 3.3.1.2), whereas the input to the other three cases require 0C. All four ~—
cases require VO or 0S, however, and with 0S or V0 known, oC can be found from 6.ors
and vice versa,
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§; = £(,5, ,©) (Equation B-7)
_6.2 = f(oS, Sf) (Equation B-9)
Thus, 5. =1(8, ,©)

Furthermore, knowing T, 6r = tar /T

Conversely, oé = f(oS, 6:-)

(Equation B-8)

While for the surface vessel,

V=1V, C) (Equation B-44)
6= f(Vf, Oé) (Equation B-40)
Thus, 6= f(Vo, oé)

Furthermore, knowing T, 6 =t§/T

Conversely, V= f(VO, 8) (Equation B-43)
oC = £(V¢, 8) (Equation B-40)
Thus, C =1V,

In other words, if considerations of accuracy, computer requirements, or the form
of the output dictate, any one of the four models can use any form of input that can be used
by any other of them. Exceptions to this occur when the response to repeated turn maneu-
vers in close succession or combination turn and acceleration/deceleration maneuvers are
being simulated. In those situations, Case 1 is used. Cases 2, 3 and 4 could probably be
adapted to simulate these maneuvers, but such an adaption is not investigated in this report.

4.1,1.3 Dive

In the case of the dive equations (section B.1,2.3, Appendix B), there is 2 gcnuine
difference between the kinds of input that can be accepted by them. The input to Case 1 is

& g ! the current value of the stern plane deflectinn angle along with Do and Dl' The input
n . .
to case 4 is D0 and Do, the initial dive angle and dive angle rate, and oD and 0D the ordered

dive angle and dive angle rate,
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Cases 2 and 3 are transitional steps between 1 and 4. Case 2 can accept b, as
input, usitig Equation B-25 from Appendix B. If Equation B-24 is used for Case 2, then the
input is D and the use of the formula has to be monitored, using Dor time. The same in-
put is used for Case 3: D and D or time. Case 4 cannot use time however only D and
ob- D and D can be used to initialize all four cases, where D  and D + hD are used to
initialize Case 1. Similarly, D and D1 can also be used for all four cases, letting D
(D1 - DO) /h,

4.1.2 Outputs from the Four Kinematic Models

The form of the outputs from the four models is shown in section 3. 2,2, Figures
3-1 through 3-4. These figures show velocity versus time; velocity can be S, V, or C. The
output of the four cases of the dive simulator is somewhat different.

For the dive simulator, the dotted line representing oCin Figures 3~1 through 3-4 is
now 2 connected series of broken line segments representing roughly oD’ which is a function
of & s° For Case 1, D approaches this curve asymptotically after a delay in starting (as ir
Figure 3-1). The line segments move up or down, however, since the correspondence
between bg and OD depends on the current value of D,

For Case 2, the series of line segments is fixed and D starts toward it abruptly (as
for V =~ o in Figure 3-2), and changes direction abruptly as the OD curve changes direction.
The output from Case 3 resembles a combination of Figures 3-3 and 3-4, with D the ordinate
rather than D. That isto say, D increases linearly after an elapsed time delay.

The output from Case 4 resembles Figure 3-4, with D again the ordinate. In general
the initial time delay is larger than it is for S, V or C.

4,2 ACCURACY

In section 4.1 the differences in input and output were described for the four kine-
matic models. It can be seen from this description that, except for the submarine dive, we
can always obviate the differences in the input requirements of the four cases. The differ-
ences in the form of the output are most obvious in the velocity response curves but much
more subtle as these curves are integrated to give position.

It is necessary, therefore, that more permanent criteria be established for selectior
among the four cases. In Section II the question of the existence of the new models is asked
in terms of their fidelity and computer requirements. The computer requirements of the
new models are described in section 4.3. The paragraphs below describe their accuracy.
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anu shown in Appendix C, Evaluation is both qualifative, from a visusl examination of the
graphs, and quantitative, using certain percent errors. Case 1, with a one-second iteration
interval, ie used as the standard for quantitative comparison whenever dynamic data is not
available. All equation references are for Appendix B.

4.2.1 Acceleration/Deceleration

Quantitative evaluation is on the basis of percent of time loss or gain in the maneuver.
The differ?nce in distance covered between the run being examined and the standard run is
divided by the final speed to give the time difference. This is then divided by the approxi-
mate time it took [or the acceleration/deceleration to be completed, using the standard
model. Speed lose in a turn is treated as a deceleration,

4.2,1.1 Submarine (Tables 4-1, 4-2 and 4-3)

Grdphs for submarine acceleration/deceleration maneuvers are in Figurea C-1, C-2
and C-4 of Appendix C. For all three, Cases 1 and 2 follow the points generated by the dy-
namic equations very closely. The total distance covered using Cases 3 and 4 should be
identical because of the way in which they are derived. The major difference is between
Cases 1 and 2 and Cases 3 and 4. By inspection, this difference seems quite small for the
acceleration (Figure C-1) and speed loss in the turn (Figure C-4), but quite large for the
deceleration (Figure C-2).

An iteration interval of one second was used for all the cases listed. The points
generated using a ten-second iteration intervai are seen by inspection to be very close to
those generated using 2 one-second interval.

TABLE 4-1. SUBMARINE ACCELERATION

Acceleration, 2 knots to 15 knots; Time, 150 seconds

Case | Equations Distance A Distance ATime % A Time
1, 2 1 1037 yards -- -- --
3, 4 2 1005 yards -32 yards ~3.8 seconds 3




TABLE 4-2. SUBMARINE DECELERATION

Deceleration, 20 knots to 2 knots; Time, 1200 seconds
Case Equations Distance A Distance A Time % A Time
1, 2 1 2621 yards - -- --
3, 4 2 2155 yards -466 yards ~414 seconds 35
TABLE 4-3. SPEED LOSS IN SUBMARINE TURN
Speed Loss in Turn, 10 knots to 6. 43 knots; Time, 110 seconds
Case Equations Distance A Distance A Time % A Time
1, 2 9, 12 444 yards -- - --
3 4 7, 14 450 yards +6 yards +1.7 seconds 2

4.2,1,2 Surface Vessel (Table 4-4)

Graphs of speed loss in a surface-vessel turn are shown in Appendix C for the sur-
face vessels DD-445 (Figure C-13), DD-682 (Figure C-16) and CA-68 (Figure C-19).

The only one for which points were available from the dynamic equations was the
turn at 14. T rudder for the DD-445. These points are not shown on the graph, but they
coincide exactly with the points generated by the kinematic equations.

For most of the turns, there is no discernible difference between the velocities
generated by Cases 1 through 4. Differences show up only when Vo - Vf is large enough.

When a difference appears, it always displays the same behavior; Cases 3 and 4 give too
rapid a speed loss,

A quantitative breakdown is given for the maneuver where this difference is most
extreme, the turn at 15° rudder angle and 32 knots' speed entering the turn of the surface
vessel CA-68. Inspection of the other graphs show the difference between the cases to be
roughly proportional to V - Vf .

The value for h, the iteration interval, is given in seconds; it is one second, unless
specified otherwise. All distances are in feet, and time in seconds.
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TABLE 4-4, SPEED LOSB IN SURFACE VESSEL TURN

32knots to 26 knots; Time, 180 seconds
Case Equations | Distance A Distance A Time % A Time
1 | 45,46, 47 8751 - - -
1(h=5) | 485,46, 47 8700 -51 -1, 0.8
2 | 49,50, 51 8715 -36 -0.8 0.5
3,4 | 44, 53 8395 +3585 +8.1 5.0

4,2,1,3 Aircraft

Figure C-20 in Appendix C shows the points generated by the kinematic equations
for aircraft acceleration, using an iteration interval of five seconds; this is for acceler-
ation al sea level. The results, especially for the lower ordered speed, are quite good.
The error in the case of the higher ordered speed demonstrates one of the limitations uI the
aircraft kinematic speed equations. For higher values of thrust, the assumption that thrust
remains constant for a given throttle setting as speed changes becomes invalid. For low
altitudes, however, this is still a fairly good assumption.

Not shown are the results of the acceleration simulation at 35, 000 feet. In that
case, the curve of drag versus airspeed resembles a hyperbola only for airspeeds less than
570 knots. Therefore only accelerations to low ordered speeds were simulated. The results
of these simulations showed about 50 percent error,

4,2.2 Turn

The quantitative evaluation of the models for simulating a turn is based mainly on the
shape and size of the turning circle. The quantities advance, transfer, tactical diameter,
and time to turn 180° are compared. These quantities are compared for Cases 1 through 4
and also for two models very much like the original unmodified kinematic models, These
two have the vehicle change directly from straight line motion to a circular turn at the
instant that.the turn order is given. In the first, the turn radius is Sf /| oé |; in the second,
itis /1 Cl.

Wherever possible, tactical trial data values for these quantities are also compared.
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4.2.2.1 Submarine (Tables 4-5 and 4-6)

Submarine runs were for the S§(B)N 588 only. A full turn simulation was run for
only one turn, at 20° rudder and 10 knots entering the turn. This is shown in Figure: C-3 of
Appendix C. The following table lists advance, transfer, tactical diameter, and time to
turn 180° for various ways of simulating this maneuver. Equations 6, 8, 9, 57, 58, 59
and 60 of Appendix B were used for all the cases of the kinematic models. The other
equations used for each case are listed in the column for equations. Iteration interval is
one second, except where stated otherwise., All distances are in yards, all time in seconds.

Figures C-5, C-8 and C-7 show respectively advance, trans?>r, and tactical diameter
for nine turns, using Case 4 only. Equations 16 and 18 of Appendix B were used to find the
appropriate time delays; Equations 3-22, 3-23 and 3-17 of section 3. 4.1.2 were used to
find advance, transfer and tactical diameter. T.ese equations also required é and Sf
These were found using Equations 8 and 9 from Appendix B because the njne turns were
described in terms of rudder angle and speed entering the twrn,

Appendix C contains tabies of advance, etcetera, for Case 4 of the kinematic equa-
tions (Table C-III), the dynamic equations (Table C-II), and the actual tactical trial data
(Table C-I). Percent errors are listed in Table 4-8, using the dynamic data as a standard.
Time in thig case is time to turn 360° .

All distances are in yards, all time in seconds.

4.2,2.2 Surface Vessel (Tables 4-7, 4-8, and 4-9)

Section 3. 4. 2 describes seven surface vessel turns whose response curves appear
in Appendix C. Data generated by the dynamic equations is available for only one of these
turns, the DD-445 turn with 14. 7 rudder angle and a speed of 24 knots entering the turn.
The response curves are shown in Figure C-10. Cases 1, 3 and 4 duplicate the course
change almost exactly.

All seven graphs contain tactical trial data as well as the points generated by the
four kinematic equations. By inspection of Figures C-10, C-11, C-12, C-14, C-15, C-17
and C-18, it can be seen that the actual turning circles are different from the kinematic
turning circles. The size and direction of the difference is random, and of the same order
of magnitude as that between the dynamic and kinematic turning circles. This can be seen
from Figure C-10, where the difference between dynamic and actual turn rate is as great as
any of those between kinematic and actual turn rates.

For several of the turns, the spread between the trajectories generated by the vari-
ous kinematic models is very small. Taking Case 1 with a one-second iteration interval
as the standard, advance has percent spread shown in Table 4-7 (this includes all cases and
iteration intervals).
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TABLE 4-5. SUBMARINE TURN

Turn at 20° Rudder Angle, Speed 10 Knots Entering Turn
Tactical Time to
Case Equations |Advance| A Adv. | % A |Transfer |A Trans. | % A |Diameter|A T.D.| % A [Turn 180°} A Time|% A
Dynamic Data 285 -- -- 196 - - 380 -- -- 175 - -
1 10,11 310 + 25 9 205 +9 5 391 + 11 3 182 + 7 4
2 12,13 310 + 25 9 205 + 9 5 361 + 11 3 182 + 7 4
2(h=10)12,13 269 - 16 6 193 -3 2 382 + 2 0.5 173 -2 1
3 14,15 400 +115 40 207 +11 6 388 + 8 2 208 +33 19
4 16,17,18 409 +124 44 181 -15 g 362 - 18 5 208 +33 19
Numu\ _o@m 181 -104 36 181 -15 8 362 - 18 5 158 -17 10
wuom\ _oo_ 281 - 4 1 281 +85 43 562 +182 48 158 -17 12
factical Trial | 270 | -15 | 5| 220 +24 12| 400 | +20 5| 181 +8 3

.




TABLE 4-68. NINE SUBMARINE TURNS, CASE 4

Kin
T.T.

Kin
T.T.

T.T

Entering
Spced

5 knots
5 knots

5 knots
5 knots

5 knots
5 knots

10 knots
10 knots

10 knots
10 knots

10 knots
10 knots

20 knots
20 knots

20 knots
20 knots

20 knots
20 knots

Rudder
Angle

10r
10°

20°
20°

30°
30°

10°
10°

20°
20°

30°
30°

10°
10°

20°
20°

30°
30°

Time for 360°
A oA
+44 5
-79 9
+66 10
-26 4
+99 17
-17 3
+17 4
+19 4
+34 10
+5 2
+51 17
-8 3
+ 9 4
- 4 2
+20 12
+ 5 3
+32 22
-56 39

Advanc

A %A
+ 84 20
+37 9

+1201 42
+ 2107

+153] 69
-122| 55

+ 87 20
- 33 8

+124| 67
- 15 5

+157] 69
+ 9 4

+ 93] 22
-39 9

+132| 46
+ 57 20

+163| 69
+ 63f 27

ameter

Tactical Di
A

%A

Transfer
A | %A
-24| 8
-531 117
-171 9
+ 2 1
-11 T
-11 7
-24| 8
+42 | 13
~171 9
+21 | 11
~-12] 8
+13 9
-20 6
- 4 1
~-121 6
+27 | 14
-2 1
+18 § 13

-12
-10

-27
+ 9

-13
+45

+ 1
+33

4
8

12

0.4
12
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TABLE 4-7. SURFACE VESSEL TURNS,
DIFFERENCES IN ADVANCE

Figure Vessel RA‘::l? Ei?::i‘ri\g l;;:::gt
c-10 DD-445 14.7 24,0 knots x
c-11 DD- 445 10.0° 15. 5 knots 3
c-1i_ DD- 445 33.0° 34. 4 knots 16
c-14 DD- 892 10.0° 33. 0 knots 4
c-13 DD- 692 25.0° 15. 0 knots 3
c-17 CA-68 14.5° 15. 0 knots 26
C-18 CA-68 15.0° 32. 0 knots 19

*No data for C > 6%,

Inspection of Figure C-10 shows that if the maneuver were continued te C = 90° the
percent spread in advance would be less than one percent. Figures C-10, C-11, C-14 and
C-15, besides having a small spread, show only two discernible trajectory curves. All
generate an equally accurate simulation of these models. An evaluation of the differences
in the models is only meaningful for the maneuvers depicted in Figures/ C-12, C-17 and
C-18. Figure C-17 and C-18 show the same juxtaposition of the various cases, so Figure
C-17 will be used as a worst case,

In Tables 4-8 and 4-9, the same quantities will be compared for the maneuvers
depicted in Figures C-12 and C-17 as were compared for the turn in Figure C-3 (see section
4,2.2,1), All iteration intervals are one second unless otherwise specified. Equations
listed are from Appendix B. Equations 39, 40, 4i, 42, 57, 58, 59, and 60 were
used for all four cases. They are not listed separately for each.

All distances are in yards, all times in seconds. The columns listing time refer to
the time consvmed in turning 180°.

Case 1 uses Equations 45, 46, 47 and 48.
Case 2 uses Equations 48, 48, 50and 51.
Case 3 uses Equations 43, 52 and 53.

Case 4 uses Equations 43, 54 and 55.
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TABLE 4-8, SURFACE VESSEL TURN, DD-445

34.4 Knots, 33° Rudder Angle

Case Advance A Adv. % A Transfer A Trans % A

1 708 -- -- 41 -- --

2 820 +112 16 402 ~16 4

3 708 0 0 433 +18 4

4 718 + 10 1 390 ~-28 7
R=5/|C| 392 -316 45 392 -28 6
R= oS /| oC| 409 -299 42 409 -9 2

Tactical
Case Diameter AT.D. % A Time A Time % A
— ———e————— ——

1 805 -- -- 82 -- --

2 797 -8 1 87 + 5 6

3 821 +16 2 83 +1 1

4 781 -24 3 83 +1 1
R=5 /|| 84 -21 3 66 -16 20
R=_8/|,.Cl 818 +13 2 86 -16 20
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LaBLk -9, SURFAUE VhbddbiL LUK, Ca-Uo
7 15 Knots, 14. 5 Rudder
Casa Advance T A Adv. % A Transfer A Trans. %A

1 (h=10)
2
2 (h=10)
3

1350
1375
1340
1380
1250

1234

1498

A T.D.

-10
+15
-20
+20
-110

-126

+138

% A

0.7

0 N DN =

10

328
314
307
357
357

281

281

+ 2
-12
-19
+31
+31

-45

1168
1 (h=10) | 1173 + 5 0.4 720 -15 2
2 1075 - 93 8 727 -8 1
2 (h=10) | 1000 -168 14 717 -18 2
3 1310 +142 12 734 -1 0.1
4 1300 +132 11 831 -114 16
R=5,/|C| e17 -551 41 817 -118 16
R=5/ || 749 ~419 35 749 +14 2
Tactical

Case Diameter Time A Time %A
1 1360 -- - 326 - -

0.6
4
S

10

10

14

14
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4,2,.2.3 Aircraft

Figure C -21 in Appendix C shows course change and bank angle as a function of time.
Figure C-22 she..: displacement perpendicular to the original path versus displacement in
the original direction, called respectively transfer and advance. In constructing the equa-
tions which generated hese curves, the agssumption was made that the aircraft can and does
execute a perfectly coordinated turn. In other words, during every instant of the turn the
equation -‘f’-g‘is tan ¢ will hold. Once this is true, the resulting turn will always look the same.

4.2.3 Cllmb{Dive

4.2.3.1 Submarine

There are two curves for submarine dive maneuvers. The first, in Figure C-8 in
Appendix C, tses all four cases, It also shows tactical trial data and points generated by
the dynamic differential equations. The curves for Cases 1, 2 and 3 for dive angle are very
close to one another. There is about a ten percent difference between the kinematic and dy-
namic results. This is about the same as, or less than, the difference between the dynamic
and actual trial data results.

The curves for depth in Cases 1, 2 and 3 are very close to one another. The curve
for Case 4 is also close, after the initial time delay. All four show greater depth than the
tactical data. This reflects the fact that depth does not really equal the integral of S sin D,
but has an initial delay due to an effect similar to side-slip in a turn. The dynamic data
seems closer to the tactical data than does the kinematic, only because the dynamic dive
angle was smaller than it should have been.

Figure C-9 presents an extended dive maneuver. Only Cases 1 and 2 were presented
because of the constant variation of 6 g° As can be seen, both Cases 1 and 2, for 2.5 seconds
as well as for 1-second iteraticn intervals, follow the tactical dive angle quite closely. There
is the same phase difference in depth as in Figure C-8, but again the shape of the curve is
quite good.

The divergence of depth for both cases, when h = 2,5, is due to the small error in
final dive angle.

4.2.3.& sweraft
The equations for aircraft climb were not used to generate any response curves.

Very little can be said about computer runs of this maneuver, as there is no basis
for comparison.
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When the nature of the input, output, and accuracy of each of the four kinematic
simulation models is known, the auestion of cost still remains. In this case, cost is meas-
ured in terms of storage space anu running time. As described in section 3.8, running time
is given in terms of four basic instruction types rather than in terms of actual time in sec-
onds. These four are Transfer Operations, Addition, Multiplication, and Division. Run-
ning time and storage are given for two phases of the operation, Initialization and Each
Iteration, Storage requirements for initialization includes the space taken up by all constants
and input variables used in the maneuver.

Cases 3 and 4 usually include a test of time or of the varinbles at each iteration. In
many cases once the test has been passed it need no longe:* »e peformed. The amoui.t of
computation raquired is usually greater while the test is being run then stherwise 1a such
cases, the maximum number of instructions per iteration ia the one given below, in the
tables which follow.

The timing and storage necessary for square raot svkroutinzs .s noi given. Those
initialization routines which require a square rcot to be taken Lave that fac: indie.ated

Requirements for position updating are listed sepaiately in 3ection 4.3.3

4.3.1 Submarine
4.3.1.1 Acceleration/Deceleration

TABLE 4-10. COMPUTER REQUIREMENTS,
SUBMARINE ACCELERATION/DECELERATION

i Temporary
Transfer | Add | Multiply | Divide Total Storage Storage

Cases 1 and 2

Initialization 4 1 1 0 11 0

Each Iteraticn 5 3 3 0 13 1

b oo e = —

Casge |

Initialization 5 3 4 1 19 0

Each Iteration 3 ¢ 1 0 2 0
Case 4

Initialization 4 2 < 1 id 1

Each Iteration 3 o1 0 0 6
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4.3.1.2 Turn

TABLE 4-11. COMPUTER REQUIREMENTS, SUBMARINE TURN

Temporary
Multiply | Divide Total Storage Storage
Case 1
initialization
Each Vehicle 1
*Each Maneuver 2
Each Iteration
S 1
¢ 1
C 0
Case 2
Initialization
Each Vehicle 1
*kach Maneuver 2
Each Iteration
S 1
¢ 1
C 0
Case 3
Initialization ’
Each Vehicle 4 9 6 3 35 1
*Each Maneuver 24 29 17 5 80 6
Each Iteration
S 3 6 0 0 J 9 0
¢ 3 6 0 o | 9 0
C 1 3 1 0 1l 5 0
Case 4
Initialization
Each Vehicle 4 g 6 3 35 1
»Each Maneuver 22 25 15 z 89 6
Each Iteration
S 2 4 0 0 6 0
¢ 2 4 0 o 6 0
C 1 1 0 0 3 0

*This does not include square root subroutine,

o e
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TABLE 4-12, COMPUTER RIOQUIREMENTS, SUBMARINE D1vi

Total Storage

Case 1

Initialization 8 9 1 0 34 1

Each Ieration 3 K 3 0 52 6
Case 2

Initialization 10 9 1 1 41 1

Each Iteration 3 1 2 0 50 5
Case 3

Initialization 5 7 3 2 28 2

Each Iteration 6 3 1 0 44 5
Case 4

Initialization

*Do, ﬁo ¥ 0 31 9 5 6 81 12

**Do, Do =0 13 3 4 3 30 4 _

Each Iteration 4 2 1 0 i 6 0

#This doeg not include the use of a cosine subroutine three times and a sine subroutine

twice,

«+This does not include the use of one sine subroutine and one cosine subroutine.

