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NAVTRADEVC EN 1407-1

DIGITAL COMPUTATION STUDY,
DYNAMIC VS KINEMATIC EQUATIONS

ABSTRACT

At present, the simulation of a vehicle's motion is accomplished
oy use of either dynamic or kinematic equations. This report presents

SZ a method of simulating vehicular motion which is a compromise be-
tween these two methods. The equations developed here, although
very close to kinematic equations in form, contain terms witch repre-
sent the dynamics of the motions being simulated.

Expressions are developed to simulate the motion of submarine,
surface vessel, and aircraft. Those for the aircraft describe its
motion as a rigid body in space rceponding to the maneuvering orders;
those for the submarine and surface vessel duplicate the accuracy and
flexibility now attainable with simple dynamic differential equations.
This latter is accomplished by using considerably less computer time
and with less restriction on the size of the iteration interval.

Distribution of this document is unlimited.

Reproduction of this publication in whole
or in part is permitted for any purpose
of the United States Government.



FOREWORD

The simulation of vehicular motion has been the subject of many
investigations. These investigations have been mainly concerned
with the development of mathematical models for pilot training
and for simple target motion. The models used in these two
applications are presently well defined and widely used.

The model which is used in pilot training requires strict adherence
to Newton's laws. In this situation there is direct control of the
vehicle by the person receiving the training. Therefore the simulated
environment must accurately describe the actual environment; the
response of the simulated vehicle must closely approximate the
response of the operational vehicle. This necessitates full dynamic
simulation of the vehicle. On the opposite extreme of the simulation
scale is the simulation of simple target motion. In this situation the
control of the vehicle is completely divorced from the trainee. He is
aware of the vehicle's motion by watching its path across a simulated
radar screen, for example, but is not concerned with the forces
causing the motion. Simple kinetic models are sufficient for this.
There is a wide gap between these two degrees of vehicle simulation.
The difference between them is demonstrated not only in the required
accuracy and in their response characteristics, but also in their
respective costs in time, money and in their computer requirements.

The cost of a model whose requirement is more responsive than the
kinetic model, but vastly less than the full dynamic simulation is
unreasonably high when the dynamic model with all its complexities
must be utilized. Therefore this investigation was undertaken to
ddfine the area between the two extremes. Several models were
developed which reflected various levels of simulation within this
area.. The development is based on kinematic descriptions of the
motion, i.e. descriptions which consider knowledge of the type of
maneuver being performed.

Four models are developed, two for which the control of the vehicle
is directly (operator control) or indirectly (command control) under
the control of the trainee and two for which the control is divorced
from the trainee (instructor and program control). In general, the
models differ with type of input, complexity of model and accuracy
of response.

Models are developed for surface ships, submarines and aircraft. The



characteristics of the specific vehicle being simulated is reilected by
the model so that, for example, the simulation of two submarines wiLl
not necessarily exhibit the same response. Due to the very complex
nature of aircraft motion descriptions, the models for the aircraft are
not developed as fully as those for the other types of vehicles.

It is anticipated that the results of this investigation, viz the mathematical
models described in this report, will be of. value in determining the least
costly mathematical model with respect to computer requirements which
will satisfy the requirements of simulating vehicles of varying accuracy
and response characteristics.

The results obtained from programming the equations on a digital
computer are discussed and compared in the report. Lhey are graphically
presented in a classified supplement which is available on special request.
However, the contents of this supplement are not necessary in understand-
ing or in utilizing the mathematical models.

"Project Engineer
U.S. Naval Training Device Center
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SECTION I

INTRODUCTION

1.1 CURRENT SIMULATION MODELS

At present, two kinds of mathematical models are used for the simulation of vehicu.,,

motion. They are the Dynamic Simulation Model and the Kinematic Simulation Model.

1. 1.1 The Dynamic Simulation Model

The dynamic simulation model consists of three sets of equations. The first set
consists of the dynamic differential equations F = ma and L =- , where F, a, L, and a are

vector quantities and I is a diagonal matrix. These are written as a set of six simultaneous
differential equations for the six accelerations in the six degrees of freedom. Each of the
six forces or torques is a function of one or more of the six velocities and of certain forcing

functions such as engine thrust or rudder deflection angle. The constants of the six functions
vary from one vehicle to the next, and sometimes from one environment to the next.

The second set of equations are the difference equations which update each velocity
(at given intervals 6 - time) as a function of past values of that velo.ity and its corresponding
acceleration. These equations constitute a numerical solution technique of the type normally
used to solve differential equations on a digital computer. Their accuracy is sensitive to

the frequencies of the differential equations and to the interval between consecutive evalua-
tions of the velocities. The equations in this second set are really kinematic equations,
since they relate velocity to acceleration without taking into account the origin of the accel-

eration.

The third set of equations are kinematic, expressing displacement in the six degrees
of freedom as functions of the six velocities.

This type of simulation model is called dynamic because the inputs to the model as
a whole are the parameters of the forcing functions of the differential equations. The out-
put is the motion of the vehicle. A model which yields motion as a result of applied forces
is called dynamic.

1,1..2 The Kinematic Simulation Model

In a kinematic simulation model, the first set of equations used in the dynamic

simulation model is not used. The second set is often retained, but in a simplified form.
The thirn set of equations, which relates displacement to velocity, is the only one which is

employed intact. This means that acceleration and sometimes even velocity must be sup-
S plied to the kinematic model from somewhere else in the simulation system. Unless

dynamic equations are used to do this, the form of the input accelerations will be very simple.

S... .. 1-1



The input generally takes one of three forms: acceleration as a linear function of time,
constant acceleration, or aun abrupt change in velocity. All three forms must be monitored

and cut-off times supplies.

1.2 THE GAP LEFT BY CURRENT MODELS

1. 2.1 Shortcomings of the Kinematic Model

It is clear from the form of the kinematic model that the accuracy of a kinematic

simulation depends entirely on the accuracy of the acceleration or velocity used as input.
At present, however, there is no systematic way of constructLng this input. Current usage

takes into account neither the parameters of the maneuver being executed nor the response

characteristics of the vehicle simulated. Time delays between command and execution of a

maneuver are approximated grossly or not at all. As a result, there is little difference be-
tween the simulation of a maneuver executed by one vehicle and the simulation of that same

maneuver executed by any other vehicle. None are really wrong, but none are quite right.

It remains for some method to be evolved to monitor simply and accurately the inputs

to the kinematic simulation model. This must be done in such a way as to reflect both the

maneuver being executed and the vehicle being simulated.

1. 2.2 Shortcomings of the Dynamic Model

The dynamic rimulation model has none of the shortcomings of the kinematic model.
The output from the dynamic model has all the characteristics necessary for a simulation

faithful to the motion of the vehicle being simulated. In the dynamic model, however, the

entire set of differential equations and accompanying difference equations must be evaluated
at every iteration interval for the most simple as well as for the most complex maneuvers.

It is possible to simplify the set of differential equations described in Section 1. 1. 1
to a set that is only half as large. However, unless the simulator is to be used for training

pilots for the vehicle, this is still too large. For many simulation purposes, the simulator

nee. be able to duplicate only thr'ee or four different types of maneuvers.

Consider one of these: the turn. The kinematic model does not differentiate between

the transition phases of different turns for the same ship or the same turn for different ships.

The dynamic model does not take advantage of the fact that, for a given ship, one turn differs
from the next only by its engine speed and rudder angle.

The same is true for the other types of maneuvers.

Therefore, the dynamic model must be modified. This modification must retain the
fidelity of the original dynamic model while taking advantage of the extensive duplication of

a very few types of maneuvers inherent In the operation of most simulation systems.
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SECTION II

STATEMENT OF THE PROBLEM

There are two aspects to the problem:

a. To what extent is it possible to develop a third category of

vehicle simulation models failing between the two that already

exist, with respect to both fidelity and computer requirements?

b. In what simulation situations would it be advantageous to use

models in this category?

UI



SECTION III

METHOD OF PROCEDURE

3.1 PRELIMINARY CONSIDERATIONS

3. 1. 1 Dynamic Equations

An indication of what must be done was stated in the last paragraphs of Sections
1.2. 1 and 1.2.2. Either the dynamic differential equations must be simplified or the simple
kinematic equation must be modified. The simplification of a full set of dynamic differential
equations can be a very difficult task. Fortunately, sets of simple dynamic equations are
available for both the surface vessel and submarine. Both of these are sets of three simul-
taneous differential equations in three variables.

For the submarine, the time derivatives of speed, turn rate, and dive rate are
presented as functions of the state of the system, engine speed, rudder deflection angle,

and stern plane deflection angle. These three variables sufficiently describe the submarine's
position and direction of motion at any time.

For the surface vessel, the time derivatives of speed, side-slip angle, and rate of
change of heading are functions of the present state of the system, engine speed, and rudder
deflection angle. These three variables completely describe the surface vessel's motion.

Both sets of dynamic equations give some indication of the vehicle's orientation, but
the emphasis is on the motion of the vehicle as a moving point.

The important aspect of both these dynamic models, however, was that the differen-
tial equations could be solved analytically with a minimum of simplifying assumptions. The
fact that the solutions were to be used for a limited number of maneuvers justified most of

the simplifying assumptions.

The aircraft presented a more difficult task. The only differential equations availa-
ble were very complex equations in six degrees of freedorm. As a result, the model devel-
oped here had to be built up in an ad hoc manner. An attempt was made to fit equations to
available response curves. The resulting model is incompletely developed, compared to
the models for the sulbnarine and surface vessel. The concepts of degrees of simplifica-

tion and contrc situations, discussed in the next few sections, were not used. The construc-
tion of the model will be described in section 3. 3. 3.

3. 1. 2 Control Situations

Certain statements in section 1. 2 discussed improvements necessary to the existing
catalogue of vehicle simulation models. We implied that there are uses for simulation

models for which the existing models are not adequate. If this is the case, then these uses
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must be recognized before the improvements are developed. The following discussion is an
attempt to establish a correspondence between types of uses and types oi simulation models.

One way of categorizing simulation models is in terms of the agency that controls
the motion of the simulated vehicle. In general, different control situations will call for
different degrees of accuracy and fidelity of output. In certain cases, different control
situations will demand different input parameters. No correspondence between control
situations, input, and output can be definitive, but the one developed here will serve as a

good indication of the lines along which the improved simulation models are to be constructed.

Four different control situations are used. The first two place the controlling agency
on the vehicle itseLf, at the helm or on the bridge. They are called, respectively, the opera-
tor control situation and the command control situation. The last two place the controlling
agency outside the vehicle. Control either rests in the hands of the instructor or is built
into the program itself. These are the instructor control situation and the program control

situation.

From the brief descriptions just given, it is possible to make some preliminary
comments about the model that will correspond to each control situation. The model for
the operator control situation must have as input those quantities normally under control of
the helmsman. These are engine speed, rudder deflection angle and (where applicable)
stern plane deflection angle. The output from this model should have no discontinuities,

because the feedback to the helmsmen must be realistic.

The model used for the command control situation must be able to take input in either
the same form as the operator controlled model or in the form of maneuver commands.
The output need not have the same fidelity of response as that of the model used foi" the
operator control situation.

In the instructor and program control situations, input is he form of maneuver
commands. The vehicles be. ag simulated in these s.Luiations will gener;.Uly he target vehi-
cles. Fidelity requirements for targvet vehicleq are not as great as for the other two situa--
tions; the emphasis here is on speed of computation. Both instructor and program, especi-

ally the latter, may be called upon to maneuver a large number of vehicles at once. The
speed of computation must therefore be close to that of present kinematic models. Greater
speed will be required of the program-controlled models than of the instructor-controlled

models.

3.2 APPROACH

3. 2. 1 Four New Models

The first step in constructing simple simulation models from the available dya'iamic
differential equations is to solve these equations and to present the solutions in the form of
difference equations. In general, this procedure will give rise to ihe following situation.
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Differential equation v = f (r ,.p., v.p.)

Difference equations vn . - hil(vn- ' m.p., v.p.-)

where m. p. and v.p. stand for maneuver parameters and vehicle parameters, respectively.
vn = V(tn) and vn-1 - V(tni1) where tn - tn.1 = h for all n.

Sometimes f will be the same as fl; sometimes it will be different. If it is different,
this is because knowledge of the expected behavior of the maneuver parameters, together

with certain restrictions on this behavior, has made possible the use of simplifying assump-

tions as to the nature of f. By varying the restrictions on the maneuver parameters, we

arrive at the first two of the new simulation models.

In the first of these models, m. p. is allowed to vary in certain limited ways; in the

second it is kept fixed. This exhausts the possibilities for simplifying the difference equa-
tion while it is in this form. The next step is to make vn - Vn. 1 independent of vn_ 1'

When vn - Vn-1 is independent of vn.1, the difference equation has the form

Vn - Vn-1 = hf 3(m" Ip" v.p.-)

The advantage of this form is that, since m.p. is kept fixed, vn is incremented by
a constant amount at each iteration. Since vn.I has been removed from the right side of
the equation, however, vn must be tested against some precomputed ov (ordered v) at each
iteration. This requires less computation time than the inclusion of vn.1 in the increment
function.

The next step is to let vn jump from its original value to ov after a certain pr~com-
puted time delay has elapsed.

Vn = vo for nh-T

Vn = ov for nhr T

where Tr = f4 (m. p., v.p. ) and vo is the value of v when t = 0.

f3 and f4 are found in the following way:

When the differential equation is solved, there results an equation of the form v = F(t, m. p.,
v.p.). Expressions for f3 and f4 are found by solving the following two equations:

[ (ov-vo)/f 3  I
li F(t)dtJ(v+f 3 t)t+ Jov dt 0 (3-1)
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lrm [ F(t) dt+ v.dt 4ov 1 0 (3-2)

0 0 f

As described above, the four models give velocityat each iteration.

Position as well as velocity is required as output from the complete model.

Position is provided by the simple integration formula:

xn -xnl +1 (vn + Vnl). (3-3)

Although this formula in very simple, errors in xn do not feed back into the formulas for

Vn.

This formula for xn amounts to an approximation of the curves for v by straight-line

segments between the prints vn. By examining Figures 3-1 through 3-4 in the next section
it can be seen that, for each of Cases 1 through 4, such an approximation is still more ac-
curate than the next, less accurate, case, Furthermore, all we really know about v is the
location of the points Vn, so there is no loss in accuracy from using Equation 3-3 for xn.

3.2.2 A Name for Each New Model

Section 3. 1.2 describes four control situations and the nature of the input and output
for each one. This description, not intended to be exhaustive, did however provide enough

information to set up a correspondence between the four control situations and the four types
of simulation models described in section 3.2. 1. The correspondence is not unique or de-
finitive, but rather serves as a guide for the use and evaluation of the models.

Output curves (Figure 3-1 through 3-4) are presented for C. Curves
for v have the same shape and can be obtained by substituting v for C and
vo for C . Curves for dive have certain differences which are described in
section 9. 3. l. 3.

3. 2. 2. 1 Operator Control

The equation for the first model is of the form
vn-Vn. = f(vn-l, m-p., v-p.) (3-4)

where the m.p. are not fixed. Here, vn - Vn.1 is proportional to ov - Vn-1l where ov is a

function of m. p. The variation that is allowed in m. p. is limited; its value is computed
as a function of those quantities under the control of the helmsman. These quantities are
allowed to vary in the way they ordinarily would in the execution oi a single straightforward
maneuver.
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developed. This model has the properties required in a model for the operator contrul sit -

uation. Therefore, Case 1 will be known as the operator control model.

The output from the operator control model will resemble Figure 3-1.

0
C

o TIMEt

Figure 3-1. Output from Operator Control Equation for

3.2.2.2 Command Control

The equation for the second model is of the form

Vn - Vn.1 = M2(Vn.1, m.p., vIp.) (3-5)

where m.p. is fixed. v. - Vn.1 turns out to be proportional to ov - Vni1, where ov is a
function of m. p. To make up for the variation that usually occurs in m. p. when a new
maneuver is started, a time delay is used before allowing vn to change. The value of ra.p.,

however, is derived from the maneuver command.

Because m.p. is not allowed to vary, the output from this model is slightly lcss

accurate than the output from Case 1, the operator control model. This model satisfi,,j
one of the two possible sets of requirements for the command control situation. The other
is ordinarily satisfied by the operator control model, although certain limited variations

are sometimes allowed in the m.p. in Case 2. Case 2 will therefore be known as the com-

mand control model.
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The output from the command control model will resemble Figure 3-2.

0

C'Co

o TIME t

Figure 3-2. Output from Command Control Equation for

3. 2. 2. 3 Instructor Control

The equation for the third model is of the form

Vn - Vn. 1 = hf3 (m.p., v.p.) (3-6)

where the m. p. is fixed. The v.p. is always fixed since it is impossible to change vehicles

in the middle of a maneuver. vn is monitored so that it is always bounded by v0 and ov.

Since the values for m. p. are fixed, they must be a function of maneuver commands.

The removal of the vnI dependence changes the nature of the behavior of vn. In-

stead of approaching ov asymptotically, vn changes linearly with time until it equals ov.

This makes the output from this model less realistic than the output from Case 2. Speed of

computation is much greater, however, because the increment in vn need not be recomputed.

Thus Case 3 satisfies the requirements that we were able to establish for a model

for the instructor control situation. It will therefore be called the instructor control model.

The output from the instructor control model will resemble Figure 3-3.
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Figure 3-3. Output from Instructor Control Equation for

3.2.2.4 Program Cconrol

The equation for the fourth model is ox the form

vn z v0 for nh -c f4 (m. p., v.p.)

Vn = 0v for nhL-f4 (m.p., v.p.) (3-7)

where the m.p. are fixed. vo is the value of v when t - 0 and ov is a function of m.p. and
v.p. The m.p. values come from maneuver command Aaputs.

The output from this model is less accurate than the output from the instructor con-
trol model, for values of time less than 2 f4 , For larger values of time, the 'wo outputs
are usually equal. This model requires less computation time, however. It is easier to
count time than to compare the value of vn with ov. Furthermore, it Is easier to compute
displacement from a fixed v than from a varying one.

Thus Case 4 satisfies the requirements for the program control situation, and the
model will be known as the program control model. Its output is shown in Figure 3-4.
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Figure 3-4. output from Program Control Equation forC

3.2.3 Kinematic Equations

Each of the four types of simulation models developed in this report has been given a
name. (Bee section 3. 2. 2.) It remains for some sort of nomenclature to be associated with
the group of four. Consider, once again, the form of the equations.

The first two represent simplifications of the dynamic differential equations, which
were solved for a limited class of maneuvers. The solutions were put into the foi a of simple
difference equations. These difference equations monitor acceleration as a function of the
differer-le between current velocity and a fixed, pre-computed velocity.

The latter two equations are of the type usually contained in kinematic models, but
with certain significant improvements. In the first of these two a constant acceleration is
used, computed from the characteristics of the vehicle and the maneuver being simulated.
The second of the two uses a discontinuous change in constant velocities. This change is de-
layed in such a roway that the overall displacement Is very close to that using the constant ac-
celeration equation.

What we haves, then, is a set of modified kinematic equations. Strictly speaking, a
kinematic equation relates two or more kinematic variables such as acceleration, velocity
and position. The models developed here are based on this type of equation, but with a sig-
nificant addition. Each h,'.s built Into it a means of monitoring acceleration in accordance
with the manouver behg esocuted &Md th. Vrehiele befti iimuzated,

13-8



Every use of kinematic equations requires some algorithm to control the acceleration.
rhe equations developed here are kinematic equations with the acceleration algorithms built
into them. There is therefore ample justification for calling them kinematic equations.

3.3 MICHANICS OF SOLUTION

The methods used to derive equations for the command, instructor, and program con-
trol models from the equations for the operator control model are indicated in section 3.2. 1.

Those cases which required a departure from these methods will be described below. The
main emphasis in this section, however, will be on the development of the operator control
difference equation from the dynamic differential equations.

The complete analytic development of all the kinematic models is presented in Appen-
dix A. Appendix B contains a full description of all the models, their equations, and the steps
involved in their implementation on a digital computer.

S.3..1 Submarine

Reference 1 names the document that contains the differential equations for the motion
of a submarine, equations which hold for all submarines. The properties of individual sub-
marines are reflected in the values of the constants A1 through All. These are constant for
all the maneuverings of any one submarine, but differ from one subuiarine to the next. The
exception to this is the surfaced submarine. When a submarine surfaces, not only do the
values of the constants A1 through A11 change, but probably the form of the equations as well.
Therefore, use of th. submarine kinematic equations developed here is restricted to sub-
merged submarines.

The submarine dynamic equations are:

-,A 1 o8 - (1 + A216rl)Sf oS + (1 + A216rl + A3)S (3-8)

C' -A48C + A56CICI + A6S26r! (3-9)

D - A78s + A8 D; +A9D+ A1 o +A AS2 6s (3-10)

The units are yards, degrees, and seconds. S is speed, C is course angle and D is dive
angle. 6 r is rudder deflection angle, and 6. is stern plane deflection angle. OS is the speed
for which the engine Is set.

3.3.1.1 Speed

The differential equation for sp~eed was solved directly. The solution is an expression
of the form S w (a + bect)/(d + fect). This leads to a difference equation of the form

on - on.1 = f(Sn1, ech).
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For h sufficiently small, this can be expressed as h times a bilinear function of OS and Sn.1.

The latter is used as the operator control equation.

3.3.1.2 Turn

A graph was constructed which depicts the differential equation for a submarine turn

as a curve of L versus C'. The portion of the curve representing the behavior of the submar-

ine during an actual turn is very nearly a straight line. The equation for this straight line

wk - constructed, keeping the intercepts intact as a function of speed and rudder angle.

If speed is kept constant and rudder angle constrained to be a linear function of time,

then the equation for the straight line can be integrated directly for C. This was done, and

the current value of speed 8 n substituted for the constant S in the solution. This leads to the

desired difference equation for Cn of the form shown in equation 3-4.

This method of solution involves the quantity 6 r. The use of this quantity is a graphic

example of the limitations of the kinematic models developed in this report. The kinematic

equations for turn are to be used for a definite submarine turn with a fixed rudder angle.

The rudder angle can vary while the submarine is moving into the turn or leveling out of the

turn. However, unless the rudder is held fixed for the greater part of the turn or, at most,

allowed to vary around some fixed value, the kinematic model will be inaccurate. That fixed

value which the rudder deflection angle has for the greatest part of the turn is denoted by 6r"

6 r appears in the difference equation for the operator control model. The operator
control model therefore requires, as input, more than just the current value of the rudder

angle. It must also have, as input, the rudder angle which the operator intends to use as the

principal rudder angle of the turn maneuver.

3.3.1.3 Dive

The differential equation for submarine dive contains terms for dive angle, rate of

change of dive angle, and rate of change of rate of change of dive angle. This leads to

kinematic equations for submarine dive of a different form from all the other submarine and

surface vessel kinematic equations.

The term containing 62 is ignored, since multiple maneuvers are not within the scope

of the kinematic equations developed here.

The development of the four kinematic models for dive is sufficiently

different from the corresponding development for the other submarine and

surface vessel maneuvers to warrant a detailed explanation. In addition,

the approach and results are different for each of the four cases.
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a. Submarine Dive: Case 1

The curve of D and 15 was d.'awn. As in the case of submarine turn, the curve is
very nearly a straight line over the expected range of activity. The D intercept, which is a
function of D and 6., is preserved by the straight line approximation. The slope of the line

is found by minimizing the integral of the square of the error over the expected range of ac-

tivity. This leads to a linear second-order non-homogenous differential equation for D.

The forcing function is proportional to 6s. The differential equation is solved assum-
ing 6. to be a linear function of time. Since the differential equation is second order, two

starting values are needed for the difference equation. The difference equation is found from
the solution to the differential equation by the following technique:

The solution to the differential equation is of the form:
Alt A2 t

D = Kle + K2 e -+ f(6 S)

This leads to the following three equations, when the values nh, (n - 1)h and (n - 2)h are used
for t: Alnh A2nh

Dn.1 = Kle Anh A 2(n-)h+ K2 e + f(S.1

Dn.2 = Ke AI(n-2)h A2 (n-2)hDiKe+ K2 e + f(6Sn_)

n2Alnh A2 nh

This is a set of three linear equations in the three unknowns Dn, Kle and K2 e It

Alh A2h
was solved for Dn in terms of Dnil, Dn.2, e ,e and the function of 6s v-.Aluated at
6s n' 6 Sn1' and6 Sn-2

For h small enough, the exponentials can be approximated. The result is the equation:

Dn - Dn.1 = (Dn.1 - Dn_2)(1 - ýA7Sh) - h2(A9Dn-1 + A11S2 6 sn_) (3-11)Dnn

This differs from equation 3-4. An equation analogous to equation 3-4 and which ex-

presses the form of equation 3-11 is the equation:

vn - Vn1l = hf11(vn_1, xn.1, m.p., v.p.) (3-12)

where v = k. The correspondence comes from letting (Dn - Dn.1)/h = vn, etc. Thus the
acceleration algorithm referred to in section 3.2.3 is now a function of position D as well as
velocity D5. This new dependence is present in all the control situations for submarine dive.
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The equations for Case 2, the command control situation, are derived by holding D at

some fixed value. The formulas are most accurate when this fixed value is close to the aver-

age that D will actually have. Thus in a change in dive rate to some 0D (ordered D), it is

best to use oD/2.

When D is fixed, we can say that for any given stern plane angle 6. there is a value

for b (ob) at which B - 0. This gives an equation relating 6. and 05& Using this equation,
the input to the command control model can be either 0o or 6 .

With D fixed, the linear equation which approximates equation 3-10 is easily solved

for bn - 5n.I = hi2 On It m.p., v.p.). 5)n approaches the fixed value 05). This o0t or the
corresponding value of 6. must be part of the input. OD must also be part of the input. oD
(ordered D) is the value of D at which 15 is returned to zero. This is much more important
for dive angle than for course angle, because of the disastrous effects on submarine and sim-
ulator if D grows too large.

c. Submarine Dive: Case 3

In the development of control situations for other maneuvers, the instructor control

equation is of the form vn - vn. = hfs(m.p., v.p.). For the submarine dive maneuvers,
however, the equation is of the form usually associated with Case 4. That is,

bn a 50 for nh < f4 (m. p., v.p.-)

6n = o] 1for nh > f4 (m. p., v.p.-)

where Do is dive angle rate when t = 0.

One of the reasons for this is that, in a dive maneuver, depth is more significant than
dive angle. Since depth rate is proportional to sin D, D is actually a velocity rather than a

displacement, and I5 an acceleration rather than a velocity. Any dive maneuver must consist
of two applications of the instructor control formulation in order to achieve a given dive angle,
followed by two more such applications when it is time to return the dive angle to zero.

d. Submarine Dive: Case 4

The program control model changes the dive angle abruptly from its original value
Do to its ordered value OD. The appropriate time delay is found by integrating the depth
change the submarine undergoes during two consecutive applications of the instructor control

formulation. In the first of these, D5 goes from f0 to .1b, where 5o is usually zero. In the
second, it goes from ob to zero in such a way as to make the final value of D equal to OD.

Note that the input for both the instructor and program control models consists of
Do, D0, oD, and 0D.
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3.3.2 Surface Vessel

The document named in Reference 2 contains the dynamic differential equations for the

surface vessel. These equations contain constants a 1 through a 8 . The equations hold for all
normal, single-hulled surface vessels. Their applicability to hydrofoils and double-hulled

vessels has not been established. Different surface vessels will have different values for the
constants a, through a 8 . Reference 2 contains values of these constants for a number of dif-
ferent surface vessels. These values are listed in Appendix C.

