
00
CO

CD
Q

k
I
Y

RADC-TR-65-377, Vol. II
Final Report

INFORMATION SYSTEM THEORY PROJECT

Volume II

Collected Research Papers

Thomas E. Cheatham, Carlos Christensen
Robert W. Floyd, et al

Computer Associates, Inc.

TECHNICAL REPORT NO. RADC-TR- 65-377

November 1965 S J e /

CLEARINGHOUSE
FOR FEDERAL SCTEinFIC

TKCHNICAL INF '^A.TIO^
"Hmxlcopy i Miorcfich.^i

ti>.fi>\%t.&\fffi

ND

7/-eL

Reconnaissance-Intelligence Data Handling Branch
Rome Air Development Center

Research and Technology Division
Air Force Systems Command

Griffiss Air Force Base, New York

Distribution of this document is unlimited

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

i i li ■ i n» t l ... _ . ._.

i

INFORMATION SYSTEM THEORY PROJECT

Volume II

Collected Research Papers

Thomas E. Cheatham, Carlos Christensen

Robert W. Floyd, et a I

Computer Associates, Inc.

Distribution of this document is unlimited

.

 Ilrflt i

FOREWORD

The papers collected in this report represent research results
developed within the Information System Theory Project by various
staff members of Computer Associates, Inc. The work reported

was supported in part by the Rome Air Development Center under
Contract AF 30 (602)-3324.

This report hot boon roviowod and is approvod.

Approvod:/^ '~ ' / / / KPATRICIA M. LANGENDORF
Project Engineer

/^ l'\< C. (ft

PPr°2-" R0^r J' 9MM*« Jr' Colonel, USAF
f^ Chief, Intel and Info Processing Div

FOR THE COMMANDER :(^fa)<
IRVING LMAN
Chiof, Advoncod Studios Group

J

ii

"^ —

»■—M-T*n—iT-m~"*TM'

Cneatham, Thomas E.

Cheatham, Thomas E.

Christensen, Carlos

Christenson, Carlos

Floyd, Robert W.

Floyd, Robert W.

Floyd. Robert W.

J
(M

Floyd, Robert W.

Floyd, Robert W.

Floyd, Robert W.

Leonard, G. F. and
Goodro e, J. R.

TABLE OF CONTENTS

Notes on Compiling Techniques

The TGS-U Translator Generator System

AMBIT: A Programming Language for Algebraic
Symbol Manipulation

Examples of Symbol Manipulation in the AMBIT
Programming Language

New Proofs of Old Theorems in Logic and
Formal Linguistics

Algorithm 245
Treesort 3 [Ml]

A Minute Improvement in the Bose-Nelson
Sorting Procedure

The Syntax of Programming Languages--A Survey

Flowchart Levels (Preliminary Draft)

Non-Deterministic Algorithms (Preliminary Draft)
*

An Environment for an Operating System

•

iii

•

0 9
NOTES ON COMPILING TECHNIQUES

«

by
T. E. Cheatham, Jr.

CA-6505-06I1

TMs document consists of notes on a series of lectures to
be given at the University of Michigan Summer Conference
Course on Automatic Programming, June 1965.

"i

Preface

The construction of compilers for the variety of programming languages

and computing machines required today has become a major activity in the pro-

gramming field. The amount of published and readable material on the subject

of compiler construction Is, however, very limited. There are many reasons for

this:

1. Relatively few academic types have been Interested In the problem

until recently.

2. There Is a rather basic lack of any theoretical foundations for much

of the manipulation required In a compiler — the specification and manipulation

of a formal syntax of a programming language being, of course, an exception.

3. There have been relatively few "projects" undertaken with the Idea

of developing general purpose compiling techniques; the general techniques

which have emerged in spite of this orientation have often not been apparent.

4. Many of the techniques developed are documented In a form that Is

i so specialized to a certain programming language or computer that the publl-

cation In anything but a compiler maintenance manual would be deemed unthink-

able.

The Intention of these notes Is to provide a sketch of several basic

compiling techniques. It Is hoped that the approach and method will point

toward a general framework for a compiler. It Is certainly not the authors claim

that this comprises a theory of compiling or even a good framework. All we can

hope Is that the presentation Is such that the reader can gain a basic under-

standing of a variety of Isolated techniques and that a glimmer of how to tie

them together might result.

Another caveat: we have been at the business of programming sufficiently

long to have changed our Ideas about computers, programming, compiling, lan-

guages, etc. sufficiently often to be aware that our crrent Ideas about the tech-

niques and method of presentation provided here will undoubtedly change. Thus,

accept these notes as our Ideas circa summer 1965.

I

mn

1. General Discussion

In very broad terms, we will talk about the compilation process as con-

sisting of lour phases (stages, activities, etc.), namely:

parsing* the input string;

interpreting the parse of the input string;

analysis of the computaiion sequence and generation of

machine coding; and

contacting the environment in which the conrpiler and/or

resulting code is to operate

We must emphasize that we do not consider these four phases as "the

four phases" of a compiler. Rather, these simply represent a convenient par-

titioning of the compilation activity for discussion purposes . Sections 2.

through 5. are devoted to a discussion of these four phases.

Section 6. is devoted to a discussion of several miscellaneous topics

concerning languages and compilers generally.

Section 7. contains scne remarks about programming systems — as

environments for a compiler and its' product.

2. Parsing the Input

2.0. General Discussion

In very general terms, parsing the input source statements in some pro-

gramming language amounts to the following: We are given a stream of characters

comprising a source program. We first perform a lexical analysis, i.e., we iso-

late, identify and tabulate the sub-strings corresponding to certain "elementary

components" in the source program. These elementary components may be the

basic symbols of the source langiage (in which case the transformation of the

input stream is rather slight — amounting only to recogniLing and isolating sub-

strings corresponding to operators or delimiters [BEGIN, EQ, (,etc.]) or they may

* I.e., analyzing and restructuring the input r.tring in such a fashion that inter-

pretation and subsequent processing is facilitated.

3

wtt WBp — ■! ow^» »^^^■^■■»■■■II^ a n»-«Ni^-• - - — ■ ■.■■■,. ■■■, ■■ H—»I^^M «>* »i ■ Wl 1W

be the literals« identifiers, operators, and delimiters of the source language
(in which case the transformation is somewhat more interesting). In any
event, we will think of the lexical analysis as a process of transforming the
initial input stream of characters into a stream of "descriptors" . A descriptor,
in the sense in which we shall employ it, is a pair (TABLE, LINE) denoting the
table containing the thing (symbol) described and the line within the table
corresponding to the thing described. Thus, TABLE might indicate symbol table,
literal table, terminal symbol table, character table, and so on.

Given this stream of descriptors we then perform a syntactic analysis —
i.e., we Isolate, Identify, and tabulate the substrings cone spending to the
syntactic structures in the source program. We will view this process in two
different ways, as follows:

1. Producing a "tree" which represents the complete syntactic
analysis of (some portion of) the source program.

2. Producing a list of "phrases" which represent a partial syntactic
? analysis of (some portion of) the source program.

This is not to say that a syntactic analysis results either in "trees"
or in a list of "phrases"; indeed some of the most interesting parsing proce-
dures result in a mixture of these two extremes of output.

The following examples might make these less vague:

i

i

A.

Analysis of Source Into a Syntax Tree

Input Character
Stream: ALPHA

A-
25 * (

Lexical Analysis ysis}

BETA

r^scrlptor Stream:^ALPHA
^<varlable>

AL I I M 4 *\ A BETA ,^)

<Uteral>

<factor>

<varlable>

<factor>

<term>

<arlth expr>

<varlabie>

<factör>

Syntax Tree:

<assignm>

i
IN

N0te: l*Am.n ^M - so on re.d descriptor o. the «--«J»<
descriptor of the terminal cheracter -. descriptor of the (Integ r) literal 25.

•

"i* ■ i »■ ».yi

■■ -K-^xmrntB*

Analysis of Source Into a List of Phrases

r

Input Character
Stream:

lexical Analysis

ALPHA 25

Descriptor Stream: ^ALPHA .4

(Y + BETA)

Y v I
Phrase-1

BETA.)

Phrase-4

.Syntactic Analysl ild

Phrase List: i Phrase-1: ^Y A ^BETA
] Phrase-2: /(^Phrase-l ^)
/ Phrase-3: ^25 ^* Phrase-2
^ PIvase-4: ^ALPHA Wm ^Phrase-3

.

!■*

■ I
_

i

In the section following, we will discuss several aspects of the
parsing of source statements. Section 2.1 deals with the specification of
syntax of a programming language; we will see later in the sections on

"syntax directed" analysis that it is possible to directly utilize a syntax

specification to parse source statements. Section 2.2 is concerned with

lexical analysis and section 2.3 deals with syntactic analysis. Section

2.4 deals with the problems of error analysis and error recovery with various

kinds of syntactic analysis and, finally, section 2.5 discusses the problem

of mechanically generating a syntax analyzer from a formal syntax specifi-

cation.

3

«ft*- ■"•mimim^m MI — — ■, ,— ,,,. I, , ,. ■ ■*-—■. !■ ■■!■»!■ .mi,imm • m~» -■*■ m,m. ■ m m9mm*0tß$ I

2.1. Syntax Specifications

Several essentially equivalent formalisms for the representation of

syntax have been developed. These include such things as

Post Production Systems, developed by the logician Emit Post during

the 1940,s as a tool in the study of Symbolic Logic.

Phrase Structure Grammars, developed by the linguist Noam Chomsky

during the ISSO's as a tool in the study of natural languages.

Backus Normal Form, developed by the programmer John Backus during

the late ISSO's as a tool in the description of programming languages.

Throughout these notes we will utilize a formalism similar to Backus's.

An appendix* contains a reasonably detailed account of our particular variation.

For the present, however, we will present only a few highlights by giving a

syntax for a very simple programming language which we will utilize throughout

much of the following discussion.

^ A syntactic specification of a language is a concise and compact repre-

sentation of the structure of that language, but it is merely that - a description

of structure - and does not by itself constitute a set of rules either for producing

allowable strings in the language, or for recognizing whether or not a proffered

string is, in fact, an allowable string. However, rules can be formulated to pro-

duce, or recognize, strings according to the specification.

In order to discuss the structure of the language, we give names to

classes of strings in the language - we call these names (or the classes they

denote) syntactic types. Some of the classes of interest consist of fixed strings

of characters of the source alphabet: these we call terminal types, and

specifically terminal symbols; to talk about any particular one, we will merely

display the character string. Most of the classes, though, are more compli-

cated in structure and are defined in terms of other classes; these we call

defined types, and to designate one, we choose a mnemonic name for the class

and enclose it in the signs '<' and '>'.

* See Cheatham & Sattley, "Syntax Directed Compiling".

.- . . . PWjM^fc-i mm , ■——WM»^W*» .*A I

A simple type definition consists of the name of a defined type, followed

by the curious sign ':: = ' followed by a sequence of syntactic types, defined or

terminal. An example, taken from the syntax I — soon to be discussed —

would be*:

<ustat>:: =<ident>=<ae>

In general we shall call the right-hand side of the definition the definiens.

Any sequence of type designators appearing in a definiens is called a

construction, and each type designator within the construction is a component

of the construction. So, the above example is a definition of the defined type

<:ustat>; its definiens is a construction with three components, which are, in

the order of their appearance, the defined fyoe <ident>, the terminal character

'=' and the defined type <ae>.

A simple type definition of this sort states tnat, among t>e strings of

the source language belonging to the defined type, are those which are con-

catenations of substrings — as many substrings as there are components of

its (simple) definiens — such that each substring (in order of concatenation)

belongs to the syntactic type named by the corresponding component (in order

of appearance in the definiens). Applied to our example: A source string

belongs to the class <ustat> (or, for short, "is an <ustat>") if it can be broken

into three consecutive substrings, the first of which is a <ident>, the second

of which is the single character '=', and the third of which is an <ae>.

As another exampie, the rule

<integer>::= <digit> | <integer><digit>

can be read: A source string belongs to the class <integer> if it is either a

* Read: ustat = unconditional statement; ident ■ identifier; ae ■ arithmetic

expression.

8

■—— - « »..

<digit> or if it can be broken into two substrings, the first of which is an

<integer> and the second of which is a <digit>. Thus, the " |" is read as
"or". The constructs <digit> and <integer> <digit> are called the alter-

natives of the defined type <integer>.

Following are two syntax specifications for a simple programming

language, language L™ which we will reference throughout these notes:

Syntax I for Language LT

A| B| C| DJ E| F| G| H| I| J| K| L| M| N| 0| P| Q| R| S[T|

U| V| W| X| Y| Z

0| 1| 2| 3| 4| 5| 6| 7| 8| 9

<letter> | <ident> <letter> | <ident> <digit>

<digit> | <integer> <digit>

LT | LE | EQ | UE | GE | GT

H-
<ident> | <integer> |(<ae>)

<factor> | <term>*<factor>

<term> | <ae> <adop> <term>

<ae> <rlop> <ae>

<rel> THEN <ustat> | <rel> THEN <ustat> ELSE <ustat>

<ident> = <ae> | TO <ident> |. STOP

<ustat> .| <cstat> . | <ident>. .<stat>

<stat> | <prog> <stat>

1. <letter> ::

2. <digit> ::

3. <ident> ::

lO 4. <integer> ::

1

1
CO 5. <rlop> ::

CNJ
6. <adop> ::

7. <factor> ::

8. <term> ::

9. <ae> ::

10. «^e^ ::

. • 11. <cstat> ::

12. <ustat> ::

« • 13. <stat> ::

14. <prog> ::

I

— .

Syntax II for Language L-

3. <ident> it* */

4. <integer> ::= J/

5. <rlop> ::= LT | LE | EQ | UE j GE | GT

6. <adop> ::= ♦}-

7. <factor> ::= <ident> J <integer>| (<ae>)

8. <term> ::= <factor> | <term>*<factor>

9. <ae> ::= <t.erm> (<ae> <adop> <term>

10. <rel> ::= <ae> <rlop> <ae>

11. <cstat> ::= <rel> THEN <ustat> | <rel> THEN <ustat> ELSE <ustat>

12 . <ustat> ::= <ident> = <ae> j TO <ident> j STOP

13. <st.at> ::= <ustat> . j <cstat>. | <ident>. .<stat>

14. <prog> ::= <stat> | <prog> <stat>

i

These two syntaxes differ in that the first assumes we have a recognizer

for the basic characters only; the second assumes we have a recognizer for sub-

strings which we choose to consider as members of the classes <ident> and

<integer> respectively. That is, we are assuming that the lexical analyzer is

competent to isolate and deal with identifiers and literals.

Consider the string "Z= 1."; we can "prove" that this string is a <prog>

according to syntax I for language L. as follows:

■

10

— ■—*— --*— —^-^■—»-•^*,

■

The construct z is of clas? i <letter> by rule 1«
■I H z n II II <ident> ■I " 3,

ft ti ti it II <digit> ti ti 2,

ti ti ii II II <integer> n n 4,

t« ti n ti ti <factor> II ti 7,

tt ti M ti n <term> tt n 8,

ti n fl ti n <ae> ti ■ i 9,

tt ti Z = 1 fl II ti < istat> n ti 12,

ti n Z = 1. tl ti ti <stat> n tl 13,

n n z = 1. H ti ti <prog> ft ft 14,

<S)

I

Another <prog> in language L« is:

X= 1. Y= 0.

HENRY. .IF X LT 10 THEN Y = Y*Y ELSE TO HENRY. STOP.

11

f
'

•

2.2. Lexical Analysis

It Is, In principle, possible to "bypass" a specific lexical analysis

phase In parsing source programs. Indeed several compilers* perform this

function as part of the overall syntactic analysis. However, when It comes

to writing a compiler In practice, the question of recognizing terminal

characters In a language (e.g.. "+", "EQ", etc.) brings us face to face with

the many problems of restricted character sets. Input/output Idlosyncracles

of computers, and so on. Further, unless the resulting code Is to be handed

on In symbolic form to some assembly processor, the Identifiers and literals

In the source language have to be replaced by (probably relocateable)

addresses In the resulting code and the contents of addresses allocated to

the literals must contain the appropriate binary (decimal, etc., depending on

the machine) lepresentatlon. Thus, it becomes convenient to postulate a

lexical analyzer Interposed between the source of input characters and the

syntactic analyzer. Further, with languages such as FORTRAN II and FORTRAN IV

which utilize fixed fields for indicating labels, end of statement, and the like,

it makes the syntactic analysis "cleaner" if label and end of statement delim-

iters are inserted into the source before syntactic analysis commences.

For most of these notes we will postulate that a lexical analysis is

performed on an input stream of characters resulting in the isolation of identi-

fiers, literals, and the operators and oalimiters in the source language. We

further postulate that the identifiers are placed in a symbol table and that the

lexical analyzer outputs an appropriate descriptor. Further, that literals are

placed in a literal table with the output of an appropriate descriptor. Finally,

we presume the existence of a terminal symbol table containing (Initially)

entries for all operators and delimiters in the source language and assume that

the lexical analyzer isolates all such operators and delimiters, returning a

descriptor pointing to the appropriate terminal symbol table entry.

* See, for example, E. T. Irons, "A Syntax Directed Compiler for ALGOL-60",

Communications of the ACM, Vol. 4, pp 51-55, January 1961.

12

05

I

2.3. Syntactic Analysis

We will discuss In some detail two basically different types of syn-
tactic analysis,

Predictive analysis, with "top down" and "bottom up"

variations; and

Bounded context analysis, using the "precedence"

technique and the "productions" technique.

We will further discuss one "mixed" (I.e., predictive and bounded

context) method of analysis and remark briefly on several variations of all
these techniques.

2.3.1. Predictive Analysis

Very broadly, predictive analysis works as follows: Given a set of

rules (a syntax specification) for forming allowable constructs In a language,

ao eventually resulting in a program* In that language, we analyze a source

c!, statement by guessing or predicting how the statement Is constructed and

either verifying that this Is the case or backing up to try again, assuming

some other method of construction. We keep a "history" of our attempts and

when we have determined the exact way In which the program Is constructed
we c^n use this "history" to produce the complete syntactic analysis (tree).

The "top down" variation of predictive analysis Is roughly the fol-
lowing: The analyzer has, at any point In time, a current goal. At the

beginning of the process. It takes the starting type** of the specification as

Its' first goal. Then at any point In the process It follows these steps when
It has a defined type as Its current goal:

* or whatever Is the "largest" syntactic type In the language

** I.e., the "largest" syntactic types; In the case of language L« this Is <prog>;

see the Cheatham, Sattley paper In the appendix for details.

1^

The analyzer consults the definition of the defined type (in Backus

Normal Form each defined type has a unique definition), and, specifically, it

considers the first alternative in that definition. It then successively takes

each component of that alternative as a sub-goal. (Of course, it must re-

enter itself for each of these goals, and it must keep track of where it was at

each level of re-entry.) If at any point it fails to find one of these sub-goals,

it abandons that alternative, and considers the next alternative in that defini-

tion, if there is one, and steps through the components ofthat alternative. If

there is no next alternative, it has failed to realize its current goal, and reports

this fact "upstairs", li it succeeds in finding the sub-goals corresponding to

each of the components of any alternative in the definition of its current goal,

it has found its goal, and reports that fact.

This rough sketch conventiently ignores a number of sticky points (which

we will consider via an example in section 2.3.1.1) but should serve to give a

rough idea of the top down analysis process.

The "bottom up" variation of predictive analysis is a bit more difficult

to describe. As with the "top down" process, the "bottom up" process has at

any time a current goal (initially the starting type of the synta:: specification).

The analyzer reads an input descriptor (or character, if there is no lexical

analyzer interposed between the input character stream and the syntactic analy-

zer) and checks to see whether it has "gone astray" in trying to reach its goal

or whether the syntactic type of the input is a possible first component of a

first component of a ... of the goal. If so it proceeds to read more input and

progress toward the goal; if not, it continues processing input until it has built

another syntactic type of which the previous one is a first component and goes

back to the checking. If it has gone astray, it backs "down" and tries to see if

it can construe the input differently, to approach its' goal along a different chain

of intermediate types.

Again this description is vague and we will return to a detailed consid-

eration of bottom up analysis later, via an example in section 2.3.1.2 and in

detail in an appendix.

.
i -<- •

14

To recap "top down" versus "bottom up": "top down" sets a goal and

tries all possible ways of achieving that goal before giving up and replacing

the goal with an alternative; "bottom up" has a goal and "reads" input trying

to construe the input as a first component of of the goal and to continue

reading input to realize the goal through the chain of intermediate syntactic

types implied. Thus, in a top down analysis, the syntax drives the search;

in bottom up analysis, the input drives the search.

2.3.1.1. Example of Top Down Predictive Analysis

The following table depicts the course of a top down predictive analysis

with the input descriptor stream.

^PHA ^ ^5 ^ ^ -^ ^ETA^r-^r

o
I

CM

l

The column headings and their interpretations are as follows:

Step- obvious

Goal- current goal

Next descriptor- The next descriptor available on the input stream;

we will drop the " " for readability.

Current rule- The number of the syntax rule being applied (line

number in Syntax I or Syntax II as given in Sec-

tion 2.1).

Current alternate- Alternate construction currently being applied

(numbered 1, 2 ...)

Current component- Component (of alternate of rule) currently

being applied.

The process starts with "prog" as initial goal.

-4

15

Next Current
itep Goal Descriptor Rule Alt. Comp.

1 prog ALPHA 14 1 1

2 stat ALPHA 13 1 1

3 ustat ALPHA 12 1 1

4 ident ALPHA 3 1 1

Remarks

5

6

14

15

16

17

18

ustat

7 ustat 25

8 ae 25

9 term 25

10 factor 25

11 ident 25

12 factor 25

13 integer 25

factor

term

term
*

*

*

12

!2 1

9]

8 I

7]

3]

7 ; I 1

4

7 2

8 1

8 2

term

Set sub-goal, stat

Set sub-goal, ustat

Set sub-goal, ident

Recognize; consider next

input and return to previous

goal (3), next component

Set sub-goal, =

Recognize; consider next

input and return to previous

goal (5), next component

Set sub-goal, ae

Set sub-goal, term

Set sub-goal, factor

Set sub-goal, ident

Fail; return to previous goal

(10), next alternative

Set sub-goal, integer

Recognize; consider next

input and return to previous

goal (12), next component

Succeed; return to previous

goal (9), next component

Succeed; however, since

<term> is defined in terms of

<term>, try for a "larger" term;

Set sub-goal, *

Recognize; consider next input

and return to previous goal (16),

next component

Set sub-goal, factor

I
—-T - —,

16

s
n

Next
Step Goal Descriptor

30

31

32

33

34

35

Current
Rule Alt. Comp.

19 factor

20 ident

21 factor

22 Integer

23 factor

24 (

25 factor Y

26 ae Y

27 term Y

28 factor Y

29 ident Y

factor

term

term
*

term

ae

7 3 2

9 1 • 1

8 1 1
7 1 1

7

8

1

1

9 1

Remarks

Set sub-goal, ident
Fail; return to previous goal,
(19), next alternative
Set sub-goal, integer
Fail; return to previous goal,
(21), next alternative
Set sub-goal, (
Recognize; consider next
input and return to previous
goal (23), next component
Set jub-goal, ae
Set sub-goal, term
Set sub-goal, factor
Set sub-goal, ident
Recognize; consider next
input and return to previous
goal (28), next component
Succeed; return to previous
goal (27), next component
Succeed; however since
<term> is defined in terms of
<term>, try for larger <term>
Set sub-goal, *
Fail; return to previous goal
(32), next alternative
Failure meant only can't build
larger term; return to previous
goal (26), next component
Succeed; however, since <ae>
is defined in terms of <ae>, try
for a "larger" <ae>.

17

I
Step Goal

Next
Descriptor Rule

Current
Alt. Comp.

36 ae + 9 2 2
37 a dop + 6 1 1
38 ■♦• •♦■

Remarks

39

44

45

50

51

adop BETA

40 ae BETA 9 2 3

41 term BETA 8 1 1
42 factor BETA 7 1 1
43 ident BETA

factor

term

46 term

47 *

48 term

49 ae

ae

adop

7 1

8 1

8 2

8 2

9 2

6 1

2

1

Set sub-goal, adop

Set sub-godl, +

Recognize; consider next

input and return to previous

goal (37), next component

Succeed; return to previous

goal (36), next component

Set sub-goal, term

Set sub-goal, factor

Set sub-goal, ident

Recognize; consider next

input and previous goal (42),

next component

Succeed; return to previous

goal (41), next component

Succeed; however since

<term> is defined in terms of

<term>, try for "larger" <term>

Set sub-goal, *

Fail; return to previous goal (46)

Failure means only can't build

a larger <term>; return to

previous goal (40), next com-

ponent

Succeed; however since <ae> is

defined in terms of <ae> try for

"larger" <ae>.

Set sub-goal, adop

Set sub-goal, +

18

Next
Step Goal Descriptor

Current
Rule Alt. Comp.

•

Remarks

52

g

53

54

adop)

)

55 a dop)

56 ae)

57

58

i actor

)

)

)

59

60

63

factor

term

61 term
62 *

term

64-69 ae

70 ae

Fail; return to previous goal
(51), next alternative

6 2 1 Set sub-goal, -
Fail, return to previous goal
(53), next alternative

6 - - Fail; return to previous goal
(54), next alternative

Failure means only can't build

larger <ae>; return to previous
goal (25), next component

7 3 3 Set sub-goal,)
Recognize; return to previous

goal (57), next component

7 3 3 Success; return to previous

goal (18), next component
8 2 - Success; however since <term>

is defined in terms of <term>,

try for a larger <term>

8 2 2 Set sub-goal, *
Fail; return to previous goal

next alternative

Failure means only can't build

larger <term>; return to previous

goal (8), next component
9 1- Success; here we repeat

essentially steps 50-55
Failure means otdy can't build
larger <ae>; return to previous
goal (7), next component

-

Next Current
Step Goal Descriptor Rule Alt. Comp. Remarks

71 ustat

72 stat 13 1

73

74 prog empty

Succeed; return to previous

goal (2), next component

Set sub-goal, .

Recognize; return to previous

goal (1), next component

Out of inputs have succeeded.

■

We note that the successful recognitions allow us to trace the syntax

tree as follows:

Success
Step

74 Stat —

7
eg

71 •ustat-.

4

6

70

.♦ident-*[^ALPHA]

*-»term-r

i^ae-

63 ►•term

14

13

17

59

factor-

L
^*

nteger- [^25]

factor-

73 .-..-[^.1

24

56

48

30

29

39

38

48

44

43

58

»ae-,

"-♦term,

'»factor-

Uident*[£Y]

^adop

L
lr_>+„^[/+]

•*)

term

■iß)]

facto

Lident*[-^BETA]

2.3.1.2. Examples of Bottom Up Predictive Analysis

In order to utilize syntax II for bottom up analysis it is convenient to

rewrite the rules "in reverse" as follows:

.

-

*

1. •y =: : <ident>

2. J) -. : <integer>

3. LT =: : <rlop>

4. LE =: : <rlop>

5. EQ=: : <rlop>

6. UE=: : <rlop>

7. GE=: : <rlop>

8. GT=: : <rlop>

9. + =: : <adop>

10. - =: : <adop>

11. <ident> = <ae> =:: <ustat>

12. <ident> .. <stat> =:: <stat>

13. <ident> =:: <factor>

14. <intege r> =:: <factor>

15. (<ae>) =:: <factor>

16. <factor; > =:: <term>

17. <term> * <factor> =:: <term>

18. <term> =::<ae>

19. <ae> <adop> <term> =:: <ae>

20. <ae> <rlop> <ae> =:: <re.l>

21. <rel> THEN <ustat> ELSE <ustat> =:: <cstat>

22. <rel> THEN <ustat> =:: <cstat>

23. TO <ide nt> =:: <ustat>

24. <ustat> . =:: <str»t>

25. <cstat> . =:: <stat>

26. <stat> =:: <prog>

27. <prog> • <stat> =:: <prog>

a;
i

(M

00
CM

I

In bottom up analysis we are interested, given a syntactic type or an input

symbol, "where can it lead? ". Thus, having recognized an <ident> we can see by

rules 11-13 that we can be led to a <ustat> a <stat> or a <factor> directly* by

* and, i.o a <stat> (by 24) a <prog> (by 26), a <term> (by 16) (by one level) in-

directly, and so on.

• -w —-^l

finding an - followed by an <ae>; a .. followed by a <stat>; or nothing following
respectively, etc.

In order to show the bottom up analysis, it is convenient to shrink our
notation somewhat. First, we denote the various syntactic types by lower
case letters as follows:

Type Symbol

I

<stat> s
<ustat> u
<ae> a
<term> t
<factor> f
<ident> i

<integer> n

thus:

We rewrite the string* to be analyzed in the more compact form

o » 25 * (Y + ^)

We further introduce a bracket notation to indicate syntactic structure;

i[at], i[Y], i[ß] indicate that a, Y, 0 are of
syntactic type 1 (= <ident>)

a[a[t[f[i[Y]]]] + t[f[i[fi]]]] indicates the
cree structure

Y
and so on.

•

We rewrite the above syntax in the following form.

No. Rule

1-10 Not used in the ' example

11 i[1 - u[1 A=a]

12 i[1 - s[i[]A..sl

13 i[1 - f[l[]]
14 n[1- f[n[]]
15 (- f[(A a)]

16 f[J- tin]]
17 t[] - t[t[1 4M]
18 t[] — a[t[]]
19 a[1- a[a[] A+t]

20 a[1- r[a[] Aiia]

21-27 Not used

Read (for rule 11): "If an i[] appears on the input stream then it can M

be the first component of a u; the pointer Aindicates that an "=" followed by an

"a" must be found following the i[] in order to complete the recognition of

such a u."

We presume that the lexical analysis of the source string has produced

the following (descriptors):

That is, we assume that the syntactic type of each identifier and integer

has been "attached" to their descriptors.

The steps in the bottom up analysis are given below. An explanation of

the steps follows the example.

."

.

1. iM«£25XiCi>iC/i3) II»

2. -nC25>(l£X>lC^) atlC*3A-«3ltf»

3. nC25XlClMty]) <1M>A«]N»

4. MiCxMC/O) ftnC2533iuC...3l«t»

5. fCBC253XltX>iV3) U£1CP(>A«3I^

6. •(iCx>i^]) tCfCaC25333k...3M

7. tCfCnt253]XltX>lC/J])
8. •(lCl>iC(J])

u£Hp<>a«3M
tC%CfCBC25333i«f3lttC...3M

9. (icx^iy]) tCtCrCiiC2533>Af3laC...3l*

10. lU>l£/«J) fC(Aa)3ltC...3lttC...3l«»

11. ♦iVJ) uCi[X3A-a3)f[...3ltC...3laC...3M

12. FAIL

13. ♦iC^]) •CiCx3A..«3lfC...3ltC...3laC...3M

1A. MB

15. ♦it/]) i':iCx3]|fC...3ltC...3iaC...3l«»

16. fCi£x]>H4]) fCU«UltC...3l«C...3l«»

17. ♦1^3) tCfCi£x333m...3ltC...3l«C...3M

18. tCfCiCx]3>i^]) rC(A«)3ltC...3l«iC...3l«»

19. ^3) tC«CfCiCx333A«f3lfC...3l«C...31»C...3M

20. lift

a. ♦iC/W •CtCfCiCx3333lfC...3l«C...3luC...3l«»

22. •CtCftiCx333>iV3) fCU«)3ltC...3l«C...3N»

23* ♦1^3) tC<tCrCiCx33334^3lfC...3itC...3iaC...JI«»

24. ^3) iC«CtCf[iCx333>4t3lfC...3ltC...31aC...]l«»

25.) ttCiC/f3Ä-«3l«C...3lfC...3ltC...3laC...]l^

26. FAIL

.

■

•A~..*

Sfr.) •ClC^A..•]!•[...JIf[...]ltC...JIuC..J|u*

», PAIL

29.) fCiC^]JI«C...JIfC...jltC...]|uC...JM

30. fcVJj) ■Cti:tcfcici]j]>itjift...]itc...]iut...jiu»

31.) ttfCiC^JJI«C...JIf[..JItC...M...JI^

32. ttfLii^jJ) •Ct[tCfCiCxJ]J>^tJlfC..J|tt...3liiC...]M

33.) tCtCfCiC^I31i«f]i4...j|fC...]|tC...JIuC...]|tt»

34. PAIL

35.) •(tCfCi^9]]JlaC...]lfC...]|tC...jluC...JIii»

36. iCtCfCH/]]]]) •CtCt£fCt£x]j]><AtJlfC...]|t[...]|iiC...JM

37. APPLY 19.20) PAIL BOTH) REIURM TO 8TATI AT 9TBP 32.

38. tCfCityOW •[•CtCf[iCx3]]>4tM...]ltC...JIuC...3ltt» g

39.) ■C«£tCfCitxJJ]>tCfCi{^]jJ3lfC...]|tC...JIuC...JM

41. APPU 19,20) PAIL BOTH) IROÜ TO BTASI AT BTV 40.

4?.) fC(tC<tCfCiCx]]J>«CrCiC/llJ]]i)JltC...]|ttC..JM

43. •mpty fC(tCtCtCfCiCx]]]>tCfClC^]JJ)]ltC...]luC...]M

44. fC(«[tCt[f[lCxJ]]>t{fClL/|jJ])] m p

45. MPtjr tCtCfCiiC25JJ>fC(iC«CtCfClCx]JJ>ttfCi^JJJJ)J]K«.]|tt»

44. t(tCfCnC25J]>fC(itattrfClCXJjJ>*CrtV3JJJ)JJ

47. APPLX 17) PAIL)

4*.. Mptj •CtCfC»t25JJ>fC(«C«CtCfCiCxJJJMCrtVJJJJ)Jjl

M

49. a[tCf[nr25jJ>f[(aCa[t[f[irx]JJMCfC 1C/*)]]])]J
u[Ky>At]luft

50. empftr uClCrt>«£t[fCnC253JM(«C«CtCftiCl3JJ>

51. FIKiaHED

7
CO

27

1

Some remarks may help:

Step

1 The final goal is u ("final" denoted by *); the input stream is
i[a] = n[25]*...

2 Rule 11 indicates that the i[a] can be used to make a u;
specifically we need to find an "■■ followed by an a.

3 The "=" is found (it can "lead" to nothing else — i.e., there
is no rule for = — anything); move the pointer A around the =
and take it off the input list.

4 Rule 14 indicates that the n[25] can be used to make an f.

5 The f[n[25]] is completely recognized; place it on the front of
the input list.

6 Rule 16 indicates that the f[n[25]] can be used to make a t.

7 The t[f[r.[25]]] is completely recognized; place it on the front
of the input list.

12 Failure because we need (the terminal) "=" and have a "+";

13 The l[Y] can also be used to make an s by rule 12.

Etc.

At the end we have completed the tree:

Hl > I

T

7

1

2.3.2. Bounded Context Analysis

Roughly speaking, bounded context analysis can be characterized as
follows: at each point In the analysis, the decision as to what action to take

next Is a function of the symbol (character, descriptor) under scan and of N
symbols on either side (where N Is fixed for a given language).

2.3.2.1. Precedence Analysis

The first variation we shall discuss Is that of precedence analysis, appli-
cable to languages which qualify as precedence languages. In very rough terms,
a language Is a precedence language If no syntactic type has a definition' which
admits two defined types to occur without at least one terminal symbol between
them (unless one of the defined types has a definition of the form <d>::- t. | t, |
... | tm where the t. are terminal symbols) and, further, is such that between
any pair kwU) of terminal symbols no more than one of the relations: T. takes
precedence over T2 (Tj > T2)r Tj yields precedence to T2 CTj <* T2); or Tj is equal
in precedence to T2 (Tj =? T2), holds; if no precedence relation is possible we de-
note this by "err".

For reasons discussed in an appendix*, language L-, is a precedence lan-
guage and the "precedence matrix" for L-, is the following:

<rlop>

<adop>

(

*

THEN

BLSI

TO

<rlop> <adop> () THEN ELSE = TO

err < o en <• ♦

«> •> o * <' •>

err « « = <f en

» o «» o > •>

err en en- en en err

en- en err en en en

err <• * err <• en

en- en err en en- en

err

err

en

en

err

en-

en

en

en

en

en

en

en en en en en

» en en i> en

en en en err err

» en en > err

= o <• err err

err o o en en

o en en » en

*> en en ► en

en <• en « en

en » o en en

n
i

* The Floyd paper, "Syntactic Analysis and Operator Precedence".

>
.s.

nil ti« i

If the phrases were output and numbered, talcing some liberties with

notation and rearrangement, we could have:

Line Phrase Output

1 ADD (Y, BETA)

2 TIMES (25^7))

3 STORE (ALPHA ,(7))

or ^ADD^f ^ETA or

%MES^25^T)

'^STORE^ALPHA^TT) ALP

OS
C5

I
IN

We will not delve further into this at the moment.

2.3,2.2 Production Analysis

An extremely interesting (and, as we shall see below, "best" method in

our opinion) is a technique first suggested by R. W. Floyd and first implemented

in a "practical" fashion by A. J. Perils and associates. The original Floyd paper

on the subject is included in the appendices ("A Descriptive Language for Symbol

Manipulation").

The method can be thought of as a variation on precedence analysis

wherein the flow of the analysis is not automatically provided by the precedence

relations but is specified by the "programmer" for each "syntactic situation".

Suppose that we have a "descriptor stack" and a "descriptor register" as

with precedence analysis. Suppose that we further have the following "actions"

which can be specified.

1, Scan - causes the descriptor register contents to be placed on the

top of the descriptor stack and a new descriptor fetched from the input stream

into the descriptor register.

35

1

Syntactic analysis by the precedence technique is accomplished as follows:

There is a descriptor "stack" which initially contains the descriptor for some

(imagined) terminal symbol which yields precedence to all other terminal symbols.

Descriptors are read from the input stream and placed into a "descriptor register" .

When any descriptor for a non-terminal symbol is read into the descriptor register,

it is immediately placed on the top of the stack. When any descriptor for a ter-

minal symbol is read into the descriptor register, the precedence relation between

it and the most recent terminal (descriptor) on the stack is compared; if the

".nost recent" has greater precedence, then a "phrase" has been found, and it is

replaced by a single "phrase descriptor". Otherwise the descriptor is moved

from the descriptor register to the top of the stack and input is continued. The

following example may give the flavor:

Descriptor stream: ^^pp^ ftÄ ^5 «^* «^ « y £\ ^BETA &) &

1

31

— >-*.— -

in

&

a)
3
C

1

I 9

(0

u
(0

I
c
8

0)
3
C

8
T3
C
10

o 2 8 i

%
o e

e
0)
Y
c
o c
m
eg

a)
3
C -•*
s
o
u
•a c
«0

u
<0

^ S 2 dl C *^

Si
O
6

0)
3
C

I
o
u
•o
c
10

M
O
(0

t t
11 «

o
E

2]
S
o
6

P.
0)
Y
c

0)
3
C

••4

I
o
Ü

(0

0
10

0)
3
C

o
a
n
B

O
10
M

O

Si
o e

-' c
4) « I 5 c o .- u

« 1 1 ■

o a> !i
S G

•c GO

w j. |v
u)
0

I
i
+

>< «•

I
c
g
g ca

0)

5 E
0* a

+ 5

0)
3
C

8
T3
C
a

u
(0

« S a ;H a ■
\ 2

i

■ ■ ■
a
I 4> u

U ..

T3
C
3

C
0)

1
M

5
0)

0)
M

I

0) ■
11
•o
e 5
IrJ
0)
in

4>
« C

•o « I S «8

;|

4) U

« |

§ S
X-l

C cJ
« I
« 0)
i) M ij
0) ^

m *

m «
Ä ■

II

0)
u e

1
I
8

■ 2 .. a
1 2
3 ..

] |

fl) »V

If
0 5
1 s

,-« • ^w • a
f.! r. |
} 5 II A II <-•

U
O u II
So

•^1 u

OTI

CM
g ii p>i « "-* s« + a>

^ ^ ^ H S, ^ 1

t
> .> >
^l ^ ^

s ^ v ^ ^
m m m i/> kO u)
CM -«S JM Of* _i>» _<N s > v T ^r ^

mM _" ^» -^« «" II ^H

ssssssss
SiSiSiSS

< «^ C V v v v v

r ^

• i
a) a>
M M

I I
^ ^ ^ ^ H ^

i/> m
CM _CM

si' f

^

CM
I

(U
M

in

V

^

CO
I «

ID

I

%

I
fl)
M

I

3
i

«1 -
wl

m IO o> o -i

32

1

2. Phrase (M) causes the top n elements of the descriptor stack to

be "output" as the "next" phrase and a descriptor of this phrase to replace

these n descriptors on the stack.

3. Error - causes an error indication.

Suppose we further have a mechanism (recognizer) for detecting the

presence of a specific descriptor in a specific position of the stack or des-

criptor register. The symbol "^ " will be used to denote the recognizer for

identifier, literal, or phrase; the LT terminal symbols themselves plus the

symbols "A and </ will be used to denote their recognizers. The following

(a "program" for assignment statements only) describes the method:

Rule Stack Descriptor Register

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

R-ft

Y

(I
(

*

*

Action Next
Rule

Scan 3

Error

Scan 5

Error

Scan 8

Scan 5

Error

Phrase (3) 8

Scan 5

Scan 5

Phrase (3) 8

Phrase (3) 8

Phrase (3) done

Scan 17

Scan 5

Error

Phrase (3) 8

Error

o
I

I
eg

The analysis commences with the application of rule 1; failure to

match the stack and descriptor register specified by a rule causes the r.ext
sequential rule to be applied. Success causes the action Indicated to be
performed and the specified rule to be tried next. Thus, In processing our
old friend

•

•^ALPHA &= &2S ^ ^(K ^1 BETA)

we would have the following trace:

Step Rule Result

i

1
2

3
4
5

6
7

8

9
10

11
12

13
14

1
3
5

15

6
5

15
5

11
14
17

8
13

done

Scan

Scan

Scan

Scan

Scan

Scan

Scan

Scan fr fr f¥
Phrase-1: ^Y ^ *'$

Scan && 9k
Phrase-2: ^ { ^Phrase-l ^)

Phrase-3: ^25 &* ~Wase-2

Phrase-4: '"a &Z '^Phrase-3

We will come back to this method later In section 3.

'

35

2.3.3, Mixed Type Analysis

It is possible to combine precedence analysis and bottom up predictive

analysis. Note tha*- in our example of bottom up analysis, we "fed" the analysis

with descriptors of "partially analyzed" material; that is, we presumed that the

lexical analysis had supplied the "i" and "n" structure brackets to the identifiers

and integers. We can generalize this as follows: Suppose that a precedence

analyzer is available and that it can analyze arithmetic expressions but nothing

"larger". That is, it has a precedence matrix with entries <*,«>, = , err and

"exit". Further, suppose that a syntactic type can be "attached" to each phrase

by the precedence analyzer. Then, we can view the analysis as a precedence

analysis on the sequence of descriptors produced by lexical analysis resulting

in replacement of certain sub-sequence by single descriptors (phrases) followed

by a bottom up predictive analysis on this reduced sequence.

Thus, we could have (considering our previous example again):

Character Stream: ALPHA = 25 * (Y + BETA)

i

Lexical Analysis

Descriptor Sequence: ^ALPHA &= ^25 &*&{&£&+ ^BETA ")

Structure: i[ALPHA] = n[25] * (i[Y] + i[BETA])

Precedence Analysis/

i

)6

Reduced Descriptor Sequence:
Structure:

^ALPHA *■
l[ALPHA]

i

Ä Phrase-3
a[Phrase-3]

/ Predictive Analysis \
\ /

i

Structure: u[l(ALPHA] = a[Phrase-3]]

n
i

57

2.3.4. Mlscellanpous Other Mpthods

Most of the methods currently used in compilers for performing syntactic
analysis are very close to the three basic methods described above.

The lar year or so has seen a host of "syntax directed" and "table
driven" compilers being constructed and, in many instances, advertised as
the newest, best, hottest, greatest, etc. compiler to ever make the scene.
Upon close inspection, however, ii is seen that almost all of these are minor
variations on the various themes developed above, often sufficiently ill described
that the relationship is not especially evident without considerable study. There
are, however, two other methods which vary enough from these to comment jpon.

A variation on predictive analysis has been devised by M. E. Conway
and is reported in: Conway, M. E., "Design of a Separable Transition Diagram
Compiler", Communications of the ACM, Vol. 6, pp 396-408, July, 1963.

Conway has applied this method to COBOL and indicates that it can also
be used to handle analysis of "scientific" languages. By using the technique
he describes he was able to produce a rather fast, quite elegant, COBOL com-
piler very rapidly.

Another technique that Justifies mention Is that used in many (IBM pro-
duced) FORTRAN-II compilers. Basically, they perform several scans over the
source text performing a lexical analysis and then doing a complete parenthe-
sization of arithmetic expressions and giving a "level" code to each sub-
computation. They use "level" to encode both "depth within parentheses" as
well as "precedence of operators". Given a list of computations with appro-
priated sequence numbering and level coding they can then "sort out" different
kinds of sub-computations for special consideration, including certain kinds of
common sub-computation elimination.

2.4 Error Analysis and Recovery

In a practical compiler, one of the major considerations in the choice
of analysis technique is the ability to detect and recover from errors in source
programs. The syntactic analysis techniques sketched above vary considerably
in their properties with respect to error analysis and recovery.

38

T

in

(N

In "top down" predictive analysis, for example, an error is detected
(for example in Syntax II) when the analyzer cannot recognize a <prog>. Al-
though the exact point in the input string past which recognition fails will be

known, it is extremely difficult to determine exactly why the error occurred and
to, in a general way, devise means for recovery. Further, if the error is at the
"end" of son.e construction, all the correct input will have been "forgotten".

Several schemes exist for dealing with this problem, notably:

1. A scheme which permits specification of "no back up" on certain

constructs. For exanple, in Syntax II, no back up on recognition of "=" or "("
could help isolate the reasons for a failure.

2. A scheme due to E. T. Irons* which, in effect, carries along all
possible parses of an input string.

3; Special "error" syntactic types which could be defined in the syn-
tax. For example, one might define <factor> by

<factor>:: <ident> i <integer> | (<ae>) | (<ae> <null>

to allow missing right parentheses to be neglected. The ramifications of this
are not trivial, however.

At the present time there is no completely satisfactory general scheme

tor dealing with syntactic errors discovered in the course of top down predictive

analysis.

In the case of bottom up predictive analysis, the situation is very similar

to that of the top down method. However, there is an advantage with bottom up

analysis in that when an error is detected, the symbols in the input string which

correctly "fit" some interpretation will not have been "forgotten". To be a bit

less vague, if a top down analysis (considering Syntax II) is given the goal of

<ustat> and inspects the string

X = Y+ Z*(A+B*(C+D).

it will not oe able to parse the string because of the missing right parenthesis.

