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Abstract 

Diffraction patterns of a circular aperture illuminated 

by partially coherent light can be calculated fcr a variety 

of correlation functions and radially varying intensities. 

The calculation is facilitated by using a theorem, based on 

the Wölf formulation of coherent theory, that relates the 

Fraunhofer intensity of a quasimonochromatic spatially 

stationary source to the Fourier transform of the product 

of the source autocorrelation function and the normalized 

source mutual intensity. Curves are presented for the case 

of a circular aperture with uniform intensity and exponential 
correlation. 
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Partially Coherent Diffraction by a Circular Aperture 

JL INTRODUCTION 

Although the theory of partially coherent light has been the subject of con¬ 
siderable study, ^ 2 relatively little work has been devoted to partially coherent 
diffraction even though an adequate mathematical formalism exists. Diffraction 
studies have to date been confined to the one-dimensional slit. Parrent and 
Skinner3 have examined the diffraction pattern of a primary slit source with uni¬ 
form intensity and exponential correlation, and Bakos and Kantor have theoreti¬ 
cally and experimentally studied the diffraction pattern of a slit illuminated by a 

parallel incoherent slit of finite width. 
One reason that the study of partially coherent diffraction has been limited is 

the difficulty of evaluating the multiple surface integrals in the Wolf-Parrent ex¬ 
pressions for the intensity in the Fraunhofer region of a plane partially coherent 
quasimonochromatic source. Schell's5 recent derivation of a Fourier transform 
theorem valid for quasimonochromatic spatially stationary sources considerably 
facilitates the calculation of partially coherent diffraction patterns. 

The first part of this paper presents a derivation of the transform theorem 
that closely parallels Schell's original. A familiarity with the Wolf formulation 
of partial coherence is assumed, and only essential background material is reviewed. 

The transform theorem is then applied to the case of the circular aperture. It 
is shown that diffraction patterns for a variety of correlation functions and of radially 
varying intensities can be obtained from line integrals easily evaluated by numerical 
methods. Curves for a circular aperture with uniform intensity and exponential 

correlation are presented. 
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Scalar theory is used throughout and so the results are applicable either to g 
sources with no preferred direction of polarization or to linearly polarized 

sources. 

2. A FOURIER TRANSFORM THEOREM FOR PLANE QUASIMONOCHROMATIC 
PARTIALLY COHERENT SOURCES 

Given an analytic signal representation V(t) of the light disturbance at time 
t at a point in a time-stationary field, a measure of the correlation of the field 
is the mutual coherence function 

r(Pr p2,t) * r12(r) = ^(t+rjv^t)). (D 

where Vj(t) and V2(t) represent the disturbance at points Pj and P2, and the 
sharp brackets indicate that an infinite time average is taken. A normalized 
form of the mutual coherence function, called the complex degree of coherence, 

is defined by 

where Ij = F^O) and I2 = r22(0) are the time-averaged light intensities at Pj 

and P2. As a result of the normalization, |712*t>I ^ 1# 
The freespace propagation of the mutual coherence function is described by 

a pair of wave equations 

V F10(t) = -tt m 12' c2 
1 82r12<T> 

8t 
m= 1, 2 (3) 

The subscript m indicates that the Laplacian operates on the coordinates of the 
point P . The boundary-value problem for a plane aperture with a known distri r m 2 
bution of the mutual coherence function has been solved. In the field of the 

aperture. 

ffl_ 

<2«>‘ i h rfrl 

where S is an aperture point, P^ is a m m 

IT ”” X* 

n(r J, r2, t) riSy S2, T- ^ 2) dOjdOg, 

field point, r„ is the distance from m 

(4) 
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Sm to Pm, 0m is the angle between the normal to the aperture and the line 
from Sm to Pm, and £2 is the differential operator 

ß = 1+ rrr2 _a_ 
8t 

rlr2 

8t 

The field is assumed to vanish over the aperture plane exterior to the aperture. 

The form of Eq.(4) appropriate to the important case of a quasimonochromatic 
o 

field with small path differences is 

-2itivr r r cosö,cos ft, ik^r.-rj 
r(P1#P2,r)*s-s-yy (l-ikrja+iïïrj -/ .- r(S1tS9,0)e 1 ¿ da.da, 

1 ¿ (2ir) aa 1 2 r? r^ 12 1 ‘ 

4? 
V 

«1, Max 1 
Av ’ 

(5) 

where v, k, and Av^ respectively denote the mean frequency, mean wavenumber, 

and spectral width. The quantity TiSj, S2< 0) =1(¾)^ 1(¾)^ TÍSj, S^, 0) is the mutual 
intensity function of the aperture. 