The surface vessel dynamic equations are

= (ala + a 26)V2 + a3 Vy (3-13)

a= (a4 a + a 56)V + a6 y (3-14)

S= a7 (a4 a + a 5 6)2 V2 + a8 (V0
2 - V2) (3-15)

The units are feet, radians, and seconds. y is rate of change of ship's heading angle, a is
side-slip angle, course angle change (C) is y - 6, 6 is rudder deflection angle, and V is speed.
Vo corresponds to the OS of the submarine formulation. It is the speed for which the engine
is set, or ordered speed. In the derivations, V1 is used to denote the speed at the start of a
maneuver.

3.3.2.1 Speed

The differential equation for speed can be solved directly only if the term
(a4 a + a 56)2V2 is approximated in some simple way. According to equation 3-14,
(a4a + a 56)V = b - A6 y. In any steady turn, & goes to zero and y goes to 00, the ordered
course rate. The first assumption then, Is that (a4a + a 5 6)V goes quickly to -a 6o0 . Thus,
the accuracy of the simulation of speed in a turn depends on the relative size of the portion

of the turn for which 6, and therefore oC, is fixed.

With this assumption, equation 3-15 can be solved directly and the solution put into
the appropriate difference equation form by letting ekh = 1 + kh for the sufficiently small

iteration interval, h.

The integral of V used to find the models for the instructor control and program con-

trol situations involves the approximation of log( )Vf + " By making the assumption of

positive values for all velocities, a series expansion uf this function can be used.
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If V is held constant in equations 3-13 and 3-14, then they become a p•ir oi : ,.

eous linear first-order differential equations. As such they are easily solved. The solution

technique constrains the rudder angle to change as a linear function of time. The expression

used for this is 6 a rI + r 2t.

The difference equations are found by letting ekh - 1 + kh for kh smaller than one.

The current value of V is used in the difference equations.

The integral of • (see equations 3-1 and 3-2) is found as follows. First the formula

for C is written with 6 8 r2 t (i. e., r 1 - 0) and integrated from t - 0 to t = T, where T =_/r 2.
6 is the principal value of 6 in the turn (see section 3.3.1.2), and T is the time it takes for

the rudder to move to that angle.

Then the formula for 6 is written with 6 = 6 (1. e., r, - 6 and r 2 = 0) and integrated

from t a T to t - x. The equations for the models for the instructoc and program control sit-

uations are found by using this integral.

The command control difference equations are very similar to the difference equations

for the operator control situation, when r 2 w 0. A time delay is used for the time when 6 is

changing. The theoretical value for this time delay gave results that were consistently

smaller than Case 1 by about 10 percent or more, so another was found by trial and error.

The new time delay gave good results for the seven cases tested (see Appendix C). It was
therefore incorporated into the command control model (see section 5.3.2.2).

3.3.3 Aircraft

The motion of an aircraft is described as that of a rigid body moving in space in a
way that Is somewhat restricted in its freedom of movement. As a point, it can accelerate

or decelerate in the direction of motion, climb or dive at a limited angle, and turn in a cir-
cular arc. As a rigid body, its pitch angle will vary with its speed and climb rate, and its

roll angle will vary with its turn rate. The order of causality is not fixed, but there is a

separation of the six degree-of-freedom variables into two mutually independent but internally
dependent categories. The development of the models for the two categories differs signifi-
cantly. The categories will be called motion in the vertical plane and turn. Equations in the

first category relate speed, climb rate, pitch angle, and thrust. In the second, they relate

roll angle and tv.rn rate as a function of speed.

3. 3. 3. 1 Motion in the Vertical Plane

a. Sources

The equations in this category were developed to fit curves of speed versus climb rate,
pitch versus climb rate, and thrust versus speed. Curves were available for each of these
dependencies.
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engine setting, altitude, and aircraft weight. In addition, there is a set of speed-versus-
time curves varying according to the same parameters, which were used to check the accel-
eration and deceleration equations. These curves are all found in Reference 3. Of some
help in fitting these curves were certain equations found in Reference 4. In addition, certain

curves showing the interdependence of various aerodynamic coefficients at various Mach

numbers were used. These are found in Reference 5.

b. Development

The acceleration equations are the only ones in this category that are developed to
any degree of completeness. The curves of thrust versus airspeed are approximated by
hyperbolas. These lead to simple differential equations for speed. Attempts have been made
to express the parameters of the hyperbolas as functions df altitude.

Equations were set up to fit the curves of climb rate versus speed and climb rate
versus pitch angle. It was necessary to postulate some algorithm for changing only one of
these quantities since the interdependence equations cause the others to change accordingly.

It was decided to change the pitch angle in such a way that the g-force experienced by the
pilot would remain constant until the desired pitch angle was attained. Alternate algorithms
might use a constant rate of change of pitch angle or a constant rate of change of climb rate.
These possibilities were not explored because of the lack of information about the realism of
any one of the algorithms as opposed to any of the others.

3.3.3.2 Turn

The equations for turn are completely geometric. They depend on the characteristics
of the aircraft for only one parameter. The assumption is made that the turn is coordinated
throughout its duration. This means that there is no lateral slippage, so whatever the air-
speed, v, and the turn rate, w, the following equation will hold

Wv = tan • (3-16)g

where 0 is the baiik or roll angle of the aircraft and g is the Ucceleration due to gravity at
that point.

The turn is accomplished as follows.

1. The order for course change and turn rate is given.

2. The aircraft rolls to the appropriate bank angle at the appropriate roll
rate. The former depends on speed and ordered turn rate, the latter
on the aircraft' s characteristics.
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change is the ordered course change minus the course change
while the aircraft rolls out of the turn.

4. The aircraft rolls out of the turn.

3.4 TESTING AND EVALUATION

Once the formulas for the kinematic models were developed, they had to be tested.
This was necessary to reftne the models and to determine whether or not they could accom-
plish their purposes. Accuracy must increase as computer requirements increase. Com-
puter requirements must decrease as accuracy decreases.

Appendix C contains at least one response curve for each of the kinematic models,
with the exception of aircraft climb (see section 3.4.3). Wherever possible, the outputs
from the simple dynamic equatioms is indicated on the graphs, as is any tactical trial data
available for the same maneuvers. The emphasis, however, is on comparison with the dy-
namic equations. This is because no more accuracy can be expected from the -inematic
equations than is inherent in the dynamic equations from which they are derived. Any closer
fidelity to the actual tactical trial data on the part of the kinematic models is accidental.
This would not be true if the kinematic models were modified in any way to conform to tacti-
cal trial dats. Such an undertaking was beyond the scope of this study, however, so the
most significant comparison remains that between the dynamic and kinematic models.

The kinematic equations used to ger erate the response curves appear in Appendix B.
They will be referred to by section rather than by equation number, since an extensive set
of equations were used for each set of response curves. References to specific equations
for each curve are in section 4.2.

The curves will be discussed in Sections IV and V.

3.4.1 Kinematic Response Curves: Submarine

All submarine maneuvers were run for a submarine of the SS(B)N598 class. Reliable
coefficient data was not available for the other submarines (see section 3.5).

3.4.1.1 Speed

Figure C-1 is Qn acceleration from 2 knots to 15 knots and Figure C-2 a deceleration
from 20 knots to 2 knots. Both show response curves for all four cases as well as points
generated by the dynamic equations (Reference 1). The formulas appear in section B. 1.2. 1
of Appendix B.
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pendix B. The dynamic data points that appear on the graph are from Reference 6.

3.4, 1.2 Turn

a. Response Curves

Figure C-3 is for the same turn maneuver as Figure C-4: 10 knots and 20 degrees
rudder. Figure C-3 shows course angle, course angle rate, and position. All the equations
used are from section B. 1. 2. 2 of Appendix B. These equations are for speed as well as rate
of change of course. Speed in a turn can be generated without any reference to the course
rate equations. Equations for course rate, however (Cases 1 and 2), use current speed at
every iteration. Thus all the equations in Appendix B, section B. 1.2.2 are used, plus those
in section B. 3. 1 for position updating.

Dynamic data points come from Reference 6.

b. Advance, Transfer, and Tactical Diameter

Figures C-5, C-6, and C-7 provide a good way of evaluating the accuracy of thV kine-
matic equations for submarine turn. Reference 1 contains a comparison between certain sets
of data generated by the simple dynamic equations and the corresponding tactical trial data.
This data consists of turning characteristics for nine different turns. Speeds entering the
turns are 5, 10, and 20 knots, and rudder angles are 100, 200, and 30°. The various
comb•i•ations of these quantities provide data on a total of nine turns.

Advance, t .. itz, t,.ctical diameter, time to turn 360 degrees, speed in turn, and
average course change per minute are the quantities compared. Advance is the component of
the displacement of the vessel, when it has changed its course by 90 dc-grees,
which is in the direction of its motion before entering the turn. Transfer is the
component of this displacemant perpendicular to the original direction of motion.
Tactical diameter is the perpendicular distance between the original and final
directions of motion when it has changes its course by 180 degrees.

These same quantities are generated for the same nine turns by the kinematic equa-
tions. Case 4 is used for two reasons. First, it is the least accurate; this gives a worst-
case evaluation. If the kinematic equations give satisfactory results for Case 4, they should
give even more iatisfactory results for the other cases.

Second, if Case 4 is used, all the necessary quantities can be calculated by hand in a
few minutes. Use of any of the other cases would require an extensive computer program.

Case 4 provides two time delays. One is between the time at which the maneuver is initiated
and the time at which the speed is changed from OS to Sf. The other is between the initiation
time and the time at which the course rate is changed from zero to 0 Ct. The necessary formu-
las are derived from these time delays.
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Let T. be the time delay for speed andrec the time delay for course rate.c

Consider first the case where T < T , The turn maneuver will be performed
c . S

in three stages. While t <Tc, the submarine is going straight ahead. While
Tc - t< Ts, it is turning with speed oS and turn rate oC. During this interval it
turns through an angle (Ts-Tc) oC with turning radius 0S . When Ts S t, it is
turning with speed Sr and turn rate o6.
The radius of this Sf

When the submarine has turned 7/2 radians:

Advance= oSTc + oS sin T - T)o +_•S . cos -(Ts-T,)/oC (3-17)
/OC/ s/oC/

Transfer oS - cos l/T 5 - + f sin j_-(Ts - TW)/O

providing (Ts - Tc) /oC/) (3-t8)

If (Ts T

Advance = STc + oS

Transfer = oS

These equations can also be derived from 3-17 and 3-18 by letting (Ts-Tc)/oC/= T

Thus for Tc S t T

Advance =oST + oS sin QT-T c)o +Sf •( - cos -_ (T - Tc)/oCc// L.' s

Transfer = oS j Cos(I(T - T)/oC/j + Sf sinf'( T -T/07 i c im/"cs -

with (T. - Tc)/oC/. equal to mr (i ., (Ts - Tc)/o•/)

S
Tactical Diameter Transfer + f

0/OZ (3-19)
Ti-ie to Turn 3600 = 3600 + T (3-20)

7o7 c

Average Turn Rate 360 0 /Time to Turn 3600 (3-21)

Advanced and transfer equations can be simplified by letting sin(Ts-T ) 0 C=(Ts-T ) C.
The angles are small enough so that any error wilt be very small compared to the
dorniaant.terms in the equation. Tables C-i, C-2, and C-3 ,f Appendix C list the
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following six quantities for the nine turns under discussion.

Advance
Transfer
Tactical Diameter
Time to Turn 3600

Degrees per Minute
Final Speed for the Nine Turns

Table C-I relates to the actual submarine, Table C-2 to the dynamic equations, and

Table C-3 to Case 4 of the kinematic equations.

Consider now the case where Ts -Tc. While o < Tc the submarine moves
in a straight Line; for Tc ( t ( T it turns with radius Sf

Thus

S
Advance =oST +Sf (T -T )+ ff c / (3-2.

Transfer = f
/T•/ (3-2.

2s

Tactical Diameter = fe

Where /oC/ is in radians. Equations 3-t9, 3-20 and 3-21 are still valid.

Figures C-5, C-6, and C-7 of Appendix C display advance, transfer, and tacticai
diameter as generatLd by these equations. The same quantities as generated by the
dynamic equations and the actual submarine are also shown on the graphs.



3.4.1.3 Dive

Response curves are presented in Appendix C for two dive maneuvers. In the first,

shown in Figure C-8, the stern plane angle is changed from zero to -150 in three seconds,
held at -150 for another eighteen seconds, and then changed to +250 at the rate of 50 per
second. The speed of the submarine is 20 knots. This is run for all four cases of the sub-
marine kinematic equations. In the equations for Case 3, oD was 100 (i. e., the real ordered
dive angle divided by two; This is explained in section A. 1.4.2.2 of Appendix A.) For

Case 4, OD, the real ordered dive angle, is 200. This is because the maneuver is an over-
shoot maneuver, and the stern plane was made to begin moving when D reached 200. o1 for
Case 4 is obtained from the figures for Case 3 (i.e., using 6s = -150 and oD - 100). The
formulas used for the kinematic models are in section B. 1.2.3 of Appendix B. Both the
tactical points and the points from the dynamic response curves came from Reference 1.

The response curves for the second dive maneuver are displayed in Figure C-9 of
Appendix C. This is a dive and level-up maneuver. The stern plane angle changes too often
for the terms oD and 015 to have any meaning; accordingly, Cases 3 and 4 are not used.
The formulas for Case 2 are used with oD equal to zero. Once again, the kinematic equa-
tions are in section B. 1.2.3 of Appendix B, and the tactical and dynamic data points are
from Reference 1.

3. 4. 2 Kinematic Response Curves: Surface Vessel

The surface vessel runs are all of the same type. The rudder is moved to the de-
sired rudder angle as a linear function of time, then held at that angle for the duration of
the run. This is done for several values of speed-entering-the-turn and for several rudder

angles for each of three surface vessels. The surface vessels are a destroyer of the
DD-445 class, a cruiser of the CA-68 class, and a long-hull destroyer of the DD-692 class.

The only available response curve generated by the dynamic equations is for a 14.7-
degree rudder angle turn at 24 knots for the DD-445 (Reference 7). The curves for course
change, course change rate, and trajectory for this maneuver are shown in Figure C-10 of
Appendix C. Figure C-10 also contains points representing tactical trial data for this maneu-
ver (again from Reference 7). The speed change in the turn for this maneuver (kinematic
and actual) is shown in Figure C-13.

Figures C-11 and C-12 show course change, course change rate, and trajectory for
two more DD-445 turns. The first enters the turn at 15 knots and uses a 10-degree rudder;
the second enters the turn at 34. 4 knots and uses a 33. 3-degree rudder. Tactical data points
come from Reference 8. The speed in the turn for these two maneuvers is shown in Figure

C-13.
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r'igures C-14 and C-15 show course change, course change rate, and trajectory for
two DD-692 turns. They are at 33 knots and 10-degree rudder and at 15 knots and 25-degree
rudder, respectively. Speeds during both turns are shown in Figure C-16. Tactical data
points all come from Reference 10.

The course and trajectory curves for the two CA-68 turns are in Figure C-17 and
C-18. The turn in Figure C-17 is entered at 15 knots and uses a 14.5-degree rudder angle.
The one in Figure C-18 is entered at 32 knots and uses a 15-degree rudder. Reference 9 is
the source of tactical data points. Speed changes are shown in Figure C-19. All surface
vessel maneuvers are run using all four sets of kinematic equations. These equations ap-
pear in section B. 2.2. 2 of Appendix B. Position updating is accomplished using the formu-
las in section B. 3. 1 of Appendix B. A variety of maneuvers is used to show the variety of
accuracy differences between the four cases and between the kinematic model and true tac-
tical data.

3.4.3 Kinematic Response Curves: Aircraft

Only three curves were generated for the aircraft simulation models, and only one
of these can be compared to any other response curves. Figure C-20 of Appendix C dis-
plays two aircraft acceleration maneuvers; both are at sea level with the same weight load
on the aircraft. One is an acceleration from 260 knots to 580 knots, the other from 260
knots to 650 knots. Both use a five-second iteration interval, and are compared to Ap-
proved Performance Data from Reference 3.

Figure C-21 depicts bank angle and total course change versus time. Figurp C-22
shows displacement perpendicular to the original direction of motion versus displacement
parallel to the original direction of motion. Both are for a five-degree-per-second turn at
500 knots airspeed. On the curve, these displacements are called respectively transfer
and advance. This is for the sake of brevity only, as they are not actually transfer and ad-
vance. The definitions of transfer and advance are in section 3.4. 1.2. There were no
performance curves available to compare with these curves.

Similarly, there were no performance curves available for any maneuvers in the
vertical plane. Any curves that could be generated by the kinematic model for this aspect
of aircraft motion would show nothing that could be used for evaluation purposes.
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3.5 MODIFICATION OF SUBMARINE CONSTANTS

Reference 1 contains values for the constants of the submarine equations of motion

(A1 through All, section 3. 3. 1) for three submarines. Close inspection of these constants

showed that there are mistakes among them. If the constants are used in the differential

equations, the results are quite different from the results claimed in the referernce. In

particular, the constant relating speed entering a turn to speed during the turn was wrong

for all three submarines; this was easy to correct. There was no obvious way, however,

to correct the constants of the dive equation for the submarines Attack Cer.er II and Attack

Center III. The mistakes in these constants cause the dive angle to diverge very quickly;

they serve to cast doubt upon the validity of all the constants for these two submarines.

This doubt was reinforced by the zero value for A5 for one of them and the same value for

A4 for the other. For this reason, the turn equations were not run for either.

3.5. 1 Speed During Turn

The constant A2 , relating oS to Sf by the formula Sf = oS/(1 + A216r r), was corrected

by taking values of oS8f and 6 r for several turns. This was done for all-three submarines.

For the first two, only the position of the decimal point had to be changed. The value of A2

for Attack Center III however, had to be changed from 0.0403 to 0.0271.

3.5.2 Dive

Section A. 1.4 of Appendix A contains a discussion of the differential equation for

dive. In this discussion, it is pointed -at that certain values of the constants will lead to

unstable behavior of the submarine during an attempted dive. The curve of b5 versus ]) has

a maximum and a minimum. It is shown in section A. 1. 4 that if the D axis is not between

the two, a small deflection of the stern plane angle will lead to a divergent pitch rate.

The maximum and minimum are at b = +A A7 S/2A8 and h = -A 7 S/2AB, respectively.

Substituted into equation 3-10, this gives the maximum and minimum points as, respectively

(since A7 is positive and A8 negative),
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(A (,A7S) 2 +A9 +Ai s26) n+ -A78 +A,5) J 2 "6

If the b axis is to separate these two points, then the inequality

(A7 S)2  27S)
-r <AgD+ Al6s <_-

must hold. Expressed otherwise,

2(A7 S)2

A 9D +AlS 6s1 < -i4-- (3-24)

Inequality 3-24 can now be used as a rough estimate of the validity of the constants.

The values of A9 and A,, were almost identical for the three submarinea, so they will be

assumed valid and values A7 and A8 examined. A rough check is to let D = 0. This changes

the inequality to

A1116S1

For Attack Center I , 16s < 15<

For Attack Center II, 16sI (0.0000030

and Attack Center III, 16s1 <0.0006250

As the actual values of i5 and b approach the maximum (or minimum point), D grows

with a sign opposite to that of 6s. Thus it is possible for 16s 1 to be greater than 150 for At-

tack Center I while jA9 D + AllS2 6s1 is still less than -(A 7 S) 2/4A 8 . Where -A 7
2 /4A 8 is

very small, however, this effect is of very little help. Consider the constraints on D for

6 1 =-0and S 10 knots.

Attack Center I , -20.60 <D < 1030

Attack Center II, 47. 545340 <D < 47. 54536

Attack Center ill, 95.08480 <D <95.09660

The impossibility of attaining the conditions for Attack Centers II and MI is obvious. If

they are not attained when 15 and i are near the maximum or minimum points on the graph,

then D will grow without limit (see section A. 1.4 in Appendix A).

Thus, A7 and/or A8 are completely erroneous for Attack Centers II and III.

3-23



6. b COMPUTER REQUIREMENTS

The kinematic models presented in this report are of a general nature, and may be

programmed on a great variety of digital computing devices. This being so, an analysis

of running time or computation time per iteration for running the kinematic equations on

any one particulpr computer is of less interest than an analysis of the number of operations

of various kinds necessary to perform the mathematics Involved. All computer operations

are therefore put into four categories: transfer operations, addition, multiplication, and

division, By transfer operations we mean to include data transfers as well as program

transfers. Thus Clear and Add, Move, Transfer on Zero, and Store are all called trans-

fer operations. Since they take the same time In most computers, this will not lead to any

ambiguity.

Storage requirements are also given. This includes both fixed storage for the

instructions, any necessary cons.ta.rt,, and temporary storage. The storage requirements

for each of the four cases are stated separately.
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SECTION IV

RESULTS

4.1 INPUT AND OUTPUT

Appendix B of this report contains a list of equations and the rules for their use. These

equations are designed to describe the motion of three types of vehicles. There are certain

inputs necessary for this description, consisting of vehicle parameters (v. p), maneuver

parameters (m. p. ) and initialization information.

Another type of input is also necessary when a submarine or surface vessel is to be

simulated. For every maneuver of one of these vehicles, there are four possible simulation

models. Before any simulation can be performed, a choice must be made as to which of the

four models w"l.1 be used.

In order to make this choice, the nature of the four models and their differences must

be known and understood. Consider the input and output of each.

4. 1.1 Inputs to the Four Kinematic Models

Section 3.1.2 describes a tentative correspondence between the four models and four
types of uses of simulation models. This correspondence is based on the form of the input

from the four types of uses and on the expected a~turacy of the outputs from the four kine-
matic models. The models have much more flexibility with regard to input than is implied
in that section, howe-ver.

4. 1. 1. 1 Acceleration/Deceleration

The equations for this maneuver are shown in sections B. 1.2.1 and B. 2.2.1 of
Appendix B. It is obvious from these equations that the inputs to all four models (or rather

all three, since Cases 1 and 2 are identical) are the same.

4.1.1.2 Turn

These equations, for submarine and surface vessel, are listed in sections B. 1.2.2
and B. 2.2.2 of Appendix B. The input to Case 1 requires the current value of the rudder

angle; the input to the other three cases do not. The input to Case 1 also requires 6 or 6 r

(see section 3.3.1.2), whereas the input to the other three cases require 0 C. All four -

cases require Vo or 0S, however, and with OS or Vo known, 0 6 can be found from 6 r or 6

and vice versa,
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Sf = f(S, 0 oC) (Equation B-7)

6r = f(oA, Sf) (Equation B-9)

Thus, 6 r = f(oS,o10 )

Furthermore, knowing T, 6 t6 r/Tr r

Conversely, 0 C f f(o0S, 6r) (Equation B-8)

While for the surface vessel,

Vf = f(Vo, oC (Equation B-44)

6_ f (Vf(, 0C) (Equation B-40)

Thus, 6 = f(V0 , °C)

Furthermore, knowing T, 6 = t6_/T

Conversely, Vf = f(Vo,- ) (Equation B-43)

0 = f(Vf, 6) (Equation B-40)

Thus, 0o = f(V 6)

In other words, if considerations of accuracy, computer requirements, or the form
of the output dictate, any one of the four models can use any form of input that can be used

by any other of them. Exceptions to this occur when the response to repeated turn maneu-

vers in close succession or combination turn and acceleration/deceleration maneuvers are

being simulated. In those situations, Case 1 is used. Cases 2, 3 and 4 could probably be

adapted to simulate these maneuvers, but such an adaption is not investigated in this report.

4.1.1.3 Dive

In the case of the dive equations (section B. 1. 2. 3, Appendix B), there is z gz•-ie
difference between the kinds of input that can be accepted by them. The input to Case 1 in

6s n, the current value of the sterri plane deflection angle along with D0 and D1 . The input

to case 4 is D and Do, the initial dive angle and dive angle rate, and oD and 0 6 the ordered
dive angle and dive angle rate,
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Cases 2 and 3 are transitional steps between 1 and 4. Case 2 can accept 6n as

input, using Equation B-25 from Appendix B. If Equation B-24 is used for Case 2, then the

input is oD and the use of the formula has to be monitored, using D or time. The same in-
put is used for Case 3: 06 and oD or time. Case 4 cannot use time however.; only 0D5 and

OD. D 0 and Do can be used to initialize all four cases, where Do and Do + hDio are used to

initialize Case 1. Similarly, Do and D, can also be used for all four cases, letting Do f

(DI - D0)/h.

4.1.2 Outputs from the Four Kinematic Models

The form of the outputs from the four models is shown in section 3.2.2, Figures

3-1 through 3-4. These figures show velocity versus time; velocity can be S, V, or C. The

output of the four cases of the dive simulator is somewhat different.

For the dive simulator, the dotted line representing oC in Figures 3-1 through 3-4 is

now a connected series of broken line segments representing roughly 0D, which is a function

of 6s. For Case 1, D approaches this curve asymptotically after a delay in starting (as in
Figure 3-1). The line segments move up or down, however, since the correspondence

between 6. and 0D depends on the current value of D.

For Case 2, the series of line segments is fixed and b starts toward it abruptly (as

for V = o in Figure 3-2), and changes direction abruptly as the 0 curve changes direction.

The output from Case 3 resembles a combination of Figures 3-3 and 3-4, with D the ordinate

rather than D. That is to say, D increases linearly after an elapsed time delay.

The output from Case 4 resembles Figure 3-4, with D again the ordinate. In general

the initial time delay is larger than it is for S, V or C.

4.2 ACCURACY

In section 4.1 the differences in input and output were described for the four kine-

matic models, It can be seen from this description that, except for the submarine dive, we

can always obviate the differences in the input requirements of the four cases. The differ-

ences in the form of the output are most obvious in the velocity response curves but much

more subtle as these curves are integrated to give position.

It is necessary, therefore, that more permanent criteria be established for selectior

among the four cases. In Section II the question of the existence of the new models is asked

in terms of their fidelity and computer requirements. The computer requirements of the

new models are described in section 4.3. The paragraphs below describe their accuracy.
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dw uiihow In Appondlix C. Evaluation is both qualitative, from a visum e.wamination of the
graphs, and quantitative, using certain percent errors. Case 1, with a one-second iteration
Interval, is used as the standard for quantitative comparison whenever dynamic data is not
available. All equation references are for Appendix B.

4. 2. 1 Acceleration/Decoleration

Quantitative evaluation in on the basis of percent of time loss or gain in the maneuver.

The differnce in distance covered between the run being examined and the standard run is

divided by the final speed to give the time difference. This is then divided by the approxi-
mate time it took :or the acceleration/deceleration to be completed, using the standard
model. Speed loop in a turn is treated as a aeceleration.

4.2.1.1 Spbmarine (Tables 4-1, 4-2 and 4-3)

Graphs for submarine acceleration/deceleration maneuvers are in Figurea C-i, C-2
and C-4 of Appendix C. For all three, Cases 1 and 2 follow the points generated by the dy-

namic equations very closely. The total distance covered using Cases 3 and 4 should be
identical because of the way in which they are derived. The major difference is between

Cases 1 and 2 and Cases 3 and 4. By inspection, this difference seems quite small for the
acceleration (Figure C-1) and speed loss in the turn (Figure C-4), but quite large for the
deceleration (Figure C-2).