Indeed, it will completely analyze the string up to the . and then completely
"unwind" the analysis ending up with an error report and the "next" input string

* Irons, E. T,, "A Syntax Dirscted Compiler for ALGOL-60", Comm. ACM 4
(1961), 51-55

59

symbol being X.

Bottom up analysis, on the other hand, will similarly analyze up to the
but will fail with ")" missing ana "no place to go" but will be pointing at the
. rather than "unwinding" to the X,

Bounded context analysis, on the other hand, is much better suited to
error recovery procedures. Thus, given the above input, the precedence
analyzer would be in the following state:

Descriptor Register: X/.

& (^Phrase-l &)
$k &+ ^>hrase-2

Phrase List: Phrase-1
Phrase-2
Phrase-3

and be stopped because there is no precedence relation between the pair " (" N

and "." . It is quite easy to paste in recovery mechanisms on such error pairs.
The situation is similar with productions analysis. Indeed, since a production
analysis is, in effect, specified by a program, the extension of the program to
include error analysis and recovery are a relatively straightforward process. It
is this property which, in our opinion, makes productions analysis preferable
over any of the other bounded context methods. In the productions analysis
program given above, steps 2, 4, 7, 16, and 18 are "error"steps"; the kind of
error at each is as follows:

2: The first symbol in the assignment statement is not an identifier.

4: The first identifier ("left hand side") is not followed by an =.

7: An arithmetic expression starts with something which is not an
identifier, integer or phrase (^) or a left parenthesis.

■

■

116: The quantity at the top of the stack does not combine with any
quantities to Its' left in an allowable fashion (rules 8-13), Is not followed
by a right parenthesis (rule 14), and, indeed, is not a quantity (rule 15).

Uo

The "missing right parenthesis" recovery would be pasted in here; e.g..

Rule Stack Descriptor Action Next
 Register ■Rule

ISA (ADDO) 15B

15B Phrase(3) 8

Here Add (a) causes symbol (descriptor) a to be placed on top of stack.

18: A quantity followed by a right parenthesis Is lacking the balancing
left parenthesis (i.e., we get to rule 17 via success rule 14 only.)

hi

1

Ik

2.5 Mechanical Generation of Syntactic Analyzers from Syntax
Specifications

It Is clear that any reasonable Implementation of the analyzer algor-
ithms described above would result In a "table driven" program. Indeed, a
general purpose top down analyzer which accessed a (more-or-less direct)
encoding of the syntax specification is rather simple to envision. (That is to
say that the idea of somehow encoding a particular syntax specification algor-
Ithmically would probably not occur to anyone trying to implement such an
analyzer.) A bottom up analyzer can also, in a reasonably natural way, access
an encoded version of the syntax specification directly. In this case, however,
the syntax specification has to be "twisted around" a bit. That is, bottom up
analysis requires an encodement which allows going from some syntactic type
in hand to all the possible things which can be built from it. The specification
discussed in section 2.3.1.2 is in a form suitable for driving a general purpose
bottom up analyzer.

The precedence analyzer is also driven by a data set, namely the prece- »
dence matrix. It is not so obvious that this matrix can be derived mechanically <"
from a syntax specification. However, a recent result due to ft. W. Floyd*
shows that such a mechanical procedure does exist

We have, as notea, thought of a productions analysis specification as
a program. Again, any implementation of a productions analyzer would most
likely take the form of a table driven device. Some recent work by Earley and
others at Carnegie Tech indicates that it is possible to mechanically produce
(the parse part of) a productions analysis program from a proffered syntax in
many cases. Since much of the interpretation of the parse must be tailored to
the further processing to be done (like code selection) and thus cannot be
mechanically generated (unless, perhaps, the desired result were polish pre-
(post-) fix or some similar form) it is not terribly important whether or not the

See Floyd, "Syntactic Analysis and Operator Precedence", in the appendices.

productions to: parsing are automatically prepared. In practice most people
can learn to use productions analysis with facility quite rapidly.

I

I. A

3 INTERPRETING THE PARSE

3.0 General Discussion

Parsing, as we have described the process above« results In either
a syntax tree depleting the complete syntactic analysis of the Input or a
series of phrases which can be thought of as a somewhat less complete syn-
tax tree. The "Interpretation" of the parse, as we shall understand the term
In these notes consists of three basic kinds of activity:

1. Generation of some sort of pseudo-cc ie representation of the
sequence of computation from the tree or phrases resulting from
the syntactic analysis.

2. Handling the declarations discovered In the parsing.

3. Adjusting the sequence of computations with respect to type
conversion, scaling, expansion of certain Implicit functions,
and generally getting the sequence of computations Into a shape
which will allow the collection of Information pertlmmt to opti-
mization and, eventually, the generation of machine code.

If the language being translated and the machine* for which we are
generating code are sufficiently well behaved, the Interpretation of the
parse can result In the generation of actual machine coding rather than
pseudo code. However, for our present purposes we will not consider the
direct generation of machine code from the parse. (See the Cheatham and
Sattley paper in the appendices.)

?

* We mean "machine" In the sense of both the hardware and the software
Interface between the compUer and the hardware — sophisticated assembly
routines, for example.

3.1 Generation of Pseudo-Code

Let us identify the problem here by continuing the examples presented

in section 2.0 through the generation of pseudo code. For the present, we
think of the following simple pseudo instructions*:

Arguments Interpretation

X Y X + Y

X Y X -Y

X Y X* Y

X Y X + Y

X Y X^Y

L transfer control to (label) L

Let us think of the arguments of these instructions as being descriptors
io in the sense defined above — i.e., table code and line within table of a table

* housekeeping the representation of the value. Indeed, let us further presume

an "instruction" table which contains (at least) entries for the six pseudo-

instructions defined above. Then, a pseudo-instruction is a pair or triple, as
for example:

^ PLUS "^Y ^ETA

Note: In the sequel we will often use the notations PLUS and PLUS, + and

Instruction

1) PLUS

2) MINUS

3) TIMES

4) OVER

5) STORE

6) GOTO

£ + , etc. interchangeably.)

If we further introduce the table in which we place the pseudo-instruc-
tions as a table for which we can have descriptors and utilize the notation

/7/p, for the i— line of that table, and further argue that a line of that table

* Note: Throughout these notes we use the terms instruction and operation

interchangeably. They may refer to "pseudo" or "machine" instructions/oper-
ations also.

-

•

l.c

(let's call it the descriptor table) contains one descrlpcor, then we find that

the computation

ALPHA = 25 * (Y + BETA)

results in descriptor table entries as follows (assuming for no good reason

that line 66 is the first one available to us when we start processing the

above):

LINE

•

66

67

68

69

70

71

72

73

74

Descriptor Table Entry

J&PLUS

QLBETA

v TIMES

^25

V STORE
&

i

ALPHA

or, more readably, perhaps

LINE
•

Descriptors

•

66 PLUS Y BETA

69 TIMES 25
^

72 STORE ALPHA (69)

Now, there are several kinds of manipulation of the material in this

form which are rather naturally carried out following the syntactic analysis

and generation of the pseudo code but preceding the optimization and machine

\

C5
m
i

code selection processlna to come later.

These manipulations could include the following:

1. Type conversion (e.g., float an intege*4«volved in

•fioatxny computations)

2. Compile time computations (e.g., if 2 + 2 appears in the
input, produce the 4 at compile time rather than at run time).

3. Scaling fixed point computations (i.e., type conversion of
a more interesting and difficult type)

4. tfbde expansion (e.g., "open" code for generic functions;

expansion of mapping or accessing functions — the idea

of "macros" of pseudo-coding)

5. Commutation of commutative operands to some canonical
form.

We must, however, emphasize that we are not asserting that this is

the pl^ce, in the compilation process, to do these kinds of manipulation.
Indeed, our whole theme is that there are many ways and times to do the
various manipulations required; the only ordering that we will assort as uni-

versal is that one should parse the input before he generates code. The time

and place to do, for example, scalJ.ng and type conversion is dependent upon

the rules in the programming language and upon the structure of the computer
for which code is being generated. Thus, if one has a machine with an

accumulator and a quotient register which can be connected for shifting, it

may well be that scaling determination be deferred until code selection time.

On the other hand, if one has a machine with no such accumulator-quotient

arrangement, the determination of scaling might as well be done earlier —

even at parse time.

Let us suppose that by one means or another we have parsed the

source language (or some interesting part of it, like a statement, do loop,

bloqk, or the tike) and have produced a sequence of pseudo-operations in

kl

.

the descriptor table. For example, referring oacJc to the example of section
3.1 we have eaten up the string

ALPHA = 25 * (Y +! BETA)

and emitted the sequence of descriptors.

Descriptor Table

Line Descriptor

66 2/PLUS

67 sr
68 ^r BETA

69 ^TIMES

70 ^25

71 TB
72 ^T STORE
73 ? ALPHA

74 ^O

Let us introduce a couple more pieces of trickery and we're ready

to generate pseudo-code. First, to help accounting for who's who in the

descriptor table, we add a one bit field to the descriptors which bit is 0,

1 as the descriptor is not, is the last argument of an instruction. Thus a
symbol descriptor is now a triple, (TABLE, LINE, LAST) (where LAST ~ last

argument). We will denote such "last" descriptors pictorially by the use

of a super-script asterisk; thus, the example is

•

.

Ui
I

M

I. a

Line Descriptor Table Entry

66
67

68

«ÖPLUS
»Y

^*BETA

69
70
71

^ TIMES
^25

72 Ä STORE

73

74

^ ALPHA

i

Finally, we introduce the function EMIT (....) which takes an arbitrary
number of descriptor-valued arguments and produces a descriptor value (output).
Specifically, EMIT (A., ... ,A) places the descriptors A.,.. • ,A in the "next"

n lines in the descriptor table, marks the descriptor A as "last" and produces a
descriptor of the form JcL where i is the line into which A. was placed.

Now let us reconsider the precedence analysis discussed in section
2.0.

'

M

'

Analysis of Source Into a List of Phrases

Input Character Stream: "f ALPHA = 25 * (Y + BETA)
i

(Lexical Analysis)

1
Descriptor Stream: [0 ALPHA tom S25 35* »(Ay *+ • BETA25)

^-

 V
Phrase-2 j

 v
Phrase-1 ^

V^ Phrase-31

Phrase-4

/ Syntactic AnalyslsN

\

Phrase List: T Phrase 1: ^Y ^+ ^BETA

Phrase 2: *< ^phrase-1^)

Phrase 3: ^25 ^* ^phrase-2

S
i

I Phrase 4: ^ALPHA^= ^phrase-3

From this It Is fairly clear that the following "actions" will produce the

desired sequence of pseudo-Instructions from the phrase analysis of the proffered

input:

Phrase-1 — EMIT ('XPLUS.^Y.^'BETA)

Phrase-2 — Phrase-1

Phrase-3 ~- EMIT (^TIMES, ^25, •^Phras^-2)

Phrase-4— EMIT I^STORE^ALPHA^Phraaö-S)

,

-

I

Line Descriptor Table Entry
•
• •

66

•
•
•

«ÖPLUS

67 »t
68 ^*BETA

69 ^ TIMES

70 ^25

71 ^fe

72 ^ STORE

73 25 ALPHA

74 ^*(SD

Finally, we Introduce the function EMIT (....) which takes an arbitrary
number of descriptor-valued arguments and produces a descriptor value (output).
Specifically, EMIT (A, , ... ,A) places the descriptors A.,... ,A in the "next" in in

n lines in the descriptor table, marks the descriptor A as "last" and produces a
descriptor of the formJSLwhere 1 is the line into which A. was placed.

Now let us reconsider the precedence analysis discussed In section
2.0.

k9

!

1

Analysis of Source Into a List of Phrases

Input Character Stream: «f ALPHA = 25 * (Y + BETA)

(Lexical Analysis

i
Descriptor Stream: r« i

ALPHA Ä= S25 a* 2,(^Y l>+ ^BETA^)
I- V J

">-

—V"
Phrase-1 -J

v^ Phrase-2 j
v '

v Phrase-3, 1

Phrase-4

Syntactic Analysi

I
Phrase List: -j Phrase 1:^Y^)+ ^BETA

Phrase 2: ^(^phrase-l15)

Phrase 3: ^25 ^* ^phrase-2

Phrase 4: ^ALPHA^= ^phrase-3 I
From this it is fairly clear that the following "actions" will produce the

desired sequence of pseudo-instructions from the phrase analysis ot the proffered

input:

Phrase-1 — EMIT C^PLUS, ^Y.^BETA)
Phrase-2 — Phrase-1

Phrase-3 *- EMIT («^TIMES. ^S.^Phras^-Z)
r^s Phrase-4- EMIT («^ STORE, «^ALPHA^Phrasö-S) & #*

50

I

J

I

Recall from section 2.3.2 that the precedence analysis technique
operates by placing the descriptors from the descriptor stream into a "descriptor
register". When a terminal symbol descriptor is placed in the descriptor
register the precedence relation between it and the most recent terminal symbol
in the stack is inspected, resulting either in the identification of a phrase or
in moving the descriptor from the descriptor register to the top of the stack and
obtaining of the next descriptor from the input stream and placing it in the des-
criptor register. The phrases isolated (at least in our simple example above)
have one of the six forms:

X + Y
X - Y
X *Y
X /Y
X = Y
(X)

Where X, Y stand for arbitrary descriptors.

Now suppose we have an operator, PHRASE () which takes a descriptor
argument and performs the following function: If the top n positions of the
stack contain a phrase, then PHRASE (A) causes the top n positions to be excised,
and the argument. A, to be placed on top of the stack. Then, the interpretation
of the phrase and generation of pseudo-instructions can be described as follows:

When a phrase has been isolated, perform the following, according to
which pattern applies.

Pattern Action

X + Y PHRASE (EMIT (PLUS, X, Y))

X-Y PHRASE (EMIT (MINUS, X(Y))

X*Y PHRASE (EMIT (TIMES, X, Y))

X/Y PHRASE (EMIT (OVER« X(Y))

X = Y PHRASE (EMIT (STORE, X# Y))

(X) PHRASE (X)

51

.

Now let us turn our attention to productions analysis again. We
postulate the following:

1. The descriptors have four fields: TABLE, LINE, LAST, and TYPE.
The first three are as above; the TYPE field will contain syntactic type (gen-
erally any "type" Information useful) and be dealt with as described below.

2. There Is defined a set of pattern elements (predicates) as follows
(each string of characters above a wlggly line names a predicate):

a- &> jh' I?» AIP» US« etc' which are true, false as the des-
criptor to which they are applied Is, Is not that for the terminal character
(string) "+", "-", "*", "TO", "=", etc-

b. IDENT. JNIEQER which Is true If the descriptor to which It Is
applied has as table code the code for the symbol table, literal table, res-
pectively.

c. RLOP, ADOP which Is true if the descriptor to which It Is
applied Is a relation operator, add operator respectively.

d. Several special pattern elements, FACTOR, IERM, ÄE, REL,
CSTAT, lißTAT, §I^T, PRQg, which are true If the TYPE field of the descriptor
to which they are applied has the corresponding syntactic type codes (per,
for example, the numbering of syntax I or II in section 2.1). The occurrence
of these identifiers outside pattern elements will be taken to be equivalent
to a literal whose value is the code for the particular syntactic type.

e. OTHERWISE. - always true.

3. There is a stack of symbol descriptors and a "current register".
Patterns can be applied to the top n positions of the stack and/or the current
register. A pattern is true if all the pattern elements are true predicates when
applied to the corresponding stack and/or current register contents. We will
utilize the following notation for patterns (n, n. name predicates or pattern

,

elements):

RO

in

i
CM c. EMIT(dT, d0 # ... ,d) - place the n descriptors d, ,... ,d 1 • ■ in

into the output list indicating d is "last"; take
the descriptor of this "computation" as the result
of the EMIT() function.

d. PHRASE (d) - excise all those elements of the stack involved
in the most recent successful pattern and insert
descript >r d on the stack.

e. Arithmetic (+, -, *, /) over literals, variables and fields
of descriptors and substitution (-) of integer
valued or descriptor valued variables.

5^

... n n , ... nQ / / — test the top (n+1) position of
the stack. ,

... n ... fl/ / / n / / /— test the top n+1 position of the
stack and the current register.

/ / n / / /— test the current register.

Patterns may optionally be labelled by placing an identifier in front
of them.

4. We have a set of actions as follows:

a. SCAN(n) - lexically analyze for n descriptors placing the last
one in the current register and placing the other
n-1 plus the one initially in the current register
into the stack.

N b. TRY(JD - starting with the pattern labelled |, apply patterns
until first one matches; then do the actions asso-

oo ciated with it.

m

f. CYCLE - nullifies the symbol in the current register.

g. ERROR - announces an error condition.

h. EXCISE - remove the n symbol descriptors on the stack
involved in the most recent successful pattern
from the stack.

1. TO(a) - perform the action labeled "a" next.

Actions are delimited by a period; an action may be labeled by
placing an identifier followed by a double period in front of it.

5. We denote by COMP(n) the descriptor currently in the (top-n)~
position of the symbol descriptor stack and by TYPE(COMP(n)), the type
field of COMP(n). etc.

6. Patterns are applied sequentially from the.first in "tried" unti1 a
successful one is found; then the first action associated is performed and
actions are performed sequentially until a control break is reached (i.e., a
pattern is specified to be tried CrRY(p)) or a transfer of control in actions
occurs (TO(a))).

The following schema provides a program for parsing optionally labeled
unconditional statements. We have presumed pseudo instructions of above
(PLUS, MINUS, TIMES, LABEL, and GOTO) plus the operation STOPPER with
the obvious interpretation. It is presumed that, initially, there is a symbol
descriptor in the current register and that pattern UO is "tried".

I

uo

OTHERWISE

//
//
//

IDENT
$TO
$STOP

///
///
///

UOI ... IDENT
... IDENT

OTHERWISE

//
// ,!:

///
///

AEO

OTHERWISE

//
//
//

$(///
IDENT ///
INTEGER ///

AEOA..

Ft ... TERM <

OTHERWISE

* FACTOR//

FACTOR//

Tl • • •
... AE $+

TERM
TERM

//
//

$* ///

... AE $- TERM //

OTHERWISE
TERM // T1A..

AE1 • • •
• • •

AE
$(AE

//
//

ADOP
$)

///
///

... IDENT $- AE //

OTHERWISE

T 1 ... $TO IDENT //

OTHERWISE

STOP1 ... $STOP //

OTHERWISE

SCAN(I). TRY(UOI).
SCAN(2). TRY(TOl).
SCAN(I). TRY(STOPI).
ERROR.

SCAN(l). TRY(AEO).
PHRASE(EMIT(LABEL,COMP(0)).
EXCISE. CYCLE. SCAN(l).
TRY(UO).
ERROR.

SCAN(I). TRY(AEO).

SCAN(1).
TYPE(COMP(0))-FACTOR. TRY(FI).
ERROR.

PHRASE(EMIT(TIMES,COMP(2),
COMP(O))).

TYPE(COMP(0))-TERM. TRY(Tl).
ERROR.

SCAN(I). TRY(AEO).
PHRASE(EMIT(PLUS,C0MP(2).

COMP(O))). TO(TIA).
PHRASE!EMIT(MINUS,COMP(2).

COMP(Oi)
TYPE(COMP(0))-AE. TRY(AEl).
ERROR.

SCAN(I). TRY(AEO).
PHRASE(COMP(0)).
CYCLE. SCAN(I). TO(AEOA).
PHRASE(EMIT(ST0RE(C0MP(2).

COMP(O))).
AE1A.. TYPE(COMP(0))-ÜSTAT. TRY(ül).

ERROR.

PHRASE(EMIT(GOTO,COMP(0)).
TO(AEIA).

ERROR.

PHRASE(EMIT(STOPPER)).
TO(AEIA).

ERROR.

•

V M

55

I

Analysis of the fragment

ALPHA - 25 ♦ (Y+BETA)

yields (where the pair indicates type and "quantity"):

..

66 PLUS (AE, Y) (TERM. BETA)

69 TIMES (TERM, 25) (FACTOR, @)
72 STORE (IDENT, ALPHA) (AE, @)

with the stack and current register state

... (USTAT, (72:) //$.///

Supposing that we desired to produce a syntax tree rather than pseudo

code, consider the following schema:
CO

i

56

uo

OTHERWISE

UOI ...

OTHERWISE

AEO

// IÜENT ///
// $TO ///
// SSTOP ///

I DENT // $-
I DENT // I:. ///

///

// $(///
// I DENT ///
// INTEGER ///

SCAN(I). TRY(UOI).
SCAN 2). TRY TOl).
SCAN(1). TRY(STOPI).
ERROR.

SCAN(I). TRY(AEO).
SCAN(1). TRY(UO).
ERROR.

SCAN(I). TRY(AEO).

OTHERWISE

Ft ... TERM $* FACTOR//

FACTOR//

OTHERWISE
F1A..

Tl ... TERM
... AE AOOP TERM

// $*
//

///

« ... TERM
n

OTHERWISE

//
T1A..

AE1 ... AE
$(AE

// ADOP
// $)

///
///

... IDENT $- AE //

OTHERWISE

TOl ... $TO IDENT //

OTHERWISE

STOP1 ... $STOP //
OTHERWISE

UI ... USTAT // $.

OTHERWISE
SI ... IDENT $.. STAT//

PROG STAT//

STAT//

OTHERWISE

SCAN(1).
PHRASE(EMIT(COMP(0))).

AEOA.. TYPE(COMP(0))-FACTOR. TRY(FI).
ERROR.

PHRASE(EMIT(COMP(2),COMP(1),
COMP(O))).

TO(FIA).
PHRASE(EMIT(COMP(0))).
TYPE(COMP(0))-TERM. TRY(Tt).
ERROR.

SCAN(I). TRY(AF.O).
PHRASE(EMIT(COMP(2).COMP(1),

COMP(O))).
TO(TtA).
PHRASE(EMIT(COMP(0))).
TYPE(COMP(0))-AE. TRY(AEI).
ERROR.

SCAN(I). TRY(AEO).
PHRASE(EMIT($(,COMP(0),$)).

CYCLE. SCAN(l).
TO(AEOA).
PHRASE(EMIT(COMP(2). COMP(1),

COMP(O))).
AE1A.. TYPE(COMP(0))-USTAT. TRY(UI).

ERROR.

PHRASE(EMIT($TC.COMP(0)).
TO(AEIA).
ERROR.

PHRASE(EMIT(COMP(0)). TO(AEIA).
ERROR.

///
U1A..

PHRASE(EMIT(COMP(0),$.). CYCLE.
TYPE(COMP(0))-STAT. TRY(SI).
ERROR.
PHRASE(EMIT(COMP(2).COMP(l).

COMP(O))).
TO(UIA).
PHRASE(EMIT(COMP(l),COMP(0))).
TO(SIA).
PHRASE(EMIT(COMP(0))).

SIA.. TYPE(C0MP(0))-PR06. SCAN(l).
TRY(UO).
ERROR.

57

f

(A

s
z

3
CO

+

8 * 2
0)
e

ü

CM

S

I

5 a t
?

0) c

CO
i

58

J

Consider, further, the following schema:

I
N

■

.'

uo

OTHERWISE

UOI ... I DENT
I DENT

OTHERWISE

AEO

OTHERWISE

F1 ... R $* R

T1 ... R
R $•!• R

R $- R

R
$(R

... I DENT $- R

OTHERWISE

TOI ... $TO I DENT

OTHERWISE

STOP1 ... $STOP
OTHERWISE

// I DENT ///
// $TO ///
// $STOP ///

II $-
// $..

ERROR.

///
///

// $(///
// I DENT ///
// INTEGER ///

If

II $*
II
II
II ADOP
// $)

II

II

II

III

III
III

SCAN(1
SCAN 21
SCAN(1
ERROR.

TRY(UOl).
TRY(TOI).
TRY(STOPI).

SCAN(l). TRY(AEO).
PHRASE(EMIT(LABEL,COMP(O)).
EXCISE. CYCLE. SCAN(l). TRY(UO).

SCAN(I). TRY(AEO).

SCAN(I). TRY(Fl).
ERROR.

PHRASE(EMIT(TIMES,COMP(2),
COMP(O))). TRY(n).

SCAN(I). TRY(AEO).
PHRASE(EMIT(PLUS,COMP(2) 1
COMP(O))). TRY(TI).

PHRASE(EMIT(MINUS,COMP(2),
COMP(O))). TRY(TI).

SCAN(I). TRY(AEO).
PHRASE(C0MP(O)). CYCLE.
SCAN(l). TRY(FI).
PHRASE(EMIT(STORE,COMP(2),
COMP(O))). TRY(Ut).

ERROR.

PHRASE(EMIT(GOTO.COMP(0))).
TRY(Ul).
ERROR.

PHRASE(EMIT(STOPPER)). TRY(UI).
ERROR.

CO

I

60

This schema will produce the same results as the first schema but
makes no use of syntactic type. Herein lids the power of the productions
analysis method: one can parse into phrases (schema III), a complete syn-
tax tree (schema II) or mix the two (schema I).

Now let us turn our attention to the problem 01 generating pseudo-
code from the result of a predictive analysis. The Gheatham, Sattley paper
in the appendices discusses various ways of tying the syntactic analysis
and code generation together; at this point we will only discuss one tech-
nique of generating pseudo-code and assume that we are given a complete
syntax tree.

Let us reconsider the example of section 2.0.

to

I J

61

Analysis of Source Into a Syntax Tree

Input Character
Stream: £ ALPHA

I

Lexical Analysis >

T
Descriptor Stream^ ALPHA

^Id

25

Syntactic Analysis

Syntax Tree

BETA

<integer>

<factor>

<term>

00

I

<u»tat>

Suppose that we have the following mechanism:

1. A control element which is at any point in time "pointing to"

some node of th J tree;

2. A means for naming nodes relative to the "current" node.

3. A "place" at each node to park the name of the "result" asso-

ciated with that node.

62

3>
0
I

N

4. A means for moving the control element to another node, and
remembering the node to which we were pointing (i.e,, a stack).

5. A means for moving the control element to the last node from

which we transferred control (i.e., pop it off the stack).

Given the above tree with "current" node initially the <ustat>, we can
sketch a "tree walk" and generation of pseudo-code as follows:

Current
Node Action

<ustat> Consider the third "son", the <ae>

<ae> It is only a <term>, consider the <torm>

<term> Consider the left son, the <term>

<term> Consider the only son, the <factor>

<factor> Consider the only son, the <integer>

<integer> Ä<integer>—^g (Read: "The 'result' of the 'integer* node

is ^25^ ' return t0 Previous node.

<factor> R<factor>—R<integer>; return to previous node.

<term> R<term>«-R<factor>; return to previous node.

<term> Consider the right son, the <factor>

<factor> The <factor> is of the form (<ae>); consider the second

1

2

4

5

6

7

8

9

10

11

12

son, the <ae>.

<ae> Consider the first son, the <ae>

<ae> Consider the only son, the <term>

Etc., resulting in R<ae> —...— JUy and return to previous node.

65

Current
Node Action

14 <ae>

13 <ae> Consider the third son, the <term>

Etc., resulting In R<term>'—.. •"•"^DPTA and return t0 Previous node.

Both first and third son "considered" (I.e., 'results' are

associated with them). Second son Is +; therefore R<ae>

—EMU (PLUS, son-1, son-3) [That Is, R<ae>—EMIT
(PLUS, Y, BETA)] Return to previous node.

R<factor>—R<ae>; return to previous node.

R<term>—EMIT (TIMES, son-1, son-3); return to previous

node.

R<ae>—R<term>; return to previous node.

Consider the first son, the <ldent>

R<ldent>--BÖ^PJ,.; return to previous node.

R<ustat>—EMIT (STORE, son-1, son-3)

Note that we have Introduced the Idea of "tree name" (e.g., son-1, etc.)

a J denoting both a place to go (turn the control element pointer to) and as de-

noting a value associated with a node (EMIT (PLUS, son-1, son-3)).

Now let us Introduce the following:

son-1, son-2, ... , etc. name tree nodes relative

to the current node (In a fashion clear from context)

CONSIDER(N), where N Is any tree name, causes the control element to
turn to the node N and the current node to be placed on the stack.

EMIT() Is as before except that It places the descriptor of the result In

the "result field" of the current node.

15 <factor>

16 <term>

17 <ae>

18 <ustat>

19 <ldent>

20 <ustat>

COPY(N) copies the result of node N Into the result tleld of the current
node.

o
t-

i
01

We now have a series of "pattern" and "actions" for walking the tree

and generating code for the example above. The rules are:

Take the first structure applicable for the type node control is currently
"on" and carry out the actions; when out of actions, return control to the pre-

vious node (i.e., top of the stack).

Thus:

Control On

<ustat>

and

<ae>

<ae>

i

<ae>

<term>

<term>

<factor>

<factor>

Structure Is then do the

<term>

<ae> + <term>

<ae> - <term>

<factor>

<term> * <factor>

(<ae •)

anything else

Actions

CONSIDER(son-3)

CONSIDER (son-1)
EMIT (STORE, son-1, son-3)

CONSIDER(son-l)

COPY(son-l)

CONSIDER(son-l)
CONSIDER(son-3)

EMIT (PLUS, son-1, son-3)

CONSIDER(son- 1)
CONSIDER(son-3)
EMIT (MTNUS, son-1, son-3)

CONSIDER(son-l)

COPy(son-l)

CONSIDER(son-l)

CONSIDER(son-3)
EMIT (TIMES, son-1, son-3)

CONSIDER(son-2)

GOPY(son-2)

CONSIDER(son-l of son-1)

GOPY(8on-1 of son-l)

65

Note the more complicated tree name son-1 of son-1; the generalization

to complex tree names is obvious. Thus, to get from the node "^T pu* to t*ie

node » BPTA in the above syntax tree we could proceed to: son-1 of son-1 of

son-1 of son-3 of son-2 of son-3 of son-1 of son-3 of father of father. Or

turning the specification "around" and going by a different route: to father to

right sibling to right sibling to son-1 to son-3 to son-2 to son-2 to right sib-

ling to äon-1 to son-1 to son-1. The Warshall and Shapiro paper in the appen-

dices discusses a general purpose compiling system in which a rather elaborate

tree walk and pseudo-code generation mechanism is available.

Another remark: Note the similarity between the patterns and associated

actions for handling generation of pseudo-code from precedence analysis into

phrases and the patterns and actions for processing the complete syntax tree.

In both cases we have our "attention" somewhere (top of stack or 'current' node)

and specify the context via a pattern which leads to certain actions, The simi-

larity is more evident if we rewrite the "patterns" for the syntax tree as:

•

<ustat>

<ae> [<term>]

<ae> [<ae> + <term>]

etc.

i

denoting the tree structure by appropriate bracketing.

66

ü
I

CM

i

3.2 Handling Declarations

Fundamentally, declarations In a programming language are devices
for dynamically (i.e., at compile time) changing the syntax of the source S language, Th*t is,

real X, Y;

really means something like: "add the two rules

<realvar>::= X
<realvar>::= Y

to the syntax".

In a practical compiler, however (or even, I would guess, in an im-
practical one), such declarations are generally handled by setting certain
flags in the symbol (literal, etc.) table, so that the appropriate type infor-
mation can be readily available for the processing of the parsed input into
pseudo- (and machine-) code.

The handling of "shape" declarations (e.g., array A (1:20, J:40),
overlay (W, V), etc.) depends to a considerable extent on the environment
into which the result of compilation is going. Thus, if a full blown assembly
is to take place on symbolic output from a compiler* then such declarations
can usually be handled by Invoking the "block started by symbol", "synony-
mous with", and the like pseudo operations usually available in an assembler.

Further, the handling of declarations which need to contact the envir-
onment, for example the declaration of library subroutine calls, filed data
description references, and the like are highly dependent upon the environ-
ment in which the compiler is running in addition to the environment in which
the compiled result will be placed.

* Rather a foolish way to do business, incidentally, if cost is of any impor-
tance in the long run.

.

67

We will not, at this time, go any further into the question of how we

actually process the declarations except to make the following remarks:

1. By hook or by crook, the effect of the declaration must be re-

flected in the symbol (literal, etc.) table entry for the item

declared.

2. Somehow, we must be able to snatch control from the syntactic

analysis - code generation mechanism to handle the interpretation

and storing of declarations.

3. While there exist reasonably elegant schemes for "automatically"

doing syntactic analysis (and even much of code synthesis), the

handling of declarations is generally messy with any but the

simplest of languages. For this reason (among others) it will

prove highly useful in any general purpose compiling system to

have the ability to do arithmetic and relationals — i.e., the

"action language" should contain at least the rudiments of a good

algebraic language.

For processing languages where several types of data can be manipu-

lated (e.g., integer, real, boolean, string, etc.) it may be convenient to

utilize the field, "TYPE", for carrying declarative information. Thus in this

setting we will think of descriptors as quadruples:

i

CTABLE, LINE, LARG, TYPE)

where TYPE is any convenient encoding of which of the possible types the

(described) value is,

68

in

i

3.3 Miscellaneous Manipulations

There are several different kinds of manipulations of source material
which are more-or-less naturally done with the material in the form of a se-
quence of pseudo-instructions. Some of these (type conversion, scaling, and
the like) are needed for languages which are "loose" in the sense that many
detailed decisions in the compilation are left to the compiler; others (compile
time computation, commutation of operands, and the like) are more to do with
the generation of optimal coding; still others ("macro" expansion, and the like)
are to do with both. We will discuss some of these and some mechanisms for
handling them in the sections below.

{2 3.3.1 Type Conversion; Scaling; Compile Time Computation

In languages which allow a variety of data types and which allow
"mixing" these types in expressions (or don't allow it, but the compiler is
trying to make a reasonable error recovery) we are faced with the problem of
finding operations with operands of mixed types and effecting the conversion
of one of the operands to the "preferred" type. This same problem, in a
somewhat more complex form, arises in languages In which computations with
scaled fixed point data are allowed (and it is assumed that the compiler tries
to adjust scales appropriately for intermediate results) or in which data may
have units (e.g., feet, miles Ar, etc.) and the compiler is expected to
handle unit conversions of intermediate results.

In its simplest form the problem is simply this: for any simple compu-
tation (i.e., add, subtract, multiply, divide, store) in which the two argu-
ments are of different types, the one of "less preferred" type is to be converted
to the "more preferred" type prior to the computation being performed. Let us
suppose for simplicity that a language allows integers and floating numbers and
that integers are to be "floated" before an operation with floating numbers ex-
cept that the "left hand side" type takes preference in assignment statements.
Let us further suppose that there are two unary operators FI OAT, UN FLOAT which
are available as pseudo-operations. Then the handling of this kind of conversion

69

fits into our "descriptor list" framework reasonably well. The example following
suggests the mechanism required.

Suppose that we have a stream of descriptors representing the compu-

tation for an assignment statement and suppose that we can turn our attention

to the "STORE" operation. The processing then to be performed is described by

the table below. Here we have "patterns" and associated "actions". The non-

obvious action is PROCESS () which takes as argument the name of a descriptor

and means: If the descriptor is not of a line in the descriptor table (i.e., "the

argument is not 'complex' - it is a simple identifier or literal), then do nothing;

otherwise remember which operation we are working on and turn our attention to

the one designated, applying those actions appropriate; when finished copy the

TYPE field of the line processed into the TYPE of the argument*. We further

assume that the TYPE field of a descriptor is set appropriately for all variables
and literals upon entry.

Processing for Simple Type Conversions

Pattern

Operation Arg-1** Arg-2

STORE X Y

II ARITH

PROCESS (Y);

If TYPE (X) * TYPE (Y) then

if TYPE (X) = integer then

Y^EMIT (FLOAT, Y)

else Y-EMIT (UNFLOAT, Y);

PROCESS (X); PROCESS (Y);

If TYPE (X) * TYPE (Y) then

if TYPE (X) = integer then
X—EMIT (FLOAT, X)

else Y-EMIT (FLOAT, Y);

TYPE (ARITH)—float;

* Note the similarity with the CONSIDER () action we used in section 3.1.

** Read "Local name of first argument"

i M

70

Suppose our old friend

ALPHA = 25 * (Y+ BETA) .

were to be processed and that ALPHA, Y are floating and BETA (and, of course,

25) is an integer.

Below we have pictured the descriptor table before and after the pro-

cessing (the column "step" indicates which step in the processing causes the

change) and sketched a resumd of the processing carried out. (Recall the

function EMIT () from section 3.1; we assume for this example that line 105
of the descriptor table is initially the next available line.)

c-
I

Descriptor Table

Line
■
■

66

67

68

69

70

71

72

73

74
•
•

105

106

107

108

Initial
Contents

® PLUS

*[BETA
" TIMES

©25

^ STORE

^ ALPHA

Type

floating
integer

integer

floating

Final
Contents

•

D
•

PLUS
£ Y

'(fö

TIMES
S ®
Si

*@
£) STORE
t) ALPHA t

*@

1 FLOAT £ *

©
BETA

FLOAT
$ *

25

Type (Step)

floating (3)
floating

(3)
floating (4)

(4)
floating (3)

floating

floating (4)

floating (3)
integer (3)
floating (4)
integer (4)

71

I

Resum^ of Processing

3te£.

1

Current
Line

72

Current
Operation

© fi STORE ^ALPHA^(69

floating

69 P TIMES P 25 ^@

Integer

66 » PLUS * Y *^BETA
floating Integer

69 ^ TIMES ®25 *'

Integer floating

72 STORE *^ALPHA^C69

floating floating

Pattern I applies; The second

argument, Y"- 2z>v Is complex,

hence process It.

Pattern II applies; The first argu-

ment Is simple, hence do nothing,

the second argument Is complex,

hence process It.

Pattern II applies; neither argu-
ment requires processing; the

TYPE fields do not match and
TYPE (X~o6)j i< Integer, hence

Y^EMIT (FLOAT, Y);
TYPE (ARITH)—floating; return

to considering line 69 and copy
TYPE of floating Into Its' se-

cond argument.

Types don't match; do X*-
EMIT (FLOAT, X); TYPE (ARITH)-

floatlng; return to considering

line 72 and copy TYPE of

floating Into Its' second argu-
ment.

Types match; finished with

processing.

00

I
CM

'

J 72

The Important point to be noted here is that the mechanism of "match the
applicable pattern and perform the actions associated with it" seems a reasonable

mechanism. The only difference between this and the mechanism for generating

pseudo-code (section 1.3.1) is that the patterns are applied to operations rather

than phrases; however, each is, you will note, merely a sequence of lines in

the descriptor table.

A slight extension of this mechanism will handle the elimination of compu-

tation with constants by performing such computation at compile time*.

The more general type conversion problem cannot be handled by such a

"local" mechanism. The scope of the problem is suggested by the following.

Suppose that we have the computation A = B* (C+D) + E* (F /G) with scaled

fixed point numbers as follows:

Variable Scale

i

A
B

C
D

E

F

G

Bits to
.eft Right

16 4

8 1
14 8

3 2

16 6

8 5

5 0

* This is not an "unproblem". For example a language which allows.. •.

PI IS 3.14159265 ... ZILCH ■ 2*FI+X as well as allowing general mapping
functions which might contain constants, e.g., A(I) is accessed at word 2*1+512

of area based at ß and a call for A(6) occurs. Generally, as languages allow

more sophisticated declarations (particularly of computational fragments such as

accessing (mapping) functions) the occurrences of a variety of redundancies of
this kind will increase.

7^

We might depict this computation as follows:

f

Here, R. , ... »R- name the five intermediate results. The problem is to

determine scaling for R,, ... ,R5 in such a way that no overflow occurs* and that

there are a minimum number of shift instructions required. The mechanism

employed above (i.e., proceeding to the "innermost" computations and deciding

on a scaling on the basis of local information only) could be used, but the

number of shifts generated might be excessive. A better scheme is to provide a

mechanism which can "wander around" this tree collecting known scaling infor-

mation, postulating scales for the R., looking at the effect of postulated scale

to change the scaling information, re-postulating scales, etc.

* or, a certain precision or significance is maintained, etc. depending upon the

scaling philosophy employed.

.
Ik

We will only remark at this point that for this kind of problem we postulate
an extension of the descriptors for carrying pertinent scaling information. That
is, we now think of a descriptor as being five fields.

(TABLE, LINE, LARG, TYPE, LINK)

where LINK is a pointer to an "extension" of the descriptor which housekeeps

(for example) scaling information. We do not consider adding such fields to the

descriptor (permanently) as the need for such extensions is purely local. Thus

we think of some small set of available extensions and link these to descriptors

being processed and unlink them (back to being "available") when we are through

with th&m*.

* We might note that the problem of generating highly efficient machine code is

highly similar in that an extension to the descriptor is required (again locally in

the Mat sense) to housekeep such information as which registers contain the

item, position within register, sign description, etc.

75

■

3.3.2 "Macro" Expansion

While the Idea of "macro assemblers" has considerable stature (one
is included in any respectable software package these days) the idea of
allowing similar macro facilities in a compiler is found in few, if any,
systems; However, the basic need in most any compiler is clear since, for
example, accessing an array really requires at least an implicit macro. That
is, the fragment

... A(I, J + 2)*K ...

where, for example, A(,) has been declared as a 10 X 10 array is, really, in
terms of pseudo-operations, something like:

o «SpLUS^J 25*2
o + 3 ^ TIMES® 1^ *10
a + 6 ^ PLUS ^@,0fe 00

I
a+ 9 «A LOCATE«0A 3^3) "
a+12 «^ TIMES ^^a+I^K

That is, we must compile coding to compute the quantity (10*1) + J + 2 and add
this to the base address (to within a constant) to "locate" the word containing
the item in order to access A(I, J+2).

In mcst compilers, such data accessing is handled by one or more special
purpose bumps on the compiler.

It is a quite straight forward addition to a compiler to allow for "macros I'
of pseudo-operations to handle data accessing plus other kinds of operations
and, incidentally, to allow the programmer to define, in source language,
macros and to call them later in his program (or, if he is operating in a reasonable
programming system with a reasonable filing sub-system, to call them later in

1

some other program). Thus, one could write

define macro ROOT 1 (A. B, C) AS (B+SQRT(B**2-4*A*C)/ (2*A);

and use this ROOT1 (,,) later In his program, assured that "open" coding

appropriately optimized would result.

The mechanism for handling this Is really quite straight-forward. The

compiler produces the (pseudo-operations) descriptor list fragment for the

macro, for example:

a C EXPO «^ B ^ *2
a + 3 ^ TIMES ^4 ö*A

a + 6 ^TIMES ^@) ^*C

a + 9 2)MINUS ^(5)^S+p

« a + 12 ^FUNCT25 SQRT &*($+$
N a + 15 ^ PLUS ^B S*(gr|)

a + 18 •ÖTIMESÄ2 25 *A

a+21 ^ OVER &<f^&*(a+l$)

and then "parks" this list somewhere effecting a few changes, to wit: replace

S A,«ö B, ^C with ^QJ, & 0, ^ CD and replaceSjwith some appropriate

"local" or "self" relative descriptor. Thus the symboltcble entry for ROOT1

is tagged to indicate that it is a macro (with three arguments). A call for, for

example, ROOTI (4fX+Y*Z,Z) later in the program would result in the above

(modified) descriptor list to be bicaght out and thefir\and local relative refer-

ence descriptions to be appropriately modified. Thus, the call might result in:

77

I
6+3

6 + 6

6+9

6+12

6+15

6+18

6+21

6+24

6+27

^ TIMES ^ Y^Z

2> PLUS & X ^(£)
2> EXPO ^^3) S**2
^TIMES ^4 ^*4
^ TIMES &($+§)&* Z

ST MINUS ^(J+D ^^ +12^
^FUNCT ^SQRT ^(Ä+l^
^PLUS ^6+3 ^*(6 +lfr. * PLUS

S ^2 «^4

^OVER ^^+11) ^iGS^

Note that the later optimization, for example detecting and removing con-

stant computations would then eliminate lines (starting with) 6+9, 6+24 and
could also result in 6+27 being replaced by^TIMES ^^+2^^1/8 saving some

time (on most computers).

A few more remarks about data and data accessing are pertinent. If the
accessing of data is viewed as a sequence of computations culminating in a
"locate" operation for locating the word in memory (usually relative to some

base address) and if this computation sequence is viewed as a macro in the above
sense, then the actual computation required to perform this "locate" can be as

complex as desired without this being any strain on the compiler at all.

One kind of application is the following: Suppose we had a very long

vector, V(I); the mapping function could be:

LOCV.. J = I/10000;

if J = CURBLOCK then

RESULT =; LOCATE (V, I - 10000*1)

else begin OUTPUT (V, 10000, CURBLOCK);
INPUT (V. 10000, J);

CURBLOCK = J; to (LOCV) end

Here we are presuming INPUT/OUTPUT (i, J, k) causes input/output of the

s
I

78

material based at location i for j locations to be input from/output to block k of

some tape, disc, magnetic card, etc. file.

One more idea on data accessing. In order to handle the accessing of data

items packed several per word we can postulate a pseudo-operation FIBLD taking

three arguments: "address" of a locate, and two (integer) values. The inter-

pretation f FIELD(L; I, J) is: consider the word located and take (fetch or

store, depending on context) the field starting at bit I and being J bits long. We

will not pursue this further here.

!8

ii
79

-

i

3.4 Handling Special Features

Most programming languages have one or more rather annoylt ; features,

annoying In the sense that the handling of them often requires some kind of

special bump on the compiler. A very brief sketch of some of these follows:

3,4,1. Variable Remote Connections

Many languages allow one to set certain variables to 'addresses" rather
than values. That Is, one (usually not In this format) can write:

V:=L;
to (V);

L.. X:=Y+Z; to (C);
M.. X:=Y-Z;

C.

The annoyance here Is that the collection of labels which can be so refer-
enced must each have an associated address (to allow the V:=L to be set). There

are two basically different ways to implement the above, below sketched in SAP
or FAP like 7094 coding:

I

80

.

!

METHOD I
•

METHOD II
•

•

CLAL
•

OLA .L

STAY
•
•

STA V
• •

•

TRA V

•

TRA V
L NOP L L CLAY

CLAY ADD Z
ADD Z STOX

STOX TRAC

TRA C M CLAY

MNOP M SUB Z

CLAY STOX

SUB Z C etc
STOX • •

C etc V TRA error
• • • .L TRAL

V TRA error .M TRAM

(Note: We realize that one can get a bit cute with the use of indirect addressing,
but the examples are to make another point.)

Method I is simpler from the compiler's point of view but has an extra
useless Instruction following every label (which can be used as the argument
of such a connection); Method II requires that L be interpreted in two different
ways (as L or .L) depending on its' usage.

