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ABSTRACT

T7 bifluenc. of erosivity on Lbe acoustic stability of 8olkW

fuel rockets is ejamined. AfLon*,rce is made for a frequency-

dependent erosion constant. The theory verities the stabilizing

iniuence o0 the steady flow erosivity for propellants having

positive erc3ton constants, with the contrary prediction for

those having negative erosion constants. The influence of

acoustic erosion is examined and tt orde- !n %.', h it cctribuste

is shown to depend on the symmetry of the flow field in the rocke,

being quite differ-nt for rockete wih nozles at the end as coar-

pared to rockets with nozzles .' the center Degenerte and

quasi-degenerate cases where erusivity rmlg. lvcotne a prtd4-Lt•I

ntant: effect Airt,,su•e
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I. INTRODUC 11ON

A burning pr, oellant . -Possesses the ability Af amplifying acoustic

disturbances at its surface over a relatively wide frequency band. If the net

acoustic losseq in the rocket motor are sufficiently small, as they frequently

are near the resonant frequencies of the rocket cavity, the motor acts as an

acoustic oscillator. The high amplitude pressure oscillations which then result

produce a wide varietv of secondary phenomena. 1

Empirical studies have led to a few general observations, among which

is the very interesting one thai it is the fluctuation in gas pressure (in contrast

to gas velocity) which appears t'O -t . f prime consequence in determining hbe

stability. Corresponding to this observation, many theoretical approaches have

ignored the possible effects of erosive velocity on burning rate and have actually

achieved a considerable progress toward understanding the phenomenon. These

approaches are concerned chiefly with the acoustic stability of the burning pro-

pellant. The acoustic stability is determitwd by whether or not a pressurc wave

(of some arbitrary frequency) incident on the burning surface alters the burning

rate in such a way ab to inhibit or reinforcc- the incident wave, The boundary

conditions at the burning propellant surface then are expressible in the usual

admittance form and the motion of the gas is simply described in terms ol the

usual acoustic modes of the system. Ultimately, of course, t.:e acoustic

1,

See, for example, -A-nalysis of Results of Combustion Rcsearch on

Solid Propellants", E. W. Price ,,ulio. Pro•pellant Rocket Research Confer-

ence, Princeton University, Princeton, New Jersey, Jan. 28-29, 1960,

:`" picprint No. 1(118-M
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stability rests upon the sign of the real part of the acoustic admittance, which

is the indicator of amplification or attenuation of a sound wave at a surface.

A variety of phenomena now seem to be accounted for in terms of such

analyses. 2,3,4,5

In spite of the empirical observation of the prime importance of the

acoustic pressure, aid the success of theories based thereon, one cannot help

"Z"Combustion Instability- Acoustic Interaction with a Burning Surface",

R. W. Hart and F. T. McClure, J. Chem- Phys. 30, 1501 (1959), Also APL

report TG-309 "Effect of Solid Compressibility on Combustion Instability".

J. F. Bird, L. Haar, R. W. Hart, and F T McClure, schaduied for April

issue, J. Chem. Phys. Also APL report TG-335-1.

3"On Acoustic Resonance in Solid Propellant Rockets" F. T, McClure.

R. W. Hart, amd J. F. Bird. scheduled for May issue. J. Appl. Phys. Also

APL report TG-335-2, "Solid Propellant Rocket Motors as Acoustic Oscillators".

F. T. McClure, R. W. Hart, and J. F. Bird Solid PropellamtRocket ResearCh

Conference. Priceton University, Princeton, New Jersey, Jan. 28-29, 1960,

ARS preprint No. 1049-60 Also APL Report TG-335 -3.

4"High Frequency Combustion Instability in Solid Propellant RocKets.

Part F'. Sin-I Chcng, Jet Propulsion 24 27-32 '1954).

,"Unstable Burning Phenomenon in r)juble-base Prolwilants", Theos

A. Angelus, Solid Propellant RockeL Research Conference. Princeton University.

Princeton, New Jersey, Jan. 28-29. 1960, Also Allegany Ballistics Laboratory

Report ABL. Z-9.
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but .. o..d aleAr f acou s,1ic velocity uiigii not lu be imaporiani to the stability, at least

under some circumstances. Since the steady staie burning rate depends on

both the pressure and the erosive velocity (the gas stream velocity component

parallel to the burning surface) the theoretical basis of the empirical observa-

tion and its probable generality deserves elucidation.

Although the role of acoustic erosive velocity has not been entirely

6
ignored, for the most part the analyses in whic h it plays a part have been

directed towarc the question of inherent, rather than acoustic instability.

Inherent stability is concerned with whether or not an arbitrary perturbation

on the burning rate decays, rather than grows, exponentially with time. A

"propellant" which is inherently unstable would not be expected to possess a

"steady state" of combustion under any ordinary circumstances. On the other

hand, we recognize that a propellant for which transients are damped, i.e..

which possesses a steady state, may or may not act as an acoustic amplifier

for incident sound waves.

The bearing of erosive velocity on acoustic stability was discus.sed
7

briefly by Cheng who conclided that "the dependence of the burning rate on

the drifting velocity alone is not likely to excite instability. . ." Since the scope

of his analysis vwas rather limited, this conclusion cannot be accepted as

de finitlve.

See, for exampie, L. Green and W Nachbar, "Analysis of a

S~mplified Model of Solid Pro•wllant Resonant Burning". J. Aero. Space

Scienct_0  26. 518 (1959'.