An iteration interval of one second was used for all the cases listed. The points
generated using a ten-second iteration interval are seen by inspection to be very close to
those generated using a one-second interval.

TABLE 4-1. SUBMARINE ACCELERATION

Acceleration, 2 knots to 15 knots; Time, 150 seconds

Case Equations Distance A Distance ATime A Time

1, 2 1 1037 yards ......

3, 4 2 1005 yards -32 yards -3.8 seconds 3
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TABLE 4-2. SUBMARINE DECELERATION

Deceleration, 20 knots to 2 knots; Time, 1200 secondi

Case Equations Distance A Distance A Time % A Time

1, 2 1 2621 yards ......

3, 4 2 2155 yards -466 yards -414 seconds 35

TABLE 4-3. SPEED LOSS IN SUBMAIRINE TURN

Speed Loss in Turn, 10 knots to 6.43 knots; Time, 110 seconds

Case I Equations Distance A Distance A Time % A Time

.1, 2 9, 12 444 yards ......

3, 4 7t 14 450 yards +6 yards +1.7 seconds 2

4.2.1.2 Surface Vessel (Table 4-4)

Graphs of speed loss in a surface-vessel turn are shown in Appendix C for the sur-
face vessels DD-445 (Figure C-13), DD-692 (Figure C-16) and CA-68 (Figure C-19).

The only one for which points were available from the dynamic equations was the
turn at 14. 70 rudder for the DD-445. These points are not shown on the graph, but they
coincide exactly with the points generated by the kinematic equations.

For most of the turns, there is no discernible difference between the velocities
generated by Cases 1 through 4. Differences show up only when Vo - Vf is large enough.
When a difference appears, it always displays the same behavior; Cases 3 and 4 give too
rapid a speed loss.

A quantitative breakdown is given for the maneuver where this difference is most
extreme, the turn at 150 rudder angle and 32 knots, speed entering the turn of the surface

vessel CA-68. Inspection of the other graphs show the difference between the cases to be
roughly proportional to Vo - Vf.

The value for h, the iteration interval, is given in seconds; it is one second, unless
specified otherwise. All distances are in feet, and time in seconds.
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TABLE 4-4. SPEED LOIS IN SURFACE VESSEL TURN

32 knots to 26 knots; Time, 180 seconds

Case Equations Distance A Distance A Time 5 A Time

1 45, 46, 47 8751 ....

1 (h-5) 45,46,47 8700 -51 -1.? 0.6

2 49, 50, 51 8715 -36 -0.8 0.5

3, 4 44,53 8395 +355 +8.1 5.0

4.2.1.3 Aircraft

Figure C-20 in Appendix C shows the points generated by the kinematic equations

for aircraft acceleration, using an iteration interval of five seconds; this is for acceler-

ation at sea level. The results, especially for the lower ordered speed, are quite good.

The error in the case of the higher ordered speed demonstrates one of the limitations VI the

aircraft kinematic speed equations. For higher values of thrust, the assumption that thrust

remains constant for a given throttle setting as speed changes becomes invalid. For low

altitudes, however, this is still a fairly good assumption.

Not shown are the results of the acceleration simulation at 35, 000 feet. In that

case, the curve of drag versus airspeed resembles a hyperbola only for airspeeds less than

570 knots. Therefore only accelerations to low ordered speeds were simulated. The results

of these simulations showed about 50 percent error.

4.2.2 Turn

The quantitative evaluation of the models for simulating a turn is based mainly on the

shape and size of the turning circle. The quantflies advance, transfer, tactical diameter,

and time to turn 180( are compared. These quantities are compared for Cases 1 through 4

and also for two models very much like the original unmodified kinematic models. These

two have the vehicle change directly from straight line motion to a circular turn at the

instant that the turn order is given. In the first, the turn radius is Sf / i j; In the second,itis S/I

Wherever possible, tactical trial data values for these quantities are also compared.
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4.2.2.1 Submarine (Tables 4-5 and 4-6)

Submarine runs were for the SS(B)N 598 only. A. full turn simulation was run for
only one turn, at 200 rudder and 10 knots entering the turn. This is shown in Figure C-3 of
Appendix C. The following table lists advance, transfer, tactical diameter, and time to

turn 1800 for various ways of simulating this maneuver. Equations 6, 8, 9, 57, 58, 59

and 60 of Appendix B were used for all the cases of the kiaematic models. The other

equations used for each case are listed in the column for equations. Iteration interval i.s

one second, except where stated otherwise. All distances are in yards, all time in seconds.

Figures C-5, C-6 and C-7 show respectively advance, trans'!r, and tactical diameter

for nine turns, using Case 4 only. Equations 16 and 18 of Appendix B were used to find the

appropriate time delays; Equations 3-22, 3-23 and 3-17 of section 3. 4. 1. 2 were used to

find advance, transfer and tactical diameter. T7ese equations also required o and Sf'
These were found using Equations 8 and 9 from Appendix B because the nine turns were
described in terms of rudder angle and speed entering the -turn.

Appendix C contains tablez; oC advance, etcetera, for Case 4 of the kinematic equa-

tions (Table C-Mi), the dynamic equations (Table C-Il), and the actual tactical trial data
(Table C-I). Percent errors are listed in Table 4-6, using the dynamic data as a standard.

Time in thip case is time to turn 3600 .

All distances are in yards, all time in seconds.

4. 2. 2. 2 Surface Vessel (Tables 4-7, 4-8, and 4-9)

Section 3. 4. 2 describes seven surface vessel turns whose response curves appear
in Appendix C. Data generated by the dynamic equations is available for only one of these

turns, the DD-445 turn with 14. 70 rudder angle and a speed of 24 knots entering the turn.

The response curves are shown in Figure C-10. Cases 1, 3 and 4 duplicate the course
change almost exactly.

All seven graphs contain tactical trial data as well as the points generated by the

four kinematic equations. By inspection of Figures C-10, C-11, C-12, C-14, C-15, C-17
and C-18, it can be seen that the actual turning circles are different from the kinematic

turning circles. The size and direction of the difference is random, and of the same order

of magnitude as that between the dynamic and kinematic turning circles. This can be seen

from Figure C-10, where the difference between dynamic and actual turn rate Is as great as

any of those between kinematic and actual turn rates.

For several of the turns, the spread between the trajectories generated by the vari-

ous kinematic models is very small. Taking Case 1 with a one-second iteration interval

a-s the standard, advance has percent spread shown in Table 4-7 (this includes all cases and

iteration intervals).
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TABLE 4-6. NINE SUBMARINE TURNS, CASE 4

Entering Rudder Time for 3600 Advance Transfer Tactical Diameter
Speed Angle 4 FOA A %A A OA A 0A

Kin 5 knots 100 +44 5 +84 20 -24 8 -27 4

T.T. 5 knots 10r -79 9 + 37 9 -53 17 -51 8

Kin 5 knots 200 +66 10 +120 42 -17 9 -18 5

T.T. 5knots 200 -26 4 + 2 0.7 + 2 1 0 0

Kin 5 knots 300 +99 17 +153 69 -11 7 -12 4

T.T. 5 knots 300 -17 3 -122 55 -11 7 -30 10

Kin 10 knots 100 +17 4 + 87 20 -24 8 -27 4

T.T. 10 knots 100 +19 4 - 33 8 +42 13 +39 6

Kin 10 knots 200 +34 10 +124 67 -17 9 -18 5

T.T. 10 knots 200 + 5 2 - 15 5 +21 11 +20 5

Kin 10 knots 30° +51 17 +157 69 -12 8 -12 4

T.T. 10knots 300 -8 3 + 9 4 +13 9 -10 3

Kin 20 knots 10r + 9 4 + 93 22 -20 6 -27 4

r.T. 20 knots 100 - 4 2 - 39 9 - 4 1 + 9 2

Kin 20 knots 20r +20 12 +132 46 -12 6 -13 4

T.T. 20 knots 20r + 5 3 + 57 20 +27 14 +45 12

Kin 20 knots 30" +32 22 +163 69 - 2 1 + 1 0.4

T.T 20 knots 300 -56 39 + 63 27 +18 13 +33 12
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TABLE 4-7. SURFACE VESSEL TURNS,

DIFFERENCES IN ADVANCE

Rudder Speed Percent

Figure Vessel Angle Entering Spread

C-10 DD-445 14.70 24.0 knots *

C-11 DD-445 10.00 15.5 knots 3

C-14 DD-445 33.00 34.4 knots 16

C-14 DD-692 10.00 33.0 knots 4

C-15 DD-692 25.00 15.0 knots 3
1

C-I1 CA-68 14.50 15.0 knots 26

C-18 CA-68 15.00 32.0 knots 19

* No data for C > 65* .

Inspection of Figure C-10 shows that if the maneuver were continued to C = 900 the

percent spread in advance would be less than one percent. Figures C-10, C-I1, C-14 and

C-15, besides having a small spread, show only two discernible trajectory curves. All

generate an equally accurate simulation of these models. An evaluation of the differences

in the models is only meaningful for the maneuvers depicted in FiguresC-12, C-17 and

C-18. Figure C-17 and C-18 show the same juxtaposition of the various cases, so Figure

C-17 will be used as a worst case.

In Tables 4-8 and 4-9, the same quantities will be compared for the maneuvers

depicted in Figures C-12 and C-17 as were compared for the turn in Figure C-3 (see section
4. 2.2. 1). All iteration intervals are one second unless otherwise specified. Equations

listed are from Appendix B. Equations 39, 40, 41, 42, 57, 58, 59, and 60 were

used for all four cases. They are not listed separately for each.

All distances are in yards, all times in seconds. The columns listing time refer to

the time consumed in turning 1800.

Case 1 uses Equations 45, 46, 47 and 48.

Case 2 uses Equations 48, 49, 50 and 51.

Case 3 uses Equations 43, 52 and 53.

Case 4 uses Equations 43, 54 and 55.
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TABLE 4-8. SURFACE VESSEL TURN, DD-445

34.4 Knots, 33* Rudder Angle

Case Advance A dv. % A Transfer A Trans %A

1 706 --.. 418 ....

2 820 +112 16 402 -16 4

3 708 0 0 433 +15 4

4 718 + 10 1 390 -28 7

R= Sfo/10 61 392 -316 45 392 -26 6

R = oS/1 0 C 1 409 -299 42 409 - 9 2

Tactical

Case Diameter A T.D. %A Time A Time

1 805 -- -- 82 -.-.

2 797 - 8 1 87 + 5 6

3 821 +16 2 83 + 1 1

4 781 -24 3 83 + 1 1

R= Sf /1oC1 784 -21 3 66 -16 20

SOS/o10 1 818 +13 2 66 -16 20
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15 Knots, 14.50 Rudder

caso Advance A Adv. % A Transfer A Trans. % A
- 4i

1 l18-- -- 735 .--.

1 (h-.O) 1173 + 5 0.4 720 -15 2

2 1075 - 93 8 727 - 8 1

2 (h-10) 1000 -168 14 717 -18 2

3 1310 +142 12 734 - 1 0.1

4 1300 +132 11 621 -114 16

R=Sf /1 0 1 617 -551 47 617 -118 16

R=S/ oCI 749 -419 35 749 +14 2

Tactical
Case Diameter A T.D. % A Time A Time 0 A

1 1360 -- -- 326 -- --

1 (h-10) 1350 -10 0.7 328 + 2 0.6

2 1375 +15 1 314 -12 4

2 (h-10) 1340 -20 2 307 -19 8

3 1380 +20 2 357 +31 10

4 1250 -110 8 357 +31 10

R=S1 / 1061 1234 -126 9 281 -45 14

R = oS/ 10C1 1498 +138 10 281 -45 14
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4.2.2.3 Airczraft

Figure C .21 in Appendix C shows course change and bank angle as a function of time.

Figure C-22 shc. .. displacement perpendicular to the original path versus displacement in
the original direction, called respectively transfer and advance. In constructing the equa-

tions which generated bhese curves, the assumption was made that the aircraft can and does
execute a perfectly coordinated turn. In other words, during every instant of the turn the
equation wffi tan 0 will hold. Once this is true, the resulting turn will always look the same.

g

4.2.3 Climb/Dive

4.2.3.1 Submarine

There are two curves for submarine dive maneuvers. The first, in Figure C-8 in
Appendix C, tses all four cases. It also shows tactical trial data and points generated by
the dynamic differential equations. The curves for Cases 1, 2 and 3 for dive angle are very
close to one another. There is about a ten percent difference between the kinematic and dy-
namic results. This is about the same as, or less than, the difference between the dynamic

and actual trial data results.

The curves for depth in Cases 1, 2 and 3 are very close to one another. The curve
for Case 4 is also close, after the initial time delay. All four show greater depth than the
tactical data, This reflects the fact that depth does not really equal the integral of S sin D,
but has an initial delay due to an effect similar to side-slip in a turn. The dynamic data
seems closer to the tactical data than does the kinematic, only because the dynamic dive
angle was smaller than it should have been.

Figure C-9 presents an extended dive maneuver. Only Cases 1 and 2 were presented
because of the constant variation of 6s. As can be seen, both Cases 1 and 2, for 2.5 seconds
as well as for 1-second iteration intervals, follow the tactical dive angle quite closely. There
is the same phase difference in depth as in Figure C-8, but again the shape of the curve is
quite good.

The divergence of depth for both cases, when h = 2. 5, is due to the small error in
final dive angle.

4. 2.3. Z Aý-4!raft

The eqixations for aircraft climb were not used to generate any response curves.

Very little can be said about computer runs of this maneuver, as there is no basis
for comparison.
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When the nature of the input, output, and accuracy of each of the four kinematic
simulation models is known, the nuestion of cost still remains. In this case, cost is meas-

ured in terms of storage space am, running time. As described in section 3.6, running time
is given in terms of four basic instruction types rather than in terms of actual time in sec-
onds. These four are Transfer Operations, Addition, Multiplication, and Division. Run-

ning time and storage are given for two phases of the operation, Initialization and Each
Iteration. Storage requirements for initialization includes the space taken up by all constants
and input variables used in the maneuver.

Cases 3 and 4 usually include a test of time or of the variables at each iteration. In
many cases once the test has been passed it need no longer *e puA•ormed. The amoui.t of
computation raquired is usually greater while the test is beini run th.n Atherwisi. in such
cases, the maximum number of instructions per iteration is the one given below, in the
tables which follow.

The timing and storage nec:essary for square root v1-o.outiiras 's not gi•en. Those
initialization routines which require a square root to be takia, Lave ttlat facc tndicadted

Requirements for position updating are listed separot•': in 3eo.tion 4. 3. 3

4.3. 1 Submarine

4.3. 1. 1 Acceleration/Deceleration

TABLE 4-10. COMPUTER REQUIREMENTS,
SUBMARINE ACCELERATION/DECELERATION

- j

Tempora ry
Transfer Add Multiply Divide Total Storage Storage

Cases 1 and 2
Initialization 4 I 1 0 11 0
Each Iteration 5 3  3 0 13 1

Cast :1
Initializatioa 5 5 4 1 0
Each Iteration 3 le 0 a 0

Case 4
Initialization 4 2 14 I
Each Iteration 3 1 0 6 0
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4. J. 1.2 Turn

TABLE 4-11. COMPUTER REQUIREMENTS, SUBMARINE TURN

Temporary
Tranmfer Add Multiply Divide Total Storage Storage

Case 1
initia lization

Each Vehicle 8 10 8 2 41 1
*Each Maneuver 12 14 3 1 33 2

Each Iteration

S 2 5 4 0 12 1

it 2 4 4 0 10 1

C 1 3 1 0 5 0

Case 2
Initialization

Each Vehicle 4 9 6 3 35 1
*Each Maneuver 21 28 15 3 77 2

Each Iteration

S 2 7 3 0 12 1
S3 6 2 0 11 1

C 1 3 1 0 5 0

Case 3

Initialization
Each Vehicle 4 9 6 3 35 1

,,Each Maneuver 24 29 17 5 80 6
Each Iteration

S 3 6 0 0 9 0
3 6 0 0 9 0

C 1 3 1 0 5 0

Case 4
Initialization

Each Vehicle 4 9 6 3 35 1
*:Each Maneuver 22 25 15 2 69 6

Each Iteration

S 2 4 0 0 6 0
S2 4 0 0 6 0

* C 1 1 0 0 3 0
*This does not include square root subroutine.
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TABLE 4-12. COMPUTER RIQUIREMENTS, SUBMARLNE WAL

Temporary
Transfer Add Multiply Divide Total torage Storage

Case 1
Initlization 8 9 7 0 34 1

Each Aeration 3 7 3 0 52 6

Case 2
Initialization 10 9 7 1 41 1
Each Iteration 3 7 2 0 50 5

Case 3
Initialization 5 7 3 2 28 2

Each Iteration 6 3 1 0 44 5

Case 4

Initialization
,Dot Do 0 31 9 5 6 6i 12

s*Do "0 13 3 4 3 30 4

Each Iteration 4 2 1 0 1 0

*This doer not include the use of a cosine subroutine three times and a sine subroutine
twice.

.:.This does not include the use of one sine subroutine and one cosine subroutine.

4.3.2 Surface Vessel

4. 3. 2. 1 Acceleration/Deceleration

TABLE 4-13. COMPUTER REQUIREMENTS,

SURFACE VESSEL ACCELERATION/DECELERATION
TemporaryTransfer Add Multiply Divide Total Storage Storage

Cases 1 & 2
Initialization 3 0 3 0 10 1
Each Iteration 2 3 2 0 8 0

Case 3
Initialization 10 4 4 1 25 2
Each Iteration 4 2 1 0 8 0

Case 4
Initialization 5 2 4 1 17 2
Each Iteration 2 1 0 0 5 0
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TABLE 4-14. COMPUTER REQUIREMENTS, SUR.'ACE VESSEL TURN

Temporary
Transfer Add Multiply Divide Total -Storage Storage

Case 1

Initialization
Each Ship 12 13 14 1 62 1

Each Maneuver 7 7 1 0 24 0
Each Iteration

C 10 17 11 0 39 2

V 2 6 5 0 13 1

Case 2

Initialization
Each Ship 12 12 14 1 51 1

*Each Maneuver 13 13 10 2 51 3

Each Iteration
C 11 19 10 0 40 2

V 2 6 5 0 13 1

Case 3
Initialization

Each Ship 9 15 10 3 50 2

*Each Maneuver 11 13 .15 2 51 2

*-.-,,Each Iteration

C 10 14 1 0 31 2

V 3 4 0 0 12 0

Case 4
Initialization

Each Ship 9 15 9 3 48
*Each Maneuver 13 16 13 3 69

Ea .h Iteration
C 4 4 0 0 5 0
V 2 3 0 0 5 0

*Does not include square root subroutine.

**The first time Cn = oC and the first time Vn Vf, there are two more transfer operations

and two more addition operations.
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4.3. 3 Position Updating

When both X and Y are updated, the requirements are:

TABLE 4-15. COMPUTER REQUIREMENTS, POSITION UPDATING
f Ai Temporary

Transfer Add Multiply Divide Total Storage Storage

X, Y

Initialization 4 4 0 0 10 2

Each Iteration 11 15 9 0 40 5

When only one is updated, an may occur in dive maneuvers, they are:

Each Iteration 9 13 10 0 38 5

4.3.4 Aircraft

The figures for aircraft computer requirements are based on the storage and time
used by the Sylvania 9400 General Purpose digital computer. The requirements for the al-
gor-ith-s used to derive the inpts to the .v.ehicle imator were cmue f e... Jn,.,comuted for 1,,e aircraft

turn and climb. The entire program for these maneuvers is shown in the flow charts of

Appendix D.

4.3.4. 1 Acceleration

Initialization with respect to altitude, oA and h:
Storage, 12 locations

Time, 0.208 milliseconds

Each loop:

Storage, 23 locations
Time, 0.456 milliseconds

4.3.4.2 Coordinated Turn

Approximate storage and timing requirements
Initialization for 0* and (AC~f:
Time, 1.0 milliseconds

Each loop while rolling into bank angle:
Time, 2.3 milliseconds

Each loop at constant bank angle:
Time, 2. 2 milliseconds

g



In',ialization loop to roll out of bank angle:

Time, 3.2 milliseconds

Each loop while rolling out of bank angle:
Time, 3.0 milliseconds

Total Storage: 400 locations

Computation of ground coordinates x and y required 1.9 milliseconds in each loop.

4.3.4.3 Climb

This involves approximate storage and timing requirements for a program forereach-
ing ordered speed and either ordered altitude or ordered heading, starting with initial speed,
altitude, and pitch angle. There are two alternative forms of this program, using Dimple
or more compl4cated equations. Requirements are given for each form.

These requirements correspond to the program whose flow chart is in Appendix D,

Figure D=2. The program was never run; these figures are only estimates.

Simple equations:

Storage,, 285 locations

Initialization for h, ov, vo, 00, initial altitude, and o•:

Time, 1. 3 milliseconds

Each loop:

Time, 2.6 milliseconds

Initialization for h, ov, Vo, 00, initial altitude, and ordered altitude:

Time, 1.6 milliseconds

Each loop:
Time, 2.6 milliseconds

More complete equations:

Storage, 309 !r,-ations

Initialization for h, ov, vo. 6o, initial altitude, and y:
Time, 1. 5 millisecnds

Each loop:
Time, 2.8 milliseconds

Initialization for h, ov, vo, 6o, initial altitude, and ordered altitude:

Time, 1.8 milliseconds

* Each loop:
Time, 2.9 milliseconds



SECTION V

DISCUSSION OF RESULTS

5.1 EVALUATION OF ACCURACY

Section 4.2 contains tables listing the results of the trial runs of the kinematic equa-
tions. These tables correspond to the response curves in Appendix C, and give percent error

for each kinematic model compared against a standard. In some cases the standard is the
response curve generated by the simplified dynamic equations listed in sections 3. 3.1 and

3.3.2. In other cases it is the response curve generated by the Case 1 kinematic equation,
using a one-second iteration interval. For aircraft acceleration, the standard is approved

Performance Data (Reference 3).

The percent errors are discussed below. Models are called "very good," "good,"
"fair," "poor," or "unacceptable" depending on their percent error. Since the simplified
dynamic data was used as a basis, its accuracy must be taken into account when discussing
the accuracy of the other models.

Evaluation is based on direction of error as well as size, although no rule is formu-
lated for doing this. Simulation models are called "very good" If their percent errors are

all less than 7 percent, "good" if they are all between 5 percent and 17 percent. They are
called "fair" if they are between 14 percent and 27 percent, and "poor" if they are all be-
tween 24 percent and 50 percent. Models with larger error percentages are unacceptable.

The overlap is to allow for a certain amount of qualitative evaluation.

5. 1. 1 Acceleration/Decelerntion

Cases I and 2 are very good for both submarine and surface vessel&.
Case 3 varies. For tke submarine, it is very good for acceleration and speed
loss in the turn, but poor for deceleration. For the surface vessel, it is very
good for speed loss in a turn as long as Vo - V is small. When V - V grows,

Case 3 gives too smalt a distance. The error is small, hut since it is atways
biased in the same direction, Case 3 will be called "good" rather than "very
good. "

No examples are shown for surface vessel acceleration/deceleration. On the basis
of the results shown for speed loss in a turn, and the arguments below in section 5. 3. 2. 1, it

is assumed that Case 3 for this case will give very good results.

The kinematic model for aircraft acceleration can be used with confidence only at
speeds between 250 knots and 600 knots, and only at altitudes below 15,000 feet. To use
the acceleration formulas at higher altitudes entails greater limitations on the speeds in
order to have any accuracy at all.. In order to reduce errors to the order of 10 percent
rather than 50 percent, it is necessary to have a more complicated formula or a table look
un for b and c. (See section A. 3. 1 of Appendix A.)



5.t.2 Turn

5. 1.2.t Submarine

Table 4-5 in section 4. 2. 2. 1 shows the percent errors in advance, transfer,
tactical diameter, and time to turn 180 degrees for the various cases of the sub-
marine kinematic ,quations. For each case, there are four separate percent
errors. The greatest error is in advance; except for advance, Cases 1, and 2 are
very good while Cases 3 and 4 are good. This statement is true despite the high
error in time-to-turn for Cases 3 and 4, since this error and the error in advance
are both due to the too high initial time delay. This is further confirmed by the
accuracy of Case 2, using the ten-second iteration interval. In that run, the two-
secon-d (T/2) initial time delay was neglected.

Table 4-6 reinforces this analysis even further. rransfer and tactical dia-
meter are good for nine turns using Case 4. Advance is poor, and time-to-turn is
fair. Therefore, until the time delay is adjusted, Cases 3 and 4 will be called
"poor" and Cases 2 and I "good. "

The two radii referred to in Table 4-5 are examples of the original kinematic
methods, provided as an alternative to Case 4. The circle with S-Sf gives better
overall results. than does Case 4. This shows that the time delays in Cases 3 and 4
are so erroneous that no time delay at all would give better results.

Table 4-6 compares advance, transfer, tactical diameter, and time to turn
360 degrees for nine submarine turns for the kinematic equations and the tactical
trial data; A and % 4are with respect to the dynamic equations. Using the dynamic
data as a standard, the difference between the dynamic and tactical trial data yields
a percent error as high as 55 percent in one instance. Of the thirty-six pairs of
values compared, however, two show errors greater than 30 percent, three show
errors greater than 20 percent and eleven had errors greater than 10 percent.
Furthermore, these errors are not all in the same direction, but are rather evenly
divided between positive and negative errors. The data analyzed in Table 4-6
appears in Tebles C-I, C-II and C-Ill in Appendix C.

5.1.2.2 Surface Vessel

Tables 4-8 and 4-9 show percent error figures for the two worst cases of
surface vessel turn. These were determined by inspection of the results shown in
Table 4-7. (Refer to discussion on page 4-10). Case t, with a one-second itera-
tion interval, is used rs a standard on the basis of its accuracy in Figure C-10
of Appendix C. From the figures in the cited tables, Cases 2, 3, and 4 can all be
called good; they all give better results than the circles. When Case: L in used
with a 10-second iteration interval, it gives very good results. Case 2 with a 10-
second iteration rate produces results as good as Case 3.

5.1.2.3 Aircraft

The kinematic equation for an aircraft turn is accurate as long as the assump-
tion remains valid that the turnr is perfectly coordinated.
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5.1.3 Dive/Climb

There are no tables for the accuracy of the kinematic equations for submarine dive.

Inspection of Figures C-8 and C-9 shows that all four cases give good results. Only one of
these figures shows Cases 3 and 4, however, and this is a very special sort of maneuver.

The inflexibility of Cases 3 and 4 will sometimes lead to results that are only fair; at other

times the results will be good.

There was nothing available with which to compare the kinematic model for aircraft
climb.

5. 1.4 Summary of Evaluation

The following tables summarize the evaluation of the kinematic models in section
5. 1, the evaluations assuming an iteration interval of one second. Not enough was said about

the aircraft to warrant further mention here. The explanation of the categories is in the in-
troductory paragraphs of section 5. 1. They correspond to the following percent errors.

very good 0% - 7%

good 5% - 17%

fair 14% - 27%

poor 24%- 50%

TABLE 5-1. EVALUATION OF SUBMARINE KINEMATIC MODELS

Maneuver Case 1 Case 2 Case 3 Case 4

Acceleration very good very good very good very good

Deceleration very good very good poor poor

Speed Loss in Turn very good very good very good very good

Turn good good poor poor

Dive good i good good/fair fair

TABLE 5-2. EVALUATION OF SURFACE VESSEL KINEMATIC MODELS

Maneuver Case 1 Case 2 Case 3 Case 4

Acceleration/ very good very good very good very good
Deceleration
Speed Loss in Turn very good very good good good

Turn very good good good good
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5.2 ITERATION INTERVAL

The equations under discussion are all constructed for solution on a digital computer.

