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ABSTRACT 

The problem of predicting the behavior of large-srale disturbanre« in the mean horizontal flow of the 
earth's atmosphere, which is directly connected with the problem of predicting the day-to-day changes of 
surface weather conditions, has been studied from the standpoint of formulating and solving the hydro- 

dynamical equations which govern the flow. Owing to the difficulty of solving the complete system of equa- 
tions (whose very generality implies the existence of several irrelevant, but possible, tvpes of solutions), it 
is convenient to develop a "scale theory" whereby the various possible types of atmospheric motion, each 
corresponding to a distinct type of solution, can be distinguished and classified. As it turns out, each type of 
motion is characterized by its phase speed and frequency. The large-scale disturbances, for example, are 
distinguished from all other types of motion by ti - fact that their characteristic phase speed is much less than 
that of sound waves and of high-speed internal gravity wave«. 

By explicitly introducing this information into a mean vorticity equation for adiabatic flow, it is then 
possible to reduce the system to a single equation from which the extraneous solutions have been excluded 
and which is otherwise free of major difficulties. The resulting "prognostic equation," which governs the 
large-scale motions of a fictitious two-dimensional fluid whose velocity is a vertically integrated mean value 

of the horizontal component of velocity in the real three-dimensional atmosphere, forms the ba«is for a 
method of numerical prediction. 

An iterative scheme, based on the solutions of a succession of linear equations, has been proposed for 
solving the nonlinear prognostic equation. In the course of developing this method, the complete solutions 

for forced oscillations induced by irregular terrain and for linear transient disturbances have been presented 
in readily computable form, in terms of known initial values and the appropriate Green's functions. Finally, 
the prediction formulas for large-scale transient disturbanreti have been applied to observed initial data, 
with generally favorable results. 



FOREWORD 

Thi» is the first of two report» on recent reaearrhe« in the problem of numerical weather prediction cur- 
rently being carried out at the Atmospheric Analysis Laboratory of the Geophysical Research Division, Air 
Force Cambridge Research Center. This report deals primarily with the theon tical arpects of the problem 

and represents the author's own efforts to shed a little light on this difficult subject. The second report, to 
be published in the near future, after completion of the present phase of the program, will summarize the 

results of several rather laborious attempts to test the theory. The latter work, because of its magnitude 
and many ramifications, is necessarily a group effort and will be reported accordingly. It will include a 

desiriptive study of the conservation and generation of mean horizontal circulation, as well as a full account 
of our attempts to apply the theory to the problem of predicting the mean horizontal flow. 

The further one explores the difficulties of the special problem of weather prediction, the more evident is 

the necessity of discussing general questions of method, predictability and ultimate aims. A somewhat het- 
erodox approach to the problem cannot, in fact, be justified without reviewing the relative merits and dis- 
advantages of several possible methods. The first and, to some extent, the second sections of this report 

have, therefore, degenerated into a sort of essay on meteorological manners and morals. It is not expected 
that every reader will be interested in those portions. Those who do read them, however, should do so with 
the realization that they are tentative, exploratory and essentially speculative. Readers concerned only with 

practical applications might do well to skip to the fourth, fifth, seventh and eighth sections, turning back to 
intervening sections for definitions. 

Thro'ighout thih report there ap|>ear frequent references to the recent papers of j. G. Chamey of the 
Institute for Advanced Study whose work, perhaps more than any other, has clarified the fundamental 
problems of numerical Heather prediction. His contributions to this field are so numerous that it would be 

difficult even toackno. !edge them all, let alone elaborate on them. It is, therefore, appropriate to recognize 
a general debt of gratitude to Dr. Chamey nho, through many lively discussions, has influenced the author's 
viewpoint and attitude tonard the problem. Special thanks are due to Mr. Louis Berkofsky and Miss 
Agnes Galligan for carrying out the laborious and unrewarding task of tabulating the Green's function for 

the two-dimensional form of the linearized vorticity equation. 
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LIST OF SYMBOLS* 

Symbol Meaning or Definition 

a arbitrary amplitude factor 
a,, Fourier »inr coefficient 
(, characteristic amplitude of ^-disturbance 

A, V = /f,V 

At f' « AJ 
h. Fourit r cosine coefficient 
c phase speed, characteristic phase speed 
ct speed of surface gravity waves or of internal gravity waves 
eM speed of modified gravity waves 
C Newtonian speed of sound at sea level 
c, Laplacian speed of sound 
C a circle in the (*, y) plane 

E    E=r*Tdp 
f characteristic double frequency 
g gravitational acceleration 
C a Green's function 

h height of terrain above mean sea level, elevation of sea surface 
// depth of an ocean, height of a density discontinuity 

1 

1 
H(sty) Hi,,y) = L\h(x,y)\ 

H(x,y) H{x,y) = V2zo - M2*, 

i integer index 
/ a Green's function 
/„(     ) Bessel function of order n, first kind, imaginary argument 
j integer index 
/ Jacobian determinant or a kernel function 
Jn (    ) Bessel function of order n, first kind, real argument 
* k2 = m2 + s2 

K vertically-directed unit vector 
K a kernel function 
K„{     ) Bessel function of order n, second kind, imaginary argument 
f coordinate along a path of integration 
L characteristic half-wavelength, interval of Fourier expansion 
m an integer or m2 = /3T—' (/_1 

M(x,y) M(x,y) = -n2Udh/dx 
n an integer, or coordinate normal to a path of integration 

N,(x, Y) a quantity at the ith stage of iteration 

Some BymboU carry teveral diflrrent meaningt.    In general, auch ambiguitiea have been minimised by defining each meaning 
of the aymboli in context. 
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LIST OF SYMBOLS (Continued) 

Symbol Meaning or Definition 

p atmoBphrrir presBun* 

P • pith of integration 

q an integer 

r2 = (* - {)2 + (v - I»)2 

R ga» i <>ti-iani. or railm- of a rirrle 

s variable of the Laplace transform 

S an annular region of integration 

i elaped time, or a dummy variable of integration 

I 

T absolute temperature, rhararteristir half-period, or the (ireen's funrtion for linear transient 

disturbances 

u eastward horizontal component of velocity, or u = /n(v — ij) 

u u = U + u 

U mean value of u integrated over a horizontal area 

r northward horizontal component of velocity 

y Vm |v| 
V horizontal <-om|M»nent of vector velwity 

v' v-v + V 
ir vertical rowpnaem of velocity 

x locally (Cartesian coordinate directed toward east 

X same as above relative to a moving origin 

y locally Cartesian coordinate directed toward north 

)'„(     ) Uessel function of order n, second kind, real argument 

s height above mean sea level, height of an isobaric surface, height of an isentropic surface, a 

dummy variable of integration, or s2 « I2 + u2 

z? height disturbance due to linear transient disturbances 

ZM height disturbance due to irregular terrain 

Zjy height disturbance due to nonlinear effects 

I area average of öOO-rnillibar contour height 

Z Z = f + XorZ = ^'•r 2"LUl 
7/ Z= Z + // 
a wave number in .t-direction, or a = */H-1 

ß ß * d\ dv 

ß* ß* - ß +  r/ M2 

7 y = CrCy-* 

V a circle in the (.r. v) plane . 

A finite difference 

< a small constant 

( vertical com|>onent of relative vorticity • 

tf a dummy variable of integration corresponding to y 

0 potential temperature, p'p~>, or an angular coordinate 
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LIST OF SYMBOLS (Continued) 

.SvmW 
« 

X 

u 

i 
p 

0 

T 

X 

4 

y~  or « = s 

i 
h 

r 

e 
0 
1,2 

V 

L|    I 
L-l 
(    )•( 

n 

Meaning or Definition 

* = y  " or »c = «in Jd 

CorioliH parameter 

.2   =:   M2 +   (tfV^)» 

arbitrary phase angle, or a dummy variable of integration rorreaponding to x 

density of air, or radiu« of a circle 

r = 1 + ArA(, or a dummy variable of integration 

angle between V and «ome fixed horizontal line 

representative dependent variable, dummy variable of integration 

the Green's function for forced oscillations 

stream function for mean flow 

Used systematically subscripts will generally denote conditions at some particular level or 

along some surface, or will indicate the manner in which an operation is to be carried out, as 

follows: 

conditions along an isentropic surfac« at height d 

conditions at the ground surface 

differentiation with p h< Id fixed 

differentiation with z held fixed 

differentiation with 6 held fixed 

conditions at mean sea level, or at ( = 0 

conditions below and above a density discontinuity 

Special Operators 

horizontal component of vector derivative 

Laplace transformation 

Inverse Laplace transformation /-/.   '{^I 

)    convolution operator (Faltung integral) 

= 0 

(    ) - P»"' r (    )dp 
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NOTES ON THE THEORY OF LARGE-SCALE 
DISTURBANCES  IN  ATMOSPHERIC  FLOW 

WITH  APPLICATIONS   TO  NUMERICAL 
WEATHER  PREDICTION 

1.0«   INTRODICTION AND GENERAL RKMARKS 

THE PREDICTION PROBLEM 

1.01. I In- pajNT m an attempt to «leal nith rrrtain limited aftprrt* of the problem of numerical weather 

prediction—a problem nhirh. in it« noM general formulation, in roughly equivalent to the "forerasting prob- 

lem" proposed by V. Bjerknet« (1919) in hi» celebrated nork on phyftical hydrodynamics. \- far as ultimate 

aims are concerned, i In- problem is not essentially different from the classical conception of the general pre- 

diction problem. The present approach to it, however, departs far enough from the classical theory to 

warrant a fairly complete discussion of the nature of the problem itself. 

1.02. In order to motivate the hoice of special problems to be studied here and to clarify its nature 

and extent, the scope of this work will be narrowed as the difficulties of the more general problem become 

apparent. First, by anaKzine those difficulties and reviewing the limited means at our disposal to overcome 

them, we shall attempt lo state a problem which is neither so special that it is trivial nor so general that it 

cannot be solve«!. Second, although it is not one of the purposes of this paper to present a comprehensive 

critique of method, it it» at IcaM nec^sarv to consider the relative merits and disadvantages of several possible 

lines of attack on the problem. Kinallv, it is not only essential to «täte the problem as a real and sensible 

question, but to specifv what -li.iil be taken as a satisfactory solution. 

1.03. The general statement of tli- prediction problem, taken as it stands, is so inclusive that its com- 

plete solution must describe all the as(»ects of behavior which any fluid can possibly exhibit. To mention 

only a few, it would include convection, aerodvnamic and other boundary effects, the propagation of sound 

and gravity waves, as well an thoae phenomena usually considered to be more typically meteorological. 

The overwhelming diflicultics of the general problem are immediately clear if it is only realized that it em- 

braces several classes of problem* which are -iili unsolved, although thev are very special and perfectly well 

ilcfmed.     In its general form, therefore, the prediction problem cannot be completely solved. 

1.04. • »n the other hand, it is not obviouslv necessary to solve the problem in its most general form. 

Since the aim of the meteorologist is confined to predicting those asfiects of the atmosphere which are pecul- 

iarly meteorological in character, some of the diflicultics of the general problem are only apparent. It is 

probably safe to say that the existence of sound waves, for example, has little or nothing to do with the 

course of meteorological events, aim that other iliflicult as|>ccU of the general behavior of the atmosphere are 

likewise not essential to the weather producing mechanism. The first concern, therefore, is to rephraae the 

prediction problem, deliberatelv introducing tluise sfH-cializations that make it explicitly meteorological. 

We shall, in fact, adopt the point of view that the fumlamental problem of weather prediction has not ben 

stated as a meaningful question unless the terms of the problem distinguish it from problems of acoustics, the 

aerodynamics of siqiersonic flow and other irrelevant questions implicit in the general problem. 
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1.05. The moat obvious and straightforward way in which the prediction problem might be specialised 
ia to examine the inner structure of the problem in complete detail, in the hope of finding some inherently 
natural basis for breaking it down into less inclusive (and correspondingly less formidable) component 

problems. Such a program as this, however, would require an exhaustive catalogue of all possible modes of 
behavior, some of which might be excluded from the very outset. Moreover, the selection of any special 
problem must be based, at least partially, on economic considerations which are external to the problems 

themselves. It appears logical and natural, therefore, to begin with a discussion of external constraints on 
the prediction problem, emphasizing those which have acted to specialize the problem in the past. 

ECONOMIC BACKGROUND OF THE PROBLEM 

1.06. The general problem of weather prediction is far from new. In one form or another and for 
various reasons— possibly the grandness of the scale of events, the obvious economic value of successful 
predictiona, the layman's natural and sometimes rather alarming preoccupation with the weather, or perhaps 
the sheer appeal of a difficult problem—it has held the attention of meteorologists, mathematicians, phys- 
idats, professional forecasters and amateur weather prophets alike for some centuries. The desirability of 
introducing meteorological factors mt:» agricultural, commercial and industrial planning is evident and has 
long been recognized. As an indication of the growing public demand for meteorological information, it is 
sufficient to mention that almost every national government maintains some sort of weather forecasting 
service as an integral part of its executive body. 

1.07. Despite the fairly obvious advantages of efficiency to be gained by simply knowing what to plan 

for, the operational phase» of weather prediction have not received material support in proportion to the 
widespread interest in accurate estimates of meteorological factors. There were probably very sound 
economic and psychological reasons for this lack of support in the past. First, aside from the admitted un- 
reliability of weather predictions and the enormous expense of maintaining an adequate network of observing 
poats, the economic effects of meteorological factors were not very well understood and accordingly could not 

be weighted quantitatively. Second, in those few areas of economic activity where it was possible to assign 
a calculable weight to the meteorological factor, it was only sufficient to affect over-all efficiency and was not 
in itself decisive in determining total success or total failure. 

1.08. During recent years the economic value of accurate weather prediction and its importance to 
human safety have been heightened by the rapidly increasing scale of commercial and m itary aircraft opera- 
tions and by the recognition and introduction of meteorological factors in militarv planning. These, of 
course, have been selected deliberately as examples of human activity whose success or failure—not merely 
their efficiency—is affected decisively by the weather. There are urgent social, economic and geopolitical 
reasons for wishing to know the future state of the atmosphere and a corresponding increase in support, 
both material and moral, has been given to improving our knowledge of it. The civil and military weather 
services of the government have together built i'p and maintained a dense network of observing stations, 
which produces, as a by-product of its routine activities, an invaluable mass of measurements for study and 
research. At the same time, the military services have sponsored an extensive progrum of research in the 

fundamental problem of weather prediction. It is quite fair to say that inure than half of all meteorological 
research in this country bears directly on the prediction problem and has as its ultimate objective the suc- 
cessful prediction of weather. 

1.09. It is not very surprising that the course of meteorology as a science and weather forecasting as a 
profession have been influenced strongly by so extensive a background of economics.    As in all other areas of 
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rronomir rndravor, the produrtion of the forec««trr—the content of the information he provide« and the 

form in which he preflenta it—is determined directly by consumer demand. I < -- directly, perhap«, but to 

an equally great extent, rommercial interest« and milittry requirement« al«o influence the foreca«ter<« choire 

of variables to be measured, hi« technique of analysis, and basir methods of prediction. The over-all effect 

of these constraints has been to confine the outlook of the practicing meteorologist to those few field« of 

problem« which are important from the «tandpoint of operation«, and to methods which are optimum from 

the standpoints of reliability, initial expense of development and continuing expense of application. 

1.10. To cite an example, the viewpoint of the forecaster underwent a pronounced change immediately 

following the development of "all weather iKinc" equipment. As the need for meteorological information 

gradually shifted from factors that affect airport control to those that affect air navigation, the forecaster 

came to concentrate more and more on the configuration of flow in the upper troposphere and less on the 

tangible, moist t-gpccts of weather at lower level«. Confronted mth the problem of predicting winds at high 

operating altitudes, he has been forced to make maximum use of data from radio-balloon ascents by devising 

new techniques of analysis and representation. Similarly, he has found it convenient to introduce entirely 

new concepts to deal with the special problem of high altitude wind prediction. 

1.11. Those same economic factors have also exerted a powerful influence on the development of basic 

system« of meteorological measurement. It is doubtful that measurement» on the vast scale of the atmos- 

phere would ever have been undertaken out of pure scientific curiosity, without some strong external motive 

for doing so. In the instance mentioned above, the increased demand for accurate wind predictions alone 

lent considerable impetus to the expansion of the network of meteorological observations and to its vertical 

extension by a system of radio-balloon soui dings. It is evident that the economic value of meteorological 

information will inevitably control the density and geographical extent of an observing network whose ex- 

pense, because of its very size, is a major consideration. To a somewhat lesser extent, that constraint ha* 

also acted to focus attention on certain aspects of the corres|>onding scientific problem and to fix theproblctn 

of weather prediction within definite limits of feasibility. 

