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ABSTRACT

The iafluence of erosivity ca the acoustic stability of solid
fuel rockets is examined. Allowance is made for 2 frequency-
dependent erosion constant. The theory verifies the stabilizing
influence o1 the steady flow erosivity for propellants having
positive ercsion constants, with the contrary prediction for
those having negative ercsion constants., The influence of
acoustic erosion i8 examined and tk orde~ !n w.<h it contributes
is shown to depend on the symmetry of the flow field in the rocket,
being quite different for rockets with nozzles af the ¢nd as com-
pared to rockets with nozzles (o the cemer Degenerate and
quasi-degenerate cases where erpeivity might become a predomd-

nant effect are discusnsed
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I. INTRODUCTION

A burning pr. vellant = -+ possesses the ability of amplifying acoustic
disturbances at its surface over a relatively wide frequency band. If the net
acoustic losses in the rocket motor are sufficiently small, as they frequently
are near the resonant frequencies of the rocket cavity, the mocor acts as an
acoustic oscillator. The high amplitude pressure oscillations waich then resuit
produce a wide varietv of secondary phenomena.

Empirical studies have led to a few general cbservations, among which
is the very interesting one tha! it is the fluctuation in gas pressure (in contrast
to gas velocity) which appears tc¢ e of prime consequence in determining ihe
stability, Corresponding to this observation, many theoretical approaches have
1gnored the possible effects of erosive velocity on burning rate and have actually
achieved a considerable progress toward understanding the phenomenon. These
approaches are concerned chiefly with the acoustic stahility of the burning pro-
pcllant. The acoustic stability is determined by whether or not a pressurc wave
(of some arbitrary frequency) incident on the burning surface alters the burning
rate in such a way as to inhibit or reinforcc the incident wave. The boundary
conditions at the burning propellant surface then are expressible in the usual
admittance form and the motion of the gas 1s simply described in terms oi the

usua'! acoustic modes of the system. Ultimately, of course, tlie acoustic

See, for example, “Analysis of Results of Combustion Research on

Solid Propellants', E. W. Price osulia Propellant Rocket Research Confer-
ence, Princeton University, Princeton, New Jersey, Jan. 28-289, 1960,

ARS preprint No. 10€8-60.
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stability rests upon the sign of the real part of the acoustic admittance, which
is the indicator of amplification or attenuation of a sound wave at a surface.
A variety of phenomena now seem to be accounted for in terms of such
2,3,4,5

analyses.

In spite of the empirical observation of the prime importance of the

acoustic pressure, axd the success of theories based thereon, one cannot help

Z"Combustion Instability: Acoustic Interaction with a Buriiing Surface',
R. W. Hart and F. T. McClure, J. Chem. Phys. 30, 1501 (1959). Also APL
report TG-309. "Effect of Solid Compressibility on Combustion Instability'.
J. F. Bird, L. Haar, R. W. Hart, and F. T McClure, schaduled for April

issue, J. Chem. Phys. Also APL report TG-335-1.

3"On Acoustic Resonance in Solid Propellant Rockets” F. T. McClure,
R. W. Hart, and J. ¥. Bird. scheduled for May issue, J. Appl. Phvs. Also
APL report TG-335-2. '"Solid Propellant Rocket Motors as Acoustic Oscillators™.
F. T, McClure, R. W. Hart, and J. F. Bird Sclid Propellast Rocket Research
Conference, Prirceton University, Princeton, New Jerscy, Jan. 28-29, 1960,

ARS preprint No. 1049-60 Also APL Report TG-335-3.

4"High Frequency Combustion Instability in Solid Propellant Rockets.

Part I'". Sin-I Cheng. Jet Propulsion 24 27-32 {1954)

b"Unstable Burning Phenomenoeon in Double-bage Propellants”, Thecs
A. Angelus, Solid Propellant Rocke: Research Conference, Princeton University,
Princeton, New Jersey, Jan, 28-29, 1980, Also Allegany Ballistics Labcratory

Qeport ABRL, Z-9.




bu

~-

t wonder if acoustic velocity mighi noi be important to the stability, at least
.y

[T

n 3
LA H 1

N

under some circumstances. Since the steady staie burning rale depends on
both the pressure and the erosive velocity (the gas stream velocity component
parallel to the burning surface) the theoretical basis of the empirical observa-
tion and its probable generality deserves elucidation.

Although the role of acoustic erosive velocity has not been entirely
ignored, for the most part the a,nalyses6 in which it plays a part have been

directed towarcd the question of inherent, rather than acoustic instability.

Inherent stability is concerned with whether or not an arbitrary perturbation
on the burning rate decays, rather than grows, exponentially with time. A
"propellant" which is inherently unstable would not be expected to possess a
""*steady state" of combustion under any ord.nary circumstances. On the other
hand, we recognize that a propellant for which transients are damped, i.e..
which possesses a steady state, may or may not act as an acoustic amplifier
for incident sound waves.

The bearing of erosive velocity on acoustic stability was discussed
briefly by Chseng‘7 who concluded that ""the dependence of the burning rate on
the drifting velocity alone is not likely to excite instability...' Since the scope
of his analysis was rather limited, this conciusion cannot be accepted as

definitive.

8 . e . .
See, for exampie, L. Greenand W Nachbar, "Analysis of a

Stmplified Model of Solid Propellant Resonant Burning”. J. Aero. Space

Sciences 26 . S18 (1955,

1

'Qin-I Cheng. "High- Frequency Combustion Instability in bolid Pro-
Pollant Rockets.” Part 3 (particularly Appendix IT). Jet Propulsion %g
102-109 (1954;.