The kinematic equations are almost all difference equations, and the dynamic equations must

be solved uaing difference equations to update the variables The size of the iteration inter-

vals involved in theme differenct equations can have a considerable effect upon the accuracy

of the simulation.

The dynamic equations used as a basis for the derivation of the submarine and surface

vessel kinematic equations are solved on the digital computer by using open, multi-step dif-

ference equations. One property of this solution technique is that, for each set of differential

equations, there is an upper limit for the values which can be used for h, the iteration in-

terval. If h exceeds this maximum, the solution begins to diverge.

Kinematic equations respond somewhat differently to the size of h. In Cases 1 and

2, the validity of the exponential expansion depends on the size of h. The error can grow

quite large, but never diverge. In Cases 3 and 4, the error has an upper bound which grows

linearly with h.

5.2.1 Cases I and 2

The result# displayed in Appendix C provide insufficient information for a systematic

analysis of the effects of increasing the size of the iteration interval. Iteration intervals

larger than one second were used for several maneuvers with very good results. From these

results we can conclude that there is some flexibility with respect to iteration interval, but

we cannot say how much.

Appendix B d~scusses the restrictions associated with each kinematic model. These

restrictions consist of upper bounds on the size of the product of speed and iteration interval.

For those submarine maneuvers which were run with h > 1, Sh was always less than the ap-

propriate upper limit. In the case of the surface vessel, however, Vh was always greater

than this upper limit. In the DD-445 runs, Vh is 2 to 3 timee the upper limit; in the CA-68

runs it is 15 to 30 percent higher. The good results in all these cases indicate that there is

some room for re-examination of the expressed upper bounds.

5.2.2 Case 4

The larger values of h used in the test runs in Appendix C were used only for Cases I

and 2. For Cases 3 and 4 there is no upper limit on the size of the iteration interval. In-

stead of the error diverging as the iteration interval exceeds some fixed value, the error is

directly proportional to the size of the iteration interval. Consider, for example, Case 4

used to find C where 6o = 0.
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At time t - 3h, the true value of C is the area under the lines connecting the points
(0, 0), (Te, 0), (Tel O) and (3h, 0o). This area is 0o(3h - Td).

oC*

0 h TC 2 3h t

Figure 5-1. Came 4; Error as Function of h

Sampling every h seconds, Cns CIs+ - (6n+Cn + , where Cn =C at time t =nh.

When t = 3h, C38- tholt. The difference between C3_and the true value at t = 3h is

io(!, h - Tc). Since h <Tc < 2h, the error has upper and lower bounds •wmc that

<, < c <- Thus < 0 Ch/2. As h grows, the error in C is always less than 6Ch/
2 20

5.2.3 Case 3

C

0 h ... (n-1) h nfr

2TC

Figure 5-2. Case 3; Error as Function of h

The choice of ZTC for the time delay to reach oC is due to the delay
for Case 3 being twice that for Case 4.



The error for Case 3 is even smaller. The true value of C at t = nh is the area under

the C curve, Cn= - + nh - 2Tc) - oC(nh - T.). Sampling every h seconds,
CrW=Cn +h(C6+Cn* Attimetu(n- 1)h. o((n - 1)h An - 1)2h2

ns n. 2i 2 n Cn-1T Cn-s 4Tc

At time t = nh,

C An; o(- 1)2 h2  he+(n- 1) 6h
n; 4Tc 0 T )

The difference is C a C6(n -n-)h - Tc-_h n - 1) + (n - 1)2). In this example,

(n - 1)h < 2T <nh. When 2Tc equals (n - 1)h or nh, c - 0. The maximum value for ellis

at 2Tc- n -n. Thatmaximumis oCh(n--- N-n''---) which equals oCh/2 when n = 1,

0.086 0oh when n = 2, 0.0510 Ch when n - 3, and continues to decrease as n grows larger.

The upper bound on e is easier to see when expressed in terms of Tc. Since the

maximum is at 2T - hN-2 in , n - 2(1 + +16Tc/h ") and the maximum is

•2c)2Tc. If2Tc<h/4, thenn m since (n-')h(2Tc<nh. The

nmaximumr is 0 C/2. If n> t, than h2  1/4 and the radical can be expanded.
* 4(Z %Z)'

This gives Ei 0 Ch2

<znino~h 6Tc/

In general, for any variable ' the error in y is always less than I Yf - Yo h/2 for
C-,,,ý 4 and I if - o Ih/20 for Case 3 (assuming n a: 3).
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5. 1 SOURCES OF ERROR

Appendix A contains the derivations of the kinematic equations. There are many

places in these derivations where simplifying assumptions or approximations are made.

The justification for these methods lies, for the most part, in their effectiveness. Not all

the results were equally good, however. In the following paragraphs, those parts of the

derivations will be pointed out where improvement is needed.

The discussions of the submarine or surface vessel are concerned with the integrai

used to derive the equations for Cases 3 and 4 (equations 3-1 and 3-2), since Cases 1 and 2

were always either good or very good (Tables 5-1 and 5-2). The discuesion of the aircraft

model is more general.

5.3. 1 Submarine

5.3.1.1 Deceleration

The evaluation of the integral of S for the instructor's control appears
in section A. 1. 2. 2 of Appendix A. The expression for rn , the slope of the S
versus time curve in the instructor control equation, is shown in equation 35
in Appendix A. This equation is derived from the expression

1( ~2I 1(1+A)o-S)
Ma VoS - SO) [Al( 1_ +A3 ) log S+(1 + AX)~j (5-1)

Equation 35 is found from this equation by approximating the logarithm by the first term of
its series expansion.

i e., log + (1 +A 3 )(oS - SO)= (1 +A 3 )(oS-So) (5-2)
OS + (1 A+ 3 ) 0) OS + (1 + A 3 )So

The validity of equation 5-2 depends very much on the size of its right-hand member. Since
1 + A3 = 0.25, an acceleration from So to OS where S. <OS will be better simulated by equa-
tion 5-1 thana deceleration where 0 S <so. Consider, as an example, the maneuver shown
in Figure C-2 in Appendix C. That is a deceleration from 20 knots to 2 knots. Since

A -075,(1 + A3)(oS -So

A3 = -0.7/5,oS+ (1 + A3)SO -0.643 but log(l - 0.643) 1.030.

Percent error = 1.030 - 0.643 = 38%ercet errr = 1. 03

whereas, for an acceleration fromzi 2 knots to 20 knots,
(1 + A3 )(oS -So
oS + (1 + A3)So = 0.220 and log(l + 0.220) = 0.199.
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Percent error - 0,220 - 0.1990.199 =11

which is a considerable improvement.

The foregoing discussion indicates the limitations of Cases 3 and 4 of the speed
equations, especially for deceleration. Improvement could be effected by using a better
approximation for the logarithm function. In the above example, the use of - 1.03 instead
of -0. 643 in the deceleration maneuver results in a distance covered of 2, 638 yards in 1200
seconds for a percent error of 0.65 (Table 4-2).

5.3.1.2 Advance

The results listed in Tables 4-5 and 4-6 in section 4.2.2. ý demonstrate the inade-
quacy of Cases 3 and 4 of the kinematic formulation for submarine turn. The error is in
the formula for Tc, the time delay for 6. By comparing the results using a circle with
R - Sf/1o6I and no time delay with Cases 3 and 4 in Table 4-5, we see that the original
kinematic formulas are better than those using the present derived value of Tc as time delay,

This era'or is not due to the approximation of the exponential. The discussion leading
up to equation 46 in Appendix A contains the equation

0 I 22 2 o 1 °S

an (AF l) - r(6f~ =x -c 2F ( f)

Thi3 equation is the sole approximation of the exponential used In the derivation of Tc. A
check of this equation, for the SS(B)N598 entering a 20-degrees rudder angle turn at 10 knots
yields -0.084 for the difference in the exponentials and -0.081 for the approximation. This
is well within the range of desired accuracy, whereas the error in advance for that same
maneuver was 17 percent.

The source o. tCe error is hidden somewhere else in the derivation and has not yet
been found.

5.3. 2 Surface Vessel

5.3. 2. 1 Speqd Loss in Turn

Cases 3 and 4 of the kinematic model for speed loss in a submarine turn generate
too rapid a drop in speed. This is due to an approximation made in the evaluation of the
integral (section A. 2. 2. 2. 2, Appendix A). Equaton 137, used in that evaluation, is

a7a60 6 2 + a8(V2- V). The term 2 o2 is a constant used to approximate a7(a6y -

Actually a2ot is an upper bound for (ay- _)2, which the latter approaches asymptotically.



a7 is negative and a8 (Vo - V2 ) is positive but smaller in absolute value than

-a 7 a 2 2. As V decreases, a8 (V2- V2 ) irows and v goes to zero. It is the o4t2 term then,
which causes the negative value of V.

Since this has larger absolute value than would be the case if (a6y - &)2 were used,
-V is too large. Therefore, the surface vessel slows down too fast.

No other constant term could be used in place of a 7a6ot 2 without changing the final
value of V. The only alternative is to use the Case 3 equation for C, letting y = C and ignor-
ing &. This should improve the output somewhat, provided the resulting integral can be
evaluated.

5.3.2.2 Turn, Case 2

The improvement of the equation for Case 2 of the surface vessel turn was accidental
Fesponse curves were generated using equations 121 and 122 of Appendix A. In almost - i

cases, C increased too quickly. For one surface vessel, it did not increase quickly enough.
It was evident that the equations used for Case 1 gave a very good fit, however, so the Case
2 equations were changed in such a way as to resemble the Case 1 equations more closely.

This entailed replacing 0o by Vn'l oC/Vf, which is equal to Vn-1 46. In the response curves
generated by these revised equations, C increased even faster than before, as was expected.
It was noticed, however, that by changing the initial time delay from T/2 to T, the error
was considerably diminished. This latter form was therefore adopted.

5.3.3 Aircraft

5.3.3.1 Speed

A statement is made in section 5. '1 regarding the loss of accuracy with increasing
altitude of the kinematic model for the spded of an aircraft. This is due to two things. The
first is the inaccuracy of the linear approximations of b and c as functions of altitude (equa-
tions 156 and 157 of Appendix A, and the table of b and c values preceding them). The sec-

ond is the deviation from the hyperbolic shape that the curve of thrust versus velocity under
goes at high altitudes. This can be seen in the curves in Reference 2. The two effects
combine to give errors near 50 percent. Despite this very large error, the model is still

acceptable. This is because the model is very simple and the curves being fitted are ex-

tremely complex.

5.3.3.2 Climb

Of thL two formulas used in the kinematic model for aircraft climb, the formula for

air speed as a function of attitude angle is the more "ensitive one. For higher airspeeds o.
higher altitudes the linear approximation no longer holds. The form of the function• would the



be a series of connected line segments with a table look-up necessary to find the end points
of the line selments as a function of level-flight air speed and altitude.

The quantity k which appears in the formula for heading as a function of attitude angle
is proportional to the density of the air, p, which in turn is a function of altitude. This de-
pendence can be approximated by either an exponential In altitude or by a series of line seg-
ments with a table look-up.

5.4 COMPUTER LOAD

Section 4.3 contains tables giving timing and storage requirements for the various
kinematic models. An examination of the timing requirements shows that there are two
areas that need further explanation. Each of the kinematic models requires some initializa-
tion computation as well as the computation at each iteration. In actual use, the time per
iteratinn allotted to each maneuver model has to be very nearly constant. The high initiali-
zation time of most models might raise this constant running time to :,low time for initiali-
zation whenever it is necessary. This possibility is discussed in section 5.4. 1.

Another area that needs clarification is the comparative time requirements for the
four cases of each maneuver. The tables in section 4.3 give time requirements in terms of
four basic instructions. This kind of tabulation does not lend itself to easy comiiparisons.
Section 5.4.2 includes comparisons between the models based on typical fixed- and floating-
point instruction times.

5i. 4.1 Peak Load at Initialization

If limited computation time is availkble for each maneuver, the time required for
initialization may prove a burden. There are several ways of compensating for this peak at
initialization.

5.4.1L1 Case 1

In the submarine turn and submarine dive maneuvers, the value of the control plane
angle appearing in the equation for (In and Dn respectively is the value at time h(n - 1). This
means that If the control plane angle is zero at time t = 0, no change will occur in the variabl
until t = 2h. This leaves two iterations for initialization.

This situation is also true to some extent for the surface vessel turn. There, the
only term that has any effect at t = h is Vn lha5 r 2 61 (see equation 46, Appendix B). This
leaves considerable time for initialization at the zeroth and first iteration.
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5.4.1.2 Cases 2 and 4

When using Case 2 or Case 4 (Case 3 or Came 4 in a submarine dive maneuver), ther

is an initial time delay. This time delay is always on the order of several seconds. Counthi
can start with the initial order, with complete confidence that initialization will be complete,
before the time delay is used up.

5.4.1.3 Case 3

A certain amount of running time per iteration in Case 3 is used to test whether or
not the variable has reached steady-state value. In the arithmetic portion of each iteratioa,
one addition is used to update the variable by th. "iitant increment, ,.0ile two additions an,
a multiplication are used to update the integral of the variable, if necessary.

The test and most of the arithmatic can be eliminated at the first iteration. The test
is unnecessary at the first iteration and the constant difference itself is the first value of thE

variable, while half of it is the first value of the integral of thu variable. Thus, by perform
ing half the initialization at nh = 0 and the other half at nh = h, the peak at initialization can
be considerably reduced for Case 3.

5.4.1.4 Turn Maneuvers

Forturn maneuvers in general, where the position of the vehicle has to be updated,
there is another place where time can be saved for initialization. A glance at the curves
of x versus y for turn maneuvers shows that several seconds elapse before y becomes notici
ably different from z-ro. The time saved by neglecting to update y during the first few iter
tions can be used for initialization.

5.4.2 Comparative Time Requirements

The following ratios have been selected as typical of modern high-speed digital
computers.

Transfer Add Multiply Divide

Fixed Point 1 1 2 5

Floating Point 1 4 3 6
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5.4.2.1 Submarine

TABLE 5-3. COMPARISON OF TIME REQUIEMENTB: SUBMARINE

Came I Cae 2 Case 3 Case 4

Fx F1 Fx F1 Fx Ft Fx F1

Acceleration/Deceleration
Initialization 7 11 7 11 21 35 15 24

Each Iteration 14 26 14 26 7 14 4 7

Turn
Initialization

Each Vehicle 44 84 40 76 40 76 40 76
*Each Maneuver 37 83 94 196 112 221 87 179

Each Iteration

S 15 34 15 22 7 14 6 18
( 14 30 13 23 9 27 6 18

C 6 16 6 16 6 16 2 5

Total 35 80 34 61 22 57 14 41

Dive
**Initialization 31 65 38 73 28 54 40 118

***Each Itemtion 16 40 14 37 11 21 8 15

*Numbers do not include square root subroutine used to find 0 C in Case 1 and Sf in Cases

2, 3, and 4.

5!(*Numbers are for the general case where DO and bo are not zero; they do not include two

sine routines and three cosine subroutines.

***Numbers are for computation of D. To update Z, add 42 fixed units and 91 floating units
to time per iteration of Cases 1, 2 and 3 and 3 fixed units and 6 floating units to the itera-
tion time of Case 4.

Summing up, the ratios for time per iteration are roughly as follows:

Fixed Floating

A/D 4:4:2:1 4:4:2:1 (Case 1, Case 2, Case 3, Case 4)
Turn 3:3:2:1 4:3:3:2
Dive 4:4:3:2 2:2:1:1
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These ratios are for the outputs speed, course angle and dive angle. To get position,

add the following for Cases 1, 2, and 3.

A/D : 5 fixed, 12 floating

Turn : 8 fixed, 20 floatLg for initialization

44 fixed, 98 floating each iteration

Dive : 42 fixed, 91 floating

For Case 4, A/D and Dive are different.

AID : 3 fixed, 6 floating

Dive : 3 fixed, 6 floating

The new ratios are

Fixed Floating

A/D : 3:3:2:1 3:3:2:1

Turn : 7:7:6:5 9:8:8:7

Dive : 5:5:5:1 6:6:5:1

5.4.2.2 Surface Vessel

TABLE 5-4. COMPARISON OF TIME REQUIREMENTS, SURFACE VESSEL

Case 1 Case 2 Case 3 Case 4

Fx F1 Fx F1 Fx F1 Fx F1

Acceleration/Deceleration
Initialization 9 12 9 12 27 44 20 31

Each Iteration 9 20 9 20 3 15 3 6

Turn
Initialization

Each Ship 58 112 54 108 59 117 57 114

*Each Maneuver 16 38 56 107 64 120 70 134

Each Iteration

C 49 111 50 117 26 69 8 20

V 18 41 18 41 7 19 5 14

Total 67 152 68 158 33 88 13 34

* Numbers do not include square root subroutine used to find Vf.
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The ratios for time per iteratiom for speed and course angle are

Fixed Flating

A/D 3: 3:3:1 4:4:3:1

Turn 10:10:5:2 5:5:3:1

After adding 5 fixed units and 12 floatIng units to Cases 1, 2, and 3 of A/D, 3 fixed

units and 6 floating units to Case 4 of A/D and 44 fixed units and 98 floating units to all cases

of turn, the ratios for position are roughly as follows:

Fixed Floating

A/D 2: 2:2:1 8:8:7:3

Turn 10:10:7:5 4:4:3:2
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SECTION VI

CONCLUSIONS

9. 1 EXTEINT OF DEVELOPMENT OF A THIRD CATEGORY OF VEHICLE

SIMULATION MODELS

The third category of vehicle simulation models in defined In Section II as falling
between the two that already exist, with respect to both fidelity and computer requirements.
The two already existing are the dynamic and kinematic models defined in sections 1. 1. 1
and 1. 1.2. By comparing the new kinematic equations in Appendix B with the dynamic
equations in section 3. 3, it can be seen that the new models fall between these two, with
respect to computer requirements. Each of the dynamic equations in section 3. 3 must be
used with a numerical integration formula, at each iteration; the resulting running time per
iteration is about 50 percent more than that of Case 1 of the corresponding kinematic model.

The dynamic equations fhr aircraft motion are not shown, but in their simplest form
they are much more complicated than the Appendix B kinematic equations for the aircraft.

It is not required that the new kinematic models place more of a burden on the
computer than the old kinematic models, nor need they be less accurate than the simple
dynamic models. It is sufficient that they burden the computer less than do the simple
dynamic models, while being more accurate than the kinematic models now in use. As can
be seen from Tables 4-5, 4-8 and 4-9, they are indeed more accurate than the old kinematic
models. In Table 4-5, the old kinematic formula for a turn is more accurate than cases 3
and 4, but less accurate than cases 1 and 2. Similarly, although Cases 3 and 4 of the sub-
marine deceleration equations are inaccurate, Cases I and 2 are more accurate than the
old kinematic equations (Table 4-2).

The advantage of the new kinematic models over the ex' sting simulation methods is
further enhanced by the flexibility of iteration interval. This is especially true in those
cases where Case 3 gives good results (see Tables 5-1 and 5-2). There, the error grows

very slowly as a linear function of h (see section 5. 2. 2).

The kinematic model for the aircraft is also an improvement, and better than existing tar-
get simuators. Its simplicity means that, with fewer calculations than required by existing
target simulators, it will incorporate more aircraft characteristics. In addition to time
delays, it supplies the instantaneous angular orientation of the aircraft necessary for
simulating radar profiles. It also gives the relation at any instant between air speed, headirk
and attitude, thereby providing the observer with an indication of the type of aircraft
involved.

Furthermore, these important aspects of target simulation are preserved as the
iteration interval grows from one-tenth of a second to two or three seconds, a 10- to 50-
fold increase over the iteration interval necessary for even gross dynamic aircraft simulatloi
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6.2 ADVANTAGEOUS SIMULATION SITUATIONS FOR MODELS IN THIS CATEGORY

Section 3. 1. 2 contains a description of the simulation circumstance normally

associated with each of the four kinematic models developed for the submarine and surface

vessel. The names Operator Control, Command Control, Instructor Control and Program
Control are derived from these descriptions. A correspondence is established between
use and model, based on the form of lupiA and output and the expected accuracy and com-
puter requirements of each model.

In Section IV, the elements of this bags are re-examined. In section 4. 1 it is

pointed out that, except in the cas of the submarine dive, the input for any model can be
adapted to any other model. Furthermore, if position is the variable of primary interest,
the outputs from Cases 1, 2 and 3 are very similar. Also, the actual accuracies and
computer requirements of each model, listed in sections 4. 2 and 4. 3, are somewhat differe.
from the expected values.

The correspondence between use and model is therefore revised, based on the actual
results in Section IV and the discussion of these results in Section V.

6. 2. 1 Acceleration/Deceleration

For the acceleration/deceleration maneuver, the original correspondence between
control situations and equations is a good one. Operator and command control are the own-
ship motion situations. They both use the Case 1 equation, which ts the same as the Case 2
equation for this maneuver. The Case 3 equation is not good for own-ship motion because
of the abrupt, unrealistic change in acceleration when Os is reached.

Target motion is simulated using Case 3 or 4 becaus -f the savig in computer
time. Case 4 is used onily for the program control situation L•ecause abrupt velocity change
in the output is very evident and too unrealistic for any other situation.

6. 2. 1. 1 Submarine

There are three different computer burdens corresponding to three different shapes of the
output from the three submarine acceleratioi/deceleration models. Therefore the original cor-
respondence between control situations and case numbers is retained. This is the case evenfor
the deceleration, where caes 3 and 4 give results that are poor but still adequate for target
simulation.

6. 2. 1. 2 Surface Vessel

The difference in time requirements between Cases I and 3 is not enough to justify
the use of Case 3; the exception to this is when the simulation system calls for the use of
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a large iteration interval. In such a case it would be advantageous to use Case 3 because

Cases 1 and 2 may be liable to error or instability as h increases. Otherwise, Case 1 can

be used for all situations where the velocity change may not be abrupt, Case 4 for all cases

where it may; accuracy is very good in either case.

6. 2. 1. 3 Aircraft

The aircraft acceleration simulation model can be used at low speeds and low
altitudes as part of an own-ship model. At higher speeds and altitudes, although too in-

accurate for an own-ship simulator, the short running time and flexibility of iteration
interval make it an acceptable part of a target simulator.

6. 2. 2 Turn

In the submarine turn maneuver, the differences in the form of the output are least

apparent. This is especially true for Cases 1, 2 and 3, whether used as an own-ship or
target simulator. Case 4 has a response that could be detected as different in an own-ship

simulator, but not in a target simulator where the only output is position as a function of

time. In the surface vessel turn maneuver, the differences in output are more apparent.

6. 2. 2. 1 Submarine

There is little relative difference between the computer running times for Cases 1,
2 and 3, especially when the time to update position is included. Furthermore, Case 3 as it
now stands is very inaccurate. Therefore, Case 1 should be used fur the operator control
situation, Case 2 for the command and instructor control situation, and Case 4 for the
program control situation. In Case 4, instead of using the formula for Tc shown in Appendi.

B, Tc should be set to T, the time for the rudder to move.

In the event that a formula car be devised giving a better value for Tc, then Case 3
should be used for the command control, instructor control, and program control situations
doubling the size of the iteration interval for the program control situation.

6. 2. 2. 2 Surface Vessel

For the surface vessel, Case 3 was more consistently accurate than Case 2. There-
fore Case 1 should be used for the operator control situation, Case 3 for the command and

instructor control situations, and Case 4 for the program control situation. This rule
need not be rigidly followed. If the operator control maneuvers are to be simple turns at a
constant rudder setting, then Case 3 can be used instead of Case 1. If a large iteration

interval is more desirable than the savings per iteration using Case 4, then Case 3 can be
used for the program control situation.
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6. 2. 2. 3 Aircraft

The aircraft turn model can be used in any situation where there is no need to

simulate the deviations from a coordinated turn. This means it can be used in most target

and a few own-ship simulators.

6. 2. 3 Dive/Climb

6. 2. 3. 1 Submarine Dive

Cases 1 and 2 produce results that are very similar and require approAimately the

same computation time. Since Case 1 is more flexible and easier to use, it should be used
whenever the stern plane angle is known. In those maneuvers given in terms of 06 monitore,
by time or oD, Case 3 gives results almost as good as Case 2, is easier to use, and takes
less time. Case 4 should be used whenever oD is constant for any sizable duration and when
the abrupt change in dive angle will not have any undesirable results. The advantage of

Case 4 is its very small running time per iteration.

Thus, Case 1 is used for operator control, Case 3 for command and instructor
control, and Case 4 for program control or those instructor control situations where the
submarine can move as a point rather than a rigid body and when time is very important.

6. 2. 3. 2 Aircraft Climb

The aircraft climb model can be used in a simple model for an aircraft as a target.
Although not very realistic during transitional phases, it gives a good representation of the

rigid-body orientation of the aircraft when vc is fixed.
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SECTION VII

RECOMMENDATIONS

Recommendations are made concerning both the use and the improvement of the

kinematic vehicle simulation equations developed in this report.

These equations comprise a third category of vehicle simulation equations, falling

between the two that already exist with respect to both fidelity and computer requirements.
There are various types of simulation situations where it will be advantageous to use models

in this category. These situations, described in section 6.2, use the concepts of operator

control, command control, instructor control, and program control described in section

3.1.2.

Recommendations are made for two kinds of improvements of the models developed
In this report. In the first place, several mathematical derivations need re-examination.

Secondly, the values of vehicle constants in the submarine and surface vessel equations

must be re-evaluated.

Several of the kinematic equations give results which are inconsistent with the high

accuracy of the others. Time delays are in error for two of the submarine models. The

time delay for speed in a deceleration maneuver is too small; the time delay for turn rate

in a turn maneuver is too large. An error in time delay affects Cases 3 and 4. The time

delay for speed loss in a surface vessel turn is somewhat smaller than it should be. Finally,
improvement can be made in the kinematic models for aircraft acceleration and for aircraft

climb. Recommendations for improving all of these models are discussed In detail in sectio?

5. 3. In section 3. 5, it is shown that several values of the submarine constants in Reference
1 are erroneous. Furthermore, statements are made in Reference 1 to the effect that the

values of the constants are not functions of the hydrodynamic partial derivatives used in the

more complete dynamic equations. Instead, they are said to depend on the structure of the

mathematical model as well as on the vehicle being simulated. Specific reference was made
to the fact that, if a different integration technique were used to update the dynamic equa-

tions or if the dynamic equations were solved in a different order, then the values of these

constants would very likely be different.

In the derivation of kinematic equations from dynamic equations, many changes are

made from the original numerical approach. This should cause significant changes in the
values of the constants. The constants, therefore, should be re-evaluated directly from the

tactical data.

It is recommended, therefore, that methods be developed for direct evaluation of the

constants of the vehicle' s motion. This will be useful for improving the models developed f

this report, and will provide a uniform and reliable method of constructing kinematic modelh

for aný submarine or surface vessel for which tactical data is available now or in the future.
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APPENDIX A

DERIVATIONS

A. 1 SUBMARINE

The following equations describe the motion of a submarine. The symbols A1 , ... ,

A,, represent certain constants which vary in value from one submarine to the next, de-

pending on the handling characteristics of each.