1.12. In discussing the manner in which external constraints serve to specialize the prediction problem, 

it might be profitable to examine the viewpoint of the practicing weather forecaster, who is continually sub- 

jected to those constraints and who presumably maintains his position by exercising his knowledge of the 

problem. Since the skill of the forecaster is essentially positive, it is reasonably safe to accept his estimate 

of what is important to the problem, if not his methods and results, as somewhere near correct. The fore- 

caster might even be regarded as the arbiter of meteorological opinion in matters where common experience 

and opinion are most appropriate. 

CONSTRAINT OF OBSERVABILITY 

1.13. The forecaster's viewpoint is strongly colored by his realization that the complete state of the 

atmosphere is neither observed nor observable, for there is only a finite amount of time and effort to be 

expended in observing it, even if it were otherwise feasible to do so. The fact is that purely economic con- 

straints set a low upper limit on the density and geographical extent of the observation network. This alone 

has a marked effect on the foreca ter's choice of variables to be predicted. Judging from his well-known 

and often deplored tendency to state his prediction« in very general terms, the forecaster is trying to predict 

variables which are "representAtive'1 of an interval of time or a region of space, rather than the values that 

will actually occur at each instant and at every point. The forecaster is simply recognizing that it is futile 

and illusory to try to predict the state of the atmosphere in greater detail than the resolving power with which 
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it can br obflrrvrd. IVforrovcr, although thr forecaster hintself rarely goefl about it in such an objective fash- 

ion, his attitude may be interpreted as an indication that one should predict some sort of mean values of the 

state variables, in the sense that they are representative of conditions over a finite interval of time or a finite 

region of space. 

1.14. Looking at the problem from yet another point of view—from the standpoint of mathematical 

physics—the original statement of the prediction problem is little more than a testanumt of faith that a 

solution exists. Apart from the fact that it has no special context and contains no hint as to what aspects of 

the atmosphere are relevant, the general problem is framed in terms which have no counterpart in observable 

reality. The question becomes meaningful (and the differences of several possible viewpoints are partially 

reconciled) if the problem is restricted to that of predicting the mean local state of the atmosphere, inte- 

grated over intersecting volumes whose linear dimensions are several times greater than the distance between 

adjacent observation points. No matter which view of the general problem one takes, and however hidden 

this assumption may be, it must be assumed that such mean lvalues display some sort of statistical stability. 

That is to say, the mean values of any two finite random selections of variables from the infinite aggregate 

must not differ by more than some small fraction of the total variability. Under these conditions, the true 

mean values can be approximated by finite sums. If this condition is not met, our present observations are 

inadequate to describe the state of the atmosphere at all, and the prediction problem is hopeless irom any 

standpoint. 

1.15. At least tw ,•»• before in the history of the physical sciences, we have been confronted with similar 

diflficultit-s, i.e., our inability to observe the complete state of a system and to predict its state to the last 

detail. The rases in point are the kinetic ttn-ory of gases and the Reynolds theory of turbulence. In each of 

these instances, the physicist has resorted to the purely mathematical l> «'ice of deriving principles that apply 

to certain statistics of a state, from the physical laws that presumably describe it in complete detail. In the 

former case, owing to the imiMwsibility of observing the position and velocity of every molecule of a fluid. 

Maxwell extracted from the Newtonian equations of motion for each individual molecule a set of partial 

differential equations which describe the behavior of certain statistical properties of an a^re^ute of molecules, 

for example, pressure, temperature, density and mean velocity. If the statistics of the aggregate display 

suflicicnt stability, then it is permissible to think of the hydrodynamical equations as governing the state of 

a fictitious continuous medium. For similar reasons, Reynolds found it convenient to integrate the Navier- 

Stokes equations in such a way that they refer to integrated or mean values of the original de|>endent varia- 

bles. Two points should be made clear. First, these techniques are applicable if and only if the statistics 

of the state are stable in the sense outlined earlier. Second, it is important to realize that the general method 

of reframing a problem in terms of statistical functions of the state variables is simply an expedient to make 

up for our inability to observe the state in complete detail. 

1.16. Since the meteorologist is now confronted nith precisely the same sort of difficulty, it appears 

reasonable to adopt similar methods for expressing the fundamental lans of hydrodynamics in term* of 

variables which are averaged over a large space aggregate of nonobservables, and which are therefore repre- 

sentative of the observed statistics of the aggregate. In fact, one might hazard the guess that one of the 

next important advances of meteorological science nill 1M- brought about by introducing statistical concepts 

into the hydrodynamical theory of large-scale atmospheric motions. The desirability of such a procedure 

will be discussed further in Section 8.00. 
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REPRESENTATIVE VARIABLES 

1.17. Returning to the viewpoint of the weather foreeaster, it is altto Hi^nifirant thai he «ioe* not find 

it necessary to know all the variables whirh rhararterize the initial state of the atinosphere. in order to prcdirt 

its mean state. If his main roncwrn is to predict the general configuration of the pressure distribution, for 

example, he usually considers only the initial values of pressure, independent of all other state variables. 

Such considerations are usually sufficient to give a rough idea of the mean state of the atmosphere, because 

the mean wind and temperature are approximately related to the pressure distribution through semi-empirical 

rules, such as the so-called geostrophic and hydrostatic relations. 

1.18. There are sound reasons which underlie—or at least justify—the fore« ^ster'n selection of the pres- 

sure distribution as the best single indicator of the mean state of the atmosphere. In the first place, of all 

the variables that are normally conceded to characterize the physical state of the atmosphere, pressure can 

be measured most accurately. It should he noted also that the composition of the atmosphere, aside from 

determining the gross temperature distribution and mean circulation, i important only if there is continual 

change of phase, with a resulting capture or release of energy. Although changes of phase are undoubtedly 

operative in modifying the state of the atmosphere, it is equally certain that they are not an essential part of 

the mechanism by which they themselves are originally generated. First of all, it is necessary to inquire how 

the initial disturbances, which must precede changes of phase, an leveloj ■! and maintained. Jt is probably 

safe to say that the kinematic and thermodynamic history of the true atmosphere, with the previously stated 

qualifications, will not differ radicallv from that of a fictitious atmosphere which is initially identical in all 

other respects, but absolutely devoid of moisture. And granting that the atmosphere does contain moisture, 

it is reasonable to assume that the circulation of the atmosphere is much more effective in producing changes 

of phase than vice versa. 

1.19. It remains to decide which of the kinematic and thermodynamic variables is most representative 

of the meteorological state of the atmosphere. Temperature and density can be eliminated from considera- 

tion, because it is inherent in the present system of measurement that they are related directly to the pressure 

distribution through the equation of state and the condition for hydrostatic iquilibrium. The question is 

thus reduced to choosing between pressure and the kinematic variables. The fact that further limits the 

choice is this: The variations of pressure associated with disturbances of various scales generally decreaae in 

magnitude with decreasing scale, whereas the corresponding variations of wind speed are of the same general 

order of magnitude, independent of scale. This implies that pressure measurements are the least sensitive 

to disturbances whose scale is less than the mesh size of the observation network, and most representative of 

conditions over a region whose linear dimension is greater than the mesh size. It is not very surprising, 

therefore, that the forecaster habitually thinks of the atmosphere in terms of the pressure distribution. Of 

all the variables that describe the physical state of the atmosphere, pressure is the most representative of 

conditions which extend over scales equal to or greater than the dibtance between adjacent observation 

stations. 

1.20. Up to this point, the several possible directions of specialization have been considered without 

regard to the methods by which the prediction problem might be solved. The next concern is to discuss the 

advantages and applicability of several methods that have been tried in the past. Before going on to a dis- 

cussion of method, however, it is appropriate to summarize the previous discussion l.\ restating the problem 

in less general terms.    The remainder of this paper will deal almost exclusively 'with the problem of predicting 
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atmospheric prcMure. Morrover, berausr limitationH on observability "I-" limit the detail in vthieh one ran 

predict the «tale of the atmoephrre, further diseuHflion will be restricted to preasure disturbaneeH whose 

characteristic scale is several times greater than the distance between adjacent observing stations. 

THE BASIC METHODS OF PREDICTION 

1.21. Considered for the number of methods that have been applied to it, the problem of weather 

prediction is one of the most remarkable of the fundamental problems of meteorology. Tlie s|>ertnim of 

methods ranges from the most powerful techniques of mathematical physics to the crudest and most sub- 

jective kind of empiricism. That they display such great variety is not very surprising, since it is natural 

that methods of prediction should evolve with the science. But it is certainly curious that almost all those 

methods are still in use. It is relevant, therefore, to review some of the methods in current use, synthesizing 

from them a few basic methods which are common to all. 

1.22. The methods that have previously been applied to the prediction problem are, in essence, varia- 

tions and combinations of two basically different techniques. These are the methods of mathematical 

physics and the statistical method. It should be realized that there is no real and clear-cut distinction 

between these methods, considered as equally legitimate variants of the scientifu method, and that, in that 

sense, they both tend to the same ultimate end. For the limited purpose of this discussion, however, it is 

still possible to draw valid distinctions between two essentially different routes of approach, nbetheror not 

they eventually lead to a common end. 

1.23. The method of mathematical physics, as discussed here, consists primarily in the suitable mathe- 

matical formulation of certain fundamental physical principles, which govern the behavior of any fluid— 

the laws of conservation of momentum, energv, mass and composition, along nith an equation of state. 

It goes without sayinir, unless the question is entirely trivial, that those laws an- actualK kno^n and that the 

simultaneous system of differential equations embodying those principles is capable of solution. Subject to 

appropriate boundary and initial corditions, the solution of this mathematical problem may be regarded as a 

prediction of the future state of the atmosphere. 

1.24. The statistical method, on the other hand, seeks to establish a direct correspondence between the 

state of the system at some arbitrurily chosen initial moment and its state at anv time in the future, simply 

by analyzing the past history of the atmosphere to find out what has hap(>ened before in similar circum- 

siances. To put it a little more precisely, this method offers a means of estimating the probahilitv that any 

of a number of mutually exclusive events will occur in the future. The poMulate which makes the method 

operative is that those probabilities may be identified nith the observed frequencies of th<»se same events in 

the past, following combinations of variates identical (or similar) to that which characterizes the given initial 

■Ute. 

1.25. To illustrate the way in which these two basic methods, under various guises and nith varying 

degrees of objectivity, have been applied to the prediction problem, it is simplest to examine an accepted and 

fairly typical pattern of meteorol< gical research. This, for lack of a better name, will be called the synoptic 

method. As its name might indicate, one of its principal aims is to present a concise description or synopsis 

of the state of the atmosphere at a given instant—so concise that certain selected assets can be apprehended 

immediately and as a whole. In this respect, the synoptic method is essentially descriptive, and necessary 

from the standpoint of discovering vhich aspects of the atmosphere are relevant to the problem of weather 

prediction. In the same sense, it is not a prediction technique at all, but a method of representing the state 

of the atmosphere, usually graphically, according to certain preconceptions «if nbat is especially important. 
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By it« enforced usoriatiun with the prediction problem, neverthele«», the "»ynoptic" method lid- rome to 

refer to method» of ttnentifio research and weather prediction as well. 

1.26. In the view of the Rvnoptie meteorologist, it is another essential feature of his method that he 

has continually sought to classify ins experience by selecting a limited number of "lump" variables or 

indices to characterize the m« teorological state and behavior of the atmosphere. As Chamey (I*>49) [mints 

out, this is done evidently in the hope of reducing the number of degrees of freedom, nhile providing an 

inherently natural and adequate system of classification. The meteorologist has, for example, invented such 

gestalt concepts as "high." "low," "front" and "jet stream" to give a rough description of the mean state of 

the atmosphere and has Introduced the notions of "cyclogenesis," "frontolysis," "blocking action" and the 

like to describe it« behavior. Nmie of these fictions—for example, the "low"— have become so deeply in- 

grained in the thinking of meteorologists that they are frequently spoken of as real physical entities, capable 

of continued independenl existence, but subject to their own (»eculiar laws of interaction. 

1.27. The remaining as|»ect of the synoptic method consists in seeking to discover the laws governing 

the behavior of these meteorological constructs, or to discover and establish prognostic relationships between 

the "lump" variables, which characterize the meteorological state of the atmosphere prior to one given in- 

stant, and its state at some time in the future. Mthough such relationship are often suggested by the 

qualitative application of nell-known physical principles, they nmst frequently emerge from the accumulated 

experience of the practicing forecaster as empirical rules-of-thumb. 

1.28. From this |>oint of view, the synoptic method contains nothing, aside from special techniques for 

representing the state of the atmosphere, that is not already contained in essence in the methods of statistics 

and n itli. tn.iic .il physics. If there is any real difference, it lies in the subjectivity with which either or 

both of the tHo basic methods are applied. In fact, through common usage, "synoptic" has become more or 

less synonymous with "empirical." That is not to sav. however, that the synoptic method is not perfectly 

scientific, and useful in isolating significant rrlationahipa from a mass of extraneous detail. The real point 

is that it ronsisU mainlx in descriptive analysis and classification of the recorded history of the atmosphere in 

the past, and partly in the qualitative application of quantitative physical principles. We shall «online 

our attention, therefore, to the two methods outlined earlier. 

1.2*). Resuming discussion of the two basic methods of attack, it is relevant to note that the statistical 

and mathematical-physical statements of the prediction problem are. at least in a certain limited sense, quite 

similar. It is implicit in the statements of both that the problem of weather prediction is essentially an initial 

value problem. In other words, whether the future slate of the atmosphere is completely determined by its 

state at any one instant, or whether the distribution of probabilities of several alternative events is fixed by 

a single combination of variates, the burden of significance is placed or the moment of latest information. 

Moreover, althotig1' the forecaster habitually lakes recourse to data at a succession of moments to extrapolate 

past behavior, he still has it in mind that the data at one time are actually sufficient. 

1.30. The choice of methods is not to be founded on similarities, however, but on basic differences. In 

this case the real distinction between them is that the statistical method is a probabilistic approach to the 

problem, whereas the mathematical-physical method is essentially deterministic. To discuss the relative 

merits and disadvantages of the two methods, therefore, one is forced to consider the nature and extent of 

(»or positive know ledge of the atmosphere. This question is made difficult by the c«>existence of probabilistic 

anil deterministic elements in comparable degree. 

1.31. ■Mthough our observations of the stale of the atmosphere are far from complete, it is safe to say 

thai we do possess some positive knowledge of the plnsical principles which govern the behavior of fluids in 

general and the atmosphere in particular.     It would certainly be unreasonable to suppose that the meteoro- 
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logiral behavior of the atmosphrrp in any morr mysteriouH and unaroountablr, btrans«* uf its large sralr, than 

the acoustir and aerodynamic properties of the very same medium. The latter have been deliberately chosen 

M examples of atmospheric behavior to which mathematical-physical methods have already been applied 

with great success. The atmosphere, in short, is a fluid which differs in no essential respect from any other 

fluid and is subject to the same general physical laws. 

1.32 Accepting this point of view, it seems only reasonable to accord the forecasting problem the same 

consideration that one would give to more commonplace problems—for example, that of betting on a game 

of chance. Given the positive knowledge that the dice are loaded, one would have no hesitation in casting 

probabilistic considerations to the winds and betting on the favored sides, even though their appearance is 

not certain in every play. Similarly, if we have positive knowledge of the general principles that govern the 

behavior of the atmosphere, it is logical and consistent with normal judgment to exploit that knowledge by 

regarding the atmosphere as completely controlled by that strong element uf determinism. In a manner uf 

speaking, the behavior of the atmosphere is heavily "loaded" in favor of Newtonian physics. 

1.33. It can still be argued that purely statistical methods might lead to results approaching positive 

information. However, if one has any faith at all in the general validity of the laws of mechanics, he is 

tempted to suspect that the most concise result of an exhaustive statistical study would simply show that the 

hydrodynamical laws are almost certainly valid. 

1.34. It is also arguable that the hydrodynamical equations, however applicable or well known they 

are, may yield no directly verifiable information, because of the extreme mathematical difficultv of solving 

and deriving observable consequences from them. Until recently, this has been a valid (and frequent) 

objection to applying the methods of mathematical physics to the prediction problem. Because of the lack 

of sufficiently powerful methods of mathematical analysis, the theoretical meteorologist has been forced to 

make a number of concessions, primarily for the sake of convenience, and, more often than not, the special 

assumptions introduced to facilitate solution have completely obscured the question of the validity of the 

general equations. In any case, this objection refers to a fault of the mathematician and meteorologist, not 

to a fault of the equations. 