4.3.2 Surface Vessel

4.3.2.1 Acceleration/Deceleration

TABLE 4-13. COMPUTER REQUIREMENTS,
SURFACE VESSEL ACCELERATION/DECELERATION

Temporary
Transfer | Add | Multiply| Divide Total Storage Storage
= -

Cases 1 & 2

Initialization 3 0 3 0 10 1

Each teration 2 3 2 0 8 0
Case 3§

Initialization 1¢ 4 4 1 25 2

Each Iteration 4 2 i 0 8 0
Case 4

Initialization 5 2 4 1 17 2

Each Iteration 2 1 0 0 5 0
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TABLE 4-14. COMPUTER REQUIREMENTS, SURFACE VESSEL TURN

Temporary
Transfer | Add | Multiply | Divide Total Storage Storage
Case 1
Initialization
Each 8hip 12 13 14 1 62 1
Fach Maneuver 7 7 1 0 24 0
fiach Iteration
C 10 17 11 0 39 2
v 2 6 5 0 13 1
Case 2
Initialization
Each Ship 12 12 14 1 il 53 1
*Each Maneuver 13 13 10 2 51 3
Each Iteration I
C 11 19 10 0 40 2
\' 2 ] 5 0 13 1
Case 3
Initialization
Each Ship 9 15 10 3 50 2
x«Each Maneuver 11 13 15 2 | 51 2
+»+Each Iteration
C 10 14 1 0 31 2
\'4 3 4 0 0 x 12 0
Case 4
Initialization
Each Ship 9 15 9 3 48 ?
*Each Maneuver 13 16 13 3 69 3
KEa :h Iteration !
c 4 4 0 0 5 0 |
\'J 2 3 0 0 5 0

*Does not include square roo:. subroutine.

##The firat time én = oé and the first time Vn = V’f, ithere are two more transfer operations
aind two more addition operations.
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4.3.3 Position Updating
When both X and Y are updated, the requirements are:

TABLE 4-15. COMPUTER REQUIREMENTS, POSITION UPDATING
|

Multiply ! Divide

Temporary
Total Storage

X, Y
Initialization 4 4 0 0 10 2
Each Iteration 11 15 9 0 40 5
When only one is updated, as may occur in dive maneuvers, they are:
Each Rteration 9 13 10 0 ][ 38 5

4.3.4 Aircraft

The figures for aircraft computer requirements are based on the storage and time
used by the Sylvania 9400 General Purpose digital computer. The requirements for the al-
gorithms used to derive the inputs to the vehicle simulator were computed for the aireraft
turn and climb. The entire program for these maneuvers is shown in the flow charts of
Appendix D.

4.3.4.1 Acceleration

Initialization with respect to altitude, oS, and h:
Storage, 12 locations
Time, 0. 208 milliseconds

Each loop:
Storage, 23 locations
Time, 0.456 milliseconds

4.3.4.2 Coordinated Turn

Approximate storage and timing requirements
Initialization for o¢ and (AC),:
Time, 1.0 milliseconds

Each loop while rolling into bank angle:
Time, 2.3 milliseconds

Each loop at constant bank angle:
Time, 2.2 milliseconds



In'tialization loop to roll out of bank angle:
Time, 3.2 milliseconds

Each loop while rolling out of bank angle:
Time, 3.0 milliseconds

Total Storage: 400 locations

Computation of ground coordinates x and y required 1.9 milliseconds in each loop.

4.3.4.3 Climb

altitude, and pitch angle.

This involves approximate storage and timing requirements for a program forereach-
ing ordered speed and either ordered altitude or ordered heading, starting with initial speed,
There are two alternative forms of this program, using simple

or more complicated equations. Requirements are given for each form,

These requirements correspond to the program whose flow chart is in Appendix D,
re D-2, The program wag never run; these figures are only estimates.

Simple equations:
Storage, 285 locations

Initialization for h, o¥ Vo 90, initial altitude, and g
Time, 1.3 milliseconds

Each loop:
Time, 2.6 milliseconds

Initialization for h, oV Vo O o initial altitude, and ordered altitude:
Time, 1.6 milliseconds

Each loop:

Time, 2.6 milliseconds

More complete equations:
Storage, 309 l~rations

Initialization for h, oV Vo 8o initial altitude, and o
Time, 1.5 milliseconds

Each loop:
Time, 2.8 milliseconds

Initialization for h, oV Vo O initial altitude, and ordered altitude:

Time, 1.8 milliseconds

Each loop:
Time, 2.9 milliseconds
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SECTION V
DISCUSSION OF RESULTS

5.1 EVALUATION OF ACCURACY

Section 4. 2 contains tables listing the resuits of the trial runs of the kinematic equa-
tions. These tables correspond to the response curves in Appendix C, and give percent error
for each kinematic model compared against a standard. In some cases the standard is the
response curve generated by the simplified dynamic equations listed in sections 3. 3.1 and
3.3.2. Inother cases it is the response curve generated by the Case 1 kinematic equation,
using a one-second iteration interval. For aircraft acceleration, the standard is approved
Performance Data (Reference 3).

The percent errors are discussed below. Models are called "'very goed, " ''good, "
"fair," "poor,' or '""unacceptable' depending on their percent error. Since the simplified
dynamic data was used as a basis, its accuracy must be taken into account when discussing
the accuracy of the other models.

Evaluation is based on direction of error as well as size, although no rule is formu-
lated for doirg this. Simulation models are called "very good" if their percent errors are
all less than 7 percent, ""good" if they are all between 5 percent and 17 percent. They are
called '*fair" if they are between 14 percent and 27 percent, and '*poor' if they are all be-
tween 24 percent and 50 percent. Models with larger error percentages are unacceptable.
The overlap is to allow for a certain amount of qualitative evaluation.

5.1.1 Acceleration/Decelerntion

Cases | and 2 are very good for both submarine and surface vessels.
Case 3 varies. For thke submarine, it is very good for acceleration and speed
loss in the turn, but poor for deceleration. For the-surface vessel, it is very
good for speed loss in a turn as longas V_ - V_is small. When Vo - V_grows,
Case 3 gives too small a distance. The error {s small, but since it is élways
biased in the same direction, Case 3 will be called ''good' rather than 'very

No examples are shown for surface vessel acceleration/deceleration. On the basis
of the results shown for speed loss in a turn, and the arguments below in section 5,3.2.1, it
is assumed that Case 3 for this case will give very good results.

The kinematic model for aircraft acceleration can be used with confidence oniy at
speeds between 250 knots and 600 knots, and only at altitudes below 15,000 feet. To use
the acceleration formulas at higher altitudes entails greatex limitations on the speeds in
order to have any accuracy at all,. In order to reduce errore to the orderof 10 percent
rather than 50 percent, it is necessary to have a more complicated formula or a table look
up for b and ¢. (See section A.3.1 of Appendix A.)



5.1.2 Turn

5.1.2.1 Submarine

Table 4-5 in section 4.2, 2.1 shows the percent errors in advance, transfer,
tactical diameter, and time to turn 180 degrees for the various cases of the sub-
marine kinematic vquations. For each case, there are four separate percent
errors, The greatest error is in advance; except for advance, Cases !, and 2 are
very good while Cases 3 and 4 are good. This statement is true despite the high
error in time-~to-turn for Cases 3 and 4, since this error and the error in advance
are both due to the too high initial time delay. This is further confirmed by the
accuracy of Case 2, using the ten-second iteration interval. In that run, the two-
secons (T/2) initial time delay was neglected.

Table 4-6 reinforces this analysis even further. TIransfer and tactical dia-
meter are good for nine turns using Case 4. Advance is poor, and time-to-turn is
fair. Therefore, until the time delay is adjusted, Cases 3 and 4 will be called
"poor' and Cases 2 and | ''good. "

The two radii referred to in Table 4-5 are examples of the original kinematic
methods, provided as an alternative to Case 4. The circle with S=5; gives betier
overall results. than does Case 4. This shows that the time delays in Cases 3 and 4
are so erroneous that no time delay at all would give better results.

Table 4~6 compares advance, transfer, tactical diameter, and time to turn
360 degrees for nine submarine turns for the kinematic equations and the tactical
trial data; 4 and % dare with respect to the dynamic equations. Using the dynamic
data as a standard, the difference between the dynamic and tactical trial data yields
a percent error as high as 55 percent in one instance. Of the thirty-six pairs of
values compared, however, two show errors greater than 30 percent, three show
errors greater than 20 percent and eleven had errors greater than 10 percent.
Furthermore, these errors are not all in the same direction, but are rather evenly
divided between positive and negative errors. The data analyzed in Table 4-6
appears in Tebles C-I, C-II and C-III in Appendix C.

5,1.2.2 Surface Vessel

Tables 4-8 and 4-9 show percent error figures for the two worst cases of
surface vessel turn. These were determined by inspection of the results sbown in
Table 4-7. (Refer to discussion on page 4-10). Case |, with a one-second itera-
tion interval, is used #s a standard on the basis of its accuracy in Figure C-10
of Appendix C. From the figures in the cited tables, Cases 2, 3, and 4 can all be
called good; they all give better results than the circles. When Case: | is used
with a 10-second iteration interval, it gives very good results. Case 2 with a 10-
second iteration rate produces results as good as Case 3.

5.l.2.3 Aircraft

The kinematic equation for an aircraft turn is accurate as long as the assump-
tion remains valid that the turn is perfectly coordinated.
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5.1.3 Dive/Climb

There are no tables for the accuracy of the kinematic equations for submarine dive.
Inspection of Figures C-8 and C-9 shows that all four cases give good results. Only one of
these figures shows Cases 3 and 4, however, and this is a very special sort of maneuver,
The inflexibility of Cases 3 and 4 will sometimes lead to results that are only fair; at other
times the results will be good.

There was ncthing available with which to compare the kinematic model for aircraft
climb,

5.1.4 Summary of Evaluation

The foliowing tables summarize the evaluiation of the kinematic models in section
5.1, the evaluations assuming an iteration interval of one second. Not enough was said about
the aircraft to warrant further mention here. The explanation of the categories is in the in-
troductory paragraphs of section 5.1. They correspond to the following percent errors.

very good 0% - 1%
good 5% - 1%
fair 14% - 27%
poor 24% - 50%

TABLE 5-1. EVALUATION OF SUBMARINE KINEMATIC \MODELS

Maneuver Case 1 Case 2 Case 3 Case 4
“Acceleration | verygood | verygood | verygosd | verygeod |
Deceleration very good very good poor poor
Speed Loss in Turn very good very good very good very good
Turn good good poor poor
Dive good good good/fair fair

TABLE 5-2. EVALUATION OF SURFACE VESSEL

KINEMATIC MODELS

Maneuver Case 1 Case 2 Case 3 Case 4
Acceleration/ very good very good very good very good
Deceleration
Speed Loss in Turn very good very good good good
Turn very good good good good
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5.2 ITERATION INTERVAL

The equations under discussion are all constructed for solution on a digital computer.
The kinematic equations are almost all difference equations, and the dynamic equations must
be solved uaing difference equations to update the variables The size of the iteration inter-
vals involved in these difference equations can have a considerable effect upon the accuracy
of the simulation. '

The dynamic equations used as a basis for the derivation of the submarine and surface
vessel kinematic equations are solved on the digital computer by using open, multi-step dif-
ference equations. One property of this solution technique is that, for each set of differential
equations, there is an upper limit for the values which can be used for h, the iteration in-
terval. If h exceeds this maximum, the solution begins to diverge.

Kinematic equations respond somewhat differently to the size of h. In Cases 1and
2, the validity of the exponential expansion depends on the size of h. The error can grow
quite large, but never diverge. In Cases 3 and 4, the error has an upper bound which grows
linearly with h.

5.2.1 Cases 1and 2

The relult"; displayed in Appendix C provide insufficient information for a systematic
analysis of the effects of increasing the size of the iteration interval. Iteration intervals
larger than one second were used for several maneuvers with very good results. From these
results we can conclude that there is some flexibility with respect to iteration interval, but
we cannot say how much,

Appendix B discusses the restrictions associated with each kinematic model. These
restrictions consist of upper bounds on the size of the product of speed and iteration interval,
For those submarine maneuvers which were run with h> 1, Sh was always less than the ap-
propriate upper limit. In the case of the surface vessel, however, Vh was always greater
than this upper limit, In the DD-445 runs, Vh is 2 to 3 timec the upper limit; in the CA-68
runs it is 15 to 30 percent higher. The good results in all th2se cases indicate that there is
some room for re-examination of the expressed upper bounds.

5.2.2 Case 4

The larger values of h used in the test runs in Appendix C were used only for Cases 1
and 2. For Cases 3 and 4 there is no upper limit on the size of the iteration interval. In-
stead of the error diverging as the iteration interval exceeds some fixed value, the error is
directly proportional to the size of the iteration interval. Consider, for example, Case 4
used to find C where C_ = 0.



At time t = 3h, the true value of C is the area under the lines connecting the points
(0,0), (T,,0), (T, ,C)and (3h, €). This area is oé(ah = Tp)e

1 | i
TC 2h -~ 3h t

<
= o

Figure 5-1. Case 4; Error as Functionof h

Sampling every h seconds, C, = C__ ls ] (C + Cn 1), where C, = C at time t = nh.
When t = 3h, Ca -2h ¢. The difference between Casand the true value at t = 3h is

€ = OC(— h-T ) Since h <T < 2h, the error has upper and lower bounds gk that

Ch Ch
- n§_ <€ <—-— Thus |€] < Ch/z As h grows, the error in C is always less than Ch/

5.2.3 Case 3

Figure 5-2, Case 3; Error as Functionof h

Tre choice of 2T for the time delay to reach oC is due to the delay
for Case 3 being twice that for Case 4.



The error for Case 3 is even smaller. The true value of C att = nh is the area under

. T,
the C curve, C C(T +nh - 2T ) = C(nh T ) Sampling every h seconds,
oCln - Dh é(n 1)%n?
C nl. z(C +Cn 1) Attlmet-(n l)h Cnl —"w——' Cn_l '—'—w——

At time t = nh,

&n - )2 (n - 1) &h
Cn,» & T, +3 "T‘L'rc )

The difference is € = oé [(n - %)h - T, - -4-1% ((n -1)+(n- 1)2)] . In this example,

(n - 1)h <2T, <nh. When 2T equals (n - 1)h or nh, € = 0. The maximum value for l€] 18

at 2Tc = h‘\/ni - n. That maximum is Ch(n 1 n“ - n ) which equals oéh/z whenn = ],

0.086 Ch when n = 2, 0.051 Ch when n = 3, and continues to decrease as n grows larger.
The upper bound on € is easier to see when expressed in terms of T . Since the

maximum is at 2T, = h 2., , N = %(1 + 4fi + 16T, /hz‘) and the maximum is

( 2"
2 h -
( 21,)" + 2'rc)oc. If 2T, <h/4, thenn=1 4ince (n-1)he2T, <nh. The

maximum is oé/z, If n>l, than h® 1/4 and the radical can be expanded.
. . 4(2To)?

This gives 3 <min(och ) oCh2> .
2 16T

In general, for any variable y the error in y is always less than |yf o\h/ 2 for
Cru:4and |yf y |h/20 for Case 3 (assuming n = 3).
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5.¢ SOURCES OF ERROR

Appendix A contains the derivations of the kinematic equations. There are many
places in these derivations where simplifying assumptions or approximations are made.
The justification for these methods lies, for the most part, in their effectiveness. Not all
the results were equally good, however. In the following paragraphs, those parts of the
derivations will be pointed out where improvement is needed.

The discussions of the submarine or surface vessel are concerned with the integral
used to derive the equations for Cases 3 and 4 (equations 3-1 and 3-2), since Cases 1 and 2
were always either good or very good (Tables 5-1 and §-2). The discuesion of the aircraft
model is more general.

5.3.1 Submarine
5.3.1.1 Deceleration

The evaluation of the integral of S for the instructor's control appears
in section A, 1.2.2 of Appendix A, The expression for m_, the slope of the S
versus time curve in the instructor control equation, is shown in equation 35
in Appendix A. This equation is derived from the expression

1+A(8-8)\|1!
lﬂa = %(os - 80)2 K;(Tl:l_a) log (1 + W) (5-1)

Equation 35 is found from this equation by approximating the logarithm by the first term of
its series expansion.

) (1+Ag)(S-8)\ (1+A5)(;8-8)
L.e., log|l +—g7y . Aa)sf')” RE! . A3)SZ (5-2)

The validity of equation 5-2 depends very much on the size of its right-hand member. Since
1+ A3 = 0. 25, an acceleration from S, to 0S where 5 < oS will be better simulated by equa-
tion 5-1 thana deceleration where 0S < SO. Consider, as an example, the maneuver shown
in Figure C-2 in Appendix C. That is a deceleration from 20 knots to 2 knots. Since

(1+Ag)(,8 - S,) .
Ag = -0.15, —g T K )5, - ~0-643 but log(1 - 0.643) = -1.030.

Percent error = Wg = 38%

whereas, for an acceleration from 2 knots to 20 knots,

(1 +Ag)(S - §)
S+ (T+Ays, -0-220 and log(1 + 0.220) = 0.189.
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Percent error = —-'—228—1-5%—122 11%

which is a considerable improvement.

The foregoing discussion indicates the limitationa of Cases 3 and 4 of the speed
equations, especially for deceleration. Improvement could be effected by using a better
approximation for the logarithm function. In the above example, the use of -1. 03 instead
of -0.643 in the deceleration maneuver results in s distance covered of 2,638 yards in 1200
seconds for a percent error of 0.65 (Table 4-2).

5.3.1.2 Advance

The results listed in Tables 4-5 and 4-8 in section 4. 2. 2, . demonstrate the inade-
quacy of Cases 3 and 4 of the kinematic formulation for submarine turn. The error is in
the formula for Tes the time delay for ¢. By comparing the results using a circle with
R=8,/| C| and no time delay with Cases 3 and 4 in Table 4-5, we see that the original
kinemntic formulas are better than those uging the present derived value of T, as time delay.

This erzor is not due to the approximation of the exponential. The discussion leading
up to equation 46 in Appendix A contains the equaticn

1 Agodriér ) 1 AgByry8 Adrisl
fen{() om0 (34 i 0w

c

This equation is the sole approximation of the exponential used in the derivation of Tc‘ A
check of this equation, for the SS(B)N5988 entering a 20-degrees rudder angle turn at 10 knots
yields -0.084 for the difference in the exponentials and -0. 081 for the approximation. This
ie well within the range of desired accuracy, whereas the error in advance for that same
maneuvar was 87 percent.

The source o. tlie error is hidden somewhere else in the derivation and has not yet
been {found,

5.3.2 Surface Vessel
5.3.2.1 Spead Loss in Turn

Cases 3 and 4 of the kinematic model for spead loss in a submarine turn generate
too rapid a drop in speed. This is due to an approximation made in the evaluation of the
integral (section A. 2 2. 2 2, Appendix A). Equailon 137, used in that evaluation, is
V= a7asoC2 + as(V -V ) The texm a.,agof: is a constant used to approximate a..l('a.ey a)

Actually a ¢ is an upper bound for (azy - a) , Which the latter approaches asymptoticall
8o 8 pt y.



ay is negative and as(V2 - Vg) is positive but smaller in absolute value than

~a7a“¢z As V decreases, aa(vz 2) Jrows and V goes to zero. It is the °¢2 term then,
which causes the negative value of V.

Since this has larger absolute value than would be the case if (uoy a) were used,
-V is too large. Therefore, the surface vessel slows down too fast.

No other constant term could be used in place of ay, &2 without changing the final
value of V. The only alternative is to use the Case 3 equation for C letting y = = C and ignor-
ing a. This should improve the output somewhat, provided the resulting integral can be
evaluated.

5.3.2.2 Turn, Case 2

The improvement of the equation for Case 2 of the surface vessel turn was accidental
Fesponse curves were generated using equations 121 and 122 of Appendix A. In almost ~1i
cuses, C increased too quickly. For one surface vessgel, it did not increase quickly enough.
It was evident that the equations used for Case 1 gave a very good fit, however, sc the Case
2 equations were changed in such a way as to resemble the Case 1 equations more closely.
This entailed replacing C by Vn i 0C/Vf, which is equal to Vn_leé. In the response curves
generated by these reviled equations, C increased even faster than before, as was expected.
It was noticed, however, that by changing the initial time delay from T/2 to T, the error
was considerably diminisiied. This latter form was therefore adopted.

5.3.3 Aircraft
5.3.3.1 Speed

A statement is made in section 5. ° 1 regarding the loss of accuracy with increasing
altitude of the kinematic model for the spced of an aircraft. This is due to two things. The
first is the inaccuracy of the linear approximations of b and c as functions of altitude (equa-
iions 156 and 157 of Appendix A, and the table of b and ¢ values preceding them). The sec-
ond is the deviation from the hyperbolic shape that the cuzrve of thrust versus velocity under
goes at high altitudes. This can be seen in the curves in Reference 2. The two effects
combine to give errors near 50 percent. Despite this very large error, the model is still
acceptable. This is because the model is very simple and the curves being fitted are ex-
tremely complex.

