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ABSTRACT 

Acoustic instability in solid propellant rocket motors is 

a question of the balance of the acoustic gains and losses in the 

system. With special reference to transverse modes, this ques¬ 

tion is examined with respect to those loss and gain mechanisms 

for which some limited information is available. It is interesting 

that, depending on which mechanisms are predominant, the 

critical conditions for instability may be quite different functions 

of the parameters characterizing the rocket. A possible mechanism 

consistent with the main results of Brownlee and Marble is pre ¬ 

sented. 
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I. INTRODUCTION 

Acoustic instability in solid propellant motors is a well recognized 
12 3 4 phenomenon. ’ ’ ’ Typically a motor spontaneously breaks into 

oscillation in one or another of its characteristic modes. The conse¬ 

quences are seldom desirable and often catastrophic to the mission of 

the engine. 

A large part of our experimental knowledge of the phenomenon of 

acoustic instability in solid propellant motors is derived from empirical 

correlations between the appearance of instability and the values of 

design parameters. For example, the rather generally accepted state¬ 

ment that the tendency toward instability is less at higher operating 

pressure is such a correlation. The operating pressure is commonly 

controlled by selecting the (ratio of powder burning surface area to 

nozzle throat area) of the system. Thus, the correlation might well have 

been with K^. In perhaps the most systematic examination of geometri- 

cal factors published, Brownlee and Marble examined a particular 

system in which they varied both and the port diameter, Dp, and then 

were able to divide the 1^ - Dp plane into stable and unstable regions 

with respect to the mode of oscillation (first tangential) predominant in 

their system. 

Such correlations with geometrical factors might be important in 

two ways. On the one hand, they might provide the designer with some 

guidance, and on the other, they might provide the researcher with some 
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clues. In either case, it is vital to know the degree to which general 

validity may be attached to the correlations. 

As has been previously stressed, * acoustic instability is a property 

of the whole system, rather than of a component. In this sense, a solid 

propellant rocket motor may be thought of as a complex acoustic cavity. 

Within this cavity there will be two acoustically rather homogeneous regions 

(the solid and the gas regions) separated by a thin burning zone, which may 

amplify sound. The question of acoustic stability or instability is resolved 

at least in principle by determining whether the influx of acoustic power 

introduced by amplification at the burning surface is or is not exceeded by 

the loss of acoustic power via the several damping mechanisms. Thus, the 

correlations with design parameters must somehow reflect the combined 

properties of the acoustic sources and sinks in the system. 

It is the purpose of this paper to examine the general validity of 

empirical correlations of instability with variations in geometrical para¬ 

meters. Naturally, we shall limit ourselves to those factors about which 

we have some a priori knowledge and to systems whose analysis is 

reasonably tractable. In particular, the last qualification causes us to 

focus our attention on the transverse modes of motors which are relatively 

long compared to their diameter. 
> 

Several acoustic loss mechanisms are considered theoretically. Since 

attention is directed primarily toward transverse modes, the major losses 

pW—iipWMp"1 » ^ 
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will usually arise from: molecular relaxation phenomena in the propellant 

gases; small, medium and large particles in the gas, each depending in 

a characteristic way on frequency; viscoelastic losses in the solid propellant 

itself. 

With respect to the acoustic source we shall assume this to be the 

burning surface and in particular will stress the response to pressure 

variations of the form suggested by theory.1> 5> 8 We shall only touch 

briefly on the possible contributions from erosivity. Amplification in the 

volume of the gas is not specifically considered; however, it presumably 

could be accommodated as ’’negative” damping. 

In spite of the paucity of information, it turns out to be possible to 

display the effects of these various losses in terms of - Dp stability 

diagrams portraying regions of stability and instability in the parameter 

space of quantities describing the rocket motor conditions. These stability 

diagrams differ rather widely in character, depending on which of the 

several loss mechanisms predominate. In fact, it is quite conceivable that 

a correlation might take diametrically opposed forms in different systems 

which emphasize different mechanisms of damping. 
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H. THE BALANCE OF GAINS AND LOSSES 

1. The Rocket Motor as an Acoustic Cavity 

In the ordinary acoustic cavity, one considers acoustic damping aris¬ 

ing from thermal losses to conducting walls, viscous losses to the wall, 

viscous, thermal and relaxation losses in the body of the gas, and mechanical 

losses to the non-rigid cavity wall. In addition, if the cavity is not entirely 

enclosed, loss through the opening would be considered. For the case of a 

cavity containing two media, (e.g., the solid propellant and the gas), one 
* 

would also determine the viscoelastic loss in the solid. 