1.35. During the past few years, high-speed automatic computing machines have been developed 

which are capable of performing a single multiplication, complete v%ith the necessary transfer and storage 

of information, within a matter of micro- or milli-seconds. Thus, for the first time, it appears economically 

feasible to carry out the numerical integration of the complete hydrodynamical equations within a small 

fraction of the human lifetime. Granting that it would probably provide greater insight into the innermost 

nature of things to solve the equations by analytic methods and granting that one would really prefer, fur 

aesthetic reasons, to solve them in that way, the mathematical methods at present at our disposal are not 

adequate to deal with the problem. Meanwhile it appears feasible to apply brute machine force to at least 

some aspects of the problem of weather prediction, by integrating the hydrodynamical equations numerically. 

It is probably safe to say that this fact alone has been a major factor in the recent rebirth of interest in the 

problem of numerical weather prediction, and possibly in theoretical meteorology in general. A few meteorol- 

ogists and mathematicians have gone so far as to envision a completely automatic weather-forecasting 

machine, analogous to the Tide Machine, into which data will be fed directly and which inexorably and with 

great exactitude will calculate out the entire future course of the atmosphere. 

1.36. In view of the foregoing considerations of method, it appears mot-t reasonable to approach the 

prediction problem from the standpoint of mathematical physics, rather than from the standpoint of statistics. 

Before finally restating the problem, however, it is necessary to consider what shall be taken to constitute a 

satisiactory solution to the prediction problem. 
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1.37. It IB almoet chararteristic of statistical hypotheses that they consist oi a large number of apparently 
unrelated results. For this reason alone, statistical theories contribute little to our understanding of the 
external physical world, if only in the objective sense that it is difficult to apprehend a great many relation- 
ships simultaneously. A physical theory, on the other hand, usually consists of a relatively small number of 
statements and is framed in mathematical terms so concise that the formal aspects of the theory can be 
grasped simultaneously and as a whole. Partly for this reason, and possibly because statistical theories do 
not satisfy our instincts for an imposed order, it might be anticipated that no statistical theory M ill ever be 

accepted as the final solution of the prediction problem. This is not to say that statistical theories are not 
valid. They are simply not so satisfying. 

1.38. Another question connected with the form of the final solution concerns ultimate accuracy or the 
irreducible minimum of error. This point has some bearing on the extent to which the solution is made 
determinate by the conditions of the prediction problem and was briefly touched on during the previous 
discussion of observability of the initial state. It has also been discussed at some length by Schumann (1950) 
in a recent pair of articles in Weather, in which he suggests that the difference between the apparent upper 
limit on forecasting accuracy and the Laplacian ideal of complete determinism is due to something like the 
Heisenberg uncertainty principle. Although it is certainly true that the ultimate accuracy of predictions 
hinges on the observability of the "true" state of a system, reference to the uncertainty principle is mis- 
leading and IM - simply obscured the issue. In the first place, it applies strictly only to a system whose state 
is significantly altered by the mere act of measuring it, so that it is not applicable to the macroscopic behavior 

of the atmosphere. Second, the difference between Heisenberg's uncertainty and Laplace's certainty is very 
small in any case. The reason for elaborating on this seemingly irrelevant detail is that, as the d nsity of 
initial data is indefinitely increased, the corresponding ultimate accuracy will probably approach a limit 
which, for all intents and purposes, amounts to determined certainty. From this standpoint, it is not 

inconsistent to apply an essentially deterministic method to the prediction problem. 

THE PROBLEM RESTATED 

1.39. Having discussed the difficulties and constraints on the general problem, and having touched 
briefly on general questions of method and predictability, we are now in a position to justify the choice of 
problems to be studied in the remainder of this paper. To state it brieflv, the problem is to predict the 
pressure or mean horizontal circulation of the atmosphere, by integrating the equations of classical hydro- 
dynamics (suitably modified if necessary) subject to given boundary and initial conditions. As specified 
earlier, w shall confine our attention to the large-scale, slowly moving disturbances which are apparently 
associated with the more tangible aspects of weather. 

2.00   HISTORICAL BACKGROUND AND FLNDAMFNTAL DIFFICULTIES 
OF THE PROBLEM 

RICHARDSON'S EXPERIMENT 

2.01. The problem of integrating the hydrodynamical equations to predict the meteorological stat - of 
the atmosphere is far from new. As early as 1917 Richardson attempted to predict local pressure changes 
by stepwise numerical integration. His method consisted in estimating all space derivatives as finite dif- 
ferences between the initial values at various loc.     tns, and in computing the instantaneous local time 
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derivatives from the primitive hydrodynamical equations. The equations of motion, for example, express 
the Iccal variations of the vlocity romponents in terms of spare derivatives only, and the continuity equa- 
tion gives the local variation of density. Next, regarding the instantaneous local time derivatives as finite 
differences, Richardson simply extrapolated the variables a short time into the future to generate a new set of 
initial values, whence the process could be repeated ad infinitum. 

2.02. The results, as presented in Richardson's "Numerical Weather Prediction" (1922), indicated 

pressure changes one or two orders of magnitude greater than those actually observed. This discrepancy 
was discouraging enough to cause widespread pessimism about the possibility of predicting the state of the 
atmosphere by integrating the hydrodynamical equations numerically or by any other mathematical means. 
Richardson's experiment was quite successful, however, in demonstrating certain difficulties which are 
inherent in his method in particular and are, to some extent, present in any method. It would have been 
quite surprising, in fact, if the results of his experiment had turned out positive. 

DIFFICULTIES INHERENT IN THF, PHYSICAL SYSTEM 

2.03. Aside from approximative errors in the equations, the possible sources of error may be lumped 
under three main headings. First, a large source of error lies in the incompleteness and inaccuracy of the 
initial data. Second, there may be some peculiarity of a physical system which makes the problem of pre- 
dicting its behavior an inherently difficult one. If, for example, the system is very near the state of complete 
mechanical equilibrium at all times, then our estimate of its departure from equilibrium, based on incomplete 
or inaccurate observations of its täte, may contain errors as large as the true departures. Since the whole 
problem of predicting the state of a system revolves around our ability to estimate its departures from equi- 
librium, such innate characteristics of the physical system may conceal a large source of error. Finally, 
even with the most accurate and complete observations of the state of the atmosphere and with the most well- 
behaved physical system, small errors in the initial data may be magnified by the particular mathematical 
method one chooses for solving the hydrodynamical equations. 

2.04. The first of these sources of error, which is common to all methods, has already been discussed at 
-.im length in Section 1.00. Although such errors cannot be completely removed, they can be minimized by 
predicting the mean state of the atmosphere, integrated over an aggregate of points in the network of meteor- 

ological observations, or at least by confining attention to disturbances whose characteristic dimension is 
several times the distance between adjacent points in the network. The remaining sources of difficulty, on 
the other hand, stem from circumstances over which there is more control, and there is some point to discuss- 

ing them in detail. Although both of the latter sources of error have been previously discussed by Charney 
(1949), some of the facts concerning their existence and true nature are sufficiently inobvious to bear repeti- 
tion and further elaboration. 

2 J}5. It is a frequent complaint of the meteorologist that it is next to impossible to compute representa- 
tive values of the local time deriv .tives, as given by the primitive hydrodynamical equations, in terms of 
actually observed initial values. He observes, for example, that the nongeostrophic accelerations result 
from a small imbalance between two large forces, the Coriolis and pressure forces, and that the error in esti- 
mating either of those forces is therefore about as large as the true nongeostrophic momentum change. 
Similarly, he observes that the local changes in density aie also given as small differences between individ- 
ually large components of mass accumulation and, as a consequence, that the computed local change in 
pressure is likewise extremely sensitive to small errors in the initial data.    In every case, the local time 
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derivatives «re given by the raw hydrodynamical equations as email differences between individually large 

terms, whence the errors in estimating any one of the large terms—and the resulting errors in the computed 

time derivative«—are generally of the same order of magnitude as the true values of the local time deriva- 
tives. All of these difficulties, however, are simply different manifestations of the same essential fact. 
Considered a» the medium for propagating large-scale slowly moving disturbances, the atmosphere is always 
and everywhere close to the state of complete mechanical equilibrium. 

2.06. To illustrate this, let us consider some of the consequences of postulating that the pressure, 
Coriolis and gravitational forces are almost in equilibrium, i.e., that the atmosphere is very nerrly in geo- 
strophic and hydrostatic balance. Ir other words, we are supposing (hat the acceleration terms in the 

equations of motion 

and 

^-j-KXXV + p-'Vp = 0 
at 

dw . dp 

are small in comparison with either of the remaining terms. This is stated in mathematical form in the 
following approximate equations: 

pV^KXX-Tp (1) 

dp 

^ dx 

The first equation carries the direct implication that the total horizontal divergence of momentum is actually 
quite small, for it implies that \~lp is almost a momentum stream function. However, the separate com- 
ponents of momentum divergence in the two horizontal directions, which are reflected in the terms 

~ {pu) + ^ (pr) = ? • pV 
ox dy 

are, in general, quite large. Thus the difficulty of estimating the horizontal momentum divergence stems 
directly from the balance between the horizontal components of the pretsure and Coriolic forces. The lattei 
is also responsible for the difficulty of computing the local time derivatives of the velocity components from 
the equations of motion, because the accelerations resulting from the imbalance between those forces are 
«mall. 

2.07. In much the same way, the almost complete balance between mechanical forces makes it difficult 
to estimate the vertical compoiv it of velocity. To demonstrate this, we make use of the continuity equation 
and the condition for hydrostatic equilibrium, to obtain the following expression for the material derivative 
of pressure 

|-V   Vp-gjfVpVdz. 

An alternative expression can be found by combining the continuity equation with the first law of thermo- 
dynamics for adiabatic processes, 

dw\ 4..v(,.v + =V 
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Finally, by equating the two independent expretuiions for the total derivative of preHKure, we obtain a formula 

expreaaing the vertical romponent of velocity in term« of «pare derivative« only. 

a- = V*   VA - /" V   V rfz - «TV'V   Vpdz + "gf P~lf   V   pV da dz. 

Viewed in the light of previous remarlcH, ronreming the romputability of the horizontal momentum divrr- 

genre, the first and third integrals are evidently small, but extremely sensitive to error. It i», of course, a 

direct consequence of approximate Kq. (1) that the second integral !« small when the atmosphere is nearly in 

geostrophic balance. Finally, it follows that the vertical component of velocity over flat terrain, is likewise 

computed as the small difference between individually large terms. 

2.08. To summarize the foregoing arguments, both the horizontal momentum divergence and the 

vertical com|>onent of velocity are necessarily small in an atmosphere which is almost in mechanical equi- 

librium. For the very reason that they are small, the errors incurred by computing them from the primitive 

hydrodynamical equations are of the same general order of magnitude as the quantities themselves. The 

above statements implv that the local time derivative of density and the resulting local variations of pres- 

sure ar   also small, and that the computed values of those quantities are sensitive to small errors. 

2.09. Viewing Richardson's experiment in the light of these facts, it is almost inevitable that the local 

time derivativ« s computed from the primitive equations should have contained large percentage errors, for 

it is observed that the atmosphere (when considered in the large) is very close to a locally mai'.tained state 

of mechanical equilibrium. At hrst glance it might appear that this difficulty would be present in any 

method of integrating the hvdrodvnamical equations, numerical or otherwise. As will be shown later, 

however, this is fortunately not the case. In fact, those features of the atmosphere» meteorological behavior 

which make the prediction problem difficult are exactly those which truly characterize it. Furthermore, the 

very smallness of deviations from the state of complete mechanical equilibrium can be turned to advantage 

in specializing the general problem. 

2.10, It is pertinent to note here that the difficulty might be obviated by inventing new physical 

variables whose local time derivatives ar« iiide|>emlent of the magnitude of the external force, U ith respect 

to those variables, the atmosphere would behave as if it were unaware that it is actuallv near the state of 

mechanical equilibrium. The theorems of angular momentum conservation are particularlv suggestive in 

this connection. 

DIFFICULTIES INHEKKNT IN  MATHEMATICAL METHOD 

2.11, The third class of errors is of an entirelv different nature, since it arises from the verv method bv 

which one chooses to solve the hvdrodvnamical equations. To demonstrate the reality of this purely mathe- 

matical phenomenon, let us return to Richardson's experiment. Because it dealt v»ith primitive equations 

fehicb were essentiallv unmodified, it is implicit in those equations that they |»ossess solutions corresponding. 

sav. to sound naves. It can therefore be stated at the outset that, in order to integrate the complete equa- 

tions numerically, one must at N'ast be able to integrate the system of equations governing the propagation of 

sound waves in that manner. It is well ki.own, of course, that sound waves are governed by a system of 

first-order equations of the following type 

r)ji        dp 
p - +   '- = 0 (2) 

dt       dx 

dp du 
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These equations, together with the initial values of u and p, completely o'etermine the solution at all timen in 

the future. 

2.12.    The application of Richardson's method to the solution of this system is quite straiphtforwanl. 

Let us consider the value« of u and p at points (iAjr.y'Al) in the (x, t) plane, spaced at regular intervals of JM 

in the /-direction and Ax apart in the x-direclion (see Fig. 1).    Since we arc given the values uiilx. 0) and 

p{i&x,0) at some arbitrarily choaen time-origin, it is therefore possible to compute the values u{iAx,j\lt 

and p(iAx,jAt) at all later times from the following finite-difference equations 

2pAx\u[iAx,jAt] - ufiAx, (j - \)id\\ + £*\p\{i + 1 )Ax. f/ - l)Al] - />[(» - l)Ax, (; - 1)A/)| = (» 

lAx\p\iAx,)äd\ - p[i±x, (j - l)Al]| + ypto\ul(i + l)Ax, (j - l)At] - ü((» - l)*x, (j - \)M]\ - <>• 

These equations^ which were obtained simply by replacing the differential quotients in Eqt. (2) and (3) **ilh 

the corresponding ratios of finite differences, are essentially recursion formulas. Setting y equal to one, for 

example, these equations enable us to calculate u(iAx, At) and pd'Ajc, At) directly from the given initial valtiei- 

it(iAx, 0) and p{iAx, 0), whence the process can be repeated indefinitely. 

2.13. In discussing the errors of this method, however, it is actually simpler to deal with an equivalent 

system, in which only one of the variables appears explicitly. This is arrived at by cross-differentiating 

Eqs. (2) and (3) to eliminate u, whence 

d2p , d2p 

Since this equation is now of the second order with respect to time, both p and its local time derivative must 

be known initially to determine the solution. According to the original conditions of the problem, the initial 

values of p itself are known. The local time derivative of p is evidently given in terms of the initial \alucs 

of ii by Eq. (3). Equation (4) is the familiar one-dimension a I wave equation, a h\|>erbolic «quation HIIOS«- 

pro^M-rties and solutions have already been studied exhaustively. It is well known, for instance, that its 

solutions correspond to sound waves traveling at speeds :t ("ypp-1)    in the A-direction. 

2.14. Finite-difference methods for solving this and similar hyperbolic equations have been discussed 

by Courant, Friedrichs and Lew y (1928). In much the same way as outlined earlier, they consider the values 

of p at a network of discrete points, spaced A.T apart along the length-axis and At apart along the time-axis, 

and develop a recursion formula corresponding to Eq. (4) in order to compute the values of p at all points 

from its initial values. To summarize their results, they find that making the intervals Ax and At infinitesi- 

mally small is not sufficient to insure that the approximate solution will converge on the exact solution. 

Also, the finite interval of time At must always be choeen qual to or less than the finite increment of length 

Ax divided by the natural wave speed.    Thus, 

At $ {ypp-l)-HAx. 

If this condition is not satisfied, the computed wave solutions will grow to an indefinitely large amplitude. 

The exact solution, on the other hand, indicates that the waves will actually be propagated without aii\ 

essentia' change in form. Moreover, the.equations are incapable of distinguishing between real and spurious 

variations in the initial values, so that small errors can presumably be amplified to the point of completeK 

obscuring the true solution.     An elementary demonstration of such effects is given in Appendix 1. 

2.15. The meteorological implications of this result are rather devastating.    Since solutions corre- 

'>onding to sound waves are implicit in the unmodified primitive equations, and because the equations 

themselves are incapable of distinguishing between an error in the initial data and a physically real dis- 

turbance, the most direct and obvious form of the finite-difference method will amplify the "sound" waves 

until they finally obscure the large-scale, slowly moving disturbances that are of primary  interest.    In 
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Fig. 1.  Network of finite difference«. 

a manner of npeaking, the noise level will rise »o high that the weak meteorological »ignaU will heroine 

unintelligible. 