It should be remarked that if the coding is to be placed in any sophisticated
programming system or If clever optimization (using flow analysis) is to be per-
formed, the whole idea of variable remote connections is a bad one and should be
replaced by a switch mechanism.

'

81

3.4.2 Status Constants

JOVIAL Introduced the idea of status constants. A status constant is an

Identifier declared to have a literal (indeed, integer) value which depends upon

which status variable of which it is a value. That is, one can declare (in

effect):

STATE status (OHIO, NY, PA, MASS);

CITY status (LIMA, BOS, PHILA. NY)

Very roughly, in JOVIAL the identifiers OHIO, NY, PA, MASS

are treated as, respectively, literal 0, 1, 2, 3 when they appear in an appro-

priate context (e.g., STAT£:=MASS, if STATE = MASS, etc.); similarly, LIMA,

BOS, PHILA, NY are literal 0, 1, 2, 3 in appropriate context.

The problem here is interpreting the appropriate context in the

case of NY which is 1 or 3 depending on whether STATE or CITY is hard by. This

interpretation can be done in a variety of ways; the use of a "syntax tree walk"

is quite reasonable as is an inspection of the pseudo-code sequence.

3.4.3 Complex Data Structure

COBOL was the first major language to introduce the idea of highly

structured data (in the sense of field overlay, or, put better, in the sense of

handling n-tuples). The "new programming language" (now called PL/I) being

devised for Svstem/360 has somewhat more along this line, allowing for data

elements which are defined as n-tuples of previously defined data elements or

of arrays of previously defined data elements, and so on, all recursively. The

basic problem in handling such constructs is that a given name may stand for a

highly structured collection of (atomic or basic or directly manipulable, etc.)

data elements. To handle such things one must, by one method or another,

attach to each "entity" a structural description (kind of a generalization of a

type code) which Is manipulable. Such a description would probably take the

form of a tree,

82

GENERATION OF MACHINE CODE

4.0 General Discussion

!

t
i

Let us recapitulate our assumptions about "what has happened" and

"where we are" when we consider the generation of the output coding. The

source program has been parsed and the parse "Interpreted" Into a series of

pseudo-Instructions. These pseudo-Instructions have then been amended and

extended until they represent the sequence of computations to be performed

and are consistent with respect to operand types and the like.

The problem of generating (good) machine code can be thought of as a
three s.age process . First, the pseudo-code Is analyzed In order to determine

domains of Invarlance for each of the variables In the program. Given this,

the pseudo-code can be put In some canonical form (e.g., commute all commu-

tative operands to a standard order, and the like), sub-computations which are
Identical can be eliminated, and sub-computations which are Invariant In a

"loop" can be removed to the outside of the loop. Then, the resulting pseudo-

code can be analyzed and the various members of classes of special registers
can be allocated to certain variables or sub-computations over various "regions"
of the code. Finally, the machine code can be generated and "handed on" to

whatever processor is to dispose of it (e.g., formation of relocatable binary

(or decimal, etc.I absolute binary, symbolic for future assembly, and so on)*

Few, If any, current compilers have all these facilities for the generation

of coding; however, if highly optimal code is desired, such facilities must be

available. Of course If a compiler Is properly built, it should be posslb'e to

bypass any of these "optimization" sections if a "quick and dirty" compilation
(for debug purposes, for example) is desired.

4.1 Analysis of Pseudo-Code

The first step In generating highly efficient machine code is to perform an

analysis of the flow structure and. In particular, the domains over which the

* Again we emphasize that this much has not necessarily been done — e.g.,
the type consistency may not be guaranteed; one must tailor any compiler to the
particular language-machine-environment triple. ^

85

various quantities manipulated by the program are invariant. Until this infor-

mation is available it is impossible to do very much toward eliminating common

computations, removing invariant computations from loops, allocating special

registers, and so on.

The only completely satisfactory way to carry out this analysis is to

develop, for each variable (and hence each sub-computation) a complete picture

of those areas of the program over which the variable may possibly have different

values . A complete knowledge of the flow structure of the program is required

for this, however, if the complete analysis of the flow structure is considered

too expensive then a much simpler technique is to consider the "flow blocks" in

a program; that: is , those computation sequences into which control flows only at

the "top" and which can transfer control only at the "bottom". If one makes no

assumptions about a variable outside a flow block and simply divides the flow

block into its domains of invariance for each variable, then common sub-

computations , invariant computations, and the like can still be handled only on

this more "local" basis. This latter technique is extremely "cheap" in terms

ot both the amount of code required to collect the information as well as the

compile time required to carry it out. The Warshall-Shapiro paper in the

appendix alludes to a specific technique of this type actually implemented in a

compiler and the bibliography there will lead on to the details of such a scheme.

It should be remarked here that if one is doing a thorough analysis then

the notion of "do loop" or "for loop" should be handled in the same manner as if

the programmer had written out the loop control instructions. That is, it should

be the data resulting from a complete analysis which controls the optimization

decisions, not the fact that a certain area has been designated a loop with loop

variable "I" by the programmer. Indeed it may turn out that the item which is

really "controlling" the loop is 10*1 or I + 6 or Z*I + 5. etc., this information

will be developed from a complete analysis.

eh

4,2 Invariant Computations and Common Sub-Expressions

Given the analysis resulting in the invariance doma-ins for the variables

of the program we can then re-order the program to eliminate computations

appearing in a "loop" context which do not depend on the loop variables and

eliminate computations which are common, performing them only once. First,

however, if certain pseudo-instructions have commutative operands (and the

source language or local conventions allow re-ordering the computations with-

in an expression) they should be "flipped" Into some canonical order so that

comparisons for common computations and the like can be made more easily.

Consider the program:

!

s
I

N

I

I:=2; A(l):= 1;

HENRY: A(I):= I;

for I;= 1 step 1 until 10

begin BO): = A(I+1);

C(J):= DO) +A(I+1) end

I:=H-1;

if KSO to HENRY else STOP

Let us suppose that the representation in pseudo-code is the following:

•**

Line Operation

1 STORE

4 LOCATE

7 STORE

10 LABEL

12 LOCATE

15 STORE

18 STORE

21 LABEL

23 LOCATE

26 FIELD

30 PLUS

33 LOCATE

36 STORE

39 LOCATE

42 FIELD

46 LOCATE

49 FIELD

53 PLUS

56 LOCATE

59 PLUS

62 STORE

65 PLUS

68 STORE

71 LESS

76 LABEL

78 PLUS

81 STORE

84 LESS

89 LABEL

91 STOP

Arguments

I 2
BASE (A) 1

® 1
HENRY

BASE (A) I .

® I

J 1
.1
BASE(B) J

@ FIRST (B) NO(B)

I 1
BASE (A) o
® ® n o

i

BASE(C) J
cy

@) FIRST (C) NO(C) |
BASE(D) J

CM

@ FIRST (D) NO(D)

I 1
BASE (A) & ö ©
@ ®
I 1

J @

J 10 .1 .2
■

.2

I 1
I @

I 50 HENRY .3

(bii

dep

.3

86

^"■^

-J

We are assuming here that the variables B, C, D are packed Into some

,'blt) field of a word.

We might depict the result of analyzing the Invarlance domains as follows:

Value
Line Changed

1 I

2 A(l)
T

4 A(I)

5 —♦ •

6 J
7 BO)
8 c(j)
9

10 I

Computation

2

I

I

1; J+ 1

A(I+1)
DO) + A(I+1)

1+ 1

We note, for example, that the area enclosed by steps 5-9 does not

epend upon I or A(), etc.

Let us suppose that:

BASE(ä) = a

BASE(B) ■ BASE(C) = BASE(D) = ß

FIRST (B) = 1 NO(B) = 6

FIRST (C) = 7 NO(C) = 12
FIRST (D) =19 NO(D) = 12

Then the common computations are lines

23 , 39, 46
30, 53, 78

33, 56

.

The invariant computations are:

Lines Move to

30,33

53, 56

78. 81

Between 18 and 21

The re-orderlng of computations and elimination of common computations

could result In the following:

I

"S

I

Line Thread Common Operation

- 1

1 7 STORE

4 LOCATE

7 10 STORE

10 15 LABEL

12 LOCATE

15 18 STORE

18 81 STORE

21 36 LABEL

23 * LOCATE

26 FIELD

30 * PLUS

33 * LOCATE

36 62 STORE

39 —

42 FIELD

46 —

49 FIELD

53 —

56 —

59 PLUS

62 68 STORE

65 PLUS

68 71 STORE

71 76 LESS

76 84 LABEL

78 —

81 21 STORE

84 89 LESS

89 91 LABEL

91 STOP

Arguments

I 2

a 1

1) i
HENRY
©

®
J
.1

i
(23)

I
a

(Si

.2

I

I

.3

I

I

1

12

19 12

.1 .2

30;

50 HENRY .3

1

I
The "thread" gives the new sequencing of the computation; computations

which are common are marked with a *.

The interpretation is given by the following:

Step Line Computation

1 1 STORE I 2

2 7 STORE [LOCATE a l] 1

3 10 LABEL HENRY

4 15 STORE [LOCATE a l] I

5 18 STORE J 1

6 81 CjS PLUS I 1

STORE I Cj

7 21 LABEL .1

8 36 C2= LOCATE ß j

C3= LOCATE a Cj

STORE [FIELD C2 1 6] C3

9 62 STORE [FIELD C, 7 12] [PLUS [FIELD C«
i i «

19 12] Cj *

68 STORE J [PLUS J L]

71 LESS J 10 .1 .2

76 LABEL .2

84 LESS I 50 HENRY

89 LABEL .3

91 STOP

.3

The computations C = ... are read "compute the quantity and park it

somewhere as the i— common computation to be used later".

It should be noted that the reordering of the computation (in terms of

common sub-expression computations) makes the generation of coding for a

machine with a stack more difficult in that to "park" common computations in

the stack brings up a rather messy stack accounting problem during code se-

lection (especially if the stack is "finite").

90

(N

4.3 Special Register Allocation

Given the threaded computation sequence as above there remains one

problem before the generation of final machine code can be performed. If the

computer for which code is to be generated has index registers, base address

registers, a collection of accumulators, limit ' gisters, multiple instruction

registers, or the like it is necessary to determine what quantities are to reside

in each of these registers at what times.

One scheme for performing this "reservation*' of registers for various

quantities is roughly the following: We associate with each argument of each

pseudo-instruction information indicating the "affinity" of that argument for

certain registers*. For example, the first argument of a LOCATE has an affinity

for a "base address" register and the second argument has an affinity for an

"index" register.

Note that we are not assuming that variables are necessarily the objects

allocated to registers; rather any computation wnich can be usefully kepi in a

special register should be considered (especially common computations).

Given these "affinities" and the computation sequence it is reasonably

straight forward to apply an algorithm which computes the "cost" of keeping

and not keeping these quantities in special registers over some convenient

chunk** of the program. Given these cost figures an allocation can then be

made resulting in a list of quantities to be loaded into and maintained in cer-

tain registers over certain regions of computation. (Presumably certain members

of each class of special registers will not have allocated quantities in them but

will be available for "Junk" usage by the code selection machinery.)

___——__^_—-———————.^^_—_^^^——__—___—__——____

* Note: It should be clear that we are leaving out the "one of a kind" arithmetic

registers (accumulator, quotient, etc.); this allocation is more properly part of

the detailed code selection.

** Determining what is a "convenient chunk" is a decidedly non-trivial problem

which can be solved only by looking at the connectivity amongst the various flow

blocks of a computation. Taking blocks (in the ALGOL sense), loops, and the like

as such chunks often yields a reasonably good approximation.

Ql

■■' .

4.4 Code Generation

Given the threaded computation sequence and the register allocation infor-

mation we are finally in the position to generate coding.

It is convenient to think of an "extension" to the descriptors composing

the pseudo-code to where we can park detailed information concerning the status

of the argument or computation represented by the descriptor: what register (s)

contain the item; whether the sign is correct; and so on. The LINK field was

added to the descriptors for this purpose (see section 3.3.1). Further, it is

convenient to have a "track" table with an entry for each special register in which

is indicated what, if any, computation is currently residing in that register.

Basically, then, one simply turns his attention to a required computation

(following the thread) and (recursively) to the sub-computations required for that

computation, etc. The specifics of "how" to generate code are, of course, highly

dependent upon the particular hardware for which code is being generated. We

will thus not pursue further "how" to generate code but merely make pseudo-

operation and its' second argument is tagged as (satisfies the predicate) as being

currently in the accumulator.

In the event that the number of patterns required to discriminate the various

interesting possibilities grows too large, it is convenient to allow "questions"

(i.e., if statements) in the actions (as was implied in section 3.3.1).. A few

remarks relating this to the machinery we discussed above are appropriate:

1. The actual generation of code once it has been determined what

code is to be generated can be handled by the EMIT () mechanism Introduced

in section 3.3,

2. The pattern-action idea is applicable here also; indeed the pro-

blem is to, starting with a desired computation, to PROCESS () or CONSIDER ()

its' operands (recursively walking down the computation tree). At any point one

is interested in discriminating the pseudo-code via patterns like

PLUS X accumulator

PLUS index constant

92

1

i
and so on. By adding to the possible elements of a pattern a "predicate" mech-
anism such discriminations are easily made. Thus, the pattern

PLUS X accumulator

is interpreted: Our attention is on a PLUS whose second argument is in the
accumulator and whose first argument may be anywhere.

00

I !

95

i

CONTACTING THE ENVIRONMENT

5.0. General Discussion

ment:

There are three senses In which we must discuss contacting the envlron-

1. The compiler contacting its environment to procure library items

(descriptions, macros, and the like).

2. The compiler attending to arranging that the output for coding will

contact its environment (appropriate calling sequence structuring,

Indication of library subroutine usage, need for peripheral equip-

ment , and so on).

3. The compiler "handing over" its' resultant output to the environ-

ment (as symbolic coding, relocatable binary, and so on).

We would like to distinguish three basically different kinds of environ-

ments. The most simple would be that of a "barefoot" computer.

The next might be a computer with a conventional (batch processing)

monitor. Finally, we might, have a computer with a full scale modern pro-

gramming system.

Finally, we would like to discuss three types of linkage which must be

effected by a compiler and/or environment. These are:

1. Linkage of programs to other programs (subroutines, called pro-
cedures, "system" routines and so on).

2. Linkage of programs to data.

3. Linkage of programs to hardware (tape drives, disc iiles, and

so on).

9k

We will not discuss these topics in much detail here. The Cheatham-
Leonard paper and the Leonard-Goodroe paper in the appendix pretty well
describe our attitude in these matters. In addition to these papers we will
consider in detail only the problem of program to data linkage in t)v»se notes,
this in section 5.1.

o o
I

eg a

- i

<J5

5 .1 Program to Data Linkage

5.1.0 General Discussion

In most programming languages, the data which a program accesses is

thought of as "part of" the program — it is defined (structurally) as part of

the program definition and is input or output as part of the program 2xecution.

The idea of "common" is introduced to allow two or more programs, compiled

separately, to access the same information, or one program to reuse storage

for new data it requires. Further, in most programming languages, the struc-

tures which data can assume are usually restricted to regular arrays and the

smallest unit of data is the machine word.

This state of affairs is woefully inadequate for a large number of

applications. For example:

1. In any program in which more than a handful of programmers

are involved (for example command and control systems or

management control systems or programming systems) the use

of "common" areas for communication among programmers is

completely inadequate unless there are more managers than

there are programmers.

2. In most "system" programming it is necessary for reasons of

space restrictions to be able to "pack" several items in one

computer word; in many command and control systems data

packed into words is "forced" into the system by devices such

as radars and other sensors.

3. In many applications (information retrieval, "systems" pro-

gramming) it is useful to be able to deal with data structures

more complex than simple arrays (trees, lists, and the like,

for example).

There have developed a couple of schools of thought on the handling of

"global" data structures. The first of these is the COMPOOL facility first

introduced (to the best of my knowledge) in the Lincoln Compiler In 1953 by

96

the Lincoln Laboratories. The various JOVIAL "systems" (as distinct from the
JOVIAL language) also have a COMPOOL facility. The basic idea here is that
all data structures (and, for that matter, programs) which are common to
several programs are defined as part of a COMmunications POOL and a des-
cription of this COMPOOL is automatically made available to the compiler.
The CL-I, CL-II, and BNX Programming Systems have facilities for filing data
structure descriptions as well as data set instances and allow a declaration,
In programs, to the effect that certain (named) data structures are to be refer-
enced by the program. At one extreme (only one big data structure) this is
equivalent to COMPOOL; however, generally a given program references only
a few of the totality of data structures, so that one need declare only those
actually referenced. Further, with these systems the collecting together of
code and data for test or simulation runs is usually easier in that only these
structures referenced need be available in memory.

8
M

CO o
I

97

—. ._

5.1.1 Data Descriptions

5.1.1.0 General Discussion

By a data description we mean a body of information which Includes

one or more of the following:

1. Information allowing a compiler to generate coding to

access an element of the data set.

2 . Information allowing a (general purpose) data Input/output

package to Input or output a set of values for the data set.

3. Information allowing a "debugging monitor" to (request a

compiler to, perhaps) check values of data elements for

validity (fall within some numerical range, have some par-

ticular relationship to some other data element (s), and so on).

4. Narrative text allowing a user (through some retrieval mech-

anism) to obtain a (English) description of the function, usage,

and the like of the data set and/or specific elements of the

data set.

We should remark that, from the point of view of a compiler, a data

description Is nothing more-or-less than a junior symbol table, literal table,

and macro description table, all of which get "plugged" Into the compiler

when we are to reference any elements of the data set. In order to allow the

kinds of manipulation outlines In points 2-4 above we require a bit more

linkage plus a table of "narrative text".

In section 5.1.1.1 we discuss tie elements of a data set and the body

of information required concerning them In order to satisfy the above needs;

in section 5.1.1.2 we consider the combination of elements Into structures,

these into larger structures, and so on.

! ir:

M

q8

9
i

CO

5.1.1.1 Data Elements

A data element, in the sense in which we are currently employing the
term, is an item which may be referenced (in an appropriate representation)
via a statement in a programming language. A data element has:

1. A name, and a "form" of reference.

For example, a vector component named V and referenced by

"V {<ae>)"; or a vector component named W referenced by the
form "W", and so on).

2. A type.

For example, integer, floating, fixed with four bits right of

the binary point, string, and so on).

3. A mapping function*.

For example,

FIELD(LOCATE (base (V), index*100+4), 1, 6)

if A(index) - 0 then LOCATE (base (V), index)
else LOCATE (base (V), L (index));

and so on.

4. Constraints

For example,

0 <V(I) < 1**2 + 1

-50.6 ^ V(I) ^ 3.4567

and so on.

* It may be that there are several forms of riference and, further, that the
mapping function depends upon the form of reference and the context. For
example, let S name a stack. Then S=5, A=S, S(l)=5, A=S(2) might all
be allowable references with the first two involving push-down and pop-up
and the last two considering the stack like a vector.

■*

1

6.

links of representatio."

For example,

MILES PER HOUR

FEET PER SECOND PER SECOND

DYNES PER FORTNIGHT

and so on.

Miscellaneous

For example,

ROUND before truncating

SIGN to be carried on right (left, not at all)

ACCESSED only by people named SMITH

CONSTANT, with value 3.14159265

PICTURE: SDDDPDD, etc.

2

I

100

— -^ M ~ i . ^ ■»,.

5.. .1.2 Data Structures

1. Atomic elements

2. Collections by forming:
arrays
n-tuples
ordered sets

3. Apply (2) recursively

4. External and Internal Representations

Card Formats - n-tuple plus Indices plus
Identification appearing
together on card.

— - ._ n ii «Hu - • . .

THE TGS-II TRANSLATOR GENERATOR SYSTEM

T. E. Cheatham, Jr.
Computer Associates, Inc.
Wakefleld, Massachusetts

i
CM

CA-6505-2611

May 1965

To be presented at the International Federation for Infor-
mation Processing (IFIP) Congress, May 1965.

-. -

T

1

THE TGS-II TRANSLATOR GENERATOR SYSTEM
T. E. Cheatham, Jr.

Computer Associates, Inc.
Wake field, Massachusetts (USA)

co

i
(M

Translator Generator System II, TGS-II, represents our "current

position" in a project which has been underway for several years and which
will probably continue for several more. The overall goals of this work have
been to develop a general purpose compiling system which

a) is efficient as a compiler,
b) allows the generation of efficient machine code,

c) accommodates a variety of programming languages,
d) accommodates a variety of object computers (or other interpreters),
e) allows the rapid construction and documentation of a compiler

for any specific language-machine pair, and

f) allows efficient implementation and documentation of modifications
or extensions to languages and/or to the kind of code generated.

Over the past several years there have been a number of people who
have contributed to the body of ideas and experience which have resulted

in TGS-II; the bibliography lists several of the papers which have resulted

[l, 3, 4, 5, 6, 9, 10, ll] from this work. We cannot conceivably even
sketch the history or current status of this project in this paper. Rather, we

will try to provide the flavor of the main body of our current ideas, leaving
the details to future publications.

It is an accepted fact that the construction of a compiler for a reason-

ably simple programming language to produce straightforward code for a
reasonable computer Is not a technically difficult task at the present time.

When, however, one adds sufficient facilities to a language (for example:

scaled fixed point computations; data sets with more structural variability

than number of dimensions, or whose elements may violate word boundaries;

•A

:|0«|-| mi .

context dependent interpretation of symbols; and so on) or when one is

producing code which will be run in a sophisticated environment (having,

for example: completely dynamic allocation and re-allocation of code,

data, or other resources; COMPOOL or other global declaration facilities;

real-time requirements; and the like) or when one demands highly efficient

object code, the problem may become technically difficult rather quickly.

There are today a host of "compiler generator" systems to which one des-

cribes the syntax of a language with, perhaps, fragments of coding and

other semantics attached to various syntactic types, and which will then

accept source strings in the language described and produce symbolic or

binary machine coding [2, 4, 7, 8, 10, ll]. TGS-!I is not such a system;

rather, TGS-II is an environment in which the processing required of a par-

ticular compiler can be specified. It is our hope that the mechanisms avail-

able in TGS-II provide the compiler writer a framework which allows him to

concentrate upon the strategy of compilation rather than the details of some

particular host computer. We will try to suggest some of the mechanisms

available in TGS-II in the paragraphs below.

TGS-II consists of the TRANDIR language and the TRANGEN system,

essentially an interpreter which executes programs written in the TRANDIR

language — programs which describe a specific translation process.

The data which is processed by TGS-II consists of values and symbol

descriptors. A symbol descriptor is a sextuple composed of three pairs of

values: a pair, table code and line within the table in which the attributes

of the symbol described are stored; a pair of control bits for marking inter-

esting subsequences; and, a pair of fields whose specific function varies

and might be forward or backward links, arithmetic type code, syntactic

type code, number of users, allocated address and so on. The value pro-

cessed by TGS-II may be literals; variables which are organized as scalars,

arrays, or stacks; elements of tables; and fields of symbol descriptors. The

number and format of the tables used in any TRANDIR program is largely up

to the user; however, there are built into the system such tables as character

2

-_.. —

3
S

table, symbol table, literal table, terminal symbol table, operation code

table, implicit label table, the table containing the sequences of symbol

descriptors being processed, and a few others. Let us think of the trans-

lation process as taking place in five phases (not "passes" in the con-

ventional sense), namely: lexical analysis, syntactic analysis or parsing,

interpretation of the parse, sequencing and optimization of the computation,

and code selection.

The material being processed in TGS-II is represented, at any point

in the processing, as a sequence of symbol descriptors. Thus, the steps

in a translation might be viewed as follows:

source sequence of character descriptors

I
LEXICAL ANALYSIS

i
sequence of Identifier, literal, and terminal descriptors

I
SYNTACTIC ANALYSIS

I
sequence of phrase descriptors

I
INTERPRETATION OF PARSE

\

sequence of pseudo-code descriptors

I
OPTIMIZATION ANALYSIS

i
sequence of linked pseudo-code descriptors

i
CODE SELECTION

i
sequence of machine code descriptors

I

. ... ■ •—

The manipulations performed during each of these phases Is des-
cribed In the one language, TRANDIR. Switching among these phases is
thus completely straightforward, allowing one to produce a one-pass,

two-pass, etc. c mpller depending only on size considerations and amount

of analysis for optimization desired.

The TRANDIR language may be thought of as a conventional algebraic
language with imperatives for the normal arithmetic, relational and data

moving operations for manipulating values and symbol descriptors to which
have been added quite powerful declarative and "pattern testing" facilities.
A pattern is a list of predicates each of which is applied to a symbol des-
criptor. The definition of the predicates, layout of various tables, and so

on are Included In the d3clarations which form a part of a TRANDIR program.
Typical patterns would be

... ARITH.EXPR ADD.OPERATOR TERM / /
... IDENTIFIER " . ." / /

/ / PLUS ACCUMULATOR MEMORY ...

//MINUS MEMORY INDEXED. ME MORY ...
/ / TIMES LITERAL COMPUTATION ...

5

The double slash and ellipsis delimiters (plus others) indicate the
particular sequence of several possible sequences currently being "pointed

to" to which the pattern is to be applied. Thus, the TRANDIR programmer

may utilize an exhaustive list of patterns to perform an analysis or may re-
vert to the ALGOL-like if-then-else statements or he may choose to mix

the two.

TGS-II is presently operational on the IBM 7094-11 computer and will

soon be available in the CDC-1604, UNIVAC M-490, and GE-635 computers.
At the present time TGS-II has been used in the construction of translators

for the TRANDIR language, a dialect of NPL, and a dialect of ALGOL. Pre-

sently, translators for Oak Ridge ALGOL, FORTRAN-IV, and a data des-
cription language are being developed.

-._—

In spite of the enthusiastic claims to the contrary, we feel that
there is no such thing as an "instant compiler", unless the language

and, particularly, the resulting code are simplified to the point of being

uninteresting. However, we have found that with TGS-II the cost of

construction and documentation of translators can be cut substantially
(perhaps by a factor of two or more) and the cost of subsequent modifi-

cation and extension is cut even further.

i

•

BIBLIOGRAPHY

1. R. Bolduc, T. E. Cheatham, Jr., A. L. Dean, Jr., "Preliminary Des-
cription of the Translator Generator System-I", CAD-64-3-SD,
Computer Associates, Inc., April 1964.

2. R. A. Brooker and D. Morris, "An Assembly Program for a Phrase
Structure Language", The Computer Journal. vol. 3 (1960), p. 168.

3. T. E. Cheatham, Jr., A. L. Dean, Jr., A. T. Dean, S. A. Schuman,
"Preliminary Description of the Translator Generator System-II",
CA-64-1-SD, Computer Associates, Inc., August 1964.

4. T. E. Cheatham, Jr. and Kirk Sattley, "Syntax-Directed Compiling",
AFIPS Conference Proceedings Vol. 25, SJCC, Spring 1964, p. 31.

5. T. E. Cheatham, Jr. and S. Warshall, "Translation of Retrieval
Requests Couched in a Semi-Formal English Like Language", Comm.
ACM, Vol. 5, No. 1, January 1962, p. 34.

6. R. W. Floyd, "Syntactic Analysis and Operator Precedence", Jnl.
ACM, Vol. 10 (1963), p. 316.

7. E. T. Irons, "A Syntax Directed Compiler for ALGOL-60", Comm. ACM
4 (1961), 51-55.

8. B. M. Leavenworth, "FORTRAN IV as a Syntax Language", Comm. ACM,
Vol. 7, No. 2, February 1964, p. 72.

9. R. M. Shapiro and L. Zand, "A Description of the Input Language for
the Compiler Generator System", CAD-63-1-SD, Computer Associates,
Inc., June 1963.

10. S. Warshall, "A Syntax Directed Generater", Proc. EJCC, 1961,
Macmillan & Co., 1961.

11. S. Warshall and R. M. Shapiro, "A General Purpose Table Driven
Compiler", AFIPS Conference Proceedings Vol. 25, SJCC, Spring, 1964,
p. 59.

'.

■ ■ ■» - —'I

AMBIT: A PROGRAMMING LANGUAGE

FOR ALGEBRAIC SYMBOL MANIPULATION

by

Carlos Christensen

00

I

CM
<-(

I
CM

CA-64-4-R

October 15, 1964

The research reported in this oaper was sponsored in part by
the Air Force Cambridge Research Laboratories, Office of Aero-
space Research, under contract AF19(628)-419, and by the
Rome Air Development Center, under contract AF30(602)-3342.

- j l m mmmmmtmit^äi

I

ABSTRACT

This paper defines a programming language system called AMBIT

(Algebraic Manipulation By Identity Translation). The AMBIT

language is intended for the precise description of the operations

of mathematics in general, and programs in the languages are

suitable for efficient compilation and execution by an automatic
computer. The language is distinguished by its adherence to an

important portion of the conventional notation of algebra, the

"identity". AMBIT uses the "identity" to express in a single

linguistic structure an arbitrarily complex sequence of elementary
symbol-manipulation operations, Just as FORTRAN and ALGOL use

the "formula" to express in a single linguistic structure an arbi-

trarily complex sequence of arithmetic operations. Thus AMBIT

attempts to serve algebra as FORTRAN and ALGOL serve arithmetic.

CONTENTS

1. Introduction 1
1.1. An Example from Conventional Algebra 2

1.2. The AMBIT System 4

2. An Example of AMBIT 6

2.1. The Data String 6
2.2. The Program 9

2.3. The Execution of the Program 12

3. A Formal Definition of the AMBIT System 14
3.1. The Data Language 15
3.2. The Programming Language .22

3.3. The Program Executer 29

4. On the Design of AMBIT 37

4.1. Three Important Properties of AMBIT 38

4.2. Words and Blanks 40
4.3. Dummies and Nan as 41

4.4. The Data Types 43

4.5. Extended Program Logic 44
4.6. The Computer Implementation of AMBIT 46

5. On the Extension of the AMBIT System 48

References 51

1

t-
(M

I

1. INTRODUCTION.

The AMBIT programming language arose from the decision to base the de-
sign of a programming language for mathematical symbol manipulation on the
conventional notation for the Identity. Given this objective, the design of a

suitable programming language Involved three major tasks: the definition of a

suitable representation for the data on which a program operates, the definition
of an algorithmic Interpretation of the identity, and the definition of a suitable

program logic to control the execution of the identities. These three areas of

design are closely related, and the design of the programming language required

extensive experimentation with the various options available. This paper is a

report of this experimentation; it consists primarily of the definition of the pro-

gramming system which was the result of the experimentation, but also includes,

where practical, a discussion of the criteria which dictated the final design.

The AMBIT system is designed for implementation on a computer and is

intended for the automatic performance of mathematical algorithms; but the com-

puter-oriented aspect of AMBIT has been suppressed to an unusual degree. With

the exception of a brief section on the computer implementation of AMBIT, this
paper will discuss AMBIT without reference to automatic computers. The AMBIT
programming language will be regarded as a language for the communication of

mathematical algorithms between human mathematicians, and the AMBIT system
will be regarded as a system for the execution of mathematical algorithms by a

human mathematician. The manual execution of an AMBIT program is a practical

undertaking for many non-trivial examples; it is practical because a human
mathematician regards the application of an identity to mathematical data as a

simple and natural action, even though the action performed may, in fact, con-

sist of a sequence of many elementary operations of symbol manipulation.

The area of application of the AMBIT system is not limited to elementary
algebra; and it is most certainly not limited to such simple algorithms as the
"multiplying-out" of an equation which has been chosen as the example for dis-

cussion in this paper. The design of AMBIT was based largely on the

experimental programming of a selected set of algorithms . These algorithms

were programmed and re-programmed as changes were made In the design of

the language, were manually executed for typical data, and were used as a

practical test of the facilities Included in the language. A brief mention of

the programs Involved In these experiments will suggest the scope of AMBIT.

Programs drawn from elementary algebra include programs for the "clearing

of fractions" from an equation, the "multlplying-out" of an equation, the sub-

stitution of an expression for a variable in an equation, and the canonical

ordering of factors and terms of an equation (as a preliminary to simplification

of the equation). Programs drawn from other areas of classical mathematics

Include a program for formal differentiation, programs for the union and inter-

section of sets and a program which tests a proposition of the predicate

calculus for theoremhood. Programs for general symbol manipulation include

three programs for syntactic analysis (each embodying a different technique)

and a program for non-trivial tree manipulation.

The AMBIT programming language resembles certain existing programming

languages for symbol manipulation in varying degree, to the extent that these

languages have approached the utilization of an algorithmic interpretation of

the Identity [1, 2, 3, 4] . The AMBIT language is distinguished from these lan-

guages by the fact that AMBIT is entirely and explicitly based on a notation for

the identity and uses the identity alone to specify virtually every test and

modification of the data on which an AMBIT program operates.

1.1. An Example from Conventional Algebra.

Consider, first, an example of algebraic symbol manipulation as it

might be performed by a human mathematician using conventional methods and

conventional notation. Suppose the mathematician is given the equation

(a+2.5My3-m)= 1 ...Eq. (1)

and is asked to produce an algebraically equivalent equation which is

"multiplled-out". The mathematician will quickly produce a result such as

CM
i-H

I

-^

3 3 (a x y +2.5 x y) -(ax m+2.5 x m) = 1 ...Eq.(2)

Suppose, however, that this result is challenged; that is, the mathematician
is asked to "prove" that eq. (2) is algebraically equivalent to eq. (1). Then
the mathematician might write down the identities

Ax(B±C) s AxB±AxC ...Eq.(3)
(A±B)xC s AxC±BxC ...Eq.(4)

and then write the following derivation of eq. (2) from eq. (1):

1. (o+2.5) x (y -m) = 1
2. (a+2.5) x y - (a+2.5) x m = 1

3 3 3. (axy +2.5xy) - (a+2.5) x m =1
3 3 4. (axy +2.5xy) - (axm+2.5xm) ■ 1

Given
Line 1 and Eq. (3)
Line 2 and Eq. (4)
Line 3 and Eq. (4)

This derivation is, strictly speaking, merely the outline of a formal proof, a
proof which would make direct use of the set of axioms for the algebra involved,

However, the derivation does make clear the assumptions made (the identities)
and the steps performed (the successive lines of the derivation) in obtaining

eq. (2) from eq. (1).

The derivation Just given suggests an algorithm for the "multiply-out"
operation. Let the "forward application" of an identity be an application in

which the symbol ' = ' is interpreted as "may be replaced by" rather than "may
replace". Then an algorithm for "multiplying-out" a given equation may be

defined as follows:
1. Accept the given equation as the "current equation".
2. Attempt to modify the current equation by a forward application

of any one of the relevant identities (that is, eqs. 3 and 4) to

any expression in the current equation. If the attempt succeeds,
then repeat this step. Otherwise, continue to Step 3.

3. Accept the current equation as the desired result.

The simplicity of the algorithm Just given arises from the fact that the

"relevant identities" referred to in Step 2 embody in themselves an important

H

mti*

part of the strategy for the multiply-out procedure. That is, any application of

any relevant identity brings the current equation closer to the desired result;

and the failure of all relevant identities to apply to the current equation is a

sufficient condition for the completion of the procedure. Thus an identity not

only specifies a change in the current equation, but also controls, by its suc-

cess or failure, the logical flow of the algorithm.

1.2. The AMBIT System.

In order to define the AMBIT programming language, it will be useful to

postulate an AMBIT "system" which contains the AMBIT programming language

as one of its parts. The AMBIT system consists of three parts, as follows:

1. A data language for the formal representation of citations from algebra.

The data language is a set of symbol sequences, each of which is

called a "data string". 2
CO

2 . A programming language for the formal representation of algorithms for »

the manipulation of citations from algebra. The programming language

is a set of symbol sequences, each of which is called an "AMBIT pro-

gram" .

3. A program executer to modify a given data string under the guidance of a

given AMBIT program. The program executer (which may be a human

mathematician or an automatic computer) is constrained to follow certain

well-defined "execution rules".

The central feature of the AMBIT programming language is the "replace-

ment rule", which corresponds to the "identity" of conventional mathematical

notation. The replacement rule is defined so that, on the one hand, it closely

resembles in appearance and function the conventional identity and, on the

other hand, it has a sufficiently precise and simple interpretation to be effi-

ciently interpreted by an automatic computer. The replacement rule is the

principal device by which the modiiication of a given citation from algebra is

specified. The remainder of the AMBIT programming language is designed to

— . -._

*-**m*rwmMa*t>*

supply a suitable "algorithmic environment" for replacement rules. This algo-
rithmic environment permits the programmer to control the order in which

replacement rules are applied to a given citation fiom algebra, and to specify

unambiguously that portion of the citation to which a given replacement rule is

to be applied.

An "AMBIT programmer" is a programmer wno makes use of the AMBIT

system for the automatic performance of algebraic symbol manipulation.

Initially, the AMBIT programmer has an informal statement of the operation

which is to be performed (such as the phrase, "multiply-out the given equation"),

a collection of identities relevant to the operation (such as Eqs. (3) and (4),

above), and a citation from algebra to which this operation is to be applied (such

as Eq. (1), above). The use of the AMBIT system by the programmer then proceeds

as follows:

2 1 • The programmer writes an AMBIT program which incorporates the given

<^ identities into a context in which they have a formally defined meaning

and in which the "when and where" of their application to the given

citation is correctly specified.

2. The programmer makes minor changes necessary to convert the given

citation into an AMBIT data string.

3. The programmer submits the AMBIT program and the AMBIT data string

to an AMBIT program executer.

4. The AMBIT program executer modifies the data string under the guidance

of the AMBIT program and returns the program and the modified data

string to the programmer.

5. The programmer makes the minor changes necessary to convert the

modified data string into a conventional citation from algebra and accepts

this citation as his result.

The example considered in this paper will necessarily be a simple one. In gen-

eral, however, the data string is not restricted to a single equation, but rather

may be any collection ot mathematical information. Similarly, the AMBIT pro-

gram is not restricted to a simple operation, but may be a complex of simple

_ — .
■ mi ■ IHIIIII^ fl .

operations, each of which is applied to an appropriate part of the data string at

an appropriate time.

Section 2 of this paper will examine the execution of an example AMBIT

program in detail. The AMBIT program used in the example will be a formally

correct program, but the discussion of the program is intended to invoke an in-

tuitive understanding of the program rather than an understanding of the detailed

mechanics of the AMBIT system. Section 3 is a complete formal definition of

the AMBIT system. Section 4 is a discussion of the motivation behind the im-

portant aspects of the formal definition of the AMBIT system, and touches very

briefly upon the intended computer implementation of the AMBIT system.

Section 5 concludes the paper with a discussion of the proposed extensions of

the system defined in this paper.

2. AN EXAMPLE OF AMBIT.

The AMBIT system is a formally defined and computer-implementable

system; but the language used in the AMBIT system resembles the familiar lan-

guage of conventional algebra. It is therefore appropriate to begin the dis-

cussion of the AMBIT system with an informal discussion of the execution of an

example AMBIT program and to defer the formal definition of the AMBIT system

to a later section of this paper. Any conflict between the informal discussion

given here and the formal definition of AMBIT given later should, of course, be

resolved in favor of the latter. The AMBIT program discussed here performs a

very simple task ("multiplying-out" an equation) and is, in fact, an unimagina-

tive programming of that task. The program is appropriate for a detailed

introductory study, but it is not a good example of the power of the AMBIT system.

2.1. The Data String.

In this example of the execution of an AMBIT program, the given data

string will be

EQlA(((alpha+2.5)x((yt3)-m))=l)

mi, ii »ifc ^_

and the result data string will be

EQ2A((((alphax(yt3)) + (2.5x(yt3)))
-((alphaxm)+ (2 .5xm))) = 1)

These two data strings are eqs. (1) and (2) of the Introduction, expressed In a

notation acceptable to the AMBIT system. The conversion of a conventional

mathematical citation Into an AMBIT data string consists of three steps, as
follows:

a. Certain symbols (such as 'a') and certain arrangements of symbols (such
3

as 'y ') which are not available in the AMBIT system are replaced by

suitable equivalents (such as 'alpha* and 'ytS').

b. Equation labels (such as '...Eq. (1)' and '...Eq* (2)') and similar unique

Identifiers are expressed as AMBIT "pointers" (such as 'EQIA' and '£02A')
and are moved to the beginning of the symbol sequences they label.

c. Mathematical citation . are fully parenthesized.

Step (a) is a familiar requirement of computer-implementable systems. Step (b)
is a small matter. Step (c), however, is an unreasonable demand to make on the

user of the AMBIT system. The full parentheslzation of mathematical citations is
essential to the efficient processing of the citations by the AMBIT system; but

sub-programs can be written in the AMBIT programming language for the insertion

of (and the deletion of) redundant parentheses. The discussion of such sub-programs
exceeds the limited scope of the example considered here, and therefore it has

been assumed that the data string is input (and output) in fully parenthesized form.
In actual practice, the AMBIT programmer would have access to standard sub-

programs (or sub-routines), written in AMBIT, for the parentheslzation of input

data and the de-parenthesization of output data. Thus an AMBIT program would

begin by fully parenthesizing the input data string, would then perform the speci-
fied mathematical manipulations, and would conclude by removing redundant

parentheses from the result data string. .

The AMBIT system includes a large vocabulary of formally defined

English words, called "data types", which are used to denote those sub-sequences
-*

.

which frequently occur in a data string which is a citation from algebra. For the

example considered here, the following informal definition of five of these data

types will suffice:

a. pointer. This data type denotes an identifier followed by 'A'. (An

identifier is a letter followed by a sequence of letters and digits.) The

given data string above contains one pointer, namely 'EQIA'.

b. element. This data type denotes a number, a variable, an algebraic

operator, or a pointer. There are 12 elements in the given data string

above, namely 'EQIA', 'alpha', '+', '2.5', 'x', 'y', 'f', '3', '-', 'm',

' = '. and '1'.

c. phrase. This data type denotes an element or a parenthesized symbol

sequence. There are 17 phrases in the given data string, namely the 12

elements Just listed and '(alpha+2.5)', '(yt3)', '({y|3)-m)',

'((alpha+2.5)x((yt3)-m))', and ,(((alpha+2.5)x((yt3)-m)) = 1)'.

d. segment. This data type denotes an element or a single parenthesis.

The given data string consists of 22 segments, namely, 'EQIA', '(', '(',

'alpha', ' + ', etc.

e. sign. This data type denotes the symbol '+' or '-'.

8

I , Hi ■

2 .2 The Program.

In this example of the execution of an AMBIT program, the program

executed will be

8
.-i

i

i. oeqin

2.

3.

4.

5. SCAN:

6. MULT:

7.

8.

9.

10.

!

11.

12.

13. EXIT:

phrase dummy A, B, C, Q;

segment dummy seg;

sign dummy sign;

EQ1A Q — £02A Q ;

EQ2A Q -* EQ2A pA Q ;

if pA Ax(B sign C) — (AxB) sign (AxC)

or pA (A sign B)xC — (AxC) sign (BxC)

then go to SCAN;

pA seg — seg pA ;

if EQ2A Q pA — EQ2A Q

then ao to EXIT

else go to MULT ;

end

The line numbers which appear on the left are not a part of the program; they

have been inserted to facilitate this discussion of the program. The example

above is in all other respects a formally correct AMBIT program.

The program is designed to "multiply-out" a given equation in pre-

cisely the sense that this operation was defined in the Introduction. The two

identities given in the Introduction (eqs. 3 and 4) have been incorporated in

the program (Lines 6 and 7). These identities are embedded in a context which

partially defines their interpretation (Lines 1-3) and which controls their

application to the data string (Lines 4-5 and 8-13). The given equation

must appear in the data string as a fully parenthesized symbol sequence which

is preceded by the pointer 'EQ1A'. The data string may consist of much more

than this particular equation (for example, other equations preceded by other

pointers); but only that portion of the data string which is the equation pre-

ceded by 'EQIA' will be affected by the execution of the program.

1

,

Lines 1 - 3 of the example program are the "declarative part" of the pro-

gram. The declarative part does not cause the program executer (PE) to take any

action on the data string; rather, it provides the PE with information which is

necessary for the correct interpretation of the "imperative part", Lines 4-13,

of the program. Line 1 informs the PE that the identifiers 'A', 'B', 'C, and 'Q'

are "phrase dummy-variables", and that any appearance of any one of these

identifiers in the imperative part of the program is not to be interpreted literally

but rather as a designation for an arbitrary phrase in the data string. Similarly,

Lines 2 and 3 inform the PE that 'seg' and 'sign' are designations for an arbitrary

segment and an arbitrary sign, respectively. (The words "phrase", "segment",

and "sign" are used here in the special sense defined in Sec. (2.1), above.)

The imperative part of the program consists primarily of "replacement

rules". A replacement rule consists of two "string descriptions" separated by

the symbol '-*'. The string description to the left of '—' is the "citation", and £?

that to the right Is the "replacement". A replacement rule Instructs the PE to ^

find a sub-sequence of the current data string which Is described by the citation

and to replace that sub-sequence by a symbol sequence which Is described by the

replacement. For example, the replacement rule on Line 5 of the example pro-

gram Is Interpreted as follows:

Find a sub-sequence of the current data string which satisfies

the following description: ,EQ2A', followed by a symbol se-

quence which Is an arbitrary phrase and which Is hereby named

'Q'. Replace the symbol sequence just found with a symbol

sequence which satisfies the following description: 'EC^A',

followed by 'pA', followed by a symbol sequence which Is Iden-

tical to the symbol sequence previously named 'Q'.

Note that pointers (EQ1A, EQ2A, and pA in this program) are always Interpreted

literally in the string description.

The modification of the current data string specified by a replacement

rule may or may not be possible, according as the citation describes a sub-

sequence which currently does or does not exist In the data string. If the modl-

10

-~~ -~- . » ■ >«

fication Is possible, then the PE performs it and the replacement rule is said to
"succeed"; otherwise, the PE leaves the data string unmodified and the execution
of the replacement rule is said to "fail". The failure of a given execution of a
replacement rule is not necessarily a program error; on the contrary, the success
or failure of a replacement rule is f-oquently and legitimately used to control the
subsequent course of program execution.

The program executer normally executes the replacement rules in the
order in which they appear in the program; exceptions to this rule occur in two
ways. First, the "control imperatives" (such as '30 to SCAN') have the familiar
effect of interrupting sequential execution and sending the PE to the designated
program label (such as 'SCAN:'). Second, the logical connectives 'if', 'then',
'else', 'or' (and others which are not illustrated in the program) may cause cer-
tain replacement rules to be skipped over. The use of these connectives in
AMBIT is similar to their use in a conventional English imperative sentence;, how-
ever, certain popular ambiguities of conventional English are formally rescued in
AMBIT. For example, if A and B are two actions, and an agent is told, in con-
ventional English, "Do A or B", the agent may well inquire "Which shall I try to
do first? And if both A and B are possible, shall I do both? " According to the
conventions of AMBIT, the reply is "Always proceed from left to right. Never do
more than is strictly necessary. In this case, if both A and B are possible, do
A and skip B." The complete interpretation of the program logic of AMBIT is
given in Sec. (3), below.