Prerequisite to the determination of acoustic losses is the determina¬ 

tion of the acoustic field. Referring to Fig. 1, and comparing that rocket 

h-L — 

Fig. 1 

» 
Damping through radiation might also be mentioned (the quasi- 

adiabrtic compression of the gas by the sound wave alters the gas temperature). 

This loss is difficult to estimate with accuracy, but it appears to us to be 

very small even at the elevated temperatures of current rocket motors. 
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motor with the usual acoustic cavity, we note that the motor presents at 

least two new difficulties of a rather fundamental nature, namely, a flow 

field and a sonic nozzle. In a general way the nozzle represents three 

simultaneous transitions of importance to acoustic theory. First, there is 

a transition from a large channel to a small one. From the standpoint of 

the propagation of transverse waves in a pipe, such a transition has relatively 

poor transmission for the fundamental modes of the larger pipe, though not 

necessarily for the overtones. Second, there is a transiti n in density and 

temperature which results in a drop in the characteristic impedance of the 

medium of almost a factor of two. This should also contribute to the reflec¬ 

tion at the nozzle plane. Third, there is a jump in flow velocity from a 

moderate subsonic to sonic value. The consequences of this change are hard 

to predict and it is really not known whether the first two effects are thereby 

emphasized or diminished. While an approximate theory has been published 
g 

for axial modes, only incomplete and tentative studies have been carried out 
7 

for transverse modes. These suggest that the attenuation of transverse 

modes by the nozzle may be small. For the purpose of this paper, which is 

limited to the question of the fundamental transverse modes, the above con¬ 

siderations give us some comfort in our decision to proceed without estimating 

the nozzle losses. 

Further complexity of a more practical than fundamental nature is 

introduced into the rocket motor problem through the common presence of 
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head and tail cavities. These cavities, of course, can considerably com¬ 

plicate exact determination of the acoustic fields, but the head cavity 

(usually containing the igniter) is, at least, frequently omitted in rockets 

used for research purposes. 

Before taking up the gains and losses in detail, it will be helpful to 

recall the basic elements of their calculation. When acoustic losses in 

cavities are relatively small (i.e., for high Q cavities), it is usually 

convenient to take advantage of perturbation techniques. Thus, one 

evaluates the acoustic field which would exist in the absence of losses (or 

gains), and then determines the losses (or gains) which would result in 

the presence of these ’’zero order” fields. For the purposes of determin¬ 

ing the unperturbed field, we shall ignore the head and tail cavities, 

regarding the head plane as a velocity node and retaining generality at the 

port plane only to the extent that it may be either a velocity node or a 

pressure node. The latter boundary condition is of little importance to 

transverse modes for the usual small values of the ratio port radius to 

grain length. Then the general acoustic mode in the main channel has 

pressure (p) and velocity variations (u) given by the real parts of 

(1) 

2 2 2 —2 where a. = (cu/c) - (h7r/2L) , and P = pc /y is mean chamber pressure, 

p is the product gas density, y is the specific heat ratio, c is the sound 

. 
« 
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velocity in the gas, PpQ is the amplitude of the acoustic pressure, and u> 

is the angular frequency (u> = 2t¡í). Here, h even corresponds to closed end, 

h odd to open end. From (1), the time average sound energy in the chamber 

is 

with the abbreviation 

The power transfer across a surface will, of course, be evaluated 

by determining the time average of the integral over the surface of the 

pressure times normal component of velocity. (The velocity will be 

expressed in terms of the pressure by means of the acoustic admittance 

of the surface. ) 

2. The Pressure Response of the Burning Surface 

It appears that the sensitivity of the burning surface to acoustic 

pressure is the primary cause of acoustic instability in solid propellant 

rockets, at least in the high frequency transverse modes. In general, the 

acoustic response of the burning surface is described by an admittance 
o 

which may be expressed by 

TW • • T (t • T-) « 
where v is the mean product gas velocity normal to the burning surface, 

ß is the ratio of the complex amplitude of the fluctuating burning rate 
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(per unit area) to the mean burning rate, and c is the corresponding ratio 

of acoustic pressure amplitude at the burning surface to the mean pressure. 