5.3.3.2 Climb

Of the two formulas used in the kinematic model for aircraft climb, the formula for
air speed as a function of attitude angle is the more sensitive one. For higher airspeeds o:
higher altitudes the linear approximationnolongex holds. The form of the function would the



be a series of conrected line segments with a table look-up necessary to find the end points
of the line segments as a function of level-flight air speed and altitude.

The quantity k which appears in the formula for heading as a function of attitude angle
is proportional to the density of the air, p, which in turn is a function of altitude. This de-
pendence can be approximated by either an exponential in altitude or by a series of line seg-
ments with a table look-up. '

5.4 COMPUTER LOAD

Section 4.3 contains tables giving timing and storage requirements for the various
kinematic models. An examination of the timing requirements shows that there are two
areas that need further explanation. Each of the kinematic models requires some initializa-
tion computation as well as the computation at each iteration. In actual use, the time per
iteratinn allotted to each maneuver model has to be very nearly constant. The high initiali-
zation time of most models might raise this constant running time to «llow time for initiali-
zation whenever it is necessary. This possibility is discussed in section 5. 4. 1.

Another area that needs clarification is the comparative time requirements for the
four cases of each maneuver. The tables in section 4.3 give time requirements in terms of
four basic instructions. This kind of tabulation does not lend itself to easy comparisons.
Section 5. 4. 2 includes comparisons between the models based on typical fixed- and floating-
point instruction times.

5.4.1 Peak Load at Initialization

If limited computation time is availzble for each maneuver, the time required for
initialization may prove a burden. There are several ways of compensating for this peak at
initialization.

5.4.1.1 Case l

In the submarine turn and submarine dive maneuvers, the value of the control plane
angle appearing in the equation for Cn and Dn respectively is the value at time h(n - 1). This
means that if the control plane angle is zero at time t = 0, no change will occur in the variabl.
antil t = 2h. This leaves two iterations for initialization.

This situation is also true to some extent for the surface vessel turn. There, the
only term that has any effect att = h is Vn_]ha5r261 (see equation 468, Appendix B). This
leaves considerable time for initializaticn at the zeroth and first iteration.
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5.4.1.2 Cases 2 and 4

When using Case 2 or Case 4 (Case 3 or Case 4 in a submarine dive maneuver), ther
is an initial time delay. This time delay is always on the order of several seconds. Counti
can start with the initial order, with complete confidence that initialization will be completer
before the time delay is used up.

5.4.1.3 Case 3

A certain amount of running time per iteration in Case 3 is used to test whether or
not the variable has reached steady-state value. In the arithmetic portion of each iteratiun,
one addition is used to update the variable by thc coastant increment, while two additions ans
a multiplication are used to update the integral of the variable, if necessary.

The test and most of the arithmatic can be eliminated at the first iteration. The test
is unnecessary at the first iteration and the constant difference itself is the first value of the
variable, while half of it is the first value of the integral of thc¢ variable. Thus, by perform
ing half the initialization at nh = 0 and the other hzlf at nh = h, the peak at initialization can
be considerably reduced for Case 3.

5.4.1.4 Turn Maneuvers

Forturn maneuvers in general, where the position of the vehicle has to be updated,
there is another place where time can be saved for initialization. A glance at the curves
of x versus y for turn maneuvers shows that several seconds elapse before y becomes notici
ably differsnt from zero. The time saved by neglecting to update y during the first few iter
tions can be used for initialization.

5.4.2 Comparative Time Requirements

The following ratios have been selected as typical of modern high-speed digital
computers.

Transfer Add Multiply Divide
Fixed Point 1 1 2 5
Floating Point 1 4 3 ]
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5.4.2.1 Submarine

TABLE 5-3. COMPARISON OF TIME REQUIREMENTS: SUBMARINE

Acceleration/Deceleration
Initialization

Each Iteration

Turn
Initialization
Each Vehicle
*Each Maneuver
Each Iteration
S
¢
c
Total

Dive
sxInitialization
e Each Iterntion

*Numbers do not include square root subroutine used to find oé in Case 1 and 8¢ in Cases

2, 3, and 4.

“x*Numbers are for the general case where D0 and bo are not zero; they do not include two
sine routines and three cosine subroutines.

w*Numbers are for computation of D. To update Z, add 42 fixed uniis and 81 floating units
to time per iteration of Cases 1,2 and 3 and 3 fixed units and 6 floating units to the itera-

tion time of Case 4.

Summing up, the ratios for time per iteration are roughly as follows:

Fixed
A/D 4:4:2:1
Turn 3:3:2:1
Dive 4:4:3:2
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Floating
4:4:2:1 (Case 1, Case 2, Case 3, Case 4)
4:3:3:2
2:2:1:1




These ratios are for the outputs speed, course angle and dive angle.

add the following for Cases 1, 2, and 3.
A/D : 5fixed, 12 floating
Turn : 8 fixed, 20 floatl:.g for initialization
44 fixed, 98 floating each iteration
Dive : 42 fixed, 91 floating
For Case 4, A/D and Dive are different.
A/D : 3fixed, 6 floating
Dive : 3 fixed, 6 floating

The new ratios are

Fixed Floating
A/D 3:3:2:1 3:3:2:1
Turn 7:7:8:5 9:8:8:17
Dive : 5:5:5:1 6:6:5:1

5.4.2.2 Surface Vessel

To get position,

TABLE 5-4. COMPARISON OF TIME REQUIREMENTS, SURFACE VESSEL

Acceleration/Deceleration
Initialization
Each Iteration

Turn
Initialization
Each Ship
*Each Maneuver
Each Iteration
C
v
Total

» Numbers do not include square root subroutine used to find Vf.
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The ratios for time per iteration for speed and course angle are

Fixed Floating ’
A/D 3 S:3:1 4:4:3:1
Turn 10:10:85: 2 5:8:3:1

After adding § fixed units and 12 floating units to Cases 1, 2, and 8 of A/D, 3 fixed
units and 6 floating units to Case 4 of A/D and 44 fixed units and 98 floating units to all cases
of turn, the ratios for position are roughly as follows:

Fixed Floating
A/D 2: 2:2:1 8:8:7:3
Turn 10:10:7:8 4:4:3:2
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SECTION VI
CONCLUSIONS

8.1 EXTENT OF DEVELOPMENT OF A THIRD CATEGORY OF VEHICLE
SIMULATION MODEIS

The third category of vehicle simulation models is defined in Section II as falling
between the two that already exist, with respect to both fidelity and computer requirements.
The two already existing are the dynamic and kinematic models defined in sections 1.1. 1
and 1. 1.2, By comparing the new kinematic equations in Appendix B with the dynamic
equations in section 3. 3, it can be seen that the new models fall between these two, with
respect to computer requirements. Each of the dynamic equations in section 3. 3 must be
used with a numerical integration formula, at each iteration; the resulting running time per
iteration is about 50 percent more than that of Case 1 of the corresponding kinematic model.

The dynamic equations for aircraft motion are not shown, but in their simplest form
they are much more complicated than the Appendix B kinematic equations for the aircraft.

It is not required that the new kinematic models place more of a burden cn the
computer than the old kinematic models, nor need they be less accurate than the simple
dynamic models. It is sufficient that they burden the computer less than do the simple
dynamic models, while being more accurate than the kinematic models now in use. As can
be seen from Tables 4-5, 4-8 and 4-9, they are indeed more accurate than the old kinematic
models. In Table 4-5, the old kinematic formula for a turn is more accurate than cases 3
and 4, but less accurate than cases 1 and 2. Similarly, although Cases 3 and 4 of the sub-
marine deceleration equations are inaccurate, Cases 1 and 2 are more accurate than the
old kinematic equations (Table 4-2).

The advantage of the new kinematic models over the existing simulation methods is
further enhanced by the flexibility of iteration interval. This is especially true in those
cases where Case 3 gives good results (see Tables 5-1 and 5-2). There, the error grows
very slowly as a linear function of h (see section 5. 2. 2).

The kinematic model for the aircraftisalso animprovement, and better than existing tar-
get simwators. Its simplicity means that, with fewer calculations than required by existing
target simulators, it will incorporate more aircraft characteristics. In addition to time
delays, it supplies the instantaneous angular orientation of the aircraft necessary for
simulating radar profiles. It also gives the relation at any instant between air speed, headir
and attitude, thereby providing the observer with an indication of the type of aircraft
involved.

Furthermore, these important aspects of target simulation are preserved as the
iteration interval grows from one-tenth of a second to two or three seconds, a 10- to 50-
fold increase over the iteration interval necessary for even gross dynamic aircraft simulatio:



6. 2 ADVANTAGEOUS SIMULATION SITUATIONS FOR MODELS IN THIS CATEGORY

Section 3. 1. 2 contains a description of the simulation circumstance normally
associated with each of the four kinematic models developed for the submarine and surface
vessel. The names Operator Control, Command Control, Instructor Control and Program
Control are derived from these descriptions. A correspondence is established between
use and model, based on the form of input and output and the expected accuracy and com-
puter requirements of each model.

In Section IV, the elements of this basis are re-examined. In section 4.1 it is
pointed out that, except in the case of the submarine dive, the input for any model can be
adapted to any other model, Furthermore, if position is the variable of primary interest,
the outputs from Cases 1, 2 and 3 are very similar. Also, the actual accuracies and
computer requirements of each model, listed in sections 4.2 and 4. 3, are somewhat differe.
from the expected values.

The correspondence between use and model is therefore revised, based on the actual
results in Section IV and the discussion of these results in Section V.

6. 2.1 Acceleration/Deceleration

For the acceleration/deceleration maneuver, the original correspondence between
control situations and equations is a good one. Operator and command control are the own-
ship motion situations. They both use the Case 1 equation, which is the same as the Case 2
equation for this maneuver. The Case 3 equation is not good for own-ship motion because
of the abrupt, unrealistic change in acceleration when o318 reached.

Target motion is simulated using Case 3 or 4 becaus- f the saving in computer
time. Case 4 is used only for the program control situation wecause abrupt velocity change
in the output is very eviuent and toc unrealistic for any other situation.

6.2, 1.1 Submarine

There are three different computer burdens corresponding to three different shapes of the
output from the three submarine acceleration/deceleration models. Therefore the original cor-
respondence between control situations and case numbersis retained. Thisisthe case even for
the deceleration, where cases 3 and 4 give results that are poor but still adequate for target
simulation,

8.2. 1,2 Surface Vessel

The difference in time requirements between Cases 1 and 3 is not enough to justify
the use of Case 3; the exception .to this is when the simulation system calis for the use of



a large iteration interval. Insuchacase it would be advantageous to use Case 3 because
Cases 1 and 2 may be liable to error or instability as h increases. Otherwise, Case 1 can
be used for all situations where the velocity change may not be abrupt, Case 4 for all cases
where it may; accuracy is very good in either case.

6.2, 1.3 Aircraft

The aircraft acceleration simulation model can be used at low speeds and low
altitudes as part of an own-ship model. At higher apeeds and altitudes, although too in-
accurate for an own-ship simulator, the short running time and flexibility of iteration
interval make it an acceptable part of a target simulator.

6. 2.2 Turn

In the submarine turn maneuver, the differences in the form of the output are least
apparent. This is especially true for Cases 1, 2 and 3, whether used as an own-ship or
target simulator. Case 4 has a response that could be detected as different in an own-ship
simulator, but not in a target simulator where the only output is position as a function of
time. In the surface vessel turn maneuver, the differences in output are more apparent.

6.2.2.1 Submarine

There is little relative difference between the computer running times for Cases 1,
2 and 3, especially when the time to update position is included. Furthermore, Case 3 as it
now stands is very inaccurate. Therefore, Case 1 should be used fur the operator control
situation, Case 2 for the command and instructor control situation, and Case 4 for the
program control situation., In Case 4, instead of using the formula for Tc shown in Appendi.
B, Tc should be set to T, the time for the rudder to move.

In the event that a formula car be devisad giving a better value for T - then Casge 3
should be used for the command control, instructor control, and program control situations
doubling the size of the iteration interval for the program control situation.

6. 2. 2.2 Surface Vessel

For the surface vessel, Case 3 was more consistently accurate than Case 2. There-
fore Case 1 should be used for the operator control situation, Case 3 for the tommand and
instructor control situations, and Case 4 for the program control situation. This rule
need not be rigidly followed. If the operator control maneuvers are to be simple turns at a
constant rudder setting, then Case 3 can be used instead of Case 1. If a large iteration
interval is more desirable than the savings per iteration using Case 4, then Case 3 can be
used for the program control situation.



6. 2.2.3 Aircraft

The aircraft turn model can be used in any situation where there is no need to
simulate the deviations from a coordinated turn. This means it can be used in most target
and a few own-ship simulators.

6. 2.3 Dive/Climb

6. 2.3.1 Submarine Dive

Cases 1 and 2 produce results that are very similar and require approximately the
same computation time. Since Case 1 is more flexible and easier to use, it should be used
whenever the stern plane angle is known. In those maneuvers given in terms of of) monitore:
by time or oD' Case 3 gives results almost as good as Case 2, is easier to use, and takes
less time. Case 4 should be used whenever oD is constant for any sizable duration and when
the abrupt change in dive angle will not have any undesirable results. The advantage of
Case 4 is its very small running time per iteration.

Thus, Case 1 is used for operator control, Case 3 for command and instructor
control, and Case 4 for program control or those instructor control situations where the
submarine can move as a point rather than a rigid body and when time is very important.

6.2.3.2 Aircraft Climb

The aircraft climb model can be used in a simple model for an aircraft as a target.
Although not very realistic during transitional phases, it gives a good representation of the
rigid-body orientation of the aircraft when v, 18 fixed.



SECTION VII
RECOMMENDATIONS

Recommendations are made concerning both the use and the improvement of the
kinematic vehicle simulation equations developed in this report.

These equations comprise a third category of vehicle simulation equations, falling
between the two that already exist with respect to both fidelity and computer requirements.
There are various types of simulation situations where it will be advantageous to use models
in this category. These situations, described in section 6.2, use the concepts of operator
control, command control, instructor control, and program control described in section
3.1.2,

Recommendations are made for two kinds of improvements of the models developed
in this report. In the first place, several mathematical derivations need re-examination.
Secondly, the values of vehicle constants in the submarine and surface vessel equations
must be re-evaluated.

Several of the kinematic equations give results which are inconsistent with the high
accuracy of the others. Time delays are in error for two of the submarine models. The
time delay for speed in a deceleration maneuver is too small; the time delay for turn rate
in a turn maneuver is too large. An error in time delay affects Cases 3 and 4. The time
delay for speed loss in a surface vessel turn is somewhat smaller than it should be. Finally,
improvement can be made in the kinematic models for aircraft acceleration and for aircraft
climb. Recommendations for improving all of these models are discussed in detail in sectio
5.3. In section 3.5, it is shown that several values of the submarine constants in Reference
1 are erroneous. Furthermore, statements are made in Reference 1 to the effect that the
values of the constants are not functions of the hydrodynamic partial derivatives used in the
more compiete dynamic equations. Instead, they are said to depend on the structure of the
mathematical model as well as on the vehicle being simulated. Specific reference was made
to the fact that, if a different integration technique were used to update the dynamic equa-
tions or if the dynamic equations were solved in a different order, then the values of these
constants would very likely be different.

In the derivation of kinematic equations from dynamic equations, many changes are
made from the original numerical approach. This should cause significant changes in the
values of the constants. The constants, therefore, should be re-evaluated directly from the
tactical data.

. It is recommended, therefore, that methods be devzloped for direct evaluation of the
constants of the vehicle' s motion. This will be useful for improving the models developed {
this report, and will provide 2 uniform and reliable method of constructing kinematic model:
for any submarine or surface vessel for which tactical data is available now or in the future.
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APPENDIX A
DERIVATIONS

A.1 SUBMARINE

The following equations describe the motion of a submarine., The symbols Al’ ces
A4, represent certain constants which vary in value from one submarine to the next, de-
pending on the handling characteristics of each.

8 =A1{os - (1+ A, 6r|)s}{03+(1 +A2|6r| +A3)8} (1)
€ = -(A,8C + A56|é + Ag8% ) (2)
B = -(A7SD + AgD|D| + AgD + Ay%,) (3)

The units chosen for the constants (Al, ARy 1) provide for speed in yards per sec-
ond, angles in degrees, and angle rates in degrees per second.

S = Speed

oS = Ordered speed, (forward speed to which the engine power ouiput corresponds)
8, = Rudder angle (positive when rudder moves to the left)

C = Course angle (projection of the directior of the submarine's motion on the nori-

zontal plane. The positive direction is clsckwise, from north to east. C=0
when the submarine is headed due north)

D = Dive angle (elevation angle from the horizontal. When the submarine is diving,
D is negative)

bg = Stern plane angle (positive when the trailing edge moves down)

The reciangular coordinate syatem is left-handed, the X-axis points east, the Y-
axis, north, and the Z-axis, down. X, Y and Z are given by

X =ScosDsinC
*>=8cos D cosC

7 =-S8inD

A.1.,1 Submarine Turn

The submarine turn equation will be solved first since portions of this solution will
be used to solve submarine speed equations.



A.1.1.1 Solution of the Differential Equation
Equation 2 is the differential equation for é, which is the rate of the submarine's
course change
*. . o] o 2
C = ~(A8C + AgC|c| + A8,
When C is positive, the equation is written
a0 . [ 2 2
C= -(A48C + Asc + Aes 61')
When C is negative, it becomes
. ° . 2 2
C= -(A4SC - Asc + Acs sr)
NOTE: M,% and Aq are always positive.

The graph of € versus C (Figure A-1) is comprised of two parabolic sections joined
at point 0, -A,s 6 The curve has no maximum or minimum since the slope,

(A8 + 2A5|¢|), will always be negative.

In order to proceed with the solution of the differential equation, ¢ must be ex-
pressed as an analytic function of C. It is doubtful that sufficient accuracy would be gainec
by the use of a cubic rather than a straight line to approximate the él CI term to warrant
the added difficulty in integrating such a function. Therefore, a straight line will be used.

C

2
~AgS7e,

Figure A-1

The straight line will go through 0, -A6826 r and the point on the curve corresponding to the
steady-state turn rate.
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In the types of maneuvers to which these formulas apply, there will be only one
principal value of turn rate ( €, the ordered turn rate) for each maneuver. This value ¢
C will be the steady-state value, that is, C = 0 for € = C. The corresponding rudder a
will be denoted by 6, The relationship between C o.nd 6, can be found by letting C=0.

¢ ,('*4 *JA‘ - MsAiég_) .

Ay

for positive oé and

2
é -< 'A4 tJA4 + M5A86r ) s
o —.

.2A5

for negative C

A glance at the graph (Figure A-1) will show that, for ¢ positive, 5, is negative
and for C negative, 4, is posmve This is because the gruph has & necati—e slope. Al
C and Aesza are € and G intercepts respectively. Therefore both radicals can be
written
2
\lA4 + MsAal ; rl

The radical is greater than A (since A‘, A5 and AB are all positive). In order to have
the proper sign for C in equations 4 and 5, the positive sign will be used for radicals
in both cases. The two formulas can then be combined as follows:

-5 SVA3+4A5A6|6 I A4

o° =F-- W

The final expression for oé can be found by substituting the steady-state value of § in th
turn, The steady-state value of S can be determined by setting 5 to 0 in equation 1. 8§
1+ Azlar |+ A4 will always be positive, oS-+ A2|6r|)8 = 0, Hence steady-state 8, d
noted by St, is given by

0S
S, x
f 1+ A2'6r|

and

c:--l s\/A4+4A5Asia -~ A,
| T AT A




The straight iine approximating the graph of equation 2 can now be calculated.
The slope of the line will be given in terms of & ,, the principal value of 6, in a maneuver,
and S, the present value of speed. The ¢ intei"é'ept will be -Aoszé

Since the slope is determined by the current value of 8 rather than 8;, equation 6
will be used for the intercept rather than equation 8 .

When §p=80s the line must go through the two points 0, -Aeszar and

i J*ﬁ“s“ou - Ay 0.

] 2As
fA +dAghgle | - A
4+ A5l 4
Denote - by F, 9
“e‘—a;] TX5 y ®

2,
A, S
Therefore, the slope of the line is ___‘_3___.___1‘._ . The slope of the line remains constant. Hov

8F,

ever, the line can be displaced vertically if -Asszar , the ¢ intercept, changes in value.
Thus, using the y = mx + b form of the equation for a straight line, the approximating for-

mula is

A
_‘ﬂt_—_ - AgS%s (10)

This is a linear differential equation for C and is easily solved. The solution will be
erroneous however, unless 6p is represented as a function of time, 6, is most easily ap-
proximated by 2 linear function of time. Lets =6, + 8 oty where &, = 6 at time t = 0,

The solution of the homogeneous equation is € = k exp [ AGSG t/F, ] Let ¢ = ¥y + ¥q
be a particular solution. Thus,

0= yy - AgS|(6,(yy + yot)/F,) - 8(84 + Zsrt)]
"This must be true for all t, therefore, letting t = 0,
0=y, - Ag8[(,¥,/F,) - 85,]
Dropping this sum fr o nthe equation and letting t = 1 produces

0= AgS[(5,¥g/Fy) - Sb]

a»
!



Hence,
¥y = 8F csr/ &y

F, | F
c re
ke mll kv el b

Therefore the general solution is

. | F, [F.é, .
C=k exp[AﬁsiEt/Fc] 4‘-3; W + 618 + 86rt

However, since 6,=64+ 6rt,

re

b

, F,[F.b.
C= kem[ABSil:t/Fc] +F;- ET +86r

Let C at time t = nh be written én for all n,

Then .
2 F(: chr
Cp- T, 66r+ Sbrn =k exp[Aes_b_!nh/Fc]
F,|F.b,
C,.q- 5| &g, +sesrn~1 =kexp[A68f£nh/Fc]exp[-A63i£h/Fc]
Therefore
. F|Irs . F_ |F.5 AgSs h
C -S|l a8, | ={C 4 -S4 85 [ —2] 11
n E[Kﬂ_ﬂ' rn] (n-l 5 (%6 Tn-1 Bt (

A.1.1.2 Operator and Command Control Situations

The instructor and program control situations will be developed after the speed
equations.

