
AA. V. JOHNS JR. 
A*-*.6\       T/Z-&IX.      V'^r-JiAsCSl 

STANFORD UNIVERSITY 

MULTIPLE TIME SERIES MODELLING 

BY 

EMANUEL PARZEN 

TECHNICAL REPORT NO. 22 

JULY 8, 1968 

PREPARED UNDER GRANT DA-AR0(D)-31-124-G726 

FOR 

U. S. ARMY RESEARCH OFFICE 

Department of 

STANFORD, CALIFORNIA Statistics 



MULTIPLE TIME SERIES MODELLING 

By 

Emanuel Parzen 

TECHNICAL REPORT NO. 22 

July 8, 1968 

PREPARED UNDER GRANT DA-AR0(D)-31-12^-G726 

FOR 

U. S. ARMY RESEARCH OFFICE 

Reproduction in Whole or in Part is Permitted for 
any Purpose of the United States Government 

DEPARTMENT OF STATISTICS 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 



MJLTIPIiE TIME SERIES MODELHNG 

By 

Emanuel Parzen 
Professor of Statistics 
Stanford, California 

1. Introduction 

Empirical multiple time series analysis is concerned with finding 

relations among r time series X^(•), ...,   X('), given finite samples 

(1)        {XL(t), t=l,2,...,T}, ..., (Xr(t), t=l,2,...,T}  . 

Multiple time series modelling could be equivalently defined as multi- 

variate analysis of a sample of dependent (rather than independent) 

random vectors 

(2) X(t) 

x^t) 

xr(t) 

We call X(-) = (X(t), t=0, + 1, + 2,   ...} a multiple time series. 

The point of view that a multiple time series is a series of 

vectors (rather than a vector of series) seems useful for mathematical 

statistical investigations of the distribution of various sample 

statistics. Point One of this paper is:  for pre-mathematical statistical 

investigations of the specification of the models to be fitted it may be 

essential to first model each component by itself. 

This paper seeks to provide a general framework for the theory 
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and practice of multivariate analysis of time series.  It seeks to 

compare: 

(1) Spectral approaches to finding relations among time series. 

(2) Time domain or innovations approaches to finding relations 

among time series. 

The paper also seeks: to focus,attention on: 

(3) Innovations approaches to cross-spectral estimation. 

(k)     The problem of multivariate analysis of the joint innovations 

covariance matrix and the sampling properties of its estimators. 

The various sections are entitled:  2.  Innovation Approaches to 

Modelling,, j5.  Spectral Approaches to Modelling,  4. Relations 

Between Time Series,  5» Autoregressive Approach to a Single Series, 

6. Multiple Spectral Density Estimation. 



2.  Innovation Approaches to Modelling 

When we admit the possibility that our vector samples 

X(l), ...}  X(T)  are not independent^ and seek to build stochastic 

dynamic models,, the statistical inference problem could be conceived as 

one of estimating 

(1) m (t)  = E[X (t)]  , 
J J 

(2) Kjk(s,t)  = COVEXJCB), Xk(t)]  ; 

these means and covariances specify the probability law of the observa- 

tions when it is assumed to be multivariate normal.  In order that there 

not be as many or more parameters as observations^ one must assume 

models which restrict m.(-)  and K.n (-.•)> since otherwise statistical 

inference is impossible» 

A multiple time series X( •)  is called covariance stationary 

[see Parzen (1962), Chapter 3] if for each index j  and k there is a 

function R., (v)  of v = 0, + 1, . . .  such that 
jkv '  — ' 

(3) Cov[X (s), Xk(t)]  = RJk(t-s)  . 

The r by r matrix 

rR1L(v)   ... R^CV)' 

(k)    R(v)  =   ...    ...    ... I,  R  (v)  = Cov[Xh(t), X (t+v)] 

Rrl(v) ... Rrr(v) 

is called the covariance matrix R( •) of the covaria,nce stationary 

multiple time series  {X(t), t• = 1,  2, ..., T). 

The sample statistics appropriate for inferring models for 
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covariance stationary time series are often interpretable even for non- 

stationary time series [either as time varying statistics, as in 

Priestley (1965), or through transformations to stationarity, as in 

Parzen (1967a) or Whittle (1963h)].  Therefore -we assume that the multiple 

time series X(°)  being discussed is covariance stationary. 

Let us review briefly models for a univariate stationary time 

series X(')j i"ts covariance function R(v)  has spectral representation 

(5) R(v)  =  /  cos vu dF(w) 
J-jt 

When seeking to model a time series X(•)  with given covariance func- 

tion R(«)  and spectral distribution function F(«); in principle one 

may treat separately the three types of distribution functions into 

which F(') may be decomposed: 

(6) F(u>)  = Pd(o>) + Fac(u) * Fsc(w) ; 

in words, F(')  is the sum of three distribution functions which are, 

respectively, discrete (or purely discontinuous), absolutely continuous, 

and singular continuous. 