7Sin-I Cheng. "High-Frequency Combustion Lnstability in )uiid Pro-

Pellant Rockets." Part 3, (particulrly Appendix IM), Jet Propulsion 24,

102-109 (1954>.
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The subject which we shall consider, then, is that Uf acuubtilc btaliilty

in the presence of a burning rate dependent on ')oth pressure and erosive

velocity. We intend to ask for the condition., under which such a burning sur-

face amplifies or attenuates an incident sound wave. The question of stability

against finite disturbances is auite another problem, which will not be treated

here.

II. ANALYTICAL FORMULATION

In order to suppress unnecessarily complicating distractions, we shal.

simplif, .he geometry to that of a circular cv'lndrical cavity containing a

cylindrical grain (outer radius b, inner radius a). We shall neglect the small

doppler effect produced by the rather s!ow mean flow of burned gas and regard

the burned gases as a homogeneous medium insofar as acoustic motion is con-

cerned. For our present study, which is concerned merely with the relative

importarnce of pressure and erosive velocity, we will select a method by which

we may also ne2glect acoustic losses in the gas and in the nozzle.

2 i fhe End Face Boundary Conditions

We shall treat only the case of rigid, lossless ends so that we have

(U) :: 0 and (u = O Lla)

where z -- 0 and z -- L are the coordinates ,of tht end faces in a cvlindrical

;vste m whose axis coinkdes WiL th,0 of o-r cyvlindrical cavity, and u is the

d uust , veoc 1-.LV. These bou.ndary cond,..tic, ns corresu-ond to th,;.e encountered

in some research type rocket motors wIth si0. nozzles, and may be thought to

approxnimate end nozzle ruc kets without end caviti.es and with hIgh port to

t h ,-at ratius.
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9 .2 Thp RundrCnýditi& at ther 4_ ura,

The formulation of thr, erosive boundary condition at the propellant sur-

face is, of course, the rux of the problem, and at the very beginning we are

somewhat nonplussed by the absence of a time-dependent theory of the erosion

of the burning boundary layer. We may elect to proceed in either of two direc

tions. On the one hand, we might elect to stop and attack the development of

such a theory, or on the other hand, we might attempt to formulate the acuustic

analysis in sufficiently general 'erms that the results of a future theory could be

inserted into the analytical structure. These two ýxiths are rather distinct. The

former cours, would apparently involve a -onglomeration of chemistry and

aerodynamics whereas the latter is primarily an application of acoustical

principles. Rather than concern ourselves with the predictions of a particular

burning theory, we elect to oursue the latter course and focus our att-ntion on

the development of a rather general acoustic structure. By following this path.

we .ncidentallv may hope to be able to for, an es,.iniate as to the importance of

a time-dependent erosive burning theory,

The eosive bound.?-v condition niav be obtained from the general

relationship expressing the flux densItv yof hot gas generation, in. Restricting

our attentin to the pericyic case i. e., ýhe transients hav. alreadv decayed'.

we may express n. as a function of pressurt., the ero,•sive veloc-Ctv, and their

time derivatlves ; T,-.us.

a at e: e

IThte, i'als h respect ,o tme wou10d alnso be requlred :r the trans:ent

C &Se.



1th~,~. D C, f kn .- -I ~ I, T,' + c , .c,a -- -, -" •I'" at the burning

surface (r:-a), v is tho erosive velociiy (i.e. gas velocity parallel to burning

surface) and where the subscript t's ,ndicate partial differentiatioli with res-

pect to time. The erosive burning depends on the absolute riwgnitude Uf vC

rather than on v itself, because the effect of eros: n is presumed tc bee

independent of the direction of the erosive xelhcity.

2. 3 P~rturbatihn Form of the Erosive Bounda; y Corndition

Assuming the burniny rate to "be an analvtic function of C its"e

time derivatives, and P and its time derivat,,es, we may expand about the

point (P; 0.0,0. . ;0,0,0,0... , i._. ab ltl the rnmn-os, ,iitorv sta e w th no

erosion. Thus, we have

m m(P :0, 0O ) Pa (-'m' at
L a at O

Cl-- i v -/v, ÷•.i•'
V

e0 eOt

• higer order nT Pn-iear tern-,

where. To avoid .irwielldv n.tat, a Y•, have dispiaved eoiy one of the ,T11: .

of subscrmpts "zero'' atrahc d - ai:h of :he tartwl -erivat ives e Ins,!" a

*he onset lnstabllitv is concernedt- we m-lav neg'e,,t li~gher order ter-s

provide'id te steady st:'te elra':,v§ ;urr : ng aw adequateiv Itpprox by it

-lnear i" c~o~

T e f-rs: term . n 'Ie r' K Eq. . . s mnercv tihe do bur arng r .re

the absence Cif cr-s:o- & .> ,I -. -- 't- by n- Thel I r;e s: ff I,
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bra*cketed •jrns expresses the contribution to gas flux of a fluctuating pressure

with no ,_ros). n, In the notation of ref. 2, this bracket will be denoted by

(im0 Q.) The second bracket on the rhs of Eq. (1c) describes the effect of art

erosive velociky, with no pressure fluctuation. (We may recognize the term

ama... - as m , where k is the usual (de) erosion constant.) The impor-

tant jy-dnt here is that the pressure and erosive contributions to burning rate

are now separate.!. with the erosive part expressed 1s a linear function of :v

and its Time derivatives. The pressure part has, of course, been studied

separately, elsewhere.