For the acoustic field expressed by Eq. (1), this admittance leads to a gain 

(or loss) of acoustic power at the burning surface (r = a) given by: 

( <. ^ denotes time average) 

(4a) 

(4c) 

where v = m/p is the normal flow velocity of hot gases from the flame front. 

We note that if the propellant response function, real part of 

is positive, then the burning propellant amplifies. Since propellants are 

found typically to produce instability over a wide frequency band, the 

response function is supposed to be a positive but rather slowly varying 

function of frequency in the relevant frequency domain. Although response 

functions have not yet been measured experimentally, various estimates 
4 

as to order of magnitude do exist, as well as theoretical calculations 
o 

based on rather simplified hypothetical propellants. In general, for 

amplifying surfaces, it appears reasonable to expect the value to lie in 

the range between zero and unity. 
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3. Erosive Response of the Burning Surface 
g 

In a previous paper we gave some consideration to the effect of 

erosion on the acoustic response of a burning surface. The approach was 

chosen with the hope of providing a general framework for inspecting erosive 

effects in the limit of small (acoustic) perturbations. It escaped our atten¬ 

tion at that time, however, that the treatment lost some of its intended 

generality when certain higher-order terms (such as ) were 

dropped from Eq. (1c) of ref. 9. This would be valid only for a burning 

law in which the effects of pressure and erosive velocity are additive, 

whereas in the common empirical representation (for steady-state burning) 

these effects are multiplicative. Hence we are impelled to so modify our 

previous analysis that it will encompass more realistic burning laws than 

the purely additive one. 

Fortunately, only a slight alteration in approach and a redefinition 

of symbols allows ourr previous derivation of the burning boundary condi ¬ 

tion to be carried over to the more general case. Thus, we again assume 

that the flux of hot gas from the burning surface is a quite general function 

of pressure at r = a, erosive velocity, and all their time derivatives 

(denoted by subscript "t"): 

m = m (P(a)„ Pt(a), V e V e 
t, 

). (5a) 
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This expression we now expand about the steady-state conditions 

P(a) = P, vj =1 vl , to obtain 

(P(a) - P) 

<h "ve|) 

m= m(P, jve|) 4- + ' ’ • 

3m \ S' dm d 

+ [(.S|Ve|J + VMJ 3t + ' 

where we have retained all terms up to first-order in the acoustic variables 

P(a) - P s cP , J ve| “ |^e| = uz siSnum By its de^nition> m can 

also be written in the acoustic approximation as 

m = m + m__ + p(ug- ur(a) ) (5c) 

where ms m (P, |ve| ), and ug is the fluctuating normal velocity of the 

transpiring solid surface. Combining Eqs. (5b) and (5c), and introducing 

harmonic time variation (c = ^eicot, jj =íeiu;t, etc.) we obtain the desired 

condition at-r = a: 

K(w) u signum (v ) 
Ci % “ J 

(5d) 

» 
This is the essential departure from the derivation of ref. 9 where 

the expansion was about the non-oscillatory state with no erosion , 

(P(a) = P , Iv I = 0) so that some higher terms in the expansion might remain 

of first òrder. 
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where Yg is the admittance of the solid surface, and 

are the pressure response function and acoustic erosivity, respectively, 

for the burning propellant. 

Comparison of Eq. (5d) with the relation it supersedes (E%. (2b) of 

ref. 9) reveals that the previous formulation of erosive effects can be 

generalized by making three modifications in it: 

(a) Set the "dc erosion constant”, k, in ref. 9 equal to zero; 

(b) Allow Ma in ref. 9 to be a weak function of z; 

(c) Interpret the response functionTt/c^ as evaluated with, 

rather than without, steady erosion, and the K of ref. 9 

as now defined in Eq. (5f) above. Both of these functions 
* 

now may be dependent on z. 