Operator Control

In the operator control situation, & r and
approximation required is

exp[Ags Sh/F ] = 1 + Ags Sh/F (1

fx are direct inputs, Therefore, the only



The validity of this approximation depends on the size of A66 Sh/l‘
& r/F increases roughly as / » a8 shown by equation 9 . The largest value of 5, that

im likely to be encountered is 35" According to available documentation, A‘, A5 aul A6
will vary considerably. Their values are given for three different vessels. Using these
figures, the three different maximum values for Sh such that (Aoarlh/ !‘c) < 1 when
Iarl = 38° are given by -

SubmarineI 8Sh<64.4 yards = 114 knot-seconds
Submarine II 8h < 2, 373 yards = 4, 218 knot-seconds
Submarine IIl 8h< 139 yards = 246 knot-seconds

When h equals 1.0 seconds, AcarSh/ F,< 1 for any possible submarine speed. Proceeding
with the approximation, equatio_x; 11 and 12 provide

. F[Frs . F, r‘ Aes
Cn I 6:[A:6: +86rn] ) (C - -_[Ta—é_".sa 1]) ( —F—)

F 86
. .E.E S -8 ). F brSh A°86 h e r
?_g_ 'n  Th-1 _5 Fe bp

but 5. h=s_ =6

Therefore
. . AGB F°86rn-1
Ch-Cp1* 1—'—‘ T
XL

The final assumption used in the above is that the variation of S over the interval h
will be small enough to enable the equation to hold with the same value cf S in all terms.

Cn - Cn“l = Assn_lh[ (i{Cn'I/Fc) - sn_lérn-ll (13)

8,1 is used rather than S because it is larger and will therefore lead to a larger value of
C‘ C This compensates somewhat for the fact that the straight line produces slightly
smaller valuel for |C| than would be produced by the parabola.

A=6



Command Control

In the command control situation, os and OC (equation 8) are the only inputs to the
equations other than T. T equala the time it takes the rudder to move to 6

There will be a command control equation for 8, so that 8, will be known at each
iteration. S defined by equation 7, can be found as a function of é using equation 6.
Equation 7 will be used to determine bp s which is then inserted in equation 8 with8 = Sf
Equation 8 is then solved for Sf -

ol (- a
.S 3
|of| - ‘zfl‘s (\/Ai * 4A5A6(§T - ]>A1_2 - A4)

: 2 _ g2(s2 i
(244]€] + A8p? = 8 (A4 + 4A5A8[sf- - 1]1;)

<‘:2A5 + Ay €] = (Ag/Ag)(88; - 8D

A AAs |
2‘4'0 -9 245 a0

AcA Qg[ Anl 6N\2 4A.a. 2 /2
RRSNY B e
6 8 8

where the radical is taken to be positive so that Sf = OS when OC' = 0.
With 8; known (in terms of o(".‘), F, can be found.

F, = ,C/8; (16)

Equation 10 can now be written in terms of Sf and oé where & p =%, 04 is given

by equation 14 . The sign of 5., will be the opposite of the sign of oé‘

S .

C L]

A.899- - I)—‘- Pol

6 z(sf_ AZ 2 os o~

- + AGSYE- - 1)-——-—
S|°C|/Sf f

26 (°s 1)( és - 8 c':)
- 1)(,Cs - (17
Azl e\ /e



¢S - 8,C =K, [ At (8 s)] (18)
- = exp|- ——— -
0 f A2|o¢| 0 {

for all n.
Assuming again that sn ~ sn-l )

. . » . Aosn-lh
(0C8y.1 = 8Cp) = (,C8; 1 - 8C_p)exp |- —— ; (o8 - 8p)
A2|0C|

Note that this is the same as equation 11 after making the substitution indicated in
equations 14 and 16.. Therefore the expansion of the exponential holds for the same range
of values of 8 as did the expansion of the exponential in equation 11.

« . -Mesn-l(os - sf) o .
Cn-Cpr = Azloclsf (8¢Cn-1 - ¢“Bp1) (18)

This can be rewritten in a simpler form

9%219;1 "il_‘ | by equation 14

Furthermore, and 0(':' always have opposite signs, therefore

|2)/|oC] = -¢x/oC - (20)
Alro, when 8 = §; and ¢ = o(‘:, C in equation 2 will be zero.

. . . 2
AS, C+ A500|OC| + AgS; by = 0
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2
AgS%6
6"f r _ :

- ——at —A4Sf+A5IOC|

(s}

AgSn-105 -8 A8y g|’r| _ -AgSn-1%;

A2| oc‘:|sf |oc| o
.8
= (AgSy + Ag|€)) _:,il (21)
. . -h8 . . .
Cy = Cpy =5 gy - oCBy Ay + AgoE)) (22)
S

This form eliminates the indeterminate 0/0 that occurs in equation 19 when 6, =0,
causing both 8 - 8, and l oCI to be zero.

The abrupt introduction of 6, as the rudder angle rather than building it up from
8, = 0 will be compensated for by fetting Cn = 0 for nh < T/2 and using equation: 22 when
nh > T/2, T is the estimated time for the rudder to build up to _61 from zero and may be
determined by using the following formula.

Let ?5r be the estimated rudder deflection angle rate in degrees, per second.
Therefore, using equation 14

(& ) 1
T"(S? Aglts] (23)

A.1,2 Submarine Speed
A.1,2,1 Solution of the Differential Equation

Equation 1 is used to determine 8, the speed of 2 submarine. It may be solved
directly.

48 - dt
Aq {OS -(1+ Azlarps}{os +(1+ A2|6r| + A3)S}



Using partial fractions,

dsd — A e 4
%OS - (1 +A2|6r|)s oS +(1+

1+A |6 |
A = ST A, o) + Ag]

1+A2|6 +A
B = S[2T+ A s I+ Aq

B
Kofoe] * A8 } =Ay dt

S+(1+A,6 | +Aq)8
0 :g_:l f‘ll'; 6:|)j—— = K, exp[ SAt(2[1 + Agl6.|] + Ag)] (24)

S++ Azlér +Ag8, S+ (1+ A,|ar| +Ag)8 4

JCENCEY W) T S-e A58y

(Refer to equation 11).

x em[OSAlh(z [1+ Azlbrl] + As)]

This can be solved for 8, -8, ; interms of 8 ;.

1+ A6 ] + Aa)sn_J [exp(OSAIh[2(1+A2|6r| )+Ag] )-ﬂ

e ]

n n-1
(1 + Az

+(1+ AZ!Grl)[oS +(1+ Azlér

6r| + Aa)[os - (1 + Az 61' )Sn_l]

+ Aa)sn_l]exp(oSAlh[ 21 + Age ) + A3])

This expression is still much too cumbersome for practical use, therefore certain

approximations will be made. First, the
of its Taylor expansion.

exp(oSAlh[Z(l + Azlérl) + Aa]) 2

exponential will be replaced by the first two terms

1+ SA/h[2(1+ Azlérl) + Ayl

The first two terms will be a good approximation for the exponential, provided that

the argument of the exponential is small.

The argument is largest for l6r| = 35°, or full

rudder. Using this value, the maximum values of 0Sh such that the argument will be less
than one, correaponding to the three submarines for which figures are available, are as

follows.

A~10
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NOTE: The values given for A2 are 0,275, 0.203 and 0.0403. These
are incorrect. However, since A2 is easy to compute, the fol-
lowing values have been used instead: 0.0275, 0.0203 and
0.0271. The values of A, and A3 appear to be correct.

(Refer to paragraph 3. 5)

Submarine I OSh < 98.4 yards = 174 knot-seconds

Submarine II oSh < 117 yards = 208 knc’-seconds

Submarine III OSh < 118 yards = 210 knot-seconds

When oSh satisfies the appropriate condition, the first two terms of the expansion
are used.
;-5 - [o8 - (1+Agle )8, 1] [8+(1+Ag 6| + A8, 1A
n - “n-
14+ Alh(l + Azlbrl)[os + (1 + A2|6r| + Aa)sn_ll

The next step is to put the denominator of the resulting fraction into the form 1 + x,
where x < 1. Then, the approximation i—i—; ~ 1 - x will be used. The denominator can
be expanded provided that

Agi(1 + A2|arl)[,\s +(1+ A:‘larl +Ag8 41<1 (25)

This is slightly different from the inequality that must be satisfied in order to ex-
pand the exponential. Ina turn, this expression will be greatest when 6, = 3% and 8, _, = S.
Using the same values of Az, the maximum values become

Submarine I OSh < 72.0 yards = 128 knot-seconds

Submarine I oSh < 93.2 yards = 166 knot-seconds

Submarine III 0Sh < 86.4 yards = 153 knot-seconds
In a deceleration maneuver, the above inequalities must be satisfied for original speed
times h, rather than 0Sh.

When osh satisfies the condition appropriate to the particular submarine to be simu-
— lated, the approximation l—i—i ~ 1 - x can be used. When used however, the h2 term,
when the numerator is muitiplied by 1 + x, has cuefficient

. 2,2
[,S-(1+ Azl"rl'sn-ﬂ[os +(1+ Azlﬁrl + A8, _1°A5(1 + Azlbrl).

This will be much less than the coefficient of the h term unless the restrictive inequality
25 is very nearly an equality. Therefore this term will be omitted.

A-11
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The final formula is therefore
Sy - Sp_1=Ash[ 8-(1+ A2|6r|)sn_1][ S+ Az|6r| +Ag)8, 4] (26)

A.1.2.2 Four Control Situations
Operator Control

Equation 26 can be used, without modification, for the operator controlled turn.
In an operator controlled acceleration or deceleration maneuver, 6p = 0 and equation 21
becomes

Sh - 8p-1

= Alh(os - Sn_l)(os + [1 + As]Sn_l) (27)

Command Control

Equation 27 is suitable for the command controlled acceleration or deceleration
maneuver, Inthe command controlled turn maneuver however, LR will not be one of the
inputs. Instead, the input will be 8, which is derived from oé by equation 15 . The re-
lationship between &, and s! is provided by equation 7 . It iséhis equation which will be
used to express 8 -8 4 in terms of 8;.

Sp = 8/(1+ Azli!-l)

14 Azl f!l = 8/8;

Substituting in equation 26,

S S
= —n-1 Q-
Sn - Sn_l OSAlh [1 - sf ] [OS +(sf + Aa)sn_l]

Os OS |
Sn - Sn_l = —§-f~ Alh(Sf - Sn-l) OS —s—f + Aa Sn—l (28)

Note that equation 28 is the same as equation 27 when S¢ is equal to 0S.

In the command control situation, the buildup of 6, from zero to 6, 15 accounted for

by letting 8 = S for nh <1/2 and then using equation (28) when nh > T/ 2__ T equals the
time required for the rudder to move from zero to 6. (Refer to equation 23,)

A-12



Instructor Control

In the instructor controlled situation, 8 - 8, _; is expressed as a function of S and
S;, but not 8,.1+ This is accomplished by equating the following integrals and taking the
limit as x- .

(Sf'so)/m b X
f(so+mt)dt+fsfdt =/8dt (20)
o (s,-so)/m o

where S, + mt =8 s08 -8 , =mh

Before equation 29 can be solved for m, an expression for S must be found that can be
readily integrated. Such an expression for 8 is implicit in equation 24 . There are no
approximations involved in its integration. Ky will be evaluated by letting 8 = so whent =0
In this way the resulting expression can be used for either turn or acceleration/deceleratior
maneuvers,

K. - i:S +(1+ Azla | -o-Aa)S‘I (30)
1 S-(1+ A2|6r| )8,
The following notations are provided to facilitate the performance of subsequent
calculations.
a=(1+ A2;6r| +Ag)
b=(1+ A2|6r|)
c= OSAl(a +b) (31)

Therefore, equation 24 can now be written

S +aS
0 ct
S =Ke
ojS - bS 1
SEKe®-1)  s|vKet +a-(a+b)
S= ¢t b ct
a4 bKle bKle +a
S
S= o 1~
b [ bKlect +a ]
X X
/Sdt=9§x- (2 + b)S f dt
. b Z | oK% 42
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1 ct x
j bxle = ¢ Lt - log(bK e™ + a)]

bK.e“ +a
[Sdt- s[---(-'—%-bl]x+o abe log[——bl‘-;-;-;—]

= os[ X ,atb A2 (log[bK e + ] - log[bK, + n])]
As x - @,
cx
log(bxle +a) »cx + log bxl
So, x

f Sdt-.s['x “b(cx lo¢[1+“-])] [g-!iga‘lxog(u;"-l)] (32)

(]
Using equation 20 , this equals

o] g [x 8]

2m

8, -8)% (8 -8)° 8, - 8,
:-—fmo + lf—g-—+sfx sfx ._LT._Q__

Thus, equation 20 becomes

8,-8)2 8 _S(a+b)
UL P LR

In an acceleration/deceleration maneuver, b = 1 and 8= 8. Inaturn, §, = OS/b by equa-
tions 31 and 14 . Therefore, the terms containing x drop out in both cases.

Using equation 31,

ossibiéb"flli'ﬁ

Thus, 1
ms= 4% (Bf - 80)2 [1—1135 log(l + FaKI_):, (33)

A-14



Equation 33 still hus to be interpreted separately for turn and acceleration/decel-
eration. Inaturn, S = 8, therefore K; = (1 + 2)/(1 - b) and the argument of the logarithm

becomes
1-
14+ H+ 2

a and b are both positive, therefore a <1 +a and |1 - b| <b and Iu(l - b)| <b(l +a). Thus,
the logarithm can be expanded

log(l +5{T——-;a1;2)~ ar—}l:_:
2
2b Al(l +ﬂ)
my = (8¢ - o8)" 31 - 1)

a and b are then expressed in terms of S and 8;, using equations 31 and 14.

8
C
a= +A
Hf' 3
8
b=
8

1-b= (Sf - OS)/Sf

oS Al oS
mt=(sf-08)-37—2- §;+A3+1 (34)

We next consider the acceleration deceleration maneuver.

a‘1+A3

b=1

OS+(1 +A3)S
K, =
1 9-5

0 o

Q. (equation 30)
In this case Sf = OS, 8o equation 33 can be rewritten as follows:
1 Jd (1+A)( 8 -8)\|1
ma“‘l(os'so) AT+X ;log 1+ S+ (1+A)8
1 3 0 3o
A3 is negative but greater than -1, therefore

(1 +Ag)(,8 - SO)
S+ (1+ A3)So
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provided that S and S are both positive. Expanding the logarithm
[OS + (1 + As)sO]AI
o8 -5

m, = % (S - 80)2

A
m, = (8 - so)'il[os +(1+ As)so]
The two formulations may be summarized as follows:

a. Turn

8, =8 when nh < T/2

hA, S/ 8

Sp-Bp1= 1 G- S\ By tAs !
when nh> T/2 and 8n> 8,

sn = sf otherwise

b. Acceleration

hA

8, -8, g =gt (8- 8)[ 8 +(1+Ay8 ]

when (Sn - 0S)(So -8>0

Sln = os otherwise

Program Control

(35)

(36)

(37)

In the program control situation, speed changes occur abruptly. Realism is achieved
by introducing a time delay so that the distance traversed at some future time (x) will be the

_ same as if an exponential buildup were used.

The integrals to be equated are

T x x
/Sodt+f Sfdtxf Sdt
() T ()
as X -,
Equation 32 already has
im X%

x +
x-c0 [ Sdt ’03[5 -a3b 1og(1 +Bk?)]

(o]

A-16
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This is now equated to
(So - Sf)'r + Sfx.

8
As mentioned following ejuation 32, %— = 8f in both turn and acceleration/deceleration
maneuvers, therefore the terms containing x drop out. Also |a/bK1| < 1 (refer to discus-

sions following equations 33 and 34) . Hence, the following approximation will be used
for ~:

'os a2 +bla

r=
So- 5t ab cK,

(¢)

-1
= . 5

T (3

by using equation 31 .
Inaturn, K, = %—{% refer to equations 30 and 31. However by using equations
and 31, this can be written

8
K, = (gf— +Aq+ 1) 8,/(8¢ - ,8)

while
b= OS/Sf
So = 08
Hence,
. =s/s2A (°S+A +1) (4
t~ °ffo® M §f_ 3
In an acceleration/deceleration maneuver,
b=1
K - oS+ (1 +A3)So
1 oS - So
Sf = OS
therefore,

Ty = y(os +(1+ A3)So) A (¢



In summation, the two formulations are as follows:

a. Turn
5, = Swhennh<T . 5/6% (&1 ay+1
n=o° WHERM < +8yo° A1\By * s

S =8, whennhs T +8,/ 8% (2 + A, 41 (42)
n= St 27 5o M L P
b. Acceleration
S, = .S whennh <1/( 8 + [1 + Ag]8 )A;

S, = .8 when nh> 1/(08 +[1+ As]BO)AI (43)

A.1.3 Two More Control Situations for Submarine Turn
A.1.3.1 The Integral of ¢

To proceed with the instruction control and program control approximations of the
submarine turn, it will be necessary to evaluate

lim X
x-m/ Cdt. ¢ will be expressed using equation 18, rewritten here as equation 44.
(o]
» » -A st

oC8 - 8C =Ky exp| —" (08 - 8) (44)
2|o |

K, is evaluated by letting C=0and 8 = oS Whent = 0.

Ky = oco
¢ -A St
c=2"|8- 8 exp[—S— (8-8,) (45)
Sf 0 AZIOC‘ 0o 1

Equation 45 will be integrated from zero to infinity using a variable 8. Equation

¢s
32 will be used to find the integral of gs-f—. The S in the argument of the exponential must

be approximated by a simpler formula so that the integral can be evaluated. Equation 42
will be used for this.

Let v, = S,/ S°A S A1
ET1=% % A\F T8 T
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Therefore,

L) T
im ¥, | um % L T-Ag St S - 8))
x-oodet=~s— X -~ @ Sdt - S/exp dt
f 0 ¢
Y o A2|o '

~lim % [-Agsit( s - 89

x-m S [ exp : (46)
° 71 I. Azlocl

lim X 2 S

from equations 29, 32, 33, and 34

T1

~Ag St( S - ;) im /! ~AgSit( S - 8,)
fexp 6o °‘ f dt + x - exp Bfo. f dt
o Az oCl Ty Azlocl
AAzI | 1 exp(:“sos‘fl(os AW xp("ABSf"l(os - §)
) S
oo v AgloCl £ A,5l.¢l
S 8¢ Sf
X = Silé ' by using equation 14, andl—q F—l by using equation 16 . Hence,
2
'Aﬁos"ll_rl -AgSemy|®r
the arguments of the two exponentials become -——IE—l—.- —|§——|--—~ respectively.
c c

The maximum values of S-rl and Sf-rl for these quantities, to have magnitude less than one,
are provided in the discussion following equation 12 for | _EI = 35°. 7 is approximately

10 to 20 seconds, therefore, unless S is quite small, the arguments will have magnitude
greater than one. However, the difference of the two exponentials will be used and th
pansion will be carried out to three terms; hence, the resultant error will be smal

[
A21_262
1.1 +61r[s_s]
STE) TR [
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Adding -1 and multiplying by -—M
OS AB(OS = Sf)’

this becomes

AZ!OCI Az"slocl"u

AgSi( S - 8y) 272

A2|oé|

Ag( 8 - 8)%2
“AS{S -8 " z-“z|oé|
by using equations 14 and 16.
Therefore the integral of Cis

xlf:noo[¢dt= Ex - C(8; - S)/SA1(8+A3+1)

o . 2 .
°C|°C|A2°S A6(0‘?‘ - Sf) ocsf

+
2 g. 3 2(0° \2
Aﬂsf(os Sf) 2A, 8 |0é|A1 (S-f- +4Aq + 1>

Multiplying both sides of equation 21 by S‘/Sn_l,

AgloS - Sp) (AgS; + Ag]C))
AgloCl 8¢

Therefore,

im £ & 2, (S
x-m [ Cat=_¢lx+(S-8) /8 A1('s‘f‘ +Ag+ 1) - os/sf(A4Sf + Aglot]
(]

(oS - Sp)(AS; + Agl C])

3,2(c5 2
2,S°A7 Sf+A3+1 (47

This equation can also be written in the following form if 6, 18 an input rather than oé‘

X & 2(1 + Agls |)?
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Agls] \ Azlf_r_|("*4 "J;*g +4AgAq |6rl)

T+ Azm)Al(z + Azl _6£|+ Ag) a1+ Azlir_ |)2Af(z . Azl 6r| . AS?
from equations 7 and 8 .

A.1.3.2 Instructor Control

In the instructor control situation, ¢ increases directly with time until it equals C,
at which time it is set equal to C It is kept at C for the remainder of the turn. The
growth rate is determined as follows.

X X
fmtdt+ lim [ Gdt=1m [ Cat
0 X-+00
oC/m )

from equation 47,
(os - sf) os

C>2 ( c)

o lm, gle-2= ). &

m 9 + 0C X-m 7o X + 3 - .
( oszAl(.g_ +Ag+ 1) Sy(A (S + Ag|C])

, (o5 - SAS, + Ay CL

S
2 s3Ai"‘ —-—+A3 +1

, -1
oS oS (oS - Sp) A'tsf“““slocl 48)
2 |S(AS. + Al C) 2 ’
((AgS; + Ag|C| SA13_+A3+1 2,5A, Sf+A3+1

Therefore,

0Cn = 0 when nh < T/2

e oS (S-S) [ Adira o€l

S.(A,S.+A | cp 2 oS (49)
+
f(A4Sg+A5), Al(s— +Aq +1) 2 SAI(S +A3+1\)

when nh> -'21—‘ andlén! <| oél

Cn=Cn_1+

Cn = 0C otherwise.
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A.1,3.3 Program Control

In the program control situation ¢ changes abruptly from zero to OC after an appro-
priate time delay. The time delay can be determined as follows.