From Eq. (5), the intensity in the Fraunhofer region of the source is obtained 

by letting the field points Pj and P2 coincide, setting r=0, and making the 

standard farfield approximations. Thus, 

I(P) = I(p, e) //r(S,, SL, 0)6^sine^ ' (^¿'^)da.da0 . (6) 
\¿n¿ ao ^ 2 12 

The quantities in Eq.(6) are defined with reference to Fig. 1. The aperture 

source a is located in the Xjyj plane and the diffraction pattern is described with 

respect to the identically oriented x2y2 coordinates; 0 =cob~* z/R, where R is 

the distance from the origin Oj in the plane of the source to the field point P, and 

z is the distance from to the field point 02 perpendicular to the plane of the 

aperture; Sj and are the vectors to the source points from Oj, and p is the 
unit vector in the direction from 02 to P. 

A simple geometric calculation applied to the assumption of small path 

differences gives the following condition for the maximum angle $ mnv for which 
Eq.(6) is valid: 

4? 
v 

D sin e 

—r max 
«1 . (7) 

2 — 
It is assumed that R»D and R» irD /4\, where D is the maximum 

dimension of the source, 



4 

The restriction to spatially stationary sources, which is central to this 

paper, is now made. It is assumed that the normalized mutual intensity function 

of the source, y(S., Sj, 0), depends only on the (oriented) distance S = S, -Sj 

between'the soùrce points and S^. Since no restriction is made regarding the 

intensity distribution of the source, the aperture mutual intensity function becomes 

r(sr S2, o) = KSj)’ I(S2)^ y(s2-sv o) . (8) 

(This would be the form of the mutual intensity if, for example, the aperture 

were in the paraxial region of, and at a large distance from, a parallel-plane 

incoherent Source. ) Equation (8) is substituted in Eq.(6) and the transformation 

Sj = SS2 + S (9) 

)|C 

is made. The Jacobian of this transformation is 1, and the expression for the 

Fraunhofer intensity becomes 

I(p, 0) = 

2 
A cos 8 

t2R2 
/ y(S)e ik sin @p • S J KSfKS. + Sfdo 

o'(S) 1 -1 " 
dS . (10) 

In Eq. (10), A is the area of the aperture and y(S, 0) has been written y(S) for 

conciseness; Og denotes the range of S (for a circular aperture of radius a, 

for example, 0<Tis a circle of radius 2a), and a'(S)is that region of the aperture 

to which Sj is restricted in order that 5¾ + S may lie on the aperture. The 

bracketed quantity is the autocorrelation function of the source amplitude C(S). 

Since for a finite aperture C(S) is equal to zero for S greater than some finite 

bound determined by the aperture dimensions, Eq, (10) is valid with no restric¬ 

tion on the range of S. Hence, 

Kp. 0) = ACo0Sog / Y(S) C (S) eiicsin0p *^iS . (11). 
~\¿R¿ jskoo “ “ 

This completes the proof of the theorem that (apart from an obliquity factor) 

the Fraunhofer intensity of a plane quasimonochromatic spatially stationary 

source is proportional to the Fourier transform of the product of the source auto¬ 

correlation function and the normalized source mutual intensity. The dependence 

on the distance R in Eq. (11) can be removed by considering the intensity per unit 

solid angle P(£>, 0): 

This is most easily seen by expanding Eq. (9) in cartesian components. 
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p(ß, 0) = ^ços_0 J Y(g)c(s)eiksin0p-Sdg _ (12) 

X ISkoo 

In the case of the coherent limit y(S) = 1, Eq. (12) reduces to the standard 

expression for the Fraunhofer intensity of a plane aperture illuminated by a 

monochromatic point source. The diffraction pattern for the limiting case of an 

incoherent source, as Parrent has shown, cannot be obtained simply by letting 

the complex degree of coherence approach zero for any pair of arbitrarily close 

source points, but is instead found by taking the aperture dimensions very large 

compared with the coherence interval. 