The subject which we shall consider, then, is that ol acousiic stabilily
in the presence of a burning rate dependent on “oth pressure and erosive
velocity. We intend to ask for the conditions under which such a burning sur-
face amplifies or attenuates an incident sound wave. The question of stability
against finite disturbances is quite another problem, which will not be treated
here.
II. ANALYTICAL FORMULATION

In order to suppress unnecessarily complicating distractions, we shal.
simplif, .he gcometry to that of a circular cvliindrical cavity containing a
cylindrical grain (outer radius b, inner radius a). We shall neglect the smail
doppler effect produced by the rather slow mean flow of burned gas and regard
the burned gases as a homogeneous medium insofar as acoustic motion is cen-
cerned. For our present study, which is concerned merely with the relative
importance of pressure and erosive velocity, we will select a method by which
we may also noglect acoustic losses in the gas and in the nozzle.
2 1 The End Face Boundary Conditions

We shall treat only the case of rigid, lossless ends sc that we have

(uz)z.:o =0 and (uz‘)z:L =0, {la)

where z - 0 and z = L are the coordinates of the end faces in a cvlindrical
system whose axis coincides wivn that of cur cylindrical cavity, and u_ 18 the
acoustic velacity, These boundary conditions correspond to those encountered
in some researcn tvpe rocket moters with sig. nozzles, and may be thought to
approximate end nozzie rockets without end cavities and with high port te

thrnat ratices.



The formulation of thr erosive boundary conditicn at the propellant sur-
face is, of course, the ~rux of the problem, and at the very veginning we are
somewhat nonplussed by the absence of a time-dependent theorv of the erosion
of the burning boundary layer. We may elect to proceed in either of two direc
tions. On the one hand, we might elect to stop and attack the development of
such a theory, or on the other hand, we might attempt to formulate the acuustic
analysis in sufficientlv general ‘erms that the resuits of a future theory could be
inserted into the analytical structure. These two paths are rather distinct. The
former course would apparently involve a ~onglomeration of chemistry and
aerodynamics whereas the latter is primarily an application of acoustical
principies. Rather than concern ourselves with the predictions of a particuiar
burning theory, we elect to oursue the latter course and focus our attention on
the development of a rather general acoustic structure. By following this path.
we incidentally may hope to be able to form an esiimate as te the importance of
a time -dependent erosive burning theory,

The erosive boundary condition may be obtained from the general
reiationship expressing the flux density of hot gas generation, m, Restricting
our attention to the periodic case 1. e., the transients have already decayed).
we mav express n, as 4 function of pressure, the erosive velocity and their

-
time derivatives  Tnus,

mzmPip oip oo v o iy coe (1b:

g O S

Inte« rals w.oh respect to time would also be required ir the transient

C4d8e.
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SSUre. py is tEaEatiY. pressure at the burning
surface (r=a), Vo is the erosive velociiy (1.e., gas velecity parallel to burning
surface) and where the subscript t's indicate partial differentiation with res-
pect to time. The erosive burning depends on the absolute magnitude of Ve
rather than on Ve itself, because the effect of eros:on is presumed tc be
independent of the dircction of the erosive velccity,
2.3 Porturbation Form of the krosive Bounda:y Conditicn
Assuming the burnming rate to be an analytic function of !
i
time derivatives, and p and its time derivat.ves, we may expand about the
point (P;0.0,0....:0.0.0.0...). 1.¢.. about the non-os: lutory state with no

-
/

erosion. Thus, we have —‘

- ©‘m | : |
m:rm(P:O.O....)+§arp~1! Py * ﬂr%w (pq){+.....7e
L ’ L-pa 0 S lo a %
</

Pl ™~
~ - ) - 7
v v ¢ \ “' | ¥
o : - - A O 'i 1
AR R U - ERUN et \ e
A < 0 Pl ' |
i

" i i

+ ¢ higher order non-linear term= ., | ,
[ - | —J

where, to aveid arwleldy notation, w0 have displaved only one of the muittude

Lol

e

of suhscripts "zero' attached o each of the partic] derivatives. Insofar as
¢ may negiect higher order terms

provided the steady stite erosive hurring w0 adegquately Spproximate? by a

inear uncnion of v .
t
Ay o § PN ; M ol 2k ~ ! 4 ~ = P
fne Lrstterdn on e Ins Eg. -les s merclv the do burniag rate in
¥ BN SR ~ & 8 e es N T e v 3t [ . ~iL . s
the absence Gi eresiai, IOUTUNOTR S L T ‘\._kr:.itt O o~ . The Lirst g {_’1\3



hracketed sums expresses the contribution to gas fiux of a fluctuating pressure
with no erosien, In the notation of rel. 2, this bracket will be denoted by
{ﬁlg fu.l}. The s=cond bracket on the rhs of Eq. (lc) describes the effect of an

erosive velocity, with no pressure fluctuation. (We may recognize the term

— as inGé{ , where k is the usual (dc) erosion constant.) The impor-

tant point here is that the pressure and ercsive contributions to burning rate
are now separated, with the erosive part expressed 2s a linear function of Ve
and its time derivatives. The pressure part has, of course, been studied
2
separately, elsewhere,
Finally, we complete the perturbation formulation by recalling that m may

be exrressed as

me v, -v) (19

whera pis the hot gas deusity, v 1s the hot gas radiai velocity, and A ‘e the
regression spe.d of the solid surface, with radial velocities measured positive

in the outward iacial direction. We have

where the bar denotes ihe time average, Y = spocific acoustic admittance og
the aohid surface, which is zero 11 the solid 1s rigid, and p = the acoustic
pressure at the propellant surtace, where r - a. We use