The strategy of the ex. .nple program is primitive but convincing. The
equation label (pointer) 'EQ1A' is changed to 'EQZA1 in anticipation of a suc-
cessful outcome (Line 4). The pointer 'pA- is inserted to the left of the equation
(Line 5). The symbol sequence which immediately follows 'pA1 is tested to de-
termine whether or not it begins with a sub-sequence to which either of the
"multiply-out" identities is applicable (Lines 6 and 7). If an identity is appli-
cable, it is applied (causing the multiplying-out of part of the equation) and
'pA1 is moved back to the beginning of the equation (Lines 8 and 5). Otherwise,
'pA' is advanced to the right one segment in the equation (Line 9) and an end

II

11

1

test Is made. If 'pA' stands at the right end of the equation, then it is removed

from the equation (Line 10) and exit from the program occurs; otherwise, an

attempt is made to apply the "multiply-out" identities at the new position of

'pA'.

2.3. The Execution of the Program.

An annotated trace of the execution of Program 1 on the example given

data string will follow. Several abbreviations are used to shorten the statement

of the trace. "Line ^succeeds, giving" means "the replacement rule on Line i_

is attempted and succeeds, giving the following as the current data string:".

"Line ^fails" means "the replacement rule on Line i_is attempted and fails,

leaving the current data string unchanged." "Line i_is ignored" means "the re-

placement rule or control imperative on Line l^is skipped over in conjpliance

with the relevant program logic."

1. At the beginning of program execution, the data string is

EQlA(((alpha+2.5)x((yt3)-m)) = 1)

The PE begins reading the program at Line 1. Lines 1-3 cause no modi-

fication of the data string.

2. Line 4 succeeds, giving

E02A(((alpha+2.5)x((yt3)-m)) = 1)

3. Line 5 succeeds, giving

EQ2A pA(((alpha+2.5)x((yt3)-m)) = 1)

4. Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (for seg = '('),

giving
EQ2A(pA((alpha+2.5)x((yt3)-m)) = 1)

Line 10 fails. Line 11 is ignored. Line 12 sends the PE to Line 6.

5. Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (for seg = '(')
giving

EQ2A((pA(alpha+2.5)x((yt3)-m)) = 1)

Line 10 fails. Line 11 is ignored. Line 12 sends the PE to Line 6.

12

■>I^II -im^inimtmmi *m*m • *^-^r-^-****««»^i»«

7.

8.

a
00

I

6. Line 6 succeeds (for A = ,(alpha+2 .5)', B = '(yfa)', sign = '-', and

C = 'm')» giving

EQ2A((((alpha+2.5)x(yt3))

-((alpha+2.5)xm)) = 1)

Line 7 is ignored. Line 8 sends the PE to Line 5.

Line 5 succeeds, giving

EQ2A pA((((alpha+2.5)x(yt3))

-((alpha+2.5)xm)) = 1)

The following loop is executed three times:

Lines 6 and 7 faii. Line 8 is ignored. Line 9 succeeds (moving 'pA1

one segment to the right). Line 10 fails. Line 11 is ignored. Line

12 sends the PE to Line 6.

After the third execution, the data string is

EQ2A(((pA(alpha+2.5)x(yt3))

-((alpha+2.5)xm)) = 1)

9. Line 6 fails. Line 7 succeeds (for A = 'alpha', sign = '+', B = '2.5',

C = '(yjS)'), giving

EQ2A((((alphax(yt3))+(2.5x(yt3)))

-((alpha+2.5)xm)) = 1)

Line 8 sends the PE to Line 5.

10. Line 5 succeeds ('pA' is inserted immediately after 'EC^A'). The loop

described in Step 8, above, is executed 25 times (moving 'pA' 25 secr-

ments to the right). After the 25-th execution, the data string is

EQ2A((((alphax(yt3)) + (2.5x(yt3)))

-(pA (alpha+2.5)xm)) = 1)

and the PE is about to read Line 6.

11. Line 6 fails. Line 7 succeeds (for A = 'alpha', sign = '+', B = '2.5',

and C = 'm'), giving

EQ2A((((alphax(yt3)) + (2.5x(yt3)))

-((alphaxmM2.5xm)))= 1)

Line 8 sends the PE to Line 5.

^

<'

15

•diJt*.* «<•_.*«■

12. Line 5 succeeds ('pA' is inserted immediately after 'EC^A'). The loop

described in Step 8, above, is executed 40 times . After the 40-th exe-

cution, the data string is

EQ2A((((alphax(yt3)) + (2.5x(yt3)))

-((alphaxm)+(2.i)xm))) = 1 pA)

and the PE is about to read Line 6.

13. Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (moving 'pA' tc

the right of the last parenthesis in the equation). Line 10 succeeds,

givirg

EQ2A((((alphax(yt3))+(2.5x(yt3)))

-((alphaxm)+(2.5xm))) = 1)

Line 11 sends the PE to the end of the program (Line 13). The data string

is the multiplied-out equivalent of the input data string shown in Step 1

above. The program executer returns the AMBIT program (unchanged) and

the data string (multiplled-out) to the AMBIT programmer and expires. §

3. A FORMAL DEFINFION OF THE AMBIT SYSTEM.

This section will include formal definitions of the three parts of the

AMBIT system: the data language, the programming language, and the program

executer. The definition of the data language (that is, the set of symbol se-

quences each of which is a data string) is given by means of "data-language

formulae" (DP) and "data-language notes" (DN). Similarly, the definition of

the programming language (that is, the set of symbol sequences each of which

is an AMBIT program) is given by means of "programming-language formulae"

(PF) and "programming-language notes" (PN). Finally, the definition of the pro-

gram executer (that is, the agent which modifies a given data string under the

guidance of a given AMBIT program) is given by means of "execution rules" (ER).

The DP and the PF are "metalinguistic formulae", written in a notation

which is defined in the revised ALGOL 60 report [5] and which has been used in

the definition of the syntax of ALGOL 60 and several other programmin.j languages.

The DN and the PN are definitions and lestrictions which are expressed in con-

ventional English; they are essential because a set of metalinguistic formulae

»-I
i

eg

1*

alone is not adequate for the complete definition of either the da^a language or
the programming language. The ER are written in a notation which closely re-

sembles the "descriptive language for symbol manipulation" introduced by
Floyd in [l].

i
CM

3.1. The Data Language.

The definition of the data language given by the DF and DN below can
be summarized informally as follows:

a. A data string is a sequence of "data symbols". The set of data symbols

consists of the lecters (upper and lower case), the digits, the usual

arithmetic, relational, and logical operators (drawn from ALGOL 60), the

parentheses, the blank, and the eight special symbols which follow:

© © ? A true false 10

b.

c.

Parentheses may appear in the data string only in ordered nested pairs,

in accordance with the conventional use of parentheses in mathematics.

Certain sub-sequences of a data string, called "pointers", must be
unique in the data string.

The DF and DN below define the data language consistently with the

informal definition just given; but this is not their only function. The data
formulae also define supplementary metavariables, or "data types", which are

useful in the description of sub-sequences of a given data string. The defin-

ition of these supplementary metavariables is not essential to the definition
of the data language itself. For example, the definition of "mark" given by

DF.6 through DF.9 could be given as a single metalinguistic formula at the ex-

pense of the omission of the definitions of the supplementary metavariables

"logical", "relational", and "arithmetic". Furthermore, DF. 17 through DF.32

make no contribution whatever to the definition of the data language and their
sole function is the definition of supplementary metavariables. While the

supplementary metavariables are not essential to the definition of the data lan-
guage, they are essential to the formal definition of the AMBIT system as a whol«,

W

■ dm .A

'

Specifically, the AMBIT program executer (see Sec, (3.3)) is expected to know

and make use of the definitions of these metavariables in executing an AMBIT

program.

Note that the "blank" symbol Is explicitly mentioned In the metalin-

guistic formulae below and is formally defined by DN,5. Blanks may not appear

In the data language except as explicitly allowed by the DF. Thus, for example,

an "Identifier" (as defined by DF.16) must not contain a blank.

DF; Metalinguistic Formulae for the Data String.

1. (data string) :: = (blank) (string) (blank)

2. (string) :: = (phrase) (string) | (blank) (string)

3. (phrase) :: = (parenthesized string) | (element)

4. { parenthesized string) :: = ((string))

5 , (element) :: = (mark) | (word)

6. (mark) :: = (logical) | (relational) | (arithmetic)

7. (logical) :: = s I =» 1 V | A]-i

8. < relational) it■ <) «| «I ft| >| 0

9. (arithmetic):: ■ 1 - 1 x | / | t

10. (word) :: = (alphanumeric) (word)] (alphanumeric)

11. (alphanumeric) :: = (letter or digit) |

true I false 1 . | i« | ©| Gj ? | A

< letter or digit) :: = (letter) | (digit)

< letter) ::=a| b| c| d| e| f| g| h| l| j| k| l| m]

n| o| pi q| r] sj t| u| v| w| x| y| z\

A| B| C| D| E| F| G| H| I | j| K| L| M|

N| 0| P| Q| R| || T| Uj V| W] X| Y| Z

< digit) ::= 0|l|2|3|4l5|6|7|p!9

(pointer) :: = (Identifier) A | A

(Identifier) :: = (Identifier) (letter or digit) | (letter)

(value) :: =(number) | (Boolean)

(number) :: = (real) | (Integer)

12.

13.

14.

15.

16.

17.

18.

(empty sequence)

9
i

CM

#_

— ■»■I»

I

19 (real) :: = (sign) (unsigned real) | (unsigned real)

20. (integer) :: = (sign) (unsigned integer) | (unsigned integer)

21. (Boolean) ;; = true I false

22. (unsigned real) :: = (decimal) j0(exponent) | (decimal) |

(unsigned integer) i0 (exponent) | 10(exponent)

23. (decimal) :: = (unsigned integer) . (unsigned integer)]

(unsigned integer) . | .(unsigned integer)

24. (exponent) :: = (exponent sign) (unsigned integer) | (unsigned integer)

25. (unsigned integer) :: = (digit) (unsigned integer) | (digit)

26. (exponent sign) :: = 0 | ©

27. (sign) :: = +| -

28. (binary logical) :: = "I a| V IA

29. (segment) :: = (element) | (parenthesis)

30. (parenthesis) :: = (|)

31. (character) :: = (mark) | (alphanumeric)

32. (data symbol) :: = (character) | (parenthesis) | (blank)

DN; Notes on the Data String

1. The context of the data string (Restriction). A symbol sequence is a data

string only if it appears in a context in which the reader or the AMBIT pro-

gram executer expects to find a data string. This is necessarily an informal

restriction since the context of the data string is, in general, external to the

AMBIT system.

2. Complete instances (Definition).

Let M. be any metavariable defined by the DF or the PF. An Instance, ^, of

a symbol sequence is a "complete instance of an Mj' if and only If

a. s^is an instance of an M_, and

b. s, appears in a context in which it is not immediately preceded by a

symbol sequence x such that xs. is anJM, and

c. s. appears in a context in which it is not immediately followed by a

symbol sequence ^ such that s^ is an M.

^

17

db

arfbl»*..

Example. Consider the following symbol sequence:

sin x ■ (2.83+c)

In this symbol sequence, 'sin', 'x', '=•, '2.83', '+', and 'c' are the

only complete elements. The only complete segments are the complete

elements just named plus '(' and ')'. The only complete phrases are

the complete elements Just named and '(2.63+0)'. The only complete

strings in the symbol sequence are '2.83+0' (N.B.) and the entire

symbol sequence. The sub-sequence '83' is a complete integer; it is

also a number, but it is not a complete number. The sub-sequence 'si'

is an identifier and an element, but it is not a complete identifer or a

complete element.

3. Separation of pointers (Restriction). A complete instance of a pointer

must not appear in the data string unless it is a complete instance of

a word.

4. Uniqueness of pointers (Restriction). Two or more complete instances

of the same pointer must not be contained in the same data string.

Example. Consider the three symbol sequences which follow:

sin x = (2.83pA+c)

sin x = pA(2.83 pA+c)

sin x = (2.83 pA+c)

The first two symbol sequences are not legal data strings because they

violate DN.3 and DN.4, respectively. The third is a legal data string.

5. Special metavariables (Definition). Two of the metavariables which

appear in the DF, "emoty sequence" and "blank", are not defined by

the DF; they are defined here

a. Empty sequence. An empty sequence is a portion of a printed line

between two immediately aoiacent symbols which occupies no space

in the printed line. (Thus any number of empty sequences may be

imagined to exist between two odjacent symbols.) An empty sequence

is not a symbol, but (by deiminon) it is a symbol sequence.

lc

i

.— ...-.•.*_

I

b. Blank. A blank is an unmarked portion of a printed line which appears
between two marked portions of that printed line, provided that the
unmarked portion is wide enough to be clearly distinguished from the
interstice which, in all printed documents, appears between any pair
of "immediately adjacent" printed symbols. Further, wherever a
symbol sequence is interrupted at the end of a printed line and con-
tinued at the beginning of the next printed line (because of practical
limitations on the length of a single printed line), that interruption
is interpreted as a blank.

6. The identity of symbol sequences (Definition). Tv o symbol sequences
are identical if they consist of respectively identical symbols. Two non-
blank symbols are identical if, within the imperfections of ihe printing
mechanism in use, they are physically identical in shape and orientation.
Two blank symbols are identical in every case, even though they may
differ in physical width or one of them may arise from an end-of-line con-
dition; thus the representation of blanks is not formally controlled in the
AMBIT system.

7. The value of an identifier (Definition). The "value" of an identifier is
defined with respect to a particular data string, such as the data string
on which a given AMBIT program is being executed. Let ID be any identi-
fier, and let PTR be the pointer which is formed by appending 'A' to ID.
If there exists a sub-sequence of the data string which consists of a
complete instance of the pointer PTR followed by a blank followed by a
complete instance of an arbitrary phrase, PHR, then the phrase PHR is
the "value" of the identifier ID. If no such sub-sequence exists in the
data string, then the data symbol ' ? ' is the "value" of the identifier ID.
Example. Consider the following data string:

pA (a+qA 2.83 rA)sA ? ■

With respect to this data string, the value of 'p' is '(a + qA 2.83 rA)',
the value of 'q' is '2.83', and the value of 'r', 's', and 't' is '? '.

.

19

-A

I

.

8. Editing operations (Definition). The four editing operations "expandM,

"pack", "space fully", and "space legibly" are defined here. Each of

these editing operations modifies the symbol sequence to which it is

applied by the insertion or deletion of blanks .

a. expand. For every pair of immediately adjacent symbols which is

such that both symbols are alphanumerics, insert a blank between

the two symbols unless one (or both) of the symbols is contained

in a complete instance of a pointer.

b. pack. For every pair of symbols separated by a blank which is such

that both symbols are alphanumerics, delete the blank between the

two symbols unless one (or both) of the symbols is contained in a

complete instance of a pointer.

c. space fully. For every pair cf immediately adjacent, non-blank sym-

bols such that at least one of the svmbols is not an alphanumeric,

insert a blank between the two symbols.

d. space legibly. For every pair of symbols separated by a blank which

is such that at least one of the symbols is not an alphanumeric, de-

lete the blank between the two symbols provided that this deletion

increases the legibility of the symbol sequence. (The concept of

"legibility" is left undefined).

A symbol sequence is said to be "expanded", "packed", "fully spaced",

or "legibly spaced" if the application of the corresponding operation to

the symbol sequence does not result in the insertion or deletion of any
blanks.

Example. Consider the following symbol sequence:

sin x = (plA 2.83 + c)

Each of the four symbol sequences which follow is produced by the

application of one of the editing operations, as indicated, to the symbol
sequence Just given:

9
I

20

IN

s i n x = (plA 2 . 8 3 + c

sinx = (plA 2.83 + c)

sin x = (plA 2.83 + c)

sin x = (plA 2.83+c)

[expand]

[pack]

[space fully]

[space legibly]

Since the application of "space fully" caused no change in the given

symbol sequence, the given symbol sequence was "fully spaced",

9. The evaluate operation (Definiiion). The "evaluate" operation replaces

a symbol sequence by a symbol sequence which is as fully evaluated

as possible with respect to the arithmetic and Boolean operations defined

in ALGOL 60. This operation consists of the following steps:

a. If the symbol sequence is not a parenthesized string, then enclose it

in parentheses.

b. Replace every 'O' or '0' which immediately follows a ' ^ by '+'

or '-', respectively.

c. If Sees. (3.3) and (3.4) of the ALGOL 60 report [5] define an ALGOL

value (Boolean, integer, or real) for a parenthesized string contained

in the symbol sequence, replace that parenthesized string with the

ALGOL value enclosed in parentheses. If the ALGOL value is integer

or real, it must be written so that it begins with a sign and does not

have leading zeroes; however, the number of digits in the fractional

part of a real value (the "precision" of the value) is not specified

here (or in the ALGOL report), and may be chosen freely. Apply this

step repeatedly until it is no longer applicable.

d. Replace every instance of '+' or '-' which immediately follows an

instance of \o' by an instance of '©' or 'O' , respectively.

Example. Consider the three following symbol sequences:

((4-t-16)x ((.125+.375)12))

((a+16)x ((.125+.375)t2))

((trueVfalse) A-«5x3 = 10)

'

21

r

The result of applying the "evaluate" operation to each of these sym-

bol sequences is, respectively,

(5.0)

((a+16)x(.25))

(true)

3.2. The Programming Language.

The definition of the programming language is divided between meta-

linguistic formulae (PF) and informal notes (PN), Just as was the definition of

the data language. The metalinguistic formulae make use of three metavariables

which have already been defined; namely, "string" (defined by DF.2), "identi-

fier" (defined by DF.16), and "empty sequence" (defined by DN.5). The in-

formal notes refer to certain concepts already defined, such as that of a "com-

plete instance" (defined by DN.2).

The policy with respect to blanks is more liberal in the programming

language, and is not explicitly indicated in the PF. A blank may be inserted

or deleted anywhere in an AMBIT program except between two alphanumerics

without changing the syntax or semantics of that program. The only important

role of the blank is in the "string description", where it is used to denote a

blank in the data string.

Four of the PN (PN.2 - PN.5) define the declaration mechanism of

AMBIT, which is similar in many respects to that of ALGOL. Two of the PN

(PN.6 and PN.7) define the use of program labels, also similar to that of

ALGOL. The remaining PN define less familiar aspects of the programming

language.

PF; Metalinguistic Formulae for the Program.

1. (program) :: = (block)

2 . (block) :: = begin (declarative list) (imperative list) end

3. (declarative list) :: = (declarative statement) (declarative list) |

(empty sequence)

22

4.

5.

6.

I
CO

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(declarative statement) :: = (declarator) (identifier list)

(declarator) it« (data type) dummy | name | label | literal

(data type) :: =

string | phrase | parenthesized string | element | mark I

logical | relational | arithmetic | word | alphanumeric |

letter or digit [letter | digit | pointer | identifier |

value | number | real | integer | Boolean | unsigned real |

unsigned integer | exponent sign | sign | binary logical |

segment | character

identifier list) :: = (identifier) ,< identifier list) | < identifier)

imperative list) :: = (attached label) (imperative list) |

(imperative statement) (imperative list) | (empty sequence)

attached label) :: = (identifier) :

imperative statement) ::= (imperative);

imperative) :: = tr^ (implication) [< implication)

implication) :: =

if (disjunction) then (disjunction) else (disjunction) |

if (disjunction) then (disjunction) | (disjunction)

disjunction) :: = (conjunction) or (disjunction) | < conjunction)

conjunction) :: = (negation) and (conjunction) | (negation)

negation):: = not (primary imperative) | (primary imperative)

primary imperative) :: =

< block) | ((imperative)) | (simple imperative)

simple imperative) :: = (control imperative) |

(special procedure call) | (replacement rule)

control imperative) :: = cjo to (identifier)

special procedure call) it • (special procedure name) ((identifier))

special procedure name) :: = expand | pack | evaluate

replacement rule) :: = (string description) — (string description)

string description) :: = (string) | null

program symbol) :: = (reserved symbol) | (data symbol)

'

2^

24. (reserved symbol) :: = (data type) | » | ; | : | — | null |

begin | end | dummy | name [label | literal | if | then |

else | or_ | and | not | 30 to [pack | expand | evaluate

PN; Notes on the AMBIT Program.

1. The context of the program (Restriction). A symbol sequence is a pro-

gram only if it appears in a context in which the reader or the program

executer expects to find a program.

2. Declaring-instances of identifiers (Definition). Let ID. be a complete

instance of an identifier ID in a given AMBIT program. Let DOR denote

some declarator.

a. If ID. is contained in a declarative which begins with a complete

instance of the declarator DOR, then ID. is a "declaring instance"

of ID such that "ID. is declared DOR".

b. If ID is contained in an attached label, then ID is a "declaring

instance" of ID such that "ID is declared 'label'".

c. If ID. is contained in a pointer, then ID. is a "declaring instance"

of ID such that "ID. is declared 'name'".

d. In no other context is ID. a "declaring instance" of ID.

Note; In this and subsequent PN, mnemonic sequences of capital letters,

such as 'ID', 'DOP', etc., are used to denote sub-sequences of an

AMBIT program, such as identifiers, declarators, etc.

Example. In the example program in Sec. (2), the instances of 'A', 'B',

'C, and 'Q' on Line 1 are "declaring instances" of these identifiers,

and are all "declared 'phrase dummy'". The instance of 'seg' on Line 2

and the instance of 'sign' on Line 3 are "declaring instances" and are

"declared 'segment dummy'" and "declared 'sign dummy'", respectively.

The instances of 'SCAN', 'MULT', and 'EXIT' on Lines 5,6, and 13 are

"declaring instances" and are "declared 'label'". All instai jes of 'EQl,

'EQ2', and 'p' are "declaring instances" and are "declared 'name'".

These are the only "declaring instances" of identifiers in the example

program.

2U

v

m

3. Uniqueness of declaration (Restriction). Let ID. and ID« be two com-

plete instances of the same identifier, ID, such that ID. and ID« are

both declaring instances of ID. By PN.2, ID. will be declared DOR.

for some declarator DOR. , and ID« will be declared DOR« for some de-

clarator DOR«. If iD. and ID« are in the same AMBIT program, then

DOR. and DOR« must be the same declarator.

4. Declared instances of identifiers (Definition). Let ID. and ID« be any

complete instances of the same identifier, ID, suchthat ID. is, and
i

ID« is not, a declaring instance of ID. By PN.2, ID. will be declared

DOR for some declarator DOR. If ID« is contained in the smallest blodc

which contains ID., then ID« is a "declared instance" of ID such that

"ID2 is declared DOR".

Example. In the example program in Sec. (2), the instances of 'A', 'B',

'C, and 'Q' on Lines 4-13 are all "declared instances" of these iden-

tifiers and are all "declared 'phrase dummy'". The instances of 'seg' on

Line 9 and the instances of 'sign' on Lines 6-7 are "declared instances"

and are "declared 'segment dummy'" and "declared 'sign dummy'", res-

pectively. The instances of 'SCAN', 'EXIT', and 'MULT' on Lines 8, 11,

and 12 are "declared instances" and are "declared 'l?\ber".

5 . Existence of declaration (Restriction). Let ID, be a complete instance

of an identifier ID, such that ID, is not a declaring instance of ID. If

ID. is contained in an AMBIT program, then ID. must be a declared In-

stance of ID. Furthermore,

a. If ID is contained in a replacement rule, then ID must be declared

'literal^'name' or 'DT dummy', where DT is any data type.

b. If ID. is contained in a control imperative, then ID. must be declared

'label'.

c. If ID. is contained in a special procedure call, then ID. must be de-

clare i 'name'.

6, Uniqueness of labelling (Restriction). Two or more complete instances of

the same attached label must not be contained in the same AMBIT program.

\

2C>

7. Existence of labelling (Restriction). If a complete instance of an identi-

fier is contained in a control imperative in an AMBIT program, then a

complete instance of the same identifier must be contained in an

attached label in the same AMBIT program.

8. Citations and replacements (Definition). A sub-sequence of an AMBIT

program is a citation if and only if it is a complete string description

and it is contained in a replacement rale to the left of the symbol '—'.

A sub-sequence of an AMBIT program is a replacement if and only if it

is a complete string description and it is contained in a replacement

rule to the right of the symbol '—'.

9. Non-ambiguity of citations (Restriction), Unless a citation consists of

the symbol 'null', the citation must be such that the repeated application

of the following "underlining operation" would eventually underline the

entire citation. Let SEG be any complete segment in the given citation.

If any one of the following applies, then underline SEG together with any
adjacent blanks:

a. SEG is a pointer.

b. SEG is a parenthesis, the "matching parenthesis" of which has

previously been underlined.

c. SEG is not an identifier declared ' string dummy' and SEG is immed-

iately adjacent to a previously underlined portion of the citation.

d. SEG is an identifier declared 'string dummy' and SEG is both im-

mediately preceded by and immediately followed by previously

underlined portions of the citation.

The underlining should be done in such a way that it does not become

an integral part of the program and should be removed after the comple-

tion of the test.

Examples . Three examples of the application of the underlinging operation

to the citation of a replacement rule will be given here, Consider first the

citation of the replacement rule on Line 6 of the example program in Sec. (2),

2o

I

a
i

10.

namely,

pA Ax(B sign C)

By underlining operation (a), 'pA1 is underlined; then by seven successive

applications of (c) the entire citation is underlined. Thus the citation

satisfies PN.9. In fact, for any citation which does not contain an
identifier declared 'string dummy', PN.9 reduces to the requirement that

the citation either shall be 'null' or shall contain at least one instance

of a pointer. Consider next the replacement rule

(S + pAP)^(pAS + P)

where 'S* and 'P' are assumed to be declared 'string dummy' and 'phrase
dummy', respectively. The application of the underlining operations to

the citation of this replacement rule proceeds as follows:

)

)

(S + pA P
(S -H pA P
(S -^ pA P)

(S + pA P)

by one application of (a)

by three applications of (c)
by one application of (b)

by one application of (d)

Thus the citation satisfies PN.9. Consider finally the replacement rule

S + pA P — pA S + P

where 'S' and 'P' are declared as before. The citation of this replace-

ment rule does not satisfy PN.9, since no applications of underlining
operations will result in the underlining of the identifier 'S' (which has

been assumed to be declared 'string dummy'). Thus the replacement
rule is not a legal AMBIT structure.

Non-ambiguity of replacements (Restriction). Let "C-»R" be any replace-

ment rule (where C is a citation and R is a replacement). If a complete

instance of an identifier which is declared 'DT dummy' (where DT is any

J

I

-^

27

data type) is contained in R, then at least one complete instance of that

identifier must be contained in C.

11, Conservation of matching of parentheses (Restriction). Let "C-*R" be

any complete replacement rule which contains a complete instance of an

identifier declared 'segment dummy' where C is a citation and R is a re-

placement) . Examine the replacement rule ignoring everything which is

not a parenthesis or a complete instance of an xientifier declared 'seg-

ment dummy'. The replacement rule examined In this way must appear to

have a replacement which is identical to its citation.

Example. Consider the replacement rule on Line 9 of the example pro-

gram. When everything but parentheses and complete identifiers declared

'segment dummy' are ignored, this replacement rule rule becomes 'seg—

seg'. Thus this replacement rule satisfies PN.ll. The purpose of the

restriction of PN.ll is to exclude any use of an identifier declared

'segment dummy' to cause an illegal re-arrangement or replication of

single parentheses; note that an identifier declared 'segment dummy' is

the only type of identifier which can denote an unmatched parenthesis.

12 . Conservation of unigueness of pointers (Restriction). Two or more com-

plete instances of the same pointer or of the same identifier declared

'pointer dummy' must not be contained in the same replacement.

13. Plausibility of citations (Restriction). Two or more complete instances

of the same pointer or of the same identifier declared 'pointer dummy'

must not be contained in the same citation.

14, Convention for empty string descriptions (Restriction). A citation must

not be an empty sequence. A replacement must not be an empty sequence.

(The symbol 'null' is used as a string description which denotes an empty

sequence in the data string.)

28

•M

3.3. The Program Executer.

The program executer (PE) may be a human mathematician or an auto-

matic computer; in either case, the actions taken by the PE are fully defined

by the "execution rules" (ER) given in this section. The formalism used to

express the ER is less familiar than the formalism used to express the DF and

the PF, and is defined in the following paragraphs.

An ER consists of a single "scanning rule" followed by any number

(possibly zero) of "conditions" followed by any number (possibly zero) of
"actions". The scanning rule is expressed in a formalism which will be dis-

cussed below; the conditions and actions are expressed in informal language.

Headings and informal declarations appear above sub-sets of the execution
rules. A heading indicates the type of sub-sequence of an AMBIT program to

which a sub-set of the execution rules applies; for example, ER.2.1 and

ER.2 .2 appear under the heading "Block" and apply to that type of sub-se-

quence of an AMBIT program. The informal declarations contribute to the inter-

pretation of the scanning rules .

A scanning rule consists of a pair of "diagrams" separated by the symbol
'=>'. A diagram is a symbol sequence composed of "diagram variables", "dia-
gram literals", and blanks. A diagram variable is a sequence of capital letters

to which, in some cases, a subscript is appended. A diagram variable denotes

a specific typ« al sub-sequence of an AMBIT program in accordance with the
informal declarations which precede the ER in which the diagram variable appears.
For example, in ER.2.1, "DL" denotes a declarative list and "IL" denotes an im-
perative list in accordance with the declarations which precede ER.2.1. A dia-

gram literal is a reserved program symbol (see PF.24), a parenthesis, or one of
the symbols 'V, ,^1, •v1, or 'Ov. A diagram literal denotes an instance of

itself. Finally, a blank in a diagram denotes a blank or an empty sequence in an
AMBIT program.

A scanning rule is "applicable" if there currently exists a sub-sequence

of the AMBIT program under execution which is described by the diagram to the

'

29

left of '=>' in the scanning rule. To "apply" a scanning rule, replace the

longest sub-sequence of the program which is described by the diagram to

the left of '=>' by a symbol sequence described by the diagram to the right

of '=»'. The process of matching the diagram to the left of '^>, in the

scanning rule with a sub-sequence of the program will assign certain symbol

sequences as the "values" of the diagram variables which appear in that dia-

gram; these values are used in forming the replacement for ♦he sub-tequence

and are defined for the duration of a given execution rule.

The order in which the execution rules are applied to effect the exe-

cution of an AMBIT program is defined by the following algorithm:

1. Let ER. 1.1 be called the "current ER" and go to Step 3.

2. Let the ER which follows the current ER be the "current ER".

3. If the scanning rule in the current ER is not applicable to the program

under execution, then go to Step 2.

4. If the current ER has one or more conditions and any one of these

conditions is not satisfied, then go to Step 2,

5. Apply the scanning diagram to the longest symbol sequence of the pro-

gram under execution to which it is applicable.

6. If the current ER has one or more "actions", perform these actions in

the order in which they are given.

7. Go to Step 1.

In a well-formed program it will never occur that Step 2 will be attempted when

the "current ERI' is the last ER (ER.13.6); the PE cease to act and the algorithm

above terminates only as the result of the execution of ER.l .2 . The only modi-

fication of the program performed by the execution rules is the temporary in-

sertion of occasional parenthesis pairs (as by ER.5.1) and of the scanning

symbols 'V, 'jS\ '3', and '(H.'.

The foregoing discussion is adequate for a purely formal interpretation

of the ER. However, the ER are rules for the execution of an AMBIT program

%

-

CO

I s
A

which are not only sufficient as a formal definition but which are intended to

be convenient and natural for a human program executer. This aspect of the
ER will now be considered.

The fundamental action specified by the execution rules as a whole is

the advancing of a "control scanner", the symbol 'V', through an AMBIT pro-

gram. Since the scanner is a symbol which may not legally appear in an AMBIT
program, there is no danger of the scanner being confused with the program.

The scanner may be thought of as the "focus of attention" of a human program-
executer as he reads through and executes an AMBIT program. Thu first action

of the PE is to insert the scanner before the first symbol in the AMBIT program,
in accordance with ER. 1.1. The last action of the PE is to remove the scanner

from after the last symbol of the AMBIT program, in accordance with ER. 1.2.

Between these first and last actions, there; is always exactly one instance of
the scanner in the AMBIT program. The execution rules move this scanner
from left to right through the program, with the single exception of F.R.I 1.1,

which may cause the scanner to Jump backward (from right to left).

The scanner is immediately followed by the symbol '(R,' when It is moving

through a replacement rule. The '9\J indicates that the PE is "reading" the re-

placement rulu; that is, forming an interpretation expressed in conventional

English of the action specified by the AMBIT replacement rule. When the
scanner reaches the end of the replacement rule, the accumulated interpretation

of the replacement rule consists of two English sentences which specify a modi-

fication of the current data string. If the modification is currently possible,
ER. 13.3 causes the 'Ov which follows the scanner to be replaced by '£> ' (indi-

cating that the replacement rule has "succeeded") and causes the PE to perform

the specified modification of the data string. Otherwise, ER. 13.4 causes '(Kl,
to be replaced by '^ ' (indicating that the replacement rule has "failed") and
causes the PE to leave the data string unchanged.

On occasion during the execution of an AMBIT program, the scanner will

immediately follow a sub-sequence of the program which is a complete impera-
ti/e (or which would be a complete imperative if the scanner were replaced by a

I

•«•A». .

semicolon). On these occasions, the scanner is always followed by the symbol

'ß' or '3', according as the execution of that complete imperative has "suc-

ceeded" or "failed". In the preceding paragraph this convention was established

for the replacement rule; but it also holds for implications, disjunctions, con-

junctions, negations, primary imperatives, and special procedure calls, all of

which, according to PF.xl through PF.20, are imperatives. The "success" or

"failure" of these imperatives is compounded in much the same way that the suc-

cess of complex actions expressed in imperative English is compounded.

ER; Execution Rules for the AMBIT program.

Program. Let PROG be the AMBIT program which is to be executed.

1.1. PROG => V PROG

condition: No execution rule has previously been applied to the pro-

gram in this execution of this program.

1.2. PROG Vv? --> PROG oo

action; Expire. T

Block. Let DL be a declarative list. Let IL be an imperative list.

2.1. V begin DL IL end => begin DL V IL end

2.2. begin DL IL V end => begin DL IL end v£

Attached label. Let ID be an identifier.

3.1. V ID ; => ID ; V

Imperative Statement. Let IVE be an imperative.

4.1. IVE V^ ; => IVE ; V

4.2. IVE V^ ; ^> IVE ; V

action; Output an error message, such as "Execution-time error; the

imperative statement "IVE ,' is non-executable."

Imperative. Let IMP be an implication.

5.1. V try IMP -> try (V IMP)

5.2. try (IMP V^) => tr^f IMP ifi

5.3. try (IMP vJ?) => try IMP v£

 ■ ,f ■ ,. . I .I.,. I I».!» !

I

ii n m'ltmmmmmmmmmimmmmmmmmmnmtmmmmmmmmmmmmmmmmmduimmmt^m

6.6. V if D. then D, => if V D, then D«

6.7. if D. V>> then D2 => if Dj then V D2

6.8. if D1 v3 then D2 =*> if Dj then D2 vß

Disjunction. Let C be a conjunction. Let D be a disjunction.

7.1. 0 Vß or D ^> C or D V^

S 7.2. C v5 or D => C or V D

Conjunction. Let N be a negation. Let C be a conjunction.

8.1. N ?>> and C => N and V C

8.2. N VcT and C =» N and C vj

Negation. Let PI be a primary imperative.

9.1. V not PI =» not (V PI)
9.2. not (PI V^) => not PI V?

9.3. not (PI V^) => not PI y£

Primary Imperative. Let IVE be an imperative.

10.1. V (IVE) => (V IVE)

10.2. (IVE V?) =i> (IVE) Vß

10.3. (IVE vJ) =5> (IVE) V?

Control Imperative. Let ID be an identifier.

11.1. V go to ID => go to ID

action: Insert V' immediately after that sub-sequence of the pro-

gram under execution which is an attached label and which contains

a complete instance of ID.

Implication. Let D,, D«, and D3 be disjunctions.

6.1. V if D then D2 else D3 => if V D. then D2 else D-

6.2. if D, Vß then D2 else D- =5> if D. then V D2 else D,

6.3. if Dj W then D2 else D» =» if D. then D2 else V D-

6.4. if D. then D2 vß else D3 => if D, then D2 else D, vß

6.5. if D1 then D2 vJ else D3 => if D, then D, else D3 vS1

i

 -

1

Special Procedure Call. Let SPN be a special procedure name. Let ID be

an identifier.

12.1. V SPN (ID) => SPN (ID) Vp;

action: Let PTR be that pointer which is formed by appending 'A'

to the identifier ID. If there exists a sub-sequence of ihe current

data string which consists of a complete instance of the pointer PTR

followed by a blank followed by a complete instance, PHR, of any

phrase, then apply the "expand", "pack", or "evaluate" operation

(as defined by DN.8 and DN.9) to PHR according as SPN is 'expand',

'pack', or 'evaluate'; otherwise, leave the current data string un-

changed.

Replacement Rule. Let SD. and SD- be string descriptions. Let SEG be a

segment.

13.1. V SD1 - SD2 * (V(H. SDl -* SD2)

action 1; Apply the "space fully" editing operation to the current o

data string. (See DN. 8)

action 2; Prepare to construct an English-language interpretation

of the replacement rule; this interpretation will consist of two im-

perative English sentences. Begin the interpretation with "Find a

sub-sequence of the current data string which satisfies the following

description:".

13.2. (SD1 V'\ - SD2) ^ (SD1 - V^ SD2)

action: Continue the interpretation with "Replace the sub-sequence

of the current data string just found with a symbol sequence which

satisfies the following description:'' .

13.3. (SD1 -* SD2 vtfi) => SDl - SD2 Vß

condition: The just-completed interpretation specifies a modification

of the current data string which can be performed.

action 1: Perform the modification of the current data string specified

by the just-completed interpretation.

i

t a '•- • ' —^p—^^^.^^j^-^^—->i«^ - . | 1. ■ ■ . um i i - — —— m m ■■■Mm

action 2; Let PTR be any pointer such that two or more separate

instances of PTR are contained in the data string. (Multiple in-

stances of a pointer, if they exist, can only have been introduced

by the Just-executed replacement rule.) For each such PTR, delete

every instance of PTR from the data string except that instance (if

any)which was inserted by this execution of this replacement rule as

a direct result of a separate instance of PTR in the replacement part

of this replacement rule.

action 3; Apply the "space legibly" editing operation to the current

data string.

13.4 (SD1 - SD2 V#l) =?> SD1 - SD2 ^3

condition; The Just-completed interpretation specifies a modifi-

cation of the current data string which cannot be performed.

action; Apply the "space legibly" editing operation to the current

data string.

13.5 Wt{ SEG ^> SEG vH

3 action 1; If SEG is the first (leftmost) segment in a string descrip-

e* tion, then continue the interpretation with "a blank, followed by ";

otherwise, leave the interpretation unchanged.

action 2; Act on one of ^.he following;

a. If SEG is not an identifier, then continue the interpretation with

"'SEG', followed by ".

b. If SEG is an identifier declared 'literal', then continue the inter-

pretation with "'SEG', followed by".

c. If SEG is an identifier declared 'name', then continue the inter-

pretation with "a symbol sequence which is identical to the cur-

rent value of the identifier 'SEG', followed by".

d. If SEG is an identifier declared 'DT dummy' (where DT is a data

type) and if a complete instance of SEG has not been interpreted

previously in this execution of this replacement rule, then con-

tinue the interpretation with "a symbol sequence which is an

arbitrary DT and which is hereby named 'SEG', followed by".

*

-

e. If SEG is an identifier declared 'DT dummy' (where DT is a data

type) and if a complete instance of SEG has been interpreted

previously in this execution of this replacement rule, then con-

tinue the interpretation with "a symbol sequence which is

identical to the symbol sequence previously named 'SEG',

followed by".

action 3; Act on one of the following:

a. If SEG is an identifier declared 'string dummy', then continue the

interpretation with "ar. < mpty sequence or a blank according as

the string named 'SEG' is or is not an empty sequence."

b. If SEG is not an identifier declared 'string dummy', then continue

the interpretation with "a blank, followed by".

action 4; If SEG is the last (rightmost) segment in a string description,

then replace the ", followed by" with which the current interpretation

ends by "." (Thus completing an English sentence); otherwise, leave

the interpretation unchanged. 3

13.6. VÖ\ null * null vH *

action: Act on one of the following:

a. If this instance of 'null' is a citation, then continue the interpre-

tation with "the blank which appears at the right end of the data

string.".

b. If this instance of 'null; is a replacement, then continue the inter-

pretation with "a blank.".

Example. Consider the replacement rule on Line 5 of the example pro-

gram in Sec. (2), namely

EQ2A Q — EQ2A pA Q

In the course of executing this replacement rule, the PE would construct

the following English language interpretation of this replacement rule:

36

-._ -^ mmmjk.'^tf^

-J

CO
(0

i

4.

Find a sub-sequence of the current data string whicn

satisfies the following description: a blank, followed

by 'EC^A', followed by a blank, followed by a symbol

sequence which is an arbitrary phrase and which is

hereby named 'Q', followed by a blank. Replace the

sub-sequence of the current data string just round with

a symbol sequence which satisfies the following des-

cription: a blank, followed by 'LQ2A', followed by a

blank, followed by 'pA', followed by a blank, followed

by a symbol sequence which is identical to the symbol

sequence previously named 'Q', followed by a blank.

An informal interpretation of this replacement rule was given in Sec.

(2); the interpretation given here differs primarily in its attention to

the use of blanks in the data string.

ON THE DESIGN OF AMBIT.

The fundamental decision on which the design of the AMBIT system was

based was the decision to incorporate the conventional identity into a formal

programming language. This decision did not carry in itself all of the con-

straints necessary for the complete definition of a programming language. It

was necessary to develop an "algorithmic interpretation" of the identity, to

develop a suitable representation for the operand data, and to provide a control

environment for the execution of identities within a program. The design of the

AMBIT system has been a process of testing various design options, examining

the interaction of these options within an experimental programming language,

and finally developing general criteria for the acceptance or rejection of given

options. The design of AMBIT presented in Sec. (3) incorporates these design

decisions, but does not make clear the reasoning behind them. In this section,

the design criteria of the current AMBIT system will be discussed informally,

and some motivation "or the design of the AMBIT system will be provided.

57

4.1. Three Important Properties of AMBIT.

An AMBIT program is always such that its execution is unique, plausible,

and conservative. These properties of AMBIT will be defined in the following

paragraphs . They represent important aspects of the discipline which AMBIT

imposes on the use of the identity (replacement rule), a discipline which allows

the AMBIT programmer to make important assumptions about the execution of a

valid AMBIT program. These properties of AMBIT depend, to a large degree, on

the restrictions expressed in the DN and the PN; thus a discussion of these pro-

perties provides the motivation for the inclusion of those restrictions in the for-

mal definition of AMBIT. The properties discussed in the following paragraphs

do not depend solely on the restrictions cited in those paragraphs; for example,

they also depend in an important way on the requirement that parentheses match

within a string.

The execution of a program is "unique" in the following sense: The exe-

cution of a given AMBIT program on a given data string uniquely determines the

modified data string produced by the execution of the program (with exceptions

to be noted below). The uniqueness of program execution depends on the

uniqueness of execution of the individual simple imperatives contained in the

program. In this connection, the following assertion is made: The execution

of a given simple imperative within an AMBIT program on a given data string

uniquely determines (a) the position of the scanner 'V within the program im-

mediately after execution of the simple imperative and (b) the modified data

string produced by the execution of the simple imperative. The DN and PN con-

tribute to the latter assertion as follows: If the simple imperative is a replace-

ment rule, the uniqueness of ita execution depends on DN.4 (uniqueness of

pointers in the data string), PN.3 (uniqueness of declaration), PN.9 (non-

ambiguity of citations), and PN.10 (non-ambiguity of replacements). If the

sir.ple imperative is a control imperative, the uniqueness of its execution de-

pends on PN.6 (uniqueness of labelling). If the simple imperative is a special

procedure call, the uniqueness of its execution depends on DN.4 (uniqueness

of pointers in the data string) and on the uniqueness of the operations defined

^8

•m- — "*• -^ »<■»■#* rm»

1 N
5,1 CM

by DN.8 (editing operations) and DN.9 (the evaluate operation).

The exceptions to the uniqueness of program execution are two. First,

because the data string will be "legibly spaced" at the end of the execution

of an AMBIT progräm, the presence or absence of certain blanks is not deter-

mined by the formal definition of AMBIT. This ambiguity can be removed simply

by applying the "space fully" operation to the final data string. The ambiguity

is superficial, and allows the human program executer to dispense with blanks

which, from the standpoint of a human reader, are superfluous. Second, the

precision of "real" numbers calculated in accordance with DN,9 (the evaluate

operation) is not defined; this ambiguity is accepted in /MBIT for the same

reasons it is accepted in ALGOL 60: different program executers have different

facilities for the performance of arithmetic.

The execution of a program is "plausible" in the following sense: Given

any simple imperative in an AMBIT program, there exists some data string such

that if that data string were the current data string, the execution of the simple

imperative would succeed. (It is riot asserted that such a data string will ever

become available to the given simple imperative in the course of actual program

execution; the program as a whole may contain implausibilities, and the simple

imperative may be fore-doomed to perpetual failure.) The plausibility of the

replacement rule depends on PN.13 (plausibility of citations); the plausibility

of the control imperative depends on PN.7 (existence of labelling). The plau-

sibility of the special procedure calls depends on the obvious plausibility of the

operations defined by DN.8 and DN.9.

The execution of a program is "conservative" in the following sense: The

execution of a given AMBIT program on a given dä.a string never produces (as a

final result) a modification of the data string which is not Itself a data string.

Thus the execution of an AMBIT program conserves the important properties of the

data string: the limited character set, the matching of parentheses, and the

uniqueness of pointers . The only structures in an AMBIT program which modify

the data string are the replacement rules and the special procedure calls. In

this connection, the following assertion is made: The execution of a given re-

VJ

placement rule or special procedure call within an AMBIT program never pro-

duces (as a final result of the execution) a modification of the data string

which is not itself a data string. The conservative execution of a replacement

rule depends on PN.ll (conservation of matching parentheses), on PN.12

(conservation of uniqueness of pointers), and on "action 2" of ER. 13.3. which

removes duplicate instances of pointers temporarily inserted into the data string

during execution of a replacement rule. The conservative execution of a special

procedure call depends on DN .8 (the editing operations), which define operations

on the data string designed to avoid the destruction or creation of pointers in the

data string.