For simplicity consider the one-dimensional slit problem (the discussion 

carries over immediately to the two-dimensional aperture). The intensity per 

unit solid angle is given by the one-dimensional form of Eq. (12), 

p(e)=2aMsie^00Y^jc(x)eii'si”e’‘dx , (13) 

where 2a is the width of the slit, x is the distance between two points on the slit, 

and L is the correlation interval. Let x' =x/2a so that lengths are normalized to 

the slit width. Then 

P(S) = ?âk|oA/°° y feas') c (2axi, ei2ka sin 6 x' dx, 

Now assume that 

where c is a finite constant depending on the form of y . This assumption is valid 

for many of the commonly encountered correlation functions such as 

Then as a increases, P(0) approaches the form 

P(0) = 2aL$— cC (0) , 
\¿ 
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which gives the linear dependence of intensity on aperture area conventionally 
associafed with an incoherent source. 

3. CIRCULAR APERTURE DIFFRACTION PATTERNS 

The preceding results can now be applied to the case of the circular aperture. 
It is assumed that the aperture intensity varies radially only, and thus the auto¬ 
correlation function C(S) depends only on|S |, the distance between two points on 
the aperture. If in addition it is assumed that the source correlation y(S) is like¬ 
wise a function of only the magnitude of S, then the diffraction pattern is circularly 
symmetric, the vector p can be taken without loss of generality to be the unit vector 
in the positive x direction, and the expression for the intensity per unit solid angle 
given in Eq. (12) becomes 

P<0> = IT Z28 dp Z21" ^ P7(P) C (p) e^0 P C0S ^ ( 14) X o ’'o 

In Eq. (14), p = |sl, and a is the aperture radius assumed to be much larger than 
X so that the diffraction pattern will occur within a very small angle for which 

2 cos 0»1 and sin 0»0 . The angular integration yields 

2 2 /'2a 
P(0) = J dp py(p)C(p)Jo(k0p). (15) 

X o 

Since the autocorrelation function is independent of the direction of the 
displacement it is convenient to choose the displacement in the negative x direction. 
By the definition in Eq. (10), 

I (16) 

Evaluation of the integrals in Eqs. (15) and (16) is simplified if the integration 
variables are first normalized with respect to the aperture radius. Then 

9 24 r2 
P(fr) = J dp' p'y(ap' ) C (p' ) Jo(ka0p' ) , 

X o 
(15a) 
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with 

C(p') a/: ,,/7 
Jo 

dy* [l(x'2 + y2 )]^[l((x'-p')2+y»2)]^ (16a) 

and 

P» =p/a, x' =x/a, y1 =y/a . 

The integration in Eq. (16a) can be performed for almost any radial intensity 

distribution since the intensity (or its square root) can if necessary be approxi¬ 

mated by an even polynomial in the radial variable to obtain a closed form expres¬ 

sion for C(p’) in terms of elementary functions. The determination of the diffrac¬ 

tion pattern is thus reduced to evaluating the single line integral in Eq. (15a). 

Although for an arbitrary form of y(p) an analytic solution cannot in general be 

obtained, the integral can easily be evaluated by numerical methods. 

As a representative example, the diffraction pattern of a uniformly illuminated 

circular aperture is calculated for an assumed exponential correlation 

y(p) =e 
-in' 

-0/L.eLP =e-«P' (17) 

Here L is the correlation interval and o=a/L is the number of correlation 

intervals contained in the aperture radius. The integration in Eq. (16a) with 

1=1 gives as the autocorrelation function 

C(p )=.1 
M 

.-44) -2 sin 
-1 (18) 

Equations (17) and (18) are then substituted in Eq. (15a) and the diffraction pattern 

calculated for several values of the parameter a and a fixed aperture radius. 

When a = 0, the aperture is fully coherent and the expression for P(0) reduces to 

the standard formula: 

2 4 
P(0) = 

\¿ 

^JjíY) 

Y 

2 
Y = kae . 

The behavior of P(0) for increasing a (decreasing L) is shown in Fig. 2, in which 

the curves have been normalized with respect to the maximum of the coherent 

pattern at 6 = 0. It is clear that as L> decreases, the central fringe of the coherent 

pattern decreases in intensity and widens, the troughs between the bright fringes 

fill in, and the diffraction pattern tends toward the form of the incoherent pattern. 
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Figure 2. Circular aperture diffraction patterns. 
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