-~ ' i p

p ": [) + T ] (1’¢\)
'}; I.) (¥
2
. N - . ps - ¢
where 3 s the hot gas speciiie heat ratio and P - p 5 18 the mean



chamber pressure, with ¢ the sound velocity, p the mean density of product
gases. Equations (1f) and (1g), with the definitions of 510 and 510“1 given

above, when substituted into Eq. (ic), yield

/-—ur € chS i ~Mak've! €
( - M My —— + € =
. C Jrea a 1 y y Y

V2lY: -1 ém om | i
+(\__;_.~) U ve\i i ive J ' 5—1‘36_!!() * \Ve\t 8‘,Ve§t\lo T w
L r=3

e
P/ \

For the present case, one further simplification of the boundary equation

m,
where we have also used ££<~—8——W and Ma = ____Q) .
fo

algo applies, Noting that the magnitude of the erosive velocity may be expressed

in terms of its (cylindrical coordinate) components as

= 2 2
Vel "/\/(‘ve“‘lz) + Uy )

we expand the radical to see that, for the arbitrarily small acoustic amplitudes

relevant to stability theory,

\}Ve]%‘re + Uz‘ = ‘ ;el\ +u, Signum (?e), (1i)

v

where Signum (?e_) =+ i or - | according to whether Ve is positive or negative.
In the iollowing, then, we will use the linear boundary condition obtained by
substituting Eq. (li) into Eq. (ih}, i.e.,

fur\ ) pcY e

. € s e € i ~ -
) M ) T MR S e = st @
< Jr=a pe
‘,C“z %‘%;l' + e )y ’éar?” + (2)
( e‘lo eit )




in which ;e is still to be regarded as an arbitrary funct’ nof z .
2.4 Fourier Transformation
It is most expedient to take advantage of the simplifications which result
when we consider only harmonic solutions. Accordingly, we may define the
time -independent tilda'd functicns by the relationships
p = (Real of) ’f)/eiwt

~ iwt

_u = (Real of) ue , and
My = (Real of) ﬁ)ewt . (2a)
The boundary equa*ion (Eq (2) ) then takes the form
A N
ur 1 /\J M k\ e\
A= - -——) £=~———~—-———-—+MKu ngnum(v)
c 3 ’V’ Y 14
L y,

.2b)
where K, because of this definition, may readily be obtained from a time-
dependent theory of erosion if it should become available. We may note, in
particular, that K(w~> 0)—> k, and refer to K as the ""ac erosion constant',
The end face boundary conditions (Eq. (1a} ) are easily transformed to read

=0 (2c)

~ ~
‘z::L

uz\ =u_
2=0) “

and, of course, the wave equation to be sclved for these boundary conditions

\ 2
transforms to the Helmholz equation, v p +<—°1—‘ ’b"_ 0.

/
OI. ANALYTICAL SCLUTION OF THE BOUNDARY VALUE PROBLEM

The analytical problem has now bee.i defined. ¥ the solution were obtain-
2ble by several of the mcre obvious and routine approaches, we would merely

display the result, and assert that it easily could be verified by substitution



i1

into the Helmholz and the boundary equations. A rather special approach seems
necessary, however, so that it seems desirable briefly to sketch the method of
solution. The method begins in the standard way. We note that the solution
will be expressible as a sum of the elementary (separable) solutions of the

Helmholz equation expressed in cylindrical coordinates:

2 9]

0
_—g_ _ 7 > 7 Py ; Jj(air) cos G’L_z-) cos (j6) (3a)
5 STo
2 NS
/;fr = € Z Eﬁpl,} oJ a o0 cos< )cos i9) (3b)
e 4750 16

® )
2 7 N7
g LK > p IJ(a r) sin luz cos (j9)
z £,] (3c)
ywl -/ - / \
=0 £=0

2_w2_ nd 2
"1“;2‘ L ’

The appearance of the individuai sine and cosine terms indicates that we have
forseen the axial bounda. y conditions expressed by Eq. (2c).

The usual approach wouid ve to substitute the field expression (Eqs. (3a),
(3b), (3c))into the boundary equation (Eq. (2b) ). In the absence of erosion
(k = K = 0), this substitution quickly yields the usual result that the charac-

teristic frequencies would be determined by the values of w for which
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iyaw chS

~J
(ana)Jj(ana) + = < it yMa Man(ana)

it
L=

4a)

We note that the system would be neutrally stable (real w) only if

) _
Real of [ £__ . )1, - ;%{E— Real of Y_, (4b)
€ a

and that the system would be damped only if

v 1 -
Real - <—~9—c—— RealcafYS

4 Y / YM,

In the presence of erosion, however, the analytical difficulties begin
immediately. Commencing as before, we note that in order to determine the
characteristic frequencies (for which a solution for the pn-'s is at least possible),
we would have to discover the roots of an exceedingly intractable infinite determi-
nant.

At this point, a bit of reflection is enough to convince us that we did not
really want specifically to know about the effect of erosion on the characteristic
irequencies, anyway. The informztion which we really seek is the relative
importance of erosion compared to pressure in determining stability.

Let us, then, attempt a less standard, but more direct approach. Suppose
we recognize that we would have a rather satisfactory answer to our question if
we knew for a given erosion constant how much the admittance (as measured,

8ay, by/ﬁ//e\{ of the burning surface would have to be altered in order to restore

the characteristic frequency to its value for zero erosion. The {important
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advantage in formulating .his particular question is that the characteristic
frequencies of the system then correspond exactly to those for zero erosion,
which are very easy to determine!

In order to discuss the contribution of erosive velocity to stability, we

must first digress for a moment in order {o digplay the norienclature for

labeling the acoustic modes. To specify a particular mcie, ve mus‘ give aagular,

radial and axial mode rumbers. Thus, a mode is represented in tiie usual way
by a three-element array, the first number representing the number of axial
half waves, the second the number of radial interior (velocity) .odes, and the
third the number of angular nodes. In order to avoid unnecessary repetition of
subscripts, we shall designate the modes by’y = N,R,©.