. im ¥
OC(x-f)ax»m[Cdt

from equation 47,

S (S - S¢) AS; + Ag| €
. 0 _ os 1 14 41 g|o | (50)
o)
S(AgS; + A5|ocl) 082A1<§-f- +Ag+ 1) 2OSA1(§-; +Aq + 9
Therefore,
én =0 whennh< 7
Cp, = ,C whennh> 7 (51)
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. A. 1.4 Submarine Dive
A.1.4.1 Solution of the Differential Equation

Equation 3 is the differential equation describing the dive angle, (D), as a function
of stern plane deflection angle, 5 5 S, the speed of the submarine, is assumed to remain
constant throughout any dive maneuver,

ﬁ = - (A,’@ + Aab 'f;i + AgD + Allszbs).
Waen D is positive this becomes

D=- (A., SD + Aebz + A9D + Ausz&').
While for D negative it is

So the graph of D versus D is two truncated parabolas, joined at point 0, - (A D+
Aus 5 ) The slope of the graph at that point is -A.,S A7, Ag and All are positive
while AB will always be negative. Thus, the slope of the graph near D = 0 will be negative.
This is s’ .own in Figure A-2,

AP + Ayys%s,)

Figure A-2,
” .
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The slope becomes positive when |D| is large enough. The area of interest for
simulator purposes hcwever, is that wherethe slope of B versus D is negative.

Initially, D and D are both zero; therefore b = A, 182 5. Consider then, what
would happen if an initial negative 54 WasB applied. As stated previously, the corresponding
initial D is -Ausza which is 2 positive quantity. Thus, D would increase from its initial
value of zero. This increase would result in two simultaneous reactions. First, the point
on the graph of D versus D representing the present state of the system would begin to
move in the direction of increasing D. Since the graph has a negative slope, the B coordinate
of the point would decrease. That is, D would be made to increase at a slower rate until
the current-system-state point reached the intersectionof the curve and the D axis. At
thi.. point, D =0 and D will remain fixed.

On the other hand, consider what would happen if the minimum value of B for D 50
was not less than zero (rvefer to Figure A-2). As D continued to increase, B, although
decreasing, would remain greater than zero. Thus, D would conttnue to increase until
the current-system-state point reached that portion of the graph where the slope 1s positive,
This represents a completely unstable state, one which the design of the equations must
prevent under all normal conditions.

’I‘he second reactiontothe initial negative g would be that D wouid also increase.
Since the D intercept is -(AgD + Ausza ), the 1ncrease of D would tend to negate the
original negative bg causing the b intercept to move to zero. Thus, D would decrease
more rapidly than it would if affected only by the negative slope of the graph. In effect,
the D axis would move up, towards the B intercept with rate AQD while the curve re-
mained fixed. The rapidity with which this occurs will determine the time it takes for D
tu go to zero, fixing the dive angle at that value corresponding to s 5 Ag ls small however
so this occurs at a very slow rate. As an example, assume that 5 g = -10° and S = 10 knots,
D would not go to zero until D = 41°, which is a very steep dive angle. AS

Figure A-2 is a graph of B versus D. The maximum isatD = mg—- while the

A,S 8

minimum s at D = -

3 Since Ag is negative, the maximum will be in the D < 0 portion

of the graph and the minimum in the D > 0 portion for a negative slope between the maximur
and minimum points.

Another requirement on the points is that they should be above and below D axis
respectively, Without this requirement the possibllity exists of the current-system-state
point reaching the pos!tive-slopeportion of the graph, as described previously. The
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requirement that the D axis separate the maximum and minimum points on the graph leads
to the following requirements for the constants.
| (A2

2
A9D+A118 65|<—-—n—8—- (52)

A,S A,S
This is found by substituting i% and - 2‘:{8 for D in equation 3, and is useful as a quick
8

check of a set of constants (refer to section 3. 5).

In order to proceed with the solution of the differential equation it will be necessary
to approximate the portion of the graph of interest with a straight line. That portion lies

A,S A,S el
between 7;{5 and -,zx—a- . A least squares approximation will be used to find the line. The

Aq8 A.8
square of the error will be integrated betweenﬂ-E and-n— .
8

The line will intersect point (0, - AQD + Ansza s) , as does the graph. Since the
graph is symmetric about that point, the least squares integral will be taken from D=0
A,S
: 7
toD = -ﬂ; . Let -a be the slope of the line.
Aq8
23y
[-(AnSD + Agb? + AgD + A, 8% ) - (-aD - A,D - A,,8% )12 dD
7 8 gD + 411575 gD = A115 8y
(o]
-A7S
g
: 2212 2 b3 D4
o

2155]
+Ag 5



1

This must be minimized as & function of a variable a.
Differentiating with respect to a,

fa- Aqﬂ( ) 3::§ A"8)4
a-A.S=-
a -UA.,S

So the equation
= - FAqED - (AD + Ay )

will be used to approximate equation 3.
Equation 54 is a linear, second order differential equation. The forcing function §

bge 04 will be assumed a linear function of time.

6.-61+68t

The homogeneous equation associated with equation 54 is (using a = gA.?S),

B+ab+AgD=0
Equation 56 has the solution

D =Ae(" a+"ni - 4A9) t/2+ Be(-a -"az - qu)t/z

The non-homogeneous equation is

b +I.b+A9D+AnSz(61+ Bst) =0
Consider the particular solution
D=Dy+ th

Putting this {ato equation 58,

2 .
0+ aD2+ AQ(D1 + th) + Alls (61 + 5Bt) =0

This equation has to be valid for all valuesoft in order for equation 59 to be a

solution

A-26
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2-
A992+ AyyS bg ™ 0

for t =1 with above substitution

(S

(5

(5

(5

(5

(5
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Solving,
20
Dz n - AuS 6,/A9

o2 2
aAuS 6! ) Aus 61

D=
Y Ag

2
Aqq8

D =_Xg- [as, - Agéy - Aga’t]

2
A48

D =—&§——[a38 - Aoﬁs]

The general solution is obtained by adding equations 57 and 60.

A(-a+Va2~-4A9 /2 B (-l-'lz-M:)/z
e 4+ be

D=

(60)

(81)
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A.1.4.2 Four Control Situations

Operator Control
Since there are two constants in equation 61, two past values of D must be used tc

evaluate them. 5 is an input from the operator.
n

Let

xy=(-a +Va2 - 4A9)/2
x, = (-a - ¥a? - 4Ag)/2 (62

2
-1)h h -1)h A8
D, + (Aexl(n ))le +(Be:ltz(n ))exzh - _%_ (afs' - Agey )
Aﬂ n

x,(n-1)h xgn-DhY A8
Do.1* Ae + | Be )+—A'g'—'(ﬂ.6. - Agasn-l)

xv (n-1)h\ -x;h Xq(n-1)h\) -x A S2 )
Dn-z' (Ae 1 )e 1 + (Be 2 )e 2h +—1-Al‘2)—(a6s - Agéan-z)

xl(n-l)h xl(n-l)h
There are three unknowns, Dn' Ae and | Be The derominatoz

determinant is

x.h x
-1 el ei1
D= 0 1 1
“ -Xx,h -X
0 e 1 e 2h
-X.h -X
D=e 1 -e zh
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Where,

While,

DD= D

xlh xzh xlh xzh

e - e - & - e
-X.h -X X X.h
R R

e

xlh xzh

-2xph  -2x;h
(xj+xg)h\ -e

= e T XA EGh
e XI e

h{ -x;h -
'-e(xl-o-xz) cxl ‘e xzh)

- (exzh . exlh)

(x4 +Xx4)h
o112

(63
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So equation 62 becomes

Ay 8t A8t
D, = —i'%"'(abs - Aoésn) +{ Dyt - —;g—(“s - AOGsn_l) (e” +e™)

2

. (x;+x4)h
\Pee2m AT (855 - Agis ,))®

(64)

Any simplification of equation 64 involves expansion of the exponential. This de-
pends on the size of x; and x,h. Since a is positive, equation 53, and A9 is positive,
xzh has the larger magnitude of the two. The magnitude of xzh is leas than ah. The values
glven for A,, in the F8¥ Math Model are far enough apart to cast considerable doubt as to
the poasibility of any realistic statements ubout A.,.* If the corrected value is used for the
second submarine then the expansion of the exponential in equation 64 requires that, for
the first submarine, hS be less than 64 yards or 114 knot-seconds, while for the second it
be less than 107 yards or 188 knot-seconds.

The extent to which these requirements are met determines the reliability of the
following expansion. First equation 64 will be rewritten with some of the terms rearrang:

(x4+X0)h (x4 4+Xq)h xsh x
D,-D, y=(D,_;-D, je 172 -D, 4\1+e 1727 el +e2h]
2
A, 8% (x4 +X4)h xh  x,h
+—-1-i-2-—<+e 1772 el +e2])68
9

2
A .S xsh x5h
11 1
- 6, -6 e’ +e “]+6
AO ('n Bn-l[ 8p-2

h
e(x1+x2) )

The number of terms that will be retained in the expcnential expansion depends on
where it appears in the equation. Enough terms will be kept so that none of the variables
will have a coefficient independent of h, This will become clear as the analvsis proceeds.
The coefficlent of D, _{ - B, 918 1+ (x; +Xg)h =1 - ah, The coefficient of -D,_, is

*Using the test given by equation 52 only one of them could possibly be corre~t. It was
pcgsbible, lémze:ﬁr, to correct one of the others using tactical trial data. The tid>»d could
not be used a .
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2 2 2
1+[1+(xg +Xo)h + (x4 +x2)2-l-‘2—] - {1 +x4h +x12%- +1 + xph +x22%-]

= x,x,h? = Agh? (65)

The next two terms of the equatioi xms:,t be added together, since ¢ g =6 =

6, -5, =5 The coefficient of -
n-1 n-2

ab 2 3
'K;' [1 +1+ (x1 + xz)h + (x1 +x2)2 %—-}-(Xl -|-x2)3 %—

2 3 2 3
_(1 +x1h +x12 %— +x13 %—+1+x2h+x22% +x23 %—)]

2 2
2h 2h
_[6.n - bsn-l(l +x1h +X° g+ 1 +X2h +Xg -2-)

2 hz) 66
+ 63n—-2(1 +(Xy + Xg)h + (X +Xo)° 7 (66)

Since 5 - 25 +6 = 0, this is equal to
8n n-1  Sp.2

aé

3

2
‘ 2 2\ h 2
+(6 -6 (x + Xg)h + (X1 © + Xo°) )-6 X.Xoh
( 5,1 sn_z) 1+%g 17 +%7) 7 ) -4 JF1%s

Ax1%2
howeveyr, hy¥g = Ag 80 Ag =a. Furthermore,

. 2 P
6 -6 (xy +Xp)h = 6_(x, +Xo)h“ = -a8_h®. 8o
('n-l sn_z) 1+%2 g'*1 * X 8
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S5 e s e i e e

ab, 2

8h-1 n-

Similarly, -gxlxz(x1 + xz) 5 =-a%,

n-1 Bh-2

2 ., .3 )
while (bs -4 )(xl2 + xzz) %— =bg %—(le + :?2) = (9,2 - 2Ag)55 %—

So expression 66 is equal to

P 2 2 2
~Agb _b” -8 h® = -A,[6 + (8 -6 N\h® = ~Ané h
Agls sn_zAﬂ Aﬂ( 8, 9 5,1 'n-z) Ag 8, .1
Combining this with equations 53 and 65, equation 64 can now be written
5 2 2 :
D, - Dpy = (D1 - Dy o)1 - 3 AgSh) - AgD, ;b - A, 8%% . - (87

Command Control

The command control situation will be handled differently from the way the same
gsituatiun wat  ndled in the speed and turn maneuvers. There are two commands that mig
be given, ordered D or ordered D. Ordered D cannot be handled directly. If D and D got
zero then AgD + A, ;8% = 0. Using a magnitude of 0.0001 for A;; and 0. 00l for Ag

<10 D
(both of which are very reliable estimates), 6' corresponding to oD is —Qz— .

S
For an order dive angle of 30° at a speed of 20 knots ¢ s would be approximately 2.4
This leads to a D that is much too slow.

Therefore, instead of an ordered D, the command control situation will be given ir
terms of ol'). This wil} be a more flexible"formulation since each of) corresp.onda to a par:
ticular value of ¢ 5 oD is achieved when D = 0. Once this state is reached, D will start to
decrease toward zero if ¢ s is held constant, however, this happens very slowly. The effec
of AQD is so0 insignificant that it will be ignored in the command control situation. The dif-
ference between the command control and operator control situation is just a deletion of the
effect of AQD. The AQD term is not completely ignored, however. When there is one valu¢
of D which is most important in an overshoot or level-up maneuver where D varies around
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some central, non-zero value, D willbe denotedby D and used in finding the relation
between of) and bge This value of D will be used in the following calculations. Bearing in
mind, however, that it will usually be set to zero. The crror introduced by ignoring it
completely will always be less than 10%.

Consider equation 54 with a fixed value of & s 6 s corresponds to oﬁ in the followi
equation, derived by setting D = 0 in equation 54,

Sg = "(% A‘Isob + AOOD)_JT (88,

A8

where OD, as described above, is often zero.

Equation 54 becomes

= - 3 A{SD - (Ag D - [Ag D +3 AS.D])

D =-3A80 - D) (8¢

Equation 69 is a linear, first order differential equation in D. Its solution is

5
R Y-
D- D=Aed " (¢
5
Dn—Ae +0D
A snh\ +2A8h .
Dn1=(Ae§ 7 )e‘hg e D
C . =3 AgSh
D, - D=0, - De R

Equation 71 may either be simplified, using the arguments following equation 64
or used as it is.



Simplifying,

I.)n - of) = (bn-l - 015)(1 - % Aq8h)
lSn - l.)n-l = (oﬁ B ISx'a-l)gA'Isr‘ (72)

Note also that equation 72, used together with equation 68 , will provide a less
accurate but simpler operator control equation.

. , 2 5 .
Dy - Dp_q = ~(AgD + Ay;876, +gAq8D,_y)h (73)
When equation 72 or 73 is used to update D, then D is updated using the formula
h » o
w)n = n-1 + !(Dn + Dn-l) (74)

Instructor Control

The instructor control situation is simulated by an abrupt change in D after an ap-
propriate time delay, D changes from its original valu: to D and is held untﬂ D= D, at
which time it is set to zero The time delay is found by equating the D at some future time

(x) found by using equation 70 to the value of D at that time found by using the instructor
control formuiation.

In equation (70), let D = 150 whent = 0,

X 5
-2 A,St
So lim D dt = lim [015 + (D, - oﬁ)e BA'I*']dt

X0 2 X-(Do

8D, - D) -§As8x
s o B

. 8(D, - D)
= oDx +———5K-s—«7 o (75)
But this is to be equated to
T X
D_dt +lim / Ddt=(D_- D)r+ Dx
[ Xv0 A 0 0O O 0
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therefore
r = g,{’— (76}

S
Dn D hennhs_.,m"s

o = » - b
D, = ;D whennh> —-3-5 A7§ and (D Dn)(ob) >0
where D_=D +h(15 +D_ 4)
n”“n-172W%Wn*¥n1

D, = 0 otherwise (17)

Program Control

In the program control situation, the inputs are D, /D, D and D. D, changes
abruptly from D, to oD in such a way that the depth, dZ = -8 sin D dt, will be the same at
some future time (x) as it would have been using the formulation described in equation 77 .

Consider the formulation set forth in equation 77 with D = D, when t = 0.
D =D, +D_t when 0 <t SHAS.

8D .. 8 )
Whentz-sz%-s,D=Do+-5r7%. D= O whent>ggbut D < D. WhenD =D, D goes

to zero. The time at which this occurs can be calculated as follows: Fort> -5-38;-5- ,

BD
D=Do+5As+ D(t - 5A78) Equating this to D produces

D D)
_JL___Q.
t= '}S[D Do + 548 ]

as the time at which D first becomes 0D. D is then fixed at oD' The complese Jor.:.. 2%ion
is therefore

= : 8
D—DO-O-DOtWhenOﬁt 'B—A—q-s'



D« D hen — B(gh - D/
x W'en«}; OD-I%)+-——5z;§- <t
(o)

8(,b - b
LettlsgA.,Sandtz--—-l— D-D +—2— ]

s lo o 5A.8S
oD Aq

therefore, whent = x,

Y ty
ZeZ -8 [ sin(D, + D t) dt - f sin[D, + t, (O, - D) + Dtlat
-s /)‘ sin D dt (18)
ty

Z-Z°+stinoD=8

-bl{cos(Do + ﬁotl) - coB Do] +ty 8in D
o

+ %[coel(D0 +t,0, - of)) + oDty
o

- cos(D, +t1(150 D) + Dtl)]

where D, + tl(D0 - oD) + oPtg = oP

Z-ZO+stinoD=‘i

DOD‘

(—1 - —ll)) cos(D,, + I')otl) + iy 8in D

+—tcos D--Lcosp l’ (79)
- P "= o

oP D, '

On the oiher hand, the program control formulation leads i¢

T X
Zazo-sfsinbodt-sf sinODdt
(§] ¥

Z - Z, + 8x sin oD = Sr(sin OD - 8in Do) (80)
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therefore, equating the right hand members of equations 79 and 80,

1
7(sin 0D - 8in Do) =-l,-)- cos(Do + 5A78)' cos D
(o]
8(D-D)
1

+— | (P - Dylstn D +_9'5I.;5’°' sin D

o

8150 cos oD
- CO8 Do +m + (t
where all angles are expressed in radians.

This formula more than satisfies the requirements for most maneuvers for whick
program control would be used. Another form that could be used isl that which issused tc
change from oD to D, using oD, where Do = (0. When D0 ~0, the ;— term —- -~ 3;7-—5 sin]

Therefore, equation 81 can be written °

7(sin D - sin D) = S—Aﬂ_lg (sin D - 8in D) +_i13[(°D - D_)sin D + cos ;D - cos I

o
8 (D-DJ)sin D+ cos_D- cosD
T=% s*"l" — S D D 2 (
A’I oD 0 o
Cons~quently, when Do =0,
8 OD (1 - cos oD)
il 7 W e — (
7 D 0D sin oD

In any case, the program control formulation is
Dn=Dowhennh5_-r

=0thennh>'r (

A.1,5 Sine and Cosine Approximaticn

In most of the submarine formulations presented above, the output is in the form
an angle which represents the orientaticn of the submarine with respect to a particular :
erence axes. These angles, in most formulations, are used to update the submarine po



1f sine or cosine subroutines have to be used to achieve this, then much of the computer
time saved by all thege simplitications will be lost again. Therefore, it is necessary to
develop some approximation formulas.

Suppose the output is in the form of an angle rate of change and a speed. én and §

nh b 5 L ¢

8, +8 C, +C

Yn - ¥n1 ™ [ 8 cos C dt -=Ln—+§-n=1)f cos(C, _4 +[—9—+T!1'—1]t)dt
(n=1)h 0

S, +8 C, +C
Yn-¥n1 ™ S__n__tz_x_\_-_l_) [’m(cn-l +[J_tf'n:'l]h> - sin cn—]

1 . .
(Cn + Cn-l)
and similarly
8, + 1) C. +C, _
x -x (=R on=lloec . _cosle (4| Bmn=l|pl 2
n “n-l 2 n-1 n-1 2
(Cn + Cn_1

C, +C )
However, (—"—-2—3'—1- )h will always be small enough (lcl very rarely > 5° /sec) s¢

én + én—l ChtCph1
that the approximations sin | \———— hi{= — h

and

. . - . . 2
CIJ + CH-J _ Cht C!]_] ﬁ
CO! 2 hJ i 1 - 2 N 2
will lead to an error considerably less than 10%
Using these approximations, let
A Cn + Cn-l 0
= '——T——"
Therefore

2

% [sin(Cn_1 + A) - 8in Cn-1] =%[(sin Cn-l)(l - -‘-1—2—) + A cos Cn_1 - 8in Cn-1]

=h[eos C_  -&sincC, ]

n-1 2 n-1
h h a2
Alcos €, _; ~cos(C_; +4)] =3]cos C ;- (cos8C\ y\1-F/+As8InC 4
A
=h(sin C__; +3cos C,_4] (85
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Therefore
- )h . . h
Yn = Yn-1 = 8p +8,_yValcos C ;- (C  +C _y)gsinC 4]
and
X, - =(8 +8 h[MnC +(C.+C )hcosC ]
n "~ *n-1 n*Sh1)3 n-1 n" “n-1'4 n-1

where (':n and én-l are expressed in radians per second.

These formulas still do not provide a way of updating sin C, and cos C . Thes
provided by equation 85 .

2
sin Cn = sin(Cn_l +4A)=(s8in cn-l)(1 - %—) + A cos Cn-l

2
cos C, = cos(C,_; +4) = (cos Cn-l)(l - %—) -AsinC 4
So

.
. » 2 h . . h
sin Cn =|1- (Cn + Cn-l) _e" sin Cn_l +[(Cn + Cn-l)'z_ cos Cn"l

» . 2 » o h
cos C =|1-(C +C, {)" g |cos8 Cp_q - [(Cn + Cn-l)i_J 8inC, _;

where én and én—l are expressed in radians per second.

These formulas are used for updating the position of submearines and surface ve
in all turn and dive maneuvers.