■

4.2. Words and Blanks.

The AMBIT system is not designed primarily for the manipulation of indi-

vidual symbols; rather, the atomic objects manipulated are the objects called

"elements". According to DF.5, an element is either a mark (which is a single

symbol) or a word (which is not, in general, a single symbol). The choice of

the element rather than the character as the atomic object in the data string

complicates the definition of AMBIT. It requires the active use of the blank (or

some other separating character) to separate two elements which are words and

which, if they were immediately adjacent, would merge into a single word.

Conventional algebra almost completely avoids the use of a pure separ-

ator such US the blank; it adopts an "operator grammar" such that two words

(usually operands) are always separated by a mark (usually an operator). On

the other hand, conventional English makes extensive use of the blank. The

AMBIT system attempts to extract advantages from both of these systems. A

blank is "significant" only when it occurs between two alphanumcrics, and is

thus available as a pure separator between two words just as in conventional

English. On the other hand, a blank between two symbols one of which is an

operator is "non-significant", and may be omitted or retained according to the

requirements of legibility, just as in conventional algebra.

UO

 -— -^r ^■*'m h., ^m

CO

I
CM

2
i

According to ER. 13, the program executer must begin the execution of

each replacement rule by applying the "space fully" operation to the data

string, and must conclude the execution by applying the "space legibly••

operation to the data string. This requirement considerably simplifies the

formal definition of the execution of a replacement rule. However, literal

compliance with this requirement demands much re-copying of the data string.

The human program executer will probably prefer to keep the data string in

"legibly spaced" form at all times and to imagine, rather than actually insert,

those blanks which would be inserted by the execution of the "space fully"

operation.

The 'expand' and 'pack' operations are necessary only if the AMPTT pro-

grammer decides to suspend the convention that an element is an atomic struc-

ture. The operation 'expand' may then be used to convert a single element into

a sequence of elements separated by blanks; and the operation 'pack' may be

used to re-assemble the sequence into a single element. These operations vould

be used, for example, in writing a program for the explicit, digit-by-digit addi-

tion of two numbers, or in writing a program to arrange a sequence of identifiers

in lexicographical order.

i

4.3. Dummies and Names»

The example program given in Sec. (2) does not illustrate certain impor-

tant aspects of the replacement rule. Two supplementary examples will be given

here. Consider first the leplacement rule

pA (A x A) -* pA (At2)

and assume that 'A' is declared 'phrase dummy'. If this replacement rule is

executed when the data string is (for example)

EQA ((alpha+pA((m+l) x (m+1))) = 6.0)

-

in

then the replacement rule succeeds and the modified data string is

EQA ((alpha+pA((m+l)!2)) = 6.0)

But if the replacement rule is executed when the data string is (for example)

EQA ((alpha+pA((m+l)x(m+5))) = 6.0)

then the replacement rule fails and the data string is not changed. This example

illustrates the use of multiple instances of the same "dummy variable" (an iden-

tifier declared 'DT dummy', where DT is a data type) in a single citation. It

depends on the fact that the second instance of 'A' in the citation is interpreted

by "action 2.e" of ER. 13.5 rather than "action 2.d".

As an example of the use of identifiers declared 'name', consider the

following imperative:

((aA a —- aA a or null — aA ?) and

aA a -* aA((b+16) x (ct2)) and evaluate (a))

and assume that the identifiers 'a', 'b', and 'c' are all declared 'name'. The

execution of this imperative will succeed for any data string whatever. Four

examples of the execution of this imperative follow; each is a pair of data

strings andrepresents the data string immediately before and immediately after

tne successful execution of the imperative.

1 . bA 4 cA(.125+.375) aA 1.2

bA 4 cA(.125+.375) aA 5.0

2. bA 4 cA(.125+.375)
bA 4 cA(.125+.375) aA 5.0

3. bA a cA(.125+.375) aA 1.2

bA a cA(.125+.375) aA ((a+16)x (.25))

4. cA(.125 + .375) aA 1.2

cA(.125 + .375) aA ((?+16) x (.25))

k2

-— i » mi

a
I

These data strings contain only symbol sequences which are relevant to the

imperative under consideration; in actual practice« the data shown above

would be part of a larger data string containing symbol sequences not affected
by the execution of this imperative.

The AMBIT imperative Just considered is equivalent to the following

ALGOL assignment statement'.

a := (b+16) x (ct2)

where 'a' and 'c1 have the ALGOL declaration 'real' and 'b' has the ALGOL de-
claration 'integer'. The example just given suggests the way in which arith-

metic can be performed in AMBIT. More important, it shows that an "assignment

statement" similar to that used in ALGOL 60 could be added to an expanded ver-

sion of the AMBIT language and could be defined in terms of existing AMBIT con-
structs .

The two examples considered in this section show that it is the identifier
declared 'name' and not the "dummy variable" which plays the role of the con-

ventional program variable in the AMBIT language.

4.4. The Data Types .

The most arbitrary aspect of the current design of AMBIT is the choice of
data types. It is not clear, for example, why there should be a data type

"unsigned integer" but no data type "signed integer". It has been necessary to
select a small set of data types and incorporate these as a fixed feature of the
AMBIT language. It is to be hoped that, in some future version of AMBIT, the
programmer will be able to define his own data types and use these in the de-
claration of identifiers.

The data types may be divided, in a rough way, into two groups: general

and mathematical. Typical general data types are "string", "phrase", "element",

and "segment". These data types have no special connection with mathematical

data, but rather apply to any data in the form of a parenthesized symbol sequence.

~4

«O

i
VMV*A*{

Typical mathematical data types are "number", "Boolean", "integer", and

"sign". These data types are of special value in describing mathematical

data. The distinction is not a perfect one; data types such as "letter" and

"digit" are general or mathematical, depending on the programmer's point

of view. One of the most important data types is "alphanumeric", which

determines the set of data symbols which "run together" to form single ele-

ments.

Five of the metavariables defined by the DF are not included in the

data types allowed by PF.6 for use in the declaration of identifiers. The

omitted metavariables are accounted for as follows: The metavariable "data

string" is omitted because it is not intended that the AMBIT programmer shall

cause the manipulation of the data string as a whole; in fact, the AMBIT pro-

grammer will usually regard the data string as an arbitrarily long symbol se-

quence the ends of which are not accessible to him. The metavariables
o

"decimal" and "exponent" are omitted because the machine representation of 5

real numbers would make the use of these metavariables as data types in a *)

program a source of inefficiency. The metavariables "parenthesis" and "data

symbol" are omitted because their introduction requires additional measures

to assure the conservation of the data string, and these complications are not

worth the small advantage in data-type vocabulary gained.

4.5, Extended Program Logic.

In ALüOL 60, the data test (the Boolean expression) and the data modi-

fication (the assignment statement) are distinct features of the language; and

program logic is limited to the use of implication (the "if.. .then..." structure

and the "if.. .then.. .else... " variant of this structure). In most cases, data

tests do not modify data and uata modifications do not test data. Early versions

of the AMBIT programming language followed ALGOL in this separation of data

test from data modification. But example programs written in those versions of

AMBIT were redundant and unclear. It was observed that while the separation

of data test and data modification was appropriate for the performance of arith-

kk

I

metic, it was not appropriate for symbol manipulation. Therefore a program

logic which abandoned this separation was adopted; and it is this "extended

program logic" which is incorporated in the present AMBIT language.

The replacement rule is the combined data test and data modification

facility of the AMBIT programming language. The replacement rule is a data

test because the "success" or "failure" of its execution, which depends on

the contents of the data string, may be used to modify the flow of control in

the program. The Boolean (two-valued) character of the replacement rule

suggested that a full complement of logical operators should be introduced

into the program logic of AMBIT. However, logical operators were introduced

into AMBIT only when their usefulness had been demonstrated by their use in

example programs. On this basis, negation, conjunction, disjunction, impli-

cation, and the 'try' operator were admitted to AMBIT program logic and

equivalence was excluded. The replacement rules thus connected by logical

operators specify modifications of the data string, and a convention for the

use of these operators is required to determine the order in which the replace-

ment rules are executed. The convention chosen is a familiar one. It not

only has some precedent in the interpretation of imperative English sentences,

but conforms to the extensively documented technique for the evaluation of

Boolean expressions in ALGOL 60 [6]. This convention is expressed in ER,6

through ER.9.

The AMBIT language does contain a pure data test, although its pre-

sence in the language is not obvious. A replacement rule which has a replace-

ment which is identical to its citation is a pure data test. If the sub-sequence

described by the citation of the replacement rule is present in the data string,

the replacement rule succeeds and the sub-sequence is replaced by an identical

sub-sequence. If the sub-sequence described by the citation is not present in

the data string, the replacement rule fails and no modification of the data string

is performed. In both cases, the net effect is to leave the data string unchanged

and to cause a branching of the flow of program control based on the contents of

the data string. Experimental programming in AMBIT has shown that the require-

ment for a pure data test is surprisingly rare.

45

— I.»...,*«».-■ * ■ ..»-

4.6. The Computer ImplemGntdtlon of AMBIT.

The AMBIT system has not been implemented for an automatic computer.

However, the design of the AMBIT system was carried out with careful attention

to the characteristics of existing computer hardware, and an efficient implemen-

tation of the system has been planned. A detailed discussion of this plan will

not be given here; instead, the representation of the data string in computer

memory will be described. The computer representation of the data string, to-

gether with an algorithm based on PN.9 (non-ambiguity of the citation) constitute

the basis for an efficient implementation of AMBIT.

The data string is stored in computer memory in the form of a "symmetric

threaded list". The list is composed of "cells", each of which represents a

single complete instance of a segment or a pointer in the data string. In the

memory of a typica^ computer (for example, the IBM 7090), each cell occupies

two adjacent memory locations. A cell which appears at locations_i_ancl ktl 0^

the computer memory consists of the following fields:

1. The Contents Field, C(i). This field contains a binary encodement of one

segment of the data string, or else an address through which that encode-

ment can be found.

2. The Left Link Field. L(i). This field contains the address of another cell,

namely that cell which contains the left neighbor of C(i).

3. The Right Link Field, R{i). This field contains the address of another cell,

namely that cell which contains the right neighbor of C(i).

4. The Parenthesis Link Field, P(i). This field is defined if and only if C(i)

is a parenthesis. It contains the address of the cell which contains the

matching parenthesis to C(i).

5. The Property Field, Pr(i). This field contains bits which indicate the syn-

tactic type (or "data type") of C(i).

i

U6

.- « mä**m**-ymt —_^, «■ mf»

ff

In general, the AMBIT program executer has no information about the location

of a particular cell in the computer representation of the data string. The ex-

ception is a cell which contains a pointer; such a cell is assigned a permanent

and recorded location by the AMBIT compiler, and the program executer has

direct access to the cell.

Consider the following datr» string

EQ3A (alpha x(pA m+6.0))=Z

the computer memory representation of this data string as a symmetric threaded

list may be diagrammed as follows:

EQ3A (^alpha rWöSi

In this diagram the Contents Field is shown literally (but not in a binary encode-

ment); the Left Link, Right Link, and Parenthesis L*nk Fields are shown by arrows;

the Property Field is omitted; and the direct accessibility of the pointers is shown

by arrows entering from outside the diagram.

The citation of a replacement rule is a description of a sub-sequence of

the data string which is to be located by the program executer. If it were neces-

sary for the executer to search the entire data string, segment by segment, for the

sub-sequence specified, then an efficient implementation of AMBIT would be im-

possible. However, in inspecting the data string the program executer not only

makes use of Right and Left Links to scan through the data string, but also uses

.M.c^Jy accessible pointers to enter the data string and uses parenthesis links

to skip across arbitrary sub-strings of the data string. This

U7

im*

facility permits an efficient implementation of the AMBIT system.

The type of list structure Just defined is well known. It most closely

resembles the "threaded list" of Perils and Thornton [7], but is "symmetric"

in the sense that it may be scanned with equal facility in either direction. It

resembles the "symmetric list" of Weizenbaum [8], but tt does not allow the

use of a single instance of a sub-list ir two separate lists. In practice, a

pair of cells containing a pair of matched parentheses might be merged into a

single cell, and pointers might not be linked directly into the data string; but

these are implementation tricks which, while they would allow a somewhat more

compact memory-representation of the data string, do not affect the definition

of the AMBIT language. The design of an AMBIT compiler is certainly not ob-

vious from the brief discussion of the data representation given here; neverthe-

less, the formal definition of AMBIT and the data representation given here

largely determine such a design.

5. ON THE EXTENSION OF THE AMBIT SYSTEM.

The AMBIT system defined in this paper is a relatively simple programming

system. To some extent, this simplicity has been achieved by the exclusion of

facilities which are clearly useful and necessary in a general system for symbol

manipulation. These facilities were excluded from the AMBIT system defined in

this paper in order to permit a complete and formal definition of the system; the

definition of a complete system for symbol manipulation would nave been either

excessively long or considerably less precise. Furthermore, the definition of a

complete system would include definitions of facilities which are not closely

related to the incorporation of an algorithmic interpretation of the identity in a

programming language, and which are thus beyond the ambit of this paper.

In this section, the characteristics of a complete system for symbol

manipulation based on extensions of the AMBIT system will be discussed. The

extensions considered are of two kinds: remedial and developmental. The re-

medial extensionsof AMBIT are facilities which are well known and which play a

useful role in familiar programming languages; important remedial extensions are

kB

.- —■ , i* am *

as follows:

(N

1. The introduction of "block structure" to control the scope of the declar-
ation of identifiers within a program, as in ALGOL 60. (Although block
structure exists in the current AMBIT, it is not fully exploited.)

2 . The introduction of a convention for the definition of self-contained pro-

cedures within a program, as in ALGOL GO.

3. The introduction of quotation conventions to allow the use of all available

symbols in the data string (in particular, the reserved program symbols,

'begin', ';', etc.).

4. The introduct en of a specialized facility for programming purely arith-

metic operations, based on the "assignment statement" of ALGOL 60 and

defined in terms of existing AMBIT facilities (see Sec. 4.3).

5. The introduction of subscripted identifiers (declared 'name') to permit the

convenient processing of arrays .

6. The introduction of a more general control imperative.

7. The introduction of input-output facilities for the transmission of all or

part of the data string to and from data locations external to the current

data string. These facilities should include operations to control the
two-dimensional format and spacing of data in its input or output form
(external to the system) and conversion operations to permit the input and

output of data which, in its representation extarnal to the system, is not
a legal data string.

The developmental extensions of AMBIT are facilities which are suggested by the
refinement or generalization of the current AMBIT system rather than the inspec-

tion of other programming languages. Possible developmental extensions are as
follows:

1. The introduction of notations for linking non-adjacent portions of the data

string which are more general than the parenthesis pair, and of notations

U9

..—

_

for entry into the data string which are more general than the pointer.

2. The introduction of a facility by which the programmer may define ad

hoc data types (by submitting the necessary metalinguistic formulae

with his program) and then use these data types in declaring dummy

variables (see Sec. 4.4).

3. The introduction of a notation similar to the replacement rule to specify

the transmission of data between the data string and data locations ex-

ternal to the data string, thus utilizing an identity-like notation for

input-output as well as internal operations on data.

4. The introduction of certain refinements in the notation for the replace-

ment rule, such as the use of the ellipsis syrubol '...' as a special

form of string dummy variable.

It is believed that the extension of AMBIT can be achieved in a way which will

emphasize rather than obscure the central importance of the algorithmic inter-

pretation of the identity in the design of the system.

ce

^, *. — - ^- ■ in» mm i 1

REFERENCES

.

5
A

1. Floyd, R, W. A descriptive language for symbol manipulation, J.ACM

8 (October 1961), 579-584.

2. COMIT Programmer's Reference Manual. (Second edition) MIT Press,

Cambridge, Mass., 1961.

3. Färber, D. J., Griswold, R. E., and Polonsky, I. P. SNOBOL, a string

manipulation language. J.ACM 11 (January 1964), 21-30.

4. Perils, A. J., and Iturriaga, Renato. An extension to ALGOL for manipu-

lating formulae. Comm ACM 7 (February 1964), 127-130.

5 . Naur, Peter (Ed.). Revised report on the algorithmic language ALGOL 60.

Comm ACM 6 (January 1963), 1-17.

6. Huskey, Harry D. and Wattenburg, W. H. Compiling techniques for

Boolean expressions and conditional statements in ALGOL 60. Comm

ACM 4 (January 1961), 70-75.

7. Perils, A. J. and Thornton, Charles, Symbol manipulation by threaded

lists. Comm ACM 4 (April I960), 195-204.

8. Weizenbaum, J. Symmetric list processor. Comm ACM 6 (September 1963),

524-544.

51

m>.S»i

ao
i

EXAMPLES OF SYMBOL MANIPULATION

IN THE AMBIT PROGRAMMING LANGUAGE

by
Carlos Christensen

Research Paper
CA-6504-011I

February 26, 1965

To be presented at the ACM 20th National Conference, Aug. 1965

The research reported in this paper was sponsored in part
by the Air Force Cambridge Research Laboratories, Office
of Aerospace Research, under Contract AF19(628)-419(and
by the Rome Air Development Center, under Contract
AF30(602)-3342.

.

«—..- —

n
Qo

i

ABSTRACT

This paper presents several examples of programs written
in a programming language system called AMBIT (Algebraic
Manipulation By Identity Translation). AMBIT is related
to list processing and algebraic symbol manipulation as
FORTRAN and ALGOL are related to numeric calculation.
AMBIT is based on a form of conventional notation, the
"identity". Just as FORTRAN and ALGOL are based on a
form of conventional notation, the "formula". The exam-
ples of AMBIT programs given in this paper Indicate the
sccpe of application of AMBIT and provide an introduction
to AMBIT programming. The paper contains a description
of AMBIT which is sufficient for an understanding of the
examples, but does not contain a complete and formal cld-
flnition of AMBIT.

" *

111

- ■■!>■

g

CONTENTS

1. Introduction 1

2. An Informal Definition of AMBIT 1

2.1 Data Types 2
2.2 AMBIT Equivalence 4

2.3 The Data String 6

2.4 The AMBIT Program 7

2.5 Simple Imperatives 3

3. Example Programs 12
3.1 Example 1: Clear Fractions 13
3.2 Example 2: Differentiate 15

3.3 Example 3: Form Union and Intersection of Sets 18
3.4 Example 4: Parenthesize 19

References 25

•--■*— -^

1. INTRODUCTION.

The AMBIT programming language has been applied to problems in

two areas. In the area of algebraic symbol manipulation, programs have

been written in AMBIT for elementary arithmetic, elementary algebra, for-

mal differentiation, set operations, and prepositional calculus. In the area

of list processing, a variety of programs have been writtan for syntactic
analysis, including both "top-down" and "bottom-up" analysis. This pro-

gramming effort was concurrent with the design of AMBIT and provided

practical guidance for that design. It is believed that AMBIT is also appro-

priate for the programming of heuristic processes, such as formal integration,

simplification of algebraic equations, and theorem proving.

A complete and formal definition of a version of AMBIT exists [l] .

This paper is intended to exhibit the important features of the AMBIT pro-«

gramming language without entering into a complete and formal definition

of the language. The paper contains a brief informal definition of AMBIT

(Sec. 2) and several examples of programs written in AMBIT (Sec. 3). The

informal definition of AMBIT depends on the example programs for the

illustration and clarification of difficult points. The reader may find it

useful to defer a detailed examination of Sees. 2.4 and 2.5 of the defini-

tion of AMBIT until he has read through the example programs of Sec. 3.

AMBIT has not yet been implemented for an automc.tic computer;

however, it has been shown that AMBIT programs can be compiled into

efficient computer programs. AMBIT is related to certain earlier programming

languages [2,3,4,5] which make use of an identity-like notation rather

than subroutine calls or recursive functions to specify symbol manipulation.

2. AN INFORMAL DEFINITION OF AMBIT.

The central feature of the AMBIT system is the "replacement rule".

A replacement rule is a command which specifies the modification of a

symbol sequence. It resembles the "identity" of conventional mathematical

notation, but its interpretation is extended and rendered explicit by means

of a formal definition. The remainder of the design of the AMBIT system

follows from the requirements of the replacement rule. That is, the effi-

cient use of the replacement rule requires that the symbol sequence on

which it operates have special syntactic properties; and the control of a

collection of replacement rules requires that a program logic exist in

which the replacement rules can be embedded.

The AMBIT system consists of three parts: a programming language,

a data language, and a program executer. The programming language is a

set of symbol sequences each of which is an AMBIT program; the data

language is a set of symbol sequences each of which is an AMBIT "data

string"; and the program executer is an agen* which operates on a data

string under the guidance of a program.

An AMBIT program describes operations on a single data object, the

data string. Execution of a program proceeds as follows: The program exe-

cuter inputs an AMBIT program and a data string; then the program executer Sg

performs successive modifications on the data string by reading through the ^

program and obeying the replacement rules therein; and finally the program

executer outputs the given AMBIT program and the modified data string.

2. I Data Types .

The AMBIT programming language is a language for the description

of operations on symbol sequences. It is appropriate that a discussion of

AMBIT begin with the definition of certain formally defined names for the

symbol sequences which are to be manipulated. Each word in this formal

vocabulary for the description of symbol sequences is called a "data type".

Some of the data types used in AMBIT are as follows:

letter — any one of the 52 upper and lower case letters of the alphabet,

digit -- any one of the ten decimal digits.

Boolean -- either of the special symbols 'true' and 'false'.

alphanumeric — a letter, a digit, a Boolean, '.', ' ? ', or 'A'.

I

word — a sequence of one or mo^e alphanumerlcs

number — a sequence of symbols which contains one or more digits and,
optionally, a decimal point '.'.

identifier — a letter followed by a sequence of any number (possibly zero)
of letters and digits.

pointer — an Identifier followed by 'A' followed by any number (possibly
zero) of digits.

sign — '+• or '-'.

arithmetic -- a sign, 'x', 7'» or 't '.

relational — '<', '*', '=', '*', '>', or 'x'.

logical — '=', ,^,. 'V, 'A'/ or '-i'.

mark — an aHtnmetlc, a relational, or a logical.

character — an alphanumeric or a mark.

element — a word or a mark.

phrase — an element or '(' followed by a string followed by ')'.

segment — an element, ' (', or ')'.

string — a sequence of any number (possibly zero) of phrases and blanks.

blank — an unmarked space within a printed line or the break In a symbol
sequence which occurs In passing from one line of printing to the
next.

The character set Implied by the definitions above consists of 85 non-
blank symbols and the blank. In a computer Implementation of AMBIT, the
size of the character set might be reduced by replacing some of the symbols
with key identifiers and eliminating lower case letters. On the other hand,
for applications other than those discussed In this paper, the character set
and also the vocabulary of data types might be extended; in fact, the com-
plete definition of AMBIT [l] makes use of additional symbols and additional

data types. The selection of the character set and the vocabulary of

data types is somewhat arbitrary, and can be modified without a funda -

mental change in AMBIT.

Note that the definition of the data type "string" given above

specifies indirectly that a string shall not contain parentheses unless

those parentheses occur in "matched" pairs. This assertion follows

from the fact that '(' and ')' can only be introduced into a string in

matched pairs as the first and last symbols, respectively, in a phrase.

Thus the term "string" is used in a special sense in this paper and in

AMBIT, while the term "symbol sequence" is used informally to designate

any sequence of any symbols .

Note further that the data type "string" can designate an empty

symbol sequence. Thus it is possible to imagine the presence of a

string (in the form of an empty sequence) between any two adjacent sym-

bols in a symbol sequence. The data type "string" is the only data type

which can designate an empty sequence. ci

Some additional terminology will be necessary. A "separate in-

stance of an identifier" is an instance of an identifier which is not

embedded in a longer sequence of alphanumerics. A "separate instance

of a pointer" is defined in the same way. For example, the symbol se-

quence 'l+a hc&=3' contains two instances of a pointer, 'bcA' and 'cA',

but only one separate instance of a pointer, 'bcA'; similarly, it contains

four instances of an identifier, 'a1, 'b', 'be', and 'c', but only one

separate instance of an identifier, 'a'.

2.2 AMBIT Equivalence.

In order to describe the manipulation of symbol sequences, it is

necessary to have some way of comparing symbol sequences to determine

whether, in some sense, they are equivalent. A simple equivalence re-

lation between symbol sequences would be one which required them to

consist of the same symbols in the same order. The equivalence relation

f

I
CM

used in the AMBIT system, called "AMBIT equivalence" is somewhat more

complicated; specifically, it is designed to permit certain uses of the blank

to increase the legibility of a symbol sequence without affecting the formal
content of the symbol sequence.

Two instances of symbol sequences are "AMBIT equivalent" if and

only if it is possible to transform the first symbol sequence into the second
by the application of some combination of the following rules:

1. Delete a blank which separates two symbols in the symbol sequence

unless both symbols are alphanumerics.

2. Insert a blank between two immediately adjacent symbols in the

symbol sequence unless both symbols are alphanumerics.

3. Replace a blank by a larger or smaller blank.

It follows from the definition Just given tlrt the relation of AMBIT equiva-

lence is reflexive, symmetric and transitive.

Some examples of AMBIT equivalence follow. Let the following
symbol sequence be called "sequence A":

sin u = (2.83xv) + w

Sequence A is AMBIT equivalent to

sin u = (2.83 x v)+w

because two applications of Rule 1 (deletion of blanks), four applications

of Rule 2 (insertion of blanks), and one application of Rule 3 (expansion of
blanks) transform sequence A into the symbol sequence Just given. Sequence
A is not AMBIT equivalent to

sinu = (2.83xv) + w

because none of the rules permit the deletion of a blank between the two

alphanumeric symbols 'n' and 'u' in sequence A. Similarly, sequence A

is not AMBIT equivalent to

s in u ■ (2.8 3xv) + w

since the rules do not permit the insertion of a blank between either of

the symbol pairs 'si' or '83'.

2.3 The Data String.

The data string is that symbol sequence which is operated upon

by the program uxecuter during the execution of a given AMBIT program.

A symbol sequence is a data string only if it satisfies the following

restrictions:

Rl. The symbol sequence must be a string and must begin and end

with a blank.

R2. The symbol sequence must not contain two separate instances

of the same pointer.

R3. The symbol sequence must not contain an instance of a pointer

which is neither a separate instance of a pointer nor a sub-

sequence of a separate instance of a pointer.

These restrictions have important implications. According to R2, if a

program executer has a pointer in hand, then that pointer either uniquely

determines a certain position in the data string or else is totally absent

from the data string. According to Rl, if the program executer already

knows the position of a particular parenthesis in the data string, then

the program executer can uniquely determine the position of the matching

parenthesis in the data string; this follows from the fact that, according

to Sec. (2.1), parentheses exist only in matching pairs in a string. The

remaining restriction, R3, is less fundamental; it prevents a pointer from

being embedded in a sequence of alphanumerics which is not a pointer,

a circumstance which would be notationally unattractive.

n

i
CO

2.4 The AMBIT Program.
The general structure of the AMBIT program is derived from ALGOL

60. An AMBIT program consists of 'begin' followed by a list of "declara-
tive statements" followed by a list of "Imperative statements" followed by
'end'. Each imperative statement may be preceded by any number of
"attached labels" of the form 'ID:' where ID represents any identifier. The
declarative statements supply information about the identifiers used in the
imperative statements, and are consulted by the program executer whenever
this information is required. The execution of the program consists of the
sequential execution of the list of imperative statements except where the
execution of a "control imperative (see below) causes a departure from se-
quential execution.

A declarative statement consists of a "declarator" followed by a list
of identifiers followed by a semicolon. The declarator may be 'DT dummy',
'DT name', 'multiple DT name', or 'literal', where DT is any one of the data
types defined in Sec.(2.1) except 'blank*. If a declarative statement begins
with the declarator D, then each of the identifiers in the statement is said
to be "declared D".

An imperative statement consists of a "compound imperative" fol-
lowed by a semicolon. A compound imperative is composed of "simple
imperatives". A simple imperative specifies an operation on the data string
or a transfer of control within the program. It may be the case that, in the
course of program execution, the action specified by a simple imperative can-
not be performed. The program executer not only attempts to perform the
action specified by a simple imperative, but also assigns an "execution
value", namely 'true' or 'false', to the simple imperative according as the
attempt is successful or not.

A compound imperative is one of the following forms: 'SI', '(CI.)',
'notCIj', 'CllandCl2

,, 'C^orC^', 'If C^ then CI^, or 'if C^ then CI2

else CI3'; where SI is any simple imperative and CI., CI-, and CI, are any
compound imperatives. These forms are listed in order of decreasing prece-
dence; thus, for example, 'CI. and not OIL or CI ' means

'(CI. and (not CI?)) or CI~'. A compound imperative assumes an execution

value based on the execution values of its constituent simple imperatives in

accordance with the usual interpretation of the logical words 'not'.,., 'and't

etc.

The simple imperatives in an imperative statement are evaluated in

left-to-right order. However, if a simple imperative is encountered which

(on the basis of the execution values of the simple imperatives already exe-

cuted) cannot affect the execution value of the imperative statement as a

whole, then the simple imperative is skipped over rather than executed.

Thus the execution value of a particular simple imperative affects the flow

of control through subsequent simple imperatives. An execution value of

'false' is not acceptable for an imperative statement as a whole, and causes

the program executer to signal an "execution-time program error" before pro-

ceeding to the next imperative statement.

2.5 Simple Imperatives.

Three kinds of simple imperatives will be considered here, the

"control imperative", the "replacement rule", and the "existence Boolean".

The control imperative is of the form '30.^0 ID1, where ID is any identifier;

its execution causes transfer of control to that point in the program which

is preceded by the attached label 'ID:'. In a legal AMBIT program there

must, in fact, be exactly one such attached label; and it follows that the

execution value of a control imperative is always 'true'.

The replacement rule consists of a "citation" followed by tne special

symbol '•—' followed by a "replacement". Both the citation and the replace-

ment must be symbol sequences which satisfy the restrictions placed on the

data string (see Sec. 2.3). A replacement rule is executed by finding, if

possible, a sub-sequence of the current data string which is AMBIT equiva-

lent to the symbol sequence designated by the citation and replacing that

sub-sequence of the data string by a symbol sequence which is AMBIT-

equivalent to the syirbol sequence designated by the replacement. If th's

action is possible, then the action is performed and the replacement rule

I

has the execution value 'true'. If this action is not possible, the current

data string is left unchanged and the replacement rule has the execution

value 'false'. The execution of the replacement rule is subject to the fol-

lowing rules of interpretation:

i

Rl. A separate instance of an identifier ID which is declared 'DT dummy'

designates an arbitrary symbol sequence of data type DT. Two or

more separate instances of ID in a single replacement rule designate

two or more instances of the same arbitrary symbol sequence of data

type DT.

R2. A separate instance of an identifier ID which is declared 'DT name'

designates a symbol sequence which is the "current value" of ID.

The current value of ID is a symbol sequence S of data type DT which

is such that the current data string contains a sub-sequence which is

AMBIT equivalent to ' IDA S ' (note the initial and final blanks); or,

if no such S exists, then the current value of ID is ' ? '. For example,

let '?', 'b', 'c', and 'd* be identifiers each of which is declared

'phrase name', and let the current data string be

aA(ALPHA+bA 3.5 cA)

Then the current value-; of the four identifiers are '(ALPHA+bA 3.5 cA)',

'3.5', '? ', respectively.

R3. A separate instance of an identifier ID which is declared 'literal' is

interpreted literally.

R4. A "separate instance of an ellipsis" is a sequence of three periods

which is neither preceded by nor followed by a period. In a legal

replacement rule, the number of separate instances in the citation

and in the replacement must be the same. Let EC. be the j-th separate

instance of an ellipsis in the citation (counting from the left end of

the citation) and let ER be the J-th separate instance of an ellipsis in

the replacement (counting from the left end of the replacement). Then

EC. and ER are interpreted as if they were the only two instances of

an identifier declared 'string dummy' (see Rl, above).

R5. Let IDA be a separate instance of a pointer such that ID is declared

•DT name' or is not declared. Then IDA is interpreted literally.

R6. Let IDA be a pointer such that ID is declared 'multiple DT name'

v' ere DT is a data type. 8u h a pointer is called a "multiple

pointer". Let m be the largest integer such that a separate instance

of IDAm exists in the current data string; or, if no such integer

exists, let m = 0. Let n be the number of separate instances of IDA

in the citation of the replacement rule. Then the j-th separate in-

stance of IDA in the citation (counting from the left end of the cita-

tion) designates IDAi, where i is the integer (m-n+J). Similarly,

the j-th separate instance of IDA in the replacement (counting from

the left end of the replacement) designates IDAi, where i is the

integer (m-n+J). For example, let 'p' be declared 'multiple segment

pointer' and let the current data string be such that m=4. Then the

replacement rule

pA pA — pA pA pA

will be interpreted as

pA3 pA4 — pA3 pA4 pA5

R7. All symbols which are not included in a separate instance of an

identifier, an ellipsis, or a pointerare interpreted literally. Blanks

are always interpreted literally.

The execution of a replacement rule may tend to introduce into the data

string two or more separate instances of the same pointer, P. In this

case, any separate Instances of P which were not introduced under R5

or R6 by the current execution of the replacement rule are deleted from the

data string.

In order to be a legal AMBIT replacement rule, a replacement rule

must be unambiguous, conservative, and plausible. A replacement rule is

"unambiguous" if there exists no data string such that the execution of the

replacement rule on that data string could produce either of two distinct

modified data strings. A replacement rule is "conservative" if there exists

10

I

no data string such that the execution of the replacement rule on that data

string produces a symbol sequence which is not a data string. A replace-

ment rule is plausible if there exists at least one data string such that the

execution of the replacement rule on that data string has execution value

'true'. These restrictions are independent of the particular data string

on which an AMBIT program is actually executed; they are expressed as

restrictions on the syntax of the replacement rule in the full definition of

AMBIT [1] . All of the replacement rules in the example programs of this

paper satisfy these restrictions.

The existence Boolean consists of the special symbol 'B' followed

by a citat^n. The execution of an existence Boolean '3 C ', where C is

a citation, is identical to the execution of the replacement rule 'C-^C'.

Thus the existence boolean does not modify the data string but may be used

as a pure data test to control the flow cf the program. An existence Boolean

is legal only if the corresponding replacement rule is legal.

to

(N

11

J

3. EXAMPLE PROGRAMS.

This portion of the paper is a collection of examples of AMBIT

programs. The examples include programs for algebraic symbol manipu-

lation, list processing, and syntactic analysis. Each example program

is discussed according to the following outline:

Tne Problem -- The symbol manipulation process performed by the AMBIT

program is informally defined.

The Program — The AMBIT program is given. The lines of the program are

numbered sequentially along the left margin; these line numbers

are an expository device, and are not a part of the AMBIT program

itself.

Exposition — An interpretation of the program is given.

Example Problems — In each example problem, a pair of data strings is

given. The first data string of the pair is an initial date string

(input) for the program, and the second is the corresponding final

data string (output).

Trace of an Example Problem — For some of the programs a trace of the

execution of the program on an example data string is given.

Each line consists of an "execution history" and a copy of the

current data string. For example, the execution history '4f, ISt'

means "the simple imperative on Line 4 of the example program

was executed and had execution value 'false' (i.e.. Line 4 failed),

and then the simple imperative on Line 16 was executed and had

execution value 'true' (i.e.. Line 16 succeeded). This gave the

following as the current data string:". An execution history
,10x(4f, 160' means that the sequence enclosed in parentheses

was performed ten times.

•.

^

12

oo

I

f

3.1 Example 1; Clea: Fractions.

The Problem. Given an equation in suitable notation, transform the
equation into an algebraically equivalent equation which contains no

division operators or which contains only division operators which

cannot be cleared by general methods. Both the given equation and

the result equation will be fully parenthesized.

The Program.

1. begin string dummy S; phrase dummy A, B, C;

sign dummy sign; segment dummy seg;
GivenA(S) ■* GivenA(S pA) ;

if .:J / pA
then (A /pA B)=C — A pA =(BxC)

QT (A /pA B)sign C -* (A sign(BxC)) /pA B

2.
3. ENTER:

4. LOOP:
5.
6.

7.

8.
9.

10.

11.
12.

13.

14.

15.
16.
17. GlvenA(pA S) — Result A (S) gr

18. 30 IS LOOP; end

Exposition. The program incorporates ten identities for the clearing

of fractions (Lines 5-14). Each of these identities either eliminates

a division operator from the equation or moves a division operator one
level outward in the parenthesis structure of the equation. The appli-

cation of the identities is controlled by a scanning pointer, 'pA',

which moves from right to left through the equation. The following is

a line-by-line interpretation of the program:

SL (A /pA B)xC -* (AxC) /pA B

or (A /pA B)/C A /pA (BxC)

21 (A /pA B)tC (AtC) /pA (BfC)

ST A=(B /pA C) (AxC)=B pA

01 A sign{B /pA C) - ((AxC)sign B) /pA C

2£ Ax(B /pA C) -* (AxB) /pA C

or A/(B /pA C) (AxC)/B pA

or sign(B /pA C) -• (sign B) /pA C

21 seg pA — pA seg

else seg pA — pA seg |

15

Lines 1-2. Note that the identifier 'S' designates an arbitrary string;

that 'A', 'B', and 'C each designate an arbitrary phrase; that

'sign' designates an r.rbltrary sign; and that 'seg' designates an

arbitrary segment.

Line 3. Insert 'pA' at the right end of the given equation.

Line 4. If 'pA' is preceded by '/'» then proceed to Line 5; otherwise,

skip to Line 16.

Lines 5-14. Read through the ten clear-fraction Identities In the order

In which they are given. If an Identity which applies la found,

then apply the Identity, position 'pA' so that It Is to the rljht of

any '/' not yet Inspected, and skip to Line 17; otherwise, pro-

ceed to L*ne 15.

Line 15. The '/' which precedes 'pA' appears In a context from which

It cannot be cleared; abandon It, move the 'pA' one segment to

the left, and skip to Line 17.
o

Line 16. The pointer 'pA' was not preceded by '/ '; move 'pA' one segment **

to the left and proceed to Line 17.

Lines 17 - 18. If 'pA' has reached the left end of the equation, then de-

lete 'pA', identify the result, and exit. Otherwise, go to Line 4.

Example Problems. In example problems El and E2, no division operators

appear In the result equation; but In E3 a division operator appears In the

result as the principal operator of the argument of 'sin' because no general

rule exists for the clearing of such a division operator.

El. GlvenA(((a/3)+b) = (beta-10))

ResultA((a+(3xb))=(3x(beta-10)))

E2. GlvenA(((2.8xml)-((a/(b+2))xm2)) = ((sln(s+t))/(cos(t))))

ResultA(((((2.8xml)x(b+2))-(axm2))x(cos(t))) = ((b+2)x(sln(s+t))))

E3. GlvenA(((2/3)x(sln((l/m)-(l/n))))=Q)

ResultA((2x(sln(((lxn)-(mx)))/(m+n)))) = (3xQ))

!

Ik

Trace of Example Problem 1.

1. (input) GivenA

2. 3t GivenA

3. 4f,16t,17f,18t GivenA

4. 4f,16t,17f/18t GivenA

5. 4f.l6t,17fl18t GivenA

6. 4f,16t,17f>18t GivenA

7. 7x(4f,16t,17fl18t) ' venA

8. 4t.5f,6tl17f,18t GivenA

9. 4t.5t,17f>I8t GivenA

10. 8x(4f,16t,17f,18t) GivenA

11. 4f/16t GivenA

12. 17t (output) GivenA

(((a/3)+b) = (beta-10))

(((a/3)+b) = (beta-10) pA)

(((a/3)-i-b^(beta-10 pA))

(((a/3)+b) = (beta- pA 10))

(((a/3)+b) = (beta pA -10))

(((a/3)+b) = (pA beta-10))

(((a /pA 3)+b) = (beta-10))

(((a+(3xb)) /pA 3) = (beta-10))

((a+(3xb)) pA =(3x(beta-10)))

((pA a+(3xb)) = (3x(beta-10)))

(pA (a+(3xb))=(3x(beta-10)))

((a+(3xb))=(3x(beta-10)))

3.2. Example 2; Differentiate.

The Problem. Given an input data string of the form 'Given^cKsJAUvar))',

where s is a fully parenthesized algebraic equation and var is a variable,

carry out the indicated differentiation and return the result as the output

data string.

11

•^

The Program.

1. begin string dummy s; phrase dummy u, v;

2. number dummy const; word dummy var;

3. multiple phrase name p; phrase name x;

4. literal d;

5. ENTER: GivenA(d(s)/d(var)) -* GivenA pA(s) xA var ;

6. DIP: pA(u = v) — (pA u = pA v) or

7. pA(u sign v) — (pA u sign pA v) or

8. pA(u x v) — ((pA u x v) + (u x pA v)) or

9. pA(u / v) -* (((pA u x v)-(u x pA v))/(v|2)) or

10. [etc.]

11. pA(s) — (d(s)/d(x)) or

12. pA const —■ 0 or

13. pA x — 1 or N — o
14. pA var — (d(var)/d(x)) ; J

15. if -^ PA then go to DIF;
16. GivenA(s) xA var — Re suit A (s) ; end

Exposition. A number of programs for formal differentiation have appeared

in the literature; it has been a popular example of recursive programming.

Differentiation is included here because the recursion which is appropriate

to the problem is performed by means of a "multiple pointer", namely 'pA1,

rather than by recursive execution of the program. A line-by-line inter-

pretation of the program follows; throughout this interpretation, the letter

'm' designates the largest integer such that a separate instance of 'pAm'

exists in the current data string (See R6 of Sec. 2.5).

Lines 1-4. (The necessary declarations of identifiers are noted.)

Line 5. Select the equation to be differentiated by 'pAl'. Save the var-

iable of differentiation as the "current value" of the identifier 'x'

(See R2 of Sec. 2.5).

16

Lines 6-9. The pointer 'pAm' selects an expression which has a binary

operator. Differentiate the expression and select its operands by
by 'pAm' and 'pAr', where r=m+l.

Line 10. (The 'etc.' represents additional identities for the differentiation

of a unary sign, an exponentiation operator, trigonometric functions,
etc.)

Line 11. The pointer 'pAm' selects an expression for which no differentia-
tion rule has been supplied. Indicate the required differentiation

and delete 'pAm' from the data string.

Lines 12-14. The pointer 'pAm' selects an elementary operand which is
a constant, the variable of differentiation, or some other variable.

Differentiate the elementary operand and delete 'pAm' from the data

.. string.
f J Lines 15-16. If the pointer 'pAm' (for some m>0) exists in the data string,

then go back to Line 6; otherwise, discard the variable of differentia-

tion, identify the result, and exit.

Trace of an Example Problem.

1. (input) GivenA(d(y=((t+4)xt))/d(t))
2. 5t GivenA pAl (y=((t+4)xt)) xA t
3. 6t GivenA(pAl y= pA2 ((t+4)xt)) xA t

4. 15t,6f,7f,8t GivenA(pAl y=((pA2 (t+4)xt) + ((t+4)x pA3 t))) xA t

5. 15t,6f...l2f,13t GivenA(pAl y=((pA2 (t+4)xt)+((t+4)xl))) xA t
6. 15t,6f,7t GivenA(pAl y=(((pA2 t+ pA3 4)xt) + ((t+4)xl))) xA |

7. 15t,6f...llf,12t GlvenA(pAl y=(((pA2 t+0)xt) + ((t+4)xl))) xA t

8. 15t,6f...l2f,13t GivenA(pAl y=(((l+0)xt)+((t+4)xl))) xA t

9. 15t,6f...l3f,14t GivenA((d(y)/d(t)) = (((l+0)xt)+((t+4)xl))) xA t

10. 15f,16t (output) GivenA((d(y)/d(t)) = (((l+0)xt)+((t+4)xl)))

17

3.3 Example 3; Form Union and Intersection of Sets.

The Problem. Given two parenthesized lists of elements each of which

represents a set, produce two more parenthesized lists which represent

the union and intersection of the given sets. An empty set will be repre-

sented by an empty parenthesis pair.

begin string dummy s.t; element dummy e;

phrase name b;

AA(s) BA(t) - AA(s) BA(t) UA(s) IA() ;

BA(...) -* BA(bA...) ;

it (...bA) — (...) then go to EXIT;

AA(...) -* AA(aA...) i

if (...aA) — (...) then UA(...) — UA(...b) and go to NEWB;

if_ aA b ^ b then IA(...) — IA(...b) and go to NEWB;

aA e — e aA and go to LOOPA;

bA e — e bA and gotoLOOPB;

end

Exposition. The program assumes that the given sets are named 'A' and 'B',

and it generates the union and the intersection as sets named 'U' and 'I'.

In one complete execution of the program, set B is scanned once and set A

is scanned once for each element in set B. Note that the identifier 'b' on

Line 7 designates the element which follows the pointer 'bA1 in the current

data string (see Sec. 2.5, R2). The ellipsis, '...', represents an arbitrary

string (see Sec. 2.5, R4).

Example Problems;

El . AA(m B28 1.3 Q) BA(1.3 n m)

AA(m B28 1.3 Q) BA(1.3 n m) UA(m B28 1.3 Q n) IA(1.3 m)

E2. AA() BA(1.3 n m)

AA() BA(1.3 n m) UA(1.3 n m) IA()

The Program.

1.

2.

3. ENTER;

4.

5. LOOPB:

6.

7. LOOPA;

8.

9. NEWA;

10. NEWB;

11. EXIT;

Exposition.

I

18

3.4 Example 4; Parenthesize.

The Problem. Given a symbol sequence enclosed in a pair of parentheses,

insert parenthesis pairs into the symbol sequence so that the resulting

symbol sequence is "fully parenthesized". This parenthesization will be

performed according to the method of operator precedence defined in a

paper by Floyd [6] . In addition to the given symbol sequence, a "prece-

dence matrix" must be included in the initial data string. This precedence

matrix is used by the programmer to specify the way in which parenthesiza-

tion shall occur.

The program given here is of interest both as a device for preparing

a data string for input to some other AMBIT program and as an independent

exposition of a method of syntactical analysis < The automatic parenthesiza-

tion of AMBIT input can be performed by other programs, including a more

special program which uses a one-dimensional array to specify operator pre-

cedence and a more general program which is driven by a complete BNF

grammar. The method used here appears to be an appropriate compromise

for a large class of symbol manipulation problems.
o
I

IN

'

-

19

ENTER:

LOOP:

RETURN:

The Program.

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. LOOKUP:

14. ROW:

15.

16.

17. COL:

18.

19.

20.