Observed time series are assumed to have a mixed spectrum, in the 

sense that:  (i) the singular continuous part of the spectral distribu- 

tion function vanishes, (ii) the discrete part has only a finite number 

of jumps, and (iii) the absolutely continuous part has a spectral density 

function f(w)  satisfying 

(7) /  log f(u)doa > -00 
u -jt 



Note that f(w). is an even non-negative function such that 

(8) Fae(u) = I      f(u')dw«  . 

We call m(t) = E[X(t)] the mean value function of X(-).  It may- 

be shown that X(t) - m(t)  may be written as the sum of two time series, 

(9) X(t) - m(t)  = Xd(t) + Xc(t) 

satisfying 

r 
(10) X^(t)     =   A. +   V    {A.cos \.t + B.sin X.t} 

dv 0       AL      j j j j 

where    A-,  A.,  B.     are uncorrelated random variables  and    \.     are fre- 

quencies  in the band    0 < X.  < it,  while 
J - 

(11) Xc(t)   =  Tl(t) +bL Tl(t-l) +b2 Tj(t-2) + ... 

where  {b } are constants such that Z b < oo and (T)(v)} are 

uncorrelated random variables. 

The probability distribution of A... A. B.  cannot be estimated  -         o'   y   j 
from a single realization of X(-); or even of  X ( °) j all- one can hope 

to estimate is the value of these variables in the realization observed. 

Thus A., A., B.  can be treated as constants (rather than random 
0 y    j   

variables) for purposes of statistical inference and X-,(•)  can be 

treated as part of the mean value function of X(°)«  The mean value 

function of X(-)  has to be eliminated by some detrending procedure 

(which could involve spectral analysis) in order to do statistical 

inference on X (>),  the "fluctuation" part of X(»)° 

Point Two of this paper is:  in multiple time series modelling we 
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can assume that we are dealing with zero mean jointly covariance 

stationary time series X.(-)> each satisfying (7) and therefore 

satisfying a model of the form 

(12) Xj(t)  = ^(t) + b[j) Tij(t-l) + b^j) T] (t-2) + ...  . 

To understand the meaning of the random variables  TJ . ("fc) _, let us 
J 

hereafter consider normal time series  {X(t)}. One can associate to a 

univariate series X(°)  a series of successive conditional expectations 

(or minimum mean square error predictors) 

(13) X*(t)  = E[X(t)|x(t-l), X(t-2), ...]  , 

and conditional variances (or mean square prediction errors) 

(14) a^   = Var[X(t)|x(t-l), X(t-2), ...]  =E[|x(t) -X*(t)|2]  . 

For non-normal time series, the notion of projection is used in place of 

conditional expectation; see Rozanov (1967). 

The one step prediction error, denoted 

(15) Tj(t)  = X(t) '.- X*(t)  or  X(t)  = X(t) - X*(t)  , 

is called the innovation at time t. The successive innovations T](t) 

are a sequence of uncorrelated (independent when X(-)  is normal, as 

assumed here) random variables, 

(16) E[T](S) Ti(t)]  =0       if s ^ t•  . 

An uncorrelated sequence  TJ(°)  is called white noise;   if all variances 

are equal it is called stationary white noise. 



Writing X(t)  as an infinite series in rj(t), r)(t-l), ...  is one 

way of expressing the time series X(•)  as the output of a filter whose 

input is white noise  T](«).: 

TlCO Filter $ X(.) - *[x(.)] 

By representing a time series as the output of a filter whose input is 

innovation white noise we are able to conveniently solve estimation 

(prediction, signal extraction) problems and simulation problems for the 

time series. 

For a univariate time series X(»)  which is assumed to be normal, 

covariance stationary, have zero means, and non-deterministic [in the 

sense that it satisfies model (ll)], the modelling problem can be solved 

by estimating either: 

(i)  its covariance function R(v), or 

(ii)  its spectral density function f(w), or 

(iii)  its innovation variance a      and the filter $[•] which 

transforms T\(°)     to X(°). 

Point Three of this paper is:  approach (iii) is the most satis- 

factory for two reasons:  (l) as the answer we seek since it is the most 

convenient form for prediction and control, (2) as the most suitable 

means of obtaining (ii) [the details of how to do this are discussed in 

Section 5]• 

Point Four of this paper is:  for a multiple stationary normal time 

series two types of innovation approaches to modelling can be considered: 

(i)  the individual innovation approach, and 

(ii) the joint innovation approach. 
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The individual innovations,   denoted r).(t), are defined in terms of 
J 

the predictors of each series given its own past 

(IT) X*(t)  = E[X (t)|x (s), s < t] 

by 

(18) T] (t) = x (t) - x*(t) . 

Equation (12) is a representation of X.(t)  in terms of its individual 

innovations. 

The joint innovations^ denoted r\ , (±)}   are defined in terms of the 
— j 

predictors,, denoted X.(t), of each series given the pasts of all of 
u 

them;   in symbols 

(19) X*(t)     =    E[X (t)|x '(s),   s < t    and    k = 1,  2,   ...,  r] 

and 

(20) T]  (t)     =    X (t)   - X*(t)     . 