Finally, we complete the perturbation formulation by recalling that m may

be expressed as

-m= P(V -V) a (if)r sr=a'

whers' p is the hot gas dlmensitv, V is the hot gas radial velocity, and v thie

regression. spiLd of the solid surface, with radial velocities measured positive

in the ou.tward -a,_-ical direction. We have

"V :--v +Y p

wh, re the bar detw'es dhie time average, Y, sp,.cific acoustic admittance o!S

.sold surfac.-, which is zero ii the solid is rigid., and p, tbh acoustic

pressure at the jpropeill.int sdr!ic(e, where r a. We use

p c:p I • .. -..

P) P

2
w•h(::e is the hot !as Spec,, .iu heat ratio and - p i - s the nw÷.a;

)a
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chamber pressure, with c the sound velocity, p the mean density of product

gases. Equations (if) and (1g), with the definitions of m0 and mOgl given

above, when substituted into Eq. (Ic), yield

rM 7 + s PMk= a eI
\ ~r=a •/ ••

-~amT a\l M' (11h

S  e 10 e to I+.........
•./rr=a

where we have also used •E(-P- E and M E=
'Pl~ a- PC

For the present case, one further simplification of the boundary equation

also applies, Noting that the magnitude of the erosive velocity may be expressed

in terms of its (cylindrical coordinate) components as

Vel (V + U +ue

we expand the radical to see that, for the arbitrarily small acoustic amplitucs

rele ,mant to stability theory,

Ve% ± .e + U Signum f 7e)) (ii)

where Signum (v) = + j or - I according to whether v is positive or negative.
ee e

In the iollowing, th9n, we will, use the linear boundary condition obtained by

substituting Eq. (1i) into Eq. (lh), i.e.,

(u> pcY~

S- M(- fY + -a --M k + Signum(v
'rý a 0,c e

- J ,-r=a P

a m a+ 8

zu + - U (t + (2)v el t a '0
L:~~ ~ 10.loIvl
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in which v is still to be regarded as an arbitrary funct' n of ze

2. 4 Fourier Transformation

It is most expedient to take advantage of the simplifications which result

when we consider only harmonic solutions. Accordingly, we may define the

time-independent tllda'd functions by the relationships

p = (Real of) e iwt

u = (Real of) uieiwt and

= p e(2a)
ji 1 (Real of) 'iel (a

The boundary equation (Eq. (2)) then takes the form

u -1 M k V '~E
Ur a -yYs v, a ze

(--a - + M a-K -+z Signum (_Ve)
a Ms

7 ...J ~?b)

where K, because of this definition, may readily be obtained from a time-

dependent theory of erosion if it should become available. We may note, in

particular, that K(w --ý 0)-- k, and refer to K as the "ac erosion constant".

The end face boundary conditions (Eq. (la)) are easily transformed to read

= u 0 (2c)uz Iz=O uz Iz=L 0(c

and, of course, the wave equation to be solved for these boundary conditions

transforms to the Helmholz equation, • = 0

III. ANALYTICAL SOLUTION OF THE BOUNDARY VALUE PROBLEM

The analytical problem has now beei defined. I the solution were obtain-

able by several of the mcre obvious and routine approaches, we would merely

display the result, and assert that it easily could be verified by substitution
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into the Helmholz and the boundary equations. A rather special approach seems

necessary, however, so that it seems desirable briefly to sketch the method of

solution. The method begins in the standard way. We note that the solution

will be expressible as a sum of the elementary (separable) solutions of the

Helmholz equation expressed in cylindrical coordinates:

Spj J.(aIr) cos L cos (j0) (3a)

I -0 j =0

U =a cos ( ) cos(ie) (3b)r iyw -Z __" JII r (
j =0 f=o

•20

yuz IJ(ar) sin ( L cos (jO) (3c)
Z iyw)L

j= 0 • =0

with 2

C

The appearance of the individuai sine and cosine terms indicates that we have

forseen the axial bounda, y conditions expressed by Eq. (2c).

The usual approach would ue to substitute the field expression (Eqs. (3a),

(3b), (3c))into the boundary equation (Eq. (2b) ). In the absence of erosion

(k = K = 0), this substitution quickly yields the uual result that the charac-

teristic frequencies would be determined by the values of w for which
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yv a w /•pcY
ana a)nJ Oa) 1 5 MJ.(a) 0+ c ,• y - l a =

njncE a

(4a)

We note that the system would be neutrally stable (real w) only if

Real of 1 _ PC Real of Y (4b)Y 'YMa a

and that the system would be damped only if

Real ' c Real o" Y
"Y/ YMa

In the presence of erosion, however, the analytical difficulties begin

immediately. Commencing as before, we note that in order to determine the

characteristic frequencies (for which a solution for the pn Is is at least possible),

we would have to discover the roots of an exceedingly intractable infinite determi-

nant.

At this point, a bit of reflection is enough to convince us that we did not

really want specifically to know about the effect of erosion on the characteristic

irequencies, anyway. The information which we really seek is the relative

importance of erosion compared to pressure in determining stability.

Let us, then, attempt a less standard, but more direct approach. Suppose

we recognize that we would have a rather satisfactory answer to our question if

we knew for a given erosion constant how much the admittance (as measured.

say, by •/I4 of the burning surface would have to be altered in order to restore

the characteristic frequency to its value for zero erosion. The important
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advantage in formulating .his particular question is that the characteristic

frequencies of the system then correspond exactly to those for zero erosion,

which are very easy to determine I

In order to discuss the contribution of erosive velocity to stability, we

must first digress for a moment in order to display the nor tenclature for

labeling the acoustic modes. To specify a particular mcie, we must give angular,

radial and axial mode numbers. Thus, a mode is represented in tiWe usuia way

by a three-element array, the first number representing the number of axial

half waves, the second the number of radial interior (velocity) odes, and the

third the number of angular node& In order to avoid unnecessary repetition of

subscripts, we shall designate the modes by,, = N,R,O.