In order to carry through this approach, then, we shall write k = 8K ,
and develop the solution as a power series in K. * We write, for theﬁ}jth
mode,

/Alf ’[f /Kca M; J
(&) =% - S T/ Py )
po \ N (4¢)

\€ €/ k=0 VAN

(where :he expansion parameter (w_“_ , rather than merely K,

itself, is used for later conven:ﬁencé). Thus, if we can determine the

‘The value of 8 would havs-: to be determined from a time-de endent
erosion theory and in general would be a function of propellant composition,
operating conditions and frequency. If there were frequency intervals for which
k was much greater than K, the appropriate expansion for our problem would

of course be in powers of k, with K = g'k.
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coefficients Dj N Ve shall have found the comparison between the effects of
erosive velocity and pressure. Restricting our attention to the conditions for
neutral stability, for which w's are real (and given by Eq. (4a) ), one can

now readily verify that the solution to our boundary value problem is expressed

by Eq. (3a) with the p, given for the Nth mode of the system by

an n
0 s aKcMa\ én) N ’ (sa)
¢, N j,0 L ) £ ~
S
n=0 )

(n)

where the p ¢ N are found from the recursion formula

W

. d

*Jaquunu yorw jxad




n-1
—7 -
¢ aM
(n) _ E&% a ) (ru) W :-_
PpN~ C u@AQPZ& UFZ anmN ') 6
~ S ~s
m = .w
\ . wéez \,ks
r a, N3dglay N3 - — = M Jgla, z ﬁé\w
o -~
where ©
ic A: Dy
D ., = — (a NV e -
5‘& \ t z @ vV, N
C\ZV\WZN ..H@?qu ZN.V \(.
X XS i
o (n) 0) _
é::nﬁ.zlan‘o and ch“zlom,z,
~ ~

~:xu<)\

where 6 is the Kroenecker delta, ox , =
3 W x fy
The Fourier coefficients .ct 1 and c, pare defined by
c = 2 dz Signum A«. ] cos \.@.N sin{ £T17.
v, 1 (146, )L en e / o) .
T ,0 0 AN
L
b | 2 v inz N th
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This completcs the solution for the non-degenerate case. Calculation is
not difficult in spite of the rather unwieldy expressions because of the typi-

aKcMy

cally small value of — 1 . It will usually be entirely adequate to
\

terminate with the p(z)'s_. In a delgenerate case, where more than one mode of

motion corresponds to a single frequency,the denominator of Eq. (5b) vanishes

for some £ # N, and a slightly more general solution must then be obtained.

IV. RESULTS OBTAINED FROM THE ANALYTICAL SOLUTION OF BOUNDARY
VALUE PROBLEM (NON-DEGENERATE CASE,

The question to be considered in this section is the effect of an erosive
velocity on stability. As has been discussed, we have decided to measure this
effect by determining the increment in the response function (fi/"e‘) which would
be necessary to re-establish the neutral stability conditicn, when erosion is
suddenly “'turned on''. The reference scale is provided by the observation that
the real part of '[1 ¢ can ordinarily be expected to lie between the dc pressure
exponent (£1) and a value perhaps several tentins greater than unity. 2 Of course,
we must keep in mind that the questivn of instability or stability 15 determined by
whether the real part of /;L’féudO&’S or dees not exceed a critical value, and
therefore the erosive term, though small, would nevertheless become a cridical
factor in determining stabiiity for cases such that (f ;J)O were ciose to the
critical vaiue,

/ aM K
Examuning the magmitude of the expansion parameter |~ -
| L //
-0
we suspect that, larvely because of the small mach number (M~ 10 7 {the

hot gases teaving the burning 2o o0 usdaliv will be guite satisfactory to




consider only the lowest order non-vanishing terms even for highly erosive
propellants.
Let us consider the linear term first. Substituting Eq. (5d) into Eq.

(5c), and the result into Eq. (4c), we find rather quickly that (we also use the

identity 8 K=Kk),
'[f 'y ke iKcan
7;7 - 7? = - Mp bNN + oL CN,N + higher order terms. (8)
0

In discussing Eq. (6) two cases need to be distinguished, namely,
the ordinary rocket with the nozzle at the end and special rockets with a side
nozzle at the center. In the first case ;e is a positive quantity whereas in the
second case it is positive in one end ~f the rocket and negative in t..e other.

For the usual case of positive ;e the coefficient ¢ 0. Thus, to

N.N

first order, the contribution of the acoustic erosion is zerc. For the typical

cylindrical rocket ?e’—‘fh{pcz, IL we obtain b Thus, we have aliready

1
NN 2

determined in this first order term the predominant effect of mean erosive

velocity on the onset of instuu.ddity, It is clear that, with ke typically less than
about 4 even for very erosive prepeliants, and Mp typically not greater than
pernaps i 10, the eflcct of dc erosion is to be "compensated for” by altering

A A _ . .
L € by~ 1 5. Thus. we should expect to find enhanced stability for pro-

peliants having a positive do erosion censtant. For unusually high erosive
velocity, and raghlv ernsive propeliants, tnhis stabilizing effect could be very
cubstantial. Such an effect has indeed been cbserved. On the other hand. we

would expect the oppesite effert {07 nuegalive e, 0810n Consiants, name.y. 4

greater tendency toward instaiity - In order to discuss the effect of the
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acoustic velocity for the end nozzle case we must go to second order. This
we will do after discussion of the first crder treat,ment for the center nozzle

case,

For the center nozzle rocket the situation is quite different. Here
2M cz

vY _ P L

Ve L ’ z < 2

-~ . L
g I,>~12

This steady state velocity distribution leads to

X ~ 2
CN’N— N7 for N odd

c =0 for N even;

while

1 -
= for N even
2

Thus we see that for Neven (¢. ¢ . the even axial modes) the ceater nozzle
rocket gives the same results as the end nozzie rocket. However, for N odd