A.2 SURFACE VESSEL

The following equations were used as a pasis for deriving the kinematic equations
motion for a surface vessel. For any given vessel, ay, °*°, agare constants, and are
characteristic of that vessel.

i = (ald + azb)vz + layV . (8

& = (a4d + asb)v + asy (8

V= a7(a4a + a‘.-,cs)zv2 + aa(VQ2 - V2) (9

y = ra::hof) change of the ship's heading (8). (9 is measured clockwise from due
noxth.

o = side-slip angle (the angle from the true direction of motion to the direction
of the ship's heading. The positive direction is clockwise.)

6 = actual course angle (measured clockwise from due north. C =6 - o)
6 = rudder deflection angle {left rudder is positive.)
V = ship's velocity

V_ = velocity for which the ship's engines are set.

0 (In a turn this means velocity as the ship is entering the turn. In an accel-
eration or deceleration maneuver it means "ordered speed.")

The constants ay, ***, ag, chosen from available sources, are such that all
angles will be in radians and velocity in feet per second. Notice, however, that since eq
tions 88 and 89 are linear in "angle measure” any unit of angle measure can be chosen
for o, y and & as long as it is consistent for all three and provided it is converted to radi:
measure for use in equation 90.

A.2,1 Surface Vessel Turn
A.2.1.1 Solution of the Differential Equations

The equations for turn rate, or C= y - &, are found by solving equations 88 and
89 simultaneously. V must be assumed constant during this solution, otherwise no solu
tion would be possible. In the final solution vV, (the current value of V) will be used whex
ever V is called for.

o is assumed to vary linearly with time.

Consider the homogeneous equations:

¥y = a3y'V +ay aV2

q= agy +a,aV 9
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This system of equations has Jacobean Matrix

2
33V alv

ae a4V
The equation for the eigenvalues associated with this matrix is
(a3V - x)(a4v -X) - alasv2 =0

x2 - (a3 + a4)xv + (a3a4 - alae)v2 =0

X = [(a.3 +a,) t‘/(aa + a4)2 - 4(aga, - “1‘8;]";

The two eigenvalues will be denoted by zl and Z,

\
21 = [(33 + 8.4) +'/(8.3 + 34)2 - 4(‘.3&4 - alao)]Yz-

Z2 = [(33 &+ a4) -‘/(8.3 + a4)2 - 4(3,3a4 - alaa)]‘—;

The solutions to the homogeneous equations are therefore,

Z.t Zot
y=Ale 1 +A2e 2

Z,t Zot
a=B1e 1 +Bze 2

There are two constants too many. Substituting into equation 91,

th Zzt 9 th 9 Zzt
Alzle + AzZZG = (33VA1 + a.lv Bl)e + (3.3VA2 + a1V Bz)e

th Zzt th Zzt
B1Z1e + Bzzze = (aGA1 + a4VBl)e + (a6A2 + a4VB2)e

The above equations must hold for all values of t since they result from substitut
in equation 91,
Therefore,



BIZI = (asAl + a.4VB1)
BzZz = (aBAz + a4v32)

Thu,

By = Az(zz - a3V)/a1V2
B, = asAl/(Z“1 . a4V)
By = 3gAy/(Zg - 34V)
The first two equations are equivalent tc the last two:

Z, -a,V a
] .26
al;g_ 2y -2V

(Zy - 23V)(Zy - 2,V) - 2,agV2 = 0
however, this is equation 82. The solutions to equation 91 may now be written

Z,t Zot
y=Ale 1 +A26 2

- Al(Zl - 3.3V) ezlt+ A2(22 - 33V) eZzt
Consider now the inhomogeneous equations. Let the forcing function be
6= ry + rzt
and let the particular solutions be
y = Pl + Pzt

a=qq +qgt
So equations 88 and 89 become
Py =(as[ay +qgt] +ag[r + rzt])V2 +agV[Py + Pyt]

Qg = (a4[q1 + qzt] + 35[1'1 + rzt])V + aﬁ[P1 + Pzt]

A=42
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These equations rust hold identically for all values of t. Therefore, the follow
four equations must be true.

Py = alqlv2 + azrlv2 + a3P1V

0 = alqzvz + azrz\-’ 2 + a3P2V

Qg = a4q1V + a5r1V +a6P1

0 = a4q2V + a5r2V + a6P2

These four equations must now be solved for Pl’ PZ!’ and 4. It will not be nece

sary to solve for qq since we are interested in q, not in o, and 9 drops cut of the equat
for 4, as shown below,

The equations will be solved using determinants. 'The denominator can be found
the following manner,

2
0 a,V 0 a, V2
3 1
D =
ag 0 a4V -1
0 ag 0 a4V

D= aav[a3V(a 42V2) + alvz(-a4a6V)] + a6[-a1V2(asa 4V2 - alaGVZ)]

D= (a3a4 - a1a6)2v4 (¢
2 2
~agryV -1 a1V 0
2 2
PlD =
-asrlv 0 a4V "'1




PD = alvz[-a3V(-a4a5r1V2 - aser) - as(azrzvz + alasrlvs)]

- aﬂl[-aervz(asa‘Vz - alu‘v’) + (-130.4er3 + alasrzv’)]
PID = Tlvs(.al‘ - ‘1“)(‘135 - ..2.4) + r3V‘[tl(l’l5 - ‘z‘e) + l‘(‘lls - 'z“)]
(nqag - 2qn,) ['l(‘ﬂi - ";_‘_6) +'I(‘l‘5 - 'tl)]
Pro=n¥ G:;!TI};:’ tTa (mgng - a4a,)

The notation listed below will be used in all of the following calculations.

» By -0 ) A

STty - ayig o0
"t! - 3a!)

e Rely - R4ag (68)

So Pl can be written

at - aqn
Pl = rIVG + fz l3l4 _ .'1.'6 (gO)
We now caiculate Pz and 4.
2V -znzrlv2 alv"' 0
a2 2

0 "‘..zrzv 0 llv
PzD =

as -&51'1V 8.4V '1

0 -asrzv 4] u4v

P,D = nsv[a4V(-a2a4r2V3 + "1‘5’2"3)1 + 36[-a1V2(-9.2a4r2V3 + 31a5r2V3)]

PyD = (agiy - ayRg)(aghs - a8 )ryV"
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P2 = r2V§
aav -1 aivz "'azrlvz
0 2qV 0 ~2yT V2
3 2°2
Q2D =
ag 0 a4V -asrlv

qqD = a3V[+ a4V(-3335r2V2 + azaerzvz)] + aa[-alvz(-aaasrzvz + azasrzvz)]

gD = (agay - a;3g)(nzag - agegVir,
9 = T9n

So the equations for y and a are

y=Aje © + Age © +riVE+Ty ——_—aaa4 Taga,
&-'-'Al —"_—r Zle +A2——a'_2'_' 22e +r2'ﬂ
aIV alv

<+ r2V§t

A.2.1.2 The Integral of o

(1

(1

(1

The integral of C = y - a wiil be used in the last three control situations. Specific

various quantities will be equated to

X--0

x
lim / Cdt where C =y - a. The solution of this integral is not trivial. T}
o

following two forms of equations 102 and 103 are used: (1) ry = Oandry =5 /T, wher

T is the time it takes the rudder to move from & = 0 to & = §, the rudder angle correspon

ing to oé; and (2) ry=$ and Ty = 0. These are the two rudder coiditions involved when :

surface vessel goes into a turn from a ¢ = 0 condition.



Consider first the constants Al and A, for the first T seconds. y =0, ry= 0 and

o =0 whent =0,
2,8 - aqn
4 1
Let ro, ————=—
T2 Agly - Ill.‘
So equation 102 becomes
O= Al + Az +P
while equation 103 is

(7, - 0,Y) (Zy - 8,Y)
0= AyZy ——f— + AgZ, —8—F— +q,

1 1
D= (Zy = 2oV (Z V)
og = § 9" ‘3 ]
z _L_‘E__ z
boagv 2 AV
(z - 2qV) (25 - 2y)

(Zg - agV)
AU

alv

a,Vv

according to equation 93, Zg +Zy -agV=a,V. Therefore,

a,v
D‘(zz'zﬂa—%{

1

-P
AID =

_qz

1
AzD =

Ly 2
atv
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-q2

(104)



2 h
&,V [ (Z, - agV)
A1 -lilya‘v 1 - P23 "L‘ILV

i *1 4
3 -
-a,V [ (Zl - ;V)

Let Al and Aq be the constants used in equations 102 and 103 while é is cha:
and let A; and Ay be the constants used when & has attained its fixed value (). The
two sets of constants because ry and ry change value, therefore, there are two differe
ol equations, However, whent = T, the to values of y and a expressed by these two
of equaiions must be equal.

A'l and Aé are defined so that, whent = T,
yp=A; +Ay +8VE

. (2 -~ aV) ,
ap = Ay Z) a3 +hy Zg

But A, and Az are defined so that, whent = T

Zl'I‘ Z,T
Yp = Aie + Aze + erET + P

, (Z) - 34V) 24T (Zg - 23V) Z,T
O.T = Alzl a vz e + AzZz a V2 e + qz
1 1

where b= rzT

The two can now bz equated and Ai and Aé can be found.

1 1
P ( )
%y - 2V (Zo - 2,V
(24 - a5V) 2" %
S S
1 1

a,V

D= (22 - Zl) :‘;2'

~ — e . - - — - - - - - e e e L e S - o ———



o

!
AID =

!

A'l = Al (e

Similarly,

Ale

Zy -2,V
*‘121(“1‘"’l V'Lz )
1

Z,T

Z4T

- 1)

' ZIT
Az = Az(e - 1)

Therefore,

x
f¢
o

T

Lo

+ Aze

Z4T

+P

ZyT

I4V ele
alvz

1-%

———y

RIV

+ToVEt + P - q, }dt

+£{A1(ele - 1) {1 - Zl(z

Z,T Z, -2,V Z,(t-T)
2 -1)1-z2(—3-—-—3> e 2 dt

alv

Z,T
aIV

2 - %V
+AgZ, —=—3— e + 4,

(z2 - 33V)J

[ a1V

a1V

e +A2 1'22 '_—"'z’—

2

a1V

2

-a,Vv Z,(t-T
e e LA B L sve
a1V -

22 - 33V
Zol— 3~
a1V

Z,t

3 ) 21T _ . (ele ) 1) (ezl(x-'r) ) 1)

Z: - a,V
1-7,[2
1 3

(107)
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A - Z,T Z,T Zqo(x-T
Zg _ﬁ'z:i;;ﬂz e 2 -14-(1!2 nl)(e 2 )-1)

2
+1gVE S + (P - qp)T + 8V4(x - T)
As x -+ o0, this has, as its limit

2
rgVely + (P - qp)T + 8VE(x - T)

Then, since roT = &

lim f Cdt = -EVST + (P - qp)T + 6Viex

This equation is somewhat misleading since it gives the impression that, as T -0,

x- © f Cat -~ 6Véx. This is not true, because, as T -0, Ty +® because r, = 8/T.

Thus P and qg ~® by equations 101 and 104 . (P - qz)T is therefore an indeterminate

form and must be evaluated by using the original definitions and the fact that r,T = .
Thus,

x
m [ & 246 - 24 ]
= VE(X - 5 + 8| i -
X0 / = VK [ aga,-ajag
This equation will be referred to in section A.2.1.3. For application in this para-
graph it must be noted that oé =8V,t (let t -~ in equations 102 and 103 with ry = 0 and
ry=8 ), where V¢ is the final, steady-state value of V.

Since V is assumed constant in these derivations, the form of the integral which wili
be 1used is

X

Um [ 4a . A Ty o8 [ 245 -84M
x-m | Cdt=,Clx-3)+ :‘;Vf I_a3a4 a,ag -n (109)

o
Vf will be derived in section A. 2.2, 2.
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A.2.1.3 Four Control Situaticas
Operator Control

In the operator control situation, equations 102 and 103 will be solved directly to
find y, and ‘in interms of y,_; and d,_1- Consider the equations for y , d ; and ‘in-l'
(In equation 102, rIV! + r2V€t can be written sV£ since Ty +Tgt = 6).

Zlnh Zznh ﬁ4€ - ..lﬂ
yn - Ale - Aze = Gnve + r2 —__TT_‘3l4 g T

n’ yn_

The last term in this equation appears frequently.

24E - 2yn :
Let P= rz W (eqution 104)
(-AIe Je + (-Aze )e =8, 1VE+P -y, 4

Z,nh Zy -2,V Zgnh Zy - 25V
G+ A )21( .;i )"('Aze 2 )zz( a\:i )"2"
1 1

Zlnh -Zh Zl - a3V 22nh -22}1 22 - 8.3V .
("Ale )e Zl '—a:"rr + (-Aze )e 22 ——a—l-v—z—-— = qz - “n-l

Z4nh Zgnh
These four equations in the four unknowns yn,&n,(-Ale ) and(-Aze ) will be
solved for Yn and &n. The determinant for the denominator is:

1 0 1 1
-Z<h -Zoh
0 0 e 1 e 2
D=
Zs -2,V Zz - a3V
0 1 z,(——3~ ] ———
a1V alv

RIV alv

-Z4+h Z, - a2V ~Zoh Zoy -~ 2V
1 1 3 2 2 ?
|

Al



]

‘lv
~(Zy + Zgh
D=- L—:F’r— (Zg - Z1)(Zg + 2y - agV)

However, Zg+7Z= (‘3 + a4)v (equation 103)

‘(zl+z2)h ﬂ4v
Therefore D= e (Zl - Zz)——-z- (110)
aIV

6nV§ +P 0 1 1

-Zsh ~Zoh
1 gVE+P -y 4 O e 1 e 2

ypD = :
Zl - 33‘! 22 - a3V
P! 1 2\~ Zo| ~"——3—
alv Vv
-Z.h Z, -a,V -Zoh Zog -2V
1 1 3 2 2 "3
Gg ~ & _ 0 e 2y~ e Zo| ——5—
2 1( a,v ) 2( v )
~(Z4+Zg)h a,v
y,D = -[(anvg +Pe Uz, 2,) 45
: a1V
-Zoh Zoy -8 -Z.h Z, -2,V
- (6n_1V§ +P - yn-l) e 2 zz ———2—2 31 . e 1 zl —-——2—1 3
aIV a1V
-Z -Z4+h
+ (g - & _q)(e 2 )] (111)

At this point it becomes evident that to proceed further, the exponential must be
expanded, Since only the first two terms of the expansion will be used, the validity of such
ar% a}?proxinzm;ion depends on the magnitudes of Z1 and Zz. It should be pointed out that
e 1 and e 2 cannot be evaluated for each vehicle and mesh size and kept as a constant.
This is because Zl and 22 are both proportional to V, and since V changes during a turn

maneuver, sc do 21 and ZZ'
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From the constants available, and froia the nature of the equations, it is evident
that ag and a, will always be negative. Therefore, Z, has the larger magnitude. If the
approximation is valid for Zg it is valid for z,_. Note that aga, - 243q in equation 93
must be positive otherwise zl would be positive, leading to divergent solutions. It does
turn out to be positive for g1l vessels for which constants are available,

Consider z, for three of the vessels for which constants are available, zz must be¢
such that |Z,h|<1. This leads to the following restrictions on V.

Surface VesselI Vh < 8f 5 feet = 51,2 knot-seconds
Surface Vessel II Vh < T1.8 feet = 42.5 knot-seconds
Surface Vessel III Vh <185 feet = 110 knot-seconds

In other words, h may have to be one second or less for certain surface vessels at
high speeds, whereas for others, at slow speeds, it may be as high as 5 to 10 seconds.

Assuming that Vh satisfies the appropriate condition, linear approximations will be
used for the exponentials in equation 111, The terms will be approximated separately,

since they will appear again later. Note that each approximation involves expansions of
Zh  C Zgh (Zy+Zg)h
e ande ©, but naver e

2

-2,V a,Vv
, 4
Yn'u'l—.%;ya;v (6,VE + P) (25 - Zy) oVt
- (bpgVE+ Py ple Dz (R e gy |-l

alv aIV
Z+4h Zoh
+(q2-&n_1)(e 17 _ "2 )

zh  [2p -2,V Zoh [21“3"]
-e Zl

as such.

e Z —3 —
2 alV a1V

r
Zoy - 2V Zy ~ 2V Zo - 2
et B 1 ? . 2" “1

alv a1V alv
(Zy - Zy)
1—-;;‘—"2—' [22 + Zl - a3V + lezh]

(29 - 29) 2
= —;—;V-T- [a4v + (3.33.4 - alaa)hv ]
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The last step is accomplished by substituting zl and zz from equation 93.
Zh 2

So equation 111 becomes

(Rqty - 2423) a,Vh
Vo= (6,VE+P) - (5, ;VE+P -y, ) [1 — “4 18 vn]- (ag - 'n_l)_!ir (113)

This may be simplified further. From equation 104, the P term. in the above equa-
tion becomes:

a t -aqn \/aqa, - a4a 2,renVh
-r2< 4 1 6)(3 4 "1 °)Vh--r2§Vh+ 12

8334-a1a 34 ﬂ4
However
rotVh = (5, - 6, )6V since & =1, + rot,

and

a,r,nVh a,q,Vh
_1124 -_lii from equation 101,

So equation 113 becomes:
Yo~ ¥p-1™ aY':' (V.1 - VEsyy)(Rgay - 2j2g) +a4dy 4] (114)

Now consider ‘in'

1 énVE. +P 1 1
-zlh -Zzh
0 6n-1VE+P -V, ¢ e e
dyD =
0 2 Zl - a3V 7 Z2 - aav
q R
2 1\ a,v? 2\ a,v
-Z.h Zs-a,V -Zoh Zo-aqV
. 1 1 % 2 2°°3
0 Q2 - O.n_1 e Zl e 22 ——"'2"
alv a1V




£

tha-

Z, -2V\/Zy -2V -Zoh -Z.h
4D = (6, (VE+P - yn-l)zlz2(_l_'ia_) (’L—!?") (‘ 2 .e 1 )

alv alv
~(Z4+Zg)h Zo -2V Z, -2V
o () ()|
1 1
+(ag - &_y) [e-zlhz2 (M) - e-zzhzl(ﬁ—-—ﬁ?-!)] (115)
alv alv ,

Two terms in equation 115 have not yet been simplified.

Zy-24V\[Zg - 2gV 1
(——-,—l'lv’ )(——,—ilv 3 ) = _Vll [zlzz - agV(Zy + Zy) + a3zvz]

2 2, __"3
= —y[‘}-‘[(asa‘ - a.lae) - as(a3 + a4) +2q ] =% (116}
.1 alv

(z1+zz)h[ -Z4h (zz - a3V> ~Zgh (21 - agV )]
e e 22 —_—y - e zl —
aIV a1V

a4V 9 zz-a3v 9 zl-aav

;v Vv
(Zy - 2y) 2 2
= "-“a"‘]—.‘vj“" a4V + ((Z2 + ZIZZ + Z1 ) - 33V(z2 + Zl) h

2 2
22 + 2122 + Zl - a3V(22 + ZI)

Therefore,
(Zl+22)h -Zlh Zo - a3V "Zzh Zl - a.3V
1 31
(Zy - Zy) 2 2
L a7+ 0 v agagVih ) (117
a
1



Hence,

ip = Gp g VE+P - Yn-1’(“e“a‘4 - '1'0)"%)
+qg- (g -d [1+@2+ alao).‘{%] (118)

when equations 110, 113, 116, and 117 are used with equation 113.
Equation 118 may be further simplified. Consider the P and qpterms

["‘.ap(aaa4 - alae) - q2(a42 + ‘lao)]%
By 2quations 101 and 104 this becomes
-Vhr
—a;-z-[ae(a4§ - aym) + 'r\(a42 + alas)] = -Vhrz[aae + a4n]

Howevexr by equations 97 and 98,

Rglajag - agy) +a,(agng - aghy)

aog + l41"| = W‘ _r].te) -‘5 (119)
So

-Vhry[agé + a n] = agVhr,
and

Vha
dn - dn-»l = —_a46 [(yn_1 - Vgan_l)(aaa4 - alae) + aian_l] + Vh(a46h_1 + asrz) (120)
Equation 114 is repeated for the sake of comparison
- Vh .
Yn=¥a® W) [(yp.1 - V56,1 (@g0, - 2jag) + 216 4]
and Ty = (6n - 6n_1)/h (121)

Command Control

In the command control situation the input is in the form oé rather than 6. The
command control equation is comprised of equations 114 and 120 rewritten with
Ve, g = OC and Ty = 0. This correaponds to entering a turn by an instantasieous change

of ru’der angle from 0 to ¢ at time t = 0, It is evident that the resuitant motion will differ

somewhat from the situation in which the rudder moves at the rate 5/T for a time T. That
the total change in course at some future time (x) will be different for these two rudder his-
tories can be seen by looldng' at the coefficient o>f T in equation 109. In order to compen-
sate for this difference, a time delay will be used in starting the maneuver.



Consider equation 109,

X
; Ilim Cdt- L - ;“evf[_:le__‘.l"_ n]

X 00 Rghy - 248y

! Letting T = 0 is equivalent to the physical situation where é = ¢ att = 0, and rg =0

i throughout. However, this is exactly what happens in the command control situation.

1 Therefore, in the command control situation, values of C for large t (when Cw 8VE) are
attained T/2 seconds sooner than in the operator control situation. However, a time delay
of T/2 in the command control formulation will make the two values of C equal.

