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Preface

The construction of compilers for the variety of programming languages
and computing machines required today has become a major activity in the pro-
gramming field. The amount of published and readable material on the subject
of compiler construction is, however, very limited. There are many reasons for
this:

1. Relatively few academic types have been interested in the problem

until recently.

2. There is a rather basic lack of any theoretical foundations for much
of the manipulation required in a compiler -- the specification and manipulation
of a formal syntax of a programming language being, of course, an exception.

3. There have been relatively few "projects" undertaken with the idea
of developing general purpose compiling techniques; the general techniques
which have emerged in spite of this orientation have often not been apparent.

4. Many of the techniques developed are documented in a form that is
so specialized to a certain programming language or computer that the publi-
cation in anything but a compiler maintenance manual would be deemed unthink-
able.

The intention of these notes is to provide a sketch of several basic
compiling techniques. It is hoped that the approach and method will point
toward a general framework for a compiler. It is certainly not the authors claim
that this comprises a theory of compiling or even a good framework. All we can
hope is that the presentation is such that the reader can gain a basic under-
standing of a variety of isolated techniques and that a glimmer of how %o tie
them together might result.

Another caveat: we have been at the business of programming sufficiently
long to have changed our ideas about computers, programming, compiling, lan-
guages, etc. sufficiently often to be aware that our current ideas about the tech-
niques and method of presentation provided here will undoubtedly change. Thus,
accept these notes as our ideas circa summer 1965.
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I General Discussion

In very broad terms, we will talk about the compilation process as con-
sisting cf four phases (stages, activities, etc.), namely:

parsing* the input string;

interpreting the parse of the input string;

analysis of the computaiion sequence and generation of
machine coding; and

contacting the environment in which the con.piler and/or
resulting code is to operate

We must emphasize that we do not consider these four phases as "the
four phases" of a compiler. Rather, these simply represent a convenient par-
titioning of the compilation activity for discussion purposes. Sections 2.,
through 5. are devoted to a discussion of these four phases.

Section 6. is devoted to a discussion of several miscellaneous topics
concerning languages and compilers generally.

Section 7. contains some remarks about programming systems -- as
environments for a compiler and its' product.

I Parsing the Input

2.0. General Discussion

In very general terms, parsing the input source statements in some pro-
gramming language amounts to the followirg: We are given a stream of characters
comprising a source program. We first perform a lexical analysis, i.e., we iso-
late, identify and tabulate the sub-strings corresponding to certain "elementary
components” in the source program. These elementary components may be the
basic symbols of the source langrage (in which case the transformation of the
input stream is rather slight -- amounting only to recognizing and isolating sub-
strings corresponding to operators or delimiters [ BEGIN, EQ, (,etc.]) or they may

* {,e,, analyzing and restructuring the input string in such a fashion that inter-
pretation and subsequent processing is facilitated.
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be the literals, identifiers, operators, and delimiters of the source language

(in which case the transformation is somewhat more interesting). In any

event, we will think of the lexical analysis as a process of transforming the
initial input stream of characters into a stream of "descriptors". A descriptor,
in the sense in which we shall employ it, is a pair (TABLE, LINE) denoting the
table containing the thing (symbol) described and the line within the table
corresponding to the thing described. Thus, TABLE might indicate symbol table,
literal table, terminal symbol table, character table, and so on.

Given this stream of descriptors we then perform a syntactic analysis --
i.e., we isolate, identify, and tabulate the substrings corresponding to the
syntactic structures in the source program. We will view this process in two
different ways, as follows:

1. Producing a "tree" which represents the complete syntactic
analysis of (some portion of) the source program.

2. Producing a list of "phrases" which represent a partial syntactic
analysis of (some portion of) the source program.

This is not to say that a syntactic analysis results either in "trees"
or in a list of "phrases"; indeed some of the most interusting parsing proce-
dures result in a mixture of these two extremes of output.

The following examples might make these less vague:




s g,

Analysis of Source into a Syntax Tree

Input Character

Stream: ALPHA 25 *

Lexical Analysis

<—-—___—-———-“

“eecrlp%or Stream:ﬂALPHA ‘5 =
<variable> <l£t:ral>

<fac.tor>

-:tnﬁn:r

\

Syntax Tree:

<term>

\

\

<assignm>

o4

Note: For

descriptor of the terminal character =, descriptor of the (1

— B e
ia A e o s o

+ BETA

g——

¥ ,
£ LA B i Pum

<vax*1able> <varila'1ble>
<£ac§or> <fa?or>
<term> <term>
«:arith expr>

::aritk expr>

\ w expr>
l

<fact

&)

MPm,‘a:, ‘8/ 25 and so on read descriptor of the symbol ALPHA,
nteg. ;) literal 25.
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Analysis of Source into a List of Phrases

Input Character
Stream: ALPHA = 25

25 Do "‘i by 4, ‘aat:'m,‘o) .

* ( Y + BETA )

Descrl;}tor Stream: ‘9ALPHA ‘&

Phrase-1
Phrase-2
Phrase-3
+ Phrase-4
émtactlc Analyf> |
{
Phrase List: Phrase-l: ﬂY ‘ﬂ-o- &BBTA

Plhrase-2: Ig( apPhrase-l '9)
Phrase-3: !925 D A&thse-z
Phrase-4: ﬂALPHA l: !&Phrase-&l

i s s i
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In the section following, we will discuss several aspects of the
parsing of source statements. Section 2.1 deals with the specification of
syntax of a programming language; we will see later in the sections on
"syntax directed" analysis that it is possible to directly utilize a syntax
specification to parse source statements. Section 2.2 is concerned with
lexical analysis and section 2.3 deals with syntactic analysis. Section
2 .4 deals with the problems of error analysis and error recovery with various
kinds of syntactic analysis and, finally, section 2.5 discusses the problem
of mechanically generating a syntax analyzer from a formal syntax specifi-
cation.

BN A 8. b, i e iy
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2.1. Syntax Specifications

Several essentially equivalent formalisms for the representation of

‘'syntax have been developed. These include such things as

Post Production Systems, developed by the logician Emit Post during
the 1940's as a tool in the study of Symbolic Logic.

Phrase Structure Grammars, developed by the linguist Noam Chomsky
during the 1950's as a tool in the study of natural languages.

Backus Normal Form, developed by the programmer John Backus during
the late 1950's as a tool in the description of programming languages.

Throughout these notes we will utilize a formalism similar to Backus's.
An appendix * contains a reasonably detailed account of our particular variation.
For the present, however, we will present only a few highlights by giving a
syntax for a very simple programming language which we will utilize throughout
much of the following discussion.

A syntactic specification of a language is a concise and compact repre-
sentation of the structure of that language, but it is merely that - a description
of structure - and does not by itself constitute a set of rules either for producing
allowable strings in the language, or for recognizing whether or not a proffered
string-1s, in fact, an allowable string. However, rules can be formulated to pro-
duce, or recognize, strings according to the specification.

In order to discuss the structure of the language, we give names to
classes of strings in the language - we call these names (or the classes they
denote) syntactic types. Some of the classes of interest consist of fixed strings
of characters of the source alphabet: these we call terminal types, and
specifically terminal symbols; to talk about any particular one, we will merely
display the character string. Most of the classes, though, are more compli-
cated in structure and are defined in terms of other classes; these we call
defined types, and to designate one, we choose a mnemonic name for the class
and enclose it in the signs '<' and '>'.

* See Cheatham & Sattley, "Syntax Directed Compiling".

4
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A simple type definition consists of the name of a defined type, followed

by the curious sign '::=' followed by a sequence of syntactic types, defined or
terminal. An example, taken from the syntax [ -- soon to be discussed --
would be*:

<ustat>::=<ident>=<ae>

In general we shall call the right-hand side of the definition the definiens.
Any sequence of type designators appearing in a definiens is called a
construction, and each type designator within the construction is a component
of the construction. So, the above example is a definition of the defined type
<ustat>; its definiens is a construction with three components, which are, in

the order of their appearance, the defined tvoe <ident>, the terminal character
'=' and the defined type <ae>.

A simple type definition of this sort states that, among the strings of
the source language belonging to the defined type, are those which are con-
catenations of substrings -- as many substrings as there are components of
its (simple) definiens ~- such that each substring (in order of concatenation)
belongs to the syntactic type named by the corresponding component (in order
of appearance in the definiens). Applied to our example: A source string
belongs to the class <ustat> (or, for short, "is an <ustat>") if it can be broken
into three consecutive substrings, the first of which is a <ident>, the second
of which is the single character '=', and the third of which is an <ae>.

As another exampie, the rule
<integer>::= <digit>| <integer><digit>

can be read: A source string belongs to the class <integer> if it is either a

* Read: ustat = unconditional statement; ident = identifier; ae = arithmetic

expression.
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<digit> or if it can be broken into two substrings, the first of which is an
<1ntéger> and the second of which is a <digit>. Thus, the "|" is read as

2~14
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"or". The constructs <digit> and <integer> <digit> are called the alter-
natives of the defined type <integer>.

Following are two syntax specifications for a simple programming

language, language LT which we will reference throughout these notes:

1. <letter>

2. <digit>
3. <ident>
4. <integer>
5. <rlop>
6. <adop>
7. <factor>
8. <term>
9. <ae>
10. <rel>
11. <cstat>
12, <ustat>
13. <stat>

14, <prog>

Syntax I for Language I‘T

A|B|C|D|E|F|G|H|I|J| K|L| M| N|O|P| Q| R| S| T]|

Ul V| wW|X|Y|2
o] 1] 2]3]4|5|6|7]|8]9
<letter>| <ident> <letter>| <ident> <digit>
<digit>| <integer> <digit>
LT| LE| EQ| UVE| GE| GT
+|-
<ident>| <integer> |(<ae>)
<factor>| <term>*<factor>
<term>| <ae> <adop> <term>
<ae> <rlop> <ae>
<rel> THEN <ustat>| <rel> THEN <ustat> ELSE <ustat>
<ident> = <ae>| TO <ident>|.STOP
<ustat> .| <cstat> .| <ident>..<stat>

<stat>| <prog> <stat>



Syntax II for Language I..T

3. <ident> =

4, <integer> ::= .9

§. <rlop> = LT}LE|EQ| UE|GE|GT

6. <adop> = +]|-

7. <factor> ::= <ident>| <integer>| {<ae>)

8. <term> ::= <factor>| <term>*<factor>

9. <ae> 1= <term> | <ae> <adop> <term>
10. <rel> 1= <ae> <rlop> <ae>
11. <cstat> ::= <rel> THEN <ustat>| <rel> THEN <ustat> ELSE <ustat>
12, <ustat> ::= <ident>=<ae>| TO <ident>| STOP
13. <stat> ::= <ustat> .| <cstat>.| <ident>..<stat>

14. <prog> ::= <stat>| <prog> <stat>

These two syntaxes differ in that the first assumes we have a recognizer
for the basic characters only; the second assumes we have a recognizer for sub-
strings which we choose to consider as members of the classes <ident> and
<integer> respectively. That is, we are assuming that the lexical analyzer is
competent to isolate and deal with identifiers and literals.

Consider the string "Z2=1."; we can "prove" that this string is a <prog>
according to syntax I for language LT as follows:

10
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The construct Y is of class <letter> by rule 1, alternative 26.

" 2 Z " " " <idemt> * " 3, P l.
" " 1 """ <digit> " " 2, e 2,
“ " ) *m " <integer> " " 4, o 1.
e : 1 " " " <factor> " " 7, . 2.
" " 1 " " " <term> " " 8, " 1.
" " 1 """ <ae> L ® 1.
" e Z2=1 " " " <ystat> " " 12, & l.
" " Z=1. " " " <stat> L | ¥ . 1.
v = 2=1, " " " <prog> " " W, " l.

Another <prog> in language LT is:

X=1. Y=0.

2-17

HENRY. .IF X LT 10 THEN Y = Y*Y ELSE TO HENRY. STOP.

11



2.2, Lexical Analysis

It is, in principle, possible to "bypass" a specific lexical analysis
phase in parsing source programs. Indeed several compilers* perform this
function as part ;af the overall syntactic analysis. However, when it comes
to writing a compiler in practice, the question of recognizing terminal
characters in a language (e.g., "+", "EQ", etc.) brings us face to face with
the many problems of restricted character sets, input/output idiosyncracies
of computers, and so on. Further, unless the resulting code is to be handed
on in symbolic form to some assembly processor, the identifiers and literals
in the source language have to be replaced by (probably relocateable)
addresses in the resulting code and the contents of addresses allocated to
the literals must contain the appropriate binary (decimal, etc., depending on
the machine) representation. Thus, it becomes convenient to postulate a
lexical analyzer interposed between the source of input characters and the
syntactic analyzer. Further, with languages such as FORTRAN II and FORTRAN IV
which utilize fixed fields for indicating labels, end of statement, and the like,
it makes the syntactic analysis "cleaner" if label and end of statement delim-
iters are inserted into the source before syntactic analysis commences.

For most of these notes we will postulate that a lexical analysis is
performed on an input stream of characters resulting in the isolation of identi-
fiers, literals, and the operators and a2limiters in the source language. We
further postulate that the identifiers are placed in a symbol table and that the
lexical analyzer outputs an appropriate descriptor. Further, that literals are
placed in a literal table with the output of an appropriate descriptor. Finally,
we presume the existence of a terminal symbol table containing (initially)
entries for all operators and delimiters in the source language and assume that
the lexical analyzer isolates all such operators and delimiters, returning a
descriptor pointing to the appropriate terminal symbol table entry.

* See, for example, E. T. Irons, "A Syntax Directed Compiler for ALGOL-60",
Communications of the ACM, Vol. 4, pp 51-55, January 1961.

12
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2:3% Syntactic Analysis

We will discuss in some detail two basically different types of syn-
tactic analysis,

Predictive analysis, with "top down" and "bottom up"”
variations; and '

Bounded context analysis, using the "precedence"
technique and the "productions" technique.

We will further discuss one "mixed" (i.e., predictive and bounded
context) method of analysis and remark briefly on several variations of all
these techniques.

2.3.1. Predictive Analysis

Very broadly, predictive analysis works as follows: Given a set of
rules (a syntax specification) for forming allowable constructs in a language,
eventually resulting in a program* in that language, we analyze a source
statement by guessing or predicting how the statement is constructed and
either verifying that this is the case or backing up to try again, assuming
some other method of construction. We keep a "history" of our attempts and
when we have determined the exact way in which the program is constructed
we can use this "history" to produce the complete syntactic analysis (tree).

The "top down" variation of predictive analysis is roughly the fol-
lowing: The analyzer has, at any point in time, a current goal. At the
beginning of the process, it takes the starting type** of the specification as
its' first goal. Then at any point in the process it follows these steps when
it has a defined type as its current goal:

* or whatever is the "largest" syntactic type in the language

** | e., the "largest" syntactic types; in the case of language L’l‘ this is <prog>;
see the Cheatham, Sattley paper in the appendix for details.

13



The analyzer consults the definition of the defined type (in Backus
Normal Form each defined type has a unique definition), and, specifically, it
considers the first alternative in that definition. It then successively takes
each component of that alternative as a sub-goal. (Of course, it must re-
enter itself for each of these goals, and it must keep track of where it was at
each level of re-entry.) If at any point it fails to find one of these sub-goals,
it abandons that alternative, and considers the next alternative in that defini-
tion, if there is one, and steps through the components of that alternative. If
there is no next alternative, it has failed to realize its current goal, and reports
this fact "upstairs”. If it succeeds in finding the sub-goals corresponding to
each of the components of any alternative in the definition of its current goal,
it has found its goal, and reports that fact.

This rough sketch conventiently ignores a number of sticky points (which
we will consider via an example in section 2.3.1.1) but should serve to give a
rough idea of the top down analysis process.

The "bottom up" variation of predictive analysis is a bit more difficult
to describe. As with the "top down" process, the "bottom up" process has at
any time a current goal (initially the starting type of the synta:: specification).
The analyzer reads an input descriptor (or character, if there is no lexical
analyzer interposed between the input character stream and the syntactic analy-
zer) and checks to see whether it has "gone astray" in trying to reach its goal
or whether the syntactic type of the input is a possible first component of a
first component of a ... of the goal. If so it proceeds to read more input and
progress toward the goal; if not, it continues processing input until it has built
another syntactic type of which the previous one is a first component and goes
back to the checking. If it has gone astray, it backs "down" and tries to see if
it can construe the input differently, to approach its' goal along a different chain
of intermediate types.

Again this description is vague and we will return to a detailed consid-
eration of bottom up analysis later, via an example in section 2.3.1.2 and in
detail in an appendix. '

14
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To recap "top down" versus "bottom up": "top down" sets a goal and
tries all possible ways of achieving that goal before giving up and replacing
the goal with an alternative; "bottom up" has a goal and "reads" input trying
to construe the input as a first component of .... of the goal and to continue
reading input to realize the goal through the chain of intermediate syntactic
types implied. Thus, in a top down analysis, the syntax drives the search;
in bottom up analysis, the input drives the search.

. 2.3.1.1. Example of Top Down Predictive Analysis

The following table depicts the course of a top down predictive analysis
with the input descriptor stream.