Because of the change (a) the conclusions of ref. 9 about the contribution 

of dc erosion to stability are not necessarily applicable to any but an 

additive burning law. To the extent that (b) and (c) introduce z dependence, 

* 

Note that for a multiplicative burning law, m = fj (P, Pt,... ) x 

ve| > |ve| »•••)> the z dependence of is .only that arising from 

the small steady state pressure drop along the channel. 

■■ mm.. » 

* 
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tbe conclusions based on symmetry considerations are somewhat weakened 
« 

in the general case, but will still retain gross validity. It is important to 

note, however, that the conclusions regarding the contribution of ac erosion 

to stability remain essentially unchanged. 

Turning now to the problem at hand, we will recall that reference 9 

showed that if the magnitude of the ac erosion constant was not much 

greater than its zero frequency value, its effect on the stability of transverse 

modes was quite small. Then, for a general burning law, the main effect of 

erosion on the transverse modes will be contained in the modification it 

produces in the mean burning rate ~m. 

4. Relaxation Losses in the Gas 

Several sources of acoustic attenuation will be recognized in the body 

of gas filling the propellant channel. There is, of course, absorption through 

ordinary gas viscosity and heat conduction. However, it appears that a far 

more important loss for rocket motors may be that arising from the transfer 

5 
of acoustic energy into internal energy of the molecular constituents. 

The relaxation loss of sound energy in the burnt gases can be expressed 

in terms of the corresponding attenuation constant, a , by 
g 

E = -2a cE=--a La2(2 
g g 4 v »N' Fm(Œa> 

(6) 
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where we have used Eq. (2) for the mean sound energy. 

It is unfortunate that no experimental information which bears 

directly on the relaxation loss in hot propellant gases is available. An 

order of magnitude estimate has been made, however, ^ by considering 

only the nitrogen component of the product gases, which turns out to 

become a much more effective absorber at rocket motor temperatures 

than it is at ordinary temperature. Assuming a 10% abundance of N0, the 
Là 

attenuation constant is then determined readily from data presented in ref. 

12. We find (for 2500°K) 2 

<* X 10 5 (7) 
* P 

where f is the frequency. (This estimate is essentially the same as a 

previous one made by the authors, which was based on less complete data. 

It should perhaps be mentioned that relaxation loss can be extremely sensi¬ 

tive to chamber temperature, and this point should be kept in mind when we 

consider hotter propellants. Further, one should be cautioned that this type 

of relaxation can be very sensitive to the presence of small amounts of gas 

such as Hg, HgO, etc. which are effective in energy transfer. The pro¬ 

pellant gas is, of course, abundantly supplied with a variety of such species. 

At this point we should note that relaxations in chemical reactions 

could be included here by specifying an appropriate at for them. Relaxa- 

tions in the shift of equilibrium would be expected to contribute a positive 

crg (damping) while those related to incomplete reactions might result in 

either positive or negative values of a . 
o 

"fsrr mmmm 
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5. Attenuation by Solid Particles in the Gas* 

The attenuation constant for small spherical particles (radius R, 

number density N) suspended in a gas has been calculated in ref. 10. 

Loss arises both from heat transfer and momentum transfer. The major 

contribution arises from viscous damping and is expressed in terms of an 

attenuation constant given by 

~ N /i \ 

“p= — + 
16z _ 

16z4 + 72z3ö + 8i(2z2 + 2z+ l)ö2 
(8) 

where õ = p/p << lf z = R(cüp/2t7)^2 , ri is gas viscosity, and primes 

refer to the solid substance. Three regions of approximation can be 

distinguished: 
2 

(i) Small particles (z2 << |-0): -ÍL R5 p’2 

(ii) Medium particles (-?-õ<< z2<< 1): a —R (Q) 4 pep ' 7 

(iii) Large particles (z2>>1) : « « ira: N R2 
p c \l 2 o 

* 
The possible importance of particle damping has previously been 

discussed in various reports from Aeronutronic. 