2.16. With regard to straightforward numerical integrati(-n of the unmodified hydrodynamical equa- 

tions, we are apparently faced with a trilemma, represented hy the followin^ three alternatives. We must 

either resign ourselves to committing considerahle error or, second, catisfy the Courant-Friedrichs-Lewy 

condition for computational stability or, third, modify the basic method to eliminate the source of instability. 

2.17. The first alternative, of course, is intolerable. The second requires that the time intervals 

separating successive stages of the integration must be less than the time it takes a sound wave to travel the 

distance between two adjacent points in the space grid. It would be illuson to make the distance between 

adjacent grid-points less than the distance between adjacent observation stations, but it is equally undesir- 

able to lose what little resolving power does exist. The distance between grid-points should be comparable, 

therefore, with the distance between observation stations, i.e., on the order of a hundred miles, rather than 

ten miles or a thousand. 

2.18. This implies that the interval between successive stages of integration must be on the order of 

ten minutes or less, and that the number of stages required to produce one 24-hr prediction would be one 

hundred or more. The Qpmputations involved in one such prediction would be a staggering task, at least 

an order of magnitude greater than can be undertaken with the facilities and resources available at present. 

On economic grounds alone, the second alternative is not satisfactory. Moreover, one instinctively feels 

that the requirements for computational stability provide more time-resolution than is necessary to predict 

the course of the slowly moving meteorological disturbances. 

2.19. With reffrence to th« third alternative, it should be mentioned that there are methods, recently 

developed by von Neumann, for eliminating the source of error instability in the basic method of finite dif- 

ferences. In general, these methods remove the errors of simple extra|Hilation by "(•entering" all differences 

on one point and by attaching greater weight to some approximations than to others. As might be expected, 

however, the advantages of these methods are bought at a price, and give rise to other disadvantages and 

difficulties, for example, that of inverting a matrix of large order, applying a sort of (Green's function to the 
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initial d«t«, or possibly that of overetabilixing the solution     In summary, none of the three altemativea it 
completely satisfactory. 

DISCUSSION OF DIFFICULTIES WITH REFERENCE TO SPECIAL SYSTEMS 

2.20. To point up the essential difficulties of the problem and to suggest a way out of them, we shall 
consider a hydrodynamical system lomewhat simpler to deal with than the atmosphere, but whose behavior 
is m certain crucial respects quite similar. Let us temporaiily suppose, for the sake of argument, that we 
are interested in predicting the elevation of the ocean's free surface. By way of orientation, this is equivalent 
to predicting the pressure at some fixed level beneath the surface. For simplicity, we shall also suppose that 
the ocean is of uniform depth and that we are concerned only with small deviations from the state of rest. 
Finall), to simplify matters further, it will be assumed that the flow velocity depends only on the east-west 
coordinate and time. This system has been studied by Sverdrup (1927), Rossby (1938) and others, and has 
been used for purposes of analogy by Charney (1949). The differential equations governing its motions are 
well known.    They are 

du dh 
--X. + <s-0 (5) 

# dv dh      ■ 
- + Xu+«-.0 (6) 

dh du 

Viewing the motions of the system in the large, all of the difficulties that have been discussed previously must 

be present in the problem of predicting its behavior by the most direct and obvious means, i.e., by numerically 
integrating the primitive equations that govern it. 

2.21. To prepare the way for later development, the eliminations will be carried out ir. two stages, 

first by eliminating u to obtain two equations in h and t', and finally by eliminating t. By cross-differentiating 
Eqs. (5) and (6) and making use of Fq. (7), we obtain the vorticity equation 

Likewise, eliminating u between Eqs. (5) and (7), we arrive at an independent equation in h and v. 

tId
3h      dah „dv 

'"aT'-a'-*"* (,) 

In passing it might be noted that, if the earth were not rotating, ,\ would be zero and the motions would be 

governed by the simple wave equation 

d2h        „ dah 

The solutions of this equation correspond to the "shallow-water" gravity waves traveling at speeds ± (gH) . 

On the other hand, if the motions are purely horizontal, the vorticity equation reduces to a telegrapher's 
equation, whose solutions correspond to the long Rossby waves. 

dh 

2=g"7-2- (10) 

+ /9t; = 0. 
dxdt 
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The Utter «U.n- travel toward the went (relative to the medium) at the Hpeed ßa 2. Proceeding with the 

eliminations, we now differentiate Kq. (8) onre more with respect to x and substitute for from Kq. (9), 

to obtain a single »-qua    ^n in h. 

2 d'h 
?' dx3dt 

d4h 2 d
2h       d3h      „ d2h 

dxdt* '  dx2 dt2 .*i.</ 
(11) 

This equation is the basis for further discussion of the motions of the system. 

2.22. We turn next to the problem of estimating the relative orders of magnitude of eaeh of the terms 

in I '| (11). Because the governing equation is linear, the motions corres|»onding to various types of solu- 

tions coexist without interaction, whence it is |>ermissible to consider each tvpeof motion s-parately. To give 

a rough description of each type, we now ascribe to it a characteristic "half wavelength." a measure of the 

distance between successive pronounced maxima and minima: a characteristic "half |»eriod," a measure of 

the time interval between successive maxima and minima passing a fixed |>oint: and, finally, a characteristic 

"amplitude," which measures the difference in height between adjacent pronounced maxima and minima. 

Since the terms in Kq. (11) are only estimated to the correct order of magnitude, wc may approximate all 

derivatives bv ratio« of characteristic numbers. 

dh 

dx 

and, in general. 

.4kL-] 

dm+qh 

dx^d? 

■ 'i 

^AkL-nT~q. 

.4hT
l 

Actually, it is simpler to compare estimates if thev are expressed in terms of a characteristic "phase speed" 

and a characteristic "double frequency," defined hv the "half wavelength"' and "half [mriod" as i..ll..u- 

f = ///-> / = -r1. 
The relative magnitudes of the t<-rms in Kq. (II) are displayed below, each estimate ap|>carmg beneath the 

corresponding term in the equation. 

2 d*h 
Ce dx'dt 

d4h 

dxdt' 
Qd

2h 
x2 a2h 

dxdt 

C;)! 
1 mm)' mm)' 0' 

The state of motion is evident^ characterised by the values of three nondimensional parameters, one of 

which depends only on the properties of the medium and two of which depend on the tvjM' of motion in 

question. 

2.23. We may distinguish two tvf»es of motion, each characterized by an extreme value of one of the 

free parameters. For example, if the characteristic frequency of the motion is much greater than the 

frequency of the earth's rotation, ami if c is indvpvndent of J. then the last three terms of Kq. (11) are much 

less than the first two. In that case Kq. (II) reduces to the wave equation (Kq. (10)). The phase tpeed of 

the "shallow.water" gravity waves is independent of their frequency, so that the previously stated condition 

on the phase s|>eed is fulfilled a |>osterion. On the other hand, if the characteristic phase s|>eed is much less 

than the speed of "shallow-water" waves, and whtther c drfn-nds on/or not, then the second term in Kq. (11) 

is much less than the first and the fourth is much less than the third. In this case the governing equation 

reduces to 
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a1/!        dh    „   ,d/i 
+ /9r -XV   T  = ()- (12) dx2dt dx dt 

Fundamental solutionn of thi« equation n>rre8|M>n<l to wave« of the KoHsby ty|M', traveling tonard the H«i«t 

at the speed -ß(a2 + A2«/"2)-1. 

2.24. Let it now be supposed that the elevation of the oreanV free surface repreaenta the combined 

effects of two distinct and luperpatsble ty|>e8 of motion, one '-haracterized by the fact that it« frequenrv is 

much larger than the frequency of the earth's rotation, and the other by the fact that it» phase tq>eed is much 

less than that of "shallow-water" gravity wave«. Moreover, to strengthen the analogy between ocean and 

atmosphere, we must imagine that the height amplitude of the slowly moving disturbance is considerahh 

greater than that of the high-frequi nc\ disturbance, a situation which is rather unusual. There are evident!) 

two ways to go about predicting the elevations of the sea surface in this case. The most direct method 

would be to solve Kqs. (5), (6) and (7) by stepwise numerical integration, subjecl to known initial conditions. 

An exactly equivalent scheme is to deal nith the two t\|>es of motion separated, integrating the eqi is 

that govern each one without reference to the other and later superposing the solutions. This is the i it 

where the difficulty arises. Because the high-frequenc\ disturbances are really gravity waves, they are 

governed by the hyperbolic wave equation (Kq. (10)) and, unless the Courant>Friedrichs-Lewy condition is 

satisfied, the simple method of finite differences will amplify the computed gr» ity wave solutions to the |ioint 

that they will obscure the one which is really dominant. 

2.25. There are two ways out of this difficulty. First. Fq. (1(1) might b« solved h> some more stable 

method, possibly by exact analytic methods. Second, it might not he necessary to deal with the gra\it> 

waves at all. Let us suppose that the initial values of the surface elevation have somehow been separated 

into two superposable com|>onents, one due to the slowl\ moving disturbances and the other due to the 

gravity waves. We now investigate the error incurred h\ appUing the equation for the slowK moving dis- 

turbances to the total initial values of surface elc\ ation. itluilwr it is */««• to the Roaabv />/>e oj utne «r Ui gratity 

icatro. Evidently the only source of error lies in the fad tliat the initial disturbances which are actualK 

manifestations of gravity waves will be propagated at speeds differing from the correct one hv an amount 

dependent on their wavelength and, in general, will be propagated loo slowly. \s specified earlier, however, 

the amplitude of the gravity waves is much less thar that of the slowlv moving disturbances, whence the 

percentage error in applying the equation for Rnssby type waves to the complete initial conditions is not 

very great. This would be desirable for the very reason that the Rossb) waves do travel so slowlv. Fven 

if it were necessary to satisfy some condition for computational stability, the required lime resolution would 

be much less. At this j»oint it is important to note that //. • pmuuv ampiitudeM of sound and graiity uwn 

in the atmosphere are one or /MY* orders oj magnitude less than that oj the larfl'-scale. sloiilv moving weather 

disturbances. 

2.26. Although it is certainly itnpro|»er to extend the ocean-atmosphere analogv to .ill a«pects of each 

system, it is interesting and |ierha|is legitimate to interpret certain of these results in tin li"hi of observed 

facts about the atmosphere. It is observed that the large-scale disturbances in tin im an llow move v<rv 

slowly and, even more signnieant, generally move in onlv one direction relative to llic medium, i.e.. toward 

the west.* The latter fact is very suggestive. If these disturbances ar- governed \>\ .> qiecial form ol some 

differential equation, similar to Fq. (11), it is quite clear that such an equation must be ol ihe lirsl order with 

resjwet to time. Keferring to the previous estimates of the relative magnitudes of lerni« in Fq. i II ). it is 

seen that the governing equation will contain terms that are no higher than the first order wilb re-|»eci to 

* Sperd of movrmrnt, as UIMMI hrrr. rrfrm In the iiliasr S|MTII or •.|>re<l of individual rxlrrmu. .unl inii-i imi IM- idrnlitied willi 

the rate of energy |>ro|>af(ation, which, through diafierauia rfferl», run IM* murh ffrtArt ihun Ihr phaiM' »|ire,l 
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time if and only if the phiae «{»ee«! i» much less than the »\H'vi\ of gravity wavet*. In extenno, therefore, it is 

[>ro|Mw«'<l that the e«Hential fart tht- property of larpe-srale atmimphenr diaturbancM which distinguishes 

them from all other typ«* of motion -i» not really that their «rale i- larpe nor that their frequency i» small, 

but that they move »o HIOWIV relative to the metlium. 

2.27. It ha* already been idiuwn that introdurinp tuch information explicitly into the governing equa- 

tion lead§ to an approximate equation from Hhieh Holutions corresponding to certain type« of motion are 

excluded. In a manner of Hpeaking, the high-frequency noise IM- l>een filtered out hv making tvitenutic 

use of the approximation« Hhieh characterize the large-scale disturbances. Owing to their peculiar nature, 

approximations of the type 

c <£ c. X</ 

will be called "filtering approximations," after Chamev (1^18). 

2.28. Although the foregoing analysis provides a clear indication of the features which distinguish the 

large-scale oceanic disturbances, it is difficult to see how this method can be extended to cover atmospheric 

disturbances of finite amplitude and. in particular, how one can derive a single nonlinear equation which can 

be subjected to dimensional analysis. The difficulty lies in earning out the eliminations under such genera 

conditions. A fact that is eapeciall) significant in this connection, and which was first p..mit,I out by 

Charney (I'HT). is that Kq. (12) could have been obtained bv Introducing the so-called "geostrophic ap- 

proximation" 

\i ^ gdh dx 

directly into the vorticitv equation (Kq. (8)). Tlii> Buggettt that the "geostrophic approximation" mav be 

equivalent to the "filtering approximation," if it is applied onlv in the vorticitv equation. Mthoiigh it would 

be difficult to demonstrate under more general conditions, it can be shown that tin* equivalence is valid in 

the present case. Approximating the derivatives in Kq. (5) bv ratios of characteristic numbers yields the 

following estimates 

du 

dt 
JuT1 AhL 

Moreover, Kq. (7) provides an independent relation between   /u and   //,. 

1*7 •   : //u I 

The relative magnitudes of the terms in Kq. (5) are displayed below, each estimate ap|»earing beneath the 

corresponding term of the equation. 

du 

at 
Xr 

ah 

(J gÄk 
i 

It therefore ap|>ears that, if the characteristic phase speed is much less than the s|ieed of gravity waves, the 

first term is much smaller than the third and. consequently, smaller than the second. This impliet that the 

winds (i.e., ocean currents) ass«>ciated with the slowly moving Kossbv waves are typically geostrophic. 

Although this result cannot be regarded as bidding under all circumstances, at least it contains a clue as to 

the pattern that a more general development should follow. As will be shown later, the introduction of the 

geostrophic approximation into the vorticitv equation is sufficient to exclude the solutions corresponding to 

high-sp-ed sound and gravity waves.    The remaining question is whether or not it is more than suffii-ient 
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2.29. The results of thin section Hill later he extended to apply to atmospherir «iisturhanres, h> develop- 

ing a similar "srale" theory for the adiahatic flow of a eompressihle gas. As before, the MUIIKMI of develop- 

ment v\dl consist first in eliminating all hut one of the defiendent variables (pressure) to obtain a single equa- 

tion; second, in assigning characteristic numbers to describe each typ«- of motion; third, in expressing 

estimates of the relative magnitudes of the terms in the governing equation in terms of a minimum number 

of nondimensional characteristic parameters: finally, in discovering what tyjie of motion corresponds to an 

extreme value of each of the characteristic parameters. 

THE MODELS OF ROSSBY \M) CBARNEY 

2.30. The assumptions adopted by Kossby (I^.W) to demonstrate the mathematical existence of long 

waves, have precise!» tin elTe t of "filtering out" the sound and gravity wa\es. Because he dealt with the 

motion of a homogeneous and. h\ implication, incompressible fluid, the medium was im apablc of propagating 

sound waves. Secondly. l{ossh\ assumed that the large-scale motions of the atmosphere are essentially 

horizontal, whence there could exist no gravity waves. It is likewise clear that the hydrodynamical equa- 

tions, when applied to the purely horizontal flow of a homogeneous nunviscous fluid, will have no solutions 

corresponding to the excluded types of motion. B> default, therefore, all that remain are the long Kossby 

waves. 

2.31. Aside from the fact that they provide no very deep insight into the essential physical nature and 

distinguishing features of large-scale atmospherir disturbances, the above assumptions are stated rather 

baldly ami without adequate justification. Very considerable ad\ances toward justifying Kossby"s end 

result (if not bis assumptions) and otherwise toward circumyenting the difbcullies of the problem have been 

made in the past few years by (iharney (IOW. I'M*)), (iharney and Kliassen (l()t*)) and Charney« Kjortoft 

and von Neumann (l^SO). 

2.32. In a manner similar to that outlined earlier. Charney I'M:; has introduced the notions of 

characteristic length», periodi ami amplitudes of the velocity, pressure and densit) disturbances. By ap- 

proximating the derivatives in the unreducfd primitive equations (rather than in a single reduced equation I 

as ratios of characteristic numbers. Chamey has shown that it is lypiral of large-scale disturbance« that the 

vertical motions associated with them arc small, that the winds are almost geostrophic. and that the atmos- 

phere is very nearly in hydrostatic equilibrium. To indicate how this information is to be incorporated into 

the hydrodynamical equations and to provide a basis of concretcness for future discussions, the main points 

of a development due to Oiarnev and Kliassen  i 1949) will now he presented. 