%LPHA& '8;5 8: 6(‘8;'8/4- ’88/ETA‘9)/‘&/

The column headings and their interpretations are as follows:

2-2;

Step- obvious

Goal- current goal

Next descriptor- The next descriptor available on the input stream;
we will drop the " " for readability.

Current rule- The number of the syntax rule being applied (line
number in Syntax I or Syntax II as given in Sec-
tion 2.1).

Current alternate- Alternate construction currently being applied
(numbered 1, 2 ...)

Current component- Component (of alternate of rule) currently
being applied.

The process starts with "prog" as initial goal.

—~
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Next ' Current
Step Goal Descriptor Rule Alt., Comp. Remarks
é 1 prog ALPHA 14 1 1 Set sub-goal, stat

2 stat ALPHA 13 1 1 Set sub-goal, ustat

3 ustat ALPHA 12 1 1 Set sub-goal, ident

4 ident ALPHA 3 1 | Recognize; consider next
input and return to previous
goal (3), next component

) ustat = 12 1 2 Set sub-goal, =

6 = = - - - Recognize; consider next
input and return to previous
goal (5), next component

7 ustat 25 12 1 3 Set sub-goal, ae

8 ae 25 9 1 1 Set sub-goal, term

9 term 25 8 1 1 Set sub-goal, factor

10 factor 25 7 1 1 Set sub-goal, ident

11 ident 25 3 1 1 Fail; return to previous goal
(10), next alternative

12 factor 25 7 2 1 Set sub-goal, integer

13 integer 25 4 Recognize; consider next
input and return to previnus
goal (12), next component

14 factor * 7 2 - Succeed; return to previcvus

' goal (9), next component

15 term o 8 1 1 Succeed; however, since
<term> is defined in terms of
<term>, try for a "larger" term;

16 term * 8 2 2 Set sub-goal, *

17 * * Recognize; consider next input
and return to previous goal (16),
next component

18 term ( 8 2 3 Set sub-goal, factor

| 16
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),

Ste

19
20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

factor
ident

factor
integer

factor

(

factor
ae
term
factor
ident

factor

term

term

term

ae

-

o

K K K K K

N O W W

Current

(#%]

o

[
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Remarks _

Set sub-goal, ident

Fail; return to previous goal,
(19), next alternative

Set sub-goal, integer

Fail; return to previous goal,
(21), next alternative

Set sub-goal, (

Recognize; consider next
input and return to previous
goal (23), next component
Set sub-goal, ae

Set sub-goal, term

Set sub-goal, factor

Set sub-goal, ident
Recognize; consider next
input and return to previous
goal (28), next component
Succeed; return to previous
goal (27), next component
Succeed; however since
<term> is defined in terms of
<term>, try for larger <term>
Set sub-goal, *

Fail; return to previous goal
(32), next alternative

Failure meant only can't build
larger term; return to p.evious
goal (26), next component
Succeed; however, since <ae>
is defined in terms of <ae>, try
for a "larger" <ae>,

iL"""" ey




36
37
38

39

40

41

42

43

44

45

46

47
48

49

50
Sl

ae
adop

adop
ae
term

factor
ident

factor

term

term

term

ae

ae
adop

Next
Step Goal Descriptor

Current

Remarks

BETA

BETA
BETA
BETA
BETA

)

9
6

2

18

Rule Alt. Comp.

2

Set sub~-goal, adop

Set sub-goal, +

Recognize; consider next

input and return to previous
goal (37), next component
Succeed; return to previous
goal (36), next component

Set sub-goal, term

Set sub-goal, factor

Set sub-goal, ident
Recognize; consider next

input and previous goal (42),
next component

Succeed; return to previous
goal (41), next component -
Succeed; however since
<term> is defined in terms of
<term>, try for "larger" <term>
Set sub-goal, *

Fail; return to previous goal (46)
Failure means only can't build
a larger <term>; return to
previous goal (40), next com-
ponent

Succeed; however since <ae> is
defined in terms of <ae> try for
"larger" <ae>,

Set sub-goal, adop

Set sub-goal, +

2~24
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Next Current

Step __Goal Descriptor Rule Alt. Comp. Remarks

52 + ) Fail; return to previous goal
(51), next alternative

53 adop ) 6 2 1 Set sub-goal, -

54 - ) Fail, return to previous goal
(53), next alternative

55 adop ) 6 - - Fail; return to previous goal
(54), next alternative

56 ae ) Failure means only can't build
larger <ae>; return to previous
goal (25), next component

57 factor ) 7 3 3 Set sub-goal, )

58 ) ) Recognize; return to previous
goal (57), next component

59 factor : 7 3 3 Success; return to previous
goal (18), next component

60 term é 8 2 - Success; however since <term>
is defined in terms of <term>,
try for a larger <term>

61 term i 8 2 2 Set sub-goal, *

62 * Fail; return to previons goal
next alternative

63 term s Failure means only can't build
larger <term>; return to previous
goal (8), next component

64-69 ae . 9 b - Siiccess; here we repeat
essentially sfeps 50-55

70 ae . Failure means only can't build

larger <ae>; return to previous
goal (7), next component

4
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Next Current

Step Goal Descriptor Rule Alt., Comp. Remarks

71 ustat . Succeed; return to previous
goal (2), next component

72 stat 5 13 1 2 Set sub-goal, .

73 e : Recognize; return to previous
goal (1), next component

74 prog empty Out of input; have succeeded.

2-2¢
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We note that the successful recognitions allow us to trace the syntax

tree as follows:

Success
Step
74 Stat—
71 pustat
ident—»[ALPHA]
S P
70 e
63 .L term -

14 p— factor.

13 ]»nteger—* [«9 25]

17 bcp ® =9 [,0 *]

59 — factor.
24 | .
56 Lae-
48 -sterm
30 Lfactor.
29 ident{ €Y]
39 r»adop
38 bt s [/‘4-]
48 S term

' 44 facto
43 hLidento[ 49BETA)
58 ~) = by )]
73 ampe [ A]

2.3.1.2. Examples of Bottom

Predictive Analysis

In order to utilize syntax II for bottom up analysis it is convenient to

rewrite the rules "in reverse" as follows:

by
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O N O A s W N -
L]

Pt Pt Pt et Pt Pt
AN o W NN - O W
L] [ ] L ] L ] L ] [ ] -

16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.

<ident>
<integer>
<rlop>
<rlop>
<rlop>
<rlop>
<rlop>
:: <rlop>

<adop>
;s <adop>
<ident> = <ae> =:: <ustat>
<ident> .. <stat> =:: <stat>
<ident> =:: <factor>
<integer> =:: <factor>
(<ae>) =:: <factor>
<factor> =:: <term>
<term> * <factor> =:: <term>

e
O o™
n

+ 38§
U

<term> =::<ae>

<ae> <adop> <term> =;: <ae>

<ae> <rlop> <ae> =:: <rel>

<rel> THEN <ustat> ELSE <ustat> =;: <cstat>
<rel> THEN <ustat> =:: <cstat>

TO <ident> =:: <ustat>

<ustat> . =:: <stat>

<cstat> . =:! <stat>

<stat> =:: <prog>

<prog> <stat> =;: <prog>

2-28

In bottom up analysis we are interested, given a syntactic type or an input
symbol, "where can it lead ?". Thus, having recognized an <ident> we can see by

rules 11 - 13 that we can be led to a <ustat> a <stat> or a <factor> directly* by

* and, .0 a <stat> (by 24) a <prog> (by 26), a <term> (by 16) (by one level) in-

directly, and so on.

T e s g
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finding an = followed by an <ae>; a .. followed by a <stat>; or nothing following
respectively, etc.

In order to show the bottom up analysis, it is convenient to shrink our
notation somewhat. First, we denote the various syntactic types by lower
case letters as follows:

:

Iype

<stat> s
<ustat> u
<ae> a
<term> t
<factor> f
<ident> i
<integer> n

We rewrite the string* to be analyzed in the more compact form
a=25%(Y+8)

We further introduce a bracket notation to indicate syntactic structure;
thus:

i @], 1[Y], 1[8] indicite that a, Y, B are of
syntactic type { (=<ident> )

alalt{f{1[Y]]]])+ t[f{1(g]]]] indicates the

tree structure

and so on.




We rewrite the above syntax in the following form.

No. Rule

1-10 Not used in the example
11 if ] —= u Ja-=a]

12 il ] — s[i[ la..s]
13 it 1= 1 1]

14 n[ 1= f{n[ 1]

15 ( — f[(aa)]

16 fl 11— ¢l ]]

17 tf ] —~ tlt] ]A=*f]
18 t{ ] — alt[ 1]

19 al 1— alal ]aAa+t]
20 al 1= rlal lAarLal
21-27 Not used

Read (for rule 11): "If an i[ ] appears on the input stream then it can
be the first component of a u; the pointer Aindicates that an "=" followed by an
"a" must be found following the i[ ] in order to complete the recognition of

sucha u."

We presume that the lexical analysis of the source string has produced
the following (descriptors):

“91[a] “9= ‘41[251 . “9("51[1{] QQ [ 8] '&)

That is, we assume that the syntactic type of each identifier and integer
has been "attached" to their descriptors.

The steps in the bottom up analysis are given below. An explanation of
the steps follows the example.
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1.
2
Je
be
Se
6.

i[eJem{ 25 1LY }+1(0])

sn{25%(1{Y1+1(A])
n[252%( 1LY J+4(A))
“(1(2)04(4])
£{a{25) (2L ]e4(8))
“AYJe2(3))

7. Ue{a(25100%( LT Ie2Lp])

8.
9.
10.

»(1{x01(4))
(2{xJe2{s])
2 xJea{p))
+(0))

FAIL

3

FAIL

+1{£])
£{4[x])+2(A))
+1(£])
tLe(4(x)11e2{f])

+1{2))

FAIL

+1(7])

o[ t{£{2(x]]1J¢(p))
+14])

V)

)

FAIL

u

wWir]a=a]luw
wWils)=pa)iue
£{n(25]]1ul...]lu®
wWil()= aa)luwe
t{£{nl2512)1ul... JIuw

Wiftleaa)iue
t{s(e{n(25]))a%]Iul.. . JIu®

s(t{e{nl25)1 %4 £)1ul .. Jluw®
t{(a8))1tlee.diufes.Jlum
walrla=aditl...JitfeceJlulo.. Jlium

.[t[!]‘ oo.]'t[oo.]'ﬂo oo]'(o . o].‘

s{a{x]dieL.. Il .. Jlul. .. Dluw
tl(ae)Jitl...Jlul... 1w

ela{x]1dief. . Jiel. .0 Jlule .o Jluw
f{(aa)ditf...diul...]lue
t{s{e{2(x]I)a%e]iel... I .. Jiul.. . Jluw

L LLCALTIINNC e 2NN oo Dbl Dl
(a0t o die

ool LAUTINN AL, DI I Sl
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37,
38,
39.
40,

41,

[P
‘e

44,

45,

o

!
40

470
Ltl.

) olalpla..edlal...2ie0... 21tC... Jlul... Jlum
FAIL
VIR (€17, ) [ [V [, G [T P [ 1 o 1
f(alf))  alalt{f{aX1]0}eatdie0. . JtLo 0. Dhul. . Jluw
IR €17 3 Y [ 1 R TF « O [ 0 [ T 9 | T
{2041 elelee(aLXIIIeAtILL. . HeLos o Dlule. Dlue
I CE 9V L S T S 1T, S0 1 000 1™ S90S [
FALL
IR C 7 €77/} 0} [ QON0 |7 08 | 1Y 0 | 1" g [
o{t(£{10€11]D)  olalt{£CALTIIIDeAtdILL.. . DIt ... Jlul,. . luw
APPLY 19,203 FAIL BOTHy RETURN TO STATE AT STEP 32.
(2{40A11D  alalt{£{2(11]}+ At]igC... I, .. JIul. .. Jlum
) alale{e{a0¥]]IJetLo(20£020002 .. JICo.  Dlue . Jluw

i 1)+
ARACEND e

APPLY 19,20) PAIL BOTH; RETUMN 70 STATE AT STEP 40.
) fl(elalt{£{2(x]]1Iee(£{2LA11]4) dItL. .. Jlu.. . JIu®
empty £{(alaltLe{LXIIIPALLAL AN N . Dlul. . uw

f[(.[.[t[f(i[ll]]J*:E:EM;}B}.“]'“[. o Jluw

empty t{t{clnl25]) v (alal t{2(Y] 11 Je2L£020£]110) JDVul e Jl
t{f-[t[ntzslll*t[(A[:E:E‘f&[‘!ﬂi'lu};t[flﬂﬂlll) )/

APPLY 17; FALL)
espty iﬁﬁdasl&msgﬁf(ﬂ!]]]MIUMJJJJ) Il
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490 s(tLelnl25]) IELalal tLECALY] JIILECAL AN 1]

o RIS a1 L

. enpty  u[AloAJmalt{e(n25]1 0L (
WAL A

£l. FINISHED
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Some remarks may help:

Step

1 The final goal is u ("final" denoted by *); the input stream is
ifa)=n[25]*...

2 Rule 11 indicates that the i[ @] can be used to make a u;
specifically we need to find an "=" followed by an a.

3 The "=" is found (it can "lead" to nothing else ~- i.e., there
is no rule for = — anything); move the pointer A around the =
and take it off the input list.

4 Rule 14 indicates that the n[25] can be used to make an f.

5 The f{ n[25])] is completely recognized; place it on the front of
the input list.

6 Rule 16 indicates that the f{n[ 25]] can be used to make a t.

7 The t[f[rn[25]]] is completely recognized; place it on the front
of the input list.

2-34

12 Failure because we need (the terminal) "=" and have a "+";
13 The i[Y] can also be used to make an s by rule 12.
Etc.

At the end we have completed the tree:



N &



2.3.2, Bounded Context Analysis

Roughly speaking, bounded context analysis can be characterized as
follows: at each point in the analysis, the decision as to what action to take
next is a function of the symbol (character, descriptor) under scan and of N
symbols on either side (where N is fixed for a given language).

2,3.2.1. Precedence Analysis

The first variation we shall discuss is that of precedence analysis, appli-
cable to languages which qualify as precedence languages. In very rough terms,
a language is a precedence language if no syntactic type has a definition which
admits two defined types to occur without at least one terminal symbol between
them (unless one of the defined types has a definition of the form <d>::=t, | t, |
tm where the t’ are terminal symbols) and, further, is such that between
any pair (t1 ,tz) of terminal symbols no more than one of the relations: '1‘1 takes
precedence over '1‘2 (’1‘l > Tz): 'l‘l yields precedence to '1‘2 (‘I‘1 < '1‘2): or '1‘1 is equal
in precedence to ’1‘2 ('I‘l % Tz) ., holds; if no precedence relation is possible we de-
note this by "err".

For reasons discussed in an appendix*, language LT is a precedence lan-

guage and the "precedence matrix" for Ly is the following: :',%
N
<rlop> <adop> ( ) * THEN ELSE = TO . e
<rlop> err < < err < 4 eIT erIr err err  err
<adop> > > < > < > > et er ©  err
( err < < = < err err err err err  err
* > > < > > > > elr err »  err
THZN err er err err err err = @ < e err
LLSE err err err err err err err ¢ < emr err
& err < < er < err > emr err > e
TO err err err err err err > er;r err > err
. err err err err err  err er < emr = err
5s ' err err err err err err err > > err err

* The Floyd paper, "Syntactic Analysis and Operator Precedence"”.



If the phrases were output and numbered, taking some liberties with

notation and rearrangement, we could have:

Line Phrase Output
1 ADD (Y, BETA) or BADD‘&I %E‘I‘A or Y BETA

2 imEs (25 (1)) Brimes %zs% 25
3 STORE (ALPHA(2)) Bs./'roanfiwm% ALP

We will not delve further into this at the moment.

$ 2.3.2.2 Production Analysis

An extremely interesting (and, as we shall see below, "best" method in
our opinion) is a technique first suggested by R. W, Floyd and first implemented
in a "practical" fashion by A. J. Perlis and associates. The original Floyd paper
on the subject is included in the appendices ("A Descriptive Language for Symbol

2

Manipulation").

The method can be thought of as a variation on precedence analysis
wherein the flow of the analysis is not automatically provided by the precedence
relations but is specified by the "programmer" for each "syntactic situation”.

Suppose that we have a "descriptor stack" and a "descriptor register" as
with precedence analysis. Suppose that we further have the following "actions"
which can be specified.

1. Scan - causes the descriptor register contents to be placed on the
top of the descriptor stack and a new descriptor fetched from the input stream
into the descriptor register.
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Syntactic analysis by the precedence technique is accomplished as follows:
There is a descriptor "stack” which initially contains the descriptor for some
(imagined) terminal symbol which yields precedence to all other terminal symbols.
Descriptors are read from the input stream and placed into a "descriptor register".
When any descriptor for a non-terminal symbol is read into the descriptor register,
it is immediately placed on the top of the stack. When any descriptor for a ter-
minal symbol is read into the descriptor register, the precedence relation between
it and the most recent terminal (descriptor) on the stack is compared; if the
".nost recent”" has greater precedence, then a "phrase"” has been found, and it is
replaced by a single "phrase descriptor”. Otherwise the descriptor is moved
from the descriptor register to the top of the stack and input is continued. The
following example may give the flavor:

Descriptor stream: }ALPHA 09 "925 & f a(n :L( JBETA ) L)
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2. Pnrase (M) causes the top n elements of the Jescriptor stack to
be "output” as the "next" phrase and a descriptor of this phrase to replace
these n descriptors on the stack.