Note that the attenuation is a maximum with respect to particle 

radius (for given mass abundance, etc.) if u>R2^ » For 
P 

u/2v = 5,000 cps and typical physical constants this corresponds to 

R ^ 2 microns. 
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Since for typical cases in a rocket motor the thermal damping 

constant lies between 2 y - 1 
~r ~v and j y(y- l) times 

Eq. (8), where the c 's are the specific heats at constant pressure> 

we shall neglect it. Hence the power loss due to suspended particles will 

be expressed by (cf. Eq. (6) ) 

„ 7T T 2L0 mso h,ox |2 T 2 , > 
E= T" ) po| Jm (<*a) 

m 
F («a) + ^-, 

m aa.2 

6. Thermal and Viscous Losses at the Wall 

2 J' (aa) ofc m 7 Pc a 
y p 

(10) 

Assuming the head wall to be rigid, the acoustic power dissipated 

s11 
277 

through viscosity is** 

ídé frdr <(Reur)2=o + (Reu^)^^ 

In addition, assuming the wall is a perfect conductor, there is a thermal loss 

rate11 .2t7 a 

^r]w iv * fTdT ^iRe p)^° ^ 
o 

where k is thermal conductivity of the gas and cy its specific heat. Adopt¬ 

ing the ideal relation k = 77Cv, the total rate of change of sound energy due to 

head wall losses is 

nr - - - ^2 
\J 2pio 

E = - a2 
ol m 

y-1 

-JV a c 

2 a) F (a a) + —, 
mv 7 o? a J (a a) m 

ai) 



17 

The further loss due to transmission through the head plate can be 

neglected since it is estimated to be only a few per cent relative to the 

above (also cf. ref. (11) ). Losses of magnitude similar to Eq. (11) 

also would be expected due to the tail cavity wall. Evaluation of the 

wall losses for representative values of the parameters indicates that such 

losses would ordinarily be ignorable, except for cigarette type burners 

(cf. Sec. in). 

7. Solid Phase Absorption 

The loss of acoustic energy in the body of the solid propellant should 

be expected to have a significant effect on the stability of the system. A 

completely general treatment of an absorptive medium is, of course, an 

unreasonable goal. As pointed out earlier, we wiU depend on perturbation 

methods. It is interesting that for damping by the solid, we can handle two 

extreme cases, namely, the cases where the damping length in the solid is 

either long or short compared to the web thickness. 

For the case of small viscous loss (long damping length) the solid 

must be treated as an acoustic medium bounded by the gas medium. The 

motions of this two medium system aj e calculated on a loss- free basis, 

and this result is then used to determine the losses which would ensue. 

1 5 In previous papers, ’ we reported studies based on this standard pertur¬ 

bation treatment. Not unexpectedly, the effect of the solid turns out to be 

dominant for such geometries that the solid participates heavily in the 

motion. Such geometries occur from time to time during the course of 



18 

burning and lead tc a source of intermittancy in the instability. Experi¬ 

mental observations at a number of laboratories of effects due to acoustic 

motion in the solid show that, at least for a number of propellants, the 

assumption of a relatively long damping length is valid. 

If, on the other hand, the viscous damping in the solid is quite 

large (short damping length), the solid will not sustain resonant motion. 

The impedance mismatch at the solid-gas interface will be large. Conse¬ 

quently, nearly all of the acoustic energy incident on the solid surface will 

be reflected back into the gas, while that small amount which is trans¬ 

mitted into the solid will be absorbed. The loss in the solid will be 

limited to the !~>ount of energy which can be transmitted across the 

boundary uetween two materials of different characteristic admittances. 

The solid then presents to the gas an admittance whose real part is 

1 
P c s s 

P C 
g g 

P C 's s 

1 
p c 

g g 
(o,c » p c ) 
v s s 'g g' (12) 

where the subscripts s and g refer to the solid and gas respectively. (Of 

course, we assume that c is the sound velocity in the solid appropriate to 

the mode under consideration.) Now the burning surface also presents an 

admittance 

1 
P c g g 

me 
g (13) 

Thus the significance of the solid loss is determined by the relative magni¬ 

tudes of the coefficient in the square brackets in Eqs. (12) and (13). 