In order to carry through this approach, then, we shall write k - K,

and develop the solution as a power series in K. We write, for the Nth

mode,

4-K.0-7 D j,N (4c)

j zl

Kc a M
(where Ahe expansion parameter arather than merely K

itself, is used for later convenience). Thus, if we can determine the

The value of 3 would have to be determined from a time-de-Pendent

erosion theory and in general would be a function of propellant composition.

operating condttions and frequency. if there were frequency intervals for which

k was much greater than K, the appropriate expansion for our problem would

of course be in powers of k, with K = O'k
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coefficients D JNwe shall have found the comparison befween the effects of

erosive velocity and pressure. Restricting our attention to the conditions for

neutral stability, for which w's are real (and given by Eq. (4a) ), one can
now readily verify that the solution to our boundary value problem is expressed

by Eq. (3a) with the p, given for the Zth mode of the system by
00 n

P Z (aKcM a> ý N (5a)

n=O

where the p(n) are found from the recursion formulaI IN
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This completces the solution for the non-degenerate case. Calculation is

not difficult in spite of the rather unwieldy expressions because of the typi-

cally small value of . It will usually be entirely adequate to

p(2),s
terminate with the p's: In a degenerate case, where more than one mode of

motion corresponds to a single fi-equency, the denominator of Eq. (5b) vanishes

for some I t N, and a slightly more general solution must then be obtained.

IV. RESULTS OBTAINED FROM THE ANALYTICAL SOLUTION OF BOUNDARY

VALUE PROBLEM (NON-DEGENERATE CASEi

The question to be considered in this section is the effect of an erosive

velocity on stability. As has been discussed, we have decided to measure this

effect by determining the increment in the response function (T/'/ which would

be necessary to re-establish the neutral stability condition, when erosion is

suddenly "turned on". The reference scale is provided by the observation that

the real part of E, • can ordinarily be expected to lie between the dc pressure
2

exponent (41) and a value perhaps several tenthis greater than unity. Of course,

we must keep in mind that the questio.n of instability or stability is determined by

whether the real part of 4 E does or dces not exceed a critical value, and

therefore the erosiv e term, lhough small, wo..ld i-'vertheless 'rocome a crfi•cal

factor in determining stability fir ,ases such that (• ) were close to the

irtical value.
aM. Kc

E xa m in in g the n t a -n ud e U c f th, -n x!,ar , rn Ia ra ctte r -a . . . .

L ,

,We Juspect that. iarl h' ca,:s• A :ht- snali mah numwer 1M I--, 10C, f the

h:,t Oases learin the burn:;-,g z>., . ,sua:xiv be qu~te saftýsa,:'v
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consider only the lowest order non-vanishing terms even for highly erosive

propellants.

Let us consider the linear term first. Substituting Eq. (5d) into Eq.

(5c), and the result into Eq. (4c), we find rather quickly that (we also use the

identity K=k),

2
__ __ _k M bNN iKc N + higher order terms. (6)

0 L

In discussing Eq. (6) two cases need to be distinguished, namely,

the ordinary rocket with the nozzle at the end and special rockets with a side

nozzle at the center. In the first case v is a positive quantity whereas in thee

second case it is positive in one end ,f the rocket and negative in t,,e other.

For the usual case of positive ve the coefficient cN, N =0 Thus, to

first order, the contribution of the acoustic erosion is zero. For the typical

cylindrical rocket v e-M cz, L we obtain b NN Thus, we have already

determined in this firs, order term the predominant effet of mean erosive

velocity on the onset of insK.,itv. It is clear that. with kc typically less than

about 4 even for very erosive propellants, and M typically not greater than

pe.rtaps 1 10. the eff-cct of dc erosion 1s to bt- "compensated for" by altering

a -b--v 1 5. Thus. we shou>d expxect to find enhanced stability for pro-

peIi ants hav i, a p.osi:, 1v e dc it, ro s•n , o,.i-nstant For unusua ly high erosive

veloc~tv, ar d f:ihav Cr :S~vE pr "iiants, this stabiiizing effect culd be very

substantia4!. Such an effe,-t has 'ndc1ed _-',n ,'userved. On: the ,,ther hand, we

woldepet eopost elet:o talive e. osion constants, nam~rev U
would ex n ?ct '. . . taC (_t -te Le ,rd-'d fheef t f"

gr eater tende--_ tow ard 1, sta lr ',l . L-. 4)rd'er to d:s u s he e e t _f t .
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acoustic velocity for the end nozzle case we must go to second order. This

we will do after discussion of the first crder treatLent for the center nozzle

case.