S =A 1 OS - (1+A216rj)S[ IoS+( 1 +A21 6 rI +A 3 )S} (1)

C = -(A4 SC + A56161 + A6 S2 6r) (2)

D = -(A7 S6 + A 8 I1I + A9D + A1 1 , 26 s) (3)

The units chosen for the constants (A1, ... , A,,) provide for speed in yards per sec-

ond, angles in degrees, and angle rates in degrees per second.

S = Speed

OS = Ordered speed, (forward speed to which the engine power ouiput corresponds)

6r = Rudder angle (positive when rudder moves to the left)

C = Course angle (projection of the direction of the submarine, s motion on the nori-
zontal plane. The positive direction is clockwise, from north to east. C = 0
when the submarine is headed due north)

D = Dive angle (elevation angle from the horizontal. When the submarine is diving,

D is negative)

bs = Stern plane angle (positive when the trailing edge moves down)

The rectangular coordinate system is left-handed, the X-axis points east, the Y-

axis, north, and the Z-axis, down. X, Y and Z are given by

X = S cos D sin C

.S cos D cosC

Z= -S sin D

A. 1. 1 Submarine Turn

The submarine turn equation will be solved first since portions of this solution will
be used to solve submarine speed equations.



A. 1. 1. 1 Solution of the Differential Equation

Equation 2 is the differential equation for (, which is the rate of the submarine' a
course change

C -(A4S + A56 161 + AB 2 6d

When i is positive, the equation is written

62 OS2
C -(A 4 S + A5C + AS6r)

When is negative, It becomes
6. *2 62

C -(A 4 8C - A5  + A6  6r)

NOTE: APAS and A6 are always positive.

The graph of ('versus (6 (Figure A-i) is comprised of two parabolic sections joined
at point 0, -A 652 6r. The curve has no maximum or minimum since the slope,

-(A4S + 2AsI(56), will always be negative.

In order to proceed with the solution of the differential equation, " must be ex-
pressed an an analytic function of C. It is doubtful that sufficient accuracy would be galnek

by the use of a cubic rather than a straight line to approximate the 6 IC1 term to warrant

the added difficulty in integrating such a function. Therefore, a straight line will be used.

28

Figure A- I

The straight line will go through 0, -A 6 2 6 r and the point on the curve corresponding to thi
steady-state turn rate.
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In the types of maneuvers to which theme formulas apply, there will be only one
principal value of turn rate (o0, the ordered turn rate) for each maneuver. This value c
Swill be the steady-state value, that is, C - 0 for 6 - 06. The corresponding rudder aj
will be denoted by 6 re The relationship between 0  and 6 r can be found by letting C = 0.

;1A 2 4 ASA

015 (~A 2A5 )
for positive 06 am

-6 A 4  
)4 A66r

for negative ob

A glance at the graph (Figure A-i) will show that, for ot positive, 6r is negative
and for oC negative, 6 r is positive. This is because the graph has a negative slope. Ali
oC and -A 6 S 6 r are Cand C" intercepts respectively. Therefore both radicals can be

written

The radical is greater than A4 (since A4 , A 5 and A8 are all positive). In order to have
the proper sign for o6 in equations 4 and 5, the positive sign will be used for radicalt
in both cases. The two formulas can then be combined as follows:

-6 ' -+ A 4

0TF 2A5
The final expression for 0 6 car. be found by substituting the steady-state value of S in thi
turn. The steady-state value of S can be determined by setting b to 0 in equation 1 . Si
1 + A216r I+ A3 will always be positive, o0 - (1 + A2l6rI)S - 0. Hence steady-state S, di
noted by Sf, is given by

Sf -"1 +A 21 6r

and

2A5 (1 + A 216ri)



The straight line approximating the graph of equation 2 can now be calculated.

The slope of the line will be given in terms of 6r , the principal value of 6r In a maneuver,

and 5, the present value of speed. The C inteiFept will be -AS8 6 r.

Since the slope is determined by the current value of S rather than Sf, equation 6

,will be used for the intercept rather than equation 8.

When 6r = 6 r' the line must go through the two potnts 0, -A68 26r and

117S A4 0.

Denote by F)

A(3S 2
Therefore, the slope of the line is .r The slope of the line remains constant. Hoi

SF c

e v e r, the line can be displaced vertically if -A 6 8 66rI the C Intercept, changes in value.

Thus, using the y = mx + b form of the equation for a straight line, the approximating for-

mvula is

A6 SC - 2 (10)

This in a linear differential equation for C and is euily solved. The solution will be

erroneous however, unless 6r is represented as a function of time. 6r is most easily ap-

p~roximated by a linear function of time. Let 6 r = 6+1 + rt, where 61 a 6r at time t= 0.

The solution of the homogeneous equation is C w k exp [A 6 S6rt/Fc]. Let y jy + y2

be a particular solution. Thus,

0= Y2 - A6 S[(65r(YI + Y2t)/Fr) - S(6 'rt)]

This must be true for all t, therefore, letting t = 0,

0 = Y2 - A6S [(6rYl/Fc) - S61]

Dropping th i s sum fr o tnthe equation and letting t = I produces

0 = A 6 S[ (6rY2/Fc) - S!r]

A.L
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Hence,

Y2 OSF C r/ar

Fc irFe+S

Therefore the general solution is

C'kexp[A686rt/Fc] ++ . +6l+S r

However, since 6 r = 61 + irt,

C=k exp[A 8S~rt/Fc] + F + S6]FI -F6rX r]

Let C at time t - nh be written Cn for all n.

Then

F-6r+8 zkexp[AG6S6nh/FC]

n.1- F r ir S6r ] k exp[A 6 S6rnh/Fc]eXp[-AGS6rh/Fc]

Therefore

F1 /F FF6 lArSXhl
ýr+S (n-1c!r + S6r exp 1! 1 J (11

A. 1.1.2 Operator and Command Control Situations

The instructor and program control situations will be developed after the speed

equations.

Operator Control

In the operator control situation, 6r and 6r are direct inputs. Therefore, the only

approximation required is

exp[A 66rSh/Fc] f 1 + A6!rSh/Fc (1
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The validity of this approximation depends on the size of A*6rSh/Fc.

6r/Fc increases roughly as as shown by equation 9. The largest value of 6 r teat

is likely to be encountered is 356. According to available documentation, A4 , A 5 a., A6

will vary considerably. Their values are given for three different vessels. Using these
figures, the three different maximum values for lh such that (A6

6rlh/Fc) < 1 when
16rl = 3P are given by

Submarine I Sh < 64.4 yards - 114 knot-seconds

Submarine HI h < 2, 373 yards a 4,215 imot-seconds

Submarine Ih Sh < 139 yards - 246 knot-seconds

When h equals 1.0 seconds, A6 6rSh/Fc < 1 for any possible submarine speed. Proceeding

with the approximation, equations 11 and 12 provide

!c • FcrF-c5 r 1]f Fc[Fchr

nFLAe6- 6 r n--r + 86reJ ÷ c

F. Fo 6 A r6h F8'8r.,Cn"- Cn-I - 6 S(6rn6 rn~) 6r + n-l 6

r n n-i rr

but 6rh 6rn - 6rn.1

Therefore

... A68!h FcS6 rn.1Cn " n-1 'a Fn-I -1

The final assumption used in the above is that the variation of S over the Interval h

will be small enough to enable the equation to hold with the same value ef S In all terms.
15 -6 'aA S h[ 6 ' 6(3

n "n-i A6Sn-h[(rCn-I/Fc) - Sn-16rnI] (13)

Sn_1 is used rather than Sn because it is larger and will therefore lead to a larger value of
dn " tn-l" This compensates somewhat for the fact that the straight line produces slightly
smaller values for I Ci than would be produced by the parabola.
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Command Control

In the command control situation, OS and ot (equation 8) are the only inputs to the
equations other than T. T equa),s the time it takes the rudder to move to 6 r'

There will be a command control equation for 8, so that Sn will be known at each
iteration. Sf defined by equation 7 , can be found as a function of 0 using equation 6.
Equation 7 will be used to determine 6 r which is then Inserted in equation 8 with S =Sf.

Equation 8 is then solved for Sf.

iI=( - 1)A2 (14)

Sf06 oS A + 4A A 4A
W5 4 5 56(lof - )T7 4)

(2A51dal + A kSe)2 to S 2(A' + 4AtA S

4F Os- 4 +/S (15)Wit A AS f k own (in terms oSf -Sf),Fcnbefud

SFc + 1Sf( (16)-- c

Equation 10 can now be written in terms of SI and where 2r = 6 r .r is given

by equation 14. The sign of tr will be the opposite of the sign of 0 .

A sA%°(s 10

a.[A (' - )(06. sf- ) (17
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1 A~St I )+

o- log(0CS o)o- j).+K3f A 2 It"12t8f -

o06n - Sf6 - K2 exp I 2ol (0s )]
OýS -f~n= K ex IA 210C161(0-

for all n.

Assuming again that 5 n m an_,

(oCS _1  - S •i n) - (o0 Sn. 1  - SfC.n. )exP A 2 1 061 ( 08 - of

Note that this is the same as equation 11 after making the substitution indicated in
equations 14 and 16. Therefore the expansion of the exponential holds for the same range
of values of S as did the expansion of the exponential in equation 11

-hA6Snl(o S - Sf)( n l - 1 (19)
n -n- fn - on-1)

This can be rewritten in a simpler form

_•- Sf
a f 1rI by e quation 14

Furthermore, 6 r and 0 6 always have opposite signs, therefore

I I/Ioct= -Or/06 (20)

Alto, when S M Sf and (= o(0, d in equation 2 will be zero.
A4SfoC + A 61.61 + As2 6 0

5o-Of r
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A6 S 2 -

o- ASf +A

A6Sn-1(os - Sf) , A6Sn.IjrI ,.A6Sn.i'r

= (A4Sf + A5  :n 11 (21)

6Sf (Sf6n.1 - o-Sn.1)(A4Sf + A 1 'o' (22)
n - SnI ~2 5101)

This form eliminates the indeterminate 0/0 that occurs in equation 19 when 6 r = 0,

causing both oS - S, and 1oC1 to be zero.

The abrupt introduction of 6r as the rudder angle rather than building it up from

6r = 0 will be compensated for by Oetting n" - 0 for nh < T/2 and using equation 22 when

nh > T/2. T is the estimated time for the rudder to build up to 6r from zero and may be

determined by using the following formula.

Let ;r be the estimated rudder deflection angle rate in degrees, per second.

Therefore, using equation 14

A. 1.2 Submarine Speed

A. 1.2. 1 Solution of the Differential Equation

Equation 1 is used to determine S, the speed of a submarine. It may be solved

directly.

• ,•' 3•s}.dt
A, {OS- (1+ A2 16rI)S}{oS + (I + A I06rI + A dt
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Using partial fractions,

dSA+B 1A
cS0 ( 2  rS OS +(1+A216ri +A 3 )F -Aldt

A1 + A2 16 r

A. o2(1 +A216d) + A3J

1 + A2 16rI + A3
B oS[2(1 + A21'rl) + A3]

oS+- (1 + A216 r )S = K1 exp[oSAlt(2[l +A 2 161rj] + A3 )] (24)

0 + (I + A21 rlS2.)

0S+ (I + A2I16rI -+ A3)Sn 0 ~S+ (I1+ A 216 rI + A3 )Sn-I

S-(1+A216rIS OS -(1 + A2IhrI)Sn-I

(Refer to equation 11). xor + A I6r.I + A3

This can be solved for Sn - S n-1 in terms of Sn=1"

Sn - -1 O - (1 + A2l16 r! 5n-1] (oS +(1 + A216 ri + A3)Sn-1 Fiexp(oSAjh[2(1+A 2j6rI)+A3])-1
(- -+A .16, + + A3)n - (1e +A 2,81hrl)2n- 1I

+(1 + A216r)[oS + (1+ A 216ri + A 3)S.1]exp(oSAlh[ 2j(1+ A2 16rr) + A3 ])

This expression is still much too cumbersome for practical use, therefore certain

approximations will be made. First, the exponential will be replaced by the first two terms

of its Taylor expansion.

exp4oSAi h[2(1 +A A2 16 r) + A3]) 2: + 0SA~h[ 2(1 + A2I6,I) + A 3]

The first two terms will be a good approximation for the exponential, provided thst

the argument of the exponential is small. The argument is largest for 1 6 rj = 350, or full

rudder. Using this value, the maximum values of 0 Sh such that the argument will be less

than one, corresponding to the three submarines for which figures are available, are as
follows,

k- 10



NOTE: The values given for A2 are 0. 275, 0. 203 and 0.0403. These

are incorrect. However, since A2 is easy to compute, the fol-

lowing values have been used instead: 0.0275, 0.0203 and

0.0271. The values of A1 and A3 appear to be correct.

(Refer to paragraph 3. 5)

Submarine I oSh < 98.4 yards a 174 knot-seconds

Submarine H OSh < '117 yards = 208 kno -seconds

Submarine II ASh < 118 yards = 210 knot-seconds

When ASh satisfies the appropriate condition, the first two terms of the expansion

are used.

gn Sn-1 = !S - (1 + A216 rI)Sn-1] [OS + (1 + A2I6rI + A3)Sn-1] Alh
I+ Alh( + A2I6rI[oS +(1 + A216rI A3)8ni]

The next step is to put the denominator of the resulting fraction into the form 1 + x,

where x < 1. Then, the approximation 1 = 1 - x will be used. The denominator can
be expanded provided that

Alh,(1 + A216rI)[,,S + (1 + A,,6rI + A3)Sn.1] < 1 (25)

This is slightly different from the inequality that must be satisfied in order to ex-

pand the exponential. In a turn, this expression will be greatest when 6r = 350 and Sn.1 vf oS.

Us Ing the same values of A2 , the maximum values become

Submarine I oSh < 72.0 yards = 128 knot-seconds

Submarine H ASh < 93. 2 yards = 166 knot-seconds

Submarine MI A5h < 86.4 yards = 153 knot-seconds

In a deceleration maneuver, the above inequalities must be satisfied for original speed

times h, rather than oSh.

When ASh satisfies the condition appropriate to the particular submarine to be simu-
- lated, the approximation 1 1 - x can be used. When used however, the h2 term,1 +x

when the numerator is multiplied by 1 + x, has coefficient

[oS- -(1+ oAs6r) n_][OS+(1 + A2 6rl +A 2A2(l +A2I6

This will be much less than the coefficient of the h term unless the restrictive inequality

25 is very nearly an equality. Therefore this term will be omitted.
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The final formula is therefore

Sn- Sn-1= A1h[o0 - (1+ A r)Sn.1[ log +S + (1 + A216rl + A3)SnlI] (26)

t. 1. 2.2 Four Control Situations

Operator Control

Equation 26 can be used, without modification, for the operator controlled turn.

In an operator controlled acceleration or deceleration maneuver, 6r - 0 and equation 21

becomes

Sn - SnI 1 Alh(oS - Snl)(oS + [ 1 + A3 ]Sn-I) (27)

Command Control

Equation 27 is suitable for the command controlled acceleration or deceleration
maneuver. In the command controlled turn maneuver however, 6 r will not be one of the

inputs. Instead, the input will be Sf, which is derived from o i by equation 15. The re-
lationship between 6 r and S, is provided by equation 7 . It ishis equation which will be

used to express Sn--Sn.I in terms of Sf.

Sf= oS/(l + A21)

I + A2I6rI = OS/Sf

Substituting in equation 26,

Sn - S =n SA h[I"f [oS+( +1A3)Sn-1

S I
Sn -Sn.Is-21A h(Sf - S + A )Sn. (28)

Note that equation 28 is the same as equation 27 when Sf is equal to OS.

In the command control situation, the buildup of 6r from zero to 6r Is accounted for

by letting Bn = oS for nh < T/2 and then using equation (28) when nh > T/2. T equals the

time required for the rudder to move from zero to 6r. (Refer to equation 23.)
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'• Instructor Control

In the instructor controlled situation, Sn - Sn.1 is expresued u a function of oS and
Sf, but not Sn1' This is accomplished by equating the following integrals and taking the
limit u x.. a.

(Sf-So)/m x x

f (So+mt)dt+fSA dt =f8dt (29)
o (sf5-8 0)/m o

where So +mt M S so Sn - Sn.1 = mh.

Before equation 29 can be solved for rn, an expression for S must be found that can be
readily integrated. Such an expression for S is implicit in equation 24. There are no
approximations involved in its integration. K1 will be evaluated by letting 8 - o when t = 0
In this way the resulting expression can be used for either turn or acceleration/deceleratior
maneuvers.

K S+(0 + A2I6rI + A3 )SO(
K1 = oS -(I +A2I6rI)So (30)

The following notations are provided to facilitate .the performance of subsequent
0 calculations.

a=(I+A2 6r +A 3 )

b = (1 + A216r)

C = oSAl(a + b) (31)

Therefore, equation 24 can now be written

OS + aS

oS(Kject- 1) oS [bKlect +_(a + b)]

a= abKlect =b bKlect +
S=2 I. ab + b

blbKlect +a a

(a + b)OS xo dtfSdt = x -- • 1 lC
5- 0 ! bK ct + a
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j =l [ct - log(bK ect + a)]xbKle et +R WE1a

.1ab ~ 0 abe bK +a JL

"og[-. ++.] •log[bK1 + a])]

As x -.

log(bK1 ecx + a) -,cx + log bK1

So, Xrrf Sdt -o°[2 +ab(cx _ log[, +IL 1 0 a + bioga + J ) (32)

Using equation U, this equals

so.Loj&] m so 2 (8- 0-
so [L ý ] + 2m2 + o X- M I

(Sf -s) 2 + S + six six )2
m

Thus, equation 29 becomes

(SfoS ) 2 0S S(a+b)

b -abc 'og (1 +W )

In an acceleration/deceleration maneuver, b - 1 and Sf 0o. In a turn, Sf a 0 8/b by equa-

tions 31 and 14. Therefore, the terms containing x drop out in both cases.

Using equation 31

Thus,

m= = (Sf - ao)2 ,.b log (1 + (7)j
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Equation 33 still has to be interpreted separately for turn and acceleration/decel-
eration. In a turn, S0 = oS, therefore K1 = (1 + a)/(1 - b) and the argument of the logarithm
becomes

a and b are both positive, therefore a < 1 + a and Il - bI < b and a(1 - b) < b(1 + a). Thus,

the logarithm can be expanded
S[*al - b) a(I - b)

+a 1 ( b(I + a)

mt-(sf-o0S) 2(1-b)

a and b are then expressed in terms of oS and Sf, using equations 31 and 14.

a =n +A 3

b08

1 - b - (Sf - oB)/Sf

= (Sf - 0 (34)

We next consider the acceleration deceleration maneuver.

a 1 + A3

b l

K1  + ( A3 )o (equation 30)

In this case Sf = Os, so equation 33 can be rewritten as follows:

1 2 1 (1 + A3)(°S " so)•1"

"-"I + A) [ log (+ os + (1 + 3)So]

A3 is negative but greater than -1, therefore

(1 + A3 )(oS - so) <

oS + ( + A3)So
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provided that OS and So are both positive. Expanding the logarithm

ma = (1S - o)2 [06 + (1 + A3 )S0 ]A 1

A1

ma : - 'o)T[o8 + (1 + A3)so] (35)

The two formulations may be summarized an follows:

a. Turn

Sn = OS when nh < T/2

a ~hAl 82O

when nh > T/2 and 8 n > Sf

an Sf otherwise (36)

b. Acceleration

Sn - n1 * :? (oS - 8o)[oS + (1 + A3 )8o]

when (Sn - oS)(So - WS) > 0

n =oS otherwise (37)

Program Control

In the program control situation, speed changes occur abruptly. Realism is achieved

by Introducing a time delay so that the distance traversed at some future time (x) will be the
same as if an exponential buildup were used.

The integrals to be equated are

fSO dt +f Sf dt =f S dt (38)

&Bs x -- C..

Equation 32 already has

lim x + b ox - OD] S dt - S ac b
0 lux
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This is now equated to

(So - Sf).r + Sfx.
os

As mentioned following e4uation 32, Y- Of in both turn and acceleration/deceleration
maneuvers, therefore the terms containing x drop out. Also Ia/bKI < 1 (refer to discus-
sions following equations 33 and 34) . Hence, the following approximation will be used
for -':

Sab cK1

-1" 
(3T

(so - Sf)b 2A1K1

by using equation 31.

In a turn, K1 fi-u refer to equations 30 and 31. However by using equations
and 31 , this can be written

Ki M (SO +A38 + 1) sf/(Sf 08o)

while

b = oS/Sf

so = oS

Hence,

7Tt S/o S2A(- + A3 + 1 (4

In an acceleration/decele-ation maneuver,

b= 1

oS + (1 + A3 )SO

Sf oS

therefore,

+(1 +A3)So)A 1  (4

A



In summation, the two formulations are as follows:

a. Turn

Sn- 0 8 when nh < + 8/0 'If +(A3 + 1)

Snf Sf when nh > + OVos'"A f + A3 + 1) (42)

b. Acceleration

Sn - oB when nh < 1/08 + [1 + A3 ]Bo)A1

Sn 0 whennh>1/S + [ 1 + A3 1S0 )A1  (43)

A. 1.3 Two More Control Situations for Submarine Turn

A. 1.3.1 The Integral of (i

To proceed with the instruction control and program control approximations of the
submarine turn, it will be necessary to evaluate

lim X
x lioýf C dt. lb will be expressed using equation 18, rewritten here as equation 44.

0

ar'xest]
ocS - Sf C = K2 exp -- (os - Sf) (44)

K2 is evaluated by letting 0 and S a oS when t a 0.

K2  o1oS

Equation 45 will be integrated from zero to infinity using a variable S. Equation

32 will be used to find the integral of -W--. The S in the argument of the exponential must
f

be approximated by a simpler formula so that the integral can be evaluated. Equation 42

will be used for this.

Let T1= Sf/oS2AOS +A3s+ 1
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Therefore,

lirn li- -A 60 St(oS Sfd
"x -*. I C dt= 2[X of Sdt-OS exp Jodt

Xl-00 oSfjexp [•A F1 s'idt (46)

lira x 2•S (S
S~j, 2 (os 3

"x-Cn Sdt = Slx-Sf(Sf .. oS A,(P + A3 +I1

from equations 29, 32, 33, and 34

TIexp LA6oSt(os - Sf)]d lna x 6A1 a S)flexp dt + x -aD f exp d

:A210C1 1 LA,5S1O ' - lSL)(-AeSfri(:S - Sf)
= 6(O0 8 Sf) [expQ A 2II )f'p 1t0oS - Sf Sf I

A2 - = S 1r by using equation 14, anjo =1y- by using equation 16 . Hen(.e,OS -S n0~I~

the arguments of. the two exponentials become -A6oSTFljrj and -A6Sf6' respectively.

The maximum values of oS 1 and Sf1 for these quantities, to have magnitude less than one,

are provided in the discussion following equation 12 for L_ = 35 . T is approximately

10 to 20 seconds, therefore, unless S is quite small, the arguments will have magnitude

greater than one. However, the difference of the two exponentials will be used and th

pansion wiLl be carried out to three terms; hence, the resuLtant error wiLl be srnat

1e exp r\A6S)i•l6r\
°-Sexp\ FC~ 1 ) 'S FCL

kFc)-SfX~ (LFf /

2220 Tf) .2F 2
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-1 -A2I0 t
Adding and multiplying by A6 (S -S this becomes

A 6Sf(oS - sF) 2F

A2i0 61 A6(oS - Sf)22
-OY •OS- sf)- 2A21oti

by using equations 14 and 16.

Therefore the integral of C is

x -Df 6 dt- & - oS oS2Al(o- + A3 + 1)

0 61o6A2os AWoS - Sf) 20 Sf

A S(oS-Sf) 2A•2  os3 IA IA + 3+1

Multiplying both sides of equation 21 by Son-.1

AeoS - Sf) (A4Sf + A51061)

A21o0C1S
Therefore,

lim * I- , 2 / /
x-oo [dt=° x+(oS-S/ A + A3  O/Sf(A4 S + A5 o)

(0s - Sf)(A 4Sf + A5 o10 1)

2oS 3A + A3 + 1 (41

This equation can also be written in the following form if 6r is an input rather than 0 C.

x lmOf 11dt =or0oSx - +2
0 A4+A42+ 4A5 A6 6r1 r
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01+ A21LJt A2 I1ri(A4 + A42 + 4A5A6 I6rI)
21. 'r IA2JrA(2 + A21 -rj + A3) 4(l+A1L 2A( + A216 1

+ AI~..)2 1( 2r1 A3 j

from equations 7 and 8

A. 1. 3. 2 Instructor Control

In the instructor control situation, t increases directly with time until it equals o
at which time it is set equal to 06. It is kept at 0o for the remainder of the turn. The
growth rate is determined as follows.

xt/m x x
fmt dt+ Umr o "dt- =lira 6 dt
0 OtM0

from equation 47 ,

2 1US6) t_)_v_______OS

+ oX- = • + /
2 os sf(A4Sf + A510o)

- Sf)( A4Sf + A5 10 ()]

2A OS +SA 3 + oA

1n = 1)2 2 0  (48)
Ff(A4Sfo + A5olI) 0S A 1(+A 3 + A 2fSAf++A 3 +

f f
Therefore,

n = o whennh<T/2

_________ A4 S + A5 1 0CI

when~+A j)h 2 lad < 1AI +A3 1~ 20SA 1
I~ Pi

&n =00- otherwise.
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A. 1. 3. 3 Program Control

In the program control situation t changes abruptly from zero to oi after an appro-

priate time delay. The time delay can be determined as follows.

lirn
0 (X -7) -X OD dt

from equation 47,

"S ( 0A S (0S- Sf) + A4Sf+AS16I (50)

oAS C + A'1+ A 30+ ) 2oSA+ + A3 +

Therefore,

Cn = 0 when nh < T

&n = ot when nh > r (51)
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S A. 1. 4 Submarine Dive

A. 1. 4. 1 Solution of the Differential Equation

Equation 3 is the differential equation describing the dive angle, (D), as a function
of stern plane deflection angle, 6 s. 8, the speed of the submarine, is assumed to remain

constant throughout any dive maneuver.

D = - (A7SI + A8D 1-! + A9D + AIS 2 60).

VWnen D is positive this becomes

iD - - (A7 Sb + A83 2 + A91 + A, 1 s 826).

While for b negative it is

iD = - (A7Sb - A8O 2 + AgD + A 1 152 so).

So the graph of D versus ]b ls two truncated parabolas, joined at point 0, - (A9D +
A1 1i 2 61). The slope of the graph at that point is -A 75. A7 , A9 and All are positive
while A8 will always be negative. Thus, the slope of the graph near 15 V 0 will be negative.
This is s?.own in Figure A-2.

D
•-(A9D + A, I S26s)

Figure A-2.
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The slope becomes positive when DI is large enough. The area of interest for

simulator purposes however, is that where the slope of 1 versus 1b is negative.

Initially, ]b and D are both zero; therefore 1 - AllS2 6a. Consider then, what

would happen if an initial negative 6s was applied. As stated previously, the corresponding

initial h is -AilS 26., which is a positive quantity. Thus, ]b would increase from its initial

value of zero. This increase would result in two simultaneous reactions. First, the point

on the graph of D versus ]b representing the present state of the system would begin to

move in the direction of increasing D. Since the graph has a negative slope, the b coordinate

of the point would decrease. That is, b would be made to increase at a slower rate until

the current-system-state point reached the intersection of the curve and the D axis. At

thiL. point, D - 0 and b will remain fixed.