The joint innovation multiple time series^ denoted r](°)j and 

defined by rj(-)' =("[}-,{'),   •••> T]  (•)),   is multiple white noise in the 

sense that 

(21) EU(B) V(t.)]  =0       for s ^ t• , 

and therefore is described by the innovation covariance matrix 

(22) . £ = Eh(t) Tj»(t)]  . 

The joint innovation approach models X(°) ^7  estimating:  (i) the 

innovation covariance matrix Z, and (ii) the multi input- multi output 
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filter which transforms the joint innovations  T](«)  to the observed 

multiple time series X(°). 

The individual innovation approach models X(0 by estimating: 

(i) each individual innovation series  T].(-)  and the filter transforming 
J 

rj „ ( •)  to X.('),   (ii) the multiple time series [denoted  TJ . -,(t)  and 

defined by r\.   r,(°)! = (rl-|(°)> •••>   T\  ('))]  of individual innovations in 

terms of their joint innovations [to be denoted e_( •)  and called the 

innovation innovations ] and the multi input -multi output filter -which 

transforms £(••)  to f] .   -X0)» 

Point Five of this paper is:  to estimate the joint innovation 

structure of a multiple time series we fit it by a sufficiently long 

joint autoregressive scheme.  Probabilistic justification of such fits 

is provided by the work of Masani (see, for example, Section 13 of 

Masani1s review paper (1966) at the First Symposium on Multivariate 

Analysis). 

A zero mean covariance stationary multiple time series X( °)  is 

called a joint autoregressive scheme of order m if the infinite 

memory predictor X (±)     can be expressed as a linear combination of 

X(t-l), -..., X<t-m): 

(23) X*(t)  = A(l) X(t-l) + ... + A(m) X(t-m)  . 

When the multiple time series X(°)  ^-s known to be a joint autoregressive 

scheme of order m, the autoregressive matrix coefficients A('l), ...,  A(m) 

are estimated from a sample  (X(t), t'= '1>'2, ...,   T}  of size T by 

the solutions A(l)i, ..., A(m)  of a system of'equations called the 

multiple Yule-Walker equations: 



m ^ 
(2^)     £ A^ 5r(j-k)  = %(-k) ,       k = 1, 2, ...., m , 

J=l 

where R~(v) is the sample covariance matrix defined in the next 

section. 

The Yule-Walker equations are suggested by the fact that the matrix 

coefficients A(l), ...,  A(m) of the finite memory predictor in (23) 

satisfy the normal equations 

(25) E[X*(t) X'(t-k)]  = E[X(t) X'(t-k)] ,       k = 1, 2,   ...,  m 

or 

m 
(26) £ A(J) R(j-k)  = R(-k) ,       k = 1,  2,   ...,  m  . 

j=l 

The prediction error covariance matrix £ satisfies 

m 
(27) 2 =  [(X(t)-X(t)] X-(t)]  = R(0) - £. A(J) R(J) } 

the natural estimator of 2 is 

£ m ~ 
(28) £ - RT(0) - £ A(J) RT(j)  . 

j=l 

It is important to note that the computation of A(l), ...,  A(m), 2 is 

most conveniently done recursively [as in Whittle (1963), Jones (1964), 

or Robinson (1967)]-.- 

. From the work of Wold (195*0, Mann and Wald (19MO and Whittle (1953) 

we know the properties of the autoregressive coefficient estimators 

A(l), :•..., A(m)j indeed, their properties are very similar to those of 

estimators of multivariate regression coefficients [as given, for example, 

in Kendall and Stuart (1966), p. 275]. 
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What has not been explicitly proved in the literature,  but seems 

plausible (and basic to the innovation approach to modelling) is that 

(T-m) Z is approximately distributed as the Wishart distribution of 

dimension r,, degrees of freedom T - in, and covariance matrix D.  In 

Section j5>  "we will make the point that multivariate analysis of Z    is 

an important tool of multiple time series modelling. 
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3„  Spectral Approaches to Modelling 

The spectral approach to multiple stationary time series analysis 

assumes that each component is non-deterministic, and in addition assumes 

that the covariance matrix R(«)  is absolutely summable in the sense 

that 

(1) E IVV>I <<» 
V hj 

for h, J = 1, 2, 

so that  an explicit formula can be  given for the  spectral density matrix 

(2) 

or 

£(") in     L e R(v) 
V=-co 

(3)    fH 

"fn(u) ... f^H" 
00 

... -  Vu) - = - y 
v=- 

f ..(u)   ...  f    (to) 
rl                    rrv 

-1VÜ) /       v 
e RT,-CV) 

in terms of f(w).> we have a Fourier representation for R(v): 

00 1VC0 
R(v)  =     exv f(w)dw 

-jt 

One calls f(u)  the spectral density matrix of the covariance stationary 

multiple time series X(*)j for further discussion see Rozanov (1967), 

Granger (1964), Jenkins and Watts (1968). 

Point Six of this paper is:  there are three kinds of sample statis- 

tics in multiple time series modelling, which one should use simultan- 

eously and between which one should know how to transform quickly.  The 

three kinds of sample statistics are: 

(i)  the sample covariance matrix, 
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(ii)  a matrix of estimated spectral densities, 

(iii)  various innovations and sample autoregressive coefficients. 