Thus, the command control equations are
Yo = 0 when nh < T/2

Yn=Yn1t Y;—i [%-1 - oO)aga, - a,ap) + ‘1%-1] (122)

when nh= T/2
@, = 0 when nh <T/2

Vhag
p=dp g +=3 [(Yn-1 oO)mgry -a2g) +ad ] +Vhag o

Instructor Control

In the inatructor control situation, C is increased linearly until it equals OC. The
rate of increans is such that C at some future time (x) is equal to the integral in equation
109. Let m be the rate of increase of C.

oC/m x x
lim f mt dt + / Lal =lm f & dt (124)
X~ g <C/m Xx-® 75

¢\2 ¢ é a,t - agm
: : T 4 i
(%)—?woc(x-%;):oC(x B) + Vf§ [a3a4-a1a6 n]

¢ R,k - aqm
T 1 4 1
o1 L e,

¢ 2 343“3171 )
= o8/ |7- ety 1z

A~56



Therefore, the turn rate is updated as follows:
LR . 2 345 ayn
Cn - Cn"l + hOCAT - Vf§< 8.3&4 alas =N
as longas | |< | C|

C, = ,C otherwise, (126)

Program Control

In the program control situation, ¢ goes abruptly from zero to C after an appro-
priate time delay. The time delay is chosen z0 that:

X X

lim OC dt = lim ¢adt
X0 7 X-0 °

where the second integral is derived from equaticn 108.

Therefore,

. Ca4§ al'f\
0O = 7) = o806 - ) + 8y mgm g

T 1| %g5-yn
R EVE[W ) "] o
Hence,

1 | 245-3yn
C —Owhennhai WW n

N T 1 a,t - alﬂ
NOTE: I T is nct known it ma~ be estimated, provided a value is known for § or & max
Since 0C =8EVy,

T = 0C/ EV, 6

\/, will be derived in paragraph A. 2, 2. 2.
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A.2.2 Surface Vessei Speed
A.2,2.1 Solution of the Differential Equation

Equation 80 will be solved to find the kinematic equation for surface vessel speed.
In order to do this, Rga +2gh is assumed constant for the analytic solution, but the current
values of g and 6 are used at each iteration of the difference equation. Equation 90 is
written:

dv
—y—y = dt (129)
as(Vol - Vr) + a.,(a‘a + a56) \'4
an must be negative since V is decreased when the surface vessel enters a turn, ag is
positive since V is increased in a straight-ahead maneuver where V >Vandg=6=0

(refer to discussion after equation 90). Therefore a7(a4a + a56) - aa <0 and equation 129
can be written

=dt

dv { A + B }
,\/;EVO "7\/“8 - ap(am + 9.56)2 \' ‘\/‘i_évo "4/"8 - aqaQ + asé)z. N

A=B-=

1
2v o\ﬁ

Vmﬁ; + V\ﬁ.&- an(ag + a56)§
VOV/EE -V, 38 - ar’(aﬂ + a56)2
Letting V = V-1 Whent = (n-1)hand V = V,, when t = nh gives

= K4 exp[zvot‘\Fs-vLB - 37(a4a + a56)2]

Vm/a—g + anéa - ap(a + 5156)2 ) Voafag + Vn-n/“a - anla + a55)2
VOVEB_— Vn\/as - a.7(a.4a + a56)2 \'A /as - Vn-l\/és - a,7(a4a + a56)2
x exp| 2V°h‘\/EE\/aB - a7(a4a + a56)2] (130)

Let a= Vo\/ig and b =\/a; - a7(a4a + a55)2
2abh

So v (a + bV, )e“"0 - (a - bV _,)

. VZ_ b?)(ezabh - 1)

131
Bh o oy )] (131)

A=38



In order to proceed it will be ".ecessary to approximate the exponential. The max
mum value of the argument is attained when aq +agb is a maximum. This happens when
has attained its steady state value in a turn, that is, when a = 0. Using equation 89, this
happens when (a 4@ t+agb W+ agy = 0 and y has its steady-state value V¢é (refer to discus-
sion before equation 109). Therefore 2abh is largest when aa +82g6 = -agks. The linear
expansion will be adequate as long as 2abh <1. This means that

2V, fagh, fag - aqag e 8% <1 (132

i 4 Voh satisfies inequality 132, then the exponential in equation 131 can be expande

2 _y2 ;2

Va = Vo1 * T3 5@ + bV, ) (133

However we wish to find an expression for V|, - V|, _; which is linear in h, therefor
equation 133 must be approximated by

. Chfal 2 .2
Vo~ V1= h(a® - Vi.1P )
2 2 2,,2 ,
V, - V.1 =hlagV,“ -V ;) +azaue +ags) Vo4l (134
This approximation has validity if bh(a +an_,) <1. V.1 is maximum whenitis V80
the condition .
VohJa; - aq(a4a + asé)z( /as + \/38 - a7(a4a + a56)2)< 1must be satisfied. (135,
Note that this is a more stringent condition then inequality 132, therefore if satis-
fied, then the whole computation is valid Inequality 135 leads to the following condition fc
Voh for the three surface vessels teste. respectively (using § = 35 degrees).

Surface Vessel 1 Voh <938.1 feet = 555. 4 knot-seconds
Surface Vessel 11 Voh <'181.3 feet = 462, 6 knot-seconds
Surface Vessel III Voh <983.9 feet = 582, 5 knot-seconds (136)

If these inequalities hold, then equation 134 will be valid for acceleration/decelera-
tion as well as for turning maneuvers. In an acceleration maneuver, V, represents the
final speed (speed for which the engines are set). In a deceleration maneuver however, the
inequalities must hold for the initial speed rather than for Vo

A.2,2.2 Four Control Situations

Operator and Command Conirol

Equation 134 wiil be used, with one slight modification, for both the operator cont1«
and command coatrol situations. Since o will not be one of the cutputs (refer to equations

A4



120 through 123) a (0 + 255 Will be expressed in terms of 4 and y using equation 89. Equa-
tion 134 becomes

V- V1= h[aB(voz - Vrzl-l) + a"l(&n-l - ag¥ -1)2] (137)

The Intgglal of V

Development of the instructor control and program control situations requires the

evaluation of 1im f V dt. To do this an expression must be found for V which is integrable.
X-+C0
o

A constant value must be assumed for (a4a + a55)V. This value will be found by using
& -agy= (a ot a56)V (equation 89). The steady-state value in a turn will be used for

@, 1-%g¥,.1- Thisis "‘Boé’ sinceqg ~0and C =y - 4.
Therefore equation 90 becomes

V=agag2 ¢2 agv 2 - v3) (138)

Note that, when V = o, aBV = J;BVOZ + aszo(':za?.
This is the steady-state value of V in a turn. It will be denoted by Ve,

Occasionally it will be necessary to find Viasa function of § rather than oé’ Since
OC = Vfgé_’

sz = Voz + aBZszgz_éza?/as

v2=v 2/1- ;75 ag22%?)

vf-v//l -—aﬁ2 %2 (140)

Thus, equation 138 may be written
: 2 2
V= as(Vf - V%) (141)

Note that for an acceleration/deceleration maneuver, this is alway. the case, not
an approximaiion,

-
A
av l"f A

. B _
V"'Vf+V]"at}dt

A=€0



3 A

1
=B =

Y,
2apV,t
ViV g Bt
Vf-V

V will start from Vo‘

b

V,+V Ve+ V. .\ 22,V t
f _ 8'f
V.-Vv- (Vt_vg- )e
f f 0
[ 2agVy .
(Ve +V )e (Vg - V)
V= Vf \'4
(V+V)e 80 v (vp-vy)
. 2&8Vft
(Vg + Vo)e + (Vf - Vo) - 2(Vf - VO)
V=V, TagVt
i (Vg + Vo)e + (Vg - Vo)
x x
. _ . - dt
e W e
0 0 (Vf + Vo)e + (Vf - Vo)
where
P dt
lim 2agVit
X0 % (Ve +V e + (V- V)
- ((v Ve 8t v
1 g+ Vole + (Ve -V,
= lim 2a,V.t - 1o
X--00 258:f“f - Vo) | 8'f d vy i
— ((v Ve B v v )]
1 g+ Ve + Vf - Vo
= lim , 2a,V.x - 108
X-00 28‘GVf(Vf - vo) i 8" 2Vf A
Now,
22,V
. [2aV 1 <(vf+vo)e 8 fx+(vf-vo)>}
im - log
o gVvex 2V,

(142)
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8l

i 2agVyx T
= lim |22,V - log (Vg + Vole
x| Mo [AZ

-l

Vf + Vo
= lim havfx - ZaBfo - log —wf—-

XM

L. «l

()

&

Therefore,

X
Z(Vf -V )Vf Ve+V Ve+V
lim Vdt=V +Kv-wgm108 9 VX+"'1'108—2'——2'
X~ £ BgVyvy - Vg Wy | T ag Vi

i [ va = Vex --L log{ 1 L/ (149)
ag Ve+V,

X-+-00 0

Vi - Vo will always be 128s than V, + Vo since ".he speeds we are considering will
always be positive. Therefcre, the logarithm can be expanded. Equation 143 becomes
x 2
-_1. Vf'vo-(Vf'Vo)
X-+QD ag| Vi + Vo 2V + VO)E

X 3
im [ Vdt=Vx+l(v -V)———————zvf+ %o (144)
X-+00 g ag-'o i 2(Ve + V)

This equation will be used in the derivation of the instructor control situation and
program control situation models.

Instructor Control

In the instructor control situation, velocity changes from Vo’ the original velocity,
‘o Vg, the final velocity, as a linear function of time. This is accomplished in such a way
that the displacement at some future time (x) is equal to what it would have been using the
expression for V in equation 142,
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(Vf-Vo)/m

X X
f (V, + mt)dt + 1im f Vg dt = lim f Vvt (145)
o X--0 X--Q0 0
(Vf-Vo)/m

By using equation 144,

(vf'vo) (Vf'vo)zm (vf'vo) Vo'vf[ Vt““’o]
2

t

\'4 + -V +Vx=VXx +
o o7 TVt VRV i, Wﬁ"f

v, -V )2 V -V, [ v,+3v
- - -0 f f
B R sl o ™ [z(vf +vj’]
By, -v) Ve+ Vo (148)
P o av e v

Note that this equation holds for acceleration, deceleration and turn maneuvers,
where Vo = original V and Vf = final V in all cases. This is because it was derived using
equations 141 and 145, for which these statements all hold,

Thus, the instructor control formulz is:

apgh V., +3V
Vh=Vp1+ _g_ (Vg - vo)/ [;&‘.:Tv‘?z:l when (Vy - V )(V; - Vp) >0
o

V, = V; otherwise, (147)

Piggram Control

In the program control situation, velocity changes abruptly from the original velocity.
Vo to the final velocity, Ve The abrupt change is timed in such a way that +* displace-
ment at some future time (x) will be what it would have been using the expression for V in
equation 14°
x

T X
f V, dt + lim f Vydt = lim Vv dt (148)
0 X-+00 T X-+00 o

By using equation 144

V. -V V,+ 3V
(Vo-Vf)-r+fo=fo+ ) f( f °2-)

% \2(v;+V)
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V, + 3V
. .-l( -LI——Q,) (149)

"8\2(v, + V)
8o
Vf+3V
V.=V h nh=< ———"f'
n ‘o when t(wf«»vo) )

1 (_Xllﬂ;n) (150)

V. =V when nh >
no Tg\(v, +v,)
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A.3 AIRCRAFT
o

Equations have been developed for the three basic aircraft maneuvers: Acceleration;
Coordinated turn and Climb. The methods of developing the equations will differ for each.
The following symbols are used.
a = Horizontal asymptote of the hyperbola (used to ?proximate the drag
Xexslul velocity curve, and hence the minimum drag, refer to Figure

b = Vertical asymptote of the hyperbola (maximum airspeed, refer to
Figure A-3 Ym

¢ = Third parameter of the hyperbola (refer to equation 150)
D = Drag force on the aircraft (drag is a function of velocity)
m = Mass of the aircraft

T = Thrust supplied by the aircraft engines (assumed here to be independent
of aircraft velocity)

v = Velocity (aircraft airspeed)
¢ = Bank or roll angle of the aircraft
w = Afjrcraft turn rate
Z:,‘ (A C} = Course change while aircraft is rolling out of a coordinated turn
p = Roll rate

= Level-flight airspeed corresponding to current airspeed and climb
angle of the aircraft

6 = Attitude (pitch angle of the sircraft)

y = Direction of flight in the vertical plane {Climb rate = v sin y)
a = Angle of attack (a = 6 - ¥)

Cp= Coefficient of Lift

W = Aircraft Weight

p = Density of the supporting medium

8 = Effective lifting surface area

k=2W/pSQ

A, B = Constants used in the airspeed versus attitude equations

Q~ CL/d
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A.3.1 Bpeed

The equations for speed buildup of an aircraft were derived from available thrust
and required thrust versus true air speed curves for the F-100A which appeared in the
UDOFT Test Report (refer to paragraph 3.3.3.1). These curves had to be reduced to sim-
ple functions that could be easily integrated. At low altitudes when air speeds were greater
than 250 knots, thrust available was nearly constant and thrust required versus true air
speed resembled & hyperbola when graphed.

These two approximating functions were used for all four altitudes for which curves
were available. These altitudes were: sea level, 15,000 feet, 25,000 feet and 35,000 feet.
For higher altitudes, thrust would only remain constant for lower values of thrust with low-
er top speeds. Also, as the true air speed increased, the graph of the thrust required lost
its hyperbolic shape. There was a tendency for the top speed at large thrust availabilities
to become disproportionately larger at high altitudes,

Since the derivation ignores that occurrence, ordered speeds cannot be very high
when the formulas are used at high altitudes. The upper limits will be pointed out hereafter.

Let D denote drag or thrust required, while T denotes thrust available and v is
velocity. Drag versus velocity as mentioned above, is approximated by a hyperbola with
asymptotes parallel to the coordinate axes:

(D-a)v-b)=c (151)

where &, b, and c are determined by fitting equation 151 to three points selezted or that
part of the graph nearest to a hyperbola in shape. As long as T exceeds D, the aircraft will
accelerate, The speed will be constant when T = D, !

Drag versus ve ocity hyperbola:
D
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Figure A-3
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If the thrust were adjusted to attain a certain ordered velocity, the differential equation
would be:

Force=mv=T-D (152)

mg—'t': = D(ov) - D(v)
mgt!-(?%—s+a) -(;,-g—bn)

dv _ -1 __1
mgt = cl~%-v-5] (153)

v-b
0 ___cdt
dv[1 + 3= ov] “W(,v-b)

v+ (ov - b)log(ov -v)+K =Tn—(;-‘9}—_—57 (154)

Let v=v whent=t andv=v jwhent=t ., wheret -t ,=hforalln.

Vo 4=V
; n-1_'n ch
Vp " Vp1 + oV - P)log [1 Y- Vn..1:| “miv -b) (153)

\4 -V \ A /
where 1 + —-:,1'-_1—‘,——-“ = 9-‘-,—_—-;’}—-
o n-1 o n-1
Vn-1"¥n
oV is always leas than unity because Vi is always between Yn-1 and oV’ usually bei;
o n-1 :
much closer to the former. Therefore,

V, -V V. 4=V
1" 'n a-1 " "n
log[1 + =———2] can be expande~ in powers of —2—-——1.
[ o " Vn-1 o' “ Vn-1
Keeping the {irst power only yields:
V. 4=V
n-1_'n___ch
Vn " Vn-1+ V=D V-V, m(yv-b)
ch(v-v_ )
_ (1] n-1
¥n = Va-1 Y@V - BB - v, ) (156

From the general shape of the hyperbola it can be seen that v <b and D < a. Therefore
¢ will always be negative (refer to equation 151).

If all speeds are kept below b, no serious inaccuracies will nccur. I v exceeds b
will be on the other brznch of the hyperbola, which in no way resembles the actual drag
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versus velocity curve. Infact, if v - b is a small positive number, drag will have a large
negative value. This situation is impossible.

Fitting the hyperbola to the four available graphs produces the following values for
b and ¢:

Altitude b c

Sea Level T11, 636 knots —885, 880 knots x pounds thrust
15,000 feet 667.906 knots — 253, 867 knots x pounds thrust
25, 000 feet 620.070 knots —112, 851 knots x pounds thrust
35,000 feet 572.293 knots — 22,087 knots x pounds thrust

These values must be expressed as & function of altitude. The best fit was achieved
with the formulas:

b="711.636 (1 - 0.00551ho) (157)

c= 26h° - 1000 (158)

where ho is the altitude in 1000-foot units.

A.3.2 Turn

Equations were developed for the coordinated turn of an aircraft. These equations
are almost entirely independent of the type of aircraft; only the air speed and roll rate
would be affected by this consideration.

The basic condition for the coordinated turn is that the four elements, bank angle (9),

turn rate (), air speed (v), and acceleration due to gravity (g) are related in the following
manner;

-“é"- = tan ¢ (159)

This equation will hold throughout the turn.

The aircraft will start with a roll cn bank angle ¢ = 0 and then roll to o¢' While the
aircraft is rolling into the turn ¢ = pt where p is the roll rate; while the aircraft is rolling

out of the turn, ¢ = 0¢ - p(t - T). 0¢, the ordered bank angle, is either directly ordered or
calculated from an ordered w by Equation 159.

Only one further calculation will be necessary. If a specific course change is de-
sired, then the aircraft must start rolling out of the turn ahead of time, (A C)f denotes the
course change while the aircraft is rolling out of the turr.
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P
(ac) =& f tan( ¢ - pt)dt (160)
0

(AC)¢ =-§log(1 + tan® o¢)

A.3.3 Climb

The derivation of equations describing the characteristics of an aircraft climb in-
volves more approximations than that of any of the other equations thus far described.
Although the equations themselves are simple, there are three separate equations and
therefore three different straight iine approximations of curves that are not straight lines.

The most inaccurate approximation is of the curve of attitude of pitch angle versus
air speed for a given thrust. When thrust and attitude are low and air speed is greater than
250 knots, the straight line approximation will be satisfactory; otherwise it becomes some-
what inaccurate.

VeV - A(sin 6 - B) (161)

where v equals air speed, 6 equals pitch angle and m equals the air speed of the aircraft
flying with a zero rate of climb. At zerc rate of climb, the pitch angle will not be zero;
there will always be a slight difference between the pitch angle and the actual direction of
flight in the vertical plane. This difference represents the angle of attack (). The direc-
tion of flight is denoted by 7.

y=0-a (162)

The 1ift of the aircraft is due to a. Over the range of o that is likely to be encoun-
tered here the coefficient of 1ift CL will be proportional to a.

Q will vary somewhat with Mach number, but for Mach numbers less than 0.8 re-
mains relatively constant,

Equation 164 relates v, ¥ and CL' This equation has been taken directly from
Reference 4.

2(cos )"
v= /—(—gl—i-“g e S (164)

where W equals the we.ght of the aircraft and S its effective lifting surface area.
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co8 ¥ can be written cos(d - a)
cos(6 - a) = cos 6 cos a + 8in 6 sin a
since a is rarely greater than two or three degrees

cos Y =cos 6 +asin 6 (165)

Using equations 159 and 160, equation 164 can be rewritten:

as _T@_WLQ_&EQ'.L. (166)

v® - (2W/p8Q)sin €

Let 2W/p8Q = k. 8ince p depends on altitude, so does k. k was evaluated by com-
paring 6, on the attitude versus air-speed curves already mentioned, with ¥ on correspond-
ing curves of climb rate versus air speed.

Corresponding to equation 185,

giny =8in 6 ~a cos 6 (187)
80
siny = —r——-——"z ainf - k (168)
vi-ksino

and in equation 161, B equals k/vmz.

Equation 168 can also be written as:

2
gin o = y_siny +k (169)

The formulas to be used in describing the climb maneuvers of an aircraft then, are

vEv, - A(sin 6 - —3—2—) (170)
Ym
and
siny = —5—"2 sin6 -k (171)
v®-ksin g
2

Since k is small compared to v
rigorous description.

, a second set of equations can be used for a less

v=v, - Asiny . : (172)
k

siny =8l 6 -—3 (173)
v
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There still 1emain several questions as to the use of these equations. For instance,
glven Vi’ what should 6 be for & desired climb rate or for an optimum climb rate?

v v
Equations 172 and 173 produce an optimum climb rate when siny = —2'%, v = —g’-

This is obtained by finding the maximum value of v sin? = (Vm - AsinY) sin? as a function
of sin¥. These values are extremely rcugh, but an analytic solution of equ.tions 170 and
171 is prohibitively complex. The more complete equations produce a very complicated
expression whereas the others lead to the relation:

- 2 -
Ym 4&%‘ 4Avc (174)

siny = ——

where \A is the maximum value of v for a given Ve
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APFENDKX B
FORMULAS

The formulas in Appendix A are here listed again, for reference. A listing to show

the source of each formula is included at the end of each section.

Most of the formulas

are used to determine the variable at time nh (e.g., yn) in terms of the value of the vari-
able at time (n - 1)h (e.g., yn_l). These formulas are initialized by setting the first value
of Yp-1’ for example, equal to the value of y when t = 0.

B.1 SUBMARINE

B.1.1 Symbols and Units

Symbol

Definition
speed
course angle
dive angle
rudder angle
stern plane angle

(constant parameters
of submarine's
handling
characteristics)

displacement
displacement
displacement
ordered speed (the
speed for which the

submarine's engines
are set)

Units

yards/second

degrees
degrees
degrees
degrees
1/yards
1/degrees
none
1/yards
1/degrees
l/yarda2
1/yards
1/degrees
l/seconds2
1/yards2
yards
yards

yards

Positive Direction

forward

to the right of forward
up from the horizontal
trailing edge to the left
trailing edge down

east
nerth

down
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Symbol Definition

oé ordered course rate of change or steady-state rate of change of course
in a turn

5, rudder angle corresponding to ,C

T time required for rudder to move from zero to bp

8, steady-state speed in a turn —

015 ordered dive rate

oD ordered dive angle

B.1.2 Kinematic Equations of a Submarine's Motion

B.1.2.1 Acceleration/Deceleration

Instructions

oS is ordered 8, the final speed. So is the initial speed at the start of the maneuver.
Whenn=1, 8 _,=8,.