On the other hand, consider what would happen if the minimum value of B for ]b 0

was not less than zero (refer to Figure A-2). As tb continued to increase, b3, although

decreasing, would remain greater than zero. Thus, b would continue to increase until

the current-system-state point reached that portion of the graph where the slope is positive.

This represents a completely unstable state, one which the design of the equations must

prevent under all normal conditions. 1

The second reaction to the initial negative 86 would be that D would also increase.

Since the D intercept is -(A9 D + AilS 2 6s ), the increase of D would tend to negate the

original negative 6 causing the 13 intercept to move to zero. Thus, D would decrease

more rapidly than it would if affected only by the negative slope of the graph. In effect,

the f axis would move up, towards the b intercept with rate A D, while the curve re-

mained fixed. The rapidity with which this occurs will determine the time it takes for h

tu go to zero, fixing the dive angle at that value corresponding to 6 s. A9 is small however

so this occurs at a very slow rate. As an example, assume that 6s = - 100 and S = 10 knots,

13 would not go to zero until D = 410, which is a very steep dive angle. A7 S

Figure A-2 is a graph of b3 versus b. The maximum is at 1t -)A8 while the
A7 S 8

minimum Is at 15 = --. 8 Since A8 is negative, the maximum will be in the 15 < 0 portion

of the graph and the minimum in the 15 > 0 portion for a negative slope between the maximur
and minimum points.

Another requirement on the points is that they should be above and below f) axis

respectively. Without this requirement the possibility exists of the current-system-state

point reaching the positive-slopeportion of the graph, as described previously. The
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requirement that the b) axis separate the maximum and minimum points on the graph leads

to the following requirements for the constants.

A -2 (A7 S)2

9AD + 1 1  5 e - (" 52)
ATS A7 S

This is found by substituting 7 and - - for 1I in equation 3, and is useful as a quick

check of a set of constants (refer to section 3. 5).

In order to proceed with the solution of the differential equation it will be necessary

to approximate the portion of the graph of interest with a straight line. That portion lies
A7 S A7 S

between U and - M . A least squares approximation will be used to find the line. The

ATS A7 S

square of the error will be integrated between A- and- "

The line will intersect point (0, - APD +., A 1 S 26 ) , as does the graph. Since the

graph is symmetric about that point, the least squares integral will be taken from ) = 0
A7 S

to D 7 = -n-. Let -a be the slope of the line.

A7 S

-(A7 Sb + A8 b2 + APD + AliS2 6s) - (-ab - A9D - AllS26s)]2 d f)

A7 S

J [(a - A7S) f)- Ad = 1(a - A7 S)2 -3 _ A8 (a - A7S) 4

0

A7 S

+0
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This must be minimized as a function of a variable a.

Differentiating with respect to a,

aAAý -0

a -AT 8 =3A-")

5a = ATS

So the equation

D I- A 7 8 - (A9  + A 1 1 S 6 5 ) (5

will be used to approximate equation 3.

Equation 54 is a linear, second order differential equation. The forcing function i

6 6m wiii be assumed a linear function of time.

5.361+ t (5

5The homogeneous equation associated with equation 54 to (using a - USA7 S),

13 +ab+ A9 D o (5

Equation 56 has the solution

D -Ae("a+Va1 iT t/2 + e(-a -P ý-4-- )t/2  (5*

The non-homogeneous equation is

Di +a1 +A 9 D+A+ IS 2 (6 1 +st)=0 (5:

Consider the particular solution

D - D1 + D2 t (5O

Putting this into equation 58,

0+ aD2 +Ag(D 1 + D2t) + A 1 1 S2 (61 + st) -0

This equation has to be valid for all values of t in order for equation 59 to be a

solution
aD22 + AgDI + Al$1 S 0 for t = o

- 2 AIIA2 s 0 for t =L with above substitution
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Solving,

2.

2D2 A, A1S2/A9

aAllS2is A1 1 261

A9 9 (60)

D AA91 - A

D= - [a9 s A918]

A9

The general solution is obtained by adding equations 57 and 60.
(- a+I/2 Ca9 -f. 4A;)/!2

D-A +Be

AlS 2  
(61)

+ 1 s - A96s)

A9
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A. 1. 4.2 Four Control Situations

Operator Control

S1Since there are two constants in equation 61, two past values of D must be used tc

evaluate them. 6/ is an input from the operator.

Let

x 1 1 (-a+ - 2

2 - (-a - 4/A- )/2 (62'

,Dn + (x1(n-1) -xh + (Bex 2 (n'1)) x 2 h A, 12n

_Dn÷ +(Aex ) 2 (a6( -nA.ni

x- (x(n- 1 Vxh (x2 (n- I )h '\x AAils -2g

)- e j e-

D,= 0 1 1
-x+h -x2 h

0 e e

- x1h -x 2h

A-e -e
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AII 2 ai, - A96 e x ii x2h
A9 n

DnDu Dn-I- 2 (ai 0- A9 65 n 11

A-2 2-

A9  'n-2

DUD. (e-x Ih e-ex21I) A 1I. (ats _ A961n)

9

A ~1 22 (ai, - A96 3 ) (e Xil - (632ý

Where,

e (xl - x2)h _ e (x 2 - Xi)h (xl+x 2 )h (e-22h - e 2z 1h)

e -e e -e

-e(xl.ex 2 )h (x Ih h X21

u(ex2I1 + exIh)

While,

e Xibe exi ex hy e(x 1+x2 )h
-Xih 

-eh
e e e -
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So equation 62 becomes

A 2  A
DnfWiAA (ats'A96sn) + 2 n-l( A A-69 n.1 (e +eX2 h

-(Dn-2 - Ails (a;, - A 96 ) e(Xl+X2)h (64)

Any simplification of equation 64 involves expansion of the exponential. This de-

pends on the size of x1l and x2h. Since a is positive, equation 53, and A9 is positive,

x2h has the larger magnitude of the two. The magnitude of x2h is less than ah. The values

given for A7 in the FWQA Math Model are far enough apart to cast considerable doubt as to

the possibility of any r'ealistic statements kbout A7.* If the corrected value is used for the

second submarine then the expansion of the exponential in equation 64 requires that, for

the first submarine,, hS be less than 64 yards or 114 knot-seconds, while for the second it

be less than 107 yards or 189 knot-seconds.

The extent to which these requirements are met determines the reliability of the
following expansion. First equation 64 will be rewritten with some of the terms rearrangi

-Dn i=~n - Dn(D)e 1 2 
-) Dnl(1I+ e(xl+x2)h _-[e Xh+ ex

A- n- a - Dnx 2)h

+ Al2 a + e(xl+x2)h- [exlh + eh] x

9

All$2/ exlh x 2h (xl+x2)h\
"A9 (n n- 6snnl[ n-2

The number of terms that will be retained in the exponential expansion depends on
where it appears in the equation. Enough terms will be kept so that none of the variables
will have a coefficient independent of h. This will become clear as the analysis proceeds.

The coefficient of Dn.1 - Dn.2 is 1 + (xl + x2)h = 1 - ah. The coefficient of -Dn_1 is

*Using the test given by equation 52 only one of them could possibly be corret, It was
pcasible, however, to correct one of the others using tactical trial data. The trdrd could
not be used at all.
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2h 2  2h 2  2h 2

1+[1+(x1 +x 2)h+(x1 +x 2 ) T•]-[l+Xh+X2T T+ +x2h +x2T]

a xx 2h2 - A9h2  (65)

The next two terms of the equation mugt be added together, since 6 - 6 =

6 n .! .6 i sh. The coefficient of --l - is

!& + 1 + Nx + x2)h + (xI 2 h22 -+(l+x)3 0-

2 h2 h3 h2 h3)]

-(l+xlh+xz I r+x1 3 + 2h+ +x2S )

- -n 1 +{X(h ++x 1 h2T + 1 +x h +x2 -h2 )

S+ 6Snh2/(66)
1 + (xN + x2)h + (xI + x2)2  ) (66)

Sinces -26 +6 = 0, this is equal to
6s 56n_1 Sn.2

A9 [lx2 I2N+ Xlx2(x1 +

+(6~n _I - Sn x2) ( Xl+ x2)h + (x1
2 + x 2) _h) - 6Sn .2 lX2 h2

howeve•, • -A 9 so --- g = a. Furthermore,A9

(68n1 - 6S an2) (x1 + x2)h = ts(Xl + x2)h2 =ash2. So
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I ab 8 2 6 n 1xi5 x~xh +(6n - 5 2)(xI + x 2 )h = 0

a a*6 h3 2.h3Similarly, Ax - 1
i Simiarly, xlX2 (x1 + x 2) T = -a 5 T

whle (Sn1 - On2 + x2  = + -

So expression 66 is equal to

-A9 6sh3 - 6n-2A9h 2 . -A9 (S.2 + (6n.1 " 6 an-2))h2 = -A 9 6sn..1h 2

Combining this with equations 53 and 65, equation 64 can now be written

Dn Dn- I (DnI - DOn 2 )(1 . A7Bh) - AgDn 1h 2 -All 2 h2 6Sn-i (67'

Command Control

The command control situation will be handled differently from the way the same
situatiton wai ndled in the speed and turn maneuvers. There are two commands that mig
be given, ordered D or ordered b. Ordered D cannot be handled directly. If I and h go t
zero then A9D + AllS26s = 0. Using a magnitude of 0.0001 for Al1 and 0.001 for A 9

(both of which are very reliable estimates), 6s corresponding to Dis -L-$-

For an order dive angle of 30W at a speed of 20 knots 6. would be approximately 2.4

This leads to a D that is much too slow.

Therefore, instead of an ordered D, the command control situation will be given ir
terms of 015. This will be a more flexible formulation since each oI corresponds to a par,
ticular value of 6s. ob is achieved when iD = 0. Once this state is reached, b) will start to

decrease toward zero if 6s Is held constant, however, this happens very slowly. The effec

of A 9D is so insignificant that it will be ignored in the command control situation. The dif-

ference between the command control and operator control situation is just a deletion of the

effect of A9 D. The A9D term is not completely ignored, however. When there is one valu4

of D which is most important in an overshoot or level-up maneuver where D varies around
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some central, non-zero value, D will be denoted by oD and used in finding the relation

between of) and 6s. This value of D will be used in the following calculations. Bearing in

mind, however, that it will usually be set to zero. The urror introduced by ignoring it

completely will always be less than 10%.

Consider equation 54 with a fixed value of 6 . 6a corresponds to 0 in the followi

equation, derived by setting D = 0 in equation 54.

6aa A 7SoD + A90D) i (68;,+eo A1 1i2

where oD, as described above, is often zero.

Equation 54 becomes

-15= A7 6D - (A9 0D - [Ag0D+~AS.ýS])

D - -g A7 s( -0o) (69

Equation 69 is a linear, first order differential equation in D. Its solution is

-5 A7St

D - ob = Ae 7  (7

5
DnAe' A7 Snh

6n4 =(Ae) + O D

5

n - Jo) = (Dn-1 - ob)e ISh (7

Equation 71 may either be simplified, using the arguments following equation 64
or used as it is.

-4!
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Simplifying,

15n - ob . (15n-1 - 0ot)( a i A7Sh)

n n-1 - (of) - D)n-)A 7 Sh (72)

Note also that equation 72, used together with equation 68, will provide a less
accurate but simpler operator control equation.

Ibn " Dn-I a -(AgoD + AIIS2 6+ I+A78Dn-I)h (73)

When equation 72 or 73 is used to update b, then D Is updated using the formula

"In -nDni +(Dn +h n-) (74)

Instructor Control

The instructor control situation is simulated by an abrupt change in Dn after anap-

propriate time delay. Dn changes from its original value to oD and is held until D = oD, at

which time it is set to zero. The time delay is found by equating the D at some future time

(x) found by using equation 70 to the value of D at that time found by using the instructor
control formulation.

In equation (70), let b5 =b when t = 0.

so li t= li dt

So im [. + (o- b))ej8Alitdx-•0CO j-(

8(Do - OD)
oDx + 5 - (75)

But this is to be equated to

Ir x
o0°dt +limx-c 0°5dt=(15 - °W). + 01x

0 00
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therefore

(76)r 5A7S

15 = Do when nh < 8

]b = of) when nh > -- I and (oD - Dn)(ob5) > 0no 5A7B o no

where D =Dni +h• (D~ + Dnh)

15n = 0 otherwise (77)

Program Control

In the program control situation, the inputs are Do, oD, 1)o and ob'. Dn changes
abruptly from Do to oD in such a waj that the depth, dZ = -8 sin D dt, will be the same at
some future time (x) as if would have been using the formulation described in equation 77

Consider the formulation set forth in equation 77 with D - Do when t = 0.

D = Do + 150 t when 0 < t <A 7 8.

Whent= 8 ,D=Do+ 3 1 . D=-owhent> 8 butD<oD. WhenD=oD,15goes

to zero. The time at which this occurs can be calculated as follows: For t > 8 S
D8Do 5Aol(tS

D = D 8-9 j-+ 0f - 8 ). Equating this to oD produces

t=+ D - Do + 5A7S( j

as the time at which D first becomes oD. D is then fixed at oD. The complete or.,.ion
is therefore

D=D +fDotwhen0<t< 8

8D
D = Do +5A7 S+ 0 k ( A

when 8 -< I [-jD - D + o--- 6A78 -S t (oOD.j
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[o '(o• ,-bo)D = D when -L.[D-D A1

Lett 1 =aAAS andt [0 D-o +D8(0of+ )

therefore, when t = x,

ti t2

Z Z 0 - Sf sin(Do + Dot) dt - S f sin[Do + tl(1bo - oe)) + olbt]dt
o ti

-S ti sin oD dt (78)

Z- Zo +xsin oD=SS-I[cos(Do +IOtl)_ -conDo] +t 2 sineD

+ L [cos(Do + tl(]5o- A + o15t 2)

-cos(Do + tY( 0 - ob) + ot1)]I
where Do + tl(]5o - o'5) + o'5t2 0D

z- z +Sxsin oD = .(- - -A.% cos(D + tl) sin oD

+-1 cos D-.IosDo (79)

PoDo DO

On the other hand, the program control formulation leads to

r x
Z = Z0 - Sfsin Do 6ý ] sin ODdt

0 r

Z - Zo + Sx sin OD = ST(sin D - sin DO) (80)
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therefore, equating the right hand members of equations 79 and 80,

r(sln o•D-s vo -si Dco(o0 + - cos D

+ 1(oD - Do)sin oD + 8 A/ sin oD

cos(Do 8Do+ coso D- cos) 0 ÷~ °V (

where all angles are expressed in radians.

This formula more than satisfies the requirements for most maneuvers for whict
program control would be used. Another form that could be used is that which is used t(
change from oD to Do using o0 , where 0o = 0. When b. -D0, the 1 term 8 sin]

Therefore, equation 81 can be written 0

:(sin0D-sinDo) 8 (sin oD-sin Do) D -[(oD -D)sin D+cos D- cosl

S+ 1 [(OD -Do)sin oD + co o- o - acoo D
-5A7S + -- sin oD - sin Do J

Consequently, when Do = 0,

8 oD (1 -cos oD)
oD o)D sin oD

In any case, the program control formulation is

Dn = Do when nh-z T

Dn = oD when nh >T

A. 1. 5 Sine and Cosine Approximation

In most of the submarine formulations presented above, the output is in the form

an angle which represents the orientation of the submarine with respect to a particular

erence axes. These angles, in most formulations, are used to update the submarine po

A



U sine or cosine subroutines have to be used to achieve this, then much of the computer

time aaved by all these simplifications will be lost again. Therefore, it is necessary to

develop some approximation formulas.

Suppose the output Is in the form of an angle rate of change and a speed. 6n and I

4h (Fn+S ~) hrc+c
SYnk " Yn-1 TM f con C dt 2 f cos(Cn_1I +In26-I t)dt

(nr-1)h 0

a(Sn + Sn-) [in Cn+6- h O nl 2
Yn- Yn-1 U 2 sin - (n -

and similarly

n - Xn.I = cos cn 1 - cosn- n+ + 6-1

However, )h will always be small enough (ICi very rarely> 5 /sec) sa

that the approximations sin 2Cn +Cn- ) h] = (n +26n1 h

cos(=n1 (]n =) 2

will lead to an error considerably less than 10016.

Using these approximations, let

Cn + Cn-l h

4 = 2

Therefore
h~~ (snC-snC i ,,

A [sln(Cn- + A) - sin nl] = (sin Cn1)1 - +A cos Cni -sin 1n~]

= h [cos Cn 1 - sin Cn-1 ]

h[cos CnI - cOs(Cn-1 +A)] = 01 co Cn1 - (cos Cn-1)(1 -. )+AsinCn-1]

= h[sinCn 1 +CcosC. 1 ] (85
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Therefore

Yn - Yn-1 - (Sn + Sn S 1)-cos Cn-i - (Cn + Cn-i) 4 Cn-i]

and

Xn (Sn + Sn-A Cn- 1 + (Cn + Cn-T)•cOs Cn 1 ]

where Cn and 6n-i are expressed in radians per second.

These formulas still do not provide a way of updating sin Cn and cos Cn. Thee
provided by equation 85.

sin Cn -sin(Cn.I + A) = (sin Cn- 1 )(I - + A cos Cn.I

cos Cn - cos(Cn +A)- (cos Cn 1 )(l - )-A sin

So

n '[n - (&n + sCnC ~ 1+[(n + n->~ A] Cni

Coo Cn = - ( + tn 2) 22] cos onI - [n + Cn-I sin Cn-I

where Cn and Cn-, are expressed in radians per second.

These formulas are used for updating the position of submarines and surface ve
in all turn and dive maneuvers.
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A. 2 SURFACE VESSEL

The following equations were used as a basis for deriving the kinematic equattions
motion for a surface vessel. For any given vessel, a1 , " , a 8 are constants, and are
characteristic of that vessel.

-=(ala + a 2 6)V2 + a 3yV (8

- (a4 L 4 a 56)V + a6y (8

"= a7 (a4 ci + a 56)2 V2 + a8 (Vo2 - V2 ) (9

y = rate of change of the ship, s heading (9). (8 is measured clockwise from due
north.)

a = side-slip angle (the angle from the true direction of motion to the direction
of the shipts heading. The positive direction is clockwise.)

0 a actual course angle (measured clockwise from due north. C = 0 - a)

6 - rudder deflection angle (left rudder is positive.)

V x ship's velocity

Vo = velocity for which the ship's engines are set.
(In a turn this means velocity as the ship is entering the turn. In an accel-
eration or deceleration maneuver it means "ordered speed.")

The constants a1 , " *• , a. , chosen from available sources, are such that all
angles will be in radians and velocity in feet per second. Notice, however, that since eqi
tions 88 and 89 are linear in "angle measure,, any unit of angle measure can be chosen
for a, y and 6 as long as it is consistent for all three and provided it is converted to radih
measure for use in equation 90.

A. 2. 1 Surface Vessel Turn

A. 2. 1. 1 Solution of the Differential Equations

The equations for turn rate, or C = y - a, are found by solving equations 88 and
89 simultaneously. V must be assumed constant during this solution, otherwise no solu
tion would be possible. In the final solution V n (the current value of V) will be used whex
ever V is called for.

a is assumed to vary linearly with time.

Consider the homogeneous equations:

a = a3yV + a1aV 2

= a 6 Y+ a4 aV (9
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This system of equations has Jacobean Matrix

isa 3V alV2

a6  a4V

The equation for the elgenvalues associated with this matrix is

(a 3V - x)(a 4 V - x) - ala6 V2 = 0

x2 - (a3 + a4)xV + (asa4 - ala6)V2 = 0

[( Ia a +a4 2 _ 4(aIa
= ( 3 + a4) *i4 ( 3 + 4)2  -4(a'a 4 -

The two eigenvalues will be denoted by Z, and Z2

z1 = [(a 3 + a4 ) +(a 3 +a 4)2 - 4(a 3 4 - ala6)](

z 2 = [ (a3 + a4) - V(a3 +a 4)2 
- 4(a 3a4 - ala 6)]

The solutions to the homogeneous equations are therefore,

Sy = Ale zt+ A2eZ1

zit z 2t
a= Ble + B2 e

There are two constants too many. Substituting into equation 91,
Z~t Z2 t 2 Z 2 Zt

AIZle + A2 Z2 e = (a3VA 1 + alV B1)e + (a3VA 2 + alV2B2 )e 2

zlt Z2t Zlt zzt
BIZle + B2 Z2 e = (a6A1 + a 4 VB 1)e + (a6A2 + a4 VB 2 )e

The above equations must hold for all values of t since they result from substitut

in equation 91 .

Therefore,

AIZ 1 = (a3 A1 + alVB1 )V

A2 Z2 = (a3 A2 + alVB2 )V

0



B1Z1 = (a6 A1 + a4 VB 1)

B2Z2 = (a6 A2 + a4VB 2)

Thu,,

B1 = A(Z- a3V)/v 2

B2 = A2 (Z2 - a 3V)/aVV2

B= a6 A1 /(Z1 . a4 V)

B2 = a6A2 /(Z 2 - a4 V)

The first two equations are equivalent to the last two:

Z 1 - a3V aI

alV2 Z - a 4V

(Z1 - a3V)(Z 1 - a4 V) - ala6V2 = 0

however, this is equation 92. The solutions to equation 91 may now be written
A~ZIt Z2t

y =Ae + A 2e

AI(I - a 3V) eZlt+ A2 (Z 2 - a 3V) eZ 2 t
alV+ a1V2  (9

Consider now the inhomogen-eous equations. Let the forcing function be

6 = r 1 + r2t

and let the particular solutions be

Y = P1 + P2t

a = ql + q2 t

So equations 88 and 89 become

P 2 = (a1 [ql + q2t] + a 2[rl + r 2 t])V2 + a 3V[P 1 + P 2t]

q2 = (a4 [ql + q2 t] + a5 [r 1 + r 2t])V + a6[Pl + P 2t]
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These equations must hold identically for all values of t. Therefore, the follow

9 four equations must be true.

P 2 = a1qlV2 + a 2 rIV2 + a 3 PIV

0 = alq2V2 + a 2 r 2 V2 + a 3 P 2V

q2 -a a 4 qlV + a 5rlV + a 6 P1

o =a 4 q2V 5a r 2V +a6P 2

These four equations must now be solved for Pl' Ps, and q2 " It will not be nece
sary to solve for q, since we are interested in ý, not in a, and ql drops out of the equat
for 6, as shown below.

The equations will be solved using determinants. The denominator can be found
the following m.,iner.

a 3V -1 a1 V2  0

0 a 3V 0 a1 V 29 D=

a6 0 a4V -1

0 a 6  0 a 4 V

D = a3V[a 3 V(a 4 V2) + alV k-a4 a6 V)] + a 6[-a 1 V2 (a 3a4 V2 - ala6V2

D = (a 3a 4 - ala 6) 2V4

-a 2 rlV2 -1 a1 V2 0

-a 2 r 2V2 a3 V 0 alV2

-a 5 rlV 0 a4 V -1

-a 5r 2V a6 0 a 4 V

A-



PID = a1V[ -a3 V(-a 4a~r1 V 2- a5r2V) - a6 (a2r2V2 + a~a~r1 V3 )]

a4 V[-a 2 r1V2(a 3a4 V 2  alaeV2 )+ (-eaf 4r2V3 + ala5riv 3)

PID - r1VS (a3a4 -ala)(sja 5 -a~f 4) + r2V4[a1(a~a5 - a~aG) + a4(al'a5 - a2a4)]

P, arjv ala54R4 I Y5- Y ) + a4(ala5 . aea4)]
p1 ~ a - [a1(aa (a3a4 -LI' 6 )2

The notation listed below will be uosd in all of the following calculations.

(&1& -,aa4)(97)

(aff -&3L5)(98)

so P1 can be written
IL a4 - a1,1 99

Par 1 VC+ r2 .34 Raea

We now calculate P2 and q2'

'. %V -1 2r1 V a1 V2  0

0 -at2r2V 2  0 a1V 2

P2 D.
aS -a5rV aiV -1

0 -a5riV 0 a4V

P2D 0 a3V[a 4V(-aLa 4r2V3 + FýNar 2V )+.' a6[-a 1 v2 (-" 2a4 r2V3 + ai 5r2Y )]

P2D - (a3a4 - ajae)(a~a5 - at2a4 )r2 V5
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2 = r 2Vt

a 3V - alV2  -a 2rlV
2

o a3,V 0 -a2 r2V2

q2 D = a6  0 a4V -a 5 r l V

0 a 6  0 -a 5r2 V

q2D - a 3V[L +a 4 V(-a 3 a5r 2 s9 + a2aer2 V2)] + a6 [-alV2 (-a 3 a5r 2V2 +)

q2D = (a3a4 - alae)(a 2a6 - a 3 a5)V 4r 2

q2 = r1(1

So the eq~ations for y and a are

yAle Zlt +A ezý+ 9t a4t - al'n_+r t

y.A~e +A 2  +rlV +r2aa aa + r 2 V2t (1

SA (Zl - a3V) Zet (Z2 - a 3V) Z 2t
al V2 alV2 2 V

A. 2. 1. 2 The Integral of C(

The integral of C = y - ý will be used In the last three control situations. Specifi(

various quantities will be equated to

x
lim C dt where C = y - a. The solution of this integral is not trivial. TIX--CM

0

following two forms of equations 102 and 103 are used: (1) r, = 0 and r 2 = 6_/1, wher

T is the time it takes the rudder to move from 6 = 0 to 6 = 6, the rudder angle correspon

ing to 0C6; and (2) rI - 6 and r 2 = 0. These are the two rudder co~i~tions involved when

surface vessel goes into a turn from a = 0 condition.
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Consider first the constants A, and A2 for the first T seconds. y = 0, r, = 0 and

a - 0 when t - 0.

Let r 2 a4 - an =p (104)asa4 - ala•R

go equation 102 becomes

0 w A, + A2 + P

while equation 103 is

MA Z '(1-aI + A z M - a~)+ q2

1

Dff
(ZI - St3V) (Z2 -a 3V)ZI, -ai1 z2 a

according to equation 93 t Z 2 + Z1I - a3V =a4l. Therefore,

a v

-p1

AD - (Z2 - a3V)
-ql 2 lV

AlD~(z a qpz 2 ;v

2 a1V2

1 -p

A2D MZ aV

A-42
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A (Z i 2 -PZ (Z2" -aV)]2l (z- zI)a4v 2q• ILI av,

A ~-a V3  1 Z V
qJ

Let A1 and A2 be the constants used In equations 102 and 103 while 6 is chm
and lot Al and Ai be the constants used when 6 has attained its fixed value (6). The
two sets of constants because r, and r2 change value, therefore, there are two differe
of equatbns. However, when t - T, tho! two values of y and a expressed by these two
of equations must be equal.

Al and A' are defined so that, when t = To

YThAi +1A2 + 6VE

1V1  Aa3V 2  -alV2

4
But A, and A2 are defined so that, when t - T

Z1 T A~Z 2 T

YT = Ale +A2e + r 2VtT 4 P

(Z - a3V)e ZIT +A z a 3V) eZ2T

T 1 a1V
2 eAA 2 2  .__ 2

where 6 = r 2T

The two can now bo,- equted and A' and A' can be found.