19 

Let us assume for rough typical values 
_ 2 5 
m = 1.2 gm/cm sec, c = c = 10 cm/sec, P = 400 psi, 

o 0 

Ps =1.6 gm/cm^, p = 3. 8 X 10 ^ gm/cm^ , 
D 

then we have 

-3 
= 4.4 X 10 -3 

Thus we see that the gains and loss are comparable and the surface 

amplification for such a propellant would be effectively lowered by the 

loss in the solid. However, the sharply peaked intermittances charac ¬ 

teristic of the long damping length case would not be expected. 

In what follows we shall not give detailed consideration to the effect 

of the solid. The first case (long damping length) has already been dis- 

5 
cussed in some detail. We do not have adequate information to know how 

common the second case might be, nor what the dependences of the 

appropriate propellant properties on frequency and pressure are, to handle 

the problem quantitatively at this time. 
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in. STABILITY DIAGRAMS IN THE K - D PLANE n p 
1. Criterion for Acoustic Stability 

Apparently the only empirical stability diagrams published for a solid 

propellant rocket motor are those of Brownlee and Marble (Ref. 2). For 

their particular set of experiments they were able to divide the K - D 
n p 

plane (K is the ratio of burning area to throat area, and D is the internal n p 

diameter of the cylindrical charge) into stable and unstable regions by a 

stability limit curve. We shall adopt their type of diagramming and consider 

the kinds of stability diagr; ms which might be expected from theoretical 

considerations of certain acoustic losses. 

In order for a rocket motor to be acoustically stable, the losses must 

equal or exceed the gains. Treating the losses as outlined in Sec. II and 

assuming that the solid propellant surface is sufficiently immobile that 

the mode is adequately approximated as a Mgas quasi-mode" (i.e., 
t 

Jm^a a) = °î cf* refs* 1 and 5 for elucidation of this point), we have as the 

where the coefficients are given in Table I. We have used the area ratio 

8aL/Dt = P/mc (where is the nozzle throat diameter, c* the 

propellant characteristic exhaust velocity), and assumed for steady state 



21 

' 

burning a rate law of the usual form m = where ab will depend 

on erosive velocity (for a multiplicative law) and conditioning temperature , 

as well as on specific propellant properties. In the special case of a 

tangential mode, and negligible erosion, the C’s are independent of K. 

and a( = D) . 
n 

2. Examples Based on Gas Phase Losses 

Here, we wish to illustrate the effect in the K - D plane of the losses n p 

discussed in items 4, 5 and 6 of Sec. II. To best illumine the striking differ¬ 

ence of these various mechanisms we will treat each in turn as the single 

predominant factor (except for the wall losses, which will be shown to be 

negligible for the particular example). 

For simplicity we shall take advantage of the relatively broad frequency 

response Of propellants and regard the propellant response function as a 

constant, independent of frequency over the relatively narrow frequency 

band traversed by a given mode during the course of burning in a fairly 

typical motor. We have arbitrarily assigned this constant the plausible 

value of 1/5. This choice does not affect the shape of the stability 

boundaries in our examples. For the sake of definiteness, we shall confine 

our attention to the stability of the first tangential mode. Insofar as they 

are known, we have endeavored to assign to the various parameters the 

values corresponding to the experiment of Brownlee and Marble, in order 

that a comparison with their results might be attempted. The coefficients 

C appearing in the criterion are exhibited in Table II with the numerical 

values used for the required parameters. 
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Table I 

Coefficients in Stability Criterion 

Coefficient 
and 

Damping 
Mechanism 

Analytic Expression 

CG 
Chamber Gas 1.85 X IO”6 A2 (Í - (psabc*) ^ 

cw 

Head Wall ) <'*vo--w>ra 

c. 1 
Small 

Particles 
(Smoke) 

cu 
Medium 

Particles 
3ïït] N „ m2>\ rc"\ 

C .. in 
Large 

Particles 



Table II 
(all units are for cgs system) 

ab = 2.74xl0‘3 y r 1.24 

-— 

CG = 3.98 

n = 1/3 b = 6.35 C. = 3.9 X 10~3 

Ps = 1.6 L = 78.7 Cu = 2.0 X lO*3 

c* = 1.29 X 105 p’ = 3 
Ciii= 1,6 x 10”6 

c = 0.94 X 105 77 = 6.64 X 10”^ Cw=3.4xl0-2 

First tangential mode, m = 1, h = 0. 