(e.g.. the odd axial mode ° the situation 3 strikingiy diiferent. Here the

contribution of the acoustic erosien couid be extremely rmportant. In par-

Fys~ ¢} Fipgt Y1
ticular. for the first axal mode we find

~ -~ i - : .
./ / N \ " ND / ,‘ A a I'\C
o / jos \ “ &t

- - 7 - ! - - X - - e

o NS 2 z -
¢ ¢ ’/\ ‘.\

' e 4

ind we note that the ordinarily stabinzong for kS O




16

erosicn is reduced by 40%. More important, the imaginary part of K need
not be large to make an extremely significrant contribution. For example,
if imag (Kc)¥ - #/2, the acoustic term would be 1,3, which is the usual
criterion on (}Jz/'é for an amplifying surface

Provided k is positive, the damping due to the b term i8 greater fcr

N,N
even modes than for odd modes. The first order acoustic term contributes to

the instability if (iK)<« 0, and to the damping if (iK)> 0. Thus, for low frequency
(and k >0) one would expect this term to contribute to instabijlity tor the odd
modes.‘ One cannot help b't w_ .der whether this effect does not contr hute (o
the experimertal obser ation that the predominauiiy unstable axial modes in the
cerntcr nozzle of Price et ai are the odd modes. However, at much higher
frequencies the cdd modes might be, on the contrarv, stabilized.

Returning to the discussion of the end nozzle case, we shali invesiigate the

contribution of acoustic ercsion by displaving the second order termis. We find

()v; £ ( 1\’;"1—1‘
i - =4 .
T for v # ¢ .6a)
"'/~i it Iy A T[L.' ?
[ S S ~ ¥ - .
1 Equ
and .
¢ =0 .
(.t
- czZ
Forv =M i
p i
. 9 )
I PR TLAL SRS
b e dal e i &h
{ 2 5 0.9 '
- "4 € ): B g
~ [ S y gr' - i
{ f.L!l s

P
S cr T lre A Rt v . Ctha ose TigheA e illare - b
These remarks duo not pertain to the cstabiisheag eoscillaticn at "g"
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and
b =l
£, 0 2
Substitution ¢f these expressions into the general solution finally yields, for

this case,
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(7)

While Eq. (7) may appea. simpler than the exact solution, this appearance
is scmewhat deceptive and one must be careful about generalizing from it as
to importance of the erosive eifects. These obviously deperd upon the nature
of the propellant (particularly with respect to the values of its erosion constants
K and k) and upon the geometry and the mode under consideration. If, for
example, the A=nowinator in the sum should fortuitously bercme very small
for some particular £ and N the result would be a large eifect on the stabiiity,
either to increase or decrease it depending on the sign of the real part of the
term involved. The extreme case of one of these denominators actually being

zero corresponds to the degenerate case discussed in the secticn V.
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In many typical rocket geometries, however, the denominators will be
more or iess uniform in value over the frequency range of interest and in that
event one can expect less drastic results. In the case of N=N,0,0, or
essen’ially pure axial modes, we nc‘‘ce that —if?CL— =7 and as a conse-
quence, for the usual motors and propellants, the second term in each square
bracket (k terms) will make a negligible contribution if the axial number N is
not very large. The contribution of the first terms (K terms), however, needs
ex..mination since they may have larger coefficients. To gain some idea of
the size of the effect let us consider the special case with

[u/"f -pcY /yM ] = 0. which corresponds to the unperturbed solu-

tion (see E3. 4a)) having a pressure antinode at the surface. Assuming the

rocket to be a cylinder with ;e = Mpc:z/ L we obtain

" at M | 2M (K Kc)?
R B S B EBoiass. ) X
1 ~ 2y N,0 2

0

VZE' (_anJ [Nm/fl ) )
2 321 - 2N Jl\Ngajl )

(€a)

When Nra_ is small, the sum converges racher rapidly because of the high

L

power in the ¢enominator, and clearly, the largest contributions will ordi-
narily come from the terms v = N + 1, except for the case N = 1 when only
the v= N + 1 terms need be retained. In particular, for the lowest axial mode,

LM, M
we find (With N=1, ® 0, andv =2 and —— = ._é?-),
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For this particular case the acoustic contribution is proportional to the
imaginary part of K/8 (i.e., (Kz/k) ) 8o that there is no contribution to
stability unless K is complex. The importance of the result depends, of course,
on the size of this component of X/3. If it should be of the sa'..e order as k
itse.., i.e., kc say about 4, the acoustic contribution would be approximately
one-half the dc contribution. Thus far positive erosion the net effect would be
to stabilize the rocket.

Investigation of Eq. (7) for radial and tangential modes shows that the
acoustic term is quite small for typical geometries. Thus, we see, in con-
trast to the center nozzle rocket, there is a wide range of conditions over which
we expect erosivity to contribute little to the question of stability or instability-
For rockets in which axial modes of very high N are not heavily damped, this
generalization may not be valid. Moreover, it may fail dramatically for

conditions approaching the degenerate case discussed in the next Section.