21. EXIT:

begin segment dummy si, s2, s3; phrase dummy phrase;

segment name C, R; multiple segment name L;

literal E, ERROR;
GivenA(...) — GivenA CA(RA ...) ;

GivenA CA(... RA) — GivenA ... and 30 to EXIT or

(phrase)RA — phrase RA and go to LOOP or

30 to LOOKUP;

3 relA < and CA si ... RA s2 -* LA si ... CA s2 RA or

3 relA = and CA si ... RA s2 — si ... CA s2 RA or

3 relA > and LA si ... RA s2 — CA si (...) KA s2 or

3 relA E and GivenA — GivenA ERROR and 30 to EXIT;

relA si — si and go to LOOP;
MatrixA (((...))...) -~ MatrixA(((colA.. .))rowA.. .);

if 3 rowA C or 3 rowA (?)

then rowA sl(...) — sl(relA ...) and go to COL

else rowA sl(...) — sl(...) rowA and go to ROW;

if 3 colA R or 3 colA(?)

then col A si — si and 30 to RETURN

else colA si — si col A and

relA si — si relA and 30 ^o COL;

end

!

Exposition. The initial data string must include a precedence matrix. This

matrix is unchanged by the execution of the program, but controls the par-
enthesization which is performed by the program. The following is a prece-

dence matrix which is typical and which is written in a form suitable for

immediate incorporation into the initial data string:

?0

Matrix A (

!

+

-

x

/

t
sin

cos

d

)

(?)

>

>

>

>

>

>

>

>

>

>

>

<

E

>

>

>

>

>

>

>

E

>

>

+

<

<

>

>

>

>

>

>

>

E

>

>

<

<

>

>

>

>

>

>

>

E

>

>

x

<

<

<

<

>

E

>

>

>

/ t sin cos d ((?))

<<<<<<<

<

<

<

E

E

>

>

>

E ■

> >

> >

<

<

<

<

<

<

>

>

E

>

>

<

<

<

<

<

<

E

E

E

E

E

<

<

<

<

<

<

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

<

<

<

<

<

<

<

<

<

E

E

<

<

<

<

<

<

E

E

E

E

E

For any ordered pair of segments, (A,B), the precedence matrix specifies a

"precedence relation", P(A,B). P(A,B) is that symbol which lies in the row

labelled A and the column labelled B. If there is no row labelled A, then
the row labelled '(?)' applies; and if there is no column labelled B, then the

column labelled '(?)' applies. The symbol thus specified is '<', •"•, >',
or 'E'.

The precedence matrix given above is only an example and möy be

modified to suit the requirements of the programmer. The entry for a parti-

cular precedence relation may be changed and rows and columns may be
added and deleted. However, changes in the rows and columns labelled

'(', ')', and '(?)' are subject to certain restrictions because of the special
role of parentheses in AMBIT.

~\

_

The way in which the matrix controls parenthesization can be des-

cribed informally as follows: Let A and B be any two segments in the

string being parenthesized such that A and B are either adjacent or are

separated by a parenthesized string. Then if PCA.B) is '<', a '(• must be

inserted after A; if P(A,B) is '=', no parenthesis need be inserted between

A and B; if PCA.B) is '>', then a ')' must be inserted before B; and if P(A,B)

is 'E', then a syntactic error in the string has been detected. These rules

are constrained by the requirement that, first, parentheses must be inserted

in matched, nested pairs and, second, a phrase must not be enclosed In a

parenthesis pair in the final result. The second requirement excludes re-

dundant parenthesization such as '(2.5)' or '((ALPHA-Z .5))'. The string is

fully parenthesized when no further parentheses can be inserted according

to these rules.

In the program, 'CA' and 'RA' are used to select all possible seg-

ment pairs to which the parenthesization rules apply. 'LA' is used to "re-

member" the position of a '(' until the position of a matching ')' is deter-

mined; and 'LA' must be a multiple pointer because several positions for

'(' may be determined before the position of a matching ')' is determined.

The precedence analysis algorithm occupies Lines 4 - 12 of the program

only; Lines 13-20 are a sub-program which places the pointer 'relA' in

front of the precedence relation for the segment pair selected by 'CA' and
•RA'.

Example Problems. In the following examples, PM and PM* are each used

to represent a symbol sequence identical to the precedence matrix which

was given above, except that in PM* the entries for P(sign,sign) and

P^x'/x') are each changed from '>' to ' = ' (a total of five changes).

El shows the parentnesization of the equation which was the input

data string of El for the Clear Fractions program. E2 and E3 show the

effect of a change in the precedence matrix; for certain operations, such

as simplification, the parenthesization of E3 is more convenient than that

of E2. E4 shows the complete processing of a problem in clearing fractions.

oo
o
eg

!

and exhibits four data strings. The first data string in E4 is the data string

supplied by the programmer; the second is the result of execution of the

Parenthesize program; the third is the result of the execution of the Clear

Fractions program (as per E2 of Clear Fractions); and the fourth is the result

of the execution of a "De-Parenthesize" program (not given in this paper)

and is the result returned to the programmer.

El. GivenA(a/3+b=beta-10) PM

GivenA(((a/3)+b)=(beta-10)) PM
E2. GivenA(axbxc+dxexf+gxhxi=j) PM

GivenA(((((axb)xc)+((dxe)xf)) + ((gxh)xi)H) PM
E3. GivenA(axbxc+dxexf+gxhxi=J) PM*

GivenA(((axbxc) + (dxexf) + (gxhNi))=j) PM*

E4. GivenA(Z.8xml-(a/(b-t-2))xm2=sin(s+t)/cos(t)) PM
GivenA(((2.8xml)-((a/(b+2))>.m2)) = ((sin(sft))/(cos(t)))) PM

ResultA(((((2.8xml)x(b+2))-(axm2))x(cos(t))) = ((b+2)x(sin(s+t)))) PM

ResultA((2.8xmlx(b+2)-axm2)xcos(t)=(b+2)xsin(s+t)) PM

Trace of Example Problem 1. .n the following trace, the symbol '<' is used

in the execution history to abbreviate " 'Sf, 'SV, and the sub-program
LOOKUP was executed and caused 'relA' to be positioned to the left of '<•

in the precedence matrix"; and ' = ' and '>' have similar interpretations. The

phrase '(skip operand)' is used to abbreviate the execution history '<, 8t, 12t,

>, 8f< 9f, 10t, 12t, 5f, 6t', which describes the advance of 'RA' over an

elementary operand.

GivenA(a/3+b=beta-10) PM
GivenA CA (RA a/3+b=beta-10) PM

GivenA LAl (CA a RA /3+b=beta-10)
GivenA CA ((a) RA /3+b=beta-10) PM

GivenA CA (a RA /3+b=beta-10) PM

GivenA LAl (a CA / RA 3^b=beta-10)

GivenA LAl (a CA /3 RA +b«=beta-10)

GivenA CA ((a/3) RA +b=beta-10) PM

1. (input)
2. 4t

3. <.8t,12t

4. >,8f,9f.l0t/12t

5. 5f,6t
6. <.8t,12t
7. (skip operand)
8. >,8f,3f,10t,12t

PM

PM

PM

9. < ,8t, 12t

10. (skip operand)

11. >,8f,9f,10t,12t

12. <,8t,12t

13. (skip operand)

14. <,8t,12t

15. (skip operand)

16. >,8f,9f,10t,12t

17. >,8f.9f,10t,12t

18. 5t,21t (output)

GivenA LAI

GivenA LAI

GivenA CA (

GivenA LAI

GivenA LAI

GivenA LAI

GivenA LAI

GivenA LAl

GivenA QA (

(a/3) CA + RA b=beta-10) PM

(a/3) CA +b RA =beta-10) PM

(a/3)+b) RA =beta-10) PM

((a/3)+b) CA = RA beta-10) PM

((a/3)+b) CA =beta RA -10) PM

((a/3)+b) LA 2 =beta CA - RA 10)

((a/3)+b) LA2 =beta CA -10 RA)

((a/3)+b) CA =(beta-10) RA) PM

((a/3)+b)-(beta-10)) RA) PM

PM

PM

GivenA (((a/3)+b) = (beta-10)) PM

I

2h

IN
I

IN

3
2

REFERENCES.

1. Christensen, Carlos. AMBIT: a programming language for algebraic

symbol manipulation. Computer Associates, Inc. (CA-64-4-R),

Waketleld, Mass. October 1964.

2. Floyd, R. W. A descriptive language for symbol manipulation.

J. ACM 8 (October 1961), 579-584.

3. COMIT Programmer's Reference Manual. (Second edition). MIT Press,
Cambridge, Mass. 1961.

4. Färber, D. J., Griswold, R. E., and Polonsky, I. P. SNOBOL, a string

manipulation language. J. ACM 11 (January 1964), 21-30.

5. Perils, A. J., and Iturriaga, Renato. An extension to ALGOL for manip-

ulating formulae. Comm ACM 7 (February 1964), 127-13Ü.

6. Floyd, R. W. Syntactic analysis und operator precedence. J. ACM 10
(July 1963), 316-333.

25

NEW PROOFS OF OLD THEOREMS
IN LOGIC AND FORMAL LINGUISTICS

by
Robert W. Floyd

CA-6505-14II
Research Paper

May 14, 1965

The research reported in this paper was sponsored in part by
the Information System Theory Project under Contract AF30
(602)-33 24 with the Rome Air Development Center.

I

New Proofs of Old Theorems In Logic and Formal Linguistics*
R. W. Floyd

CA-6505-141I
Computer Associates, Inc.
Wakefleld, Massachusetts

Summary

Brief review definitions of the Post correspondence problem, semi-Thue
systems, Post normal systems, and minimal linear grammars are given. Theorem
1 constructs, from any word problem in a semi-Thue system, an equivalent Post
correspondence problem, showing the undecldability of the general Post corres-
pofider.ce problem. Theorem 2 constructs, from any Post correspondence problem,

c? minimal linear grammar which is ambiguous exactly if the correspondence pro-
blem has a solution, showing the undecldability of the general ambiguity problem
(Other standard undecldability results on phrase structure grammars are implied).

Theorem 3 constructs, from any word problem in a seml-Thue system, an ambiguity
problem, combining the results of Theorem 1 and 2 by more direct means. Theor-
ems 4 and 5 show the equivalence of the word problems for semi-Thue systems

«^ and normal systems. N new results are presented, bn* standard proofs have
been shortened and constructions eliminated, combined, or simplified.

Definitions

The Post Correspondence Problem [8,1]
For any finite set of ordered pairs of non-null strings (c., d.), the question

whether there exist a number n > 0 and a sequence of indices 1., U,..,, 1 such

that c. c. ... c. = d. d. ... d. is the Post correspondence problem (PCP)
M 4 Hi ll l2 ln

for the given set of pairs. We define functions C and D on sequences of integers,

surh thai, if I = 1., 19, ..., 1 , then C(I) = c. c. ... c. and D(D = d. d. ...
L i n ll l2 ^ ll l2

d. . A solution of a PCP is then a non-empty sequence of integers I such that

C(I)=D(I).

* The research reported in this paper was sponsored in part by the Information
System Theory Project under Contract AF30(602)-3342 with the Rome Air Develop-
ment Center.

.

J

Semi-Thue Systems [4]

A Seml-Thue system (STS) is a finite set of ordered pairs of non-null

strings ai-*ßt' ft is said that y is derivable from x (x=>y) in a STS if there

are a number n>0 and strings z. ; z„,... ,z such that x=z1, y=zn» where for

each J in the range 1-J<n there exist strings u. and v. and a number i. for

which z. • u. a v. and z.+ 1 = u. ß. v.. We also say that z. ■»' z.+, . The

question whether x=*>y in a STS is called the word problem.

Normal Systems [7,4J

A Normal System (NS) is a finite set of ordered pairs a. P -♦ P 0. with a.

and ß. non-empty. It is said that y is derivable from x (x=^y) in a NS if there

are a number n>0 and strings z., z,.,... ,z such that x=z., y=z ,
X £ 11 X Xt

where for

each J in the range 1^1<n there exist a string u. and a number i. for which

z. - o. u., z.^ , = u. ^, . We also say that z. — zi + 1. Again, the question

whether x^y in a NS is called the word problem.

Minimal Linear Grammars [6]

A minimal linear grammar (MLG) is a phrase structure grammar [1, 3] with

one non-torminal character S, where each production is of the form S — uSv or

S — u, for terminal strings u and v. (Alternatively, it may be defined as a STS

where a. = S and each ß. contains at most one S. The sentences generated by

the grammar are those strings y for which S^>y and y contains no occurrences of

S.)

Theorem 1

For any STS 2 with word problem "x=*>y 7 " we may construct a PGP which

has a solution iff x^>y in £.

Proof: If the productions of £ are o. -• ß. (l^i^m) over vocabulary

V = {xk} (l^k^p), introduce the new characters | 1 * * and \k (l^k^p).

Gonstruct the PGP whose pairs are

——-■*»>■

1

(*, *)

(*, *)

(y \)
ak, xk)
(t-x*, H
H.syH)

0|i «j)

(nj)

tap

(n5)

(n6)

(n7/1)

2

where, l£ w = X, X, ... \v , w - X. X^ ... X. . The indices symbolized
Kl K2 t 1 2 t

by n,, n«» n, ,, n, 2, ... »n« m are assumed to be the consecutive Inte-
gers from 1 to 4 + 2p + 2m.

If, for some n^o, X=ZQ, Z. — z.+. or z. = z.+1 (0^J<2n), and z« = y
(these conditions are clearly equivalent to x*y) there is a solution I to the
correspondence problem such that C(I) = D(I) =

l~" z0 * il * z2 * ^3 • • • z 2n-l •i.H
To prove this, assume for any index sequences M.« i.« ...»1 and 1=^,» Jo»

... J that IJ represents the sequence 1., 1«». ..»lr# J,» Jo' '"^s an^ that

C (I) = c. c. ... c. and D(I) = d. d. ... d. . If w = X. X, ... X. ,
l| l2 lr 4 "l lr Kl K2 S

define

Ew=n3,k1
n3,k2 ••' n3.kt

^w= n4/k1
n4.k2 ... n4f. ,

C(E) = D(r) = w

D(Ew)=C(rw)=w1

and

so that

L

i
(

If z, = u a
J % M v^ and z

J'l
u ß. v., define

1 ij J

F4 - E n7 , E,

F. = "E no . B .
J u^ 8'iJ Vj

Then C(F) ■ u ßi v. ■ Z.+, and D(F.) ■ u. a, v. = z ; similarly C(F.) ■ z. + 1 and

D(T.) - z.. On the other hand, if z. ■ z.+,, define

F. =E J z
1

r -i

so that, as above, C(F) - z - z 1, D(F) - z., C(T) =■ z = z7+1, and D(T)

Now if L nc Fn n,, F, n, F0 n^ f. n, ... n« F0_ , n^ we have c(i) =

h«
5 l0 "2 '1 1 ^2 "2 *3 "1

H =h
2 s2n-l n6 P ,

"2 "3 "4 *•* "In " ' ~0 "1 "2 "3 ••• Z2n-1
y —| - D(I). Thus C(I) ■ D(Ui and 1 is a solution of the correspondence

Mr r r r

problem.

Conversely, one sees that any solution I of the correspondence problem

must begin with IK . In order for equal numbers of asterisks to occur in C(I) and

D(I), Ilg must occur in I, and the inital part of I through the first occurrence of

nß is itself a solution of the correspondence problem, because Ilg introduces the

first occurrence of "—| " in both C(I) and D(I). We may thus assume that I is of

the form nc I' II,-, where I' does not contain n,- or nc. Let I' = Gn Hn G, H. G '6' 6* ■0 "0 ^1 "1 ^2
H, H , G , where the H. are the occurrences in I* of indices n, and n«,

n-i n j |]
and the G. are sequences of other indices. One shows by induction on J that

z. + 1 or z. + . and D(G.) ■ z. or z., with x = z0, y = Z 0(0^

and z. . are of the form z. = v. v,

v, -♦ v/ , so that z. => z. + 1 and x =*• y.

.., where each z. n+1 J
'•• V ZJ+1=V1 V2 .-. v^withv^v^or

esi

- 4 -

i I n» ■nay

We conclude from Theorem 1 that any decision method for PCP's would
yield a decision method for word problems on STS's, so that the POP is in
general undecidable .

Theorem 2

There is no decision procedure to determine whether a minimal linear
grammar is ambiguous or not. (A grammar is said to be ambiguous if it generates

some sentence in two non-trivlally distinct ways) [2,3,5,6].

Proof: Given any PGP {(c^ d^} (l^i^m), construct the following MLG,
introducing the new characters |— * : —| and e. (I^i^m):

i

s — |—s—1
s -cisV
s - ci : ei *
s - l-s*H
s ^•••i
s - d1 : e1

Now each ambiguous sentence is (or contains a smaller sentence which is) of
both the forms

|— c. c. ... c : e * e *
*! "l V r 1T-1

..*e *H

|— dj dl ... dj : e1 * e * ...*e *H
1 '2 'r *r V-l 1

(B)

and thus represents a solution to the PGP; conversely, each solution to the PGP
generates a sentence of the form (A) using P., P2, and P«, which is also a

Davis [4] is an accessible source for a proof that the word problem for STS's,
and indeed for a particular well defined STS, is in general undecidable (recur-
sively unsolvable).

sentence of type (B) using P4, P-, and ?-. By separating the productions into

two distinct languages accordingly, we show the undecidability of non-empty

intersection, etc. [l]. To show that an ambiguous sentence must have both

forms (A) and (B), note that the innermost phrases of the sentence in both deri-

vations must contain the only colon in the sentence, and that once the inner-

most phrase of a derivat<on is recognized, each succeeding phrase is uniquely

determined by the next two characters on the right. Start from the central colon

of the ambiguous string, looking at the innermost phrases in the two derivations,

which must be c. : e * and d. : e., for some i, working outward phrase by phrase,

until one reaches |— and —| . Details are an exercise, based on the proof of

Theorem 3.

Theorem 3

For any STS 2 with productions {a. — ß.) (l^i^n) on vocabulary V ■
{X. } (l^k^p) and word problem "x^y?", we may construct a minimal linear

grammar. The grammar generates an ambiguous sentence exactly itx^y. (This

theorem also follows directly from Theorems 1 and 2)

Proof: Consider the grammar G whose productions are M
i

S -* ; y : *

S -* X.S e * (O^k^p), where Xn K K is taken to be ";,,u

o1 S e^ * (l^i^n)

<

S

• - l~sH
S - :

S

s
s

- Xk S * ek (O^k^p)

-► #4 • • e; (l^i^n)

- h x ; s * H

(P4)

'.•

We shall show that if y Is derivable from x by the sequence x = z. — z, -*
z,, £»...*•■ z = y, then there is an ambiguous sentence in G, of the form

P"~ Z« J Zn J • • • JZ I ti ^^ (1)

for some string H, and that conversely any ambiguous sentence of G contains
a phrase which is an ambiguous sentence of the form (1) with z. 4> z. . in Z,
x=z1, z =y, so that if G is ambiguous, y is derivable from x. The first and

A last four productions constitute the subsets G. and GB of G; the relation u^v,

for example, will mean that v is derivable from u within G..

For any string w over V,

I
Ä> wS E * w

Ä> wS * E w

byP,

byP,

(2)

(3)

where, if w ■ X^ X^ ... X^. Ew = e^ * ... * e^ * e^.

if zi A- zJ+1, with z] = Uj a^ vy zJ+1 - Uj ^ Vj,

Ä> z. S F *

^ Vl S * 'j

by (2) and P, .
3'1J

by (3) and ?7 .

(4)

(5)

where F. = E * e.' * E .
) VJ *) UJ

_, * * *
1 "'' z2 ~" •,* "* zn'

S^> Zj ; Zg ; • • • ; zn-1 S H *

S=^ z9 ; z, ; • •• | S- I * S

by (4) and ?2i0

by (5) and P6>0

(6)

(7)

where H = F^ * e0 * Fn.2 * • • • * e0 * F2 * e0 * Fj

. A -

■ >■«*»■ -—

I

If x=z1 and y=z„, then l n

S^> |— Zj ; z2 ; ... ; zn_1 ; zn : * H * —| by P4, (6), and P1

S%> |— Zj ; z2 ; ... ; i^j ; zn : * H * —| by Pg, (7), and P5

(8)

(9)

This sentence, then» has one derivation using only productions of G., and one

using productions of G»; it is clearly ambiguous.

The converse is more difficult. One observes in the grammar that every

sentence contains exactly one colon, and that |— and —| are paired and nested
like parentheses. Consider any sentence with two derivations, A and B. Sup-
pose the innermost phrases are the same in both derivations. One readily sees
in G that a phrase and the two characters to its right uniquely determine the next

enclosing phrase, so that the two derivations must be identical. We may then
assume without loss of generality that the innermost phrases are ; y : * and :
respectively. In order that the number of characters to the right of the colon

not be odd in one derivation and even in the other, production P. must be used
in one or the other. The occurrences of |— and —| nearest the colon are the first

and last characters of a phrase in both derivations, and this phrase is an ambi-
guous sentence. Henceforth we only consider this sentence. An inductive
argument shows that the characters between the colon and —f alternate between

* and elements of {e, , e^ }, with derivation A using only productions of G«,

and derivation B using only productions of GQ, and with the same number of
steps in each derivation. The characters to the right of the colon uniquely deter-
mine derivations A and B. Observing the role of semicolons in G, we see that the

sentence must take the form

I

i^zl'z2 zn * ^n-l e0 ••, e0 ^2 e0 ^1 ^

where z. is a word on V and F, contains no ert, and where z^x and z =y. In J J u in
order for derivation A to generate z,, z. must be of the form ZIIZI2*'*Z1D

8

— mm~

■■ii <m->

I

with z. j either in V or in {a }, and Fi " 'i

F1,J ' e'k and zl,i " Xk' * F1,J 3 ei and zl,'j

* ... * F. 9 * F. . with P 1,2 1, 1
a.. Then, considering

derivation B and F., one shows .z. z2,l z2,2 ... z0 _ with z. . z 2J
or z. i — Zo i' so that zi ^ z2' ^ne c00110068 in this fashion, finding
that z. ^Zi+i» so that x*y.

Theorem 4 [4, 7]

Corresponding to any semi-Thue system 2 on vocabulary V
(l^k^p) we may construct a normal system n such that x*y in I if £ x * ♦ y *
in n, where * is not in V and x,y are words on V.

Uk)

Proof: If the productions of S are {«i — ^i} (lslsm)# let the produc-
tions of n be

in

*P — P *

where l^i^m

Xk P — P Xk where l^k^p

<ni,i>

A string of the form u * v, u and v being words on V, will be said to represent

the string v u. 11 x, — x, in 2» then x. = u o. v, x« = u ß. v, and in IT,

=> * u ß.v

h ^ u ßi v * =x2*

by n.

by n l,i

byn.

by n.

so if x=>y in2,x**y*lnn. Conversely, if x * ■ z., z. ^ z.+ . in n, and
z s y *, where x and y are words on V, we shall show inductively that z. re-

presents w. with w. = x' w
n

= V' an<i either w. ■ w.+. or w. ** w.+. in 2.

£1

Assume this true for j; then three cases arise:

■—««

(1) z. = a. u * v, z.+1 = u * v fl^ so that

w. = v a, u, v7.+, = v /3, u and w. *• wi+i ln 2'

(2) z. = * u, z. + 1 = u *,

wj = u = wj + 1

(3) z. = X u * v, z. + l = u * v X,

Wj =vXu = Wi+i

Therefore lfx**y*lnn,x=>yin£.

Theorem 5
Corresponding to any Post normal system n on vocabulary V ■ {x.}

(1-k-p) we may construct a seml-Thue system Z such that x^y In n Iff
#x# => #y# in Z, where # is not in V and x,y are words on V.

Proof: If the productions of n are {a P — P ß } (l^i^m), let the
productions of I be

CO

J

#ai - * 4,

4t ♦ -» ▼ ^ ♦

xk V - v xk (l^ksp)

* V - #

^l,l'

*t.i.»l

»».p
1»«.»»

<S5>

with # * Ai V not in V.

10

■ »M ■ i .> t ■■Uli .W -»—^ - -—>

A string of the form:

* x # will be said to represent x

* x A. y # will be said to represent a, x y

* x V y # will be said to represent x y

where x and y are words on V. If y. ^ x- in n, then

!

#x1# = #a1u#-*Aiu#

a> * u -^ #

- * u V /31 #

=> * V u ^j #

^#u^i# = #x2#

in 2, so if x =*> y in n, #x# ^> #y# in S.

by 2
l.l

by I.

by £

by ZA

3,i

by 2,

Conversely, if #x# = z., z. — z.+. in Z, and z = tyt, we shell show
inductively that z. represents w. with w. » x# w = y, and either w. » w.^,

* J Jin J J+1
or w. — w. , in 11. Assume this is true for J; then

(1) Z. - # Qfj u #, z. + 1 » * Aj u #,

WJ " 0i u " WJ + 1

(2) z^ - * u A1 xk v #, zJ+1 - * u \k Aj v #

wj = «j u Xk v = wJ+1

(3) ^ = * u Ai #, zj+1 = * u V ^ #,

w. = aj u, w.+1 ■ u /3i# and w. *» w.+1 In n

.

11

«**.. .i. mf,

(4) Zj = * u Xk V v #, zJ+1 = * u V Xk v #,

Wj = u Xk v = wJ+1 .

(5) Zj = * V u #, zj+1 = # u #.

wi = u = wJ + 1 .

Therefore if #x# ^ #y# In 2, x *• y in n.

From the above pair of theorems, it is apparent that the general word pro-
blems for semi-Thue systems and normal systems are equivalent. In particular,

the general unsolvability of either implies that of the othc*-.

None of these theorems represents a new result; rather, each eliminates
intermediate steps and constructions from the traditional proofs, shortening the

path from the theory of computability to the undecidability results in formal lin-
guistics, and making these results more accessible. The constructions used

may suggest other applications to decision problems. 00
(N

I

12

I ■■■ -—_ ■ — » n »• ——- —

References

30
N
M

I
N

[l] Bar-Hillel, Y., et al. On Formal Properties of Simple Phrase Structure

Grammars. Zeit. Phonetik. Sprachwissenschaft u. Kommunikationsforschuno
14. 2 (1961) 143-172. Also in Bar-Hillel. Y.. Language and Information.
Addison-Wesley, Reading. Mass.. 1964. 116-150.

[2] Cantor. D. G. On the Ambiguity Problem of Backus Systems. TAGM 9.

4 (1962) 477-479.

[3] Chomsky. N.. and Schutzenberger. M. P. The Algebraic Theory of
Context-Free Languages. Computer Programming and Fprmal Systems. North-

Holland, Amsterdam. 1963. 118-161.

[4] Davis, M.. Computabilitv and Unsolvabllltv. McGraw-Hill. New York.

1958.

[5] Floyd, R. W. On Ambiguity in Phrase Structure Languages. Comm.

ACM 5. 10 (1962) pg. 526.

[6] Greibach. S.A. The Undecidability of the Ambiguity Problem for Mini-

mal Linear Grammars. Inf. Control 6. 2 (1963) 119-125.

[7] Post. E. L. Formal Reductions of the General Combinatorial Decision
Problem. Amer. J. Math. 65 (1943) 197-215.

[8] Post. E. L. A Variant of a Recursively Unsolvable Problem. Bull.

Amer. Math. Soc. 52 (1946) 264-268.

■ -■ --^ ~ ■■ |l««» ^«^ m. »».

!

ALGORITHM 245

TREESORT 3[Ml]

by

R. W. Floyd

Reprinted from the Algorithms Section of the
Communications of the ACM, Volume 7, Number 12,
December 1964.

*— .- - -■

G. E. FORSYTHE. J. G. HERRIOT, Editors

<
CO
CO
N

I
M

ALGORITHM 245
TREESORT 3 (Ml]
RODEHT W. TLOYD (Rccd. 22 June 1ÖC4 and 17 Aug. 19G4)
Computer A.ssociatcs, Inc., Wakcfield, Mass.
prucnlurc TltKEXOHT 3 (.V. n);

\uliien; urru.v .U; integer n;
coniinenl TUEESOHT 3 is a major revision of TREESOUT

(It. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1902), 434) »ug-
Ke»ted by liEAPSORT [J. W. J. William», Al*. 232, Cotnm.
ACM 7 (June 10&1}, 347] from which it diftere in bcinn an in-pluce
sort. It U shorter and probably faster, requiring fewer compari-
sons and only one division. It sorts the array .1/(1 :n], requiring
no more than 2 X (2Tp-2) X (p-1), or approximately 2 X
n X (logi(n) —1) comparisons and half as many exchanges in
the worst case to sort n - 2Tp — 1 items. The algorithm is
most easily followed if il/ is thought of as a tree, with Mlj+2]
the father of .Vlj] for 1 < > S n;

begin
procedure cxcJiange {x,y); reul x,y;

begin real I; t :~ x; x :~ y; y :• (
end exchange;

procedure tiftup (i,n); value t, n; integer i, n;
conunent .V[tJ is moved upward in the subtree of ^/[l:n] of

which it is the root;
begin real copy; integer/;

copy :- M[il;
loop.} :- 2X i;

if i £ n tlien
begin it j < n tlien

begin if If^f I] > Mlj] then j :- i + 1 end;
if Mlj] > copy then

begin M[i] m M[jl; { tm j; go to loop end
end;
Mli] :— copy

end »iftup;
integer t;
for i :- n+2 step —1 until 2 do tiftup (i,n);
for i :— n step —1 until 2 do
begin tiftup (l,t);

conunent MU+2] 2 Mlj] for I < j i t;
exchange (.U|l], A/[i|);
conunent M{i:n] is fully sorted;

end
end TREESORT 3

19G3)
Kidsgrove, Stukc-on-

ALGORITHM 246
GRAYCODE [Z)
J. BOOTHKOVU* (Reed. 18 Nov.
English Electric-Leo Computers,

Trent, England
* Now at University oi Tasmania, Hobart, Tuhiimniu, Aunt.

procedure graycode (a) dimension: (n) parity: (f); value n,«;
lloolran array a; integer n; itoolean •;

comment elements of the Uoolcon array a[i :n] may together be

Volume 7 / Number 12 / December, 1964

considered as representing a logical vector value in the Gray
cyclic binary-code. [iSee e.g. Phister, M., Jr., Logical Detign oj
Digital Computer«, Wiley, New York, 1058. pp. 232, 399.] This
procedure changes one element of the array to form the next
code value in ascending sequence if the parity parameter <
• true or in descending sequence if « — false. The procedure
may also be applied to the classic "rings-o-seven" pussle (see
K. E. Ivcrson, A Programming Language, p. 63, Ex. 1.5];

begin integer ij; j :■ n + 1;
for t :« n step —1 until 1 do if o[»] then begin it* -% f,
j :— » end;

if • then oil] tm -, aUlelsoif > < n then ab'+M :- -■ a{j+l]
else a[n] tm -, a(n]

end graycode

ALGORITHM 247
RADICAL-INVERSE QUASI-RANDOM POINT
SEQUENCE (Go]
J. H. HALTox AND G. B. SMITH (Reed. 24 Jan. 1964 and

21 July 1964)
Brookhaven National Laboratory, Upton, N Y., and

University of Colorado, Boulder, Colo.

procedure QRPSH (K, .V, P, Q, R, E);
integer A', A'; real array P, Q; integer array R\ real E;
comment This procedure computes a sequence of .Y quasi-

random points lying in the AT-dimensions» unit hypercube
jiven by 0 < Zi < 1, t > 1, 2, • • • , AT. The tth component of
the mth point is stored in Q[m,i\. The sequence is initiated by a
"sero-th point" stored in P, and each component sequence is
iteratively generated with parameter ÄI»]. £ is a positive error-
parameter. A', .V, E, and the P|»l and Ä1»! for t - 1, 2, • • • , AT,
are to be given.

The sequence is discussed by J. H. Halton in A'um. Math. M
(1900), 84-90. If any integer n is written in radix-A notation as

n - iu • • • njn,n, . 0 - n, + niÄ + miRf + • • • + nJRm,

and reflected in the radical point, we obtain the Ä-inverse func-
tion of n, lying between 0 and 1,

♦«(«) - 0 . iwitit • •• «. - »je-1 + niÄ"«

+ »HÄ-«+ ••• +«jr—'.

The problem sohed by this algorithm is that of giving a com-
pact procedure for the addition of it"1, in any radix A, to a frac-
tion, with downward "carry '.

If P{i] - *«|(i(«), as will almost always be the case in practice,
with « a known integer, then Q(m,»] - 4«i<)(f-f m). For qussi-
randomness (uniform limiting density), the integers Ä[i] must
be mutually prime.

For exact numlwn, E would be infinitesimal positive. In prac-
tice, round «IT errors would then cause the "carry" to be in-
correctly placed, in two circumstances. Suppose that the stored
number representing #«(n} is actually 4«(n) + A. (a) If | A]
2 ft"**-1, we see that the reralta of the algorithm become un-

Communicationa of the ACM 701

i ■^i n 1

I

A MINUTE IMPROVEMENT IN THE

BOSE-NELSON SORTING PROCEDURE

f
by

Robert W. Floyd

The research reported here was supported in part by
the Information System Theory Project under Contract
AF 30 (602)-3324- with the Rome Air Development Center.

This document was submitted for publication, and later
withdrawn when extensive new results in its area were
discovered. Results derived by Mr. Floyc and Professor
Donald Knuth (California Institute of Technology) include
verification of the Bose-Nelson conjecture for n s 9.
Floyd and Knuth are continuing their investigations of
the problems of fixed-sequence sorting under other
auspices, with the intent of publishing their results when
sufficient order emerges.

- --•• m » i ■■<■»

A MINUTE IViPRCViMZX? IN TKS 30SE-NZLS0N SORTING PROC2DUR3

ROBERT W. FLOYD
COMPUTER ASSOCIATES, INC.
Wäkefield, Massachusetts

-

m
i

3ose and Nelson [i] conjecture that the sorting procedure v/hich they
describe requires the fewest possible comparisons and exchanges, under the
constraint that each sort consist of a fixed sequence of comparisons,
exchanging each pair of items compared which is net in increasing sequence.
As a counterexample, consider the following method of sorting an array of
twenty-one items. Consider the array as consisting of three fields ?,, F,»
and F,,, of seven items each. Sort each of the F. separately. Merge F.with
F,. Now the seven smallest items lie among F, and ?«. «Merge F, with F,.
Now the seven smallest items, in order, lie in F, . Merge JV and F^,
completing the sort. If each of the subsidiary merges end sorts is done by
the Eose-Nelson procedure, 117 comparisons and exchanges are required, as
opposed to 115 for their procedure as applied to 21 items.

«

In general, one may observe that the Bose-Nelson procedure for merging
an array of x items with an array of y items remains valid if applied to en
array of x fields, each containing p items, and an array of y fields, each
containing p items, replacing each comparison and exchange of two item; in
the original procecure by a merge of the two corresponding fields. Similarly,
the Bose-Nelson procedure for sorting an array of u items remains valid if
applied to an array of u fields, each initially sorted and containing p items,
again replacing each comparison and exchange of the original by a merge of
the corresponding fields. The proofs of validity for the original procedures
need be modified only slightly for these extensions. The cost (weight) o: the
extended merge is clearly 9(x,y) • ^(p,p), while that of the extended sort if
q'f(?) ■rf(q) ^(P/p). The costs of the Eose-Nelson procedures are bounded
be lev/ by:

9(x,y)*{xy)k/2

f^^u^-u,

where k=log23. The generalizations given above, although slightly improving

—4

. . ——— - .

upon the Eose-Nelson mihodl for certain values of the arguments, are
subject M the same lower bound. The author was unable to determine
whether ail methods satisfying the given constraints are so bounded.

i

Rererence

[l] Bos«, R. C. and Nelson, R. J., A Sorunc Problem. J.ACM 9 (1952),
282-296.

- 2 -

-~.. —

?
January, 1964

CA-64-2-R

To be published in the August, 1964 issue of
IEEE Transactions on Electronic Computers

THE SYNTAX OF PROGRAMMING
LANGUAGES - A SURVEY

by
Robert W. Floyd

.

r
- ■

The Syntax of Programming Languages - A Survey*

Robert W. Floyd1"

Summary

The syntactic rules for many programming languages have been expressed

by formal grammars, generally variants of phrase structure grammars. The syntactic

analysis essential to translation of programming languages can be done entirely

mechanically for such languages. Major problems remain in rendering analyzers

efficient in use of space and time, and in finding fully satisfactory formal

grammars for present and future programming languages.

9
CO

I

ü

-_.

eo

i
IM

Introduction

In recent years, few programming languages designed for widespread use
have escaped having the more orderly part of their formation rules and restrictions
presented in one of several simple tabular forms, somewhat like the axioms of a

formal mathematical system. ALGOL, JOVIAL, FORTRAN, NELIAC, COBOL, BALGOL,
MAC, APT, and their offshoots have all been defined in such a fashion (see

sections A and B of the bibliography). For some of these languages, the formalism

is easy and natural. For others, it is not; FORTRAN [A9] suffers needlessly,

bound in the unaccustomed corsetry of her younger rival's design. Whatever the
merits of forma] grammars in general, some languages are best defined in words.

Where formal grammars are appropriate, however, mathematical and linguistic

analysis provides compilers of lowered cost and high reliability, and theoretical
knowledge about the structure and value of the language itself.

Phrase Structure Grammars

The most representative and fruitful example of the use of a formal

grammar in defining a programming language is the use of a phrase structure

grammar to specify most of the syntactic rules of ALGOL 60 [A7, AS, Bl, BS].
The form for grammatical rules used in the report which officially defines ALGOL

60 is typified [Al] by

<for statement> ::=<for clause> <statement> | <label>: <for statement>.

This assertion can be read "A for-statement is defined to be a for-clause followed

by a statement, or a label followed by a colon ':' followed by a for-statement".
The symbol '::=' stands for 'is defined to be'; 'I' stands for 'or' and is used to
separate alternative forms of the definiendum. The angular brackets '< >' are
used to enclose each name of a phrase type, distinguishing it as a name, rather
than the thing named. This is the reverse of the way quotation marks are used

in English, for the same purpose, to distinguish

The baby can say "one word"

from
The baby can say one word.

-A

A

Names of phrase types appearing in the text are hyphenated to show explicitly

that the separate words of a name need have no individual meaning and that

the name as a whole is used as a technical term, without such connotations

as its individual words may suggest. The anjular brackets enclosing a name in

a grammatical rule share this function. A complete set of grammatical rules for

a language written in a format equivalent to that of the example is a phrase

structure grammar (PSG); a language definable by a PSG is a phrase structure

language (PSL).**

In general, a phrase structure grammar, taken as a set of definitions,

provides a list of alternative constructions in a definition for each syntactic

type, where each construction is a list of characters and syntactic type names.

A construction represents the set of phrases which can be formed by replacing

each syntactic type name with a phrase of that type; the phrases of a certain

type are all those represented by some construction in the definition of that type. £

There is usually a single syntactic type, called 'program' (or 'sentence'), which

is used in the definition of no other type; the set of phrases of this type is the

language defined by the grammar. On the one hand, PSG's can define some

languages of considerable complexity; on the other, such simple sets of strings

as that consisting of 'abc', 'aabbcc1, 'aaabbbccc', etc., are demonstrably not

definable by any phrase structure grammar [C4].

It is evident that a complete definition of a programming language may

be expressed far more concisely by a PSG than by the corresponding English

sentences, and that it is humanly impossible to read or write those sentences,

with their hundreds of occurrences of 'is defined to be', 'followed by', and 'or*.

If a phrase structure grammar is nearly adequate to define a language, then most

of the rules defining the language can be neatly and compactly listed without

explanation, conserving space, time, and clarity; attention may be concentrated

on the few syntactic rules which do not fit the pattern of phrase definitions.

i

?

IN
I

As mentioned above, the rules of a PSG are analogous to axioms.

One who has somehow obtained a program and an understanding of its structure

can use a PSG to prove the program is well formed, and to demonstrate the

structure to others. The usefulness of a PSG to a programmer writing in the

language, or to the compiler which translates it into machine language coding,

is less apparent. A grammar does not tell us how to synthesize a specific

program; it does not tell us how to analyze a particular given program [C3,

pg. 48].

In order to construct programs in a phrase structure language, one may

interpret every rule of its grammar as a permit to perform certain acts of sub-

stitution. Assigning a symbol to each syntactic type of a grammar, let us

interpret each rule as allowing the substitution, for the definiendum, of any one

of the alternative definientes. Applying these substitution rules repeatedly to the

symbol designating the syntactic type 'program' or 'sentence', we arrive eventually

at a sequence of symbols in which no further substitutions can take place; this

string is a program or sentence in the language, the process by which it was

produced being an abbreviated proof of its sentencehood. The symbols designating

syntactic types, for which substitutions may be made, are called non-terminal

characters; those undefined symbols which form sentences are the terminal

characters.

Take, for instance, the grammar

ä) <sentence> —<noun> <predicate>

b) <predicate> -► <verb> <noun>

c) <noun> — John | Mary

d) <verb> — loves

Successive substitution, starting with <sentence>, gives the sequence

1. <sentence>

<noun> <predicate>

John <predicate>

John <verb> <noun>

John <verb> Mary

6. John loves Mary

2,

3

4,

5

Zf •**■

This sequence, a derivation of the sentence "John loves Mary", is an

abbreviation of the following proof:

1. Any sentence is a sentence.

a) A noun followed by a predicate is a sentence.

2. Any noun followed by any predicate is a sentence,

c) 'John' is a noun.

3. 'John' followed by any predicate is a sentence.

b) A verb followed by a noun is a predicate.

4. 'John' followed by any verb followed by any noun is a sentence,

c) 'Mary' is a noun.

5. 'John' followed by any verb followed by 'Mary' is a sentence.

d) 'Loves' is a verb.

6. 'John loves Mary' is a sentence.

From this point of view, a sentence in a phrase structure language is the last

line of a derivation from the symbol '<sentence>', provided that no further sub-

stitutions are possible [C3, Ch. 4]. The grammar is regarded not as an axiom

scheme for validating sentences, but as a device for generating them. When a

PSG is considered as a generative grammar, its rules are commonly called pro-

ductions . The two viewpoints are substantially equivalent, but the generative

viewpoint, by making explicit the process by which sentences are constructed,

makes the grammar a more tractable object of study. A writer of programs in

a PSL can now be thought of as a device to generate sentences, with choices

between alternatives governed, for example, by the structure of a flow chart of

the program. Not enough is known about linguistic behavior to specify the

mechanism of choice in detail.

A compact representation of a derivation is the syntax tree [C3, Gl];

the syntax tree for the derivation above is:

<sentence>

<noun> <predicate>

<verb> <noun>

John loves

IX)

N
I

M

Mary

—■■. i ii

In general, a syntax troe is like a genealogical tree for a family whose common

ancestor is <sentence>, where the immediate descendants (sons) of a symbol

form one of the alternatives of the definition of that symbol, and where only the

terminal characters fail to have descendants. Such a tree represents a derivation

of the sentence formed by its terminal characters. It also illustrates the structure

of the sentence; the terminal descendants of any node on the trees form a phrase

in the sentence, of the type designated by that node. In a language satisfactorily

described by its grammar, the phrases of a sentence are its meaningful units.

Some compilers take advantage of this, creating a syntax tree as a structured

representation of the Information contained in the source program. Suitable pro-

cesses then translate the tree into a computer program, or a derivation tree for

an equivalent sentence in another language or a related sentence in the same

* language.
M

I
N Syntax-Directed Analysis

A syntax-directed analyzer might be defined as any procedure capable

of constructing a syntax tree for an arbitrary sentence in an arbitrary PSL. This

ideal, however, is rarely achieved; most syntax-directed analyzers are restricted

to languages whose grammars satisfy certain special conditions. Let us consider

a typical procedure for syntax-directed analysis.

Because the analyzer makes use of a complicated hierarchy of sub-

ordinate goals in seeking its principal goal, we will introduce it with a metaphor.

Suppose a man is assigned the goal of analyzing a sentence in a PSL of known

grammar. He has the power to hire subordinates, assign them tasks, and fire

them if they fail; they in turn have the same power. The convention will be

adhered to that each man will be told only once "try to find a G" where G is

a symbol of the language, and may thereafter be repeatedly told "try again" if

the particular instance of a G which he finds proves unsatisfactory to his

superiors. Depending on the form of the definition of G, each subordinate (S,

say) should adopt an appropriate strategy:

I

i

(1) If G is a terminal character, and if it is the next character of the

sentence, S must cover the character, and report success to his superior. If it

is not the next character of the sentence, S must report failure. After success,

if told by his superior to try again S must report failure and uncover the character.

If G — G,, S must appoint a subordinate S, with the command, "Try

to find a Gj" S repeats S.'s report to his superior, firing S. on a report of

failure. If told to try again, S must teli S, to try again, again transmitting the

report to his superior and firing S, on failure.

(3) If G —-G, G0... .G , S must appoint successively one subordinate
i i n

S. for each G,, with the command, "Try to find a G.". If S. succeeds, 1 is

increased by one, a new subordinate hired, and the process repeated until 1 > n,

when S reports success. If S. fails S, is fired. 1 is decreased by one and if

1 > 0, the new S. (predecessor of him who failed) told to try again. If 1 = 0, S

reports failure, having exhausted all ways of find a G. If after success S is

told to try again, he sets 1= n, tells S. to try again, and proceeds as before

on S.'s report.

(4) If G -*G. ü. S must appoint successively one sub- 1 ' ~2 ' ••• ' ^n'
ordinate S. for each G,, with the command, "Try to find a G.". If S. fails he

is fired, 1 is increased by one, a new subordinate hired, and the process repeated

until 1 > n, when S reports failure. If S. succeeds, S reports success. If

after success S is told to try again, he tells S. (who succeeded) to try again,

and proceeds as before on S.'s report.

(5) All more complicated definitions can be regarded as built up from

the first four types.

As an example, take the sentence 'abc' and the grammar

X - Yc

Y -* a |Z

Z - ab

in which X represents <sentence>. S, is appointed to find an X. S, appoints
S2 to find a Y. S» appoints S- to find 'a'. S3 covers 'a', reports success.