The sample covariance matrix is defined by 

T-v 
(5)  Ejv)  = £ X* £(*) X'(t+v) ,      for v ^ 0, 1, ..., T-l  . 

t=l 

When the multiple time series X(-)  has zero means and is covariance 

stationary, one regards R_(v)  as an estimate of the value of the 

covariance matrix R(v).  Since R(-v) =R'(V)  we define RT(-v) = R'(v), 

It should be noted that in the course of our discussion of 

estimated spectral densities, it will be seen that in practice one should 

rarely use (5) to compute R (v), and one should not usually use (5) 

to even define Rm(v)  for "detrended" time series . 

While the sample covariance matrix Rm(v)  is °?  interest to deter- 

mine the lags v at which the components of R„(v)  are significantly 

non-zero, for time series modelling E_(-)  needs to be transformed 

either to spectral density estimates or autoregressive coefficient 

estimates. 

A matrix f.C'0)  °^ estimated spectral densities f  (u)  is denoted 

(6) f(w) 

fllH f^N) ... flii(u) 

f21(u) f22(u) ... f2r(u) 

frl(w) fr2(a)) ••• frr(w) 

Point Seven of this paper is: the spectral approach to multivariate 

analysis of time series may be defined to be concerned with the relations 

among time series that can be inferred statistically from the matrix of 
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estimated spectral densities [as well as probabilistically from the 

matrix of true spectral densities; for example, see Koopmans (196^)]. 

We briefly describe ways of forming estimated spectra f(to) 

[for a tabular presentation of these remarks see Parzen (1968)]. First, 

form the sample Fourier transform 

(7) Z(io)  = £   e"iUt X(t) 
t=l 

at specified frequencies    to    (we prefer    0,  — ,...,   (2T-1)  rr).     Second, 

at these  frequencies  form the  sample  spectral density matrix by the 

formula 

(8) fT(u)     =    2^T £H Z'(-u) 

which satisfies the relations 

(9) H    (v)     =    rnelvUf^U)dtf    , 
J -it 

(10) fTH  = k       Z  e"lvWR^v)  . 
|v| <T 

Third, form estimators of f(<*>) by averaging adjacent values of f (to); 

this averaging process is computationally faster if the averages one 

considers are of the form 

(ID £(kf)  = syCj-k) f) fT(j ^)  , 

which we call filtered sample spectral density functions. 

An alternative third step, which seems to me the most convenient (and 

because of Fast Fourier Transform techniques perhaps faster) way to 
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compute f(-')t   is via the method of covariance averages [compare Parzen 

(1967b) or Jenkins (1967)] 

|v|<T 

in terms of a suitable kernel k(«)  and constant M called the 

truncation point. We prefer (12) to (ll) since one can readily compute 

RmCv)  for v = 0, 1, ..., T - 1 (through the Fast Fourier Transform) by 

the formula 

2T-1 
(13) HT (v) = ~    £    exp(ivk g^) f (k ~)     . 

k = 0 

For the proof of (lj), compare Gentleman and Sande (1966), p. 573° 

To interpret estimated spectra, one has to take account of both 

their variability and their bias. The basic approximation on variability 

[which was first noted by Goodman (1963) and proved by Wahba (1968) and 

Brillinger (1970)] is that an estimated spectral density matrix f(to) 

of form (12), or equivalently (ll), has the following approximate 

distribution:  V f (to)  has a complex Wishart distribution of dimension 

r, degrees of freedom V, and covariance matrix f_(to), where 

00 

(lh) i = I r     k2(u)du . 
J   -00 

By identifying the distribution of f(w) with the Wishart distribution, 

one reduces to standard problems of multivariate analysis the problem 

of finding the distribution of various statistics derived from f (to)„ 

To conclude this section, we note that the foregoing computational 

path seems especially appropriate when one cannot assume the observed 
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time series to have zero mean (no trend),   and desires to detrend the 

series X(-)  by passing each component X.(°)  through a filter to 
J 

form a detrended series  ,X.(•): 

(15) flx (t) = Y    X (t-a) v (a) . 

However the Fourier transform  ., Z „(°)  can be formed [without first 
d~jv 

forming   ,X(>)] directly from the Fourier transform Z( •)  by 

(16) dZj(w)  = Zj(t0) WJ(U) 

where 

(17) ¥ (u)  = Ju (a) exp(itoa)  . 

Further to form  X( •)  as a function of time one need only invert the 

Fourier transform of  X(°)=  The sample spectral density matrix and .        , _ , _ ___      ^_ 

sample covariance matrix of a detrended multiple time series  -,X(°) 

seem to me to be best computed by 

(18) £TM  - i£r45C»>4£(-«) 

and (13) respectively.  I must admit that as yet I have no practical 

experience with comparisons of formula (l8) with more "direct" methods 

of calculation» 
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k.    Relations Between Time Series 

Given two jointly stationary zero mean multiple time series X(°) 

and Y(°)  there are a variety of relation filters.  To regard X(*)  as 

the independent variable is to regard it as the input, of a filter /whose 

output., denoted Y (°),  provides a representation of Y(°)  as a sum of 

two terms: 

(1)        I(t) = Y*(t) + e(t) ,  e(t) = Y(t) - Y*(t)  . 