3. Error - causes an error indication.

Suppose we further have a mechanism (recognizer) for detecting the
presence of a specific descriptor in a specific position of the stack or des-
criptor register. The symbol "K " will be used to denote the recognizer for
identifier, literal, or phrase; the LT terminal symbols themselves plus the
symbolsv)/ and§ will be used to denote their recognizers. The following
(a "program" for assignment statements only) describes the method:

Rule Stack Descriptor Register Action Next
Rule
1 %Y Scan 3
2 Error
3 = Scan 5
4 Error
S ,a Scan
6 ( Scan
7 Error
8 K * ‘}Q. Phrase(3) 8
9 R+ R * Scan 5
10 R - R * Scan S
11 R+ R Phrase(3) 8
12 R -R Phrase(3) 8
13 (K = [R_ : Phrase(3) done
14 ) Scan 17
15 0?/ Scan S
16 Error
17 (K ) Phrase(3) 8
18 Error

2-40

2-41



Z2-41

The analysis commences with the application of rule 1; failure to
match the stack and descriptor register specified by a rule causes the next
sequential rule to be applied. Success causes the action indicated to be
performed and the specified rule to be tried next. Thus, in processing our
old friend

&,

ALPHA

& 8, 9 B 55

BETA ) .

we would have the following trace:

Step Rule Result

1 Scan

2 Scan

3 Scan

4 15 Scan

5 Scan

6 S Scan

7 15 Scan

8 S Scan

9 11 Phrase-1: ’8—‘! '8-; °8/;

10 14 Scan

11 17 Phrase-2: ‘9—( '8;hrase—l '97
12 8 Phrase-3: '8'25 '87* Phrase-z
13 13 Phrase-4: ‘871 = “Phrase-3
14 done

We will come back to this method later in section 3.
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2.3.3. Mixed Type Analysis

It is possible to combine precedence analysis and bottom up predictive
analysis. Note that in our example of hottom up analysis, we "fed" the analysis
with descriptors of "partially analyzed" material; that is, we presumed that the
lexical analysis had supplied the "i" and "n" structure brackets to the identifiers
and integers. We can generalize this as follows: Suppose that a precedence
analyzer is available and that it can analyze arithmetic expressions but nothing
"larger". That is, it has a precedence matrix with entries ¢, &, =, err and
"exit". Further, suppose that a syntactic type can be "attached" to each phrase
by the precedence analyzer. Then, we can view the analysis as a precedence
analysis on the sequence of descriptors produced by lexical analysis resulting
in replacement of certain sub-sequence by single descriptors (phrases) followed
by a bottom up predictive analysis on this reduced sequence.

Thus, we could have (considering our previous example again):

Character Stream; ALPHA = 25 * ( Y + BETA )
|

( Lexical Analysis>

Descriptor Sequence: bALPHA &=l 855 A ‘8,( 3'Y '&;

383’1‘1\ ’&)

Structure: i[ALPHA] = n[25] * ( i[Y] + ({[BETA] )

Precedence Analysis

36
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Reduced Descriptor Sequence: ’&ALPHA ’8; 'UPhrase-3
Structure: i[ALPHA] = a[ Phrase-3]

}

/ \
;_/ Predictive Analysis \
\ /

% /

|
Structure: u[i[ALPHA] = a[Phrase-3]]

31
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2.3.4. Miscellaneous Other Methods

Most of the methods currently used in compilers for performing syntactic
analysis are very close to the three basic methods described above.

The lar year or so has seen a host of "syntax directed" and "table
driven" compilers being constructed and, in many instances, advertised as
the newest, best, hottest, greatest, etc. compiler to ever make the scene.
Upon close inspection, however, it is seen that almost all of these are minor

variations on the various themes developed above, often sufficiently ill described
that the relationship is not especially evident without considerable study. There
are, however, two other methods which vary enough from these to comment upon.

A variation on predictive analysis has been devised by M, E. Conway
and is reported in: Conway, M. E., "Design of a Separable Transition Diagram
Compiler”, Communications of the ACM, Vol. 6, pp 396-408, July, 1963.

Conway has applied this method to COBOL and indicates that it can also
be used to handle analysis of "sclentific" languages. By using the technique
he describes he was able to produce a rather fast, quite elegant, COBOL com-
piler very rapidly.

Another technique that justifies mention is that used in many (IBM pro-
duced) FORTRAN-II compilers. Basically, they perform several scans over the
source text performing a lexical analysis and then doing a complete parenthe-
sization of arithmetic expressions and giving a "level" code to each sub-
computation. They use "level” to encode both "depth within parentheses" as
well as "precedence of operators”. Given a list of computations with appro-
priated sequence numbering and level coding they can then "sort out" different
kinds of sub-computations for special consideration, including certain kinds of
common sub-computation elimination.

2.4 Error Analysis and Recovery

©

In a practical compiler, one of the major considerations in the choice
of analysis technique is the ability to detect and recover from errors in source

programs. The syntactic analysis techniques sketched above vary considerably
in their properties with respect to error analysis and recovery.

2-44
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In "top down" predictive analysis, for example, an error is detected
(for example in Syntax II) when the analyzer cannot recognize a <prog>. Al- .
though the exact point in the input string past which recognition fails will be
known, it is extremely difficult to determine exactly why the error occurred and
to, in a general way, devise means for recovery. Further, if the error is at the
"end" of son.e construction, all the correct input will have been "forgetten”.

Several schemes exist for dealing with this problem, notably:

1. A scheme which permits specification of "no back up" on certain
constructs. For example, in Syntax II, no back up on recognition of "=" or "("
could help isolate the reasons for a failure.

2. A scheme due to E. T. Irons* which, in effect, carries along all
possible parses of an input string.

3. Special "error" syntactic types which could be defined in the syn-
tax. For example, one might define <factor> by

<factor>:: <ident>| <integer>| (<ae>)| (<ae> <null>

to allow missing right parentheses to be neglected. The ramifications of this
are not trivial, however,

At the present time there is no completely satisfactory general scheme
for dealing with syntactic errors discovered in the course of top down predictive
analysis.

In the case of bottom up predictive analysis, the situation is very similar
to that of the top down method. However, there is an advantage with bottom up
analysis in that when an error is detected, the symbols in the input string which
correctly "fit" some interpretation will not have been "forgotten". To be a bit
less vague, if a top down analysis (considering Syntax II) is given the goal of
<ustat> and inspects the string

X=Y+ 2*(A+B* (C+D).

it will not pe able to parse the string because o{ the missing right parenthesis.
Indeed, it will completely analyze the string up to the . and then completely
"unwind” the analysis ending up with an error report and the "next" input string

* Irons, E, T., "A Syntax Directed Compiler for ALGOL-60", Comm. ACM 4 L
(1961), 51-S85

39 !




symbol being X.

Bottom up analysis, on the other hand, will similarly analyze up to the .
but will fail with ")" missing ana "no place to go" but will be pointing at the
. rather than “unwinding" to the X,

Bounded context analysis, on the other hand, is much better suited to
error recovery procedures. Thus, given the above input, the precedence
analyzer would be in the following state:

9.—$x D: BY B+ ‘92 D* 9( Al"hrase-3

Stack:
Descriptor Register: A9 .

Phrase List: Phrase-~l: ﬂC ‘04- 4) ;@
Phrase-2: #© (BPhrase-l )
Phrase-3: DA d+ JPhrase--z

and be stopped because there is no precedence relation between the pair " ("
and ".". It is quite easy to paste in recovery mechanisms on such error pairs.
The situation is similar with productions analysis. Indeed, since a production
analysis is, in effect, specified by a program, the extension of the program to
include error analysis and recovery are a relatively straightforward process. It
is this property which, in our opinion, makes productions analysis preferable
over any of the other bounded context methods. In the productions analysis
program given above, ‘steps 2, 4, 7, 16, and 18 are "error:steps"; the kind of
error at each is as follows:

2: The first symbol in the assignment statement is not an identifier.
4: The first identifier ("left hand side") is not followed by an =,

7: An arithmetic expression starts with something which is not an
identifier, integer or phrase (R ) or a left parenthesis.

16: The quantity at the top of the stack does not combine with any
quantities to its' left in an allowable fashion (rules 8 - 13), is not followed
by a right parenthesis (rule 14), and, indeed, is not a quantity (rule 15).

2-46



The "missing right parenthesis" recovery would be pasted in here; e.q.,

Rule Stack Descriptor Action Next
_Register Rule_

15A ( ADD()) 15B

15B Phrase(3) 8

Here Add (o) causes symbol (descriptor) ¢ to be placed on top of stack.

18: A quantity followed by a right parenthesis is lacking the balancing
left parenthesis (1.e., we get to rule 17 via success rule 14 only.)
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2.9 Mechanical Generation of Syntactic Analyzers from Syntax
Specifications

It is clear that any reasonable implementation of the analyzer algor-
ithms described above would result in a "table driven" program. Indeed, a
general purpose top down analyzer which accessed a (more-or-less direct)
encoding of the syntax specification is rather simple to envision. (That is to
say that the idea of somehow encoding a particular syntax speciiication algor-
ithmically would probably not occur to anyone trying to implement such an
analyzer.) A bottom up analyzer can also, in a reasonably natural way, access
an encoded version of the syntax specification directly. In this case, however,
the syntax specification has to be "twisted around" a bit. That is, bottom up
analysis requires an encodement which allows going from some syntactic type
in hand to all the possible things which can be built from it. The specification
discussed in section 2.3.1.2 is in a form suitable for driving a general purpose
bottom up analyzer.

The precedence analyzer is also driven by a data set, namely the prece-
dence matrix. It is not so obvious that this matrix can be derived mechanically
from a syntax specification. However, a recent result due to R. W. Floyd*
shows that such a mechanical procedure does exist

We have, as notea, thought of a productions analysis specification as
a program. Again, any implementation of a productions analyzer would most
likely take the form of a table driven device. Some recent work by Earley and
others at Carnegie Tech indicates that it is possible to mechanically produce
(the parse part of) a productions analysis program from a proffered syntax in
many cases. Since much of the interpretation of the parse must be tailored to
the further processing to be done (like code selection) and thus cannot be
mechanically generated (unless, perhaps, the desired result were polish pre-
(post-) fix or some similar form) it is not terribly important whether or not the

* See Floyd, "Syntactic Analysis and Operator Precedence", in the appendices .
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productions fo: parsing are automatically prepared. In practice most people
can learn to use productions analysis with facility quite rapidly.




3 INTERPRETING THE PARSE

3.0 General Discussion

Parsing, as we have described the process above, results in either
a syntax tree depicting the complete syntactic analysis of the input or a
series of phrases which can be thought of as a somewhat less complete syn-
tax tree. The "interpretation" of the parse, as we shall understand the term
in these notes consists of three basic kinds of activity:

1. Generation of some sort of pseudo-cc.ie representation of the
sequence of computation from the tree or phrases resulting from
the syntactic analysis.

2. Handling the declarations discovered in the parsing.

3. Adjusting the sequence of computations with respect to type
conversion, scaling, expansion of certain implicit functions,
and generally getting the sequence of computations into a shape
which will allow the collection of information pertinent to opti-
mization and, eventually, the generation of machine code.

If the language being translated and the machine* for whig:h we are
generating code are sufficiently well behaved, the interpretation of the
parse can result in the generation of actual machine coding rather than
pseudo code. However, for our present purposes we will not consider the
direct generation of machine code from the parse. (See the Cheatham and
Sattley paper in the appendices.)

* We mean "machine" in the sense of both the hardware and the software
interface between the comptler and the hardware -- sophisticated assembly"
routines, for example.
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3.1 Generation of Pseudo-Code

Let us identify the problem here by continuing the examples presented
in section 2.0 through the generation of pseudo code. For the present, we
think of the following simple pseudo instructions*:

Instruction Arquments Interpretation
1) PLUS X Y X+Y
2) MINUS X Y X-Y
3) TIMES X Y X+Yy
4) OVER X Y X+Y
5) STORE X Y XY
6) GOTO L transfer control to (label) L

Let us think of the arguments of these instructions as being descriptors
in the sense defined above -- i.e., table code and line within table of a table
housekeeping the representation of the value. Indeed, let us further presume
an "instruction” table which contains (at least) entries for the six pseudo-
instructions defined above. Then, a pseudo-instruction is a pair or triple, as

‘8' 8’Y &ETA

for example:

PLUS

&

Note: In the sequel we will often use the notations PLUS and“"PLUS, + and

+, etc. interchangeably.)

If we further introduce the table in which we place the pseudo-instruc-
tions as a table for which we can have descriptors and utilize the notation
B@ for the 2 line of that table, and further argue that a line of that table

* Note: Throughout these notes we use the terms instruction and operation
interchangeably. They may refer to "pseudo" or "machine" instructions/oper-
ations also.



(let's call it the descriptor table) contains one descripior, then we find that

the computation

ALPHA = 25 * (Y + BETA )

results in descriptor table entries as follows (assuming for no good reason
that line 66 is the first one available to us when we start processing the

above):
LINE

66
67
68
69
70
71
72
73
74

or, more readably, perhaps

LINE

66

69
72

Descriptor Table Entry

g
% YLUS

Descriptors

PLUS Y BETA

TIMES 25 (66
STORE ALPHA (69

Now, there are several kinds of manipulation of the material in this

form which are rather naturally carried out following the syntactic analysis
and generation of the pseudo code but preceding the optimization and machine
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.code selection processina to come later.
These manipulations could include the following:

1. Type conversion (e.g., float an integes-involved in
- .Aloatiny 'c'omputa.t'ions)

2. Compile time computations (e.g., if 2 + 2 appears in the
input, produce the 4 at compile time rather than at run time).

3. Scaling fixed point computations (i.e., type conversion of
a more interesting and difficult type)

4. Code expansion (e.g., "open" code for generic functiens;
expansion of mapping or accessing functions -- the-idea
of "macros" of pseudo-coding)

5. Commutation of commutative operands to some canonical
form.

We must, however, emphasize that we are not asserting that this is
the m, in the ;:ompilation process, to do these kinds of manipulation.
Indeed, our whole theme is that there are many ways and times to do the
various manipulations required; the only ordering that we will assert as uni-
versal is that one should parse the input before he generates code. The time
and place to do, for examplé, scal;'.ng“ and type conversion is dependent upon
the rules in the programming language and upon the structure of the computer
for which code is being generated. Thus, if one has a machine with an
accumulator and a quotient register which can be connected for shlﬂ;ir:"g, it
may well be that scaling determination be deferred until code seiection time.
On the other hand, if one has a machine with no such accumulator-quotient
arrangement, the determination of scaling might as well be done earlier --
even at pa;rse time.

Let us suppose that by one means or another we have parsed the
source language (or some interesting part of it, like a Statement, do loop,
blog)i, or the Ifke) and have produced a sequence of pseudo-overations in
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the descriptor table. For example, referring nack to the example of section
3.1 we have eaten up the string

ALPBA = 25 ¢ ( Y* +. BETA )
and emitted the sequence of descriptors.

Descriptor Table

Line Descriptor

66 & PLUS
67 &'y

68 % seTa
69 & 1mes

P22
70 25
e j&

72 STORE
73 g ALPHA
74 @)

Let us introduce a couple more pieces of trickery and we're ready
to generate pseudo-code. First, to help accounting for who's who in the
descriptor table, we add a one bit field to the descriptors which bit is 0,
1 as the descriptor is not, is the last argument of an instruction. Thus a
symbol descriptor is now a triple, (TABLE, LINE, LAST) (where LAST ~ last
argument). We will denote such "last" descriptors pictorially by the use
of a super-script asterisk; thus, the example is

'Io
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Line

66
67
68
69
70
71

72
73
74

2-55

Descriptor Table Entry

Drrus
Dy

D*eTa

Finally, we introduce the function EMIT (....) which takes an arbitrary

number of descriptor-valued arguments and produces a descriptor value (output).
Specifically, EMIT (A1 pIaEIs 'An) places the descriptors Al’ p—— a in the "next"
n lines in the descriptor table, marks the descriptor An as "last” and produces a
descriptor of the formﬁ@where i is the line into which A1 was placed.

Now let us reconsider the precedence analysis discussed in section

2.0.
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Analysis of Source into a List of Phrases

Input Chara‘cter Stream: {ALPHA 25 * ( Y + BETA )

Lexical Analysis

|
Descriptor Stream: {bALPHA D-. Dys Da a( SY D, 3BH’I‘A‘?)