For the center nozzle rocket the situation is quite different. Here

2M czSpL
V e L Iz <

v 2Mpc(L-z) L
eL L

This steady state velocity distribution leads to

2
c - for N oddN",N N 7

c -N 0 for N even;
NIN

while
1 2

bNN - for N odd

= • for N even

Thus we see that for N ev en e. lh, t;e even axial modes, the cc-ter nozzle

rocket gives the same results as the end noz Cket. However, for N- odd

le. g,, the odd axial rncdc the s_ ..... .s s, n . d ., run-. Here the

contribution •f the acu t -- er :,:-, .... " , . exrm.- lv ru.o',rta.t .- !n xe1 ar-

tCuia rI for t'e first , -xial Pnodt TA-t , ,

L ti / ,I -

and we note ri--,' tjhe ,r inariv . ... 1 Lr LJ• ,,-: - . . .ta -
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erosion is reduced by 40%. More important, the imaginary part of K need

not be large to make an extremely signifi,'ant contribution. For example,

if imag (Kc)!- - v/2, the acoustic term would be 1/y, which is the usual

criterion on A/j for an amplifying surface

Provided k is positive, the damping due to the b N term is greater for

even modes than for odd modes. The first Order acoustic term contributes to

the instability if (iK) 4 0, and to the damping if (iK)> 0. Thus, for low frequency

(and k >0) one would expect this term to contribute to instability ior tne odd
*

modes. One cannot help bit v,.-,der whether this effect does not contr bute to

the experimental obsei -.tion that the predomina,,aiiy wBstable axial modes 1r1 the

center nozzle of Price et al are the odd modes. However, at much higher

frequencies the odd modes might be, on the contrary, stabilized.

Returning to the discussion of the end nozzle case, we shall invesiigate the

contribution of acoustic ercsion by displaying the second order terms. We find

C fo 6a)-
C;, , -f i • --' --*-fr tta

and
:0

For N. M A -e p -

.... f I 6b.
2

These r:ma:i'ý.s o nt estabisheca oscI at'n at h:gh

ampiltude because thc nh-oear:::&-s, t._tariv th.se due to ero,:

itself, w-_uld then zenrra: th' e'ven modes.
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and I

Substitution of these expressions into the general solution finally yields, for

this case,

--" ,=o', °a 6
- + ]L - j +NJ

(2$IN)

Kp-- (N2i-c2N,) N Mpk ((fNLa) (N2I2)

i -- -M 4Mo("•) (N 2) N, N

aN
L~ 1

FcN +eaN - - Me (N

(7)

While Eq. (7) may appea. simpler than the exact solution, this appearance

is somewhat deceptive and one must be carefui about generalizing from it as

to importance of the erosive effects. These obviously deoerl upon the nature

of the propellant (particularly with respect to the values of iRs erosion constants

K and k) and upon the geometry and the mode under consideration. If, for

example, the -,noininator in the sum should fortuitously. bec:ome very small

for some particular I and V.the result would be a large effect on the stabiiity,

eitLer to increase or decrease it depending on the sign of the real part of the

term involved. The extreme case of one ef these denominators actually being

zero correspo'd, to dhe degenerate case discussed in the section V.

a
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In many typical rocket geometries, however, the denominators will be

more or "ess uniform in value over the frequency range of interest and in that

event one can expect less drastic results. In the case of N = N,0,0, or
u:NL

essentially pure axial modes, we nc'ce that Nc = 7, and as a conse-

quence, for the usual motors and ,ropellants, the second term in each square

bracket (k terms) will make a negligible contribution if the axial number N is

not very large. The contribution of the first terms (K terms), however, needs

exL.mination since they may have larger coefficients. To gain some Idea of

the size of the effect let us consider the special case with

S"•/l0 - (l/ .) - •pc Ys/YM)] = A which corresponds to the unperturbed solu-

tion (see Eq. (4a)) having a pressure antinode at the surface. AOsuming the

rocket to be a cylinder with v = M cz/L we obtaine p

kM -1 2iMa(Kc) 2

L•) • -y +( N) 0) _2x
I )0 YI"

T IS, - JO7T-N7W 1 i77V

22 
_

tN (Ca)

When N is small, the sum converges rather rapidly because of the high

L

power in the (enominator, and clearly, the largest contributions will ordi-

narily come from the terms v = N + 1, except for the case N = 1 when only

the v = N + 1 terms need be retained. In particular, for the lowest axial mode,
LM Ma p

we find(withN= 1, E0, and v= 2 and aa •P



22

j1 -4 iKc 128>1
_p __ 8b

For this particular case the acoustic contribution is proportional to the

imaginary part of Ki'/ (i. e., (K2/k) ) so that there is no contribution to

stability unless K is complex. The importance of the result depends, of course,

on the size of this component of KIW. If it should be of the sam.,e order as k

itse., i. e., kc say about 4, the acoustic contribution would be approximately

one-half the dc contribution. Thus for positive erosion the net effect would be

to stabilize the rocket.

Investigation of Eq. (7) for radial and tangential modes shows that the

acoustic term is quite small for typical geometries. Thus, we see, in con-

trast to the center nozzle rocket, there is a wide range of conditions over which

we expect erosivity to contribute little to the question of stability or instability

For rockets in which axial modes of very high N are not heavily damped, this

generalization may not be valid. Moreover, it may fail dramatically for

conditions approaching the degenerate case discussed in the next Section.

V. THE DEGENERATE CASE

5. 1 ).geiteracy and Quasi-Degencracy

If we were to consider maximizing the acoustic erosive effect, we would

refex to Eq. (7), and note that if the denominator were to becomne very small

for some term, say for I - M, then the influence of erosion might indeed

become overwhelming. Of course, the real part of the denominator will vanish
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whenever the frequencies of two characteristic modps of the system coincide.

Since the internal radius of the usual solid propellant rocket chamber increases

with time as the propellant burns, the frequencies of the radial and tangential

modes decreabe with time while the pure axial mode frequencies are

independent of chamber radius. This state of affairs is indicated in Figs. 1

and 2, for a hypothetical motor with L = 5rcm, c = 105 cm/sec. in Fig. 1

we have plotted the radial and axial frequencies, and in Fig. 2, the first

tangential frequencies, corresponding to the radial velocity node boundary

condition on the burning surface.