V. THE DEGENERATE CASE
5.1 Degeneracy and Quasi-Degencracy
If we were to consider maximizing the acoustic erosive effect, we would
refer to Eq. (7), and note that if the denominator were to becoe very small
for some term, say for £ = M, then the influence of erosion might indeed

become overwhelming. Of course, the real part of the denominator will vanish
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whenever the frequencies of two characteristic modes of the system coincide,
Since the internal radius of the usual sclid propellant rocket chamber increases
with time as the propellant burns, the frequencies of the radial and tangential
modes decrease with time while the pure axial mode frequencies are
independent of chamber radius. This state of affairs is indicated in Figs. 1
and 2, for a hypothetical motor with L = 57cm, ¢ = 105 cm/sec . ‘ In Fig. 1
we have plotted the radial and axial frequencies, and in Fig. 2, the first
tangential frequencies, corresponding tc the radial velocity node boundary
condition on the burning surface. -

In general, at each intersection point in Figs. 1 and 2, the real part of
the denominator vanishes in one of the p ﬂ's occurring in the sum representa-

tion of the solution. But the system is not truly degenerate at these intersec-

tions unless the imaginary part of the denominator also vanishes there, i.e.,

'3
The figure is easily scaled to represent chambers of other lengths and
radii. If both a and L are multiplied by a common factor, the frequency

scale is to be divided by that factor,

** ‘Although these '""quasi-modes’ are not the true modes of the cavity
because the solid propellant itgelf also indulges in the acoustic motion, it has
been shown elsewhere that the frequencies of the modes of the composite
system which have large gas pressure amplitude - and therefore large
erosive acoustic velocity, cf. (Eq. (3c) ) at the propellant surface iie close

to these gas quasi-mode frequencies. 3
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unless the acoustic losses '"accidentally'' balance the gains for that particular
geometry, However, we see that during the course of burning, many points of
""quasi-degeneracy' may appear, where the denominator of a term in the sum is
especially sn.all because its real part vanishes. But we shall expect a true
degeneracy,characterized by the vanishing of both real and imaginary parts, to
be a rare occurrence,

Unfc-tunately, at this time it seeias impnssible to calculate the expected
effect on stability at the points of quasi-degeneracy. The impasse arises because
we need to know the imaginary part of the denominator which will, in general,
be a function of the losses in the normal mode being considered. The detailed
computation of these losses poses formidable difficulties and no experimental
information bearing directly on this peint is available,

We may,however, expect to gain insight as to whether or not erosion can
have a large influence at configurations corresponding to such quasi-degenera-
cies by investigating the limiting case of true degeneracy.

5.2 The Degenerate Case

Let us now suppose that two normal modes of the system are neutrally
stable. In other words, let the inner radius a approachn a value such that the
denominator of Eq. (7) vanishes for some f , say f = M. Then, we must
re-solve the boundary value problem to develop a so.ation for this degenerate
case.

The analvtical method remains relatively unchanged; we again expand in

powers of the expansion parameter, and equate the coefficients of equal
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powers in the boundary equatinon. This time, of course, the unperturbed motion
must include two. rather thar one, zero order terms, in order that the new

sum to be obtained will not contain any terms with zero denominators. We write

A AlJ (
P nNz\ / o
P -y J (a,, ,,T)cos (a r) cos
P N,§§6 N,N ( / Io M, N \Je("MN
—

08:
© ©
" S S ; Ttz i
leJ.(aLEr) cos( T cos(jh) (9a)
~N 3
j=0 1=0
(£# M,N when j = )
where A is to be determined in such a way that the solution approaches the
bracketed term as the erosion vanishes (K > 0). The velocities 'LYr and’t}; are
obtained in the usual way (Eqs. (3b), (3c) ) . and substitution into the boundary
cendition equation at r = a finally yields
-
"“ CoL ; .
\‘MN ¢ N.N M,Mi— | ‘M N cfy N NN “MM
- ”“/
(8h)
where
N L iwL .
N M = INCG ;SM by oy - (8¢)

The upper and lower signs correspond to the two possible choices for A in
£q. (9a). and define the two orthogona. combinaticns of the degenerate modes,
which may be obtained by substituting these A's into Eg. {8a). The increment

in the response function necessary to re-establish the neutral stability condition
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when erosion is "turned on'' is finally found to he

(T chp ) VRN chp 72
AN/ (bN,N*bM,M)/:/ (Ke) (Ui:?) (’fN,MfM,N)“{ﬂZT x N Pm, M |

J

(9d)
o _ - , "
Noting that, at least for typically small Mp, ( IN, M fM, N) is positive, we see

that the mode corresponding to the choice of the lower sign is made more
stable by erosion, while the mode corresponding to the choice of the upper

sign is made less stable. Each mode will look more or less like an N mode or
AJQGzN I,}La
an M mode according to whether or not z o is substantially less

Je(aM,Ea)

than, or greater than, unity.

An appreciation of the order of magnitude involved ri.ay be obtained by
evaluating Eq. (9d) for a few cases. If we consider the conventional end nozzle
rocket, the b

may be obtained from Eq. (6b), and the ¢ from Eq. (6a).

N, M N. M

One quickly finds that the increment in "J'EJ arising from acoustic erosion will

be sometimes large and sometimes small (relative to 1,'v), with the larger
contributions occurring for N clcse to M. If we continue to take Kc =4, L = 57 cm,
c = 105 c¢m, sec, and y = 1.2, we find for example, that for the 5,2,1and 6.1,
intersections, the radical in Eq. (9d) yields the vaiue 1.8. Thus. such true
degeneracies, if they were to occur, could enable erosion to exert a profound
effect on stability. The importance of having M and N nearly equa! can be

shown by reducing the value of M from 5 to 1 in the above example, with the

consequent diminishing of the contribution frem 1.8 to 0. 1.
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In the neighborhood of degeneracy we see that we might expect acoustic
erosion sometimes to have a large effect on the question of stability or
instability. The question naturally arises why this effect has not rnade its
presence obvious in experimental studies. Of ~ourse, one should note that
unless the results were relativeiy catastrophic, it would be quite easy to miss
the connection between degenerate modes unless one wer. specifically looking
for it. However, there are probably more important reasons why the ¢ffect has
not been noticed. In the first place, we shculd recall that the losses will
generally be rather different in twc modes even when they have the same frequency.
As a result, true degeneracies will be relatively rare compared with the miider
quasi-degeneracies. Inthe second place. we see that even the quasi-
degeneracies are not particularly common in the small thin motors typically
used in research studi¢s except at very high frequencies where one would expect
the general damping to be great enough to keep things under control.