\—— __Phrase-1 )
Phrarse-ZJ
N Phrase-3,
h 4
Phrase-4
Syntactic Analysis
|
Phrase List: Phrase 1: bY b+ 8Bl‘:‘l‘l\
Phrase 2: D( 3phrase-l b)

Phrase 3: D25 D, bphrase-Z
Phrase 4: 2)AL1='HA2)= 3'phrase-3

From this it is fairly clear that the following "actions" will produce the
desired sequence of pseudo-instructions from the phrase analysis of the proffered
input:

Phrase-l <—— EMIT ('O.'PLUS,?? ,.S;B’I‘A)
Phrase-2 — Phrase-1

Phrase-3 — EMIT (2(TIMES, '855,3;}1&'!39-2)
Phrase<4 — EMIT (%T.ORE,'B.'ALPHA, _Phrase-3)
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Line Descriptor Table Entry

66 D pLus

67 Dy

68 D *BETA

69 T r1meS

70 D35

71 Do
72 & STORE

73 D ALPHA

74 )

Finally, we introduce the function EMIT (....) which takes an arbitrary
number of descriptor-valued arguments and produces a descriptor value (output).
Specifically, EMIT (A1 7 404 .An) places the descriptors Al Gl ,An in the "next"

n lines in the descriptor table, marks the descriptor A n 38 "last” and produces a
descriptor of the formﬁ@where i is the line into which A1 was placed.

Now let us reconsider the precedence analysis discussed in section
2.0.
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Analysis of Source into a List of Phrases

Input Charafter Stream: {ALPHA = 25 * (Y 4 BETA )

Lexical Analysis

!

Descriptor Stream: {bALPHA D - 825 Dy 3( SY D, bBI:!'I’A‘?)
. _ Phrase-1 ___J
Phrase-2
W Phrase-3,
v
Phrase-4

Syntactic Analysis

|
Phrase List: f Phrase 1: DY ©+ DBETA

Phrase 2: D( 8phrase-l b)
Phrase 3: D25 D bphmse-z

L Phrase 4: 2)ALPH}\b= 3'pl'u'ase-3

From this it is fairly clear that the following "actions" will produce the
desired sequence of pseudo-instructions from the phrase analysis of the proffered
input:

Phrase-1 — EMIT (’a.'PLUS,@Y,&;BTA)

Phrase-2 < Phrase-1

Phrase-3 — EMIT (QTIMES, '855,%hrase-2)
Phrase4 — EMIT (%T.ORE,'B.VALPHA,‘a.'PhrasB,-.‘i)
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Recall from section 2.3.2 that the precedence analysis technique
operates by placing the descriptors from the descriptor stream into a "descriptor
register”. When a terminal symbol descriptor is placed in the descriptor
register the precedence relation between it and the most recent terminal symbol .
in the stack is inspected, resulting either in the identification of a phrase or
in moving the descriptor from the descriptor register to the top of the stack and
obtaining of the next descriptor from the input stream and placing it in the des-
criptor register. The phrases isolated (at least in our simple example above)

have one of the six forms:

X+Y

X-Y
X*Y
X/Y
X=Y

(x)

Where X, Y stand for arbitrary descriptors.

Now suppose we have an operator, PHRASE ( ) which takes a descriptor
argument and performs the following function: If the top n positions of the
stack contain a phrase, then PHRASE (A) causes the top n positions to be excised,
and the argument, A, to be placed on top of the stack. Then, the interpretation
of the phrase and generation of pseudo-instructions can be described as follows:

When a phrase has been isolated, perform the following, according to

which pattern applies.

Pattern
X+Y

X-Y
X~y
X/Y
X=Y
(x)

Action
PHRASE (EMIT (PLUS, X, Y))
PHRASE (EMIT (MINUS, X, Y))
PHRASE (EMIT (TIMES, X, Y))
PHRASE (EMIT (OVER, X, Y))
PHRASE (EMIT (STORE, X, Y))
PHRASE (X) ;



Nows let us turn our attention to prodhctlons analysis again. We
postulate the following:

1. The descriptors have four fields: TABLE, LINE, LAST, and TYPE.
The first three are as above; the TYPE field will contain syntactic type (gen-
erally any "type" information useful) and be dealt with as described below.

2. There is defined a set of pattern elements (predicates) as follows
(each string of characters above a wiggly line names a predicate):

a. $+, 8-, 8*, STO, $=, etc. which are true, false as the des-
criptor to which they are applied is, is not that for the terminal character
(String) n+n, u_n' n*u' "TO", u=u' etc.

b. IDENT, INTEGER which is true if the descriptor to which it is
applied has as table code the code for the symbol table, literal table, res-
pectively.

c. RLOP, ADOP which is true i{f the descriptor to which it is
applied is a relation operator, add operator respectively.

d. Several special pattern elements, FACTOR, TERM, AE, REL,
CSTAT, USTAT, STAT, PROG which are true if the TYPE field of the descriptor
to which they are applied has the corresponding syntactic type codes (per,
for example, the numbering of syntax I or II in section 2.1). The occurrence
of these identifiers outside pattern elements will be taken to be equivalent
to a literal whose value is the code for the particular syntactic type.

e. OTHERWISE - always true.

3. There is a stack of symbol descriptors and a "current register".
Patterns can be applied to the top n positions of the stack and/or the current
register. A pattern is true if all the pattern elements are true predicates when
applied to the corresponding stack and/or current register contents. We will
utilize the following notation for patterns (II, nj name predicates or pattern
elements):

]9
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oo I 1 e ho // — test the top (n+1) position of

the stack.

n-1

e Mot "C // N/ / /- test the top n+] position of the
stack and the current register.

// N/ / /- test the current register.

Patterns may optionally be labelled by placing an identifier in front
of them.

4. We have a set of actions as follows:

a. SCAN(n) - lexically analyze for n descriptors placing the last
one in the current register and placing the other
n-1 plus the one initially in the current register
into the stack.

b. TRY(]) - starting with the pattern labelled Q, apply patterns
until first one matches: then do the actions asso-
ciated with it.

C. BMIT(dl, dz, = ,dn) - place the n descriptors d1 fins ,dn
into the output list indicating dn is "last"; take
the descriptor of this "computation" as the result
of the EMIT( ) function.

d. PHRASE(d) - excise all those elements of the stack involved
in the most recent successful pattern and insert
descriptor < on the stack.

e. Arithmetic (+, -, *, /) over literals, variables and fields '
of descriptors and substitution (=) of integer
valued or descriptor valued variables.

i
5 |
i l



f. CYCLE - nullifies the symbol in the current register.
g. ERROR - announces an error condition.

h. EXCISE - remove the n symbol descriptors on the stack
involved in the most recent successful pattern
from the stack.

. TO(a) - perform the action labeled "a" next.

) Actions are delimited by a period; an action may be labeled by
placing an identifier followed by a double period in front of it.

5. We denote by COMP (n) the descriptor currently in the (top--n)t—h
position of the symbol descriptor stack and by TYPE(COMP (n)), the type
field of COMP(n), etc.

6. Patterns are applied sequentially from the.first in "tried” unti! a
successful one is found; then the first action associated is performed and
actions are performed sequentially until a control break is reached (i.e., a
pattern is specified to be tried (TRY(p)) or a transfer of control in actions
occurs (TOa))).

The following schema provides a program for parsing optionally labeled
unconditional statements. We have presumed pseudo instructions of above
(PLUS, MINUS, TIMES, LABEL, and GOTO) plus the operation STOPPER with
the obvious interpretation. It is presumed that, initizlly, there is a symbol
descriptor in the current register and that pattern U0 is "tried".
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uo // VDENT 7// SCAN(1). TRY(UO1).
// gro /// SCAN(2). TRY(TO1).
/] SSTOP /// SCAN(1). TRY(STOP1).
OTHERWISE ERROR.
U0l ... IDENT /] $= /// SCAN(1). TRY(AEO).
. IDENT /! $.. /// PHRASE(EMIT(LABEL,COMP(0)).
EXCISE. CYCLE. SCAN(1).
TRY(UO).
OTHERWISE ERROR.
AEO /7 $( /// SCAN(1). TRY(AEO).
// VDENT ///
// INTEGER /// SCAN(1).
AEOA.. TYPE(COMP(0))=FACTOR. TRY(F1).
OTHERWI SE ERROR.
F1 ... TERM $* FACTOR// PHRASE(EMIT(TIMES, COMP(2),
coMpP(0))).
P FACTOR// TYPE(COMP(0) )=TERM. TRY(T1).
OTHERWISE ERROR.
" ... TERM /] $* /// SCAN(1). TRY(AEO).
. AE $+ TERM /! PHRASE( EMIT(PLUS, COMP(2),
coMP(0))). TO(TIA).
. AE $- TERM // Pussas(g?;r(nuNus.conp(z).
% TERM  // T1A.. TYPE(COMP(0))=AE. TRY(AE?).
OTHERWISE ERROR.
AE1 ... AE // ADOP /// SCAN(1). TRY(AEO).
. $( AE 7/ %) 11/ z¢§tg£(conp(?);. :
« SCAN(1). TO(AEOA).
. IDENT $= AE // PHES:E 5?;}(srone(conp(z)3
AETA.. ) L
—— E1A E;:g&?onp(o))-usrAr TRY(U1).
T ... $TO IDENT // PHRASE(EMIT(GOTO, COMP(0)).
TO(AEIA).
OTHERWISE ERROR.
STOP? ... $STOP  // PHRASE(EMIT(STOPPER)).
OTHERWISE ER{g&fE'A)-
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Analysis of the fragment
ALPHA = 25 * (Y+BETA).

yields (where the pair indicates type and "quantity"):

66 PLUS  (AE, Y) (TERM, BETA)
69 TIMES (TERM, 25) (FACTOR, (66')

72 STORE _ (IDENT, ALPHA) (AE, G9)

with the stack and current register state
A
-+. (USTAT, (72) // $.///

Supposing that we desired to produce a syntax tree rather than pseudo
code, consider the following schema:

56
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uo /! VOENT ///
// gTo l//
/] $STOP 71/
OTHERWISE
vot ... IDENY // 3- 11/
L6 IDENT // §.. ///
OTHERWISE ~
- AEO /1 $( 11/
/! \DENT ///
// INTEGER ///
$ AEOA. .
OTHERWI SE
F1 ... TERM $* FACTOR//
. FACTOR//
F'A. L ]
OTHERWI SE
| P TERM // $* /11
..o AE ADOP TERM //
2 Eim TERM //
N T'A..
OTHERWISE
AEl ... AE // ADOP  ///
i $( AE /7 $) 11/
.o IDENT $= AE //
AEIA. .
OTHERWISE
TO1 ... $TO IDENT //
OTHERWISE
STOPY ... sSTOP  //
OTHERWISE
! USTAT //.§. ///
U'AO L ]
OTHERWISE
S1 ... IDENT $.. STAT//
0 PROG STAT//
£t STAT//
S1A..
OTHERWISE
57

SCAN(2). TRY(TO1).
SCAN(1). TRY(STOP1).
ERROR.

SCAN(1). TRY(AEO).
SCAN(1). TRY(UO).
ERROR.

SCAN(1).

SCAN(1).

PHRAse(EulrgconP(o)))
TYPE(COMP(0) )=FACTOR. TRY(F1).
ERROR.

PHRASE(EMIT(COMP(2),COMP(1),
COMP(0))).

TO(F1A).

PHRASE(EMIT(COMP(0))).

TYPE(COMP(0) )=TERM. TRY(T1).

ERROR.

SCAN(1). TRY(AFO).

PHRASE(EMIT(COMP(2),COMP(1),
CoMP(0))).

To(TlAz

PHRASE(EMIT(COMP(0))).

TYPE(COMP(0) )eAE. TRY(AE1).

ERROR.

SCAN(1). TRY(AEO).

PuaAse(Enlr(si ,COMP(0), $)).
CYCLE., SCAN(1)

TO(AEOA).

PHRASE§EMIT(COMP(2) ,COMP(1),
COMP(0)))

TYPE(COMP(0) )=USTAT. TRY(U1).

ERROR.

PHRASE(EMIT($TC, COMP(0)).
TO(AEIA).
ERROR.

PHRASE(EMIT(COMP(0)) .
ERROR.

PuRASE(enlrgconp(o) ; . CYCLE.
TYPE(COMP(0))=STAT. TRY(S1).
ERROR.

PnaAssgenlr(conr(z) ,COMP(1),

SCAN{I}. TRY{UOI .

TRY(AEO).

TO(AE1A).

COMP( 0

TO(UTA

;g%g?s EMIT(COMP(1), conr(o))).
PHRASE(EMIT(COMP(0))).
TYPE(COMP(0) )=PROG. SCAN(1).
TRY(VO).

ERROR.
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Consider, further, the following schema:
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OTHERWISE

coe | DENT
L N 'DENT

OTHERWISE

OTHERWISE
o 00 R s*

R $+
soo R $§~-

$(
. 1DENT $=
OTHERWISE
eee  $TO IDENT
OTHERWISE

8 00 D O XBO D

o 00 SSTOP
OTHERWISE

/] $(
// 1DENT

// INTEGER

//

/] $*
/1

//

// ADOP
/7 $)

//

//

//

e
-~
N~

N
™~
™~

e )
S

SCAN(2). TRY(TO1).
SCAN(1). TRY(STOP1).
ERROR.

SCAN(1). TRY(AEO).
PHRASE(EMIT(LABEL, COMP(0) ).
EXCISE. CYCLE. SCAN(1). TRY(UO).

SCANiI;. TRY%UO' .

SCAN(1). TRY(AEO).
SCAN(1). TRY(F1).

ERROR.

PHRASE(EMIT(TIMES, COMP(2),
coMP(0))). TRY(F1).

SCAN(1). TRY(AEO).

PHRASE(EMIT(PLUS, COMP(2),
conpzo))). TRY(T1).

PHRASE( EMIT(MINUS, COMP(2),
coMP(0))). TRY(T1).

SCAN(1). TRY(AEO).

PHRASE(COMP(0)). CYCLE. a

SCAN(1). TRY(F1). ©

PHRASE(EMIT(STORE, COMP( 2), o
COMP(0))). TRY(U1).

ERROR.

PHRASE(EMIT(GOTC. COMP(0))).

TRY(U1).

ERROR.

PHRASE(EMIT(STOPPER)). TRY(U1).
ERROR.
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This schema will produce the same results as the first schema but
makes no use of syntactic type. Herein liés the power of the productions ‘
analysis method: one can parse into phrases (schema III), a complete syn-
tax tree (schema II) or mix the two (schema I).

Now let us turn our attention-to the problem of generating pseudo-
code from the result of a predictive analysis. The Cheatham, Sattley paper
in the apbendices discusses various ways of tying the syntactic analysis
and code generation together; at this point we will only discuss one tech-
nique of gehemtlng pseudo-code and assume that we are given a complete
syntax tree.

Let us reconsider the example of section 2.0.
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Analysis of Source into a Syntax Tree

Input Character
Stream: { ALPHA

|

Lexical Analysis

Descriptor Stream{pALPHA

<ident>

Syntactic Analysis

Syntax Tree

25 ¥ ( Y

ey r
b, D
<integer> ide
<factor>
<term>
<term>
e>
<ustat>

Suppose that we have the following mechanism:

1. A control element which is at any point in time "pointing to”

some node of tha tree;

2. A means for naming nodes relative to the "current" ndde.

BETA

BETA

)

3. A "place" at each node to park the name of the "result" asso-
clated with that node.
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4. A means for moving the control element to another node, and
remembering the node to which we were pointing (i.e., a stack).

5. A means for moving the control element to the last node from
which we transferred control (i.e., pop it off the stack).

Given the abcve tree with "current" node initially the <ustat>, we can
sketch a "tree walk" and generation of pseudo-code as follows:

Current
Node Action
1 <ustat> Consider the third "son", the <ae>
2 <ae> It is only a <term>, consider the <term>
= <term> Consider the left son, the <term>
4 <term> Consider the only son, the <factor>
S <factor> Consider the only son, the <integer>
6 <integer> R<integer>~ -82 5 (Read: "The 'result' of the 'integer' node
is 92 5)"; return to previous node.
7 <factor> R<factor><R<integer>; return to previous node,
8 <term> R<term><—R<factor>; return to previous node.
9 <term> Consider the right son, the <factor>
10 <factor> The <factor> is of the form (<ae>); consider the second
son, the <ae>,
11 <ae> Consider the first son, the <ae>
12 <ae> Consider the only son, the <term>

Etc., resuiting in R<ae> «—, ., = QY and return to previous node.

3
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Current

Node Action
13 <ae> Consider the third son, the <term>

Etc., resulting in R<term>-.. "-9BETA and return to previous node,

14 <ae> Both first and third son "considered" (i.e., ‘results' are
associated with them). Second son is +; therefore R<ae> s
—EMIT (PLUS, son-1, son-3) [That is, R<ae>—EMIT
(PLUS, Y, BETA)] Return to previous node.

15 <factor> R<factor>+—R<ae>: return to previous node.
16 <term> R<term><-EMIT (TIMES, son-1, son-3); return to previous
node.

17 <ae> R<ae><—R<term>; return to previous node.

18 <ustat> Consider the first son, the <ident>
(=]
-

19 <ident> R<ident>~ ALPHA' return to previous node. a

20 <ustat> R<ustat><—EMIT (STORE, son-1, son-3)

Note that we have introduced the idea of "tree name" (e.g., son-1, etc.)
as denoting both a place to go (turn the control element pointer to) and as de-
noting a value associated with a node (EMIT (PLUS, son-1, son-3)).