In general, at each intersection point in Figs. 1 and 2, the real part of

the denominator vanishes in one of the pi 1s occurring in the sum representa-

tion of the solution. But the system is not truly degenerate at these intersec-

tions unless the imaginary part of the denominator also vanishes there, i.e. ,

The figure is easily scaled to represent chambers of other lengths and

radii. If both a and L are multiplied by a common factor, the frequency

scale is to be divided by that factor.

Although these "quasi-modes" are not the true modes of the cavity

because the solid propellant itself also indulges in the acoustic motion, it has

been shown elsewhere that the frequencies of the modes of the composite

system wtich have large gas pressure amplitude - and therefore large

erosive acoustic velocity, cf. (Eq. (3c) ) at the propellant surface lie close

to these gas quasi-mode frequencies. 3

I
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unless the acoustic losses "accidentally" balance the gains for that particular

geometry. However, we see that during the course of burning, many points of

"quasi-degeneracy" may appear, where the denominator of a term in the sum is

especially sr"All because its real part vanishes. But we shall expect a true

degeneracy, characterized by the vanishing of both real and imaginary parts, to

be a rare occurrence.

Unfc-tunately, at this time it seems 4mpossible to calculate the expected

effect on stability at the points of quasi-degeneracy. The impasse arises because

we need to know the imaginary part of the denominator which will, in general,

be a function of the losses in the normal mode being considered. The detailed

computation of these losses poses formidable difficulties and no experimental

information bearing directly on this point is available.

We may,however, expect to gain insight as to whether or not erosion can

have a large influence at configurations corresponding to such quasi-degenera-

cies by investigating the limiting case of true degeneracy.

5. 2 The Degenerate Case

Let us now suppose that two normal -nodes of the system are neutrally

stable. In other words, let the inner radius a approach a value such that the

denominator of Eq. (7) vanishes for some I , say I = M. Then, we must

re-solve the boundary value problem to develop a soktion for this degenerate

case.

The analytical method remains relatively unchanged; we again expand in

powers of the expansion parameter, and equate the coefficients of equal
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powers in the boundary equation. This time, of course, the unperturbed motion

must include two. rather that, one, z( iv) order terms, in order that the new

sum to be obtained will not contain any terms with zero denominators. We write

C 77N> ) AJ O(aN a) (iTMz7=PN, N ( r) cos N Jcr r) cos L co

So0

+, N r) cos cos(jO) (9a)

IQ C Nj =o 0 f o

(I l i, N when j = E)

where A is to be determined in such a way that the solution approaches the

bracketed term as the erosion vanishes (K,• 0). The velocities V and u" are
r z

obtained in the usual way (Eqs. (3b), (3c)) , and substitution into the boundary

condition equation at r = a finally yields

A-1  OM, i,'L N, M (~MiL 22(b bNN ,~ f ' *2FF - (% b bM
'L'MN- .N M M, NN

(9b)

where

fN, M = -NCN M - O3M iA L b (9c)N p c NM

The upper and lower sigis correspond to the two possible choices for A in

Eq. (9a). and define the two orthogonal combinatiens of the degenerate mcxies.

which may be obtained by substituting these A's into Eq. (9a). The increment

in the response function necessary to re-establish the neutral stability condition
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when erosion is "turned on" is finally found to be

,y P - (bNN NbM, (Kc) () (-fNMfM N)+ (bN,NbM M)

(9d)

Noting that, at least for typically small MP, M fM, N) is positive, we see

that the mode corresponding to the choice of the lower sign is made more

stable by erosion, while the mode corresponding to the choice of the upper

sign is made less stable. Each mode will look more or less like an N mode or
A~e•N Ta)

an M mode according to whether or not " is substantially less
J(a MINa)

than, or greater than, unity.

An appreciation of the order of magnitude involved nray be obtained by

evaluating Eq. (9d) for a few cases. If we consider the conventional end nozzle

rocket, the bN, M may be obtained from Eq. (6b), and the cN, M from Eq. (6a).

One quickly finds that the increment in 4/ E arising from acoustic erosion will

be sometimes large and sometimes small (relative to l•v), with the larger

contributions occurring for N close to M. If we continue to take Kc = 4, L = .5 cm.
1 5 •

c :10 cm, sec, and y = 1.2, we find for example, that for the 5,2,1 and 6,1, 1

intersections, the radical in Eq. (9d) yields the value 1.8. Thus such true

degeneracies, if they were to occur, could enable erosion to exert a profound

effect on stability. The importance of having M arnd N nearly equal can Ne

shown by reducing the value of M from 5 to 1 in the above example. with the

(-Onsequent diminishing of the contribution froM, 1. 8 to 0. 1.
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In the neighborhood of degeneracy we sve that we might expect acoustic

erosion sometimes to have a large effect on the question of stability or

instability. The question naturally arises why this effect has not made its

presence obvious in experimental studies. Of 'ourse, one should note that

unless the results were relativeiy catastrophic, it would be quite easy to miRS

the connection between degenerate modes unless one wer: specifically looking

for it. However, there are probably more important reasons why the effect has

not been noticed. In the first place, we should recall that the losses will

generally be rather differpnt in two modes even when they have the same frequency.