00

CM
I

6

CM
I

S? reports success. S. appoints S. to find 'c*. S. sees 'b' in the sentence,
reports failure. S. fires S. and tells S, to try again. S» tells S3 to try again.
S. uncovers 'a', reports failure. S» fires S3, then appoints S- to find a Z.
S. appoints S4 to find 'a'. S. covers 'a1, reports success. S. appoints S,
to find 'b'. S5 covers 'b', reports success. S- reports success. S« reports
success. S. appoints Sg to find 'c'. Sg covers 'c', reports success. S.
reports success. The organization chart of S. and his subordinates,

S,

04 a5
when labeled with goals rather than names, gives the syntax tree

•

of the sentence 'abc1.
This metaphor conceals certain difficulties by relegating bookkeeping

tasks to imaginary men who are assumed to automatically appear when hired,
disappear when fired, remember the names of their subordinates and superiors,
and so on. It is not difficult, however, by the use of a stack (pushdown list)
to simulate the process on a computer, making the entire process explicit. As
a convenience for the analyzer, let each definiens of the grammar be followed by
the additional symbols "H", so that "A—B |CD" would be rewritten "A—B ICDH".
Each subordinate in the metaphor is represented by an element S of a stack.

.

and contains five fields: goal , the fixed goal given to S by his superior; L ,
A A A

the place in the definition of goal at which S is reading in the grammar;
A

sup., the name of S 's superior (i.e., his location in the stack); and pred , the
A A A

predecessor of S among the subordinates of his superior. For each field, a
A

zero specifies the absence of a value. The chief executive of the process,

S., is set initially to have a goal of ,<sentence>' 'vith all other fields set to

zero. The index X signifies the subordinate S who is currently active; the
A

index u signifies the first element of the stack to which no goal is currently

assigned. The index j signifies the first uncovered character of the input string,

The grammar is represented by the vector gram, of which each character either

belongs to the language defined or is one of (—, | ,H). All occurrences of S,

goal, i, sup, sub, and pred, unless otherwise indexed, are implicitly indexed

with X.

When the algorithm terminates successfully, the contents of the stack

represent a syntax tree for the sentence taken from the input string. Each word

in the stack represents a node in the tree, where goal represents the label of

the node, i is the index in gram of the ' I' following the rule of the grammar

applied at that node, sup designates the parent node, sub designates the right-

most son of the node, and pred designates the sibling immediately to the left

of the node. Only goal, sub, and pred are needed in order to construct the

tree. Thus the tree

D
I
y

would be represented by the stack:

.
12 i

8

Goal i sup sub pred

I

I
IN

1

2

3

4

5

6

7

8

9

10

A

B

x

C

D

y
E

2

F

?

?

0

?

?

0

?

0

?

0

0

1

2

1

4

5

4

7

4

9

4

3

0

9

6

0

8

0

10

0

0

0

0

2

0

0

5

0

7

0

Figure 1 is a flowchart for this process,

explanation of the flowchart.

There follows an item-by-iterr

A: Chief executive S. is appointed to find a sentence.

$2 awaits employment.

B: You are a newly appointed subordinate (S.); determine whether your goal

is a non-terminal (defined) character, or terminal.

C,D: If the first character of the input sentence is your goal, cover it and

report success to your superior; otherwise report failure and await

temporary unemployment.

E: Find the beginning of the definition of your goal, by means not des-

cribed here. Prepare to read that definition.

F,G,H: If you have reached a '| ' in the definition of your goal, report success

unless you are the chief executive, in which case you have analyzed

the sentence.

I,jT,K: If you have exhausted all alternatives in the definition of your goal,

report failure unless you are the chief executive, in which case the

input is not a sentence.

L: Otherwise, appoint a subordinate whose goal is the next character in

the definition of your goal. His superior is you, his predecessor your

previously junior subordinate. Remember only your most recent sub-

ordinate, protect him from other assignments, and await his report.

M: Report success to your superior, wno proceeds through the definition

of his goal.

N: Report failure to your superior, who will take your predecessor as his

Junior subordinate and fire you.

O: When told to try again, determine again whether your goal is terminal

or not.

P: If terminal, uncover the input character you previously covered, and

report failure.

Q#R: If goal is non-terminal, tell your Junior subordinate to try again.

S,T: If you have no junior subordinate, you have exhausted an alternative;

try the next one.

The serious and intrinsic flaw of the algorithm is that it fails for

grammars whose rules contain certain types of cyclic formations. If the definition

of A contains an alternative beginning with A, or if one of the alternatives for A

begins with B, one of those for B begins with C, and one of these for C begins

with A, for example, then certain choices of input string lead the procedure into

an infinite loop. A grammar containing such formations is called left-recursive

[G3]. It is possible, at some cost to the explanatory power of a grammar, to

reformulate it excluding left-re cursive definitional l]. This has been successfully done
for several programming languages in the Compass compiler [D5, D15]. A second

type of syntax-directed analyzer, which is free of the left-recursion problem,

constructs the syntax tree not from the top down, but from the bottom up [Cll,

D2, D5, D8, G4]; it is, however, as presently formulated, subject to other

restrictions. All syntax-directed analyzers currently known are further restricted

in practice to non-pathological languages; if a sentence is chosen at random

from the grammar

S - A | B

A -(A) | (B) |x

B -(A] | (B] |y

10
M

N

,

10

10
M
N

n m
CM

I
CM

analysis will require a time which increases exponentially with the length of

the sentence, if read from left to right. At each character of the first half

of the sentence, choice must be made between two alternatives. Not until

the second half of the sentence is read is any information gained about the

correctness of these choices. Typical processes will back up and try again

many times before hitting on the right pattern. A related grammar may be

designed to exhaust the patience of all known syntax-directed analyzers,,

whether their prejudices be left, right, or center.

It is not known whether a method of syntactic analysis is possible for

which the time required for analysis does not increase exponentially with the

length of the sentence, even for pathological languages. Known methods of

full generality, such as the systematic generation of all sentences until a

match is found, would be unacceptably slow even for short sentences. The

properties of programming languages which make them legible to human readers,

however, allow them to be analyzed by simple and efficient methods. A case

in point is COBOL, for which a syntax-directed analyzer is greatly simplified

because each choice among alternative constructions can be decided by examining

the first character or word of that construction [D6].

Syntax-Controlled Analysis

An alternative approach to syntactic analysis of phrase structure languages,

sometimes called syntax-controlled analysis, entails a preliminary processing of

a grammar during which matrices, tables, and lists are constructed describing in

some sense the possible constructions of the grammar. Analysis of sentences

then makes use of these tabulations, and may even dispense entirely with the

original grammar.

As an example, let us consider precedence analysis [E2], which is a

formalization and extension of methods of analysis which were used in compilers

even before formal grammars were employed in defining programming languages.

From the grammar of ALGOL it is possible to deduce that in any ALGOL program

if a left parenthesis '(' is followed by a multiplication sign 'x1, separated by at

most one phrase, then there is some phrase to which the multiplication sign and

11

4

■

-■

any phrase adjacent to it belong, but not containing the left parenthesis. The

relation is symbolized, '^x', where the sign '<' is read 'yields precedence

to*. Similarly, if 'x' is followed by '+' with at most one phrase between,

some phrase contains the multiplication sign and any phrases adjacent to it,

but not the plus sign. This relation is symbolized ,x•>+,, where ' J>' is read

'takes precedence over'. We may deduce that whenever

"... (a x b + ...'

occurs in an ALGOL program, and a and b are arbitrary phrases, then 'a x b' is

a phrase. A third relation, '{-)', applies to characters of equal precedence.

While analysis based on precedence relations does not yield a complete derivation

of a sentence, it determines the phrases of the sentence and the operators con-

necting them, which is normally sufficient information for use by a compiler.

Not every grammar is amenable to precedence analysis. Yet, like

phrase structure grammars, matrices representing precedence relations are generally

adequate for the description of the structure of programs in standard programming

languages. Because a precedence matrix can be derived from a grammar, and

applied to syntactic analysis, by a completely mechanical process, precedence

analysis offers much the same flexibility and universality as does syntax-directed

analysis.

Neither syntax-directed nor syntax-controlled analyzers are capable,

by themselves, of dealing with non-sentences. Syntax-directed analyzers are

usually incapacitated by syntactic errors in their input sentences [D5, D9] .

Precedence methods are more flexible, but still require explicit specification of

error recovery policies. Chomsky has proposed that an adequate grariinar for a

natural language must account for our ability to interpret ungrammatical sentences

rG3]. Such grammars are doubly necessary for programming languages, at least

10 the extent of localizing the effects of programming errors.

Adequacy

The phrase structure grammar, though developed as a model for natural

language, is generally considered inadequate to represent either the structure or

in
eg

i

V -
12

in

i

the constraints imposed on sentences In most natural languages [C3, C5] . Nor

Is the PSG sufficient to fully describe the formation rules of most programming

languages. Most require, for example, that the arithmetic type of each variable

be declared before using it in a formula, or that dimensions of an array be

specified before referring to one of its elements. Rules of this type cannot be

incorporated in a PSG [C7]; nor can the rules for writing DO-loops in FORTRAN

[A9] . Any rule requiring that two or more constituent phrases of a construction

be identical (or different) Is almost certainly beyond tlvi scope of phrase structure

definition, as is the indication of scope of nested loops by indentation.

The PSG is nonetheless a vaulable tool for debcribing languages, both

natural and artificial. Chomsky has described it as the only theory of grammar

with any linguistic motivation that is sufficiently simple to permit serious abstract

study. Most published PSG's for programming languages, while not serving as

complete definitions, define languages which include the programming languages

as subsets satisfying simple restrictions, and correctly account for the structure

of programs.

Extensions

The use of curly brackets around a part of a rule in a PSG is sometimes

used to signify an arbitrary number, possibly zero, of occurrences of the form

described within the brackets. As a refinement, super-and subscripts on the

closing bracket, if present, signify upper and lower limits on the number. A

variant uses square brackets to signify an optional single occurrence of the form

described within the brackets. The COBOL syntax uses a two-dimensional dis-

play of alternatives and options. While none of these operators extends the

generative power of PSG's, they all increase the convenience and explanatory

power. For example, a phrase-structure description of the function f(a,b,c,d),

if general enough to deal with functions of arbitrarily many variables, leads to

euch absurdities as assertions that 'a,^ is a phrase but 'cd' is not. A

definition using curly brackets,

<function> — <function name> (<expression> { j <expression>})

avoids designating as phrases any parts of the function except those which serve

as names or have values.

i

13

An extension to permit specification that two component phrases of a

construction must be identical increases the generative power of PSG's. Such

a mechanism is used in Input Language (Siberian ALGOL) [AS], to permit programs

to contain relations like "Alpha, ^ ...S Alpha " but not "Alpha.tf ...^ Beta '•.

It seems unlikely, however, that extensions will be found which, while retaining

the explanatory power of PSG's, permit the complete description of even the

present generation of computer languages.

Theory of Formal Languages

There exists a rapidly growing body of theory of PSG's and other formal

models of language. Some of the results are of interest to the designer of

compilers and the writer of programming manuals, such as the possibility of

listing the allowed character pairs which may occur in programs, or the possible

initial characters of each phrase type [Cl, E2]. Others pertain to the design of

programming languages, such as the absence of a general procedure to determine

whether a PSG generates ambiguous sentences [C2, G6, 08, CIO], the existence ^

of recognizable classe.s of grammars which are free from ambiguity [El, E2, E3] M

and the existence of languages for which all PSG's are ambiguous [05, 014].

Ohomsky [04] and Bar-Hillel, Perles, and Shamir [Oljar^ important orginial

papers on the general theory of PSG's; Ohomsky [05] is a thorough survey of

known results about PSG's and related language-generating devices.

Unsolved Problems

Many questions of practical importance in the design of programming

languages and their compilers are unanswered; some have not, to the writer's

knowledge, been stated in print. It is not known, for example, how to synthesize

a phrase structure grammar for a programming language, given the precedence

relations of its operators. Such a synthesis method would have prevented the

costly ambiguities originally present in ALGOL 60. For a given language, it is

not known how to synthesize a grammar which best displays the structure of its

sentences, best accommodates a particular method of syntactic analysis, or best

accounts for the structure of sentences containing sUght syntactic errors. It is

not known whether an analyzer is possible which would not consume excessive

space and time, even for pathological languages. Some of these questions are

capable of precise formulation, but even rule-of-thumb solutions for any of them

would be valuable.

lh

J

Bibliography

The bibliography which follows includes subjects related to the syntax

of programming languages Insofar as they illuminate the problems of analysis and

synthesis of formally defined programming languages. The bibliography is arranged

by subjects, alphabetically by author within each subject. Particularly recom-
mended as introductions to their subjects are [A7, A12, Bl, Cl, C3, C4, C5, D5,

D12, E2, E4, F10, Gl, G3] (subjects are designated by letter, individual papers
by number).

Sections by subjects:

A. Formal grammars tor programming languages.

B. Expositions of languages defined by formal grammars.

C. General theory of phrase structure grammars.

t, D. Syntax-directtd analysis.
I«

7 E. Syntax-controlled analysis.
IN

F. Non-syntactic methods of analysis.
G. Related work on analysis of natural languages.

H. Miscellaneous devices useful in performing syntactic analysis
I. Supplementary bibliographies.

15

A. Formal Grammars for Programming Languages

1. J. W. Backus, "The syntax and semantics of the proposed international

algebraic language of the Zürich ACM-GAMM conference", Proc. Internat.

Conf. Inf. Proc; June, 1959; pp. 125-132.

2. R. Berman. J. Sharp, and L. Sturges, "Syntactical Charts of COBOL 61",

Comm. ACM, vol. 5, p. 26Ü; May, 1962.

3. R. A. Brooker and D. Morris, "A description of the Mercury Autocode in

terms of a phrase structure language", Annual Review in Automatic Pro-

gramming, vol. 2, Pergamon, New York, N. Y.; 1961; pp. 29-66.

4. S.A. Brown, C. E. Drayton, and B. Mittman, "A description of the APT

language", Comm. ACM, vol. 6, pp. 649-658; Nov., 1963.

5. A. P. Ershov, G. I. Kohu^hin, and Yu. M. Voloshin, "Input language

for a system of automatic programming". Academy of Science U.S.S.R.

Computing C nter, Moscow; 1961 (Russian). Academic Press, London;

1963 (Engh /.

6. H. D. Huskey, R. Love, and N. Wirth, "A syntactic description of BC

NELIAC", Comm. ACM, vol. 6, pp. 367-375; July, 1963.

7. P. Naur et al, "Report on the algorithmic language ALGOL 60", Comm.

ACM, vol. 3, pp. 299-314; May, 1960.

Annual Review in Automatic Programming, vol. 2, Pergamon, New York,

N. Y.; 1961; pp. 351-390. Numerische Mathematik, vol. 2, pp. 106-

136; 1960.

16

Hi
et

I
eg

8. P. Naur et at, "Revised report on the algorithmic language ALGOL eO",
Cotnm. ACM, vol. 6, pp. 1-7; Jan., 1963. Numerische Mathematik.

vol. 4, pp. 42 0-453; 1963. Computer Journal, vol. 5, pp. 349-367;
Jan., 1963.

9. I. N. Rabinowitz, "Report on the algorithmic language FORTRAN 11",

Comm. ACM, vol. 5, pp. 327-337; June, 1962.

10. C. J. Shaw, "A specification of JOVIAL", Comm. ACM, vol. 6, pp. 721-
736; Dec, 1963.

11. C. J. Shaw, "JOVIAL -a programming language for real-time command

systems". Annual Review in Automatic Programming, vol. 3, Pergamon,
New York, N. Y.; 1963; pp. 53-119.

12. W. Taylor, L. Turner, and R. Waychoff, "A syntactical chart of ALGOL

60", Comm. ACM, vol. 4. p. 393; Sept., 1961. (See [A7]).

13. N. Wirth, "A generalization of ALGOL", Comm. ACM, vol. 6, pp. 547-
554; Sept., 1963.

14. W. W. Youden, "An analysis of ALGOL 60 syntax". Data Proc. Systems

Div., Nat. Bureau of Standards, Washington, D.C.; Aug. 15, 1961.

(See [A7]).

15. "Index to ALGOL 60 syntactical chart". Training and Education Dnot.,
E.D.P., RCA, Camden, N.J.; Oct. 20, 1961. (See [A12]).

.16. "COBOL 61, revised specifications for a common business-oriented
language", U.S. Govt. Printing Office, Washington, D.C., 0-598941;

1961.

B. Expositions of Languages Defined by Formal Grammars

1. H. Bottenbruch, "Structure and use of ALGOL 60", Inl. ACM, vol. 9,

pp. 161-221; April, 1962.

2. E. W. Dijkstra, "A primer of ALGOL 60 programming". Academic Press,

New York, N. Y.; 1962.

'

17 :.

1

I

3. H. D. Huskey, M. H. Halstead, and R. McArthur, "Neliac -

a dialect of ALGOL", Comm. ACM, vol. 3, pp. 463-468; Aug., 1960.

4. D. E. Knuth and J. N. Merner, "ALGOL 60 confidential", Comm. ACM,

vol. 4, pp. 268- 272; June, 1961.

5. D. D. McCracken, "A guide to ALGOL programming", Wiley, New York,

N. Y.; 1962.

6. D. D. McCracken, "A guide to COBOL programming", W.'ey, New York,

N. Y.; 1963.

7. P. Naur, "A course of ALGOL 60 programming", Regnecentralen,

Copenhagen; 1961.

8. D. T. Ross, "The design and use of the APT language for automatic

programming of numerically controlled machine tools", Proc. 1959

Computer Applications Symposium; pp. 80-99.

9. J. E. Sammet, "Basic elements of COBOL 61", Comm. ACM, vol. 5,

pp. 237-253; May, 1962.

10. J. E. Sammet, "Detailed description of COBOL", Annual Review In Auto-
matic Programming, vol. 2, Pergamon, New York, N. Y.; 1961; pp. 197-

230.

11. H. Schwarz, "An Introduction to ALGOL", Comm. ACM, vol. 5, pp. 82-

95; Feb., 1962.

12. Reference Manual, 709/7090 FORTRAN Programming System, IBM Form

No. C28-6054-2.

C. General Theory of Phrase Structure Grammars

1. if. Bar-Hlilel, M. Perles, and E. Shamir, "On formal properties of

simple phrase structure grammars". Applied Logic Branch, Hebrew Univ.

of Jerusalem, Technical Report No. 4; 1960. Zeltschrift für Phonetik,
Sprachwissenschaft und Kommunlkatlonsforschunq, vol. 14, pp. 143-172;

1961. Summarized In Comp. Rev., vol. 4, pp. 213-214; Sept.-Oct, 1963

iR

CD
(M

I

2. D. G. Cantor, "On the ambiguity problem of Backus systems", Inl. ACM,

vol. 9, pp. 477-479; Oct., 1962.

3. N. Chomsky, "Syntactic structures". Mouton and Co., The Hague,

Netherlands; 1957.

4. N. Chomsky, "On certain formal properties of grammars". Inf. and Control

vol. 2, pp. 137-167; June, 1959. (Addendum) "A note on phrase structure

grammars". Inf. and Control, vol. 2, pp. 393-395; Dec, 1959.

5. N. Chomsky, "Formal properties of grammars". Handbook of Mathematical

Psychology, vol. 2, Wiley, New York, N. Y.; 1963; pp. 323-418.

6. N. Chomsky and M. P. Schützenberger, "The algebraic theory of context-
free languages". Computer Programming and Formal Systems, North-Holland,

Amsterdan; 1963; pp. 118-161.

7. R. W. Floyd, "On the non-existence of a phrase structure grammar for
ALGOL 60", Comm. ACM, vol. 5, pp. 483-484; Sept., 1962.

8. R. W. Floyd, "On ambiguity in phrase structure languages", Comm. ACM,

vol. 5, pp. 526,534, Oct., 1962.

9. S. Gorn, "Detection of generative ambiguities in context-free mechanical

languages", Inl. ACM, vol. 10, pp. 196-208; April, 1963.

10. S.A. Greibach, "The undecidability of the ambiguity problem for minimal

linear grammars". Inf. and Control, vol. 6, pp. 119-125; June, 1963.

11. S. A. Greibach, "Inverses of phrase structure generators". Ph. D. thesis.
Harvard, Cambridge, Mass.; June, 1963.

12. P.S. Landweber, "Three theorems on phrase structure grammars of type IM,

Inf. and Control, vol. 6, pp. 131-136; June, 1963.

13. G. H. Matthews, "Discontinuity and asymmetry in phrase structure

grammars". Inf. and Control, vol. 6, 137-146; June, 1963.

14. R. J. Parikh, "Language-generating devices". Res. Lab. of Electronics,
MIT, Cambridge, Mass., Quarterly Progress Report, No. 60, pp. 199-
212; Jan 15, 1961.

H

I

15. M. P. Schützenberger, "On context-free languages and push-down

automata". Inf. and Control, vol. 6, pp. 246-264; Sept., 1963.

16. See also [E2, G3, G4] .

D. Syntax-Directed Analysis

1. M. P. Barnett and R. P. Futrelle, "Syntactic analysis by digital computer",

Comm. ACM, vol. 5, pp. 515-526; Oct., 1962.

2. A. L. Bastian, Jr., "A phrase-structure language translator". Air Force

Cambridge Res. Labs., Hanscom Field, Mass., Report AFCRL-69-549;
Aug., 1962.

3. R. A. Brooker and D. Morris, "A general translation program for phrase-

structure languages", Jnl. ACM, vol. 9, pp. 1-10; Jan., 1962.

4. R. A. Brooker and D. Morris, "A compiler for a self-defining phrase

structure language", Univ. of Manchester, England (undated).

5. T. E. Cheatham, Jr., and K. Sattley, "Syntax-directed compiling", Proc^

Spring Joint Computer Conf., vol. 25; 1964.

6. M. E. Conway, "Design of a separable transition-diagram compiler",
Comm. ACM, vol. 6, pp. 396-408; July, 1963.

7. P. Z. Ingerman, "A syntax oriented compiler ...", Moore School of Elec.

Engineering, Univ. of Penn., Philadelphia, Penn.; April, 1963.

8. E. T. Irons, "A syntax directed compiler for ALGOL 60", Comm. ACM.

vol. 4, pp. 51-55; Jan., 1961. (See also reference [D13]).

9. E. T. Irons, "An error-correcting parse algorithm", Comm. ACM, vol. 6,

pp. 669-673; Nov., 1963.

10. E. T. Irons, "The structure and use of the syntax-directed compiler",

Annual Review in Automatic Programming, vol. 3, Pergamon, New York,
N. Y.; 1963; pp. 207-227.

J

n

i

11. R. S. Ledley and J. B. Wilson, "Automatic-programming-language

translation through syntactical analysis", Comm. ACM, vol. 5; pp.
145-155; March, 1962.

12. P. Lucas, "The structure of formula-translators", Mailüfteil, V-anna,

Austria, ALGOL Bulletin Supplement No. 16; Sept., 1961. Elektronische

Rechenanlaqen; Aug., 1961.

13. B. H. Mayoh, "Irons' procedure DIAGRAM" (letter of correction), Comm.

ACM, vol. 4, p. 284; June, 1961.

14. J. C. Reynolds, "A compiler and generalized transL.or", Applied Math.
Div., Argonne Natl. Lab., Argonne, 111. (undated).

15. S. Warshall, "A syntax-directed generator", Proc. Eastern Joint Computer

Conf., vol. 20, pp. 295-305; 1961.

16. See also [CU, G4] .

E. Syntax-Controlled Analysis

1. J. Eickel, M. Paul, F. L. Bauer, and K. Samelson, "A syntax-controlled

generator of formal language processors", Comm. ACM, vol. 6, pp. 451-

45b; Aug., 1963.

2. R. W. Floyd, "Syntactic analysis and operator precedence", Jnl. ACM,

vol. 10, pp. 316-333; July, 1963.

3. R. W. Floyd, "Bounded context syntactic analysis", Proc. ACM Working
Conference on Mechanical Language Structures, to be published in Comm.

ACM; Aug. 14, 1963.

4. R. Graham, "Bounded context iranslation", Proc. Spring Joint Computer
Conf., vol. 25; 1964.

5. M. Paul, "ALGOL 60 processors and a processor generator", Proc. IFIP
Congress; 1962; pp. 493-497.

B

... -----

F. Non-Syntactic Methods of Analysis

1. E. W. Dijkstra, "Making a translator for ALGOL 60", Automatic Program­

!Tling Information Bulletin No. 7; May, 1361.

2. E. W. Dijkstra ,· "ALGOL 60 translation", Stichting Methematisch Centrum,

Amsterdam, ALGOL Bulletin Supplement No. 10; Nov., 1961.

3. A. Evans, Jr. , "An ALGOL 60 compiler", Computation Center, Carnegie

Inst. of Technology; Aug. 27, 1963.

4. R. W. Floyd, "A descriptive language for symbol manipulation", Jnl. ACM,

vol. 8, pp. 579-584; Oct., 1961.

S. A. A. Grau, "Recursive processes and ALGOL translation", Comm. AC:Wl.!

vol. 4, pp. 10-15; Jan., 1961.

6. A. A. Grau, "The structure of an ALGOL translator", Oak Ridge Natl.

Lab., Oak Ridge, Te~., ORNL-3054; Feb. 9, 1961.

7. A. A. Grau, "A translator-oriented symbolic language programming

lahguage", Jnl. ACM, vol. 9, pp. 480-487; Oct., 1962.

8. P. Naur, "The design of the GEIR ALGOL compiler", Part I, BIT, vol. 3,
p. 124, 1963.

:'9. D. T. Ross, "An algorithmic theory of language", Electronic Systems

Lab., MIT, Cambridge, Mass., ESL-TM-156; Nov., 1962.

10. K. Samelson, "Programming languages and their processing", Prcc. IFIP
Congress; 1962; pp. 487-492.

11. K. Samelson and F. L. Bauer, "Sequential foqnula translation", Comm.

ACM, vol. 3, pp, 76-83; Feb., 1960. ,--

BEST AVAILABLE COPY
22

1.

G. Related Work on Analysis of Natural Languages

D. G. Bobrow, "Syntactic analysis of English by computer- a survey" 1

Proc. Fall Joint Computer Conf,, vol. 24, pp. 365-387: 1963.

Z. T. E. Cheatham, Jr. and S. Wars hall, "Translation of retrieval requests

couched in 'semi-formal' English-like language", Comm. ACM, vol. 5 1

pp. 34-39; Jan., 1962.

. 3. N. Chomsky and G. A. Miller 1 "Introduction to the formal analysis of

natural languages" 1 Handbook of Mathematical Psychology 1 vol. 2 1 Wiley,
NewYork, N. Y,: 1963: pp •. 269-322.

4. S. K·.tno and A. G. Oettinger 1 "Multiple.:..path syntactic analyzer" 1 Proc.

5.

l.

IFIP Congress; 1962; pp. 306-312.

See also (C3] .

H. Miscellaneous Devices Useful in Performing Syntactic Analysis

R. W. Floyd, "Ancestor" (Algorithm 96), Comm. ACM, vol. 5, pp. 344-345;

Jun~, 1962

2. A. W. Holt, "A mathematical and applied investigation of tree structures

for computer syntactic analysis", PH. D. thesis I Univ. of·. Penn.,

Philadelphia, Penn.; 1963.

3. S. Warshall1 "A theorem on Boolean matrices", Inl. ACM, vol. 9, pp. 11-

12; Jan., 1962.

I. Supplementary Bibliographies

1. R. A. Kirsch I "The application of automata; theory to problems in infor­

mation retrieval (with selected bibliography)", ·National Bureau of Standards,

Washington, D.C. 1 Report 7882; March 11 1963.

2 . 0 . Kesner 1 "Bibliography: ALGOL references" 1 Co trip. Revs. ·, vol. 3,

pp. 37-38; Jan.-Feb., 1S62.

BEST AVArLABLE COPY

CWP t..
~. •. #·

' j
l •
I

~

;

3. U.M. Voloshin, "Bibliography on automatic programming", Institut

Matematiki Sibirskogo Otdeleniia Akademii Nauk S.S.S.R., Novosibirsk;

1961.

4. V. H. Yngve et al, "Towards better documentation of programming languages

(ALGOL 60, COBOL, COMIT, FORTRAN, IPL-V, JOVIAL, NELIAC), Comm.

ACM, vol. 6, pp. 76-92; March, 1963.

5. W. W. Youden, "Index to the Communications of the ACM volumes 1-5,

1958-1962", Comm. ACM, vol. 6, pp. 11-32; March, 1963.

6. "ALGOL references in the Communications of the ACM, 1960-1961 •',

Comm. ACM, vol. 4, p. 404; Sept., 1961.

7. "Automatic programming - a short bibliography". Annual Review in Auto-
matic Programming, vol. 1, Pergamon, New York, N. Y.; I960; pp. 291-
294.

8. See also [C5, C6, El, E5, F9, F10, Gl, G3] , which contain extensive

bibliographies relevant to their subjects.

Footnotes

es

!
CM

I

* Received

' Computer Associates, Inc., Wakefield, Massachusetts

** The typo of grammar described here is sometimes called a context-free phrase

structure grammar, as distinguished from a more general type of grammar, the

context -dependent phrase structure grammar. The latter has no known appli-
cations to programming languages, the term "phrase structure" is not neces-
sarily appropriate for a context-dependent grammar« and the term "context-free"

has certain misleading implications; we will therefore use the short term "phrase
structure grammar" for what is sometimes also called a context-free phrase

structure grammar [C6], simple phrase structure grammar [Cl], or Type 2

grammar [C4] .

FLOWCHART LEVELS

by

Robert W. Floyd

(Preliminary Draft)

The work reported here was supported by the Information

System Theory Project under Contract AF 30 (602)-33-24

with the Rome Air Development Center.

Flowchart Levels (Preliminary Draft)

It is the intention of this paper to suggest a precise interpretation of

the intuitive notion of levels within a program or flowchart (e.g., "inner"

and "outer" loops), to demonstrate some properties of the proposed formalism,

and to present algorithms to classify a program into levels as a preliminary to

optimization, segmentation, etc.

Terminology;

A flowchart F is a finite set of vertices (singular:vertex) and edges.

Each edge in F is an ordered pair (vT,, TC) of vertices in F. If e= (v., vj

is an edge, we say that v. is the tail t(e) of e and that v0 is the head h(e) of

g e. A path through a flowchart is a sequence of edges e., e«, ..., e vps'

such that for l-i<p , h(e)=t(e .). A loop is a path such that h(ej=t(e^ ,).

We say v.—v2 if there is an edge (v^vj. We say v.^v2 if there is a path

suchthat t(e.)=v. , h(e)=v2. We say v.<=> v2 if v, =>v2 and v2=4>v..

Clearly "=>" is transitive, and "<^>" is both commutative and transitive. A

subset S of F is closed if it contains the head and tail of each of its edges.

The closure of a subset is the union of the set with the heads and tails of its

edges. Clearly closure(S) is closed, closure (closure(S))=closure(S)(and

closure(S)=S if and only if S is closed.

We say that an edge is an exit of a loop if its tail is a head (or,

equivalently, a tail) of some edge in the loop. We assume that each flow-

chart has at least one vertex (a start) which is not the head of any edge, and

at least one (a finish) which is not the tail of any edge, and that each vertex

lies on a path from a start to a finish.

CM

.

1

We now recursively define the level l(x) of an element x of ö

flowchart.

(1) If e is an edge belonging to no loops, Ue)=0. That is, if e^Vj.v^,
l(e)=0 if v^Vj.

(2) For \> 0, if every loop to which e belongs has an exit e' with l(e')<X/
and if 1(e) is not less than X, then l(e)=x.

One sees that if there are no edges on level \, there are also
none on level x+1, since any edge e which would satisfy the requirement
for l(e)=x+l would also satisfy that for l(e)=\.

We define the level of a vertex v to be the maximum level of the
edges leading into v, max (l(e))Av=head(e). We take 0 to be the maximum
if no scch edges exist. We define F to be the subset of F consisting of
vertices v and edges e such that Kv^X, l(e)ix.

Theorem 1. Each edge on level x>0 belongs to a loop in F . im

Proof; If l(e)=x>0, let us asstpe that e belongs to no loop In F .
Then any loop L containing e contains some edge, say e' /with 0<l(e')=!

X'< X. By definition, every loop (including L) containing e' then has an
exit e" suchthat l(e")=x" < X*, so that X"^ X'-1<X-1. Every loop
through e then has an exit whose level is less than X-l; if 1(e) is not less
than x-l, it satisfies the defining condition that l(e)=x-l, contrary to hy-
pothesis. Therefore, e must belong to some loop in F .

A

Theorem 2. For any vertex v, the maximum level of the edges whose
head is v is the same as the maximum level of the edges whose tail is v.

Proof: Suppose, on the contrary, that e=(v./v), l(e)=x, and the levels
of all edges whose tail is v are less than X. (Thus X>0). By Theorem 1, e

,.*

belongs to a loop in F , and this loop must contain an edge e' whose
A

tail is v, with l(e') ä X, contrary to hypothesis. By this and the sym-

metric argument, we show that, since neither of the two maxima is

greater, they must be equal.

Corollary: The level of a vertex v is max (1(e))
v=ta 11(e)

Theorem 3. F is closed.

Proof: For X=0, F =F, closed by definition. Otherwise, if
A

e=(v1,v2)e Fx, Ke^x, and Kv^Ke) , l(v2)&l(e), so Vj and v2 belong

toFx-

Theorem 4. Every edge has a level.

j" Proof: By assumption, every edge lies on a path from a start to a
J finish. If the edges of this path are e , e _., . .., eQ we show Ke.)^ i.

We proceed by induction on i. For i=0, the head of e0 Is a finish, so eQ

belongs to no loop, and l(e)=0. For i>0, l(ei_1)^i-l<i/ and e.. is an
exit of any loop containing e., so KeJ^i.

Define ^, ^>, and <^>- to have the same meaning in F. that their counter-

parts have in F.

Theorem 5 . If v ^> v', then v' ^> v, for X> 0.

Proof: If v^ v^., then by Th. 1» v2^> v. . If vV v', there is a path
in F from v to v', and v=v1^ v,^- v,^- ... ^ v_=v', so

\ \ \ \ P >
v'= v ^> ... ^> v~ ^ v0 ^> v^v. By the transitive property, v' ^s> v, and
v<^> v'.

Corollary: Any path in F. (X>0) belongs to a loop in F..

I

i

Theorem 6. If there is a path P from vertex v to a finish, and if

k of the vertices of the path are tails of more than one edge, l(v)^k

Proof: An exercise for the reader, using Theorem 4 and the Corol-
lary of Th. 2.

The algorithm to assign levels to vertices and edges can be des-

cribed as follows:

1. Label each vertex and edge with 0 if it belongs to no loops.

Set \=0.

2. Increase x by 1.

3. Label each unlabeled vertex with x if it is a tail of an edge

labeled x-1. If no such vertices exist, stop.

4. Label each unlabeled vertex or edge with X if it belongs to no

loop whose vertices are unlabeled.

5 . Return to step 2 .

Any nodes or edges left unlabeled by this process belong

to no paths which reach a finish, and thus belong to non-ter-

minating loops.

Tne process of finding paths and loops in a graph or subgraph F on

n vertices can be set up as follows:

1. Initialize the nxn square array M to zeroes.

2. For each edge (v^v.), set M.. to 1. Now M represents "v—v.".

3. Create a copy M* of M

!

5 . for j =1 to n

for i=l to n

if M*=l

for k=l to n

if M* =1, M* —1 jk xk
Now M* represents v.=>v.

6. for i=l to n

for j=l to n

M**^ M* x M*

Now M** represents v.<=> v.

2

7. for i=l to n

V,—M* i ii

Now V represents "v. belongs to a loop"

In the absence of detailed information about exit probabilities, it is

plausible to attempt to improve the speed of a program by assigning nigh

speed storage, index registers, etc., principally to nodes and edges on the

program's highest levels, and by segmenting the program and changing storage

'*> i »i 3^

1 ■.

■
•.

:..

i .-Air

and register allocations, where possible, along edges on the lowest levels.

I um indebted to Dr. Donald Knuth for suggesting the problem to which

the prededing is a partial solution.

Robert W. Floyd

Computer Associates, Inc.

Wakefield, Mass.

00

I

—

ikeoKe^n. !■• -7^

F

(V.A v^/ t /-v •£•<

W—0=^> •€>

7

••; JC

NON-DETERMINISTIC ALGORITHMS

8

by

R. W. Floyd

(Preliminary Draft)

The work reported here was supported by the Information
System Theory Project under Contract AF 30 (602)-3342
with the Rome Air Development Center.

NON-DETERMINISTIC ALGORITHMS

(Preliminary Draft)

R. W. Floyd

There is a class or algorithr;s in which at intervals choices

must be mace in a seemingly arbitrary manner; not until later in the

execution of such an algorithm does one learn whether or not the sequence

Of choices made was correct. This class includes several algorithms

for syntactic analysis of formal languages (e.g. both varieties of syntax-

directed an^./2er [j , and the predictive analyzer []). It includes

algorithms for solving certain problems in the theory of sorting [] .

It includes areas of cryptanalysis , game playing, th'.orem proving, and

certain aspects of operations research such as the traveling salesman

problem. This list is by no means exhaustive.

Normally a process of retracing or "backtracking" is built into

a &uch algorithms. It is our purpose to show that an algorithm in this

area may be designed without specifying the backtrack process, thereby

eliminating much of the tedious detail and simplifying the structure.

In fact, the algorithm may be designed as if it were to be executed by

a person or machine which, by insight or magic, always makes a

correct sequence of choices. The algorithm is then expanded by

mechanical means into a larger and more complicated process executable

by machines blessed with no more insight or magic than present-day

digital computers possess.

To bo specific, let us consider algorithms to be defined by

flow charts, i..e. directed graphs with labeled edges (arrows) where the

noces (boxes) contain operations of a few designated types; in particular:

(1) Assigning the value of an expression to a variable.

(2) Determining whether a proposition is true or false, and

choosing one of two exit edges accordingly.

(3) Writing output information.

in

i

r^» i "^^w—^———■qgr^-

1

(4) Reading input information.

(5) Starting (ie.'y' marking the point where the process begins).

(6) Halting (ie., marking a point where the process ends).

(7) Calling a named subroutine.

(8) Starting a named subroutine (ie., marking its entry).

(9) Halting a named subroutine (ie., marking its exit;

for simplicity we assume it to have one entry and •■ •■Wfc

We assume all nodes to have one or, in Case (2), two exits. To simplify

later developments, we adopt the convention thac each node has only one

entry, except those of type:

(10) Null operation (ie., joining several paths in the flow-

chart) .

A non-deterministic algorithm (NJJA) is an algorithm extended to

Include the operation of:

(11) Choosing an arbitrary integer in the range from 1 to n,

for specified n, and assigning the chosen integer to a

specified variable. This operation will be written

x —choice (n).
(O

where it is further required that each halt in the algorithm be marked £

as a success or a failure. A computation of a non-deterministic algorithm **

is a path through its flowchart, executing the indicated operations at

each node on the way, which halts at a node marked as a success. An

input sequence (or set of initial values of variables, or both) is said

to be accepted by an NDA if it is accepted by some computation of that

NDA. An output of an NDA is the output of some computation. If there

is only one computation, we may speak of T^ output.

For a Lxed input sequence and set of initial values, a XDA may have

any number of computations, including zero and infinity. One may show,

however, that if every path through the flow chart terminates, the NDA h_s

a finite number of computations. Depending upon circumstances, one may

be interested in finding one or all of these computations and their outputs.

00
(M

I
eg

V/c shdli demonstrate Xh§ methL 1 cf construction for B XDA

of a corresponding (coterr..-fistic) aiqerith;".-'. (DA) which will write

cr.e or all of i'r.<s output sequences of the XDA, provided that all

path« through ;he XDA terrr.inate. I'or each r.cde cf the MDA, with

specified labels on its entries and exists, we construct one or more

nodes for the DA, with specified labels. V/hen these constructed

nodes are connected as their labels indicate, they form a DA

equivalent to the NDA in the sense specified above. In Table 1, the first

column shows a node of the XDA; the second and third show corresponding

nodes of the DA. Roughly speaking, nodes in the second column

perform the same operations as those in the first, but additionally

save some information on stacks, and nodes in the third column

undo the effects of corresponding nodes in the second. The process

uses three auxiliary stacks M, R, and W (for memory, read, and write)

and an auxiliary variable T. For each subroutine S an alternate entry

S' is constructed which conmunicaies freely with S, and uses the same

exit cell.

1

Short explanations of Table 1 follow:

(1) Before assigning the value of an expression f to a variable X,

the previous value of X is saved en the memory stack M. It

is restored in backtracking.

(la) If the assignment to X is a reversioie transformation

(e.g., X —X+l) X need not be saved. In backtracking, the

inverse transformation (e.g., X—X-l) Is applied.

(2) Brancnes of control discard no information, and thus rocuire no

stack references. In backtracking, a branch becomes a join.

(3) Information to be written is accumulated on the write stack W

until a success is reached.

(4) The use of the read stack R simulates the usually impossible

backing up of an input device. R is initially empty.

(5) When the backtrack process returns to the start, all choices have

been tried and the process halts.

(6a) Wnen a success termination is reached, accumulated output is

written. The process either halts, or if all computations arc

desired, begins backtracking.

(5b) Failure initiates bacVtraeking in search of the most recent choice

not all of whose alternatives nave been explored.

(7,8,9) Upon return from a subroutine S, T-l if the subroutine succeeded;

T = (J if all paths resulted in failure. The backtrack entry S' of S

effectively asks for an as yet unexplored alternate computation Of

S. It is assumed that S and S' are simply alternate entries to a

single subroutine with a single exit cell.

5

''10) Before paths of control join, enough informcition is stored on the

memory stack M to permit the backtrack process to select the proper

path.

(lOa) If at such a point some proposition ? in the flowchart variables is

sufficient to determine which entry was taken, the stack need not be

used.

(13.) After saving the initial value of X, X is assigned the value of 1. If

a.H subsequent paths fail, X is incremented until all values 1 ^X-n

h a been explored, at which time the initial value of X is restored,

and backtracking continues.

OS

(N

eS Among the other ways of implementing NDA's, two nave frecuently been used.
i

The first saves on a stack the entire state of all variables whenever a choice

is made- (See []). A failure termination causes unstacking until a choice

with unexplored alternatives is found. The second pursues alternate paths in

parallel through some simulation of multiple processors (See []). Both may

make excessive memory requirements, and would require extensions to deal

with input and output. A third would use hardware designed specifically for

NDA's. All operations would be reversible under control of a "backtrack"

switcn, set by any failure halt. Such a macnine might be built or simulated.

After expansion of an NDA into a DA, standard economization techniques may

be fruitfully applied to the resulting flowchart. In addition, certain rules

apply particularly to ICDA's. It is not necessary to provide for backup or

stacking in the initialization portion of an NDA, executed only before

encountering any choices. It is not necessary to stack any variable whose

value at the particular nodo/aetermina:e from other variables.

1: will be found that loon-free NDA's correspond to DA's with jested loops;

NDA's containing loops correspond to DA's with iterated (i.e. variably "Jested;

see []) Icops; and that NDA's containing recursive subroutines correspond

to DA's containing recursive coroutines (see []). The desirability of

discovering failure conditions as early as possible must be apparent.

On machines having discs, or other large auxiliary memories, the inactive

ends of the stacks used in simulating NDA's can be moved out of fast
memory when memory space is scarce.

The possibility should be considered of preserving certain information from

being erased when backtracking. For example, if each solution to a

problem has an associated cost, ve might save the cost for the most

recent solution, and accept only those subsequent solutions of lower cost.

This extension would be useful for certain proLJems of sorting and operations

research, for example.

evj

Exc-mple
The flowchart of Figure 2 represents 2 non-detoministic aigorithrr.

lor top-down syntax-direcxeci analysis. It ;£ assumed that the input is to

be parsed as a phrase of type root. When the input string has been

exhaubzec^ ve assume' that the nexi character read is "-j", essentially

an end-of-fil.. symbol. We assume that for each non-terminal

character X, n , is the number of produciions X—*-y,, X—y2/. . . /X—M«
1 l^* and that y. 1 is stored in tne array p, starting at p. where j= prod, . .■

1 j x, i
GOAL is the input stack for the subroutine RECOGNIZER, whose task

is to read a phrase of the type named by the top word of GOAL and then

zo unstack that word. Since RECOGNIZER is a recursive subroutine,

there are additional implicit stacking operations for i and j whenever

it is called.

CO

(?)

A/ßA

i I

PA

\3M / - /-/
1 /--r

41
3A

A,1,

x- mi

^

41

»1

fZX

" 1

• I 5*1

*H

^ i ^3 g
FT

B]

(ri

4^

AT

ü
Wr& V^. ^.^Ofe o-T W

A'

^■X^ .^. r^.-i- i^^-^J 1>*(*/C,

U

3 j

I A«. A'f

<©

Al
(5) (gVfc^ •fV'?^ ^.u.^^j^t --Sy

if
V

ixffll

cl^/ J^t^w^--^ S'j

£xi* Iwi^.-xJ^J-^V)

Llr^
A' i

AM

TABLE I

io)

OoO

I

//M

"Lr

^ rz Ai_ 4i

11
Al

J

A±
Ld^ck Aj 4* X\

c2>T7XS>

*'1

T^^A^ i Cc.^^^j)

/XSL
^ 7"J

ciXe-^r? I<* r/L

' P-- gwcj (A;

rTs- //= o (yn^PjT)

et >:

^^
i..

t S~xk Pr***
P—i r

—r <?

j(_ _

EI

S

'r~. , ^y.—^"i

'\2±-JhL

l

Zl

< ^ *\^,r C J»-.*^- ''/>»-<.* jL^jh: <i~ A'Dfj Ya p^L^j- r
*u.

^ CfrVi'%i!tjjy%i-%*m-><\,^>«>
^

*T

c^sfau-j+tj ^M. N^.- .^Z trfnZlL '1 ; rt> prL** *M> tfüs**

.^L^X

ii L*

JL. <f^± C-<:^t*.t<-<'

<.'^rf->wN-~j ^» «-»-JO V*.'- ,
^

10

,~" *-.

f
CM

.

 j

I GOAL -L- ^-A

i u^i-UtA GOAL}—

_\ (^Tsyy^y^CrA/i u gg)

CHH

11

AN ENVIRONMENT FOR AN OPERATING SYSTEM

G. F. LEONARD & J. R. GOODROE

Computer Associates, Inc.

Wakefield. Massachusetts

!

Reprinted with pcrmiMion bom th» 1964 ProcMdingt oi 'h«

Aaaociotion for Computing Machinery

N«w York, N»w York

Copyright 1964
Printed in U S A

'

AN ENVIRONMENT FOR AN OPERATING SYSTEM«

G. F. Leonard & J. R. Goodroe
Computer Associates, Inc.
Wakefleld« Massachusetts

I

Conventional operating systems are
limited In scope and are designed to deal with
very specific problems In the utilization of a com-
puter facility. As more sophisticated programming
techniques and new applications for computers are
developed, it becomes increasingly apparent that
operating systems, as currently conceived, do not
adequately cope with the resulting problems.