2.33. To begin with, it is assumed that the horizontal acceleration» resulting from vertical motion arc 

negligible.     In that event, the vector equation of horizontal motion assumes the simple form 

flXV) + K X (i" -I- MV +P_,*> = <». (13) 

Most of the discussion will be centered around the vorticity equation, obtained hv applying the o|teralor 

T X  (     ) to Eq. (13). 

-^ + V • V(f + X) + (f + X)V • V -I- p'2V,, X Vp = 0. 
at 

We now introdme the geostrophic approximation 

XV^ K X P~1?p 

into the solenoidal term, and neglect f (where it appears iindifTerentialed ) in comparison with X. 
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K + V ■ V(f + X)    + XpV • V + XV • Vp = 0. 

Finally, rombining (• nn- according to the ml. - for partial difTcrrntiation of vectors, 

P.  (f+ X) + XVpV- 0. (14) 
at 

2.34. We have now reached a crucial point in the argument. Kquation (14) may be regarded u a 

means of computing the local time derivative of vorticity. provided all other term« can be computed accu- 

rately from observed initial valuex. It has already be^n shown that the horizontal momentum divergence 

associated with large-scale disturbances is necessarily and actually small. However, owing to the fact that 

it is to be computed as the ».mall difference between individually large terms, it is subject to large percentage 

errors. The conclusion is inescapable. It is actually better to set the horizontal momentum divergence 

exactly equal to zero than it is to compute it directly from the initial data as defined. 

2.35. It should be mentioned in passing that, because the horizontal momentum divergence of the large- 

scale flow is much smaller than the advective changes of angular momentum, the vertical crmponent of 

absolute vorticity is essentially conserved, whence Kossby's final conclusion is substantially correct. More- 

over, if the absolute vorticity is actually conserved, the local time ./. MI .;/n - of vortieUy is not given as the small 

difference between large terms.    The reasons for this will ap|>ear later. 

2.36. Returning to the main theme of this development, it is still possible to form an accurate estimate 

o( the vorticity-generating effects of momentum divergence. To show this, Eq. (14) is integrated vertically 

with respect to height from the ground surface to an infinite height above the earth. 

I"dt (r + X) ^ "^ X*jf" v  PV ^ = 0- (15) 
An independent expression for the second integral can be obtained from the so-called "tendency equation" 

^ - ^V,   Vh-tf\p\ dz. (lb) 
at *Jh 

Finally, eliminating the integrated momentum divergence between Kqs. (15) and (16) 

"»d dpK 
-   (f + X) dp + \gph\k   VA - X Hr = 0. (17) 
at ot £ 

The degree to which absolute vorticity is not conserved is given, therefore, in the mean, in terms of quantities 

that can be accurately computed. One is tempted to conclude from this, as does Chamey, that the tendency 

equation is not to be regarded as a means of computing the pressure tendency (Hjerknes and liolmboe 

(1944)), but as a means of estimating the integrated effect of horizontal momentum divergence. 

2.37. Chamey and Fliassen next establish a corretpondence between the motions of the real atmosphere 

and those of a fictitious "equivalent-barotr.ipic" atmosphere, by assuming that the nind direction (though 

not the wind s|)eed) is independent of height. To be exact, they assume that the winds at all levels have the 

same direction as the density-weighted mean "ind V. 

\ = A{p)V(x,y,l) (18) 

where the operator (     ) is defined by 

(    ) = PH-l£' (    ) dp. 
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This restriction, together with several other minor approximations, makes it possible to invert the order of 

differentiation and integration in the first term of Kq. (17).    We find, for example, that 

whence 

jph v rf «//i ~ v vf rp* A2 dp 

and 

V   VX dp ä ßil      4 dp. 

Integrating both sides of Kq. (18) with respect to p, between the limits 0 and /-■. wt  also note that 

A dp- ph. 

Finally, the local and advective changes of absolute vorticity are collected to obtain a new equation, similar 

in form to the unintegra'ed vorticity equation, hut referring to integrated values of the original dependenl 

variables. 

d-j-+ Ä*V. vj + ßt + x^/r'rr'v* VÄ - xpr1 ^ - o. (19) 
at at 

Kvidently, Eq. (19) governs the motions of u fictitious two-dimensional atmosphere, in which the flow 

velocity is the density-weighted vertical average of the winds observed in the real atmosphere. 

2.38. Although it is not exactly permissihle to do so, one is tempted to think of V as the actual wind al 

some one height, and to conceive of Kq. (19) as applying to the horizontal motion» within a surface of such 

points. This surface, which is located at altitudes where the observed winds equal the vertically integrated 

mean winds, is known as the "equivalent-barotropic level." It is a matter of experience that it is a nearh 

level surface and does not ascend or descend much from day to day. It is generalU located somewhere 

around the 500- or ()(K)-mb level, roughly coinciding with the so-called "level of nondivergence." 

2.39. With this interpretation, Charney and Eliassen next apply Kq. (19) to horizontal motions at 

the equivalent-barotropic level. At this point they introduce the "filtering approximation," substituting 

the geostrophic wind for the true wind, wherever it enters undifferentiated or wherever it is used to compute 

vorticity. 

V ~ K x ^x-'r2 f ~ g\-1 vh. (20) 

This is permissible, of course, because the horizontal momentum divergence has been eliminated between the 

vorticity and tendency equations, whcnoe there is no further need to compute it. Moreover, the information 

that was lost in treating the divergence as an eliminant must be resupplied by introducing some sort of 

stream function. Subject to one further restriction, specifying the connection between local pressure changes 

at different levels, the meteorologically significant motions are found to be governed by a single equation 

involving only one dependent variable—the height of a surface of constant pressure at the equivalent-baro- 

tropic level. To eliminate surface pressure from Kq. (19) Charney and Kliassen originally assumed that the 

height tendency is the same at all levels, later remarking that it would be more reasonabh to relate the 

tendencies at the surface and at the equivalent-barotropic level by a factor of proportionality equal to the 
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ratio of thr wind Bprrdft at thosr Irvrlh.    Taken together with the hydrostatir rondition, this assumption 

require« that 

^^ (,.,£• (21) 

Inserting the relations expressed in Kqs. (20) and (21) into Eq. (19), we finally obtain 

j Va* + gX-^Jit, V3z) +0^- X'c.-'Aipi) ^ + i(\cn-
3Aipk)J{x, h) = 0. (22) 

at ox at 

However aptly it may describe the behavior of large-scale pressure disturbances, Eq. (22) is nonlinear and 
must therefore be solved by numerical methods, as opposed to analytic methods. 

2.40. In "A Numerical Method for Predicting Perturbations," Chamey and Eliassen (1949) go on to 

consider solutions of a linear equation related to Eq. (22). For the sake of simplicity, they further restrict 
themselves to flow in which the vorticity is due mainly to the curvature of the streamlines, rather than to 
shear across the flow. In that case, small deviations from uniform west-east flow are governed by the 
following "one-dimensional" perturbation equation 

^L + ,?% ^ + 0 * _ x'Cn-2A ipk) 
dJ = o. (23) 

dx'dt dx3 dx r     dt 

Because we are primarily interested in the free oscillations of the atmosphere—i.e., the transient disturbance» 
-the term arising from vertical motion at the ground has been omitted.    The latter at worst creates a forced 

oscillation, to be superposed over the dominant free oscillations. 
2.41. It should be noted that Eq. (23) is of the same general type as Eq. (12), whose solutions cor- 

respond to Rossby waves in an ocean. In fact, it can be verified directly that Eq. (23) possesses no solution» 
corresponding to sound and gravity waves. The frequency equation for wave solutions has only one root, 
corresponding to a dispersive system of waves traveling toward the east at speeds 

Ä*Ua2 - ß 
C~ a

2 + \2cn-
aA{pk)' 

This result is in good qualitative accord with the observed fact. It is probably safe to say that the nonlinear 
Eq. (22) also has no solutions corresponding to sound and gravity waves, for it is unlikely that additional 
continuous* solutions would be admitted by the »< le reason of its nonlinearity. Retracing our way through 
this development, it appears that the high-frequency disturbances have been "filtered out" by imposing two 
special conditions. First, sound wave solutions are evidently excluded by treating the atmosphere as if it 

were exactly in hydrostatic equilibrium. In a manner of speaking, the pressure changes at different levels 
are so rigidly coupled together that tl.ey can be brought about only by changes in the effective depth of the 
atmosphere. Second, the external gravity waves have been excluded in the process of substituting geo- 
strophic winds into the vorticity equation, a device which was discussed earlier at considerable length. 

2.42. To review our position briefly, the development of Chamey and Eliassen leads to a single gov«m- 
•ng equation that is free of high-frequency "noise." i.e., those solution^ which, aside from the analytical 
difficulties involved, are awkward from the Hland|M>int of solving the equation numerically. It appears, 
therefore, that one of the fundamental difficuitirs, namely, that of satisfying an inconveniently strong condi- 
tion for computational stability, has been evaded completely. 

* Under r«rtain oonditiofm, the nonlinrarity of equation* doea |>ermit apecial aolutiona, auch aa ahock wavea.    Tbeae, how- 
ever, are eaarntially diaronlinuoua aolutiona. 
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2.43. It should also be noted that the second major difficulty has been overcome during the course of 
the development. Turning back to Eq. (19), we see that it expresses the local time derivative of the mean 
vorticity in terms of quantities that can be computed accurately, in the sense that the local derivative is not 
invariably given as the small difference between individually large terms. In principle, therefore, one can 

predict the mean vorticity by extrapolating its instantaneous local change a short time into the future. 
The remaining difficulty is the purely mathematical problem of reconstructing the velocity distribution from 
a known distribution of vorticity, in order to regenerate the initial conditions. 

2.44. In connection with the latter problem, it is worth noting that the velocity distribution is com- 
pletely determined by the knowledge of both the vorticity and velocity divergent. As indicated earlier, 
the horizontal momentum divergence associated with the large-scale disturbances is characteristically small, 
owing to the fact that the winds are almost in geostrophic balance. 

d d 
— (pu) ä - — (pr). 
dx dy 

Integrating vertically from the ground surface (now assumed flat) to an inhnite height, we And that 

d ö 
— (pkü) ^ - — {pit) 
ax dy 

and 
du      - di) p^ + LVp^-pt-. 

According to the conditions of the problem, however, V is very nearly perpendicular to Vp^, whence 

dx~    ~ dy 

This relation implies the existence of a stream function ^, such that 

0 ~  and t ~ — • 
dy dx 

Since the vorticity of the mean flow can be predicted with fair accuracy from a conservation equation, we 
may regard it as known at some time in the future. The problem ot regenerating initial conditions is then 
reduced to that of solving the system 

K- VXV = Fixty) 

VV = 0 or V = KXV^ 

where / i. y) is the known distribution of vorticity. Combining these equations to obtain a single equation 
in one unknown, we arrive at a well-known equation of the Poisson type. 

VV - F(x,y). 

(t is interesting to note here that g\~]i plays the role of a stream function. This demonstrates the physical 
md mathematical equivalence of the condition of geoetrophic balance and the almost complete compensation 
>etween the separate components of momentum divergence. It also provides additional justification for 
ntn»ducing the geostrophic wind into the vorticity equation. 

2.45. From the foregoing treatment and from previous discussions of the filtering approximation, it 
ippears that the development of a suitable prognostic equation—one which is free of major computational 
md analytical difliculties—should be centered around a vorticity equation in some form. Apart from 
listorical reasons, there is an obvious, but heretofore undiscussed, purpose in regarding the vorticity or 
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angular momentum as the fundamental variable. It it simply this: The pressure force, one of the two 

external forces acting to bring about relative accelerations, is a potential vector. Thus the equation which 

results from applying the curl operator to the force equation is independent of the magnitude of the pressure 

force, for the form of the vorticity equation remains unaltered by the addition of any other potential force 

whatever. The physical interpretation of this fact is that, so far as its vorticity-generating processes are 

concerned, the atmosphere behaves as if it were not actually near the state of complete mechanical equi- 

librium. One should expect, therefore, that the difficulties due to quasi-geostrophic and quasi-hydrostatic 

conditions would not be present in the vorticity equation. 

2.46. Although the development of Charney and Kliassen appears sufficient to meet the fundamental 

difficulties of constructing meteorologically significant solutionn of the hydrodynamiral equations, and 

although it provides a pattern for further development, the treatment is still not general enough to insure 

that the special restrictions which are nuftlcient to make the problem truly meteorological are altogether 

necessary. In any case, there are several points at which the theory could bear generalization. In the first 

place, no matter how small the vertical motions (associated with the large-scale disturbances) might be, 

there is still some doubt that they might not be elfective in producing substantial changes in vorticity by 

advection from one level to another. In other words although the motions themselves are small, the vertical 

gradients of velocity and vorticity are frequently large. Apart from such major objections, there have been 

introduced, as needed, a number of unstated minor approximations which although they probably do not 

significantly affect the form and accuracy of the final result, are rather unpalatable and cast some doubt on 

the general validity of the theory. Some of these approximations have entered at several points in the same 

way, whence it is possible that they are conqtensating and actually unnecessary. In any event, it would be 

desirable to postpone the introduction of special approximations until a- late in the development as possible. 

2.47. There are certain features of the Charney-Kliassen development which it is desirable and perhaps 

necessary to retain. For example, there are obvious advantages to be gained by dealing with the motion 

of a fictitious "two-dimensionar' atmosphere which, at least in a mathematical sense, is equivalent to the 

actual atmosphere. Aside from the convenience of doing so, there are also strong physical reasons for treat- 

ing the problem in this way. To illustrate this, let us consider the behavior of an atmosphere in which no 

energy is received from outside sources. As suggested earlier by Charney (1948), the behavior of large- 

scale pressure disturbances in such an atmosphere is evidently governed by a pair of equation» expressing the 

conservation of entropy and potential vorticity, 

d[ .del 
rfi|_(f + Mp-'-J-0 (24) 

dt = 0' (25) 

together with the conditions for geostrophic and hydrostatic equilibrium. These mav be regarded as two 

independent equations in p and u: If He attempt to deal with the three-dimensional motions in complete 

generality, we shall be faced with two equally unsatisfactory alternatives. Kither the vertical component 

of velocity must be computed from the equation 

or it must be eliminated between Eqs. (24) and (25), in which it enters linearly.     Now, the troposphere is 
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artually -<- nrar neutral Htatic Htability that the errors in . -limn jn- the vertiral derivative of potential l*-m- 

perature are of theitame general onler of magnitude a» the derivative itnelf. (JonHidering the first alternative, 

therefore, we ronelude that the eomputationH of M' would be extremely sensitive to small errors in estimating 

the statie stability. In the second rase, the roeffieient of the term of highest order nould contain the static 

stability as a factor, nhenre the solution of the pressure equation would also be quite sensitive to small errors 

in estimating the vertical derivative of |>otential tem|>erature from observed initial data. This suggests 

that our knowledge of the state of the atmosphere is not sufficiently accurate to allow us to deal with its 

three-dimensional motion in complete generality, and that the effects of vertical motion must be treated in a 

highly implicit manner, without direct reference to the vertical motions themselves. What is significant is 

that this can be accomplished h\ integrating out the vertical coordinate, in much the same way as Charnev 

and Kliassen have done. 

2.18. The remainder of this re|M)rt deals with an attempt to generalize the theory of large-scale pressure 

disturbances in the atmosphere, following a scheme of development very similar in broad outline to that of 

Cliarney and Kliassen. In general, and insofar as it is feasible, social assumptions and approximations will 

be postponed until as late in the development as possible, so that one can see more clearly what they reallv 

entail. We shall then discuss the relative merits and disadvantages of several methods for solving the 

prognoetie equation, finally presenting an improved ni.ilic.l for solving the "two-dimensionar' vorticity 

equation. The theory is supported by a comparison of actually observed pressure ch,i iges with the cor- 

responding predicted changes, based on solutions of the two-dimensional linearized vorticity equation. 

2.49. Before undertaking the development of a progn«Mtic equation, the problem of classifying the 

various kinds of atmospheric motion will be considered, with a view to isolating those features of the large- 

scale slowly moving disturbances which distinguish them from all other types. As mentioned earlier, 

Chamey (1948) has develojied a "scale theory" to deal with exactly the latter problem, and has succeeded 

in demonstrating the mutual equivalence of the filtering approximation for large-scale motions with several 

manifestations of quasi-equilihrium conditions. However, owing to the fact that he has introduced char- 

acteristic numbers into the unreduced primitive equations, his method is incapable of simultaneously reveal- 

ing the approximations which characterize every type of mot1" ;n. We therefore proceed directly to the 

development of a somewhat different scale theory, designed along the same general lines as the one discussed 

earlier in this section. 