Now let us introduce the following:

son-1, son-2, ... , €tc. name tree nodes relative
to the current node (in a fashion clear from context)

CONSIDER(N), where N is any tree name, causes the control element to
turn to the node N and the current node to be placed on the stack.

EMIT( ) is as before except that it places the descriptor of the result in
the "result field" of the current node.

COPY(N) copies the result of node N into the result tield of the current
node.
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We now have a series of "pattern" and "actions” for walking the tree
and generating code for the example above. The rules are:

Take the first structure applicable for the type node control is currently
"on" and carry out the actions; when out of actions, return control to the pre-
vious node (i.e., top of the stack).

Thus:

Control On and Structure Is then do the Actions

<ustat> CONSIDER(son-3)
CONSIDER(son-1)
EMIT(STORE, son-1, son-3)

<ae> <term> CONSIDER(son-1)
COPY(son-1)

<ae> <ge> + <term> CONSIDER(son-1)
CONSIDER(son=-3)
EMIT (PLUS, son-1,son-3)

<ae> <ae> - <term> CONSIDER(son- 1)
CONSIDER(son-3)
EMIT(MINUS, son-1, son=-3)

<term> <factor> CONSIDER(son-1)
COPY(son-1)

<term> <term> * <factor> CONSIDER(son-1)
CONSIDER(son-3)
EMIT (TIMES, son-1,son-3)

<factor> (<ae:~) CONSIDER(son-2)
COPY(son-2)

<factor> anything else CONSIDER(son~1 of son-1)

COPY(son-1 of son-1)
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Note the more complicated tree name son-1 of son-1; the generalization
to complex tree names is obvious. Thus, to get from the node 5ALPHA to the
node@ BETA in the above syntax tree we could proceed to: son-1 of son-1 of
son-1 of son-3 of son-2 of son-3 of son-1 of son-3 of father of father. Or
turning the specification "around" and going by a different route: to father to
right sl@ling to right sibling to son-1 to son-3 to son-2 to son-2 to right sib-
ling to son-1 to son~1 to son-1. The Warshall and Shapiro paper in the appen-
dices discusses a general purpose compiling system in which a rather elaborate
tree walk and pseudo-code generation mechanism is available.

Another remark: Note the similarity between the patterns and associated
actions for handling generation of pseudo-code from precedence analysis into
phrases and the patterns and actions for processing the complete syntax tree,

In both cases we have our "attention" somewhere (top of stack or 'current' node)
and specify the context via a pattern which leads to certain actions. The simi-
larity is more evident if we rewrite the "patterns" for the syntax tree as:

<ustat>

<ae> [ <term> ]

<ae> [<ae> + <term>]
etc.

denoting the tree structure by appropriate bracketing.
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3.2 Handling Declarations

Fundamentally, declarations in a programming language are devices
for dynamically (i.e., at compile time) changing the syntax of the source
larguage. That is, :

&a_l X, Y

really means something like: "add the two rules i

<realvar>::= X
<realvar>::= Y

to the syntax".

In a practical compiler, however (or even, I would guess, in an im-
practical one), such declarations are generally handled by setting certain
flags in the symbol (literal, etc.) table, so that the appropriate type infor- ;
mation can be readily available for the processing of the parsed input into
pseudo- (and machine-) code.

The handling of "shape" declarations (e.g., array A (1:20, J:40),
overlay (W, V), etc.) depends to a considerable extent on the environment
into which the result of compilation is going. Thus, if a full blown assembly
is to take place on symbolic output from a compiler* then such declarations
can usually be handled by invoking the "block started by symbol”, "synony-
mous with", and the like pseudo operations usually available in an assembler.

Further, the handling of declarations which need to contact the envir-
onment, for example the declaration of library subroutine calls, filed data
description references, and the like are highly dependent upon the environ-
ment in which the compiler is running in addition to the environment in which
the compiled result will be placed. i

* Rather a foolish way to do business, incidentally, if cost is of any impor-
tance in the long run.
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We will not, at this time, go any further into the question of how we
actually process the declarations except to make the following remarks:

1. By hook or by crook, the effect of the declaration must be re-
flected in the symbol (literal, etc.) table entry for the item
declared. '

2. Somehow, we must be able to snatch control from the syntactic
analysis - code generation mechanism to handle the interpretation
and storing of declarations.

3. While there exist reasonably elegant schemes for "automatically”
doing syntactic analysis (and even much of code synthesis), the
handling of declarations is generally messy with any but the
simplest of l;mguages. For this reason (among others) it will
prove highly useful in any general purpose compiling system to
have the ability to do arithmetic and relationals -- i.e., the
"action language" should contain at least the rudiments of a good
algebraic language.

For processing languages where several types of data can be manipu-
lated (e.g., integer, real, boolean, string, etc.) it may be convenient to
utilize the field, "TYPE", for carrying declarative information. Thus in this
setting we will think of descriptors as quadruples:

(TABLE, LINE, LARG, TYPE)

where TYPE is any convenient encoding of which of the possible types the
(described) value is,
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3.3 Miscellaneous Manipulations

There are several different kinds of manipulations of source material
which are more~-or-less naturally done with the material in the form of a se-
quence of pseudo~-instructions. Some of these (type conversion, scaling, and
the like) are needed for languages which are "loose" in the sense that many
detailed decisions in the compilation are left to the compiler; others (compile
time computation, commutation of operands, and the like) are more to do with
the generatfon of optimal coding; still others ("macro" expansion, and the like)
are to do with both. We will discuss some of these and some mechanisms for
handling them in the sections below.

$.9.1 Type Conversion: ling: Compile Time mputation

In languages which allow a variety of data types and which allow
"mixing” these types in expressions (or don't allow it, but the compiler is
trying to make a reasonable error recovery) we are faced with the oroblem of
finding operations with operands of mixed types and effecting the conversion
of one of the operands to the "preferred" type. This same problem, in a
somewhat more complex form, arises in languages in which computations with
scaled fixed point data are allowed (and it is assumed that the compiler tries
to adjust scales appropriately for intermediate results) or in which data may
have units (e.g., feet, miles/hr, etc.) and the compiler is expected to
handle unit conversions of intermediate results.

In its simplest form the problem is simply this: for any simple compu-
tation (i.e., add, subtract, multiply, divide, store) in which the two argu-
maents are of different types, the one of "less preferred” type is to be converted
to the "more preferred" type prior to the computation being performed. Let us
suppose for simplicity that a language allows integers and floating numbers and
that integers are to be "floated" before an operation with floating numbers ex-
cept that the "left hand side" type takes preference in assignment statements.
Let us further suppose that there are two unary operators FI.OAT, UNFLOAT which
are available as pseudo-operations. Then the handling of this kind of conversion



fits into our "descriptor list" framework reasonably well. The example following
suggests the mechanism required.

Suppose that we have a stream of descriptors representing the compu-
tation for an assignment statement and suppose that we can turn our attention
to the "STORE" operation. The processing then to be performed is described by
the table below. Here we have "patterns" and associated "actions". The non-
obvious action is PROCESS ( ) which takes as argument the name of a descriptor
and means: If the descriptor is not of a line in the des~riptor table (1.e., "the
argument is not 'complex' - it is a simple identifier or literal), then do nothing;
otherwise remember which operation we are working on and turn our attention to
the one designated, applying those actions appropriate; when finished copy the
TYPE field of the line processed into the TYPE of the argument*., We further
assume that the TYPE field of a descriptor is set appropriately for all variables
and literals upon entry.

Processing for Simple Type Conversions

Pattern .
Operation Arg-1** Arg-2
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I STORE X Y PROCESS (Y);
if TYPE (X) = TYPE (Y) then
if TYPE (X) = integer then
Y-—-EMIT (FLOAT, Y)
else Y-—EMIT (UNFLOAT, Y);

II ARITH X Y PROCESS (X); PROCESS (Y);
If TYPE (X) = TYPE (Y) then
if TYPE (X) = integer then
X-—EMIT (FLOAT, X)
else Y—EMIT (FLOAT, Y);
TYPE (ARITH)-- float;

* Note the similarity with the CONSIDER (- .) action we used in section 3.1.
** Read "Local name of first argument"
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Suppose our old friend

ALPHA = 25 * (Y + BETA) .

were to be processed and that ALPHA, Y are floating and BETA (and, of course,

25) is' an integer.

Below we have pictured the descriptor table before and after the pro-

cessing (the column "step" indicates which step in the processing causes the

change) and sketched a resumé of the processing carried out. (Recall the
function EMIT ( ) from section 3.1;
of the descriptor table is initially the next available line.)

Line

66
67
68
69
70
71
72
73
74

105
106
107
108

Initial
Contents

Descriptor Table

Type

floating
integer

integer

floating

Tl

Final
Contents

® pLus

Y
2

D rimes
O

Type

float.ing
floating

floating
floating

floating
floating

floating
integer
floating
integer

we assume for this example that line 105

(Stgp)

)

)

@)

(4)
(3)

(4)

(3)
(3)
(4)
(4)




Step

Current

Line

72

69

66

69

72

Resumé of Processing

Current
Operation

S STORE BI\LPHI-\ ﬁ Pattern I applies; The second
floating argument, Y ~ 9@, is complex,
hence process it.

o TIMES 9 25 D Pattern II applies; The first argu-
integer ment is simple, hence do nothing,

the second argument is complex,

hence process it. ;

ﬁ PLUS m Y 9BE‘I‘A Pattern II applies; neither argu-
floating integer ment requires processing; the

TYPE fields do not match and
TYPE (x~9y) # integer, hence
Y-—EMIT (FLOAT, Y);
TYPE (ARITH)« floating; return
to considering line 69 and copy
TYPE of floating into its’ se-
cond argument.

E'I‘IMES 925 ﬁ Types don't match; do X«
integer floating EMIT (FLOAT, X); TYPE (ARITH)--
floating; return to considering
line 72 and copy TYPE of
floating into its' second argu-
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ment.

bSTORE 9ALPHA & Types match; finished with
floati_ng floating processing.
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The important point to be noted here is that the mechanism of "match the
applicable pattern and perform the actions associated with it" seems a reasonable
mechanism. The only difference between this and the mechanism for generating
pseudo-code (section 1.3.1) is that the patterns are applied to operations rather
than phrases; however, each is, you will note, merely a sequence of lines in
the descriptor table.

A slight extension of this mechanism will handle the elimination of compu-
tation with constants by performing such computation at compile time*,

The more general type conversion problem cannot be handled by such a
"local" mechanism. The scope of the problem is suagested by the following.

Suppose that we have the computation A = B* (C+D) + E* (F /G) with scaled
fixed point numbers as follows:

Variable Scale

@QmMEMmygQw>
w

* This is not an “unproblem“ . For example a language which allows....

PI IS 3.14159265 ... ZILCH = 2*PI+X .... as well as allowing general mapping
functions which might contain constants, e.g., A(l) is accessed at word 2*I+512
of area based at g and a call ior A(6) occurs. Generally, as languages allow
more sophisticated declarations (particularly of computational fragments such as

accessing (mapping) functions) the occurrences of a variety of redundancies of
this kind will increase.
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We might depict this computation as follows:

Here, Rl ¢ P ,R5 name the five intermediate results. The problem is to
determine scaling for R1 y %6 ,Rs in such a way that no overflow occurs* and that
there are a minimum number of shift instructions required. The mechanism
employed above (i.e., proceeding to the "innermost” computations and deciding
on a scaling on the basis of local information only) could be used, but the
number of shifts generated might be excessive. A better scheme is to provide a
mechanism which can "wander around” this tree collecting known scaling infor-
mation, postulating scales for the Ri' looking at the effect of postulated scale
to change the scaling information, re-postulating scales, etc.

* or, a certain precision or significance is maintained, etc. depending upon the
scaling philosophy empiloyed.
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We will only remark at this point that for this kind of problem we postulate
an extension of the descriptors for carrying pertinent scaling information. That
is, we now think of a descriptor as being five fields.

(TABLE, LINE, LARG, TYPE, LINK)

where LINK is a pointer to an "extension" of the descriptor which housekeeps
(for example) scaling information. We do not consider adding such fields to the
descriptor (permanently) as the need for such extensions is purely local. Thus
we think of some small set of available extensions and link these to descriptors
being processed and unlink them (back to being "available") when we are through

with them*,

* We might note that the problem of generating highly efficient machine code is
highly similar in that an extension to the descriptor is required (again locally in
the same sense) to housekeep such information as which registers contain the
item, rosition within register, sign description, etc.

4
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3.3.2 "Macro" Expansion

While the idea of "macro assemblers” has considerable stature (one
is included in any respectable software package these days) the idea of
allowing similar macro facilities in a compiler is found in few, if any,
systems: However, the basic need in most any compliler is clear since, for
example, accessing an array really requires at least an implicit macro. That
is, the fragment

s A(I, T+ 2)*K ...

where, for example, A(, ) has been declared as a 10 X 10 array is, seally, in
terms of pseudo-operations, something like: '

a  DpLusDy DN
a+3 Drmmes® 1P %o
a+6 OPLUS 3@3’*@
a+9 D LOCATE DA Dg+p
a+12 DriMES PGPk
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That is, we must compile coding to compute the quantity (10*I) + J + 2 and add
this to the base address (to within a constant) to "locate" the word containing
the item in order to access A(l, J+2).

In most compilers, such data accessing is handled by one or more special
purpose bumps on the compliler.

It is a quite straight forward addition to a compiler to allow for "macros"
of pseudo-operations to handle data accessing plus other kinds of operations
and, incidentally, to allow the programmer to define, in source language,
macros and to call them later in his program (or, if he is operating in a reasonable
programming system with a reasonable filing sub-system, to call them later in
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some other program). Thus, one could write

define macro ROOT1(A, B, C) AS (B+SQRT (B**2-4*A*C)/ (2*A);

and use this ROOTI1 (,,) later in his program, assured that "open" coding
appropriately optimized would result.

The mechanism for handling this is really quite straight-forward. The
compiler produces the (pseudo-operations) descriptor list fragment for the
macro, for example:

Dexpo D D2
+3 DrivMes Dgq D™
+6 Trmes Pg) V'c
+9 Duinus D@ Perp
+12 Drunct D sqrr T'@wy
+15 DpLus U D G1d
+18 DrimMes D2 D)

+21 D over D@19V ‘@19

and then "parks" this list somewhere effecting a few changes, to wit: replace
by 1-\,‘b B, D C with o] E], O m, -4 @and replace?ﬁuith some appropriate
"local" or "self" relative descriptor. Thus the symbol teble entry for ROOT1
is tagged to indicate that it is a macro (with three arguments). A call for, for
example, ROOT1 (4,X+Y*Z,Z) later in the program would result in the above
(modified) descriptor list to be brought out and the%and local relative refer-
ence descriptions to be appropriately modified. Thus, the call might result in:

R R R R R R R R

11




5 D rimes O y Oz

6+ 3 D pLus D x B

5+6 D expo T i) D2

5+ 9 ®1IMES ¥4 %

s+12 D TIMES ¢z
s+15 D MINUSDED P& 117
s§+18 T FUNCT ¥ sQRT D@19
s+21 & pLus Pp+3 s +18
6+24  TTIMES 2 D%

5+27  DovErR D&G2) DGy

Note that the later optimization, for example detecting and removing con-
stant computations would then eliminate lines (starting with) 6+9, 6+24 and
could also result in 6+27 being replaced by8 TIMES 8@8 1/8 saving some
time (on most computers).

A few more remarks about data and data accessing are pertinent. If the
accessing of data is viewed as a sequence of computations culminating in a
"locate" operation for locating the word in memory (usually relative to some
base address) and if this computation sequence is viewed as a macro in the above
sense, then the actual computation required to perform this "locate" can be as
complex as desired without this being any strain on the compiler at all.

One kind of application is the following: Suppose we had a very long
vector, V(I); the mapping function could be:

LOCV.. ] =1/10000;
if ] =CURBLOCK then
RESULT = LOCATE"(V, "1 - 10000%])
else begin OUTPUT (V, 10000, CURBLOCK);
INPUT  (V, 10000, J);
CURBLOCK = J; to (LOCV) end

Here we are presuming INPUT/OUTPUT (i, J, k) causes input/output of the
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material based at location i for j locations to be input from/output to block k of
some tape, disc, magnetic card, etc. file.

One more idea on data accessing. In order to handle the accessing of data
items packed several per word we can postulate a pseudo-operation FIBLD taking
three arguments: "address" of a locate, and two (integer) values. The inter-
pretation cf FIELD(L, I, ]) is: consider the word located and take (fetch or
store, depending on context) the field starting at bit I and being J bits long. We
will not pursue this further here.
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3.4 Handling Special Features

Most programming languages have one or more rather annoyi: y features,
annoying in the sense that the handling of them often requires some kind of
special bump on the compiler. A very brief sketch of some of these follcws:

3.4.1. Variable Remote Connections

Many languages allow one to set certain variables to "addresses" rather
than values. That is, one (usually not in this format) can write;
V:=L;
to (V);
L.. X:=Y+Z; to (C);
M. . X:=Y-Z;
C..