Point Eight of this paper is:  it is most meaningful to define 

Y (t)  as a minimum mean square error linear predictor of Y(t)  given ' 

or (X(s), s < t)]. In other words, E[|Y(t) - Y*(t)l2] is a mi: 

a specified past of the X(»)  series [for example  {X(s), s - 0, + l, + 2, .. .3 

minimum 

among all possible linear functionals of the specified values of' X(°)° 

Then £_(•)  is the error series, characterized by the normal property 

(for each t = 0, + 1, + 2, .„.) 

(2) E[X(s)'e'(t)]  = 0  for all indices  s  suchthat 
X(s)  is part of the memory 
used to form Y (t). 

^. 
In addition to specifying the past of X(•)  used to form Y (t)  as a 

linear predictor of Y(t), one may specify "matrix restraints" on the 

form of Y (t)  of the type considered by Brillinger (1969) in his paper 

at this symposium. 

The system which transforms X(»)  to Y (•)  is a filter which 

when X(°)  and Y(•)  are jointly covariance stationary is time 

invariant.  The spectral representation of this filter is a matrix 

function of to, denoted ByX-(u) and called the filter transfer function, 
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"best described by assuming that the filter is an infinite moving 

average 

#        °° 
(3) I (t)  =  Y.    ß(k) *U-k) 

k=-oo 

where     {_ß(k),   k = 0}   +  1,   . ..}     is  a sequence  of matrices  called the 

filter response  function.     The  filter transfer function is  defined by 

(4) B t(«)    =       I    e-1Wk ß(k)      . 
k= »°° 

The relation between Y(*)  and X(°)  ^-s resolved into a 

deterministic dynamic system represented by the relation filter with 

filter transfer function B y* (•)  and a stochastic driving function 

represented by the error series £.(•) with spectral density matrix 

denoted by f *(to) . 

When Y (t)  is a function of all values of X(")  ^n ^^e sense 

that 

(5) Y*(t)  = E[Y(t)|x(s), s = 0, + 1, ...]  , 

we call f y*(u)  the partial spectral density matrix of Y(»)> given 

x( •) • 

Point Nine of this paper, is:  the spectral theory of multivariate 

analysis of time series has been mainly concerned with finding: 

(i) formulas for B y*(
w)  and f* (u)  in terms of the joint spectral 

density matrix of the X(°) an&    Y_(») multiple time series 

(6) f(u) = £xX(a,) £XY(W) 
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and (ii) the sampling properties of the natural estimators B „*((*)) 

and f *(u)  formed from an estimated spectral density matrix 

(7) f(") 
f(u) f (u) 
AA AX 

fYX(")  %y(
u) 

4x(u) 4i(a,) 

under the assumption that for a suitable number V of degrees of free- 

dorn V f (to)  obeys a complex Wishart distribution of V degrees of 

freedom and covariance matrix f(u)„ 

For example^ by the usual matrix pivoting procedures used to solve 

normal equations,, one can transform [see Parzen (1967b)] an estimated 

spectral density matrix (6) to a partitioned matrix 

(8) 

where 

(9) 

5y*(U) 

fY*H 

• y\ 

-iy*(u)  £y*Cu) 

= fYX(w) f^(w) 

= 1YY(
W

) - £YY(U) £YY(
U

) £W(<° ~YT ~YX •XXv ~YXS 

are natural estimators of the regression transfer function and error 

spectrum respectively for Y (•)  defined by (5); for the multivariate 

analogue of (9) see Anderson (1958)= 

The work that has been done on estimating relations between time 

series in terms of By*(u)  and f #(üJ)  leaves open a number of prob- 

lems and issues which it is the major aim of this paper to point out: 
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(1) One would like to describe in the time domain the filter 

which Bv^.(w) estimates in the frequency domain; one way of doing 

this  is to write 

(10) By*H     =       t      ß(k)e"lü,k+  {BY*H   -BY(u>)) 
k= - m 

where m, n, and ß(k)  are to be estimated and the "errors" 

B*(co) -  B (to)  are approximately normal with zero means and asymptotic 

variances that can be estimated; often the "errors" at different fre- 

quencies can be shown to be asymptotically independent. Pioneering and 

elegant work on this problem has been done by E. J. Hannan [see his 

papers, Hannan (1963), (1965).? (lS^l) >  Hamon and Hannan (1963)]. From 

(lO) one estimates the coefficients j3_(k)  by regression analysis. 

(2) One would like to describe (model) in terms of a time domain 

filter with white noise input the error series e_( •) whose spectral 

density matrix fy*(w)  is estimated by f #(u). 