As a result, true degeneracies will be relatively rare compared with the milder

quasi-degeneracies. In the second place. we see that even the quasi-

degeneracies are not particularly common in the small thin motors typically

used in research studies, except at very high frequencies where one would expect

the general danming to be great enough to keep things under control.

In looking for this phenomenon, the principal clue would be the observation

that two modes, one or both of which is individually stable, together become

unstable when their frequencies &-ross

Price has observed catastrophic interaction for modes having the same

frequency in some of his experiments. It appears, however, that this is an

interaction between certain axial and tangental mnodes. In linear theory.

axial and tangential modes ar,, orthogonal bt•-.use of •heir different angular

distribution, and thus should not bt. coupled, At finite amplitude, however,

in the presence of mean f10w and erosion, this elact orthogonality wll, no

longer exist. It ýs possible that Price's observations represent the same



28

phenomenon where, however, the coupling arisus from the non-linearities

implicit in the large amplitude case.

The mode maps cbtained r.lxp riment~lly by Angelus provide an appro-

priate dis-'ay of data for which a nunibt-r oi c:ossing points of mode frequencies

exist. To the best of our knowledge, none of hi:- exp rimr-+s have shown any

particular osc"Llationq attributable to these intersections, nor have they shown

the catastrophic behavior observed by Price. It woC,. d appear, therefore, either

that the acoustic e'osion constant was quite small 'n t ise . eqi ncy reglons, or

that th• losses in the intersecting modes we e such that notf. -ig ., pproaching a

true degeneracy existed. At tnis time there i- no imnirmation available to

decide which r. these reasons was dominant. WA, ther or not phenomena

associate( with mode degeneracies have actul!: occurred in researches of other

investiator8 is essentially not determiAable .,nless the data are processed in a

manney simil-r to that used by An-elus.

5. 3 Selection Rules

Up Lc this point, we ha,.e not considered the possibility that some degenera-

cies (or quasi-'cgeneracieý will fail to contribute because of zeroes in the

numerators of t'- eca. terms in .q i. Because of the potlenally large

degenerate effects, h ,woývc-.- the sc1. uion rules introduced by zeros in the

numerator of Eq. sh sould be m .. ,.ned.

Referring to Eq. (Se) and 5f, we e that the b and c wili vanish

f,.or I . m either odd or even. depending o.,n symmetry of the function for which

thev are the Fourier c'effli nts Thus, for example. analvs.s shiows t1tat if
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v • car, e made into an antisvnmetric function ab( ut the midpoint of the

chamber by adding a constant, then the b vanish fer f + m even.i-fm
Analogously, if v e can be made symmetric about L,'2 by adding a constant,

then the b , m vanish for f + m odd. With respect to the c2, m' we find that if

Signum (v e) is symmetric about z = L'2, then they vanish for I + m even (or

for I + m odd if antisymmetric), so that we should find, at least to first o,'der,

no erosive contributions corresponding to such "forbidden" intersections.

As a result, the selection rules arQ quite different in the end nozzle and

center nozzle cases. For center iozzle rockets, we find the the b's and c's

vanish if the sum of their indices is odd, while or the end nozzle -ase, these

coefficients vanish if the sum of tieir indi(L,,s is Pen. Thus, in center nozzle

rockets, large erosive contrIbutions from degener-e configurations become

possible only at those configurations which wertL forbidden in the end nozzle

rockets and vice versa.

VT. DISCUSSION

The imtial objective of this d,; was mereli ,e whether acoustc w"-r

would indeed confirm thb r "her wld!;v held rnterpreati*n of experiments to Ie

effect that the influe,,"C,- o Q o - -k: • st a b I 11 mtn,, n ext. aA for

the genera' tentenchv o f h1gh Ste, J r V s , : f t ., sa ze. We have met with

success insofar as rhis obi-,h'e is. c••_c.z 7ned. Eat wte ha- e found that

under certain Sc...nsarwe w,_h are presently rather .x.e;.4 rather

L; M o n n should very Inportant determi the . nswr

to the stabiiity otest.on,.
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For the most part, tht efi:ct. .f crosive velocity have ben separated

into two components which arise on the one hand from the erosive component

cf the men flow velocity, and on the other hand from the erosive component

of the acoustic velocity. With respect to the mean flow velocity effects, the

analysis indicates that if the dc erosion constant, k, and the mean flow

velocity, v. , are sufficiently grcat thattkj ve 1>-/3, then in end nozzle

rockets, stability slioild be significantly enhanced for erosive propellanits hav-

ing k>0, and significantly diminished for propellants having k 0. Experi-

mental evidence does substantiate the first of these two results, but we are

unaware of experimental data relating to negative erosion constants. Im an y

case, data necessp, y for a quantitative Co-par4son with experiment do not yet

exist. The odd axial modes of side nozzle rockets should be somewhat less

sensitive to kv in linear analysis. We know of no quantitative data to confirmeI

or deny this result, except again to note the fact that non-mesa propellants

in side nozzle motors seem to prefer to initiate oscillation in odd axial modes.

The situation with respect to the effect of the erosive component of the

acoustic velocity is numerically somewhat _'ess satisfactory. The analysis

indicates that the acoestic erosion constant should indeed usually have little

tearing on the stabiiity question - except in two kinds of exceptional circum-

stances. Of these two, the first pertains to the side nozzle rocket, and the

second Zo geometrical configurations for which the system becomes acousti

cally degenerate.