3.00   A SCALE THEORY AND THE NATURE OF THE FILTERING APPROXIMATIONS 

3.01. The first step in the development of the scale theory, as outlined in the preceding section, is to 

eliminate all but one of the dependent variables between the hydrodynamical equations, later introducing 

characteristic time and length scales to describe each type of motion. We therefore start with the Eulerian 

equations of motion and continuity 

rfV 
— + K X XV + p-'Vp = 0 (26) 
at 

dp 
/ + gp = 0 (27) 

1P +V-pV +j (pw) = 0 (28) 
dl dz 
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takrn together with a nuitable mergy equation.    We ithall Huppooe that no energy if) being added to the gyg- 

lem, whence the thermodynamio proret*«eH are adiabatir. 

dß 
J  =0 (29) 
dt 

where d = />"p_I    and    « = CvCp~x. 

It should also he noted that the romplete vertical equation of motion ha« been replaced by the hydrostatic 

equation (Kq. (27)) at the very outaet. 

3.02. The tun major assumptions implicit in the above equations deserve some comment. To assume 

that no eoerg> is being supplied from external sources is simply to accept the existence of an initial distribu- 

tion of energy. Mithout regard to the manner in which it was established, and to describe the processes by 

HIUCII that energy is adiabatically redistributed, iiy the same token, this restriction prevents us from 

|>enetratiiig to "first causes" or to the mechanism by which disturbances are originate«!. At first glance, 

therefore, it might appear that the assumption of "no added energy" would not jwrmit the development of 

"IICH" dioturbances. However, Kuo (1949) has shown that the latent instability of a locally undiMurbed 

state is sufficient to bring about development of large-scale disturbances after they have been initiated. 

In view of this fact, and because the changes of eddy energy involved are so tremendous, it seems unlikely 

that all or even a major part of the energy of a developing disturbance is derived from external sources— 

i.e., from the initial impulses of energy required to set it off. It seems probable, rather, that most of the 

kinetic energy .of the disturbance is derived from an already citablished distribution of energy. This, of 

course, really begs the question, for the energy from external sources is certainly instrumental in establishing 

an inherently unstable state. The remaining question is how fast external r.ources of energy bring about 

changes in the configuration of flow on a very large scale. It is actually observed that the -in cture of the 

mean or general circulation does not change markedly from week to week, whereas new disturbances quite 

Irequentlv develop in the course of a day or two. It therefore seems reasonable to suppose that the rapid 

development of disturbances is due mainly to the adiabatic adjustnn nt of a distribution of energy already 

existing. For this reason, and because disturbing influences are always present, it is probably sufficient to 

assume that the thermodynamic processes are adiabatic. if one is concerned with predicting the course of 

events over only a few days. 

3.03. Having stipulated that no energy is being received from outside sources, it is only consistent to 

require that kinetic and potential energy not be degraded into molecular motion through the action of dissi- 

pative forces. Othcrnisc. of course, the atmosphere would slowly run down until all its energy were trans- 

formed into heat. Accordingly, the forces due to molecular viscosity have been omitted from the equations 

of motion. They are quite small, in fact, compared with the observed pressure and gravitational forces. 

This is not to say, however, that the Keynolds stresses due to disturbances on a scale smaller than the mesh 

size of the observing network are also negligible. In estimating the effect of small-scale t ' ly stresses, two 

|M»ints must be considered. The first, which has already been discussed, is that the energy of disturbances 

of various scales generallv decreases with decreasing scale. Second, attention will he confined to a vertically 

integrated mean value of velocity. Because the energy of very small scale disturbances is apparently con- 

centrated in a rather shallow boundary layer, such disturbances make only a negligible contribution to the 

eddy stresses of the mean wind. Kddy stresses are therefore omitted from the equations of motion, which 

are now assumed to apply "in the large." 
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A QUASI LAGRANGIAN COORDINATE SYSTEM 

3.04. With the foregoing rationalization, we return to the rla88iral equations of hydrodynamics. To 

simplify the problem of rarrying out the eliminations, we fthall next develop difTerentiation formula» for a 

roordinate Hystem which appears to be the most convenient and natural to the problem. Because the poten- 

tial temperature (or entropy) is conserved, it is natural to regard it as a Lagrangian coordinate identifying a 

material surface. Moreover, the hydrostatic equation introduces a fundamental asymmetry among the 

space coordinates, in that dependence on the vertical coordinate is different from dependence on either of 

the horizontal coordinates. The vector equation of horizontal motion is, of course, independent of the 

horizontal coordinate system. This suggests that we might adopt 6 as an independent variable to represent 

the vertical coordinate, regarding the height z of an isentropic surface as a dependent variable. This leads 

to a variant of the quasi-Lagrangian coordinate systems first pnqxwed by Starr (1945), in which one of the 

coordinates is Lagrangian and the rest are Kulerian. 

3.05. Applying the partial differentiation formulas for a change of independent variable, the derivatives 

of any dependent variable # taken with respect to the old coordinates (x,y, z, t) become, with respect to the 

new coordinates {x,y, 6, t). 

OASAZ)®. 

The subscripts indicate  which  variable has been held fixed  in the process of differentiation.    The total 

derivative then assume« the form 

d9 dt 

According to our assumption, however, the processes are adiabatic, whence the material derivative takes on 

the simple "two-dimensionar' form 

4* = /^\ 

dt   =\dtjt 

+ V • V,«. (30) 

Similarly, we express the horizontal vector gradient in terms of the new coordinates. 

V^ = V^ + ^ V.O. 

In particular, introducing the condition for hydrostatic equilibrium, the horizontal « octor gradient of pressure 

is given by 
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Vforeovrr, making use of the definitiun of the itlope of an iHentropic Hurfare in the x and y directions, Kq. (31) 

reduce» to 

V.P - V*P + #>?*• 

It must be re-emphasized that the dependent variable 2 is now the bright of an isentropic surface.    Since p 

is a function of d and p, 

p~lV,p -= Bp-'Vtp + gV$t 

= »(1 -«r'^p'-' + ^x 

= r,[^ + »(I - «r'p'-'i. 02) 

This expression shows that the acceleration due to the pressure force is a potential vector, i.e.. that the integral 

of its tangential com|M>nent, taken around a closed curve in an isentropic surface, vanishes identically. 

3.06.    To complete the preliminary development, we also express the horizontal divergence in terms of 

the new coordinates.     Applying the differentiation formulas to the horizontal components of velocity, 

V.V = ?, • V + ~    Vj. (33) 

The total divergence, however, also contains the term du  dz.    \n terms of the new variables, 

"'- ill + v■*« 
whence, by direct differentiation, 

dw     ae d [(dz\       .,        "I 
s-i.sLw.+vH 

de[d/dz\    av      1 
' a'sldtKae) + ee  VtZ\ 

^rs)-* ^ ,34) 

\dding Kqs. (33) and (34), the total divergence takes the simple form 

„      dw „       d /.   dz\ 

The equation of continuity (Eq. (28)) can be written as 

^ (In p) + r,   V + ^' = 0 
</' dz 

which, with a substitution from Kq. (35), reduces to 

d f        dz\ 
A(ln'W + T•   V=0- (J6) 

Since all differentiations with res|>ect to jr. yand / with 2 held fixed have now been expressed in terms of those 

with 6 held fixed, the subscripts will be dropped 

3.07. To summarize the results of the preceding development, we shall simply I'-' the new hydro- 

dynamical equations, expressing all derivatives as differentiations with respect to the quasi-Lagrangian 

coordinates and expanding total derivatives as the sum of local and advective derivatives. 
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dV 
— + V • W + K X XV + V(^ + 9(1 - «)">'"•) = 0 (37) 
at 

*(I^7)+V■V(I"^) + T■V = ,, '3») 

(1 - .)-'/>'- - £l«« + »d - «r1/-'-! = 0. (39) 

Equation (37) wae obtained by Hub^tituting Eq. (32) into Eq. (26), thr vertor equation of horizontal motion. 
Equation (38) combines Eqs. (27) and (36) and Eq. (39) wan obtained by introducing the definition of 8 

into the hydrostatic equation (27). Since «he vector equation of f orizontal motion actually cousiRtn of two 
independent ncalar equations, Eqg. (37), (38) and (39) conntitute a complete ftVHtem of equations involving 
the derivative» of the four dependent variables u, r, p and ;. 

3.08. The new equations are similar in form to those that would be obtained by omitting the vertical 
advection terms from the original Eulerian equations. In a manner of speaking, therefore—because 

the vertical component of velocity does not appear explicitly -the quasi-Eagrangian equations refer to 
a kind of "two-dimensional" motion. The effects of vertical motion are evidently implicit in the peculiar 
coordinate system we have chosen. At any rate, the vertical component of velocity has been eliminated 

effectively from all the equations. 

THE PKRTURBATION EQUATION EOR SURFACE PRESSURE 

3.09. The remaining eliminations will be simplified by considering small deviations from the state of 
rest, in which the undisturbed values of p and : are necessarily independent of x, y and t. If the amplitude 
of the disturbance is chosen small enough, the nonlinear advective derivatives become negli^ le in com- 
parison with the linear local time derivatives, whence all total time derivatives may simply be replaced by 

partial time derivatives. The horizontal component of velocity \*ill be assumed constant along the inter- 
sections of the isentropic surfaces with the planes x = constant. This has the effect of forcing al! disturb- 
ances to travel in the same direction, thereby |>ermitting a direct comparison of their characteristic phase 
speeds and frequencies. Introducing these two restrictions into Eqs. (37), (38) and (39) yields a set of 
linear perturbation equations. 

jt-
Xv + £ ^ + w - «rV""! -0 (40) 

^■'-i-xu + ^^-Md-«ry-l = o (4i) 
at ay 

(i - «ry- - ^ + »(I - «ry-i -« («) 

dt \    d$J 
3"      „ + - = 0. 43) 
dx 

We next cross-differentiate Eqs. (40) and (41) to get the vorticity equation, bearing in mind that u and V are 
independent of v, and making use of Eq. (43) to eliminate u. 

S7, + '"-x*l|n~l = a (4*> K)- 
Moreover, by differentiating Eq. (40) with respect to x and Eq. (43) with respect to t, u can be elimina- 
ted to obtain a completely independent equation in  V, p and z 
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£''+'<i-'-'-'-£(■-£)-*£-• <«> 
Finally,   r  m   «-liminatcd   by   «iifTrronliating   Kq.   (44)   oner   morr   with   respect   to x   and   substituting 

from Kq. (45). 

J4 

dx' 

c dt V      M/ 
-X'^lhi^J-O.    (46) 

It remain» to eliminate either p or t between Kq». (46) and (42).    Since z appear» explicitly only in the 

expraMion 

gz + e{\- «ry-. 

we differentiate Kq. (46) with respect to 6 and substitute from Kq. (42). 

(1 _ ,)- J*     (/,.-.) _ -^-A ^ + ^(1 - 0- -^ (/>'-') " <*-—2(ln dA 
dx'dt ' dxd»di*\   sej dx2 H dedt2\   del 

dt \   MJ 
-X2 ln-n = 0. (47) 

dx de ?- 

The above equation involve» only one dependent variable, namely, the pressure at the point (*. v. 9,/). 

3.10. Inasmuch as it contain» no restrictions a» to the barotropy, waveform, phase »peed, or »tability 

of the di»tiirbance». Kq. (tT) i» of considerable interest in itself. However, it is not within the scope of 

this report to solve it and, because it is so peneral, it is difficult to interpret it in term» of what i» alreadv 

knonn about the physically possible tv|»esof atmospheric motion. Since Kq. (47) is too general for our pur- 

{Mises, He »hall revert to an earlier stage in the development, introdurinf; »uch »penalization» a» are necfs»ary 

to exclude all but neutralK stable disturbances. PHMIUCIS of perturbation quantities may be neglected, 

whenee 

dxm dt"1 r    i    p    dxm dtq yr' 

for the same reason 

dm*■' /   dp\ .  dm+q de d r d"+'      1 
( In   ' ) = «p-1 ——     (p) + - {z)    . 

ixmdt''\   de      r   dxmdt'l^dzdeldxmdt''j 

Substituting these expressions in Kq.  (46), we find that its coefficients can be manipulated to give it the form 

r      d4z de d (   d4z W       f    ,    d'p dAp "I [    d2z       de  d (d2z\] 
yp [* dx* d, * dz de [dx *>)] + Lc' dx* dt - dxdr*] + ßyp [* dx2 - Jz de UV J 

r 2d
2p    aVI     v2   de d / d2z\      . dip 

+ ^   r»      2 - T"2    - xV (-     -    -X2—^-=0        (48) L      dx2      dt2J rdzde\dxdt) dxdt 

where c,2 = ypp~>. 
\t this point it i» easy to verify that Kq. (IH) has solutions corresponding to all the known types of atmos- 

pheric motion. If, for example, the earth were not rotating and if the atmosphere were in purely horizontal 

motion, then onl\  two terms of Kq. (4H) would remain 

.. d2p      d2p 

dx2      dt2 
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This i« the familiar one-dim»'n(«ional wave equation whcme HolutionH rorrespotul to Hound uave8 traveling at 

speeds ± (tpp~ ) in the .t-direction. Similarly, if the earth were not rotating and if the atmosphere Here 

inrompressible (or, more aptly, uncompressed), Kq. (48) nould reduce to 

d2z      dB d /d2z\ 

To permit a rough interpretation of this equation, let us apply it at the height //. MHCTC the vertical displace- 

ments of the isentropic (or material) surface« are greatest, assuming at the sann lime that the underKing 

terrain is flat. Thus the potential temperature must have heen initially constant alonj; the ground surface, 

and must conserve that constant value at all later times. Therefore the derivative« of z, with respect to 

x and /, vanish at the ground and. approximately, 

M ^/d*z\       d /^\       1 dh 
dz de\dt2) - dz\di2)~ H dt2 t 

from which Kq. (49) takes the form of the Have equation 

gH —5 1 - 0. 6    dx2      dt2 

u 
The solutions of this equation corresjxmd to gravity Haves traveling at speeds ±{gH) in the .*-direction. 

If the motion were purely horizontal and if the atmosphere were incompressible (or uncompressed), Kq. (44) 

would reduce to 

dx dt 
+ tit = 0, 

which is the familiar equation for the Kossby waves. 

3.11. To deal simultaneously with all types of motion, honever, all but one dependent variable must be 

eliminated from Kq. (48). To do so, Kq. (48) will first be applied to conditions at the ground level. The 

ground surface will be assumed flat, inasmuch as forced oscillations induced bv irregular terrain are not a 

primary concern. The potential temperature at the surface must have been constant initially, in the undis- 

turbed state, and must remain constant at all times thereafter. \^ hen this restriction is introduced into 

Kq. (48), certain terms vanish at the lower boundary. 

c' a77t ' ^? " 7/,0aA^rVo + ß\c' to2     a/2 ) ~ ^A*2/. " X ^ 
2     a / a'z \ 

The subscript zero refers to conditions at the ground surface We next consider the motions of an atmos- 

phere consisting of two isentropic lavers, separated by a material surface of discontinuity at height // 

which might be thought of as corresponding to the tropopause. It is a curious coincidence that the maximum 

amplitude» of bothlhe large-scale slowly moving disturbances and of internal gravity naves IM hose maximum 

amplitude must lie near a discontinuity of density) are attained somewhere around the tro|H>pause. Vor 

this reason, and because only the relative orders of magnitude of the terms in Kq. (SO) are to be estimated, 

it is legitimate to introduce the following approximation 

a / a-^X ^ i a"^// 

asVajt-at"/ ~//a«mai« 
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The relation between the derivatives of // and /»o is provided by Kq. (27), the roudition Tor hydro«tatir 

equilibrium.     Requiring that the preaHure be continuouA arrcwK the interface, 

$1    ("a — *i) ~   = to 
dH 
dt 

 i 

at 

in which $2 an(l 'l ■'* the valuer of 9 above and below the dweontinuity.    The derivatives of z at the ground 

are then given by 

a / dm+<z \ 
dz \dxm dt") 

_,   _2 d^opp 
Po   c 

dxm dt" 

where c9 is [gHdi~* (d? — öi)] , the speed of internal gravity wave» traveling along the »urfare of discon- 

tinuity. Finally, introduring the above approximation into Kq. (50), we arrive at an equation whirh 

involves only the »urfare pressure. 