Smoke particle radius, R = 1/2 micron, mass fraction 
in gas = 1%. . 

Medium size particles, R = 5 microns, mass fraction 
in gas = 10%. 

Large size particles, R = 70 microns, mass fraction 
in gas = 10% . 



It should be noted that for this particular geometry the wall losses 

are very small, so that we shall not discuss them further here. For 

different geometries, such as might occur in end burners, for example, 

the exposed wall area might well be large enough to make such losses 

quite significant. 

The various loss mechanisms in the gas phase lead to quite different 

stability laws as illustrated in Fig. 2. The unstable region in each case 

is indicated by the arrow. The general nature of these results is also 

summarized in Table in. It should be re-emphasized that these results 

are for the first tangential and a propellant with a pressure exponent of 

the burning law of one third. It also should be noted that we have assumed 

a^ as a constant and thus have implicitly neglected the effect of steady 

erosion. A multiplicative erosion law would result in a^ being a slow 

function of D and/or K , and would accordingly change the shape of the 

stability lines somewhat. 

Reference to Fig. 2 or Table in shows that the different loss mechanisms 

can limit the unstable regime to different parts of the K - D plane. Of n p 

particular interest here is the common generalization that instability 

tends to be less at higher pressures. Now, except for the modifying effect 

of erosion, there is a one to one correspondence between Kn and pressure. 

Thus, the damping arising from various particles in the gas phase would 

be consistent with this generalization. Damping due to relaxation processes 

in the gas itself, however, could lead to the opposite result, if the 
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Table in W 

Loss mechanism Form of the 
stability line 

Portion of the K - D plane 
that is unstable n p 

Smoke-damping K er D n p Lower-right 

Particles of size a 
few microns K oc D"1 n p Lower-left 

Particles of size a 
few tens of microns 

Kn * %2/1 

Wall-damping 
(exceptional case) Kn œ Dp2 

Gas-damping K oc D'2 n p Upper right 
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relationship between the frequency and relaxation loss falls in the region 

assumed in Sec. II-4. There are two points which should be made here. 

First, the experimentally determined stability map may provide some indica 

tion as to which types of losses may be significant. Second, it should not be 

considered too surprising if some experiments (with different propellants 

and configurations) should be found to provide counter-examples of some of 

the empirical generalizations, including the one just mentioned. This 

merely serves to stress again the point that the phenomenon is a result of 

the balance of at least two processes, and its properties are determined 

jointly by these processes, not by one of them alone. vVhen we change from 

one experimental set-up to another, we may be changing the distribution of 

emphasis among the various processes involved. 

Considerations of scaling are rather interesting. For a given tangen¬ 

tial mode, we see that the motor length tends to be unimportant so long as 

it does not become so short that wall losses (or perhaps nozzle losses) 

become important. The diameter D of the port, on the other hand, is a 
P 

vital parameter. We see from Eq. (14) that, relative to amplification due 

.-1 to pressure response, gas relaxation losses would be proportional to D , 
P 

small particle damping to D * , medium size particle damping to D , and 
P P 

large size particle damping to Dp . Thus, scaling up a motor would 

be expected to make it either less or more stable in the first tangential 

mode according to whether the first two or the last two of these damping 

mechanisms predominated. Of course, additional complications would 
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arise from other factors such as the frequency dependence of the propellant 

response function. 

With respect to longitudinal modes, where the frequency of a particular 

longitudinal mode is approximately proportional to 1/L, we refer to Eq„ (14) 

and Table I to see a quite different effect. For this case, the effectiveness 

of gas damping and small particle damping are proportional to Dp/L , 

medium-size particle damping to Dp and large particle damping to D 4/17 . 

Thus, if a motor were scaled up uniformly in all dimensions the effect of 

the first two losses would be to allow greater instability while the effect 

of the last two would be to decrease the region of instability. Which would 

actually happen would of course depend on which loss or losses were 

dominant. On the other hand, if the motor were scaled by increasing its 

length alone, it would be expected to become less stable if gas relaxation, 

small particle damping or large particle damping were dominant, but 

unchanged if medium particles were controlling. Again we have neglected 

any change due to frequency sensitivity of the response function. Perhaps 

even more important here is the neglect of acoustic erosivity, which is 

expected to play a more critical role in the longitudinal modes than in the 

transverse. However, it is clear that care must be exercised in making 

empirical generalizations and that axial and transverse modes should be 

considered separately. 