(3) The sampling theory of the usual spectral estimators (namely, 

smoothed sample spectral densities) is based entirely on variability 

theory [for example, Rosenblatt (1959) and Goodman (1963)] and ignores 

the fact that estimation of cross-spectra by the usual method of 

smoothed sample spectral densities is subject to serious bias errors 

[Akaike and Yamanouchi (1961), Rettheim (1966), Parzen (1967b), Tick 

(1967)].  I believe that it can be shown that spectral estimators 

which have "minimum" bias and variability can be found by fitting long 

enough.autoregressive schemes. We indicate in this paper several 

"autoregression approaches" to cross-spectral estimation and to fitting 

time domain models to time series. 
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(k)     The relations between time series which can be inferred from 

estimated spectra are not "causal" unless the relations are between 

time series physically measured at the input and output respectively of 

a causal filter.  Causal relations can be fitted only through "innovations" 

which can be found by fitting long autoregressive schemes.  In other 

words, for finding relations between two arbitrary time series,, spectral 

methods suffer from the drawback that they work directly only for 

predictors whose memory involves the future as well as the past. They 

cannot easily be used to estimate the error spectrum^ and (more importantly) 

the filter transfer function from X(°)  to Y {•),   for cases such as 

the following: 

Y*(t)  = E[Y(t)lx(s), s < t] , 

(11)        Y*(t)  = E[Y(t)|x(s), s<t and T(s), s < t] , 

Y (t)  = E[Y(t)|x(s), s < t and Y(s), s < t] . 

Autoregressive methods seem to provide directly estimators of these 

semi-infinite memory predictors. 

To the multiple time series 

(12) 
X(t) 

Y("t)J 

one can fit a sufficiently long autoregressive scheme 

(13) = A(l) 
X(t-l)l fx(t-m)' 

+ ... + A(m)       I + Ti(t) 
Y(t-l)J |Y(t-m) 
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where  rj("t)  is multiple white noise. Writing 

(]J0 A(j)  = 

Axx(j) Axy^ 
Tl(t) 

.Tlx(t) 

nY(t) 

)ne obtains a relation between the X(•)  and Y(-)  series: 

(15) 

Y(t) -      ^(l)       Y(t-l)        - ...        -      AyyCm)        Y ( t - HI ) 

= A^Cl) X(t-l) - ... - A^m) X(t-m) + r,y(t) 

¥e next show how to add X(t)  to the relation .(15)•  Given. X(t), 

and the past of X(*)  and Y(°)  up to t - 1, one can form 

T) (t)  = X(t) - X (t) 'X 

(16) X(t) - A^l) X(t-l) - ... -ym) X(t-m) 

- AXI(l) Y(t-l) - ... - AXY(m) Y(t-m) 

Next', from T) (t)  and the innovation covariance matrix 2 one can 

form a predictor TyCt)  of r| (t)„  To write  T) (t)  explicitly, 

partition E: 

(17) E  = 
2XX 2XY 

T V 
YX  YY 

Then 

(18) rv(t) ZYX ZXX \(t) 

In (15) substitute  T}y(t), given by (l8), for t]„(t)j one thus obtains 

the formula 
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E[Y(t)|x(s), s < t and Y(s), s < t] 

(19) = yi) I(t-l) + ... + AyyCm) Y(t-m) 

+ A^ (1) X(t-L) + ... + A  (m) X(t-m) + ^(t)  . 
J.A XA     "" X 

One often seeks a parsimonious parameterization of the filter with 

output Y (°)"  It might be sought through stepwise regression among 

predictor formulas of the form 

Y*(t) = CyyCU-YCt-üj      +      ...      +    CyyCm)      Y^-IIl) 

(20) + Cvv(l) X(t-l) + ... + CL.v(m) X(t-m) XÄ   — XX   — 

+ GJT]  (1) Tiy(t-l) + ... + CYTI (m) T)y(t-m)  . 

Once a relation of form (20) has been fitted, it can be computed recur- 

sive ly. 

The foregoing models correspond to time domain versions of predic- 

tor formulas for Y(t)  in which no rank constraints are imposed on the 

matrix coefficients.  It would be of interest to develop time domain 

versions of the results of Brillinger (1969) on predictors with rank 

restraints. 

(5) A final point, which seems to me the most important: 

multivariate analysis of the joint innovation covariance matrix 

(21) E  - E[Tj(t) V(t)] 

provides interesting relations among components of the time series. The 

use of regression analysis of E was discussed in equations (17) - (l9)< 

The eigenvalues and eigenvectors of E seem worth being routinely 
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computed and examined to indicate ways of reducing the dimensionality 

of the data vector.  The canonical correlations between r\      and r\ 

seem to have meaningful interpretations^ such as for testing for lack 

of correlation between X(°)  and Y(*)- 
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5= Autoregressive Approach to a Single Time Series 

When modelling a single time series X(•); one is interested in 

describing the innovation to series filter [which transforms the inno- 

vation rj(*)  to X( •) ] in time domain terms. 

Any filter can be approximately expressed as a combination of auto- 

regressive and moving average terms: 

X{t) + a X(t-l) + ... + am X(t-m) 

(1) 
=  T)(t) + b]_ n(t-l) + . .. + b^ Tj(t-q) 

one regards the orders m and q, as well as the coefficients 

a,, .,., a , b,, .... b  as parameters to be estimated.  In this 
1'      ml       q 

formula, it is usual to think of T}(0  as a white noise series. A 

minor point of this paper is:  we always require  T)(»)  to be the 

innovation series of X(«)» 

It turns out that assuming the model for X(°)  to be of the form 

(l) is wquivalent to assuming a model for the one step linear predictor - 

X (t)  of the form 

X*(t)  = aL X(t-l) + ... + a X(t-m) 

(2) 
+ b  rj(t-l) + ... + b  Ti(t-q)  . 