In looking for this phenomenon, the principal clue would be the observation
that two modes, one or both of which is individually stable, together become
unstable when their frequencies ¢ross.

Price has observed catastrophic interaction for modes having the same
frequency in some of his experiments. It appears, however, that this 1s an
interaction between certain axial and tangential modes. In linear theory.
axial and tangential modes are orthogonal be-ause of (heir different angular
distribution, and thus should not be coupled. At finite amplitude, however,
1in the presence of mean flow and erosion, this exact orthogoenality will no

longer exist. It is possible that Price’'s observations represent the same
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phenomenon where, however, the coupling arises from the non-linearities
implicit in the large amplitude case.

The mode maps cbhtained »xp ‘rimentally by Angelus provide an appro-
priate dis;'ay of data for which a number of crossing points of mode frequencies
exist. To the best of our knowledge, none of his exp« rime=*s have shown any
particular osciilations attributable to these intersections, nor have they shown
the catastrophic behavior observed by Price. It wou'd appear. therefore, either
that the acoustic erosion constant was quite small ‘n. >se . “eqv ncy regions, or
that the losses in the intersecting mndes we.e such that noth ng .pproaching a
true degeneracy existed. At itnis time there iz no inibrmation available to
decide which r. these reasons was dominant. W: °ther or not phenomena
associatec with mode degeneracies have actuall: occurred in researches of other
investixators is essentially not determiaable .nless the data are processed in a
manne! simil~r to that used bv Ancelus.

5.3 Selection Rules

Up ic thas point, we have not considered the possibility that some degenera-
cies (or quasi-dcgeneracies will fail to contribute because of zercs in the
numerators of the crfical terms in ®qg. 7). Because of the poteniially lurge
degenerate effects, h-wever, the se.cction rules introduced by zercs in the

numerator of Eq. (7} shouid be me lluned.

Referring to Eq. (Se) and 5. we _ e that the bl m and ¢ m wili vanish

{or £ + m either odd ¢r even. depending ¢on symmetry of the function for which

thev are the Fourler coefficionts  Thus, for example. analys:s shows that if

po



\Ge\ car 2e made into an antisymmetric function abcut the midpoint of the

chamber by adding a constant, then the bi - vanish for £ + m even.

Analogously, if \3’6, can be made symmetric about L '2 by adding a constant,

then the b vanish for £ + m odd. With respect to the ¢
£, m £, m

Signum (Ve) is symmetric about z = L.’2, then they vanish for £ + m even (or

, we find that if

for £ + m odd if antisymmetric), so that we should find. at least to first order,
rno erosive contributions corresponding to such "forbidden' intersections.

As a result, the selection rules arc quite different in the end nozzle and
center nozzle cases. For center i.0zzle rockets, we find the the b's and ¢'s
vanish if the sum of their indices is odd, while .or the end nczzle ~1s8e, these
coefficients vanish if the sum cf wneir indiccs 1s even. Thus, in center nozzle
rockets, large erosive contributions from degenerc*e configurations become
possible only at those configurations which were forbidden in the end nozzle
rockets and vice versa.

VI. DISCUSSICN
The initial objective of this study was merely tn sce whether ACOustic L, €0ry

wouid indeed confirm the rather widely held int
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effect that the influence of erosion on stability is usually a minor one exc.pt {or
the general tencency of nigh steady vrosion to stabiiize. We have met with
success insofar as this obiective 18 concorned. Eut we have also found that
under certain circumstances which are presenily rather except.onal, rather
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the stability cceestion.
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For the most part, the effcets of erosive velocity have been separated
into two components which arise on the cone hand from the erosive component
cf the meun flow velocity, and on the other hand frem the erosive component
of the acoustic velocity. Witli respect to the mean flow velecity effects, the
analysis indicates that if the dc erosion constant, k, and the mean flow
velocity, ;e , are sufficiently great that'kH?e i)wi/ﬁ%, then in end nozzle
rockets, stabiiity suculd be significantly enhanced for erosive propellants hav-
ing k>0, and significantiy diminished for propellants having k€. Experi-
mental evidenre does substantiate the first of these two results, but we are
unaware of experimental data relating to negative erosion constants. In any
case, data necessa- y for a quantitative compariscn with experiment do not yet
exist., The odd axial modes of side nozzle rockets should be somewhat less
sensitive to k?e in linear analvsis., We know of no quantitative data to confirm
or deny this result, except again to note the fact that non-mesa propellants
in side nozzle moters seem to prefer to initigte gscillation in odd axial modes.