D=
Z 1 Z2

a1V2 a1v

VD=(Z2-Zap•.



A~e Z1 + A2e 2T

llk V)e +ZZ(2 Z2T 2I av)

AZ( a1 Ve / q2 1Z2(a2 3V)

A D A 1) a~ ZT(Z 2 - a3V)

A Al(e ZI -1I) 1 '2(107)

Similarly,

A2 =A2 (e 1 - 1) (108)

Therefore,

x T 4/ ~A, I -A[1z1 -a 3V e 1 2i Z2+AaIV e
I2 21 -- Za -,,

(' - a3 V1Z(tT

+1Zl 22g e P -qV d

ZT -a3  Z(-)+ A2e Z2)J2 e Z(-)dt
_Al Z-Va3 V~l Z1T (ZIT ~(e(x-T)

z1LIk7-)J e -+ (e i/I

Ua



+A2 1[ Z2(Z2 - a3V)ire Z2T +( 2 e2xT

T
2

+ r 2 v T + (P - q2 )T + 6Ve(x - T)

As x - co, this has, as its limit

r2 Vti + (P - q 2)T + 6V(x - T)

Then, since r 2 T = 6

limt T
"m f dtJ0 = -4V6 j+ (P - q2 )T +6Vtx

X-O

0

This equation is somewhat misleading since it gives the impression that, as T - 0,

uxrn 1 6 dt - 6VVx. This is not true, because, as T -- 0, r2 -*c because r2 = 6/T.

*_ 00

Thus P and q2 " ao by equations 101 and 104. (P - q2 )T is therefore an indeterminate

form and must be evaluated by using the original definitions and the fact that r 2 T = 6.

Thus,

XO f dt= 9Vg(x - + 4a3a4g:a6-- ]
0

This equation will be referred to in section A. 2.1.3. For application in this para-

graph it must be noted that 00 = 6.Vfe (let t - oD in equatioris 102 and 103 with r 2 = 0 and

r 1 = 5), where Vf is the final, steady-state value of V.

Since V is assumed constant in these derivations, the form of the integral which will

be used is

lim x ° a44 all ](19

o dtC-° )[" (109)
0

Vf will be derived in section A. 2. 2. 2.



A. 2. 1. 3 Four Control Situatiuas

Operator Control

In the operator control situation, equations 102 and 103 will be solved directly to

find y. and a. in terms of y, _ dn_.. Consider the equations for Yn' 4n' Yn-I and 'n-l"
(In equation 102, riVG + r 2Vyt can be written 6VJ since r1 + r 2 t - 6).

A1 ezlnh A 2e = M nVt + r2 -as4 a1 l
Yn - a -A6e

The last term in this equation appears frequently.

Let P = r a4& a / (equzation 104)

(-A Znh )e Zlh+ (-A2e Znh)e-Z2 h =n-IV4 + P Yn-1

+ (-Ale + (-A2e -

Let q2 = r 2 ?1 (equation 101)

(-AleZl)-Zbhz l - a3V Z2nh -Z 2h /z ,- , 3v

a1v22Z2 /! 2a14V /
Zlnh Zg~nh

These four equations In the four unknowns yn,&n, (-Ale ) and (-A 2 e ) will be
solved for Yn and ýn' The determinant for the denominator is:

0 1 1

0 0 e-Zlh e-Z 2 h

a 1 V)

0 0 eZ e(~L~V
D- 0 ~~(ýý s•/z-.v

o~ a tvl tv)
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-(1+ Z2)h
D e -(Z +- ZlV (z2 - Zl)Z + Z, - a V)

a1 V

However, Z2 + Z1 - (a3 + a4)V (equation 103)

Therefore D - • (Z1  - Z) a 4 V (110)

6nVt+P 0 1 1

Vt + P - Yn 0 e"Zh e"Z2h

YnD = l("1 -T v) a(. - )
q2  1 ýa Z! ýaV

-Zlh IZ 1 - a 3V -Z2h e Z21
q2 - sn-1 0 e Z2 l e2 3

a~\ alV

Y.D (nVt + P) '(Z l+Z2)h(Z - Z1) a 2 -

/ -zh Fz - a3l e-Z 1h z[z_-'3v_""LT ajV', j )
+ (q2 (an-)(e z a! _ CZlh[)

- Zh- e - ~](111)

At this point it becomes evident that to proceed further, the exponential must be
expanded. Since only the first two terms of the expansion will be used, the validity of such
an approximation depends on the magnitudes of Z, and Z2 . It should be pointed out thatZlh Z2 h • ,
e and e cannot be evaluated for each vehicle and mesh size and kept as a constant.
This in because Z1 and Z2 are both proportional to V, and since V changes during a turn
maneuver, so do Z1 and Z2 .



From the constants available, and fromn the nature of the equations, it is evident
that a3 and a4 will always be negative. Therefore, Z2 has the larger magnitude. If the:1 approximation in valid for it is valid for Z1. Note that a3a4 - ala6 in equation 93

must be positive otherwise Z would be positive, leading to divergent solutions. It does
turn out to be positive for ell vessels for which constants are available.

Consider Z2 for three of the vessels for which constants are available. Z2 must b
such that IZ2h I < 1. This leads to the following restrictions on V.

Surface Vessel I Vh < 8A 5 feet = 51.2 knot-seconds

Surface Vessel II Vh < 71.8 feet = 42.5 knot-seconds

Surface Vessel III Vh <185 feet = 110 knot-seconds

In other words, h may have to be one second or less for certain surface vessels at
high speeds, whereas for others, at slow speeds, it may be as high as 5 to 10 seconds.

Assuming that Vh satisfies the appropriate condition, linear approximations will be
used for the exponentials in equation 111. The terms will be approximated separately,

since they will appear again later. Note that each approximation involves expansions of
Z1h - Z2h (Z1+Z2)h

e and e , but rever e as such.

-aIV2  +P(Za 4V
Yn= (71 4Y "(6nV +P)(2 - Z1) -i-

-(6 n- 1V + P - Yn.1) (e1 2  2 - ea 2hZ ['-a

2 [Ea 1V23 ] aV

+ (q2 -
-nl( l e Z2h)]

eZlh z 2  e)z Z2h Zav+ l

-aV] -aV Vz-1~ +zzh--

[ al V2  L a' 1  1 2 1

(Z2 - Z1) z V Zzh
=- v2 L-z2+ 1 -a3V+ 1Z 2h

(Z2 - ZI) [a 4V + (a 3a4 - aja6)hV2

alV 
L4
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The last step is accomplished by substituting Z1 and Z2 from equation 93.

(e Zxh _ eZ 2h h(Z1 . Z2) (112)

So equation 111 becomes

Yn (6nV4 + P) - (6n-IV9 + P - Yn-1) + (a3a4 a'a6) V "]- (q2 - a-l-Ia4  (113)

This may be simplified further. From equation 104, the P term in the above equa-
tion becomes:

(t l)- ajaý)ar 2 ,nVh
a2(:4t alala,)4 r2tVh+

However

r 2 4Vh - (6n - 6n-)lV since 6 = r, + r 2t,

and

alr2inVh 0 a~q2Vh from equation 101.

So equation 113 becomes:
Vhi

Yn - Yn-1 a 4  n-1 - Vt6n- 1)(a 3a4 - ala6 ) + al~n- 1 ] (114)

Now consider dn.

I nV• +P 1 1

-Zlh -Z 2 h

0 6noV4 + P Yn-I eZh e

ednD= /

q2  1 (5z-- 3V

o-Zih / e\Z2h 1Z2 2"aa 3V\
q2-d~ 1 Z a 1 V / aV2 /



aD (ln_,V t + P - yn..)Z Z(I L_ )a 1 e-r)- - h

_q~(Z1I+Z2)h a( ~~V)

+ (q2 - tin-) [e-Zlh Z2 (L3) e-e2hz(**L) (115)

Two terms in equation 115 have not yet been simplified.

-aV( 2 a 3V\Z 1Z2 -a3V(Zl + Z2) +a vl3

(a~a4 a) - $3(a3 + a4) + a3 ~ 12 (16

e(Zl+Z 2 ) [e -Z1h (Z a3 e-Z 2 hz (Zj - a3V

(Z2 - Z1 ) a[ 22 2 3)_Z2

a1

z2 
2 + z 1 z2 ZI 2 -a 3V(Z 2 + Z)

- [(a 3 + a 4 )2 -_ 2(a 3a4 - aa 6) + (a3 a4 - ala6) - a3(a3 + 4]2

= [a 4 2+ ala6 ]V2

Therefore,

e(Z l+Z2 )h[ e- Zh zZ2-aV e- -Z 2h z (Zj -a 3V)

M 2- ( Z-Z ) V a2 'a e )V (117)
1__ a



10 Hence,

a (6,nV + p - yn..1)(a 6(. 3a4 - alas)Ea!

+ q 2 - (q2 - d-1)[ 1 + (&4 + alaL)] (118)

when equations 110, 113, 116, and 117 are used with equation 115.

Equation 118 may be further simplified. Consider the P and qterms

[-a 6 P(a3a4 - ala6 ) - q2 (a4 2 + h

By equations 101 and 104 this becomes

-Vhr2
a [a 6 (a 4 6 - aly) + i(a 4 + aja6 )] - -Vhr 2 [a 6, + a4 1i]

However by equations 97 and 98,
a 6 (ala5 - a2a 4 ) + a 4 (aL2a 6 - a 3 a5)

a69 + a4 ?I N alae -a (119)

So
-Vhr 2[a 6l + a 4 I] = a5Vhr 2

and

d~-dnlVha6  +++(10n n =- [(Yn-l - Vt6n-1 )(a3 a4 - aa 6 ) + a,. 1 ] Vh(a 4 &n.1 + ar (120)

Equation 114 is repeated for the sake of comparison
Yn - Yn-1 z ' I - Vt,6n- 1 )(a3a4 - ala6) +

a4 3a")+ ln

and r 2 - (6n - 6n.1)/h (121)

Command Control

In the command control situation the input is in the form 0 rather than 6. The
command control equation is comprised of equations 114 and 120 rewritten with

Sn o6 and r 2 - 0. This corresponds to entering a turn by an instantaneous change

of ruCder -•igle from 0 to .6 at time t = 0. It is evident that the resultant motion will differ
somewhat from the situation in which the rudder moves at the rate 6/T for a time T. That

the total change in course at some future time (x) will be different for these two rudder his-

tories can be seen by looking at the coefficient :f T in equation 109. In order to compen-

sate for this difference, a time delay will be used in starting the maneuver.
A -



Consider equation 109,

lrn f 6 dt - 0(x - ) +VfE n
SX-CD0 16

Letting T w 0 in equivalent to the physical situation where 6 - 6 at t = 0, and r 2 = 0
throughout. However, this is exactly what happens in the command control situation.
Therefore, in the command control situation, values of C for large t (when C f 6VC) are
attained T/2 seconds sooner than in the operator control situation. However, a time delay
of T/2 in the command control formulation will make the two values of C equal.

Thus, the command control equations are

Yn = 0 when nh ( T/2

Yn - Yn-1 + 1 [(Yn-1 - o)(a 3a4 - ala6) + al&n-] (122)

when nh 2 T/2

in - 0 when nh < T/2

in = &n-1 + n e [(yn-1 - o)(a 3 a4 - ala6 ) + al&n-1] +Vha4in-1a4  n-

when nh •_ 'T/2 (123)

Instructor Control

In the inatructor control situation, (d is increased linearly until it equals oC. The
rate of increave is buch that C at some future time (x) is equal to the integral in equation
109. Let m be the rate of Increase of C.

lim mt dt + 06 dt =Ulimr C dt (124)
o-u, 0 cm X-( 0o

+o -6o(tx T)+ aO4- alti
=t + o [ ta3a4-ala6 ]

T 1 a4 - al1

M-T " __ a4t - ala (125)
0Vf a3a4 -1j
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Therefore, the turn rate is u'dated as follows:

= +h 60 /fT _f2 ( a4 t - a, __ )
n n-1 Vf ta 3 a4 - ala,

as long as 16n I< ýIo I

6n= ro otherwise. (126)

Program Control

In the program control situation, a goes abruptly from zero to oa after an appro-
priate time delay. The time delay is chosen so that:

x x
llm f oadt=lim f Cdt

' X-0O

where the second integral is derived from equation 109.

Therefore,

6C(X T =6(x - T) +° a4 - al 1 a ]

T 01 V a4 a'al4l 1

T = " " --aln " - J (127)
2 -vf ~a4- aIa6 -

Hence,

n=O0when nh-T 1. Y- - ar
n 0ahnh- -a4 a

wh= -h T I a 4 - ala6 1 (128)
n o I gvf ia 3 a4 - aja6

NOTE: If T is not known it ma-- be estimated, provided a value is known for I or ýmax'

Since o - 66vf,

T a 0o/Vf 6

Vf will be derived in paragraph A. 2.2.2.
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A. 2.2 Surface Vessel 8peed

A. 2. 2. 1 Solution of the Differential Equation

Equation 90 will be solved to find the kinematic equation for surface vessel speed.
In order to do this, a4a + a 5 6 is assumed constant for the analytic solution, but the current
values of a and 6 are used at each iteration of the difference equation. Equation 90 is
written:

dV = 2 dt (129)
a -(Vo v2) + ad(av + a 56)2V(

a 7 must be negative shice V is decreased when the surface vessel enters a turn. a 8 is

positive since V is increased in a straight-ahead maneuver where V >V and a = 6 = 0
(refer to discussion after equation 90). Therefore a,7 (a4a + a 56) - a8 <0 and equation 129

can be written

dVf A + B =dt
a8 - 7 (a4 a +a5 6)- V 5 a T

A=B-
2VO0 -

,/.V - an Va + give)+a+4K4 exp[2V ota8•a8 -7a(a 4a +*ae)

Lptting V = irn_ 1 when t = (n - 1 )h and V = Vn when t = nh gives

V0 + Vn•8 aI(a4 a + a 56)2 = Vo/ + V-l8 - a 7(a4 a + a5 6)2

x exp[2Voh a8 - a7 (a4 a + a5 )2 ] (130)

Let a = V ,Z.a and b = &8- a 7 (a 4a + a5 )2

So a (a + bVn. 1 )e2abh - (a - bVn-1)p
Vn =•L(a + bVn 1 )e 2 abh + (a - bVn 1)j

(a2 - 2 _b )(e 2abh 1)
"" Vn-bn- 2abh (131)

b[(a + bV 1 )e + (a - bV n-)]
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In order to proceed it will be ':ecessary to approximate the exponential. The max
mnum value of the argument is attained when a4a + a 5 6 tR a maximum. This happens when

has attained its steady state value in a turn, that is, when a = 0. Using equation 89, thJ3

happens when (a4 a + a 5 6)V + a 6y = 0 and y has its steady-state value V4_6 (refer to discus-
sion before equation 109). Therefore 2abh is largest when a4a + a5 6 = -a 6 g6. The linear

expansion will be adequate as long as 2abh < 1. This means that

2Vhfa8 - aja62 26_2 <1 (132

If Voh satisfies inequality 132, then the exponential in equation 131 can be expande

h(a 2 _ V2_b 2  

(

Vn " n-1 - 'I + bh(a + bVnI-(3

However we wish to find an expression for Vn - VnI which is linear in h, therefor
equation 133 must be approximated by

V -V 1 =~ 2 _-V 2b 2
n n-1 h(a n 1

Vn Vn = h[a 8 (Vo2 - Vn 1 ) + a7 (a4a + a 5 6) 2Vn 1] (134

This approximation has validity if bh(a + bVn_ 1 ) <1. Vn- 1 is maximum when it is Vo, so

the condition

Vo h a8-a(aea + ýa5) f +a8- VaTaa + a)2)< Imust be satisfled. (135:

Note that this is a more stringent condition then inequality 132, therefore if satis-

fied, then the whole computation is valid Inequality 135 leads to the following condition fc

Voh for the three surface vessels teste, respectively (using 6 = 35 degrees).

Surface Vessel I Voh <938. 1 feet = 555. 4 knot-seconds

Surface Vessel II Voh <781. 3 feet = 462. 6 knot-secinds
Surface Vessel III Voh <983.9 feet = 582. 5 knot-seconds (136)

If these inequalities hold, then equation 134 will be valid for acceleration/decelera-

tion as well as for turning maneuvers. In an acceleratWon maneuver, Vo represents the

final speed (speed for which the engines are set). In a deceleration maneuver however, th(

inequalities must hold for the initial speed rather than for Vo.

A. 2. 2. 2 Four Control Situations

Operator and Command Control

Equation 134 will be used, with one slight rmodification, for both the operator contr(

and command coatrol situations. Since a will not be one of the outputs (refer to equations
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120 through 123) af + a 5 6 will be expressed in terms of & and y using equation 89. Equa-

tion 134 becomes

V Vn.1 h[aS(Vo 2 _ V 2 - a6Yn_1) 2 ] (137)n- 0 . 1n_) + attn. -1

The Integral of V

Development of the instructor control and program control situations requires the

x

evaluation of lirn V dt. To do this an expression must be found for V which is integrable.
X-1-00 f.

A constant value must be assumed for (a4a + a 56)V. This value will be found by using

& - a 6y = (a4 a + a 5 6)V (equation 89). The steady-state value in a turn will be used for

&n-1 - a6Yn-" This is -a sot, since i - 0 and 0= y -a.

Therefore equation 90 becomes

v' = a7a42 ot 2 + a8 (Vo2 - V2 ) (138)

Note that, when V = 0, a8 V = +•ao2
0+ ao .

This is the steady-state value of V in a turn. It will be denoted by Vf,

Vf = Bo2 + a62o1,2a 7 /a 8  (139)

Occasionally it will be necessary to find Vf as a function of 6 rather than 0 Since

= Vf•,

V2  2 +a 2Vf 2 ý13 2a7 /a 8

a7 a62ý262)

VfV /A_% 6 2g (140)

Thus, equation 138 may be written

"V; = a 8 (Vf2 - V2 ) (141)

Note that for an acceleration/deceleration maneuver, this is always the case, not

an approximaLdon.

dV [ + a dt
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A=B= 1

V will start from V0.

vf +V (k + o 2 a eve

V V + V0)e 2av - (V1 - V0)1(42
f -(V1 + VO IRvt+M- o 12

L v V~ 8 + (Vf - V0) -J(f-V)

(V + V0)e 2av + (V - Vo) J

li ,~ V dt Vf -1 2(Vf - Vo)Vpl~in1 f daVt
(Vo 1 + V0 )e 8f+ (V1 - Vo)

where

x
lirn dt

.~ f V+V) 2a8Vft

o(vf + V 0)e +28 Vft - lg(V1 O)e V

-= r -V 1[a - lg('Vf + VO)e 2a v t+ (V 1 - ) x

= -. a 8V1( 1  [2a v x (o Vf +_____________ +__________

Now,

lirn 2a8Vfx _ log N+V 0)ea8 Vf + vfVO)\)
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alm 2a ((Vf + V°)e~a~xI

UrnC 8Vf -lo V

= lirna 8V x = log Z if

-log• , /f+V

Therefore,

i V dt- VfV )V V + logi-y,

0 ( vý vo)TQ)
x

irna f V dt-Vfx- log I +f o) (143)
X-CD 0

Vf - Vo will always be i3ss than Vf + Vo since .he speeds we are considering will

always be positive. Therefore, the logarithm can be expanded. Equation 143 becomes

im fV dt=Vfx [_1 Vo)2
X-* 0 Y8v VF V 2(vf + Vo)2

x /V, + 3Vo )
1 f V dt=Vx+•8l(Vo-Vf) f+Vo (144)

X 0 8 V 1 2(j + 0 )

This equation will be used in the derivation of the instructor control situation and
program control situation models.

Instructor Control

In the instructor control situation, velocity changes from Vo, the original velocity,

'o V,, the final velocity, as a linear function of time. This is accomplished in such a way

that the displacement at some future time (x) is equal to what it would have been using the

expression for V in equation 142.
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(Vf-V 0)/m

Jf (o + mt)d, + am f Vf dt--u im V dt (145)
(Vf-Vo)/m 0

By using equation 144,

+ (V o m1T -)2  (V - V0 ) 0  V1 [ V+ 3V 00 In +( V i- , + -VfXVfX+ a, 12M(v+v J
(V V 2  0).V~

(V- V< v0 +f VVil Vfm +•- =+ Vo - If V+ NO
2m aVf+ a02(V+V0 )2

M+ MVo)V (146)

f -4( 1 - (f

Note that this equation holds for acceleration, deceleration and turn maneuvers,
where Vo = original V and Vf - final V in all cases. This is because it was derived using
equations 141 and 145, for which these statements all hold.

Thus, the instructor control formula is:

In =Vn.I + (Vf _ V0) [ +L 2 when (Vf - Vo)(Vf - Vn) >0SVn ~[2(if +Vo)i hn ->

Vn = Vf otherwise. (147)

Program Control

In the program control situation, velocity changes abruptly from the original velocity.
Vo, to the final velocity, Vf. The abrupt change is timed in such a way that t' displace-
ment at some future time (x) will be what it would have been using the expression for V in
equation -1 "

.7. x xf Vodt+lim f Vfdt=im f Vt (148)
0 7-- - 0

By using equation 144

(o - v)T + vX = v•+vo- v+ a V+ 3V•0

( - +VV + 8  -A2
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v V when niih (!L~!- (15+0)

Vf US (Vf + V0)
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O A. 3 AIRCRAFT

Equations have been developed for the three basic aircraft maneuvers: Acceleration;

Coordinated turn and Climb. The methods of developing the equations will differ for each.

The following symbols are used.

a - Horizontal asymptote of the hyperbola (used to approximate the drag
versus velocity curve, and hence the minimum drag, refer to Figure
A-3.)

b = Vertical asymptote of the hyperbola (maximum airspeed, refer to
Figure A-3)

c - Third parameter of the hyperbola (refer to equation 150)

D - Drag force on the aircraft (drag is a function of velocity)

m - Mass of the aircraft

T = Thrust supplied by the aircraft engines (assumed here to be Independent
o aircraft velocity)

v - Velocity (aircraft airspeed)

S- Bank or roll anglo of the aircraft

w= Aircraft turn rate

(A Cý = Course change while aircraft is rolling out of a coordinated turn

p = Roll rate

Vm - Level-flight airspeed corresponding to current airspeed and climb
angle of the aircraft

9 = Attitude (pitch angle of the aircraft)

S= D irection of flight in the vertical plane (Clim b rate = v sin Y)

a = Angle of attack (a v 0 - y)

CL - Coefficient of Lift

W - Aircraft Weight

p - Density of the supporting medium

S - Effective lifting surface area

k - 2W/pSQ

A, B - Constants used in the airspeed versus attitude equations

Q m CL/a
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A.3.1 Apled

The equations for speed buildup of an aircraft were derived from available thrust
and required thrust versus true air speed curves for the F-100A which appeared In the
UDOFT Test Report (refer to paragraph 3.3.3. 1). These curves had to be reduced to sim-
ple functions that could be easily integrated. At low altitudes when air speeds were greater
than 250 knots, thrust available was nearly constant and thrust required verbus true air
speed resembled a hyperbola when graphed.

These two approximating functions were used for all four altitudes for which curves
were available. These altitudes were: sea level, 15,000 feet, 25,000 feet and 35,000 feet.
For higher altitudes, thrust would only remain constant for lower values of thrust with low-
er top speeds. Also, as the true air speed increased, the graph of the thrust required lost
its hyperbolic shape. There was a tendency for the top speed at large thrust availabilities
to become disproportionately larger at high altitudes.

Since the derivation ignores that occurrence, ordered speeds cannot be very high
when the formulas are used at high altitudes. The upper limits will be pointed out hereafter,

Let D denote drag or thrust required, while T denotes thrust• available and v is
velocity. Drag versus velocity as mentioned above, Is approximated by a hyperbola with
asymptotes parallel to the coordinate axes:

(D - a)(v - b) - c (151)

where a, b, and c are determined by fitting equation 151 to three points selected ort that
part of the graph nearest to a hyperbola in shape. As long as T exceeds D, the aircraft will
accelerate. The speed will be constant when T = D. I

Drag versus vy ocity hyperbola: .
D I

IY - b

0 ~IV

Figure A-3
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If the thrust were adjusted to attain a certain ordered velocity, the differential equation

would be:

Force = mr = T - D (152)

mt- =D(ov) - D(v)

mx Wv- b (153)dt(ov---

dv[ I -b c dt
+ --- m---bo )

cv + - v) + K ct (154)
b log(0v m(0v - b)

Let v z :n when t - tn and v - Vn1 when t tn._, where tn -tn 1 -h for all n.

vn - Vn. + (ov - b)lo[ + ovn ] - vn. c T (155)

where 1 + vn1L " v -a °v " VA
ov " Vn.l ov - vn.1

Vn'l - Vn in always less than unity because vn is always between vn.l and ov, usually beb
o v - V n.-1

much closer to the former. Therefore,

log[ 1 + I - in] can be expande 4 in powers of v1"o vn .

Keeping the first power only yields:

"Vn "n-i + (ov b) vn-l - vn m(ovChn n-l 0~ v -vn-1 (0v-b

"ch(ov - Vn.1)

Vn n n-i + m(ov - b)(b - Vn.) (156

From the general shape of the hyperbola it can be seen that v < b and D < a. Theredore
c will always be negative (refer to equation 151).

If all speeds are kept below b, no serious inaccuracies will occur. IV v exceeds b

will be on the other branch of the hyperbola, which In no way resembles the actual drag
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versus velocity curve. In fact, if v - b is a small positive number, drag will have a large
negative value. This situation is impossible.

Fitting the hyperbola to the four available graphs produces the following values for

b and c:

Altitude b c

Sea Level 711.636 knots -885, 980 knots x pounds thrust

15, 000 feet 667. 906 knots - 253, 667 knots x pounds thrust
25, 000 feet 620.070 knots - 112, 651 knots x pounds thrust

35, 000 feet 572. 293 knots - 22, 087 knots x pounds thrust

These values must be expressed as a function of altitude. The best fit was achieved

with the formulas:

b = 711.636 (1 - 0.00551ho) (157)

c = 26ho - 1000 (158)

where ho is the altitude in 1000-foot units.

A.3.2 Turn

Equations were developed for the coordinated turn of an aircraft. These equations
are almost entirely independent of the type of aircraft; only the air speed and roll rate
would be affected by this consideration.

The basic condition for the coordinated turn is that the four elements, bank angle (4),
turn rate (w), air speed (v), and acceleration due to gravity (g) are related in the following
manner:

=v = tan k (159)
g

This equation will hold throughout the turn.

The aircraft will start with a roll on bank angle 0 = 0 and then roll to 0'. While the
aircraft is rolling into the turn 0 = pt where p is the roll rate; while the aircraft is rolling
out of the turn, 4 = 00 - p(t - T). 00, the ordered bank angle, is either directly ordered or
calculated from an ordered w by Equation 159.

Only one further calculation will be necessary. If a specific course change is de-
sired, then the aircraft must start rolling out of the turn ahead of time. (A C)f denotes the
course change while the aircraft is rolling out of the turn.
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0o

(AC)1 = f tan(V, - pt)dt (160)

0

(AC)f =*log(1 + tan2 o0)

A. 3.3 Climb

The derivation of equations describing the characteristics of an aircraft climb in-
volves more approximations than that of any of the other equations thus far described.