When X (t)  satisfies model (2) with:  (i) b  = ... = b  = 0, we call 
x q 

X(°)  an autoregressive scheme of order m,  (ii) a, = ... = a = 0, we 

call X(°)  a moving average scheme of order q^ (iii) some a's and 

some b!s non-zero^, we call X( •)  a mixed scheme. 

In other words,   the usual models considered for stationary time 
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series can equivalently be formulated as models for the predictors 

x*(t). 

In modelling time series our aim is to obtain a parsimonious 

parameterization of the form (2).  There are available several methods 

for estimating the parameters of the mixed scheme (2); see Box and 

Jenkins (1969), Durbin (1959), (i960), Walker (1961), (-1962), (1967), 

and Philips (1967).  Possibly a new variant is the following method. 

First, fit X(°)  by a long autoregressive scheme 

(3) X(t)  = cx X(t-l) + ... + cM X(t-M) + T)(t)  . 

Efficient estimators  c,, ..., c  of the coefficients of autoregres- 

sive scheme can be computed (at little computational costs by recursive 

methods). 

Second, consider the transfer function 

(k) C(z)  = 1 - C;Lz - c2z  - ... - cMz 

and form its estimator 

(5) C(z)  = 1 - c^ - c2z  - ... - cMz 

Third, note that the transfer functions -which we seek to estimate 

(6) A(z) = 1 - a,z - .„. - a z• ,  B(z)=l+bnz + ...+bz
cl x   ' x . 1        m  ;    ^        1       q 

are related to    C(z)     by 

(7) ~i-    -    ^       or       C(Z)      -    H^- l7j C(z)     ~    A(z)       °r       °{Z)     ~    BCZT     " 

The parameters of A(z)  and B(z)  are to be estimated (by non linear 

least squares) from 
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(8) C(eltJ)     =    y&A + error(eltd) 
B(elC°) 

where the error term is a time series (regarded as a function of the 

index CJ) defined by 

(9) error(elü))  = C(eiU)) - C(eiU)  . 

Point Ten of this paper is:  it can be shown that the error series 

(9) can be regarded as asymptotically uncorrelated at different fre- 

quencies and with variance 

(10) Var[8(e1W)]  = ||c(eiM)|2 

which is easily estimated. 

To motivate (lO) let us.note that one may regard the estimated 

autoregressive coefficients 

as a "covariance stationary time series" with means c  ,   ...,   c  and 

spectral density function 

1 1 i„, ion i2 (12) fcH     = ±±  |c(e1W)r  . 

By the theory of the periodogram 

E|e(eiCVc(eiW)|2     =    Elf    (S -c  )e1,dk|2     =    2:tM f  (U) 
k=l 

03 r 
||c(eiW)|2 

n ( 1 

and the values    C(e     )     at different frequencies  are  asymptotically 

27 



uncorrelated. 

Point Eleven of this paper is:  fitting a suitably long autore- 

gressive scheme to a univariate stationary time series is a possible 

method of spectral density estimation [especially when one assumes that 

there are no lines in the spectrum]. 

The usual type of estimator of the normalized spectral density f(w) 

[where f(w) = f(u))/R(o) ] of a stationary time series is a filtered 

sample spectral density of the form 

W \MH       =     ~ 11 COBVUk®    PT(V) 
' I v| < T 

where M is a suitable integer (called the truncation point) and k(-) 

is a suitable kernel.  There is an extensive literature on how to choose 

M and k(u)  [see Parzen (1967b) and (1967c)]. 

It appears that an alternative estimator which is bias free and 

has similar variability is the autoregressive spectral estimator, 

defined by 

~ M 

k=l 

While the idea of estimating the spectral density by first fitting an 

autoregressive scheme has been alluded to in the literature, there has 

been no treatment of its asymptotic variance. A variability theory is 

now being developed by Parzen (1969).  The properties of (15) are dis- 

cussed at the end of the next section in the context of the multivariate 

case. 

Finally we briefly discuss the question of how to determine the 

order M of a suitably long autoregressive scheme to fit to a sample 
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(X(t), t - 1, 2,   ,,., T)  of a zero mean covariance stationary time series. 

For each order m, one can recursively form:  (i) estimators 

/\ /\ 
an  3 oo., a    of the coefficients of the predictor of finite memory m 
l,m      m,m 

(16) E[X(t).|x(t-l), ..., X(t-m)] = a,  X(t-l) + ... + a   X(t-m) , 
x._5 in m 3 in 

and (ii) the sample innovation variance of order m 

(17) %l    = (PT(0) - a^m pT(l) ...... a^ PT(m)} ET(0) 

•where    p„(v)     is  the  sample  correlation function.     Define 

(18) X      =    -Tlogff2      | 1     ' m m 

it is increasing as a function of m = 1, 2,   ...., T - 1 and asymptotes 

~2       ~2 
to X    = - T log ö , where a      is the infinite memory prediction error 

00 00 CO 

variance. 