The situation with respect {o the effect of the erosive component of the
accustic velocity is numerically somewnat iess satisfactory. The analysis
indicates that the accustic ercs:on constant should indeed usually have little
kearing on the stabiiity question - except in two kinds of exceptional circum-
stances. Of these two, the first pertains to the side nozzle rocket, and the
second i¢ geometrical configurations for which the system becomes acousti
cally degenerate,

With respect to the side nozzle case, we have found that accustic eroasion

coniriputes in {irst order, whereas in usual end nozzle rockets, this effect




makes its first appearance in the second order terms. Whether acoustic
erosion increases or decreases stability (insofar as the {first order term is
concerued) depends on th: imaginary part of the ac erosion constant, K. Thus,
its effect must vanish at sufficiently low frequencies where K-k, and at
sufficiently high frequencies where the system becomes unable to respond to a
sufficiently rapidly varying erosive velocity. Unfortunately, it appears that
nothing is yet known regarding the relevant frequency interval.

With respect to the degeneraie configurations, a realistic quantitative
calculation in the immediaie neighborhood of these "accidental'' degeneracies
not oniy would require a time-dependent erosive burning theory, but also a
difficult and detailed treatment of the visco-elastic losses for the degenerate
modes. We have attenipted neither of these tasks. However, an order of
magnitude calculation has shown that, at least in principle, the effect of acoustic
erosion could be overwheiming in the case of certain degeneracies. We should
perhaps mention a third atypical configuration, namely rockets having
unusually high port Mach numbers. Here, too, the acoustic erosive velocity
may substantially affect the balance of gains and losses, with the sign of the
effect depending on the phase shift associated with the acoustic erosion.

Finally, the above generalizations must be tempered by the thought that
for some future generation of rockets with high burning rates, highly erosive
propellanis and short fat motors many feafures not prgviously ¢bserved
may well become apparent.

With respect to the elementary concepts, and to accounting for the

existence of the phencmena through a physical picture, one may now easily
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visualize their occurrence with the aid of a little hindsight. The effect of the
dc ¢ rosion constant is simplest to account for, so we shall discuss it first.

In order to do so, then, we may suppress the acoustic erosion by setting

K(w) =0 for w f 0. Then, referring to the boundary cordition at the burning
surface, we see that the turning on of a steady uniform erosive velocity merely
increases the usual steady mass flow by (1 + k \Vel ). How much will we then
have to alter '21// er in order to restore neutral stability ?v Since 1 vwms

defined as the fractional increment in mass flow without erosion, we would

(’g’ 0o " n’%) ’

just as i8 given by Eq. (6). The coefficient bN N which is equal to unity only

for the constant flow case just considered, may be regarded as describing an

A/ -
expect to find the increment in u/?/to be k) Ve

appreprizie average of the erosive velocity over the mode.

The pcssibility of a large acoustic interaction for the degenerate cases
might also have been anticipated. For simplicity, let us now suppress the dc
erosion by setting k = 0. For an end nozzle rocket, any single mode with even
£ has the acoustic pressure and radial velocity symmetric about the center of
the chamber, whereas the acoustic axial (erosive) velocity is then antisymmetric
about the midpoint. The reverse situation‘applies if £ is odd. Thus, the mass
flow perturbation introduced by the axisl velocity tends to destroy the pressure
distribution which gives rise to it. But if we have two modes, (at the same
frequency), one with even and one with odd £, then the erosive perturbation of
one mode can tend to reinforce (or cancel) the pressure and radiai velocity
oscillations of the other, and we might expect a relatively large effect. For

the center nozzle rocket, howevcr, the antisymmetry of the steady state flow

§
[ »
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field plays a dominant role. For odd modes, the pressure distribution is anti-
symmetric and the steady flow field will keep the velocity distribution sub-
stantially antisymmetric also. Thus, large interaction between the erosion
and pressure contributions to stability would ve expected even in the absence
of degeneracy. On the other hand, if the mode is even, the situation is not
essentially different from the end nozzle case. Of course, the dc and ac
effects are not always so neatly separable, so that this backward look has
qualitative significance, only. But it should probabiy serve to caution one
against any ill-conceived generalizations of these results to other configura-
tions with new boundary conditions.

In conclusion, it should probably be noted that the presen. analysis is
hardly a "theory'", but rather, & mathematical machine designed to translate
an input consisting of the effect of acoustic erosion on burning rate into an out-
put consisting of the resulting effect on acoustic stability. We have investi-
gated the output of this machine for some ad hoc inputs. Further progress
requires knowledge of the inputs which may be encountered in reality. This
implies either a time -dependent theory of erosion, or direct experimental
measurement of the dependence of burning rate on fluctuating gas velocity.

A number of simplifying assumptions have been made which would need
examination in particular cases. The cross sectionally uniform flow field
assumption is certainly incorrect, but, apart from its axial symmetry, the
results depend rather insensitively on (space) averages of ;e , 80 that

perhaps the model is not seriously in er.or in this regard. The neglect of
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the doppler shifts ariging from the mean flow field may become significant
for high port Mach numbers (comparable to unity), however, and the present
analysis should not be applied in such instances. Applicability of the analysis
is further limited to the axial boundary conditions which we have treated and
it 18 not too clear to what extent the results would be modified by other end
bourndaries. Undoubtedly the selection rules would be quite different, in
general. The neglect of acoustic losses in the gas and in the nozzle is
probably most significant at high frequency and, in the case of end nozzle
rockets, for modes with high axial wave numbers. These losses are signifi-
cant in determining which frequencies will appear. However, we have been
interested in the relative importance of the pressure and velocity effects, so
that this neglect does not seem to be a significant handicap.

The acoustic boundary condition at the burning surface has been repre-
sented by an admittance depending on frequency but not otherwise on the
detailed nature of the mode being considered. Since the solid itself may be
a participant in the acoustic motion, this representatior is an oversimplifica-
tion. The solid has both dilatation and shear motion, and these reflect into
a component (YS) of the surface admittance presented to the gas which is not
solely frequency dependent. We have not included this additional realism in
the calculations presented herein, and must remind the reader that there may
be occasion upon which this feature way be quite important.
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