Although the equations themselves are simple, there are three separate equations and
therefore three different straight line approximations of curves that are not straight lines.

The most inaccurate approximation is of the curve of attitude of pitch angle versus
air speed for a given thrust. When thrust and attitude are low and air speed is greater than
250 knots, the straight line approximation will be satisfactory; otherwise it becomes some-

what inaccurate.

v = vm - A(sin e - B) (161)

where v equals air speed, 0 equals pitch angle and vm equals the air speed of the aircraft
flying with a zero rate of climb. At zero rate of climb, the pitch angle will not be zero;
there will always be a slight difference between the pitch angle and the actual direction of

flight in the vertical plane. This difference represents the angle of attack (a). The direc-

tion of flight is denoted by v.

y,= 6-a (162)

The lift of the aircraft is due to a. Over the range of a that is likely to be encoun-

tered here the coefficient of lift CL will be proportional to a.

CL = (ý& (163)

Q will vary somewhat with Mach number, but for Mach numbers less than 0.8 re-
mains relatively constant.

Equation 164 relates v, y and CL' This equation has been taken directly from

Reference 4.

V= /2(cos v)r/S (164)V =/ PUL

where W equals the weght of the aircraft and S its effective lifting surface area.

A-69



cos Y can be written cos(e - a)

cos(e - a) = cos 9 cos a + sin 6 sin a

since a is rarely greater than two or three degrees

cos y = cos 0 + a sin 0 (165)

Using equations 159 and 160, equation 164 can be rewritten:

a a (2W/i eos 0 .(166)
v - (2W/p8Q)sin 6

Let 2W/pSQ - k. Since p depends on altitude, so does k. k was evaluated by com-

paring e, on the attitude versus air-speed curves already mentioned, with y on correspond-

ing curves of climb rate versus air speed.

Corresponding to equation 165,

sin Y = sin 0 - a cosoe (167)

so

siny sin o - k (168)
v s -. ksine

and in equation 161, B equals k/vm2 .

Equation 168 can also be written as:

sin 0 = (169)
v 2 + k sin Y

The formulas to be used in describing the climb maneuvers of an aircraft then, are

v = vm -A(sn - k (170)m Vm

and

v2 sin e - k (171)

v 2 _ksin6

Since k is small compared to v2 , a second set of equations can be used for a less

rigorous description.

v = vm - A siny (172)

siny = sii, e k- (173)
v
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There still remain several questions as to the use of these equations. For instance,

given Vm, what should 0 be for a desired climb rate or for an optimum climb rate?

Equations 172 and 173 produce an optimum climb rate when sin V - vm- v m=-

This in obtained by finding the maximum value of v sin V = (vm - A sin Y) sin Y as a function

of sin Y. These values are extremely rugh, but an analytic solution of equ..tions 170 and

171 is prohibitively complex. The more complete equations produce a very complicated

expression whereas the others lead to the relation:

sinY - M " 2A (174)

where v. is the maximum value of v for a given vm.
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APIENDDX B

FORMULAS

The formulas in Appendix A are here listed again, for reference. A listing to show
the source of each formula is included at the end of each section. Most of the formulas

are used to determine the variable at time nh (e. g., yn) in terms of the value of the vari-
able at time (n - 1)h (e. g., Yn.1). These formulas are initialized by setting the first value
of Yn-l' for example, equal to the value of y when t = 0.

B. 1 SUBMARINE

B. 1. 1 Symbols and Units

Symbol Definition Units Positive Direction

S speed yards/second forward

C course angle degrees to the right of forward

D dive angle degrees up from the horizontal

6 r rudder angle degrees trailing edge to the left

6 stern plane angle degrees trailing edge down

A1  1/yards

A2  1/degrees

A3  none

A4  (constant parameters 1/yards
of submarine' s 1/degrees

A5  handling

A6  characteristics) 1/yards 2

A7  1/yards

A8  I/degrees

A9  
1/seconds 2

A11  
1/yards 2

X displacement yards east

Y displacement yarde north

Z displacemert yards down

oS ordered speed (the
speed for which the
submarine, a engines
are set)
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Symbol Definition

oC ordered course rate of clange or steady-state rate of change of course
in a turn

6 r rudder angle corresponding to o6

T time required for rudder to move from zero to 6 r

8f steady-state speed in a turn

o1 ordered dive rate

oD ordered dive angle

B. 1.2 Kinematic Equations of a Submarine, s Motion

B. 1. 2. 1 Acceleration/Deceleration

Instructions

OS is oidered S, the final speed. So is the initial speed at the start of the maneuver.

When n = 1, Sn.1 = So'

Formulas

a. Cases 1 and 2

Sn - Sn-1 = Alh(oS -I Sn-)1XoS + (1 + A3 )Sn-l] (1)

b. Case 3

Alh
Sn n- So)[oS + (I +A3)So]

when (Sn - oS)(So - 0S) > 0

Sn = oS otherwise (2)

c. Case 4

Sn = so when nhC 1/Al[oS + (1 + A3 )So]

Sn = oS when nh > I/Al[oS + (1 + A3 )So] (3)

Restrictions

These formulas can only be used with positive OS and So. The following restriction
is also imposed:

Sh < 1/A 1 (2 + A3 ) (4)
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where S is the largest speed value that will be encountered. For the three submarines for

which constants are available, the restriction becomes:

Sh < 250 yards = 444 knot-seconds (5)

B. 1.2.2 Turn

Instructions

All turn formulas give C. Cn is found by using the equation:

Cn Cn-1 + 2 (Cn + n-1) (6)

In case 1 the input is speed and rudder angle. Speed hiput consists of oS, the speed

for which the engine is set, and So-. Sn-1 with n = 1). So = OS unless the turn maneuver is

initiated while a previous turn maneuver or acceleration maneuver is still incomplete.

Rudder angle input is 6.r, the principal rudder angle to be used in th. xurn, and rn the in-

stantaneous value of the rudder angle. 6 is the only input still necessary after initializa-6rn

tion of the maneuver.

In cases 0U, 3, and 4 there is a choice allowed in the form of the input. The turn may

be ordered in terms of the principal rudder angle, 6 r, or in terms of an ordered turn rate,

0o(I. If 6r is given, then equations 8 and 9 are udied to find 0 and Sf. If Olt is given,

then it Is-used directly and the following formula is used to find Sf:

__=__s- _s 4A 2A510 t (7
8f o5 o A8  (0 A6AoC) A6'7

In the following formulas, S is always the speed for which the engines are set and
Sf is given by either equation 7 or equation 9 . So is the speed entering the maneuver.

It differs from oS only when the submarine changes from one turn rate to anothEr, or ac-

celerates and turns at the same time (e. g., level-up, where So = previous Sf and Sf = oS).

T is the time required for the rudder to move from its pre-turn position to its posi-

tion during the turn.

Formulas

a. Cast

42+ 4A5A6J- - A4
r- -1- 0S (8)

o 2A5(1 + A21 6dI
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= S S(I + A21 6 (9)
hA60n-16r /.l6n-8 n - n1 = Alh[0 S - (1 A21 6 r)Snl]1 Io + (1 + A216 rI + A3)'Sn I]1 (10)

n 6n-1 -on )n_ (11)n n -i- 8 1 6 ~ - 6
b. Case 2

Sn So when nh < T/2

n-1 m A1 (Sf - 8n- 1) [oS+ + A3)Sn.1]

when nh > T/2 (12)

Cn = 0 when nh < T/2

Cn-Cn = -f (Sfn-' -°oSn'I)(A 4 Sf +A5 106)

when nh > T/2 (13)

c. Case 3

Sn =So when nh < T/2

Sn" Sn-1Y (Sf"so) 0( +A 3 +1

when nh > T/2 and (So - Sf)Sn > (SO -Sf)Sf

Sn = Sf otherwise (14)

Cn =0 whennh<T/2

r-n.= h(o6-6o) 0 S S"S
C i ) (A4Sf + A510 ) S2A/o+A

(So~ -1f)ASf + A3A + 1

2A (o3 fS 1\2J when nh !-T/2 and 1IC1 1 <10•1
2A1 o$3g + A3 +1)

Cn = o otherwise. (15)
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D d. Case 4Sn = So when nh< T/2+ Sf/oS2A,(if" +A 3 + )

n- Sfwhen nh>T/2+Sf/oS2Al (+A (1)Sn 1 3 (16)
(n = 0 when nh < T/2 +

Cn - ot when nh_ T/2 + T (1'?)

where

S-= s/Sf(A4 Sf + AsI0o') - (So - Sf)/ 2A1 ( ÷- A3 + 1)

- (o- Sf)(A 4Sf + A5I 01tI)/2 0S Al 2fo+8 3 1)2 (18)

Restrictions

For the speed formulas to be valid, the following inequality must be valid:

0< SA1h(1 + A2I6rI)(2 + A3 + A216,I) < 1 (19,

where S is the maximum speed encountered in the maneuver. As concerns the three sub-

marines for which constants are available, this inequality will be satisfied if:

For Submarine I , Sh < 72.0 yards = 128 knot-seconLs

For Submarine II, Sh < 93. 2 yards = 166 knot-seconds

For Submarine MI, Sh < 86.4 yards = 153 knot-seconus (20)

This uses 6 r = 35°, the maximum attainable value of 6r.

The corresponding inequality for the turn rate equations is:

(A6 6rSh/Fc) < 1. (21)

where Fc = oC/Sf

For Submarine I, this requires that:

Sh < 64.4 yards = 114 knot-seconds.

For the other two submarines, satisfaction of inequality 19 is sufficient.
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B. 1.2.3 Dive

Instructions

Speed is assumed constant in all four cases.

Case 1 requires two past values for initialization. When starting the simulation, both

past values are set to zero unless the submarine is known to have a non-zero dive angle.

The input at each iteration is 6 the stern plane angle at the previous iteration.

Cases 2 and 3 produce dive angle rate as output. Dive angle is found using the formula:

D D h ()+b(22)n =Dn-I + (n +n-I)

Case 2 can be used with either ordered dive angle rate (0 15) or current stern plane

angle as input. In the former situation, the ordered dive angle is part of the Initialization
input; in the latter, the stern plane angle is updated at each iteration. Use of the oD term
in the formula using the stern plane angle is optional. It is applied most effectively when
oD is set equal to the average value of D during the maneuver. A crude estimate of this

average is sufficient.

Case 3 requires an ordered dive angle (oD) as well as an ordered dive angle rate

(015) as initialization inputs. An alternative form is to maintain 015 for a prearranged time
interval rather than to test Dn against oD at each iteration.

Case 4 requires ordered dive angle and dive angle rate, as well as initial dive angle
and dive angle rate, as inputs.

Formulas

a. Case 1

Dn - Dn 1 = (Dn.1 - Dn-2)(l - 0.625A7 Sh) - h 2 (A9Dn-l + AllS26 sn.) (23)

b. Case 2

"- Dn-1 = ( n - n1)0" 625A7 Sh (24)

or

I- n- = -h(A26D + AllS26sn + 0. 625A7S15n_1 ) (25)

"Dn=1Dn +2(n n-nI)
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c. Case 3

5n = bo when nh < 8/5A7 S

I5n = o0 when nh > 8/5A7 S and (oD - Dn)(o0 ) > 0

Dn = 0 otherwise. (26)

Dn=Dnn1 + (n+Dn1)

d. Case 4
= + 03 Cox (D + ASr(smn OD - sin Dd 0)0 5-8

r 8(D D- Do)]
+-j(OD Dd+ 5A S sin D

R cos D + A coo 0D (27)
15 0

0o 01

where R = 180/7r and ob and Do are in degrees.
When 50 and Do are zero

8 oD R(1- Cos oD) (28)-5A7S + - . (8)07 OD D sin OD

In either instance,

Dn =Do when nh<T

Dn = oDwhen nh > -r (29)

Restrictions

The validity of certain approximations made in deriving the formulas for cases 1 and
2 depends upon the speed of the submarine. The speed must satisfy the following inequality:

5 A Sh < 1 (30)

Tne value of A7 for Submarines II and III was seen to be inaccurate by several orders of
magnitude. For Submarine I, inequality 30 becomes:

hS < 64 yards = 114 knot-seconds (31)

B-7



Limits on the dive angle are inherent in the equation for case 1. When

SDn-l > V s- 3 n-1, I Dn - Dn-! will decrease until Dn- Dn_1 changes sign and causes

I Dn-1 to become smaller than Ails26 o.n-JA 9 . This limit is not included in the formula-

tions for cases 2 and 3. When the stern plane formulation is used in case 2, D n- 1 can be

used instead of oD when Dn exceeds All 82 6Sn* In the o]b formulation of case 2, and in

case 3, Dn must be tested by the following formula:

I Dn- I <~ 5A7S01/8A9 1 (3 42
(derived from the above inequality for Dn.i using equation A-67)

When IDn.1I exceeds this value, oP must be changed to prevent Dn from increasing further.

In cases where 015 is part of the input, the maximum allowable value which may be

used for of) depends upon the maximum allowable value of 6., as follows:

I ofl a = (BA Ill/5A7)6s9max (33)

B. 1. 3 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A

1 27 18 50

2 37 td 25
3 43 20 25 ff.
4 25 21 12 ff.

5 22 74
6 23 67
7 15 24 72

8 8 25 73
9 7 26 77

10 26 27 81
11 13 28 83
12 28 29 84
13 22 30 63 ff.
14 36 31 63 ff.

15 49 32

16 42 33 68
17 51
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t B. 2 SURFACE VESSEL

B. 2.1 Symbols and Units

Symbol Definition Units Positive Direction

0 ship' s heading radians clockwise from north

y b radians/second

C side-slip angle radians clockwise from true coursi
angle tL. heading

C true course angle radians clockwise from north

(0 - a)

y - a radians/second

rudder angle radians trailing edge to the left

V velocity feet/second forward

a1  
1/feet 2

a2  
1/feet 2

a3  1/feet
a3~~ instant pa~rameters 1fe

a, of the s-..rface 1/feet
-1 vessel's handlin

a5  characteristics) 1/feet

a 6  none

a7  
feet/radians 2

a8  1/feet

Symbol Definition

Vo velocity for which surface vessel's engines are set

od ordered course rate of change or steady-state rate of change of course in
a turn

6 rudder angle corresponding to 015

T time required to move rudder from zero to 6

Vf steady-state velocity in a turn
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B. 2.2 Kinematic Equations of a Surface Vessel's Motions

B. 2.2. 1 Acceleration/Deceleration

Instructions

In the literature in which the dynamic equations for surface vessel motion were

found, Vo is used to denote ordered speed, the speed for which the ship' s engines are set.

Therefore V1 will be used to denote the initial speed of the vehicle at time t - 0. This is

used in cases 2, 3, and 4. In all cases, the initial value of V is used for the first appear-

ance of Vn.1.

Formulas

a. Cases I and 2

Vn - Vn-1 i ha 8 (Vo - Vni 2 ) (34)

b. Case 3

ha 1o+ V
V2 (V-V 1

n Vn1 2 - / 2(vo + VI)2

when (Vo - Vn)(Vo - V1) < 0

Vn =Vo otherwise (35)

where V1 is the original velocity at the start of the acceleration/deceleration.

c. Case 4

V V, <1 O V+ 3V1 I
VnV1 when nh < (vo + V-

V~ = V when nh>~ CýI V V (36)Vn o we 2a 8 ((V0 +V 1 ) 22

Restrictions

For the above equations to be valid, V must satisfy the following inequality, where

V is the maximum speed encountered during the maneuver.

0< Vh < 1 (37)
2a8
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As concerns the three vehicles tested, this becomes

For Surface Vessel I , 0 < Vh < 1,014 feet a 600 knot-seconds

For Surface Vessel U, 0 < Vh < 1,075 feet a 637 knot-seconds

t'or Surface Vessel MI, 0 < Vh < 2, 222 feet a 1,316 knot-seconds (38)

B. 2.2.2 Turn

Instructions

All four cases give (6n as output. C is updated, using the formula:

Cn =Cn-I + (n + (39)

Case 1 has 6. as input at each iteration S =r1+r 2 t.Whjle the ruddex 14 moving, r 2 2
quired in addition. Initialization requires Vo, the speed for which the engines are set.

When entering a turn from a straight-course situation, Vo is also the initial value of the
speed. Initial Vn.1, Yn-V an-1f ltn-l, and Cn. 1 are all set from the values for these
quantities when the maneuver begins.

Case 2 is initialized in the same way. However, instead of updating 6n at each itera
tion, only the principal value (6_) of 6 n is used. 6 may either be a direct input or computed
using the relationship

6gVf - o• (40)

when the input is in the form of an ordered turn rate.

In cases 3 and 4, o/b is part of the initialization input, but 6 can be used with

equation 40.

The two formulas for Vf use 6 and 06 respectively.

Formulas

ala 5 - a 2 a4

a 3a 4 - aja6

a 2a 6 -a 3a 5

a 3a 4 - aja6  (42)

Vf = Vol/ - a;a6
2 25_62/a 8  (43)

Vf =Tvo2 + a6
2 

0
2 a 7 /a 8  (44)
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a. Case 1

Yn - Yn-- 1 V h- Vn-1 6n- )(a3a4 - ala6 ) + aan-] (45)

a Vn-h46 r

in -n-l " a 4  [(Yn-I - Vn- I4n- 1)(a 3a 4 - ala6 ) + aldn-1]

+ Vn lh(a4dn. 1 + a5 r 2 ) (46)

where r 2  0 (6n - 6n.1)/h

Vn-V = h[a 8 (Vo2  Vn. 1
2) + a7(dn.1 - ayn.1)2 ] (47)

n a y - dn (48)

Cn n-1 + 2 n n-1)

b. Came2

Yn= 0 when nh < T

n-1 R[(-1 •') )(aa - a 6 ) + alan-] (49)

when nh > T

n =0 when nh < T

Vn- 1ha 6 oCVn.I.
a n dn-I a 4 Yn-= Vf ) (a3a4 - ala6) + aldn-

+ Vla46n-1

when nh > T (50)

Vn - V = h[a 8(Vo2 _ Vn1 2) + a7(4n. 1 - a6yn-1)2] (51)

Cn = Ynan

Cn= +2(• + Cn-I)
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*c. Came 3

C6n Cn-I + h(0C - Co) [T -Vfglý(4 ala- -

when (C0o - 006n> (6 0-0006

6n = o1 otherwise (52)

Vn=Vn'1 +a 8 h(Vf = (V f + Vo)2]

when (V1 - Vf)Vn > (V1 = Vf)Vf

Vn W Vf otherwise. (53)

Cn = n-I + I (6n + 6n-,)

d. Case 4

Cn"Co when nh <- -g ~a a le,
n 0 N -aa

C t( when > ---T ra49 - a1 7. (54)

- af 3 a4  aa 6 -
(14

1 Vf + 3go

Vn oV when nh < 2 0 ]Vn-V 2a (•n • V, + Vo

n 2V when nh+o (55)

Cn= Cn+I(Cn +Cn-1)

Restrictions

The iteration interval is restricted in size by the inequality

[(a 3 + a4 ) - /a 3 + a 4)2 - 4(a3 a4 -alas) ]Y <1 where V is the !argest velocity er

countered in the turn maneuver. For the three surface vessels for which response curves

are displayed in Appendix C, this becomes
For Surface Vessel I , 0 < Vh < 86.5 feet = 51.2 knot-seconds
For Surface Vessel II, 0 <Vh < 71.8 feet = 42.5 knot-seconds
For Surface Vessel MI, 0 <Vh <185 feet - 110 knot-seconds
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B. 2.3 Formula Cross-References, Appendices B to A

Appendix B Appendix A

34 137 45 114
35 147 46 120
36 150 47 137

37 135 48

38 136 49 122
39 50 123

40 102 51 137
41 97 52 126

42 98 53 147
43 140 54 127
44 139 55 150

B. 3 POSITION UPDATING

B. 3. 1 Orientation of Vessels

Instructions

The following equations repyesent the orientation of either submarine or surface
vessel (D = 0 for surface vessel).

k -S cos D sin C

Y S cos D cos C

• -- S sin D (56)

Updating formulas are given for X and Y with D = 0. The formula for X can be used
for Z if multiplied by -1. All values of C, C and S are obtained from the appropriate formu
las in sections B. 1 and B. 2.

Formulas

Xn - Xn_1 = (Sn + Sn.1)2 [sin In.1 + (n + C1n-1 cos Cni] (57)

Yn - Yn- 1= (Sn + Sn- 1[cos Cn-1 - (n + Cn-)• sin Cn 1 ] (58)

where

sin Cni1 [1 - (Cn-1 + n-2) h2 ]sin Cn 2 + h(n-1 + (59)

B-14



.2

cos Cn.I = [1 - (6n-1 + 6n-2)2 I ]cos C8n2 - (Cn-I + 6n-A2 sin Cn.2

where C must always be expressed in radians.

Restrictions

The only restriction is on the size of Ith. Accuracy will be very good if (6h < 100.
It will be fair if 100 < Ch < 200. 6h > 20 will lose much accuracy as n increases.
6h > 400 will be very inaccurate, and Ch > 570 completcly wrong.

B. 3.2 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A

58 page A-2 59 87
57 86 60 87
58 86

B. 4 AIRCRAFT

B. 4.1 Symbols and Units

Symbol Definition Units Poritive Direction

Sv velocity or airspeed knots forward

m mass of the aircraft pound-seconds/knots

ho altitude 1000 feet up
Scourse rate of change in a coordinated radians/seconds clockwise

turn
bank angle in a coordinated turn degrees right wing down

p roll rate degrees/second right wing moving
down

(AC)f course change while rolling out of a radians
coordinated turn

g acceleration due to gravity knots/second
00 ordered bank angie
o altitude or pitch angle radians up from horizontal

plane
d angle of attack radians up from horizontal

plane
direction of flight in the veritical plane radians up from horizontal

p ane
b (constant parameters knots
c of the aircraft's knots x pounds
k handling knots 2

A characteristics) knots
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Symbol Definition

vm velocity the aircraft would have, at a given thrust and altitude,
if Y,=0

ov ordered velocity in acceleration/deceleration

B. 4.2 Kinematic Equations of an Aircraft' a Motions

B. 4. 2. 1 Acceleration/Deceleratior

Instructions

ov is ordered speed, the speed for which the aircraft, a engines are set; m is the

mass of the aircraft. The first value of Vn 1 is the value of v before the acceleration takes

place.

Formulas

vn - Vn.I = ch(ov - vn l)/m(ov - b)(b - Vn-l) (61)

For the F-100A,

b = 711.636 (1-0.00551h 0 ) (62)

c = 26ho - 1000 (63)

Restrictions

v<b, ov_<b
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B. 4.2,2 Turn

Instructions

The aircraft rolls into the turn with roll rate pi and out of the turn with roll rate po.

If the aircraft has been ordered to a specific course change oC, then it starts to
roll out of the turn before it reaches this course change. The point where it starts to roll

out is expressed by oC - (A C)f, where (A C)f is the course change while the aircraft is roll-
ing out of the turn. The formula for (A C)f is shown in equation 66, where po is in radians
per second. Figure D-1 in Appendix D shows how these equations are used to construct a
model to simulate a coordinated turn.

Cn. Cn-l =I h Xtan 0 (64)

On = On-1 + Pi whilelI On< o0 (65)

(A C)f = "* log(1 + tan2 00) (66)

O n o untl C=oc -(AC)f (67)

T =tme at which C= oC - (A C)f (68)

On = n-1 - Po(t - T) until On = 0 (69)

Resti ict ions

h < 0 / 3p

B. 4.2. 3 Climb

Instructions

The equations for climb relate the variables of the aircraft that are affected by the
climb. vm is the air speed the aircraft would have if it were proceeding at level flight with

the same throttle setting. 0 is the attitude or pitch angle of the aircraft. A is the slope of
the graph of sin 0 versus v. It is not constant but varies somewhat with altitude, so an
average value is used. Y is the angle between the horizontal and the actual direction of fligh

Equations 72 and 73 are simpler versions of equations 70 and 71.

An ordered climb is achieved by changing 0 at an ordered rate until the proper climb

rate is attained. The rate of change in 6 is accomplished by ordering the vehicle to turn up-
ward or downward so as to increase or decrease by a given amount the number of "g's" the
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pilot and the aircraft will experience. If the number of g's change is given by G, then w,

the rate of change of 0, is expressed as w - 1091q when v is in knots and w in degrees per

second.

The various equations used to describe a climb must be combined with tests on y, and

v and arranged in such a way so that a climb will actually take place. For irAtance, at the

start of a climb a certain value of y is determined according to the speed of the aircraft,

etc. Call it ,o, then 9 is incremented by hw at each iteration and updated using equation

71 or 73. Then y is tested to see if it is greater than or equal to oy.If not, a is incre-

mented aain. If it is, then y' is set equal to o and G set equal to zero. A similar process

is repeated whenever oy must be ch&ýnged.

A flow chart (Figure D-2) is included In Appendix D to show how this is done. It is

set up so that the aircraft will either climb to an ordered altitude and level off or will attain

an ordered heading angle (0 -y) and maintain it. Speed change to 0 v is included in this model

for completeness. Values for G of +0. 5 and -0.5 were chosen arbitrarily. G can be any

value consistent with the structural limitations of aircraft and pilot.

Formulas

V - vm - (70)
vm

v2 sin e - k (71)
sin 7 v2 - k sin 6

or

V a vm - Asiny (72)
k (a

sin •y = sin - (73)

Restrictions

a<100 where a=-8 --

B. 4.3 Formula Cross-References, Appendices B to A

Appendix B Appendix A Appendix B Appendix A

61 156 68
62 157 69
63 158 70 170
64 159 71 171
65 72 172
68 160 73 173
67
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APPENDIX C

RESPONSE CURVES

Appendix C (CONFIDENTIAL) is issued
separately as Supplement 1, Technical
Report: NAVTRADEVCEN 1407-2
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APPENDIX D

FLOW CHARTS

Figure D-1. Flow Chart, Aircraft Turn

Figure D-2. Flow Chart, Aircraft Climb
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IS.AMSTRAcIr'his is a report on the development and use of kirema-ic vehicle simulatic
equations. It provides the appropriate kinematic equations for vehicle simulation
systems and the criteria for their selection.
The kinematic equations in this report are difference equations involving position,
speed and acceleration, Difference in position is a function of velocity and
difference in velocity is a function of acceleration. Acceleration algorithms,
necessary for any system of kinematic equations, are incorporated directly into the
difference equations for velocity. They are based on the parameters of the rnaneuve
being executed and the handling characteristics of the vehicle being simulated.
Equations have been developed for simulating maneuvers of the submarine, surface
vessel and aircraft. The kinematic equations describing the motion of submarine
and surface vessels cover four broad s4'-ulation categories: operator, command,
instructor and program controlled maneuvers. Operator controlled maneuvers are
those in which control surface deflections are used to effect the maneuvers. These
maneuvers follow the actual motion of the vehicle very closely. Command controllec
maneuvers are effected, by ordered rates of change such as ordered course rate of
change or ordered dive rate of change or by an ordered speed. The vehicle changes
to ordered rate of change in a characteristic manner. Instructor controlled Tvaneux
are simulated by using a constant change in course rate of change, dive rate or
speed until the ordered value is achieved. Program coitrolled maneuvers are
simulated by an abrupt change in these variables after on approprinte time delay.
Both these maneuvers keep the position of the vehicle very well. The iteration
intervals used are one second or greater. The maximum iteration interxals and the

nM2outer storaW e and timinz demands of each model Are presented.
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