With respect to the side nozzle case, we have found that acoustic erosion

contributes in first order, whcreas in usual end nozzle rockets, this effect
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makes its first appearance in the second order terms. Whether acoustic

erosion increases or d.icru-ases stability (insofar as the first order term is

concerued) depends on .'Z-2, imaginary part of the ac erosion constant, K. Thus,

its effect must vanish at ýufflieiently low frequencies where K--V k, and at

sufficiently high• frequencies where the system becomes unable to respond to a

sufficiently rapidly varying erosive velocity. Unfortunately, it appears that

nothing is yet knowin regarding the relevant frequency interval.

With respect to the degenerate configurations, a realistic quantitative

calculation in the imnmediate neighborhood of these "accidenta.l" degeneracies

not only would require a time-dependent erosive burning theory, but also a

difficult and detailed treatment of ti;e visco-elastic losses for the degenerate

modes. We have attempted neither of these tasks. However, an order of

magnitude calculation has shown that, at least in principle, the effect of acoustic

erosion could be overwhelming in the case of certain degeneracies. We should

perhaps mention a third atypical configuration, namely rockets having

unusually high port Mach numbers. Here, too, the acoustic erosive velocity

may substantially affect the balance of gains and losses, with the sign of the

effect depending on the phase shift associated with the acoustic erosion.

Finally, the above generalizations must be tempered by the thought that

for some future generation of rockets with high burning rates, highly erosive

propellanis and short fat motors many features not ptovionsly dbserved

may well become apparent.

With respect to the elementary concepts, arid to accounting for the

existence of the phenomena through a physical picture, one may now easily
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visualize their occurrence with the aid of a little hindsight. The effect of the

dc crosion constant is simplest to account for, so we shall discuss it first.

In order to do so, then, we may suppress the acoustic erosion by setting

K(w) = 0 for w t 0. Then, referring to the boundary cordition at the burning

surface, we see that the turning on of a steady uniform erosive ve!ocity merely

increases the usual steady mass flow by (1 + k \ve I ). How much will we then

have to alter M/c in order to restore neutral stability? Since , ...

defined as the fractional increment in mass flow without erosion, we would

expect to find the increment in M/E/ to be k I(
just as is given by Eq. (6). The coefficient b N which is equal to unity only

for the constant flow case just considered, may be regarded as describing an

apprepriate average of the erosive velocity over the mode.

The p.ossibility of a large acoustic interaction for the degenerate cases

might also have been anticipated. For simplicity, let us now suppress the dc

erosion by setting k = 0. For an end nozzle rocket, any single mode with even

I has the acoustic pressure and radial velocity symmetric about the center of

the chamber, whereas the acoustic axial (erosive) velocity is then antisymmetric

about the midpoint. The reverse situation 'applies if I is odd. Thus, the mass

flow perturbation introduced by the axial velocity tends to destroy the pressure

distribution which gives rise to it. But if we have two modes, (at the same

frequency), one with even and one with odd 1, then the erosive perturbation of

one mode can tend to reinforce (or cancel) the pressure and radial velocity

oscillations of the other, and we might expect a relatively large effect. For

the center nozzle rocket, howevcr, the antisymmetry of the steady state flow
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field plays a dominant role. For odd modes, the pressure distribution is anti-

symmetric and the steady flow field will keep the velocity distribution sub-

stantially antisymmetric also. Thus, large interaction between the erosion

and pressure contributions to stability would Le expected even in the absence

of degeneracy. On the other hand, if the mode is even, the situation is not

essentially different from the end nozzle case. Of course, the dc and ac

effects are not always so neatly separable, so that this backward look has

qualitative significance, only. But it should probably serve to caution one

against any ill-conceived generalizations of these results to other configura-

tions with new boundary conditions.

In conclusion, it should probably be noted that the presets, analysis is

hardly a "theory", but rather, a mathematical machine designed to translate

an input consisting of the effect of acoustic erosion on burning rate into an out-

put consisting of the resulting effect on acoustic stability. We have investi-

gated the output of this machine for some ad hoc inputs. Further progress

requires knowledge of the inputs which may be encountered in reality. This

implies either a time -dependent theory of erosion, or direct experimental

measurement of the dependence of burning rate on fluctuating gas velocity.

A number of simplifying assumptions have been made which would need

examination in particular cases. The cross sectionally uniform flow field

assumption is certainly incorrect, but, apart from its axial symmetry, the

r#-sults depend rather insensitively on (space) averages of V e so that

perhaps the model is not seriously in er4 or in this regard. The neglect of
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the doppler shifts arising from the mean flow field may become significant

for high port Mach numbers (comparable to unity), however, and the present

analysis should not be applied in such instances. Applicability of the analysis

is further limited to the axial boundary conditions which we have treated and

it is not too clear to what extent the results would be modified by other end

boundaries. Undoubtedly the selection rules would be quite different, in

general, The neglect of acoustic losses in the gas and in the nozzle is

probably most significant at high frequency and, in the case of end nozzle

rockets, for modes with high axial wave numbers. These losses are signifi-

cant in determining which frequencies will appear. However, we have been

interested in the relative importance of the pressure and velocity effects, so

that this neglect does not seem to be a significant handicap.

The acoustic boundary condition at the burning surface has been repre-

sented by an admittance depending on frequency but not otherwise on the

detailed nature of the mode being considered. Since the solid itself may be

a participant in the acoustic motion, this representation is an oversimplifica-

tion. The solid has both dilatation and shear motion, and these reflect into

a component (Y s) of the surface admittance presented to the gas which is not

solely frequency dependent. We have not included this additional realism in

the calculations presented herein, and must remind the reader that there may

be occasion upon which this feature uay be quite important.
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