3. The Results of Brownlee and Marble 

It is of interest to inquire as to the possible interpretation of the 

experimental results of Brownlee and Marble in terms of the preceding 
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discussion. A brief review of their main result is thus in order. At the 

instant of firing the geometry of the rocket is described by a point in the 

Kn " Dp Plane‘ For a cylindrical internal burning charge, inhibited on 
2 

the ends, Kr = 4DpL/D^ . Thus as the charge burns^the representative 

point moves along a straight line through the origin in the K - D plane. n p 
For different throat areas a fan of such lines results. Brownlee and 

Marble found that their motor would oscillate in the first tangential mode 

sometime during the course of burning provided tûe initial representative 

point for the motor lay beneath a certain one of these lines. Thus, their 

stability line was similar to that arising from small particle damping. 

In fact, the particular ’’smoke” line illustrated in the preceding 

section was chosen to coincide with the stability line of Brownlee and 

Marble. We used parameters appropriate to their system insofar as they 

were known, and then adjusted the ’’smoke” content so that, in conjunction 

with our assumed response function, the slope of the stability line would be 

correct. 

Thus we see that it is possible to postulate an apparently reasonable 

mechanism which encompasses the main results of Brownlee and Marble. 

A secondary feature of their work is a suggestion of a slight upward 

curvature of their stability line near the origin. Including this in the 

theory would require further embellishment. A number of factors could 

contribute. For example, the response function might be increasing with 
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frequency (small D means high frequency in a transverse mode), or 

acoustic erosivity may play a part, or a weak amplification in the gas 

might be responsible. The situation is simply not such that it is possible 

to distinguish any of a number of uossible mechanisms for this effect. 

It is not our intent to insist that our explanation of the general nature 

of the Brownlee and Marble experiments is by any means unique or even 

necessarily correct. We merely wish to indicate that a few plausible 

simple assumptions suffice to account for their results. Further, a num¬ 

ber of other equally simple assumptions, namely, the other loss mechanism 

discussed in Sec. II, 4, 5, 6 would be in considerable conflict with the 

results. 

One question might well be raised. Is the assumption of 1% by 

mass of 1/2 ß particles unreasonable, for a propellant which we have been 

told ’’isn't very smoky”? We can estimate the optical attenuation length, due 

to scattering, for such a gas. In the chamber we find an attenuation length 

(distance to reduce light intensity by a factor of 1/e) of approximately 5 cm . 

However, in the exhaust after expansion this would be increased to a value 

nearer 1 meter. This should not give a very ’’smoky" exhaust, particularly 

since the refraction effects of the temperature and density gradients would 

be large enough to provide considerable obscuration. 



IV. CONCLUDING REMARKS 

It should be recognized that our knowledge of the properties of all 

the acoustic loss and gain mechanisms within a rocket motor is still far 

too fragmentary to allow formulation of a complete and thorough criterion 

of instability of direct value to the design engineer. Nevertheless, we 

have shown that some of the factors can be handled well enough to provide 

a bare outline of how these criteria may evolve. In the process we have 

seen further causes for disagreement between experimentalists, if they 

are not aware of the various factors involved, and incidentally have pro¬ 

vided a plausible explanation of the results of one systematic experimental 

study. 

Of course, in most real cases, the situation will be considerably 

more complicated. The response function will be a function of frequency, 

acoustic erosivity will play its role, and very probably several loss 

mechanisms will be comparable, with emphasis shifted from one to 

another with change in the system or the mode. As can be imagined, the 

stability diagrams in the Kn - plane could become very complex indeed. 

A diagram as simple as that of Brownlee and Marble might well be the 

exception rather than the rule. In fact, the suggestion of such additional 

complexity is in their work, both with respect to the curvature of the 

stability line at the lower end and in the hint of a possible new region of 

stability at low Kn . 
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