In this paper, a new approach to computer
facility utilization is proposed which is based on
the concept of extending the operations of a com-
puter with software so as to provide a proper
environment for an operating system. The organi-
zation and functional descriptions of a system,
called an "extensible machine", is presented with
the advantages it affords over conventional
systems being explicitly stated. Criteria for de-
veloping such a system are presented and the
capabilities of the system are discussed in the
light of current problem areas such as parallel
processing, real time processing, and intelli-
gence systems.

Introduction
In the past, computers were used in a very

straightforward manner. Jobs to be run on a com-
puter were composed of programs, units capable
of independent execution. Programs were written
to utilize a specific subset of the equipment
inventory available for processing and were not
usually easily adaptable to configuration changes
(e.g., the loss of a "printer" because of equip-
ment malfunction). The order of execution among
programs wa-. generally controlled by the operators
of the equi^.ntnt, often in a somewhat arbitrary
manner. It was incumbent on the operators of the
computer to keep their records continually updated
as to the "current" version of input files, to pro-
perly label outputs, and to run the programs of a
job in the proper sequence.

As computers and computer users became
more sophisticated, operators were no longer able
to fulfill this role rapidly and reliably. This re-
sulted in inefficient utilization of the equipment
and a lack of responsiveness to user priorities.
It was soon noted that many of the tasks performed
by the operators were more suited to execution by
computers than by humans. This led to the devel-
opment of computer programs, called "monitors"
and "operating systems", to automatically handle
the scheduling and execution of user Jobs. As

* The work reported in this paper was supported
in part by the Information System Theory Project,
Contract No. AF30(602)-3324 with the Rome Air
Development Center.

other techniques were developed for simplifying
the problems of preparing and executing user
programs (e.g., assemblers, compilers, data
packages), it was recognized that these programs
could be employed advantageously as extensions
to the operating system. This was the first step
toward the development of an "extended com-
puter" *, an environment in which programs are
written, debugged, maintained, and executed.

Conventional operating systems are pur-
ported to be systems which provide for the efficient
and timely execution of programs on a oomputet.
It seems to be the consensus of opinion that, wh^n
used in conjunction with such programming aids as
compilers, assemblers, and data handling packages,
an operating system is the answer to the problems
attendant to utilizing a large computer facility.
Modem systems allocate machine components,
such as magnetic tapes, to the programs as they
are loaded, inform the operator of requirements
for mounting or dismounting the specific tapes re-
quired by the current Job (or, in some oases, later
Jobs), load the programs, provide for the linkage
of the programs to the computer components allo-
cated, and transfer control to the programs. When
a program terminates, it returns control to the
system which then proceeds to ready the next Job,
and so on.

While the benefits enjoyed from such schemes
are apparent and considerable, such systems have
certainly not solved all of the problems. In parti-
cular, these systems have not significantly reduced
the problems of linking programs to programs and
data, sharing the computer facilities among a num-
ber of users, distributing the work-load over a
number of Independent processors, or generally
improving the overall efficiency of the man-machine
system. In addition, the conventional operating
system-software combinations have a subtle effect
upon the design of solution schemes and often have
a tendency to constrain and distort, sometimes se-
verely, the methods and tech.iiques which the user
can conveniently or efficiently employ in solving
his problem. Finally, these systems are not
readily adaptable automatically, or even manually,
to changing user-programmer-operator requirements.

It Is herein contended that operating systems
as currently conceived can offer little more benefit
than has already been realized. In order to con-
struct a more powerful and flexible system, a new
approach tc programming and operating systems la
required. This paper discusses a system, called
an "extensible machine", which is based upon the
concept of extending the operations of a computer
to provide the operations required for proper pro-
gram and data manipulations, thus providing an

E2.5-1

I

WMHMkMMIa

•nvlronment for an operating system. It should
be noted at the outset that it In not the Intent of
this paper to present detailed cechnlcal specifi-
cations for an operating system; rather, this paper
presents a point of view with respect to the or-
ganisation and development of operating systems
within the larger context of effective oomputei
utilisation.

An operating system, a compiler, and a
user's program are usually viewed as comprising
quite distinct design and Implementation problems.
Even though these processes perform quite diff-
erent functions In the overall computational envir-
onment, each of them Is ultimately nothing more
or less than a program to be executed on the hard-
ware. Thus, whatever their functional differences,
as programs these processes have a gmat deal In
common. Indeed, they have exactly In common.
the requirement for reasonable solutions to the
problems of loading and executing programs on a
computer.

Thus, we have come full circle; an
operating system requires itself In order to operate.
This Is, of course, analogous to the problem of
"loading" a loader and, we would submit, should
be solved In an analogous fashion. That Is, we
should develop a general purpose environment for
loading, sequencing, and executing programs Just
as a modern digital computer is a general purpose
environment for loading, sequencing, and exe-
cuting Instructions. While, In a certain sense,
this represents solely a semantic division of con-
ventional operating systems (since they do have
the facility for loading, sequencing, and execu-
ting programs) the implications are actually much
more severe. We are suggesting that operating
systems be divided and reorganised such that a
fundamental capability for the manipulation of
programs is first provided, irrespective of the
functional attributes of the programs being manip-
ulated.

It is precisely this concept of a set of basic
functions, together with the mechanism for se-
quencing among them, that forms the nucleus of
the system organisation proposed in this paper.
This nucleus, composed of a control program and
a set of "instructions", called primitives, for
manipulating program and data structures, in con-
junction with a computer hardware complex will be
called a "basic computer". It is herein maintained
that a "basic computer" furnishes the tools re-
quired for the construction of an operating svstem,
aids for the programmer, a user's algorithm, or,
indeed, any other program. It is further main-
tained that, since the "basic computer", in effect,
hides the idlosyncracles of the hardware and fur-
nishes a natural environment for the construction
of programs, systems which are properly built up
from the primitives are readily adaptable to
changing user's requirements, to new programming
techniques, or to new hardware.

The general design of a total software
system, called an Extensible Machine, with a
"basic computer" as its nucleus, now will be dis-
cussed. An "Extensible Machine" is an "extended

computer" ^, since It provides a programming and
operating framework. In addition, an Extensible
Machine has an Innate capacity for growth. That
is, new programs developed vithin the framework
of the system automatically become extensions of
the system. In this way, the Extensible Machine
evolves into a system which is responsive to the
needs of particular users, programmers, and
operators.

TfTl^Wl.TlLOUiJTJi

The Extensible Machine (EM) may be con-
sidered to have six components, namely:

1. Operating System
2. Programming System
3. Applications System
4. An Executive Control Program
5. A Set of Primitives, and
6. A Hardware Inventory.

The last three of these components collectively
will be called the Basic Computer.

The Operating System furnishes the means
for man-EM communications. The Programming
System enables the extension of the EM. The
Applications System constitutes those operations
of the EM that are used to solve users' application
problems. The Basic Computer is composed of an
executive control program, which is the sequencing
(controlling) mechanism for the running of programs
in the EM; a collection of primitives, which are
the basic extensions to the hardware to provide
inter-program communication and manipulation
facilities and to deal with equipment Interactions;
and a collection of equipments, which constitute
a computer Installation. The relations among these
constituents is represented in diagram A.

The Operating System (as may be seen in
diagram A) has access to the programs of the
Applications System. The Operating System ex-
tracts the proper programs as specified by a user's
"Job" and causes their execution by the Basic Com-
puter. The Operating System has access also to
the programs of the Programming System, and
similarly relates the appropriate programs to the re-
quests ^.■eclfled by the programmer and causes the
execution of these programs by the Basic Computer.
The Operating System deals directly with the Basic
Computer to accomplish communication with the
operator.

The Basic Computer, as noted above, is
composed of an executive control, a jet of primi-
tive operations, and a hardware complex, which
together constitute a sophisticated programming
environment. The operations of the Basic Com-
puter allow natural discussion of programs and
data. The first step toward furnishing a natural
means of discussing programs and data is that of
hiding the idlosyncracles of the hardware. In this
respect, the Basic Computer provides functions
which enable the following:

1. automatic allocation of machine resources
to programs and data; these resources

E2.5-2

-.-

CO
o
en

i
M

to
I

CO
o

Uier«
Programmcrt
.Oparator« Opwttc

Operating
System

Basic
Computer

DIAGRAM A

E2.5-5

■»w-

,-^-~

being: intarml storage such as core
or registers; external storage media
such as reels of tap«, discs, and
drums; peripheral mechanisms such as
printers« tape drives, card readers,
computers, consoles, and operators;
processors such as computers and
I/O controllers; and channels for
communication;

2. transmlttal of data by name among the
machine resources;

3. Internal data manipulations such as
the automatic extraction, conversion,
and Insertion of fields In data sets,
and the formatting of data sets;

4. error detection and correction such a»
the conversion of hardware or software
error signals Into re-try signals or
program error flags; and,

5. parallel processing specification and
synchronisation, such as the specifi-
cation of branch points, wait points,
path end points, etc.

Operations for the direct manipulation of
programs and data sets are defined In terms of
these functions. Thus, the Basic Computer allows
programs to:

1.

2.

4.

establish. Initialize, and release pro-
grams and data sets, where establish
denotes obtaining, allocating, linking
and binding;
execute and monitor established pro-
grams;
maintain files of programs and data;
and.
respond to external commands.

In addition to these primitives, the Basic
Computer provides arithmetic, logical, and control
operations. Finally, the Instructions of the hard-
ware are made available as Basic Computer oper-
ations to enable extension of the Basic Computer
Itself.

The executive control of the Basic Com-
puter accepts and causes the execution of pro-
grams, controls sequencing among programs, and
provides the basic means of communication with
the Basic Computer. The executive control re-
ceives program execution requests from the
Operating System. It schedules execution of these
requests within the constraints of priorities,
equipment availability, and efficiency consider-
ations . At execution time, the executive control
translates each request Into calls on the operations
of the Basic Computer for establishing and exe-
cuting the proper program. Throughout the exe-
cution of programs by the Basic Computer, the
executive control is continually aware of the sta-
tus of both the programs and the equipment. It
furnishes monitoring Information to the Operating
System and handles the problems of equipment
configuration changes.

It should be noted that, since there may be
many I/O controllers, computers (homogeneous or
not), memories, and so on Involved In the hard-
ware makeup, the executive control may actually
be a hierarchy or even a cooperating set of exe-
cutive programs handling "local" scheduling and
sequencing. The type of executive control organi-
zation used In the Basic Computer Is dependent
on the hardware makeup and considerations of
efficiency.

While conventional operating systems do
not have the Basic Computer organization, they
are built around clever utility packages which
offer many of the same capabilities as the Basic
Computer. Nonetheless, these systems do not
allow programs to explicitly discuss program
stiuctures or to control the linkage of programs
and data. As a consequence, the programs com-
prising these systems are not descrlbable or
otherwlre discussable within the framework of
the system. Thus, adapting the system to
changing user requirements, radically new hard-
ware configurations, (e.g., new or additional
types of storage media, additional control pie-
ces sors, remote consoles, and the like), or new
software techniques is difficult and expensive.
The lack of mechanisms for allowing programs to
utilize program and data set linkage Information
also means that conventional operating systems
offer little aid in the construction of very large
programs. That Is, the programmer must handle
the problems of segmentation, phasing, and
allocating. It is often the case that the pro-
grammer's solution to these problems is, perforce,
more complex and less efficient within the system
than outside it.

Conventional operating systems can not allow
program control over linkage, because linkage Is
specifiable to the system only as simple address
connectivity (i.e., the specification of "entry
points" and "common" areas). The Basic Computer,
on the other hand, accepts the specification of the
"semantics" of linkage; that is, the specification
of the entities to be linked (programs to data, pro-
grams to programs, programs to hardware), the
time of linkage (compile time, establish time, exe-
cute time), and the agency by which the linkage is
to be performed (compiler, establlshcr, the pro-
gram Itself, a monitor, and so on). In this manner
the Basic Computer provides for dynamic program
control of linkage and the consequent ability for
programs to freely manipulate system entitles.
This allows the Operating System to be considerably
more flexible and efficient than It can be in conven-
tional systems.

The Programming Svstem provides the mech-
anlsms for the construction and modification of
programs, which are extensions of the EM. To the
individual programmer, the Programming System
furnishes language translators (e.g., compilers
and assemblers), dats handling capabilities (e.g.,
automatic Insertion In and extraction from data sets
via data descriptions, input/output packages, and
data conversion routines), and convenient ways of
defining linkages among extant programs. For pro-

I

o «
i

F.2.5-1*

■ "f

grammers as « group, the Programming System
accepts and effects declarations concerning the
assembly of sets of programs Into larger programs,
the establishment of Inter-program relations
(e.g., the rcutlne-subroutlne relation), and so on.

In order to service the Operating System
requirements, the Programming System furnishes
capabilities for specifying and utilizing explicit
linkage Information and precedence specifications
among the phases of large programs. The Pro-
gramming System provides for complete relooat-
ablllty of programs and data and furnishes a gen -
arallsed naming capability (I.e., logical unit
manipulation) Independent of physical location.

In general, the Programming System fur-
nishes facilities which enable the convenient use
of the Basic Computer In manipulating programs
and allows the discussion of the primitives of the
Basle Computer as programs. These capabilities
allow the EM to be extended by additions to the
Programming System, to the Applications System,
or to the primitives of the Basic Computer.

With regard to conventional operating
systems and associated programming aids, today's
programming languages provide reasonable lin-
guistic forms for the specification of arithmetic,
logical and control functions within a program.
However, when complete systems are built around
a compiler, the systems tend to be inflexible,
inefficient and clumsy to use. The problem is not
one of language per se; rather, the objects and
mechanisms which are to be discussed as entities
of the system are perverted in order to be dis-
cussable within the basic programming language,
and the environment in which programs are exe-
cuted is not freely discussable in the language.
For example, consider the problem of providing
"global" storage: data (sets) which can be refer-
enced by several Independently compiled pro-
grams . FORTRAN « (though it allows calling sub-
programs by simple mention of the name at compile
time — the loader binds them together) allows
common data reference only through identity of de-
rived memory addresses. In order to allow se-
parate programs to reference a global data set, the
programs must be compiled, each containing
(essentially) Identical COMMON declarations,
(except for names, which are irrelevant) so that
the compiler, processing them similarly, will pro-
duce the same load addresses. In general, FOR-
TRAN uses the COMMON and EQUIVALENCE de-
clarations for three more-or-less independent pur-
poses, which might be better handled separately
and explicitly:

1. stating that a name denotes a oicjal
data set, and providing a very indirect
linkage between programs which refer-
ence it;

2. stating that certain data sets can re-
ceive overlapping allocations (instead
of "estabUsh' and "release" operations);

In an EM, assemblers, compilers, inter-
preters and other programming aids are viewed as
entities within the programming system and are
not the mechanisms for accomplishing ocntrol
and inter-program linkage. By furnishing a level
of communication for the discussion of programs
and data structures per se, and by allowing the
discussion of the programming and operating en-
vironment within the system itself, the EM
affords a proper programming environment.

The ADDlloatlons System is composed of a
large, growing collection of operations (i.e.,
programs) designed to perform explicit functions
for the solution of the users' problems. The
Applications System is the core of the EM, in the
sense that it is responsive to the users' needs.

Since they constitute a set of independent
operations responsive to users' requirements, the
Applications System programs must be adaptable
to a wide range of environments. The program
information filed in the Applications System is
kept in several forms to enable oommunioatlon
with users and programmers, manipulation by the
Programming System, and relocation, linkage,
and execution by the Basic Computer. For the
implementation of large problems, the Applications
System requires additional tools for analysing, ex-
tracting, and correlating information from the
inter-program structures described via the Pro-
gramming System, as well as tools for generating
and manipulating Its own structurss. Such tools
simplify inter-programmer oommunloatlons, aid in
assuring program compatabillty, and form the
basis for an automatic documentation system.

.

jMSgftS
Operat

It is the fundamental
System tr) accept and

3. stating (or implying) ttnur*1'
lances between elements o;
structures.

function o:
cause the processing of Jobs.

The Operating System performs tevwal
functions on a "per Job" basis.

1. It provides for translation from input
language to the Basic Comvi*;*.* lan-
guage, i.e., the translation of the
operations and operands of a Job re-
quest into "names" of programs and
data sets.

2. It submits program execution requests
to the Basic Computer along with appro-
priate data and linkage information.

3. It monitors the execution of programs
by the Basic Computer and furnishes
the means for tracing snore, extracting
debugging information, making addltlcns
to and deletions from prograoM,
initialising data sots, etc.

4. It furnishes a means for handling output
from a Job for the user by automatically
formatting information and translating it
to the user's language.

5. It arranges for the connecting and dis-
connecting of information files to the
EM.

In addition, the Operating System handles

E2.3-5 il,

■ - ■iM>

such Inter-Jrb task« as Inter-Job scheduling,
response to multiple operators and multiple
users, and response to changes In the equipment
oonflguratlon.

Funotional hlararohv of the EM. The EM
can be looked upon as a "computer" which deals
directly with the problems of the user. In this
sense, the Operating System Is the computer exe-
cutive control, which sequences through the
"Instructions" of a "program". The "Instructions"
consist of operations which are the names of
Application System programs and operands which
are the user's input data. The "program" Is a
user's job. (Similarly, when the programmer Is a
user, the operations are the names of Programming
System programs. Here, the operations are the
extending operations of the EM.) In addition to
the Application System operations and the Pro-
gramming System operations, the EM, at this level.
furnishes arithmetic, logical, and control oper-
atlons for user control over Ultra-Job flow.

Within the EM, the Basic Computer Itself
Is a "computer". The Operating System causes
the Basic Computer to execute Basic Computer
"programs", which prepare the Application System
or Programming System programs named in the user
"Instructions" for execution by the hardware. The
Basic Computer "programs" are composed of
"instructions" whose operations are the names of
primitives (e.g., ESTABLISH, INITIALIZE), and
whose operands are the names or descriptions of
Application System or Programming System pro-
grams or data.

Finally, at the level of hardware execution
of programs, the hardware is a computer in the
conventional sense, with its own executive con-
trol and operation repertoire.

Thus, the EM Is composed of a hierarchy
of "computers". Although their Instruction re-
pertoires differ, the "computers" have essentially
identical structures. The levels above the hard-
ware computer provide proper frameworks of dis-
course for the programmer (the Basic Computer)
and the user (the EM). This hierarchic organi-
zation is Illustrated in diagram B.

The division of an EM Into a hierarchy of
"computers", although Incomplete as presented
here, is a very powerful concept because It ties
together Into one homogeneous framework the pro-
blems of computer design and utilization. Indeed,
this very concept is the entire basis of this paper.

Vfy-SyftffB imTntften • Different users
may view tne EM in different ways. While one
user may wish to utilize the system as a mathe-
matical assistant in performing formal manipu-
lations, another may wish to have the system
furnish a repertoire of standard mathematical
computational algorithms, and still a third may be
concerned with the solution of conventional
scientific or data processing problems. Each of
these users is unconcerned with hardware con-
straints and, to him, the system is a special
purpose device oriented toward his particular

application. He specifies solutions of his pro-
blems to the system in a convenient language and
he receives outputs from the system in that
language. Furthermore, the system is readily
adaptable to his changing needs.

The user communicates with the system in a
number of ways. He prepares and presents to the
system a job to be executed; depending on the
type of job he has presented, he may remain in
more or less continuous communication (perhaps
through a remote console) with the system, pre-
senting additional Inputs, evaluating results,
and modifying his job; and he receives final re-
sults.

The only constraints on the user are those
Imposed by the language of communication rather
than those imposed tv hardware or the Operating
System.

ProjTEinmer-Svstein interaction. The pro-
grammer extends the system by adding new pro-
grams which are, In turn, extensions to the user-
oriented operation repertoire of the system. In
generating a machine solution, the programmer
is a "user" of the system. The operations utilized
by the programmer as a "user" may be categorized
as programming aids.

The programmer extends the system by
adding programs to service the changing require-
ments of user-progiammer-cperator interaction
with the system. In his role as a user of the
system, the programmer has the same facilities as
other users (cf. above). In addition, since the
programmer must take account of the structure of
the system In defining new entitles, he is afforded
programming aids for explicitly handling
structuring and communication problems. Finally,
In order to extend the programming aids of the
system, the programmer has the basic facility of
discussing programs as entities.

Operator-System interaction. The operator
has two relations to the system. In one sense, he
Is a lew speed, unreliable input/output mech-
anism which is viewed as a hardware device of the
system. Thus, he has communication mechanisms
appropriate to his input/output characteristics.
In another sense, the operator correlates and sub-
mits user jobs to the system. In this role, the
operator is the highest level "Interpreter" of the
system.

The Development of an EM
The Extensible Machine will now be exa-

mined from the viewpoint of one who wishes to
design and build such a machine.

Deyalopmental organization. From the stand-
point of development, the EM should be looked
upon as a Basic Computer to which Is appended a
file (or files) of programs and data (see diagram
C). Although the delineation of an Operation
System, « Programming System and an Applications
System ic useful to EM users, and the organization
of an EM into hierarchy of computers Is a useful
concept for the analysis of computer utilization

r >

« •

I
CO
©

t t

9 *

E2.3-6

. . M ..I

OMGRAM B

DIAGRAM C
^

E2.3-7
■■B»

I

■Uc ••.«. . • . _

problems, an organization for Implementing an
EM remains to be described. Developing an EM
from a given hardware inventory requires that the
Operating System, Programming System and
Applications System be considered as programs for
execution by the Basic Computer. And, indeed,
the primitives and executive control of the Basic
Computer are themselves programs for execution
on the hardware. Thus, it is logical to begin the
development of an EM with the design of a Basic
Computer.

Basic Computer design criteria ■ Certain
design considerations lor the Basic Computer con-
strain the development strategy. In particular,
the following five criteria must be carefully exa-
mined .

1. The Basic Computer «hould furnish the
means for Its own extension and modification.
The primitives of the Basic Computer furnish
capabilities for the direct manipulation of programs
and data. However, the primitives of the Basic
Computer are themselves programs; therefore, if
carefully designed, the Basic Computer may be
used for manipulating (i.e., extending, modifying)
Its own primitives. Indeed, this is the only
satisfactory solution to enabling extensions to
and modifications of the Basic Computer.

Qompuw la wftqi
of the h^wap» an<^

The executive oontrol of the Basic
s analogous to the control mechanism
 must be carefully constructed.

ithough the executive control of the Basic Com-
puter is a program, special care must be used in
enabling modification of it. Executive control is
not a primitive (i.e., an operation of the Basic
Computer); it is the operation sequencing and
interpreting mechanism of the Basic Computer. As
such, it forms a fundamental core for a Basic Com-
puter that is invariant, in the sense that the users
of the Basic Computer do not request its execution;
rather, it is automatically executed by the Basic
Computer. It is clear, however, that a given
Basic Computer furnishes an environment in which
a Basic Computer may be built, and that a means
of automatically substituting one executive oon-
trol for another can be devised. Indeed, such a
substitution capability should be furnished by
every Basic Computer, and can be looked on as the
addition of a primitive "change executive oontrol"
to the repertoire of every Basic Computer. Whether
the Basic Computer which results from the execution
of such an instruction is a new Basic Computer or
Just an extension of the previous Basic Computer
is an interesting philosophical question whose
resolution affects neither the practicability nor
the desirability of furnishing this capability.

3. A direct communication link must be
provided between the operator and the Basic Com-
puter (and, ultimately, the hardware). In general,
computers are not continually "self-aware", i.e.,
they are sometimes dormant and are not "running".
For the Basic Computer, and even for the hardware,
the impetus for transition from the dormant state to
the active state must come from the outside, i.e.,
from an operator. In the case of hardware, this
impetus may take the form of manually loading a

"loader" program and transferring oontrol or,
more simply, the pressing of a "load from Upe"
button. In a like manner, a Basic Computer must
be given an impetus to change stites; e.g., the
program to establish programs must be es'.atitshed,
the program to initialise programs may require
initialisation, and the program which allocates re-
sources must be allocated resources. Indeed,
even the executive oontrol of a Basic Computer is
a program which must be established and given
control, and some mechanism, be it hurtan or not,
must exist for interpreting and sequencing among
the "instructions" of the "program" which per-
formed this establishment. This direct communi-
cation link between operator and the Basic Com-
puter should be established as simply as pos-
sible.

4. The Basic Computer is largely the means
by which the entire system will obtain Its own

tributes of efficiency
»Hi

Sticiencv a
re should

nd overall man-svstem
efficiency. Care should be taken in the imple-
mentatlon of primitives, since they are the basic
instruction repertoire for the generation and mani-
pulation of programs and data. Their efficiency,
or lack of it, will be propagated throughout the
system. Similarly, the executive control of the
Basic Computer should be an area in which effi-
ciency of execution Is a prime consideration. Also,
the repertoire of the Basic Computer should be for-
mulated so as to maximize man-EM efficiency,
for, in general, a "clumby" E. sic Computer in-
struction repertoire will detract from overall effi-
ciency.

5. Hardware oraaMzatlon and gammunication
constraints are reflected In the Basic Computer.
It is within the Basic Computer that the Extensible
Machine is made responsive to inter-hardware
communication requirements as well as to varying,
perhaps dynamically varying, hardware organi-
zations. Thus, the Basic Computer must furnish
not only capabilities for the expression of the pro-
cessing modes (e.g., the parallel processing of
branches in a program) possible within a program
and even capabilities for the relating of overall
demands of the system to the current and projected
equipment states (e.g., progurr.s for scheduling
programs and allocating resources on the basis of
priority and equipment availability), but also
capabilities for effecting and adapting to chauges
in inter-equipment Organisation (e.g., * change
from a central master-slave relation between two
computers to an organizction in which the two
computers are autonomous, cooperating entities).
The Basic Computer must also furnish the means
for satisfying any logical or physical inter-program
or inter-equipment interlock requirements left un-
satisfied by the hardware.

On Basic Computer development strategies.
The strategy for developing a Basic Computer
should be based not only on the interdependence of
primitives (e.g., the requirement of an allocation
capability beforfe a primitive for establishing pro-
grams can be furnished), but also on considerations
of efficiency. Thus, although a sophisticated
Basic Computer could be developed from scratch.

I »

to
i

CO
o

e»
i

E2.3-8

s
CO
I

vith the «xaoutiv« control program being the last
capability defined, It would undoubtedly be more
efficient to flrat Implement a simple and Inefficient
but complete Basic Computer, which would then
form the basis for the development of a more so-
phisticated system. It is this fundamental char-
acteristic of being able to grow and automatically
effect Improvement« In Itself that is perhaps the
most powerful and significant improvement that
the Basic Computer concept offers over more con-
ventional approaches.

On Opaietlna Svstem design. As the exe-
cutive control of the Basic Computer Is analogous
to the control mechanism of hardware, so Is the
Operating System of an EM analogous to the exe-
cutive control of the Basic Computer. Thus the
Operating System of an EM Is not an "operation"
(program) In the repertoire of that EM. It Is the
mechanism responsible for Interpreting .and se-
quencing among the Instructions of a user's Job.
As Is the ease for the Interchange of executive
controls, the capability of substituting one
Operating System program for another can and
should be effected. Although care must be used
in enabling such a self-modlfloatlon within the
system, the problem Is much simpler than was the
analogous problem for executive control, since
the full power of the Basic Computer can be freely
used.

On a orlmarv EM. Given a Basic Computer
and an Operating System, It only remains to add
a minimal capability to form a primary EM. The
addition of a language Interpreter for some con-
venient programming language (e.g., FORTRAN),
and a method of specifying program and data sat
linkage. In conlunctlon with the definition of
some simple user oriented functions (e.g., a sort-
merg« or a program for data storage and retrieval),
forms a complete, albeit unsophisticated, EM.
The full powers of the EM can then be brought to
bear for both using and extending the EM, as de-
sired.

Parallel Processing. Weal Time Systems. Etc.
The organisation and development of an

EM having been discussed. It remains to examine
the EM in relation to significant problem areas In
computer system applications.

Parallel Prooasslnp. Of late, much
emphasis has been placed on parallel processing
(as used hare, the Interleaved ot simultaneous
execution of routines by a computer facility). In-
terest In providing parallel processing capabilities
has been stimulated In three different ways.

Firstly, users of conventional operating
systems have noted that the proper application of
parallel processing could effect an order-of-
magnltude Increase In efficiency In their computer
facility operation. This fact Is dramatically de-
monstrated by statistics gathered bom the operation
of the JORTRAN monitor system at Rand Corpor-
ation 3. Attempts to adapt conventional operating
systems for parallel processing have been
unsuccessful, which substantiates the previous

discussion of the weaknesses of these systems.
As a result, current efforts In this direction are
starting from scratch, but, unfortunately, suffer
from the prevalent viewpoint on operating systems
and are often distorted by demands for oompata-
bUlty.

Secondly, the desire to share a computer
facility among a number of simultaneous users
has led to the development of afveral so-called
time sharing systems 4' 5' 6» 7» 16 (for the
moment time sharing will be discussed with res-
pect to single computer systems; multiple com-
puter systems will be discussed separately).
These systems are organised around a concept
of parallel processing wherein control la given to
each of a number of programs, In turn, far a
short time and In a pre-determined order. Between
execution periods programs are not retained In
core memory; rather, they are kept In a secondary
storage medium. Thus, the systems operate by
shuffling entire programs In and out of the main
memory at each transition point. This concept of
tlmo sharing does nothing to Increase system
throughput; It only allows for simultaneous users.
Indeed, some systems offer the user. In effect,
a "barefoot" computer with less capabilities than
are available In the extent hardware. Thus, not
only Is the programmer's burden Increased, but
also the Implementation of vary large programs Is
extremely difficult, or, perhaps. Impossible.
Finally, such systems often make use of spoolal
and expansive hardware to hide the time sharing
system from the user.

Thirdly, computer users and manufacturers
have become concerned with the tying together of
a collection of computers Into a single computer
facility, with the goal of Increasing facUtty
throughput and capacity using state-of-the ait
hardware. Moat multiple computer systems cur-
rently being developed are based upon a specific
division of functions among the computers In-
volved (either in a built-in fashion or by a pra-cun
scheduling pass). Thus, one computer may be
considered as a slave of another far performing
Input-output, one computer may be used far com-
piling programs while another executes them, or
the task of controlling and monitoring the estab-
lishment and execution of programs may be
assigned to a specific computer. Any such divis-
ion of labor among the computers of a complex la
restrictive In the sense that ft does not allow far
the dynamic reorganisation of the computer
facility In response to problem oharaotetistlcs or
exterior constraints (e.g., hardware tellura). In
addition, currant systems provide little or no help
to the programmer In the structuring of his pro-
grams far efficient execution by the oomplex.
Finally, elaborate but fixed priorities of oommunl-
oatlon (I.e.,. Interrupt priorities) era often built
Into the hardware, making ft unresponsive to
changing exterior priorities.

It Is herein maintained that, la theory, there
la no difference In the problem of connecting and
oontrolllng several computers as a single computer
facility and the problem of oontrolllng simultaneous

I

E2.3-9 1

M«iAx

Input-output/central computer processing, or.
Indeed, the problem of effectively sharing a
single computer among several user«. Differences
In techniques are required only because of hard-
war« Idlosyneiaeles.. ft Is further maintained
that the development of a flexible, responsive
and efficient parallel processing system requires
that these problems be considered oollectlvely.

ft la Interesting to note that the several
existing parallel processing systems which have
bean developad, at least In part, according to
these principles, are also reasonable approxi-
mations to an EM. The AOSP 8 on the Burroughs
D825 computer provides parallel processing, tlme-
sharad among one or more oenputer controls, and
Is a good cut at a Basic Computer; the system
does not yet have an operating system or the
proper executive control for schedullno and the
Ilk«. The CL-n Programming System *• I0' 11

as Implemented on the IBM-7094 Is a one com-
puter parallel processing system of some sophis-
tication, but has not yet been extended to a
multiple computer system; the system Is closer
to an EM than the AOSP, however. The software
for the RCA 3301 contains the seeds for allowing
extension from a time-sharing system on a
single computer to a multiple computer configur-
ation; the system Is close to being a Basic Com-
puter but requires additional programming system
facilities and Improvements In Its ability to
manipulate Its own entitles before It can properly
be considered a basis for an EM.

Within the framework of an EM, parallel
processing is considered as a technique for
acoompllshing more efficient computer utilization.
An EM offers an environment in which parallel
processing techniques can be developed and
incorporated and the incorporation of such tech-
niques does not detract from the capabilities of
the EM to aid the programmer in the development
of programs. In addition, because it is flexible
and has the ability to manipulate its own consti-
tuent programs, the EM allows for dynamic reor-
ganization of the hardware components of the
system. Thus, the several computers of a facility
may be organized at one time Into an equally
capable, cooperating sat of computers, at another
time into a central master-slave organisation and
at still a third time into a hierarchy of function-
oriented computers.

Real time Dreoeasina systems maybe
generally characterized by their requirement for
response to multiple inputs within the constraints
of critical response time priorities and are often
required to service multiple simultaneous users.
Levels of priority within these systems dictate the
stringency of response required. For example, in
a large system where missile tracking and payroll
are possible applications, the payroll must be
immediately discontinued when a missile is
sighted, otherwise the system loses its value. On
the other hand, a demonstration for the General
can be postponed for thirty seconds while the pay-
roll reaches a convenient point for interruption.
In such systems, real'time inputs are, in fact,
commands to the system for the execution of pro-

grams. The EM not only allows for the acceptance
of such commands, but offers great flexibility in
format and allows for the specification of exe-
cution contingencies In a natural manner. In
addition, It provides a natural framework for
accommodating multiple users (of. above: parallel
processing).

Intelligence Systems. In addition to a re-
quirement for a parallel and real time processing
capability, which gives rise to the problems
mentioned above. Intelligence Systems require
the development of new techniques concurrent with
operational capabilities l5. For example, most
such system« require more sophisticated intor-
matlon storage and retrieval techniques than those
currently in use, but must afford some data re-
trieval and correlation capability while such tech-
niques are being developed. Also, Intelligence
Systems tend to require the construction and inte-
gration of many very large programs, and, conse-
quently, require the efforts of many analysts,
programmers, and designers, all of whom must
maintain constant communication with the system
and with each other. This communications pro-
blem Is complicated by the diversity of experience,
abilities, and interests among the individuals
required. Due to the time span required for the
development of such systems, stringent methods
must be employed to assure continuity of effort
as more and different individuals become involved.

Clearly, each of these constraints requires
a computing facility with the flexibility and
adaptability of an EM, so that It may become and
remain responsive to its many users.

Machine independence. Because of require-
ments for compata'Mlity and because they are not
adaptable, conventional software systems become
millstones around the necks of their developers.
New computers and computer organizations do not
change the problems to be solved, nor does the
addition of hardware to a configuration, but they
currently pose extensive re-programming problems;
new software techniques are continually being
developed and should be incorporated in systems.
The development of machine Independent pro-
gramming languages and techniques has been pro-
posed as a solution to these difficulties. Current
languages,(e.g., ALGOL, COBOL, FORTRAN,
JOVIAL*' 12' I3' I4 offer a partial solution with
respect to applications programs, but offer little
or no aid In the extension or modification of the
environment in which programs are executed.
Since it contains the seeds for its own extension,
the Basic Computer of an EM is a step toward and
can grow Into such a machine Independent system.
The Basic Computer in such a system would become
an "idealised computer", with the distinction
between hardware and software being one of con-
venience for the development of effective tech-
niques , adaptability to varying requirements, and
pract lability of hard war« implementation.

§tMa<jffPtlnQ systems. Some applications,
for which solutions on a computer are desired,
defy analysis for efficient implementation because
of a lack of techniques for correlating the data

to
w
o

E2.3-10

- ■ ■- ■ - i |ir

2

available. This 1« particularly tru« of appli-
cation! which require very large programs or
which require the development of now applications
techniques (e.g.. Information storage and re-
trieval problems). Self-adapting systems have
been envisioned for the Implementation of such
problems. Such systems gather statistics about
their own performance and make adjustments lor
the sake of efficiency (e.g., the reorganisation
of data files, and the redistribution of programs
and riata), on the basis of experience and exter-
nally supplied data. Clearly, such systems must
be able to discuss and modify themselves. An
EM has this capability.

Great strides have been made in the last
few years toward furnishing sophisticated tools
to the users, programmers and operators of oom-
puters. However, the integration of these tools
into a complete, well organised environment is
still a major task, as the developers of software
will attest. Furthermore, software systems, as
currently designed, are not readily adaptable to
changing users' requirements, to new programming
techniques, or to new hardware. Indeed, the
modification of a software system to encompass

\ such a new development is often as great a task
as the initial development of the system.

An Extensible Machine not only affords a
natural environment in which programs may be
written, debugged, maintained, and executed,
but also furnishes the means for its own extension
and modification in response to new developments.
Thus, the Extensible Machine is readily adaptable
to a wide range of applloetions and equipments.

«eferenoes

1. A. W. Holt and W. J. Turanski, -Man to
Machine Communication and Automatic Code
Translation", Proceedings of the WJCC, 1960.
2. I. R. Rablnowitz, "Report on the Algorithmic
Language FORTRAN-H", Communications of the
ACM, Vol. 5, No. 6, Tune, 1962.
3. E. Bryan, Rand Corporation, "The Dynamic
Characteristics of Computer Programs", presented
at SHARE XXH, March S, 1964.
4. F. J. Corbato, et al, "An Experimental Time-
sharing System", Proceedings of the 8JCC, 1962
(MIPS).
5. A. J. Perils, "A Disc File Oriented Time-
Sharing System", Disk nie Symposium, Maroh,
1963 (sponsored by Informatics, bio.. Culver
City, California).
6. The M.I.T. Computation Center, "The Co«'
patible Time-Sharing System, A Programmer's
Guide", The M.I.T. Prass, Massachusetts Insti-
tute of Technology, 1963.
7. S. Bollen, et al, "A Time-Sharing Debugging
System for a Small Computer", Proceedings of
the SJCC (MIPS)

8. R. N. Thompson and J. A. Wilkinson, "The
D-925 Automatic Operating and Scheduling Pro-
gram", Prooeedings of ths SJCC, 1963 (AFIPS).
9. G. F. Leonard, "Control Techniques laths
CL-II Programming System", Digest of Technical
Papers, National Conference, Association for
Computing Machinery, 1962.

10. T. E. Cheatham, Jr., "Data Desoription in
ths CL-n Programming System", Digest of Teeh-
nioal Papers, National Conference, Association
for Computing Machinery, 1962.

11. T. E. Cheatham, Jr. and Gene F. Leonard,
Computer Associates, Inc., "An Introduction to
the CL-n Programming System", CA-63-7-SD,
November, 1963.

12. P. Naur, Editor, Communications of the ACM,
"Report on the Algorithmic Language ALGOL 60",
Vol. 3, No. 5, May, 1960.

13. C. J. Shaw, System Development Corporation,
"The JOVIAL Manual, Part 3, The JOVIAL Primer",
TM-5SS/033/00. December, 1961.

14. Special Task Group of CODASYL, Department
of Defense, 1961, "Conference on Data Systems
Languages, Revised Specifications for a Common
Business Oriented Language (COBOL) for Pro-
gramming Electronics Digital Computers".

15. A. B. Daniels, "Some Problems Associated
with Large Programming Efforts", Proceedings of
ths SJCC, 1964 (AFIPS).

16. E. G. Coffmanand others, "AGeneral-Purpose
Time-Sharing System", Prooeedings of the SJCC,
1964 (AFIPS).

I

E2.VU

i
11

~ -

i
04

^ac^AsaippL
S<Cttrity ClMtiflotion

DOCUMENT CONTROL DATA • RAD
(BtmitHT •l—ltle»Um at Mil; ta+ of •telnet an« Inaamtng mtnoieilon mutt b» artlararf «AMI «■• otvra// nport to etoaaMto«

I- OmOINATIN 0 ACTIVITY (CjipormU auOtot)

Coaputtr Aatoeiate*
UkMld« Office Park

fa. RBPORT •BCUNITY C LAttiriC A TION

UnclmmmltlmA
16 anoup

». NIPORT TITLI

Collect«d Research Paper« froa the Information System Theory Project

4- DMCRlPTIvr NOTIt (ffe* 3 SSS ami SS3ESRS SSQ

■ AUTHOPK«; fLaalnana. ««IIMMM, MMat;

Cheatham, Thoma« 'E.
Christenion, Carlos
Floyd. Robert W.

Leonard, 0. F.
Ooodroe, Jr.

«. MM NT OATI

HoTember 1965
• a. CONTRACT OR «RANT NO.

AP30(602)-332l»
A »ROJBCT NO.

2U9 IkZ

CA-6505-0611
CA-6505-2611
CA-6^-l»-R

• «RTSJ
CA-c'50U-0111

• k. JTMBR Rf^ONT NOfS; (A ny oOttr numb»n »tat may h* a»tl0f4

RADC-TR-65-3T7. Vol. II
10. AVAIkASILITV/UMITATION MOTICM

Distribution of this document it unlimited

II. •URRLIMINTARY N3TI*

Rone

It. ■PONtORINa MILITARY ACTIVITY

Rome Air Development Center
Oriffiss Ai^ Force Base RY 12kk2

11- AMTRACT

This report contains the working papers dereloped under contract AF30(602)-
332U vhieh vas addressed to the developnent of a coherent mathematical foundation
for information systems. Papers include Rotes on Compiling Techniques and the
TOS Translator Oenerator System by Thomas E. Cheatham, AMBIT: A progranmieg Lan-
guage for Algebraic Symbol Manipulation and Examples of Symbol Manipulation in the
AMBIT Programming Language by Carlos Christlaason. The Syntax of Programming
Languages, A Surrey, Flowchart Levels, Ron-Deterministic Algorithm and several
algorithms and proofs cf algorithms by Robert Floyd and An Environment for an
Operating System by 3. F. Leonard and J. R. Ooodroe.

DD W*.< 1473 URCLASSIFIED
Security Classificotion

^r^ ,"" mm mm mm

— —

wciisflxmn
Security CU»«ifiction

u vmm
KKV «ONOS

Coopillng Techniques
Algorithm
Coaputer Language
Symbol Manipulation .
Computer«, Progrunlng

UNK A
«on

LINK
HOL« WT

LINK C
NOUS WT

INSTRUCTIONS
1. ORI0INATIN0 ACTIVITY: BoMr UM MBW «ad addrM«
of th« contractor, tubcontroctor, gronto«, Doportmont of 0*>
foiuM activity or othar Organisation fcoiporata mitkor) laaulnc
tho raport.
2*. REPORT SECUirrY CLASSIFICATION: Eator tha ovor-
alt aacurlty claaaiflcation of iho raport. Indicala whather
"Raatrictad Data" it iaeludoA Marttli« U to ba In accord-'
anea with appropriata aacurlty ragulatlona.
2ft. GROUP: Automatic downflrarfln« la apacifiad in DoD Dl-
racUva 5200.10 and Armad Forcaa Industrial MaouaL Enter
tha group nuaabar. Alao, whan applicabla, show that optional
aiarkings havs baan uaad for Group 3 and Group 4 aa author-
lead.
3. REPORT TTT^E: Ef*«r tha coiaplata raport titla in all
capital lattara. Titlaa in all caaos ahould b« unclaaaiflad.

. If a maaalngful tttla cannot ba oalactad without claaaifl^a-
tion, ahew tiUa classification in all capitals in paranthasia

i teuaadiataly following the tttla.
4. DESCRIPTIVE NOTES: If appropriata, antar tha typa of
report, a.(., intarim, prograaa, summary, annual, or final.
Qlva tha indusiva dstaa whan a anacific raporting parlod is
covarad.
5. AUTHOIKS): Entar tha nama(a) of authoKa) as ahown on
or in tha raport Entar laat nama, first nama, ralddta initial.
If xilltary, show rank and branch of aarvlca. Tha nama of
tha principal «utter ia an abaoiüta minimum ragulrtwant
6. RIPOnT DAT^- Entar tha data of tha raport aa day,
month, y«ar. or month, yaar. If mora.than ona dato appaars
on tha raport, oaa date of publication.
7a. TOTAL NUMBER OF PAGES: Tha total page count
ahould follow normal pagination procaduraa, L», eater the
number of pagea containing information,
76. NUMBER OF REFERENCES: Entar the total number of
references cited in the report.
ta. CONTRACT OR GRANT NUMBER: If appropriate, enter
tha applicable number of the contract or grant under which
the report wee written,
ib, 8c, a M. PROJECT NUMBER: Enter the appropriate
military department identification, auch as project number,
subprojoct number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBBR(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number muat
ba unique to thia report.
9». OTHER REPORT NUMBER(S): If the report haa been
aasigned any othar raport numbers f eider by th» originator
or by th» aponeor), alao enter thia numbar(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itationa en further diaaemination of tha report, other than thoaa

impoaed by aacurlty claaalfication. using atandard atatamenta
such aa:

(»)

(2)

(3)

"Qualified raquaatara may obtain copiee of thia
raport from DDC"
"Foreifn announcement end diaaemination of thia
raport by DDC is not authorised."
"U. S. Government egenclea may obtain copies of
this report directly from DDC Other qualified DDC
uaara shall requeet through

(4) "U. S. military egenclea may obtain copies of this
raport directly from DDC Othar qualified uaara
shall request through

(S) "All distribution of this report is controlled Qual-
ified DDC uaara ahall requeet through

If the report haa baan furniahed to the Office of Technical
Service*, Department of Commerce, for sale to the piddle, indi-
cete this fact and eater die price, if known.

I

1L SUPPLEMENTARY NOTES:
tory notes.

Use for additional esplana

IX SPONSORING MILITARY ACTIVITY: Baler the name of
the departmental project office or laboratory apoaaerlag (pay
Ing tot) the rooaarch and development Include admass.
13. ABSTRACT: Bator aa abatroct giving a brief and factual
aummary of tha document indicative of the raport, eves though
it may alao appear alaewhero in the body of the technical ra-
port. If additional apace ia required, a continuation sheet shall
be attached.

It is highly dssinble that the abatract of claaaifiad reporta
be unclaaaiflad. Fach paragraph of tha abatract ahall end with
en indication of the military aacurlty claaalfication of tho In-
formation in tha paragraph, rapraaaated aa (TS). (i), (C), or (V).

There ia no limitation on the length of the abatract. How-
aver, the suggeeted length la from ISO to 225 words.

14. KEY WORDS: Key words era technically meaningful terms
or short phrasaa that characterise e report end may be uaad as
index entiles for cataloging the raport. Key worda muat be
•elected ao that no aacurlty claaalfication ia required. Identi-
fiers, auch aa equipment model deelgnation, trade nama, military
project code name, eeographic location, may be uaad as key
worda but will be followed by an Indication of technical con-
test. The aaaignmaot of linke, rule», and weight a ia optional.

UHCIAS8IPIED