(51) 
dx3dt      (C'     +C'    ' dxdt3+ßdx*      ß{C'     +C'    )^"X(C'     +C'    )^Jt-0- 

This equation provides the basis for further discussion of the scale theory. Equation (51) is of the same 

general form as Kq. (11), which applies to the elevation of the sea surface, and has almost identical coeffi. 

cients if c,-2 is replace«! by (c^-2 -|- ct~
2). 

THE SCALF, TlfKORV 

3.12. As before, we ascribe to each type of motion a characteristic wavelength and period. It will then 

be pmsible to approximate the derivatives in Kq. (51) by ratios of characteristic numbers and to express 

these estimates in terms of a characleristic phase s|>eed and frequency. The relative magnitudes of the terms 

in Kq.  (51) are displayed below, each estimate ap|>earing beneath the correapondini term in the equation. 

d4po 
dx3dt 

-2 *>■ 
C"     dxdt' ^ *■-% 

x2r.-2 *2po 

dxdt 

Cf)" 1 {H)cm (Bern o1 
Note:*,"* - r. » +€.,-* 

Thus the state of motion is again characterized by the values of three nondimensional parameters, one 

of which depends only on such quantities as the gravitational constant, the gas constants, the effective depth 

of the atmosphere, the absolute angular speed and radius of the earth, and the thermodvnamic structure of 

the undisturbed stale.    The remaining tno depend on the type of motion one chooaea to consider. 

3.13. In the atmosphere, as in the ocean, there are evidently two distinct classes of motion, one dis- 

tinguished by the fact that its characteristic frequency is much greater than the frequency of the earth's 

rotation, and the other by the fact that its characteristic phase speed is much less than that of either sound 

waves or internal gravity Haves. Kor example, if/:» X (and if c is indejwndent of/), then the last three 

terms of Kq. (51) are much less than the first two and Kq. (51) reduces to the hyperbolic wave equation 

C-    dx2        dt* ■ (52) 

The solution» of this equation corresfxmd to modified gravity waves, for, strictly s|>eaking, the sound waves 
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have be«n excluded by imposing the condition of hydrostatic equilibrium. On the other hand, if c <C c« 
(and whether or not c depends on /), then the second term of Eq. (51) is much less than the first and the 
fourth is much less than the third. In the latter case, the motions are governed by a general equation of 
which Rossby's is a special form 

^t + ßdx "Me.    +c.   )— _ (53) 

It can be easily verified that this equation has no solutions corresponding to sound or gravity waves, simply 
by noting that its wave solutions are propagated in only one direction. It is also noteworthy that, as c is 
made smaller and smaller in comparison with c, the third term of Kq. (53) likewise becomes smaller and 
smaller in comparison w ith the second. If the characteristic phase speed is very small, therefore, the motions 
are actually governed by a telegrapher's equation, identical with Rossby's equation for long waves 

dxdt 
+ ßpo = 0. 

This implies that, the slower the movement of the disturbances relative to the medium, the more nearly is 
the absolute vorticity conserved. 

3.14. This analysis does not provide a clearcut distinction between the sound and gravity waves be- 
cause they cannot, in general, be distinguished solely on the basis of their respective phase speeds or fre- 
quencies. However, Eq. (52) correctly yields pi're gravity waves in the limiting case of complete incom- 
pressibility. As the bulk modulus approaches infinity, the speed of sound also approaches an infinitely great 
value. In the limiting case of incompressibility, the speed of sound therefore becomes infinite and Eq. (52) 
reduces to 

2** Po      Ppo 
C'   dx2 ' dt2 <'. 

which is the equation for pure internal gravity waves. 
3.15. In view of the comments of paragraph 2.26, concerning necessary conditions for unidirectional 

propagation, and because large-scale atmospheric disturbances actually are observed to move very slowlv 
relative to the medium, it is reasonable to conclude that the large-scale motions are governed by an equation 
of the same general form as Eq. (53), and that they are distinguished from all other types of motion by the 
very fact that they do move so slowly. It is difficult, however, to see how one can make direct use of the 

filtering approximation in dealing with a more general set of equations. By simultaneously assuming quasi- 

horizontal motion and substituting the geostrophic wind in üu onicity equation (Eq. (44)), we can obtain an 
equation which is identical to Eq. (53), except in minor respects 

dx'dt dx St 

Eollowing the procedures outlined in paragraph 2.28, it can be shown that the so-called geostrophic approxi- 
mation is exactly equivalent to the filtering approximation, c •C cm. Approximating the derivatives of u 
and /' in Eqs. (40) and (44) by ratios of characteristic numbers, and requiring that the motion be quasi- 
horizontal, one obtains the following magnitude estimates of each term: 

(54) 
du 

dt 
\v 

dx 

AHT1 \v P-'^L- 



^-? du 

dx 

y-Y^-r1 
AUL-1 

Combining theac estimates, we find that the relative magnitudes of the terms in Kq. (40) are 

du 
dt 

\v 
dx 

CJ \vpLAp~l 1 

Thus, if r is murh less than ea (and still less than v,), then the first term of Eq. (54) is murh less than the 
third. This is equivalent to saying that the winds are quasi-geoatrophir. In the general development to 
follow, therefore, it is permissible -and, in fact, necessary—to introduce the geostrophic winds into more 
general forms of the vorticity equation. This, as will be shown a posteriori, is at least sufficient to exclude 
solutions corresponding to the irrelevant "nonmeteorologicar' types of motion, leaving an equation which 
applies only to the large-scale slowly moving disturbances of pressure. 

3.16. Although the foregoing discussion has been confined to small deviations from the state of rest, 
and although several artificial constraints on the geometry of the motions have been introduced, the physical 
system is self-consistent and contains the essential mechanisms by which all types of disturbances are 
propagated. For this reason, and because the physical character of the system is not radically altered by 
its nonlinearity, it is reasonable to expect that the qualitative results of this analysis will apply under less 

restrictive conditions, i.e., to the general nonlinear equations. We shall therefore proceed to the develop- 
ment of a vorticity equation which holds under most actually observed conditions. 

4.00   THE VORTICITY EQUATION FOR ADIABATIC FLOW 

4.01. There are sound physical and mathematical reasons for developing the theory of large-scale 
disturbances around some form of the vorticity equation. We s'iall therefore attempt to derive a vorticity 

equation which holds under very general conditions, subject to the sole restriction that no energy is supplied 
from external sources. The equation will then be specialized to conform to actually observed types of flow. 
The physical basis for this development lies in the quasi-Lagrangian equations of motion and continuity, 
previously derived in Section 3.00. The material derivative of the horizontal velocity component can be 
decomposed by applying the following vector identity: 

V • V,V ■ V#(V • V/2) + K x rv, 

where f = K   V# X V.     Accordingly, expanding the material derivative as the sum of the local time deriva- 
tive and the advective derivative, 

rfV iv    /d\\        /v v\    „ 

Substituting this expression into Eq. (37), the vector equation of horizontal motion, 

dV dV /V   V\ 
dt +v \ i / + K x (f + x)v + v^ + ^ - «rV-'! - o- (55) 

We next apply the vector operator V$ X {    ) to Eq. (55) to obtain th« vorticity equation; noting that the 
second and fourth terms are potential vectors and therefore do not contribute to the curl. 

d{/dt -h V • (f -h X)V = 0. 
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For later r» nveniene«-, the absolute vorticity Z = f + X is introdured, »o that 

dZ/dt + T • ZV = 0. (56) 

This equation can also he written as 

dZdt + ZV   \ = 0. (57) 

The vorticity equation in this form Hiinply states that the absolute vorticity of barotropic, nondivergent flow 

is conserved. However, this type of flow is too special for present purpottes, and an independenl expression 

for the velocity divergence is needed. The necessary information is contained in Kq. (38), the equation of 

continuity, which may be written as 

•'(VU^V   V = 0. (58) 
dt \ de)    de 

Finally, eliminating the velocity divergence between Kqs. (57) and (58), we obtain a variant of the so-called 

"potential vorticity" equation 

Z - ) = 0. 
dt\    dp 

(59) 

This result is similar, but not quite identical to Kossby's theorem of potential vorticity (1940). 

4.02. In passing, it should be mentioned that Kq. (59), taken together with the conditions for geo- 

stropbic and hydrostatic equilibrium, involves only one de|>endent variable namelv pressure as a function 

of x, y, e and t. The JMU ntial vorticity equation may, therefore, be regarded as an acceptable prognostic 

equation in the sense that it does not suffer from the fundamental difficulties discussed in Section 2.00. The 

remaining difficulty is that the Lagrangian coordinate e is really a function of x, v, z and /, and in order to 

locate the coordinate surfaces one is forced to compute the vertical component of velocity in one way or 

another. This question has already been discussed in paragraph 2.47. It was concluded that, because the 

static stability of the troposphere is actually quite small, any estimate of the vertical component of velocity 

is critically sensitive to small errors in the initial data. Therefore one cannot (with the present data) deal 

with the general three-dimensional motion of the atmosphere, and must resort to a mathematical device 

much like that adopted by Chamey an«! Kliassen (1949) for somewhat different reasons. Vertical dejM-nd- 

ence will be eliminated hv the simple expedient of integrating the vorticity equation through the entire verti- 

cal extent of the atmosphere, so that the resulting equation nill refer to vertically integrated values of the 

original variables. The latter, of course, depend only on x. y and / and apply to a fictitious horizontal 

motion which, in a purely mathematical sense, is two-dimensional. 

THE MKAN VORTICITY  EQUATION 

4.03. To carrv out this scheme for integrating out the vertical coordinate, Kq. (56) is multiplied by 

dp de. Applving the rules for partial differentiation of products and inverting the order of differentiation 

where permissible, 

di \   de) de Idt \ de) \ de)]      de \di)       H de 

We next integrate Kq. (60) with respect to e, from the value of 0 at the ground surface to a constant value of e 

which occurs at some very great height d: 

ri(**w rvz*v*.r *-(*)*-r**-*     ^ J*>  di\  de)       Jh ae Ju     de\dt)       J»>      '    de 
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According to the ml. - for differentiating de'inite integraiit uith a variable limit of integration, 

at' 
and, -mill.ii K , 

J#.       de J*   dt\    dd/ \M/h & 

Jtk       ae       Jn        de \de/K 

()n introducing the above expre^ions, the left-hind -ide of Kq. (61) reduces to 

dr. iJi*     de J*>      de \de/h dt 

However, because the potential temperature is conserved, the third term vanishes.    After changing the 

limits and variable of integration, the leftdiand side then assumes the form 

j    Zdp+^J    ZVdp. 
at **pk t/p* 

We now choose d large enough that /»j is effectively zero. 

4.04. At this point, it is convenient to introduce a mean horizontal velocity V and mean absolute vor- 

ticity /  defined as followt«: 

r)'pri£i )dp. 

At the same time V   and Z , are defined as deviations from the mean values V and Z. 

The left-hand side of Kq. (61) can now be expressed in terms of the mean values and the deviations from th 

means.     After interchanging the limits of integration, the left-hand side of Kq. (61) is 

* (pk2) -v  r\2 + Z')(V + V) rfp = ■   \ (pk2) - v ■ pkZ\ - y ■ Pz'Vdp 
dt <r0 dt «/o 

In summary, the left-hand side of Eq. (61) is replaced bv the above expression: 

4.05. In exactly the same way. the continuity equation is integrated with respect to Ö, between the 

limits ek and fy. ushig^a form of the equation obtainable from Kq. (58) 

Jt>, dt\de/       Jtk      de 

As before, we apply the rules for differentiating definite integrals nith a variable limit of integration, bearing 

in mind that ^ is a constant. 

deh d r^de=rd(dAde-(^)^ 
dtJtk  de       Jtk dt\de/       \de/h dt 

Jtk  de Jtk     de \de/k 
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Substituting these expreMion« into Kq. (63), 

dt Jtk v9 Jtk    de       \ de/k dt 

After changing the limitH and variable of integration, and also noting that Bh is conserved. 

We now choose d large enough »o that pi is effectively zero, whence, according to the definition of V, 

IT + V  /»»V - 0. (64) 
of 

This is the continuity equation expressed in terms of the integrated variahlo, nhich depend only on .*, y and /. 

Substituting from Kq. (64) into Kq. (62), the vorticity equation now reduces to 

Kinally, in order to put the vorticity equation into a more recognizable form, the second integral on the 

:lit-luiihl side of Kq. (65) can be integrated by parts to obtain 

' \dt / dt    JH     ^ de       JH dt ae Jo ^ 
(66) 

This is the form in which the vorticity equation for adiabatic flow Mill be considered. It has been arranged 

in this particular way to emphasize the "barotropic" aspects of the large-scale flow and to isolate the effects 

of ban» linily. 

4.06. In the case of barotropic flow, for example, the velocity and, in consequence, the vorticity are 

essentially independent of height. I nder those conditions, all the terms on the right-hand side of Kq. (66) 

vanish, and the vorticity equation assumes the simple form 

i {p^Z) =0- 
This, of course, is exactly Kcwsby's vorticity equation for barotropic flow. We mav therefore regard Kq. (66) 

as a direct extension of the barotropic vorticity equation, in that it is tqtlit up in such a way as to isolate the 

purely baroclinic effect« on the viirticity-generating mechanism from those nhich are essentially barotropic. 

That is to say, the terms on the left-hand side of Kq. (66) have the same general form as the terms in the 

barotropic vorticity equation, and the terms on the right-hand side are non-zero only if the flow is baroclinic. 

The terms on the right-hand site therefore represent the purely baroclinic effects. 

4.07. Thus far no concessions have been made except to make use of the adiabatic law and the condi- 

tion for hydrostatic equilibrium. The next stage in the development is to introduce such specializations 

into the "baroclinic" terms on the right-hand sid- of Kq. (66) as are necessary to express them in terms of 

the verticallv integrated mean variables, at the same time conforming to the observed facts as closely as 

possible. As justification for approximating the baroclinic term* on the right-hand side of Kq. (66), it 

should be noted that the atmosphere is very nearly barotropic. Therefore, those terms are rather small to 

begin with, and one has considerable latitude in approximating baroclinic terms, without danger of losing 

any of the essential feai ina of the vorticity-generating meclianism. 



.-.J 

4.06. Sinre. in (iraling nilh the purel) baroclinic «'ffecl»* on«* i« conceraed mainly nith eHtimating thr 

vertical variations of velocity, it in quite natural t<« invoke the Ho-4-alle<l "thermal winfl equation." Because 

all large-Hrale motion i» chararteriHtirally geotttntphir. that relaliont»hip applies iipialh Hell to barotropir 

ami har<M-lini(- floM. To expre** the thermal uiiul e<piation in terma of the (piasi-Lagrangian e<»or(linates, 

Me hegin with a geoMrophir equation obtained li\ oiuitting the acceleration termt« from Kq. (37) 

V - K X X-'V^«-M(l - «ry-l. (67) 

Differentiating Kq. (67) with respect to Ö, and Mibfttituting from the hydrostatic equation (Kq. (39)), the 

thermal wind equation is obtained in the following form: 

-- KXX-V^z-Md -O-y-l 

= K XX_1(1 - «r'Vf»1"* (68) 

- K X \~lp-'?p. 

\n immediate connequence of Kq. (()H) it« that the first integral on the right-hand side of Kq. (66) vanishes, 

whether the HOH is baroclinic or not 

V,,    ^  = K\-lp-'{VPX Vp) = 0. 

Turning to the integrand of the second integral on the right-hand side of Kq.  (66), we observe that the 

advective part of the material derivative of pressure is 

V    Vp. 

According to the thermal wind equation (Kq. (68)), the advective derivative of pressure is 

V.Vp.K.X,-(vx^) 

= \p'V 
de 

where x is the ang1«- helwcen the wind vector and some geographically   fixed horizontal line.     If the wind 

direction is independenl of height, therefore, the advective derivative of pressure V    V/* vanishes. 