The annoyance here is that the collection of labels which can be so refer-
enced must each have an associated address (to allow the V:=L to be set}. There
are two basically different ways to implement the above, below sketched in SAP
or FAP like 7094 coding:
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METHOD I METHOD II
CLAL ClA .L
STA.V STP: '/
TRAV TRA V

L NOP L LCLAY
CLAY ADD Z
ADD 2 STO X
STO X TRAC
TRA C MCLAY

M NOP M SUB 2
CLAY STO X
SUB 2 C etc
STO X <
C etc V TRA error
; .L TRAL
V TRA error .MTRA M

(Note: We realize that one can get a bit cute with the use of indirect addressing,
but the examples are to make another point.)

Method I is simpler from the compiler's point of view but has an extra
useless instruction following every label (which can be used as the argument
of such a connection); Method II requires that L be interpreted in two different
ways (as L or .L) depending on its' usage.

It should be remarked that if the coding is to be placed in any sophisticated
programming system or if clever optimization (using flow analysis) is to be per-
formed, the whole idea of variable remote connections is a bad one and should be
replaced by a switch mechanism.

3
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3.4.2 Status Constants

JOVIAL introduced the idea of status constants. A status constant is an'
identifier declared to have a literal (indeed, integer) value whiclk. depends upon
which status variable of which it is a value. That is,.one can declare (in
effect):

STATE status (OHIO, NY, PA, MASS);
CITY status (LIMA, BOS, PHILA, NY)

Very roughly, in JOVIAL the identifiers OHIO, NY, PA, MASS
are treated as, respectively, literal 0, 1, 2, 3 when they appear in an appro-
priate context (e.g., STATE:=MASS, if STATE = MASS, etc.); similarly, LIMA,
BOS, PHILA, NY are iiteral 0, 1, 2, 3 in appropriate context.

The problem here is interpreting the appropriate context in the
case of NY which is 1 or 3 depending on whether STATE or CITY is hard by. This
interpretation can be done in a variety of ways; the use of a "syntax tree walk"
is quite reasonable as is an inspection of the pseudo-code sequence.

3.4.3 Complex Data Structure

COBOL was the first major language to introduce the idea of highly
structured data (in the sense of field overlay, or, put better, in the senée of
handling n-tuples). The "new programming language" (now called PL/I) being
devised for System/360 has somewhat more along this line, allowing for data
elements which are defined as n-tuples of previously defined data elements or
of arrays of previously defined data elements, and so on, all recursively. The
basic problem in handling such constructs is that a given name may stand for a
highly structured collection of (atomic or basic or directly manipulable, etc.)
data elements. To handle such things one must, by one method or another,
attach to each "entity" a structural description (kind of a generalization of a
type code) which is manipulable. Such a description would probably take the

form of a tree,
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4 GENERATION OF MACHINE CODE

4.0 General Discussion

Let us recapitulate our assumptions about "what has happened" and
"where we are" when we consider the generation of the output coding. The
source program has been parsed and the parse "interpreted" into a series of
pseudo-instructions. These pseudo-instructions have then been amended and
extended until they represent the sequence cf computations to be performed
and are consistent with respect to operand types and the like.

The problem of generating (good) machine code can be thought of as a
three s:age process. First, the pseudo-code is analyzed in order to determine
domains of invariance for each of the variables in the program. Given this,
the pseudo-code can be put in some canonical form (e.g., commute all commu-
tative operands to a standard order, and the like), sub-computations which are
identical can be eliminated, and sub-computations which are invariant in a
"loop" can be removed to the outside of the loop. Then, the resulting pseudo-
code can be analyzed and the various members of classes of special registers
can be allocated to certain variables or sub-computations over various "regions"”
of the code. Finally, the machine code can be generated and "handed on" to
whatever processor is to dispose of it (e.g., formation of relocatable binary
(or decimal, etc.) absolute binary, symbolic for future assembly, and so on).

Few, if any, current compilers have all these facilities for the generation
of coding; however, if highly optimal code is desired, such facilities must be
available. Of course if a compiler is properly built, it should be possible to
bypass any of these "optimization" sections if a "quick and dirty”" complilation
(for debug purposes, for example) is desired.

4,1 Analysis of Pseudo-Code

The first step in generating highly efficient machine code is to perform an
analysis of the flow structure and, in particular, the domains over which the

* Again we emphasize that this much has not necessarily been done -- e.3.,
the type consistency may not be guaranteed; one must tailor any compiler to the
particular language-machine-environment triple.
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‘various quantities manipulated by the program are invariant. Until this infor-

mation is available it is impossible to do very much toward eliminating common
computations, removing invariant computations from loops, allocating special

registers, and so on.

The only completely satisfactory way to carry out this analysis is to
develop, for each variable (and hence each sub-computation) a complete picture
of those areas of the program over which the variable may possibly have different
values. A complete knowledge of the flow structure of the program is required
for this, however. if the complete analysis of the flow structure is considered
too expensive then a much simpler technique is to consider the "flow blocks" in
a program;.that. is., those computation sequences into which control flows only at
the "top" and which can transfer control only at the "bottom". If one makes no
assumptions about a variable outside a flow block and simply divides the flow
block into its domains of invariance for each variable, then common sub-
computations, invariant computations, and the like can still be handled only on
this more "local"” basis. This latter technique is extremely "cheap" in terms
ot both the amount of code required to collect the information as well as the
compile time required to carry it out. The Warshall-Shapiro paper in the
appendix alludes to a specific technique of this type actually implemented in a
conipiler and the bibliography there will lead on to the details of such a scheme.

It should be remarked here that if one is doing a thorough analysis then
the notion of "do loop" or "for loop" should be handled in the same manner as if
the programmer had written out the loop control instructions. That'is, it should
be the data resulting from a complete analysis which controls the optimization
decisions, not the fact that a certain area has been designated a loop with loop
variable "I" by the programmer. Indeed it may turn out that the item which is
really "controlling” the loop is 10*I orI+ 6 or Z*I + 5. etc., this information
will be developed from a complete analysis.
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4,2 Invariant Computations and Common Sub-Expressions

Given the analysis resulting in the invariance domains for the variables
of the procgram we can then re-order the program to eliniinate computations
appearing in a "loop" context which do not depend on the loop variables and
eliminate computations which are common, performing them only once. First,
however, if certain pseudo-instructions have commutative oparands (and the
source language or local conventions allow re-ordering the computations with-
in an expression) they should be "flipped" into some canonical order so that
comparisons for common computations and the like can be made more easily.

Consider the program:

I:=2; A(1):= 1;
HENRY: A(l):=I;
for J:=1 step 1 until 10
begin  B()): = A(I+1);
C():= DO) + A(+1) end
I=1+];
if  I<50 to HENRY else STOP

Let us suppose that the representation in pseudo-code is the following:



Line Operation Arguments

1 STORE I 2 (bt
LOCATE BASE(A) 1

7 STORE @ 1

10 LABEL HENRY

12 LOCATE BASEQ) I

15 STORE 2 I

18 STORE ) 1

21 LABEL .1

23 LOCATE BASE(B) ]

26 FIELD @d FIRST(B) NO(B)

30 PLUS I 1

33 LOCATE BASEQ) (0

36 STORE ¢o &k) 3

39 LOCATE BASE(C) ] -

42 FIELD FIRST(C) NO(C) 3

46 LOCATE BASE(D) ] =

49 FIELD @e FIRST(D) NO(D)

53 PLUS I 1 dep

56 LOCATE BASEQA) &3

59 PLUS @ 6®

62 STORE 42) )

65 PLUS J 1

68 STORE ] €5

71 LESS ] 10 .1 .2

76 LABEL .2

78 PLUS I 1

81 - STORE I

84 LESS I 50 HENRY .3

89 LABEL .3

91 STOP
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We are assuming here that the variables B, C, D are packed into some
(bit) field of a word.

We might depict the result of analyzing the invariance domains as follows:

Value
Line Changed Computation
1 I 2
2 A1) I
3 — ¢
4 AN I
5 sy ©
6 J 1; J+1
7 B() A(I+1)
8 c() D(J) + A(I+1)
3 1258
10 L___I ]+ ]

We note, for example, that the area enclosed by steps 5-~9 does not
epend upon I or A( ), etc.

Let us suppose that:

BASE(R) =

BASE(B) = BASE(C) = BASE(D) = 8
FIRST(B) =1 NO(B) = 6
FIRST(C) =7 NO(C) = 12
FIRST(D) =19 NO(D) = 12

Then the common computations are lines
23, 39, 46

30, 53, 78
33, 56



o

The invariant computations are:

Lines Move to

30,33 Between 18 and 21
53, 56

78, 81

The re-ordering of computations and el!mination of common computations
could result in the following:
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Line

Thread

10
15

18
81
36

62

68

71
76
84

21
89
91

e e

4

Operation

STORE
LOCATE
STORE
LABEL
LOCATE
STORE
STORE
LABEL
LOCATE
FIELD
PLUS
LOCATE
STORE

FIELD

FIELD

PLUS
STORE
PLUS
STORE
LESS
LABEL

STORE
LESS
LABEL
STOP

Arguments

s

6

12

12

8 2
HENRY

.3

2



The "thread" gives the new sequencing of the computation; computations
which are common are marked with a *,

The interpretation is given by the following:

Step Line Comiputation
1 | STOREI 2
2 7 STORE [LOCATE ' 1] 1
3 10 LABEL HENRY
4 15 STORE [LOCATE a I] 1
5 18 STORE J 1
6 81 CIE PLUS I 1
STORE I C1
21 LABEL .l
36 CZE LOCATE 8 j
C3E LOCATE « C1

STORE [FIELD C, 1 6] C,

9 62 STORE [FIELD C,7 12] [PLUS [ FIELD C,
19 12] G,]

10 68 STORE J [PLUS J L]

11 71 LESS J 10 .1 .2

12 76 LABEL .2

13 84 LESS I 50 HENRY .3

14 89 LABEL .3

15 91 STOP

The computations C1 = ,.. are read "compute the quantity and park it
somewhere as the itl’ common computation to be used later".

It should be noted that the reordering of the computation (in terms of
common sub-expression computations) makes the generation of coding for a
machine with a stack more difficult in that to "park" common computations in
the stack brings up a rather messy stack accounting problem during code se-
lection (especially if the stack is "finite").
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4.3 Special Register Allocation

Given the threaded computation sequence as above there remains one
problem before the generation of final machine code can be performed. If the
computer for which code is to be generated has index registers, base address
registers, a collection of accumulators, limit + gisters, multiple instruction
registers, or the like it is necessary to determine what quantities are to reside
in each of these registers at what times.

One scheme for performing this "reservation” of registers for various
quantities is roughly the following: We associate with each argument of each
pseudo-instruction information indicating the "affinity" of that argument for
certain registers*. For example, the first argument of a LOCATE has an affinity
for a "base address" register and the second argument has an affinity for an
"index" register.

Note that we are not assuming that variables are necessarily the objects
allocated to registers; rather any computation which can be usefully kept in a
special register should be considered (especially common computations).

Given these "affinities" and the computation sequence it is reasonably
straight forward to apply an algorithm which computes the "cost" of keeping
and not keeping these quantities in special registers over some convenient
chunk** of the program. Given these cost figures an allocation can then be
made resuiting in a list of quantities to be loaded into and maintained in cer-
tain registers over certain regions of computation. (Presumably certain members
of each class of special registers will not have allocated quantities in them but
will be available for "junk" usage by the code selection machinery.)

* Note: It should be clear that we are leaving out the "one of a kind" arithmetic
registers (accumulator, quotient, etc.); this allocation is more properly part of
the detailed code selection.

** Determining what is a "convenient chunk" is a decidedly non-trivial problem
which can be solved only by looking at the connectivity amongst the various flow
blocks of a computation. Taking blocks (in the ALGOL sense), loops, and the like

as such chunks often yields a reasonably good approximation.
-4
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4.4 Code Generation

Given the threaded computation sequence and the register allocation infor-
mation we are finally in the position to generate coding.

It is convenient to thinli of an "extension" to the descriptors composing
the pseudo-code to where we can park detailed information concerning the status
of the argument or computation represented by the descriptor: what register (s)
contain the item; whether the sign is correct; and so on. The LINK field was
added to the descriptors for this purpose (see section 3.3,1). Further, it is

convenient to have a "track" table with an entry for each special register in which

is indicated what, if any, computation is currently residing in that register.

Basically, then, one simply turns his attention to a required computation
(following the thread) and (recursively) to the sub-computations required for that

computation, etc. The specifics of "how" to generate code are, of course, highly

dependent upon the particular hardware for which code is being generated. We
will thus not pursue further "how" to generate code but merely make pseudo-

operation and its' second argument is tagged as (satisfies the predicate) as being

currently in the accumulator.

In the event that the number of patterns required to discriminate the various

interesting possibilities grows too large, it is convenient to allow "questions"
(i.e., if statements) in the actions (as was implied in section 3.3.1).. A few
remarks relating this to the machinery we discussed above are appropriate:

1. The actual generation of code once it has been determined what
code is to be generated can be handled by the EMIT ( ) mechanism introduced

in section 3.3.

2. The pattern-action idea is applicable here also; indeed the pro-
blem is to, starting with a desired computation, to PROCESS ( ) or CONSIDER (
its' operands (recursively walking down the computation tree). At any point one
is interested in discriminating the pseudo-code via patterns like

PLUS X accumulator
PLUS index constant
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and so on. By adding to the possible elements of a pattern a "predicate" mech-
anism such discriminations are easily made. Thus, the pattern

PLUS X accumulator

is interpreted: Our attention is on a PLUS whose second argument is in the
accumulator and whose first argument may be anywhere,

2-99
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5. CONTACTING THE ENVIRONMENT

5.0. General Discussion

There are three senses in which we must discuss contacting the environ-

ment:

1. The compiler contacting its environment to procure library items
(descriptions, macros, and the like).

2. The compiler attending to arranging that the output for coding will
contact its environment (appropriate calling sequence structuring,
indication of library subroutine usage, need for peripheral equip-
ment, and so on).

3. The compiler "handing over" its' resultant output to the environ-
ment (as symbolic coding, relocatable binary, and so on).

We would like to distinguish three basically different kinds of environ-
ments. The most simple would be that of a "barefoot" computer.

The next might be a computer with a conventional (batch processing)
monitor. Finally, we might have a computer with a full scale modern pro-
gramming system.

Finally, we would like to discuss three types of linkage which must be
effected by a compiler and/or environment. These are:

1. Linkage of programs to other programs (subroutines, called pro-
cedures, "system" routines and so or).

2. Linkage of programs to data.

3. Linkage of programs to hardware (tape drives, disc files, and
so on).
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We will not discuss these topics in much detail here. The Cheatham-
Leonard paper and the Leonard-Goodroe paper in the appendix pretty well
describe our attitude in these matters. In addition to these papers we will

consider in detail only the problem of program to data linkage in th3se notes,
this in section §5.1.

b



S.1 Program to Data Linkage

5.1.0 General Discussion

In most programming languages, the data which a program accesses is
thought of as "part of" the program -~ it is defined (structurally) as part of
the program definition and is input or output as part of the program 2xecution.
The idea of "common" is introduced to allow two or more programs, compiled
separately, to access the same information, or one program to reuse storage
for new data it requires. Further, in most programming languages, the struc-
tures which data can assume are usually restricted to regular arrays and the
smallest unit of data is the machine word.

This state of affairs is woefully inadequate for a large number of
applications. For example:

1. Inany program in which more than a handful of programmers
are involved (for example command and control systems or
management control systems or programming systems) the use
of "common" areas for communication among programmers is
completely inadequate unless there are more managers than
there are programmers.

2. In most "system" programming it is necessary for reasons of
space restrictions to be able to "pack" several items in one
computer word; in many command and control systems data
packed into words is "forced" into the system by devices such
as radars and other sensors.

3. In many applications (information retrieval, "syste:as" pro-
gramming) it is useful to be able to deal with data structures
more complex than simple arrays (trees, lists, and the like,
for example).

There have developed a couple of schools of thought on the handling of
"global" data structures. The first of these is the COMPOOL facility first
introduced (to the best of my knowledge) in the Lincoln Compiler in 1953 by
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the Lincoln Laboratories. The various JOVIAL "systems" (as distinct from the
JOVIAL language) also have a COMPOOL facility. The basic idea here is that
all data structures (and, for that matter, programs) which are common to
several programs are defined as part of 8 COMmunications POOL and a des-
cription of this COMPOOL is automatically made available to the compiler.
The CL-I, CL-II, and BNX Programming Systems have facilities for filing data
structure descriptions as well as data set instances and allow a declaration,
in programs, to the effect that certain (named) data structures are to be refer-
enced by the program. At one extreme (only one big data structure) this is
equivalent to COMPOOL; however, generally a given program references only
a few of the totality of data structures, so that one need declare only those
actually referenced. Further, with these systems the collecting together of
code and data for test or simulation runs is usually easier in that only these
structures referenced need be available in memory.
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5.1.1 Data Descriptions

5.1.1.0 General Discussion

By a data description we mean a body of information which includes

one or more of the following:

1. Information allowing a compiler to generate coding to
access an element of the data set.

2. Information allowing a (general purpose) data input/output
package to input or output a set of values for the data set.