A procedure for choosing an appropriate order M such that . X(') 

can he regarded as an autoregressive scheme of order M is:  Choose M 

to be the smallest value of m such that X    - X      is less than the yyp 
oo   m 

significance value of the Chi-square distribution with T-m degrees of 

freedom.  Extensive investigation is needed on the theory and application 

of this procedure. 

This suggestion can be roughly justified by the theory of likelihood 

ratio tests of the hypothesis that the series satisfies an autoregressive 

scheme of order m versus the alternative hypothesis that it satisfies 

an autoregressive scheme of order T - 1  [see Whittle (1952) or 

Whittle's appendix to Wold (l95^-)]° 

It seems to me also justified from the likelihood point of view 
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since the likelihood of the data under the parameters a M, ...,  a^ M 

can be considered to be not "significantly" different from the maximum 

likelihood of the data ('which is a monotone function of X ). 
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6. Multiple Spectral Density Estimation 

In this section we discuss autoregressive approaches to estimating 

the spectral density matrix 

(1) fH 
•fu(«-) fLr(u) 

frl(ü>) ... frrH 

Traditionally one estimates jf(w) by estimating each entry 

f  (oo) by a filtered sample cross-spectral density 

(2) fhj;T,M(w) 
_i_    y 
2rt Ivl <T 

-1VU , /VN „      /  N 

where R, . _ is the sample cross-covariance function.  Except for ease 
hj; T 

/\ 
of developing the distribution theory of the estimator f(w), there 

seems to be no reason why one should use the same truncation point for 

each component f .(w). 

A method of letting the data determine an appropriate truncation 

point for each component is to estimate it via a sample analogue of the 

formula 

(3) 
h J       Ti       J 

+ l{\+iX.
(U,) -VU) "fx-H3 h  j       ü       j 

Each univariate spectral density which appears in this formula could be 

estimated by autoregressive spectral estimation^ although further 

research is needed on the theory of the complex valued univariate series 
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yo +ix(o 

In the literature of empirical spectral analysis, remarks are 

frequently made about the value of prevhitening or prefiltering.  It 

has long been my view that prevhitening is of value but only when 

guided by model building. An important approach to estimation of the 

spectral density matrix which could be said to use prewhitening is as 

follows. 

First, generate the individual innovations  T).(0  of each time 
J 

series X.(»)  by fitting to it a suitably long autoregressive scheme: 

00       T].(t)  = X.(t) - c{'j) X.(t-l) - ... - 4P  X.(t-M.)  . 

Second, by some method of spectral density matrix estimation form 

estimators of the spectral density matrix  {f_^   (w)} of the multiple 

time series of individual innovations. 
Vj 

Third, estimate fv  (u) by 

J 'V- 

J 

A method of spectral density matrix estimation whose value remains 

to be investigated is via the joint autoregressive estimator which is 

formed by first fitting a vector autoregressive scheme to the multiple 

time series X( 0 •  To conclude this paper we describe the main features 

of this approach. 

In the notation introduced in Section 2, the joint autoregressive 

cross-spectral density matrix estimator is defined by 
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(6) f^co)  = ^ {A(-co) £-xA(o))'} 

where 

(7) A(a»)  = I -• A(l)e"iU - ... -• A(M)e"iU>M 

The order M used would be determined by a goodness of fit test 

for joint autoregressive schemes fitted to a multiple time series [see 

Whittle (1953)]" Here we are interested only in the variability of the 

estimator f^C^)  under the assumption that X(°)  is a zero mean 

stationary multiple time series satisfying a joint autoregressive scheme 

of order M. 

Research is in progress to prove (as rigorously as possible) that 

for 0 < a) < si,  with 

(8) v . § i  , 

V fM(w)  has a complex Wishart distribution of dimension r,   degrees 

of freedom V,   and covariance matrix f (to) . 

The interpretation of this result is that the variability properties 

of the autoregressive cross-spectral estimator fJu)  are the same as 

those of the filtered sample spectral density matrix with rectangular 

kerne 1 

k(u)  = 1 , 0 < |u| < 1 
(9) ;   - 

= 0 ,    |u| > 1 

c °°  2 / \ 
for which J   k (u)du = 2. 

J -00  N 

Some advantages of the autoregressive cross-spectral estimator 
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seem to me to be: 

(1) No window is involved in forming f (to), so we avoid a 

debate as to the choice of window. 

(2) The truncation point M can be chosen on the basis that the 

multiple time series %(') passes a goodness of fit test for obeying 

a joint autoregressive scheme of order Mo 

(3) Under the assumption that the multiple time series X(')  obeys 

a joint autoregressive scheme of order M; the autoregressive cross- 

spectral estimator has much smaller bias than filtered sample cross- 

spectral density estimators» 

(k) Autoregressive cross-spectral estimators are easily updated 

for additional observations and therefore lend themselves to adaptive 

estimation [compare Jones (1966)],, 
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