Formulas
4, Cases 1 and 2

Sn - Sn'l = Alh(os - sn_lxos + (1 + Aa)sn_ll (1)
b. Case 3

Alh
8p = Spa1 =7 (S - S8 + (1 + Ag)8, ]

when (Sn - oS)(SO - 0S) >0

8, =S otherwise (2)
c. Case 4

S, =5, when nh € 1/A1[OS +(1+ A3)So]

8, = .S when nh > 1/A1[OS +(1+ A3)SO] (3)
Restrictions

These formulas can only be used with positive 0S and So. The following restriction
is also imposed:

Sh < 1/A,(2 + Ag) (4)
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where § is the largest speed value that will be encountered. For the three submarines for
which constants are available, the resiriction becomes:

Sh < 250 yards = 444 knot-seconds (5)

B.1.2,2 Turn
Instructions
All turn formulas give ¢. C, is found by using the equation:

C,*=Ch1 +% (Cn + cn-l) (6)

In case 1 the input is speed and rudder angle. Speed liput consists of oS, the speed
for which the engine is set, and §_ (5, ; withn=1). 8 = 8 unless the turn maneuver is
initiated while a previous turn maneuver or acceleration maneuver is still incomplete.
Rudder angle input is 5_, the principal rudder angle to be used in thc .urn, and by the in-
stantaneous value of the rudder angle. 6, is the only input still nccessary after initializa-

n
tion of the maneuver.

In cases 2, 3, and 4 there is a choice allowed in the form of the input. The turn may
be ordered in terms of the principal rudder angle, 5 Spr or in terms of an ordered turn rate,
OC If 8, is given, then equations 8 and 9 are uséd to find C and 8;. If C is given,
then it is_ used directly and the following formula is used to ﬁnd Sf

_1{ Az“'4| C|

oS -

8¢ =5 (1)

A2A4I ¢\ 4‘2“5' ¢| }
2

In the following formulas, OS is always the speed for which the engines are set and
8¢ is given by either equation 7 or equation 8. So is the speed entering the maneuver.
It differs from 0S only when the submarine changes from one turn rate to another, or ac-
celerates and turns at the same time (e.g., level-up, where S, = previous 8; and §; = oS).

T is the time required for the rudder to move from its pre-turn position to its posi-
tion during the turn.

Formuias
a, Cas:
+4A A ] A
- by s\/;4 58g|0x| - Ag 8
o] TR |




8,- 8,1 =A{h[ 8- (1+ A2l6rl)sn-1] [8+(1+ A2|6r| +Aq)8, 4]

hA 8% .6 5
] 6%n-1"r St r
Cn'cnl" E(s énl' ;‘-loc)
- n-1 “° r

o)

b. Case 2
8, = 8, when nh < T/2

8 8
Q 0
Sn = Bp-1 = Aghgy (8- 8y 1) (o8 + gy + Ag)Sy 4]
when nh > T/2
C, =0 whennh < T/2
¢ -¢ =-h——2-s"'1 8,C. 1 - €S )AL, + Ac] €]
n  “n-1 8, f¥n-1 " 0~n-1/\0¢5 + 5|o ‘

when nh > T/2

c. Case 3
S, = S, when nh < T/2

hA, S8
S~ Sp1 =73 8- So) g g tAstl
When n.h Z_ T/2 and (So - Sf)sn > (So - Sf)Sf
sn = Sf otherwise

én=0 when nh < T/2

. > S s - Sf
C-€C .= n(.c.& 0 - 2
n n-1 (OC'CO) ) 8
0
3 [sf(A4Sf + Ag,C] .8 A1<-—sf +Ag+ 1)

0 |-1
(8, - 8P(AS, + Aglo )

S
2 3o
2Alos (§;+A3+1

Cn = 0C otherwise.

when nh =T/2 and |C,1 |<|oé|

(8)

(10)

(11)

(12)

(13)

(14)

(15)



d. Case 4

8
n = S, When nh < T/2 + Sf/oszAl %; +Aq +1

8, = S when nh> T/2 + 8,/ 8%A, g—fs- +Ag+1 (16)

¢, = 0 when nh < T/2+ T

C, = oC whennh> T/2 + 7 (17
where

2, o8

3, 2,08 2
- (8, - S8, + A5|°¢|)/zos Al +Ag D) (18)
Restrictions
For the speed formulas to be valid, the following inequality must be valid:
0 <SAh(1 + Agls |)(2 + Ag + Agfs ) <1 (19,

where 8 is the maximum speed encountered in the maneuver. As concerns the three sub-
marines for which constants are available, this inequality will be satisfied if:

For Submarine I , Sh < 72,0 yards = 128 knot-seconca
For Submarine II , Sh < 23. 2 yards = 168 knot-seconds
For Submarine III, Sh < 86.4 yards = 153 knot-seconuy (20)

This uses 6, = 35°, the maximum attainable value of 6 pe
The corresponding inequality for the turn rate equations is:
(AeérSh/Fc) <1, (21)

where F = 0C/Sf.

For Submarine I, this requires that:
Sh < 64.4 yards = 114 knot-seconds.
For the other two submarines, satisfaction of inequality 19 is sufficient.



B.1.2.3 Dive
Instructions
Speed is assumed constant in all four cases.

Case 1 requires two past values for initialization. When starting the simulation, both
past values are set to zero unless the submarine is known to have a non-zero dive angle.

The input at each iteration is & X the stern plane angle at the previous iteration.
n-

Cases 2 and 3 produce dive angle rate as output. Dive angle is found using the formula:

h * ¢
D,=D 4 +35(D,+D, {) (22)

Case 2 can be used with either ordered dive angle rate (OI')) or current stern plane
angle as input. In the former situation, the ordered dive angle is part of the initialization
input; in the latter, the stern plane angle is updated at each iteration. Use of the 0D term
in the formula using the stern plane angle is optional. It is applied most effectively when

oD is set equal to the average value of D during the maneuver. A crude estimate of this
average is sufficient.

Case 3 requires an ordered dive angle (oD) ac well as an ordered dive angle rate
(,D) as initialization inputs. An alternative form is to maintain oD for a prearranged time
interval rather than to test D, against 0D at each iteration.

Case 4 requires ordered dive angle and dive angle rate, as well as initial dive angle
and dive angle rate, as inputs,

Formulas

a. Casel

. 2 2
D, -D, ;=(D,_{-D, o)(1-0.625A,8h) - h*(AgD , +A,,8%_ )  (28)

n-1
b. Case 2
B, -D,_;=(D-D,_1)0.6254,8h (24)
or
» L 2 .
Dn - Dn-l = 'h(AgOD + AIIS 65 + 0. 625A78Dn_1) (25)

n

_ h . -
Dy=Dp 1+3 (Dn + Dn-l)



c. Case 3

D, =D, when nh < 8/5A,8
D, = ,D when nh> 8/5A,8 and (D - D_)(,D)> 0
D, = 0 otherwise. (26)

- h v -
Dn - Dn-l t3 (Dn + Dn-l)

d. Case 4 80
R R
(s D -sinD ) =é;+0‘15 cos{D_ +—5x;°s-
8( D-D,)
1 Q ()
+—l5 (oD - Do) + SATS sin D
)
. -B- cos D +-2 cos oD (27)
Dy 0

where R = 180/7 and D and D are in degrees.

When D0 and D0 are zero

8 oP R(1 - cos OD)

TTBAST T ¢ (28)
7 oD oP sin oD

In either instance,

Dn=D0 when nh <7

D, =D when nh > 7 {29)

Restrictions

The validity of certain approximations made in deriving the formulas for cases 1 and
2 depends upon the speed of the submarine. The speed must satisfy the following inequality:

5

3 A7Sh <1 (30)
Tne value of A7 for Submarines II and III was seen to be inaccurate by several orders of
magnitude. For Submarine I, inequality 30 becomes: .

hS < 64 yards = 114 knot-seconds (31)



Limits on the dive angle are inherent in the equation for case 1. When

A
!Dn_1|> x—:-l 826’n-1' |Dn - Dn-l! will decrease until D, - D, _; changes sign and causes
D__,| to become smaller than A,,8%, /Ay, This limit is not included in the formula-
n-1 117 "8,
tions for cases 2 and 3. When the atern plane formulation is used in case 2, D _; can be
A .
used instead of oD when Dn exceeds ﬁl 82 ) . In the oD formulation of case 2, and in

(]
n-1
case 3, Dn must be tested by the following formula:

(derived from the above inequality for D, _; using equation A-67)

When IDH'II exceeds this value, 015 must be changed to prevent D from increasing further.

In cases where ol') is part of the input, the maximum allowable value which may be
used for ol') depends upon the maximum allowable value of § g’ 48 follows:

| Of)lmax = (8A11§/5A7)a 5 max (33)

B.1.3 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A
1 27 18 50
2 37 19 25
3 43 20 25 ff.
4 25 21 12 ff,
5 22 74
6 23 67
7 15 24 72
8 8 25 73
9 7 26 77
10 26 27 81
11 13 28 83
12 28 29 84
13 22 30 83 ff.
i4 38 31 63 ff.
15 49 32
16 42 33 68
17 51

B-8



' B.2 SURFACE VESSEL
B.2.1 Symbols and Units

Symbol
9

y

a

Definition
ship' s heading
8
side-slip angle
true course angle
(6 - a)
y-a
rudder angle
velocity

»7 ynsgtant parameters
of the s..rface
vessel's handling
characteristics)

Units

radians
radians/second

radians
radians

radians/second
radians
feet/second
1/feet2
1/feet2
1/feet
1/feet

1/feet

none
feet/radians
1/feet

2

Definition

Positive Direction

clockwise from north

clockwise from true cours:
angle to heading

clockwise from north

trailing edge to the left

forward

velocity for which surface vessel's engines are set

ordered course rate of change or steady-state rate of change of course in

a turn

rudder angle corresponding to oé

time required to meve rudder from zero to §

steady-state velocity in a turn



B. 2,2 Kinematic Equations of a Surface Vessel's Motions

B.2.2.1 Acceleration/Deceleration
Instructions

In the literature in which the dynamic equations for surface vessel motion were
found, Vo is used to denote ordered speed, the speed for which the ship's engines are set.
Therefore V, will be used to denote the initial speed of the vehicle at time t = 0. This is
used in cases 2, 3, and 4. In all cases, the initial value of V is used for the first appear-
ance of V. _4.

Formulas

a., Cases 1and 2

2 2
Vi = Vg =hag(Vy - V4% (34)
b. Case 3
ha V. +3Vv
1
V.-V ==2 v -V | —2
n n-1 2 o 1 )
2(v0 + Vl)

when (V - Vn)(vo -Vy) <0
Vn = Vo otherwise (35)

where V1 is the original velocity at the start of the acceleration/deceleration.

c. Case 4
v oy _— L [ v +3vy |
= wanen <
n- "1 2ag (vo+v1)2
[ V_+3V, |
V =V, whennhygi-| —2—% (36)
8 (VO-'-VI)

Restricti_gx_w_g_

For the above equations to be valid, V must satisfy the following inequality, where
V is the maximum speed encountered during the maneuver.

1
0<Vh< Tag (37)
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As concerns the three vehicles tested, this becomes

For Surface Vessel I , 0 <Vh< 1,014 feet = 600 knot-seconds
For Surface Vessel I, 0 <Vh < 1,075 feet = 637 knot-seconds
Yor Surface Vessel III, 0 < Vh < 2, 222 feet = 1, 316 knot-seconds (38)

B.2.2.2 Turn
Instructions
All four cases give C_as output. C is updated, using the formula:

C =Cp q+3(E+C, ) (39)

Case 1 has & as input at each iteration 5 =r|+r,t. While the rudder is moving, ry = !
quired in addition. Initialization requires Vo the speed for which the engines are set.
When entering a turn from a straight-course situation, Vo is also the initial value of the
speed. Initial Vn-l’ Yp-1’ %p-1’ Cn_, , and Cn- 1 are all set from the vaiues for these
quantities when the maneuver begins.

Case 2 is initialized in the same way. However, instead of updating 6, at each itera.
tion, only the principal value (5) of &, 18 used. § may either be a direct input or computed
using the relationship

8eVp= o€ (40)
when the input is in the form of an ordered turn rate.

In cases 3 and 4, oé is part of the initialization input, but § can be used with
equation 40 .

The two formulus for V, use é and oé respectively.

Formulas
ajaz ~ 2,3
195 © %2%4
=29 &3 (41
a3d4 - 2434 )
Agdp ~ Aqa
2°8 35
NM=ea—a a2 42
a324 - 243g (42)
Vf = VO/J - 37362§2_6_2/3.8 (43)
Vf =/V02 + aezoczalz/aa (44)
oC = 88V¢
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B-12

b.

Case 1

V,-1h

a4

Yn =~ Y1 = [(p-1 - Vn-1805.1)@304 - 242g) +ayd, 4]

. . Vn-lhae
in=dn1""a, [(Vp-1 - Vn-1685-1)@g0y - 848¢) +ayd, 4]

+ Vn_ lh(a4dn_1 + 151'2)
where ry = (5, - én_l)/h
V. -V -h[a(Vz-V 2)+a(d -2 )2]
n- 'n-1 8o n-1 7\%n.1 = g¥n-1
Ch=y -dy

- -h . N
cn Cn-l +9 (Cn + Cn-l)

Case 2

yn=0whennh<T

V. :h év
n-1 0”"n-1 .
Yo~ Yn1="ay [(%-1 75 )“‘3‘4 - a4ag) +ayd n-l]

whennh > T
dn =0 whennh < T
V. ,ha cv
. __n-1""8 0~ "'n-1 .
dp = 4y = ay [(%-1 TV ) (agay - ajag) + 2, %-1]
+ Vha4&n_1
when nh > T

2 2 . 2
Va-Vp1 = h[3‘8(‘70 - Va1 ) + an(a, 4 - a(Syn-l) ]

Ch=¥n~ oy

h . .
Ch=Cpg +3(Cph+ Ch-v)

(45)

(46)

(47)

(48)

(49)

(50)

(51)



‘ c. Case?ld

-1
. . . . alﬁ - a]n
Cp=Ch1 +h(,C-C) [T - V‘§<lsl4 - 2,84 - "):\

when (G, - (O, > (&, - (&),

Cn = OC otherwise (52)
V. =V h(V, - V) ————in‘”v *
= a -
n n-1 + 8 f 0 (vf +vo)

when (Vl - Vf)Vn > (Vl - vt)Vt

V, = Vy otherwise. (53)

h . .
Ch=Ch1*3 (Cp + Cn—l)

d. Case 4
. . T 1 a4§ - al'ﬂ )
Cn = CO when nh < 5 - §Vf L"““"""aaa4 _"al' "8 "I-
. T _1 345 - 4n
Cnaoc Whennh?_-z—gvfw-n (54)
" -
V =V, whennh <. T______{Vf * 3V, ]
= wihen < -5
n (o] 2a8 (Vf +vo)
V. =V hen nh > —o Ve +3Vy (55)
= 3 when pd
n- 2ag | (v, +-vo)74

Cn = Cna “'"% (€ +&,p)
Restrictions
The iteration interval is restricted in size by the inequality
[(13 +a,) - \/(as + 514)2 - 4(aga, - aqag) ]Yih- <1 where V is the largest velocity er

countered in the turn maneuver. For the three surface vessels for which response curves
: ” are displayed in Appendix C, this becomes

For Surface Vessel I , 0 <Vh <
For Surface Vessel I , 0 <Vh <
For Burface Vessel III, 0 <Vh <

86.5 feet = 51,2 knot-seconds
71.8 feet = 42.5 knot-seconds
185 feet = 110 knot-seconds
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B.2.3 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A
34 137 45 114
35 147 48 120
36 150 47 137
3 135 48
38 136 49 122
39 50 123
40 102 51 137
41 97 52 126
42 98 53 147
43 140 54 127
44 139 55 150

B.3 POSITION UPDATING
B.3.1 Orientation of Vessels
Instructions

The following equations rep~esent the orientation of either submarine or surface
vessel (D = 0 for surface vessel).

X =8 cosDsin C
Y=8cosDcosC
Z = -8 8in D (56)

Updating formulas are given for X and Y with D = 0. The formula for X can be used
for Z if multiplied by -1. All values of C, C and § are obtained from the appropriate formu.
las in sections B.1 and B. 2.

Formulas
Xy - Kyog = (8, + 8y )R [sin €y +(E, + €, 2 cos € 4] (57)
Y, - Y, ;=(S,+ Sn-l)% [cos C__; - (C, + én_l)% sin C__,] (58)
where
. . \2h% & 5 \h
sinC__, = [1- (Cn_l + Cn_z) -5—]sin C,-o + ( o1+ (..n_z)-z- cos C,_, (59)
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2
. » 2 h— - * h
cos Cp 4 =[1-(C_;+C 98 Jcos Cog-(Chyq+ Cn-z)z sinC,_o (80)
where C must always be expressed in radians,

Restrictions

The only restriction is on the size of Ch, Accuracy will be very good if Ch <10°.
It will be fair if 10° < Ch < 20°. Ch> 20 will lose much accuracy as n increases.
Ch > 40° will be very inaccurate, and Ch > 57° completelv wrong.

B.3.2 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B endix A
56 page A-2 59 817
57 88 60 81
58 868

B.4 AIRCRAFT
B.4.1 Symbols and Units

Symbol Definition Units Poeitive Direction
v velocity or airspeed knots forward
m mass of the aircraft ggund-seconds/
ots
h, altitude 1000 feet up
w course rate of change in a coordinated radians/seconds clockwise
turn
¢ bank angle in a coordinated turn degrees right wing down
p roll rate degrees/second right wing moving
down

(AC)f course change while rolling out of a radians
coordinated turn

g acceleration due to gravity knots/second

oqb ordered bank angle

6 altitude or pitch angle radians up from horizontal
plane

d angle of attack radians up from herizontal
plane

¥ direction of flight in the veritical plane radians up from horizontal
plane

b (constant parameters knots

c of the aircraft's knots x pounds

K handling Knots?

A characteristics) knots
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Symbol Definition

Vi Xfelocity the aircraft would have, at 2 given thrust and altitude,
vy=0
oV ordered velocity in acceleration/deceleration

B.4.2 Kinematic Equations of an Aircraft's Motions

B.4.2.1 Acceleration/Deceleration
Instructions

oV is ordered speed, the speed for which the aircraft' s engines are set; m is the
mass of the aircraft. The first value of v,_; is the value of v before the acceleration takes
place,

Formulas
Vp - V1= ch(ov - vn_l)/m(ov - b)(b - vn—l) (61)
For the F-100A,
b ="T711,636 (1’0'00551ho) (62)
¢ = 26h, - 1000 (83)
Restrictions

v<b, v<b
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B.4.2.2 Turn
Instructions
The aircraft rolls into the turn with roll rate Py and out of the turn with roll rate Py

If the aircraft has been ordered to a specific course change oC, then it starts to
roll out of the turn before it reaches this course change. The point where it starts to roll
out is expressed hy oC - (A C)f, where (A C)f is the course change while the aircraft is roll-
ing out of the turn, The formula for (A C); is shown in equation 66, where P, i8 in radians
per second. Figure D-1 in Appendix D shows how these equations are used to construct a
model to simulate a coordinated turn,

C,-Coq =2 tan¢ (84)
4y =8y +py while| 4, | < 8 (65)
2

AC), = log(1 + tan® ¢) 66
(AC) '2556 o (66)
¢, = ¢ untl C= _C-(AC) (87)
T = time at which C= C - (A C)f (68)
é,=9%,.1-Pylt~T) until ¢ =0 (68)
Restiictions

h < o¢/3p

B.4.2.3 Climb
_Iry_t_ructions

The equations for climb relate the variables of the aircraft that are affected by the
climb, Vi is the air speed the aircraft would have if it were proceeding at level flight with
the same throttle setting. 6 is the attitude or pitch angle of the aircraft. A is the slope of
the graph of sin 6 versus v. It is not constant but varies somewhat with altitude, so an
average value is used. v is the angle between the horizontal and the actual direction of fligh

Equations 72 and 73 are simpler versions of equations 70 and 71,

An ordered climb is achieved by changing ¢ at an ordered rate until the proper climb
rate is attained. The rate of change in 6 is accomplished by ordering the vehicle to turn up-
ward or downward 8o as to increase or decrease by a given amount the number of "g's" the
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pilot and the aircraft will experience. If the number of g's change is given by G, then w,
the rate of change of 6, is expressed as w = 1091% when v is in knots and @ in degrees per
second,

The various equations used to describe a climb must be combined with tests on vy and
v and arranged in such a way so that a climb will actually take place. For instance, at the
start of a climb a certain value of y is determined according to the speed of the aircratt,
etc, Call it Yo! then 8 is incremented by hw at each iteration and updated using equation
71 or 73. Then v is tested to see if it is greater than or equal to oY If not, 6 is incre-
mented again. If it is, then v is set equal to oY and G set equal to zero. A similar process
is repeated whenever oY must be chsnged.

A flow chart (Figure D-2) is included in Appendix D to show how this is done. It is
set up so that the aircraft will either climb to an ordered altitude and level off or will attain
an ordered heading angle (o'y) and maintain it. Speed change to v is included in this model
for completeness. Values for G of +0.5 and -0. 5 were chosen arbitrarily. G can be any
value consistent with the structural limitations of aircraft and pilot.

Formulas
v=v_ - A(siné - ——152) (70)
v
m
v2 gin g - k
sin y = (11)
v?~-ksiné
or
vev, -Asiny (12)
sin v = sin 6 - % (73)
v
Restrictions

a<10° where a=6 ~ v

B.4.3 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A
61 156 68
62 157 69
83 158 70 170
64 159 71 171
85 72 172
g'? 160 73 173
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APPENDIX C

RESPONSE CURVES

Appendix C (CONFIDENTIAL) is issued
separately as Supplement 1, Technical
Report: NAVTRADEVCEN 1407-2



APPENDIX D

FLOW CHARTS

Figure D-1. Flow Chart, Aircraft Turn
Figure D-2, Flow Chart, Aircraft Climb
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