3. Information allowing a "debugging monitor" to (request a
compiler to, perhaps) check values of data elements for
validity (fall within some numerical range, have some par-
ticular relationship to some other data element(s), and so on).

4. Narrative text allowing a user (through some retrieval mech-
anism) to obtain a (English) description of the function, usage,
and the like of the data set and/or specific elements of the

2-104

data set.

We should remark that, from the point of view of a compiler, a data
description is nothing more-or-less than a junior symbol table, literal table,
and macro description table, all of which get "plugged" into the compiler
when we are to reference any elements of the data set. In order to allow the
kinds of manipulation outlines in points 2-4 above we require a bit more
linkage plus a table of "narrative text",

In section 5.1.1.1 we discuss the elements of a data set and the body -
of information required concerning them in order to satisfy the above needs;
in scction 5.1.1.2 we consider the combination of elements into structures,
these into larger structures, and so on.
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5.1.1.1 Data Elements

A data element, in the sense in which we are currently employing the
term, is an item which may be referenced (in an appropriate representation)
via a statement in a programming language. A data element has:

l1. A name, and a "form" of reference.

For example, a vector compone.t named V and referenced by
"V (<ae>)"; or a vector component named W referenced by the
form "W", and so on).

2. Atype.

For example, integer, floating, fixed with four bits right of
the binary point, string, and so on).

3. A mapping function¥*.
For example,
FIELD(LOCATE (base (V), index*100+4), 1, 6)

if A(index) = 0 then LOCATE (base (V), index)
else LOCATE (base (V), L (index));

and so on.
4. Constraints
For example,

0-<V(I) < I**2 + 1
-50.6 = V(I) = 3.4567

and so on.

* It may be that there are several forms of r>ference and, further, that the
mapping function depends upon the form of reference and the context. For
example, let S name a stack. Then S=5, A=S, S(1)=5, A=S(2) might all
be allowable references with the first two involving push-down and pop-up
and the last two considering the stack like a vector.

...’L
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Units of representatio:
For example,

MILES PER HOUR
FEET PER SECOND PER SECOND
DYNES PER FORTNIGHT

and so on.

Miscellaneous
For example,

ROUND before truncating

SIGN to be carried on right (left, not at all)
ACCESSED only by people named SMITH
CONSTANT, with value 3.14159265. . . . .
PICTURE: SDDDPDD, eic.

100
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5...1.2 Data Structures
1. Atomic elements

2. Collections by forming:
arrays
n-tuples
ordered sets

3. Apply (2) recursively
4, External and Internal Representations

Card Formats - n-tuple plus indices plus
identification appearing
together on card.
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THE TGS-II TRANSLATOR GENERATOR SYSTEM

T. E. Cheatham, Jr.
Computer Associates, Inc.
Wakefield, .Massachusetts (USA)

Translator Generator System II, TGS~II, represents our "current
position” in a project which has been underway for several years and which
will probably c~ntinue for several more. The overall goals of this work have
been to develop a general purpose compiling system which

a) is efficient as a compiler,

b) allows the generation of efficient machine code,

c) accommodates a variety of programming languages,

d) accommodates a varicty of object computers (or other interpreters),

e) allows the rapid construction and documentation of a compiler
for any specific language-machine pair, and

f) allows efficient implementation and documentation of modifications
or extensions to languages and/or to the kind of code generated.

Over the past several years there have been a number ot people who
have contributed to the body of ideas and experience which have resulted
in TGS-II; the bibliography lists several of the papers which have resulted
(1, 3, 4,5, 6,9, 10, 11] from this work. We cannot conceivably even
sketch the history or current status of this project in this paper. Rather, we
will try to provide the flavor of the main body of our current ideas, leaving
the details to future publications.

It is an accepted fact that the construction of a compiler for a reason-
ably simple programming language to produce straightforward code for a
reasonable computer is not a technically difficult task at the present time.
When, however, one adds sufficient facilities to a language (for example:
scaled fixed point computations; data sets with more structural variability
than number of dimensions, or whose elements may violate word boundaries;

a
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context dependent interpretation of symbols; and 5o on) or when one is
producing code which will be run in a sophisticated environment (having,
for example: compleiely dynamic allocation and re-allocation of code,
data, or other resources; COMPOOL or other global declaration facilities;
real-time requirements; and the like) or when one demands highly efficient
object code, the problem may become technically difficult rather quickly.
There are today a host of "compiler generator" systems to which one des-
cribes the syntax of a language with, perhaps, fragments of coding and
other semantics attached to various syntactic types, and which will then
accept source strings in the language described and produce symbolic or
binary machine coding [2, 4, 7, 8, 10, 11]. TGS-II is not such a system;
rather, TGS-II is an environment in which the processing required of a par-
ticular compiler can be specified. It is our hope that the mechanisms avail-
able in TGS~II provide the compiler writer a framework which allows him to

* concentrate upon the strategy of compilation rather than the details of some
particular host computer. We will try to suggest some of the mechanisms
available in TGS~II in the paragraphs below.

TGS-II consists of the TRANDIR language and the TRANGEN system,
essentially an interpreter which executes programs written in the TRANDIR
language ~- programs which describe a specific translation process.

The data which is processed by TGS-II consists of values and symbol
descriptors. A symbol descriptor is a sextuple composed of three pairs of
values: a pair, table code and line within the table in which the attributes
of the symbol described are stored; a pair of control bits for marking inter-
esting subsequences; and, a pair of fields whose specific function varies
and might be forward or backward links, arithmetic type code, syntactic
type code, number of users, allocated address and so on. The value pro-
cessed by TGS-II may be literals; variables which are organized as scalars,
arrays, or stacks; elements of tables; and fields of symbol descriptors. The
number and format of the tables used in any TRANDIR program is largely up
to the user; however, there are built into the system such tables as character
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table, symbol table, literal table, terminal symbol table, operation code
table, implicit label table, the table containing the sequences of symbol
descriptors being processed, and a few others. Let us think of the trans-
lation process as takiny place in five phases (not "passes" in the con-
ventional sense), namely: lexical analysis, syntactic analysis or parsing,
interpretation of the parse, sequencing and optimization of the computation,
and code selection.

The material being processed in TGS-II is represented, at any point
in the processing, as a sequence of symbol descriptors. Thus, the steps
in a translation might be viewed as follows:

source sequence of character descriptors

}
LEXICAL ANALYSIS

}

sequence of identifier, literal, and terminal descriptors

i
SYNTACTIC ANALYSIS

}

sequence of phrase descriptors

|
INTERPRETATION OF PARSE

}

sequence of pseudo~code descriptors

}
OPTIMIZATION ANALYSIS

}

sequence of linked pseudo-code descriptors

}
CODE SELECTION

}

sequence of machine code descriptors




The manipulations performed during each of these phases is des-
cribed in the one language, TRANDIR. Switching among these phases is
thus completely straightforward, allowing one to produce a one-pass,
two-pass, etc. ¢ mpiler depending only on size considerations and amount
of analysis for optimization desired.

The TRANDIR language may be thought of as a conventional algebraic
language with imperatives for the normal arithmetic, relational and data
moving operations for manipulating values and symbol descriptors to which
have been added quite powerful declarative and "pattern testing" facilities.
A pattern is a list of predicates each of which is applied to a symbol des-
criptor. The definition of the predicates, layout of various tables, and so
on are included in the declarations which form a part of a TRANDIR program.
Typical patterns would be

.+« ARITH ,EXPR ADD.OPERATOR TERM / /
. .. IDENTIFIER L
/ / PLUS ACCUMULATOR MEMORY ...
/ / MINUS MEMORY INDEXED.MEMORY ...
/ / TIMES  LITERAL COMPUTATION ...

The double slash and ellipsis delimitors (plus others) indicate the
particular sequence of several possible sequences currently being "pointed
to" to which the pattern is to be applied. Thus, the TRANDIR programmer
may utilize an exhaustive list of patterns to perform an analysis or may re-
vert to the ALGOL-like if-then-else statements or he may choose to mix

the two.

TGS-II is presently operational on the IBM 7094-II computer and will
soon be available in the CDC-1604, UNIVAC M-490, and GE-635 computers.
At the present time TGS-II has been used in the construction of translators
for the TRANDIR language, a dialect of NPL, and a dialect of ALGOL. Pre-
sently, translators for Oak Ridge ALGOL, FORTRAN-IV, and a data des-
cription language are being developed.
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In spite of the enthusiastic claims to the contrary, we feel that
there is no such thing as an "instant compiler", unless the language
and, particularly, the resulting code are simplified to the point of being

However, we have found that with TGS-~II the cost of

uninteresting.
construction and documentation of translators can be cut substantially

(perhaps by a factor of two or more) and the cost of subsequent modifi-

cation and extension is cut even further.
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ABSTRACT

This paper defines a programming language system called AMBIT
(Algebraic Manipulation By Identity Translation). The AMBIT
language is intended for the precise description of the operations
of mathematics in general, and programs in the languages are
suitable for efficient compilation and execution by an automatic
computer. The language is distinguished by its adherence to an
important portion of the conventional notation of algebra, the
"identity". AMBIT uses the "identity" to express in a single
linguistic structure an arbitrarily complex sequence of elementary
symbol~manipulation operations, just as FORTRAN and ALGOL use
the "formula" to express in a single linguistic structure an arbi-~
trarily complex sequence of arithmetic operations. Thus AMBIT
attempts to serve algebra as FORTRAN and ALGOL serve arithmetic.
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1. INTRODUCTION. 1

The AMBIT programming language arose from the decision to base the de-
sign of a programming language for mathematical symbol manipulation on the
conventional notation for the identity. Given this objective, the design of a
suitable programming language involved three major tasks: the definition of a
suitable representation for the data on which a program operates, the definition
of an algorithmic interpretation of the identity, and the definition of a suitable
program logic to control the execution of the identities. These three areas of
design are closely related, and the design of the programming language required
extensive experimentation with the various options available. This paper is a
report of this experimentation; it consists primarily of the definition of the pro-
gramming system which was the result of the experimentation, but also includes,
where practical, a discussion of the criteria which dictated the final design.

The AMBIT system is designed for implementation on a computer and is
intended for the automatic performance of mathematical algorithms; but the com-
puter-oriented aspect of AMBIT has been suppressed to an unusual-degree. With
the exception of a brief section on the computer implementation of AMBIT, this
paper will discuss AMBIT without reference to automatic computers. The AMBIT
programming language will be regarded as a language for the communication of
mathematical algorithms between human mathematicians, and the AMBIT system
will be regarded as a system for the execution of mathematical aigorithms by a
human mathematician. The manual execution of an AMBIT program is a practical
undertaking for many non-trivial examples; it is practical because a human
mathematician regards the application of an identity to mathematical data as a
simple and natural action, even though the action performed may, in fact, con-
sist of a sequence of many elementary operations of symbol manipulation.

The area of application of the AMBIT system is not limited to elementary
algebra; and it is most certainly not limited to such simple algorithms as the
"multiplying-out" of an equation which has been chosen as the example for dis-
cussion in this paper. The design of AMBIT was based largely on the

. a



experimental programming of a selected set of algorithms. These algorithms
were programmed and re-programmed as changes were made in the design of
the language, were manually executed for typical data, and were used as a
practical test of the facilities included in the language. A brief mention of
the programs involved in these experiments will suggest the scope of AMBIT.
Programs drawn from elementary algebra include programs for the "clearing

of fractions" from an equation, the "multiplying-out" of an equation, the sub-
stitution of an expression for a variable in an equation, and the canonical
ordering of factors and terms of an equation (as a preliminary to simplification
of the equation). Programs drawn from other areas of classical mathematics
include a program for formal differentiation, programs for the union and inter-
section of sets and a program which tests a proposition of the predicate
calculus for theoremhood. Programs for general symbol manipulation include
three programs for syntactic analysis (each embodying a different technique)
and a program for non-trivial tree manipulation.
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The AMBIT programming language resembles certain existing programming
languages for symbol manipulation in varying degree, to the extent that these
languages have: approached the utilization of an algorithmic interpretation of
the identity {1, 2, 3, 4]. The AMBIT language is distinguished from these lan-
guages by the fact that AMBIT is entirely and explicitly based on a notation for
the identity and uses the identity alone to specify virtually every test and
modification of the data on which an AMBIT program operates.

l1.1. An Example from Conventional Algebra.

Consider, first, an example of algebraic symbol manipulation as it
might be performed by a human mathematician using conventional methods and
conventional notation. Suppose the mathematician is given the equation

(a+2.5)x (Y3-m)= 1 ...Eq. (1)

and is asked to produce an algebraically equivalent equation which is
"multiplied-out". The mathematician will quickly produce a result such as
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3

(axy +2.5xy3)-(axm+2.5xm)=1 ...Eq.(2)

Suppose, however, that this result is challenged; that is, the mathematician
is asked to "prove" that eq. (2) is algebraically equivalent to eq. (1). Then
the mathematician might write down the identities

Ax(B+C) = AxBzAxC .o «Eq.(3)
(A+B)xC = AxCzxBxC .. .Eq.(4)
and then write the following derivation of eq. (2) from eq. (1):
1. (x +2.5) x (y3- m) =1 Given
2,  (a+2.5) x yo- (@+2.5) xm =1 Line 1 and Eq. (3)
3. (axy3+2.5xy3) - (@a+2.8) xm =1 Line 2 and Eq.(4) "
4. (axy3+2.5xy3) - (axm+2,5xm) = 1 Line 3 and Eq.(4)

This derivation is, strictly speaking, merely the outline of a formal proof, a
proof which would make direct use of the set of axioms for the algebra involved.
However, the derivation does make clear the assumptions made (the identities)
and the steps performed (the successive lines of the derivation) in obtaining

eq. (2) from eq. (1).

The derivation just given suggests an algorithm for the "multiply-out”
operation. Let the "forward application” of an identity be an application in
which the symbol '=' {s interpreted as "may be replaced by" rather than "may
replace”. Then an algorithm for "multiplying-out" a given equation may be
defined as follows:

1, Accept the given equation as the "current equation".

2. Attempt to modify the current equation by a forward application
cf any one of the relevant identities (that is, eqs. 3 and 4) to
any expression in the current equation. If the attempt succeeds,
then repeat this step. Otherwise, continue to Stz2p 3.

3. Accept the current equation as the desired result.

The simplicity of the algorithm just given arises from the fact that the
"relevant identities" referred to in Step 2 embody in themselves an important
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part of the strategy for the multiply-out procedure. That is, any application of
any relevant identity brings the current equation closer to the desired result;
and the failure of all relevant identities to apply to the current equation is a
sufficient condition for the completion of the procedure. Thus an identity not
only specifies a change in the current equation, but also controls, by its suc-
cess or failure, the logical flow of the algorithm.

1.2. The AMBIT System.

In order to define the AMBIT programming language, it will be useful to
postulate an AMBIT "system" which contains the AMBIT programming language
as one of its parts. The AMBIT system consists of three parts, as follows:

A data language for the formal representation of citations from algebra.
The data language is a set of symbol sequences, each of which is
called a "data string".

2. A programming language for the formal representation of algorithms for
the manipulation of citations from algebra. The programming language
is a set of symbol sequences, each of which is called an "AMBIT pro-
gram" .

3. A program executer to modify a given data string under the guidance of a
given AMBIT program. The program executer (which may be a human
mathematician or an automatic computer) is constrained to follow certain
well-defined "execution rules".

The central feature of the AMBIT programming language is the "replace-
ment rule", which corresponds to the "identity" of conventional mathematical
notation. The replacement rule is defined so that, on the one hand, it closely
resembles in appearance and function the conventional identity and, on the
other hand, it has a sufficiently precise and simple interpretation to be effi-
ciently interpreted by an automatic computer. The replacement rule is the
principal device by which the modification of a given citation from algebra is
specified. The remainder of the AMBIT programming language is designed to
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supply a suitable "algorithmic environment" for replacement rules. This algo-
rithmic environment permits the programmer to control the order in which
replacement rules are applied to a given citation fiom algebra, and to specify
unambiguously that portion of the citation to which a given replacement rule is

to be applied.

An "AMBIT programiner" is a programmer wno makes use of the AMBIT
system for the automatic performance of algebraic symbol .manipulatlon.
Initially, the AMBIT programmer has an informal statement of the operation
which is to be performed (such as the phrase, "multiply-out the given equation"),
a collection of identities relevant to the operation (such as Eqs. (3) and (4),
above), and a citation from aigebra to which this operation is to be applied (such
as Eq. (1), above). The use of the AMBIT system by the programmer then proceeds
as follows:

i. The programmer writes an AMBIT program which incorporates the given
identities into a context in which they have a formally defined meaning
and in which the "when and where" of their application to the given
citation is correctly specified.

Z. The programmer makes minor changes necessary to convert the given
citation into an AMBIT data string.

3. The programmer submits the AMBIT program and the AMBIT data string
to an AMBIT program executer.

4, The AMBIT program executer modifies the data string under the guidance
of the AMBIT program and returns the program: and the modified data
string to the programmer.

3. The programmer makes the minor changes necessary to convert the
modified data string into a conventional citation from algebra and accepts
this citation as his result,

The example considered in this paper will necessarily be a simple one. In gen-
eral, however, the data string is not restricted to a single equation, but rather
may be any collection ot mathematical information. Similarly, the AMBIT pro-
gram is not restricted to a simple operation, but may be a complex of simple
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operations, each of which is applied to an appropriate part of the data string at
an appropriate time.,

Section 2 of this paper will examine the execution of an example AMBIT
program in detail. The AMBIT program used in the example will be a formally
correct program, but the discussion of the program is intended to invoke an in-
tuitive understanding of the program rather than an understanding of the detailed
mechanics of the AMBIT system. Section 3 is a complete formal definition of
the AMBIT system. Section 4 is a discussion of the motivation behind the im-
portant aspects of the formal definition of the AMBIT system, and touches very
briefly upon the intended computer implementation of the AMBIT system.
Section 5 concludes the paper with a discussion of the proposed extensions of
the system defined in this paper.

2. AN EXAMPLE OF AMBIT,
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The AMBIT system is a formally defined and computer-implementable
system; but the language used in the AMBIT system resembles the familiar lan-
guage of conventional algebra. It is therefore appropriate to begin the dis-
cussion of the AMBIT system with an informal discussion of the execution of an
example AMBIT program and to defer the formal definition of the AMBIT system
to a later section of this paper. Any conflict between the informal discussion
given here and the formal definition of AMBIT given later should, of course, be
resolved in favor of the latter. The AMBIT program discussed here performs a
very simple task ("multiplying-out" an equation) and is, in fact, an unimagina-
tive programming of that task. The program is appropriate for a detailed
introductory study, but it is not a good example of the power of the AMBIT system.

2.1. The Data String.

In this example of the execution of an AMBIT program, the given data
string will be

EQ1lA(((alpha+2.5)x ((y}3) -m))=1)
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and the result data string will be

EQ2A((((alphax(y}3))+(2.5x(y13)))
-((alphaxm)+ (2.5xm))) = 1)

These two data strings are eqs. (1) and (2) of the Introduction, expressed in a
notation acceptable to the AMBIT system. The conversion of a conventional
mathematical citation into an AMBIT data string consists of three steps, as
follows:

a. Certain symbols (such as 'a') and certain arrangements of symbols (such
as 'y3') which are not available in the AMBIT system are replaced by
suitable equivalents (such as ‘alpha’ and 'y{3').

b. Equation labels (such as '...Eq. (1)' and '...Eq. (2)') and similar unique
identifiers are expressed as AMBIT "pointers" (such as 'EQ1A' and 'EQ2A')
and are moved to the beginning of the symbol sequences they label.

G, Mathematical citations are fully parenthesized.

Step (a) is a familiar requirement of computer-implementable systems. Step (b)

is a small matter. Step (c), however, is an unreasonable demand to make on the
user of the AMBIT system. The full parenthesization of mathematical citations is
essential to the efficient processing of the citations by the AMBIT system; but
sub-programs can be written in the AMBIT programming language for the insertion
of (and the deletion of) redundant parentheses. The discussion of such sub-programs
exceeds the limited scope of the example considered here, and therefore it has
been assumed that the data string is input (and output) in fully parenthesized form.
In actual practice, the AMBIT programmer would have access to standard sub-
programs (or sub-routines), written in AMBIT, for the parenthesization of input
data and the de-parenthesization of output data. Thus an AMBIT program would
begin by fully parenthesizing thie input data string, would then perform the speci-
fied mathematical manipulations, and would conclude by removing redundant
parentheses from the result data strlngi .

The AMBIT system includes a large vocabulary of formally defined
English words, called "data types", which are used to denote those sub-sequences
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which frequently occur in a data string which is a citation from algebra. For the
example considered here, the following informal definition of five of these data
types will suffice:

a.

pointer. This data type denotes an identifier followed by ‘'A'. (An
identifier is a letter followed by a sequence of letters and digits.) The
given data string above contains one pointer, namely 'EQ1A',

element. This data type denotes a number, a variable, an algebraic
operator, or a pointer. There are 12 elements in the given data string
above, namely 'EQ1A’', 'alpha’, '+', '2.5', 'x', 'y', 't', '3', '=', 'm',
'=', and '1',

phrase. This data type denotes an element or a parenthesized symbol
sequence. There are 17 phrases in the given data string, namely the 12
elements just listed and '(alpha+2.5)', '(y13)', '((y}{3)-m)',
'((@alpha+2.5)x((yt3)-m))', and ‘(((alpha+2.5)x((yt3)-m)) = 1)'.

segment. This data type denotes an element or a single parenthesis.
The given data string consists of 22 segments, namely, 'EQ14A*, '(*, ('
‘alpha‘', '+', etc.

sign. This data type denotes the symbol '+' or '-'.
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2.2 The Program.

In this example of the execution of an AMBIT program, the program
executed will be

phrase dummy A, B, C, Q;

o

®
ie..

5

segment dummy seg;

sign dummy sign;

EQIA Q — EQ2A Q;

EQ2A Q — EQ2A pA Q:

if pA Ax(B sign C) — (AxB) sign (AxC)
or pA (A sign B)xC — (AxC)sign (BxC)
then go to SCAN;

z
5

® N OB W N
L ]
(7]
Q
>
Z

9. pA seg — seg pA;

10. if EQ2A Q pA — EQ2A Q
ids then go to EXIT

12. else go to MULT ;

13. EXIT: end

The line numbers which appear on the left are not a part of the program; they
have been inserted to facilitate this discussion of the program. The example
above is in all other respects a formally correct AMBIT program.

The program is designed to "multiply-out" a given equation in pre-
cisely the senge that this operation was defined in the Introduction. The two
identities given in the Introduction (eqs. 3 and 4) have been incorporated in
the program (Lines 6 and 7). These identities are embedded in a context which
partially defines their interpretation (Lines 1 - 3) and which controls their
application to the data string (Lines 4 - 5 and 8 - 13). The given equation
must appear in the data string as a fully parenthesized symbol sequence which
is preceded by the pointer 'EQlA'., The data string may consist of much more
than this particular enuation (for example, other equations preceded by other
pointers); but only that portion of the data string which is the equation pre-
ceded by 'EQ1A' will be affected by the execution of the program.



Lines 1 - 3 of the example program are the "declarative part" of the pro-
gram. The declarative part does not cause the program executer (PE) to take any
action on the data string; rather, it provides the PE with information which is
necessary for the correct interpretation of the "imperative part", Lines 4 - 13,
of the program. Line 1 informs the PE that the identifiers 'A', 'B', 'C', and Q'
are "phrase dummy-variables", and that any appearance of any one of these
identifiers in the imperative part of the program is not to be interpreted literally
but rather as a designation for an arbitrary phrase in the data string. Similarly,
Lines 2 and 3 inform the PE that 'seg' and 'sign' are designations for an arbitrary
segment and an arbitrary sign, respectively. (The words "phrase", "segment",
and "sign" are used here in the special sense defined in Sec. (2.1), above.)

The imperative part of the program consists primarily of "replacement
rules”. A replacement rule consists of two "string descriptions" separated by
the symbol '—', The string description to the left of '—' is the "citation", and
that to the right is the "replacement". A replacement rule instructs the PE to
find a sub-sequence of the current data string which is described by the citation
and to replace that sub-sequence by a symbol sequence which is described by the
replacement. For example, the replacement rule on Line 5 of the example pro-
gram is interpreted as follows:

Find a sub-sequence of the current data string which satisfies
the following description: 'EQ24', followed by a symbol se-
quence which is an arbitrary phrase and which is hereby named
'Q'. Replace the symbol sequence just found with a symbol
sequence which satisfies the following description: 'EQ2A°‘,
followed by 'pA', followed by a symbol sequence which is iden-~
{ical to the symbol sequence previously named 'Q"'.

Note that pointers (EQ1A, EQ2A, and pA in this program) are always interpreted
literally in the string description.

The modification of the current data string specified by a replacement
rule may or may not be possible, according as the citation describes a sub-
sequence which currently does or does not exist in the data string. If the modi-
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fication is possible, then the PE performs it and the replacement rule is said to
"succeed"; otherwise, the PE leaves the data string unmodified and the execution
of the replacement x:ule is said to "fail". The failure of a given execution of a
replacement rule is not necessarily a program error; on the contrary, the success
or failure of a replacement rule is f-equently and legitimately used to control the
subsequent course of program execution.

The program executer normally executes the replacement rules in the
order in which they appear in the program; exceptions to this rule occur in two
ways. First, the "control imperatives" (such as 'go to SCAN') have the familiar
effect of interrupting sequential execution and sending the PE to the designated
program label (such as 'SCAN:'), Second, the logical connectives 'if', 'then',
‘else’, ‘or' (and others which are not illustrated in the program) may cause cer-
tain replacement rules to be skipped over. The use of these connectives in
AMBIT is similar to their use in a conventional English imperative sentence;. how-~
ever, certain popular ambiguities of conventional English are formally resclved in
AMBIT. For example, if A and B are two actions, and an agent is told, i con-
ventional English, "Do A or B", the agent may well inquire "Which shall [ try to
do first? And if both A and B are possible, shall I do both? * According to the
conventions of AMBIT, the reply is "Always proceed from left to right. Never do
more than is strictly necessary. In this case, if both A and B are possible, do
A and skip B." The complete interpretation of the program logic of AMBIT is
given in Sec. (3), below.

The strategy of the ex:«.nple program is primitive but convincing. The
equation label (pointer) 'EQ1A' is changed to 'EQ2A' in anticipation of a suc-
cessful outcome (Line 4). The pointer 'pA' is inserted to the left of the equation
(Line 5). The symbol sequence which immediately follows -'pA’ is tested to de-
termine whether or not it begins with a sub-sequence to which either of the
"multiply-out” identities is applicable (Lines 6 and 7). If an identity is appli-
cable, it is applied (causing the multiplying-out of part of the equation) and
'pA' is moved back to the beginning of the equation (Lines 8 and 5). Otherwise,
'pA' {5 advanced to the right one segment in the equation (Line 9) and an end

11




test is made. If 'pA' stands at the right end of the equation, then it is removed
from the equation (Line 10) and exit from the program occurs; otherwise, an
attempt is made to apply the "multiply-out" identities at the new position of
lpA! I

2.3. The Execution of the Program.

An annotated trace of the execution of Program 1 on the example given
data string will follow. Several abbreviations are used to shorten the statement
of the trace. “Line | succeeds, giving" means "the replacement rule on Line {
is attempted and succeeds, giving the following as the current data string:“.
“Line i fails" means "the replacem‘ent rule on Line i is attempted and fails,
leaving the current data string unchanged." "Line i is ignored" means "the re-
placement rule or control imperative on Line { is skipped over in compliance
with the relevant program logic."

2-13R

1. At the beginning of program execution, the data string is
EQ1lA(((alpha+2.5)x((y}3)-m)) = 1)
The PE begins reading the program at Line 1. Lines 1 - 3 cause no modi-
fication of the data string.

2. Line 4 succeeds, giving
EQ2A(((alpha+2.5)x({y}3)-m)) = 1)
. Line 5 succeeds, giving
EQ2A pA(((alpha+2.5)x((y}3)-m)) = 1)
4. Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (for seg = '('),
giving

EQ2A(pA((alpha+2.5)x((y}3)-m)) = 1)
Line 10 fails. Line 11 is ignored. Line 12 sends the PE to Line 6.
S, Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (for seg = '(')
giving
EQ24((pA(alpha+2.5)x((yt3)-m)) = 1)
Line 10 fails. Line 11 is ignored. Line 12 sends the PE to Line 6.

12
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10.

11,

Line 6 succeeds (for A = '(alpha+2.5)', B = '(y}{3)', sign = '-', and
C="'m'), giving
EQ2A((((alpha+2.5)x(yt3))
-((alpha+2.5)xm)) = 1)
Line 7 is ignored. Line 8 sends the PE to Line §S.
Line 5 succeeds, giving
EQ2A pA((((alpha+2.5)x(yt3))
-((alpha+2.5)xm)) = 1)
The following loop is executed three times:
Lines 6 and 7 faji. Line 8 is ignored. Line 9 succeeds (moving 'pA'
one segment to the right). Line 10 fails. Line 11 is ignored. Line
12 sends the PE to Line 6.
After the third execution, the data string is
EQ2A(((pA(alpha+2.5)x(yt3))
-{(alpha+2.5)xm)) = 1)
Line 6 fails. Line 7 succeeds (for A = 'alpha’, sign = '+', B = 2,5,
C ="'(y{3)' ), giving
EQ2A((((alphax(yt3))+(2.5x(yt3)))
-((alpha+2.5)xm)) = 1)
Line 8 sends the PE to Line 5.
Line 5 succeeds ( 'pA' is inserted immediately after 'EQ24A' ). The loop
described in Step 8, above, is executed 25 times (moving 'pA' 25 seq-
ments to the right). After the 25-th execution, the data string is
EQ2A((((alphax(yt3))+(2.5x(yt3)))
-(pA (alpha+2.5)xm)) = 1)
and the PE is about to read Line 6.
Line 6 fails, Line 7 succeeds (for A = 'alpha’, sign = '+', B = '2,5',
and C = 'm' ), giving
EQ24((((alphax(yt3))+(2.5x(yt3)))
-((alphaxm)+(2.5xm)))= 1)
Line 8 sends the PE to Line S.

13
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12. Line 5 succeeds (‘pA' is inserted immediately after 'EQ24A'), The loop
described in Step 8, above, is executed 40 times. After the 40-th exe-
cution, the data string is

EQ2A((((alphax(y}3))+(2.5x(y13)))
-((alphaxm)+(2.5xm})) = 1 pA)
and the PE is about to read Line 6.,

13. Lines 6 and 7 fail. Line 8 is ignored. Line 9 succeeds (moving 'pA' tc
the right of the last parenthesis in the equation). Line 10 succeeds,
giving

EQ2A((((alphax(yt3))+(2.5x(yt 3)))
-((alphaxm)+(2 .5xm))) = 1)
Line 11 sends the PE to the end of the program (Line 13). The data string
is the multiplied-out equivalent of the input data string shown in Step 1
above. The program executer returns the AMBIT program (unchanged) and
the data string (multiplied-out) to the AMBIT programmer and expires.
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3. A FORMAL DEFINITION OF THE AMBIT SYSTEM.

This section will include formal definitions of the three parts of the
AMBIT system: the data language, the programming language, and the prcgram
executer. The definition of the data language (that is, the set of symbol se-
quences each of which is a data string) is given by means of "data-language
formulae" (DF) and "data-language notes" (DN). Similarly, the definition of
the programming language (that is, the set of symbol sequences each of which
is an AMBIT program) is given by means of "programming-language formulae"
(PF) and "programming-language notes" (PN). Finally, the definition of the pro- -
gram executer (that is, the agent which modifies a given data string under the
guidance of a given AMBIT program) is given by means of "execution rules" (ER).

The DF and the PF are "metalinguistic formulae", written in a notation
which is defined in the revised ALGOL 60 report [ 5] and which has been used in
the definition of the syntax of ALGOL 60 and several other programmin; languages.
The DN and the PN are definitions and 1estrictions which are expressed in con-
ventional English; they are essential because a set of metalinguistic formulae

14
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alone is not adequate for the complete definition of either the data language or
the programming language. The ER are written in a notation which closely re-
sembles the "descriptive language for symbol manipulation” introduced by
Floyd in [1].

3.1 The Data Language.

The definition of the data language given by the DF and DN below can
be summarized informally as follows:

ay. A data string is a sequence of "data symbols". The set of data symbols
consists of the lecters (upper and lower case), the digits, the usual
arithmetic, relational, and logical operators (drawn from ALGOL 60), the
parentheses, the blank, and the eight special symbols which follow:

true false . ,, ® © ? A

b. Parentheses may appear in the data string only in ordered nested pairs,
in accordance with the conventional use of parentheses in mathematics.

& Certain sub-sequences of a data string, called "pointers", must be
unique in the'data string.

The DF and DN belovs define the data language consistently with the
informal definition just given; but this is not their only function. The data
formulae also define supplementary metavariables, or "data types", which are
useful in the description of sub-sequences of a given data string. The defin-
ition of these supplementary metavariables is not essential to the definition
of the data language itself. For example, the definition of "mark" given by
DF.6 through DF.9 could be given as a single metalinguistic formula at the ex-
pense of the omission of the definitions of the supplementary metavariables
"logical", "rulatlonal", and "arithmetic". Furthermore, DF.17 through DF.32
make no contribution whatever to the definition of the data language and their
sole function is the definition of supplementary metavariables. While the
suppiementary metavariables are not essential to the definition of the data lan-

guage, they are essential to the formal definition of the AMBIT system as a whole,
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Specifically, the AMBIT program executer (see Sec. (3.3)) is expected to know
and make use of the definitions of these metavariables in executing an AMBIT

program.
Note that the "blank” symbol is explicitly mentioned in the metalin-
guistic formulae below and is formally defined by DN,.5. Blanks may not appear

in the data language except as explicitly allowed by the DF. Thus, for example,
an "identifier" (as defined by DF.16) must not contain a blank.,

DF: Metalinguistic Formulae for the Data String.

1. ( data string) :: = ( blank) ( string) ( blank)
( string) :<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>