4.0*). The latter deserves some further comment, for the conditions under which the advective deriva- 

tive «tf pressure \anishes are not loo far from the actually observed flow conditions associated with large- 

scale disturhance>. That is to say. the configuration of the slreamlino <i( larp-xralr flow displays the same 

general shape, phase and amplitude at all levels. Stated in still another way. the lines of constant tem|>era- 

ture on a surface of coiihtant prasaure coincide fairly Hell with the contours of the pressure surface. There 

are, however, more deep-seated reasons for belie\ ing thai the nonvariabilit v of wind direction w ith height is a 

characteristic of the very large-scale disturbances. To show this, we shall consider the adiabatic equation, 

tenqtorarilv   reverting to Kulerian coordihates 

/ae\     „ de 
I    - )   + V • v.* -I- u' - =   >. (69) 

' t az 

The thermal wind equation is also written in terms of Kulerian coordinates to obtain an alternative expres- 

sion for the horizontal advection of (»otential tem|>erature 

i     . •■. OX 
V    V.I9 -   -«'Xfll- 

dz 
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Subntituting thin rxprnwion into Kq. (69), th«- adiabatic equation tben has the form 

t^^-m^^ 
NOH, it ha« already brrn noted that the vertical ronqionent of velocity and the hieal rhanpes of presBure and 

.1. ii-M \ are rhararteriMirally -ni.ill for the very large-xrale dinturbanres. Beraube the potential tempera- 

ture is a function of pressure and density alone, it follows that the local variation», of potential temperature 

are correspondingly small. Thus the entire righ'-hand side (and therefore the l< li liatnl side) of F.q. (70) 

can be regarded as small if HC are considering the IWT larfte-scalv disturbanc«-*. In a rather roundabout way 

this argument shows that the vertical variations of wind direction associated with large-scale disturbance* 

are characteristically small. From this point onward, therefore, it will be required that the wind direction 

(though not the wind speed) not vary with height, in much the same wa% as Oiarney and Kliassen (19W) 

have specified. 

4.10. A simple physical interpretation of the above assumption is most easily provided by considering 

the wavs in which vorticitv can be created nilhin afixed hni'l. It is a consequence of our assumption, of 

course, that no vorticitv can be created through the action of solenoids, because density is essentiallv a func- 

tion of pressure within a fixed level. On the other hand, no restriction has been placed on the vertical 

variabilitv of wind speed, so that it is still possible to "create" vorticitv nithin a fixed level bv advection 

of thermal vorticity.     It must be reemphasized lhat this applies only to large-scale disturbances. 

4.11. Considering Kq. (66). in view of the assumption discussed above, it will be noted that ihe first 

integral on the right-hand side vanishes in any case, and that the advective part of the material derivative of 

pressure (which enters into the integrand of the second integral) vanishes under the sfM-cial conditions we 

have assumed 

The present concern is to estimate the contribution of the terms on the right-hai I side of Fq. (71) and to 

express them in terms of the integrated \ riables. In the first place, the lo.'al derivative of pressure generally 

has the same sign ami same general order of magnitude at all levels, nbereas the vertical derivative of abso- 

lute vorticitv UMiallv changes sign at about the level of the tropopause, taking on large positive (or negative) 

values abo\e that level and somewhat smaller negative (or j>ositive) values below it. Thus, the integrand 

of the first integral on the right-hand side of Kq. (71) tends to contain positive and negative contributions in 

approximate!> equal degree. For reasons discussed in paragraph 4.07 and because its integrand has oscil- 

latory properties even in markedly baroclinic flow, the first integral on the right-hand side of Kq. (71) will 

be omitted. 

4.12. We next consider the second term on the right-hand side of Kq. (71). Since we have assumed 

that the wind direction is independent of height, the wind vector at any level is a scalar multiple of the wind 

vector i.   anv other level.     For convenience, we therefore write 

V = (1 + .4t.)V 

w hence 
V = .4,.V. 

Similarly, 
Z' = f' = Atl 
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Introducing the«« definitions into thr term in question, 

V'j^tVdp-vflf^äp 
= V    (r- l)pkfV, 

where r = 1 + -4t/<f. The quantity T in assumed to be a "slowly-varying" function which depends on 

the distribution of velocity and vorticity above each point on the ground surface. In fact, it is actually 
observed that the limits between which r varies are quite narrow. It is almost always greater than 1.0 and 
rarely exceeds 1.3, varying from its maximum and minimum values over the "characteristic half-wavelength" 
of the large-scale disturbances. Therefore, r may be treated as a constant with respect to horizontal dif- 
ferentiation, whence the second term on the right-hand side of Kq. (71) is 

-(r- l)V   pntV. 

Finally, expanding Kq. (71) into local and advective derivatives, and introducing the above expression on 
the right-hand side. 

Pk f ^ + rV-VC + ^ - ((r - l)f + Zh] ^  - Zh\h    Vp, = 0. (72) 

This is the mean vorticity equation, which applies to the "two-dimensional" vertically integrated variables 
p», } and V. 

4.13. By way of orientation, it should be noted that the values of .4t and .4f are both zero if the velocity 
doe« not vary with height, whence the value of T for barotropic flow is unity. In that case Kq. (72) correctly 
reduces to the vorticity equation for barotropic flow 

dZ      _ dpA 
PHT- Z-Z- =0. 

dt dt 

Kquation (72) is therefore to be regarded as a generalization of the barotropic vorticity equation in the sense 
that it applies to a special but commonly observed type of baroclinic flow in which the wind direction (but 
not the wind speed) is very nearly independent of height. 

4.14. Before discussing the way in which Kq. (72) will be used to formulate a suitable prognostic equa- 
tion, it is appropriate to add a few general remarks about the ultimate validity of the approximations intro- 
duced to obtain the mean vorticity equation. The terms which have been selected as representing the largest 
effects of baroclinity are actually rather small in comparison with either of those involving the local deriva- 
tive or the advective derivative of mean absolute vorticity. It is therefore safe to say that the terms ap- 
proximated were already small. Moreover, because the entire left-hand side of Kq. (66)—including the 
largest terms—was arrived at without such approximations, Kq. (72) might be expected to describe the large- 
scale motions of the atmosphere with a fairly high degree of  .ccuracy. 

5.00   THK PROGNOSTIC KQUATION 

5.01. An equation will now be developed which, with suitable approximations, involves only one 
dependent variable. The solution of such an equation, subject to observed initial conditions, wdl constitute 
a verifiable prediction, by which the general validity of the theory can be tested. We shall take as a start- 
ing point the mean vorticity equation (72), first investigating the last term. Because the lower boundary 
ia fixed, the advective derivative of the surface pressure can be separated into two parts 
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V* • Vp* = V* • (V.p), - ÄpAVA • VA. 

However, since the winds are very nearly geoMrophir, VA is almust |>erf>en(lirular to V,p at the 

surface. This simply shows that the "advection" of surface pressure is due mainly to variations in the 

height of the terrain. The latter, in fact, is the major part played hy irregular terrain in the generation of 

mean vorticity. In all terms of K(|. (72) except the last, therefore, it will he assumed that the lower 

boundary is a flat surface located at height zero.    Kquation (72) then reduces to 

Po (^ + ^ ■ vf +&)- 1^ - Df + Zo] ^ + tPvZoVo   Vh = 0, (73) 

where p0 is the pressure reduced to sea level hy means of the hydrostatic equation. 

5.02.    The above assumption also simplifies the problem of estimating C in terms of V, whose deiinilion 

is   now 

Jr»po 

It will next be shown that, to within the accuracy of the observations. 

To begin with, we apply the operator V X { ) to V, expanding the derivatives according to the rules for 

differentiating definite integrals with variable limits of integration 

V X V = po-'V XJV dp + pcT'V X Vpo 

- Po"' /     rPX\dp - /xT'Vo X Vp0 + pcT'V X Vp0. (74j 

The derivatives of V, with p held fixed can be related to those with 8 held fixed, as follow» 

vp x v = v# x v + ^-'p-' — X ?$p. 

Substituting this expression for Vp X V in the integral on the right-hand side of Kq. (74), we find 

H'1 T X V> ^ - P"-'^) x ^o + ^''V X Vpo. (75) ox 

For pur{>oses of estimating the last three l< rms on the right-hand side of \ <\ (75), we intrmluce two provi- 

sional approximations, provisional in the sense that, if they later lead to a strong inequality between the last 

three terms and the single term on the left-hand side, they are justified a posteriori. Tentatively replacing 

Vpo in the last two terms by the corresponding geostrophic pressure gradient, and substituting for V^p in 

the integral on the right-hand side the value given by the thermal wind equation (Kq. (68)), Eq. (75) then 

reduces to 

v x v - f - vo-'j/V'v)(£ • S) ■"■+xc-"x v° - xc-"iv»v' (76) 

where cn is the Newtonian speed of sound at sea level. Now, because the Mach number of atmospheric flow 

is of the order of 0.1, the last two terms on the right-hand side of Kq. (76) are two orders of magnitude less 

than X. 'Mi the other hand, it is observed that the range of variability of the left-hand side is of the aomc 

order of magnitude as X. The last two terms are therefore less than the instrumental error in measuring 

K    V X V directly, and can be omitted.     In exactly the same way, it can be shown that the integral on the 
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right-hand side of Eq. (76) is negligible, for its integrand is of the same order of magnitude as the square of 

the Mach number.    The conclusion, therefore, is that, for all intents and purpose«, 

f = KVxV. (77) 

Inasmuch as it reduces the number of dependent variables by one, this is an extremely important result. 

A SIMPLE ELIMINATION SCHEME 

5.03. To indicate how the remaining eliminations can be carried out, let us suppose that we are dealing 

with flow over perfectly flat terrain, in which case Kq. (73) can be written as 

f + rVvf + ßl'- po-'Kr - Df + fo + XI ^ = 0. (78) 
of at 

Now, the bracketed factor in the last term of Kq. (78^ has the same order of magnitude as X, whereas the 

remaining factor the percentage local change in sea level pressure—is observed to be of the order of one 

percent per day. Thus the last term of Kq. (78) is at least one and possibly two orders of magnitude less 

than (say ) the second term, whose range of variability is about X |»er day. Without serious loss of accuracy, 

it might therefore be assumed that the large-scale disturbances are governed by the simple equation 

d- + TV   Vj + ß{> = 0. (7*)) 
dt 

This equation, which can also be regarded as a special form of the Charney-Kliassen equation (Kq. (19)), 

simply states that the absolute vorticity of the mean flow is conserved to within a fair degree of accuracy 

under actual conditions, and is exactly conserved if T is »iiiity. Since T is generally no greater than 1.3, one 

would be tempted to regard it as exactly 1.0. However, the act'ial value of r has an important effect on the 

speed of wave disturbances, as will be evident later. 

5.04. Although the mean vorticity can be expressed in terms of other variables by the use of Kq. (77), 

Kq. (79) still contains two dependent variables, namely, the components of mean horizontal velocity. At 

this point, according to the original plan of development, the velocity would be replaced by the geostrophic 

velocity. This would have the twofold effect of excluding the solutions corresponding to external gravity 

waves and of expressing both velocity comjuments in terms of derivatives of a single variable. An alterna- 

tive (but exactly equivalent) scheme can be developed around the continuity equation. Noting that the 

local variation of sea level pressure or—which is the same thing- the integrated momentum divergence is 

quite small, we may regard Kq. (64) as a condition for the existence of a stream function 

V poV = 0 

from which 

/>o'7 • V + V • ?/>„ = 0. 

However, because the winds are quasi-geostrophic, 

poV ■ V + K • XPOV X Vo = 0. 

It has been stipulated that the wind direction does not vary with height, so that V X V0 vanishes and 

V V = 0. 

This condition is evidently satisfied if 

V = K X W, 
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where tp is the Htream function.    The mean vortirity then take* the form 

f - ^v. 
SuhHtituting these results into Kq. (79), we finally ohtain an equation which involves only one ilepemient 

variable \p. 

- (VV) + rj(t, V2i) +ßi: = 0. (80) 
dt dx 

Analytic solutions of this nonlinear equation have been studied by ^-raig (194S), Neamtan (1046), Thompson 

(1948) and Machta (I'M1)), and numerical methods for solving it have been develo|>ed by (iharno, Kjflrtoft 

an<l von Neumann (1950). 

5.05. It should be noted in passing that the stream function is determined only to within an arbitrary 

constant of integration. However, because it is sufficient to know only the derivati\es of ^ in order to 

regenerate the initial conditions, it is not really necessary to determine the arbitrary constant, (iharney 

has skirted this difficultv by applying Kq. (70) to conditions at the "equivalentdiarotropic level." so his 

"stream function" is the height of a surface of constant pressure located near that level. 

Ö.06. The lew solution* of Kq. (K0) that have actually been constructed are in good qualitative accord 

with what is observed, correctly predicting the general direction ami speed of large-scale disturbances 

Quite aside from the quality of numerical residts. however, there are rather obvious philosophical objections 

to the theoiv on which they are based. For example, some meteorologists have complained that, because 

this simple theory does not afford any mechanism for creating vortirity. it cannot provide for the develop- 

ment of "new" disturbances. In short, if one accepts the theory, one must simply accept the existence of 

already developed disturbances without regard to their origin. Two remarks should be attached to this 

viewpoint. In the first place, many of the developments which the meteorologist regards as "new" may. in 

fact, be due to pun* dispersion effects in an essentially bardropic medium. In the second re|H)rt referred to 

in the foreword some evidence will be advanced to sup|>ort this possibility. The second jMunt is that even 

the simple theory summarized in Kq. (70) does not preclude advection of thermal vorticity, by which vor- 

ticity can be "create«!" tvilhin a fixed /ere/. This is reflected in the fact that r is in general different from 

unity, whence the theory does not require complete conservation of absolute vorticity. This question is 

largely a matter of conjecture, however, and for this reason if only to meet some of the fundamental objec- 

tions to a theory of complete vorticity conservation a more general theory will be developed around Kq. (73). 

The latter, of course, contains several mechanisms by which vorticity can be generated, namely, by the 

divergence associated with large-scale flow over perfectly flat terrain. b> the divergence enforced by irregular 

terrain, and by the advection of thermal vorticity. 

INTRODUCTION OF THE FILTERING APPROXIMATION 

5.07. Returning to the problem of eliminating all but one of the variables in Kq. (73), there are 

evidently two alternative methods of approach. As outlined in paragraph 5.04, one possibility is to derive 

an equation which applies to a single integrated variable and to regard the basic problem as one of predicting 

that variable, starting with its k.iown initial values. Because it involves no qualitative interpretation, this 

approach is most satisfying to one's mathematical instincts. Maying solved the problem in that form, how- 

ever, we should then be faced with tiie practical difficulty of interpreting the solution, to get a rough idea of 

the flow at some given reference level. The other alternative, which is the one adopted by (iharney and 

Kliassen, is to interpret the mean vorticity equation as applying to the actually observed motions at the 
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"equivalent barotropir level," i.e., the level at which the observed win«! «peed equalt« the speed of the density- 

weighted mean wind. Sinre it apparently make* no difference where the burden of interpretation i» placed 

the latter point of view will be adopted, becauHe there are other advantage» in doing so. From thin point 

onward Eq. (73) will be treated as if it applied to the flow observed on a surface of constant pressure, located 

somewhere near the "equivalent-barotropic level" 

po (^ + rV • Vf + ßv\ - [(r - l)f + Zo] ^0 + ^)oZ„Vo   VA = 0. (81) 

Since we shall deal exclusively with conditions at the equivalent-barotropic level from now on, the variables 

at that level will be denoted by unbarred quantities. As a consequence of Kq. (77), .4( is very nearly equal 

to A„ and the vorticity at the reference level is the curl of lIn-horizontal velocity at that same level. Thus 

Eq. (81), regarded as a quasi-linear equation, involves the derivatives of only three variables, u. t and /<,.. 

5.08. In the course of developing the scale theory, it was shown that to introduce the geostrophic ap- 

proximation into the vorticity equation, at the same time requiring that the motions be quasi-horizontal, is 

equivalent to introducing the filtering approximation into a single reduced equation. Since the vertical 

coordinate has been integrated out, the mean vorticity equation alreadv applies to purely horizontal motion, 

however fictitious it might be. and it remains onl> to replace the "true" velocity by the corresponding 

geostrophic velocity in Eq. (81) 

V = KX^r'Vz. 

Because the quasi-Lagrangian variables will not be discussed further, z ^ ill be used to represent the height of 

a constant pressure surface.    The "geostrophic" vorticity, expressed in terms of the contour height, is then 

K   V X V = VgX~lVt 

= gX'^h +ß\-,u. 

Now, the order of magnitude of the second term on the right-hand side is given by the number of times an 

imaginary point, traveling at a speed of 2ru along the equator. VMII completely circle the earth in one day. 

The left-hard side, of course, is of the order «if ten radians per day, and the second term on the right-hand 

side is at least one and generally two orders of magnitude less than the first 

In similar fashion, it can be shown that X may be regarded as a constant with res|iect to all other differentia- 

tions required by Eq. (81).    Substituting the above expressions into the vorticity Eq. (81), 

- Vh + rjX-'y (2, V2z) + ß~    - X^-'po-'IX + fo + (r -- Df] -^ + Xr.r2(X + [0)\0 ■ Vh = 0.     (82) 
at ox at 

Again regarding it as quasi-linear, this equation still contains derivatives of two dependent variables, z and 

pn. Although there is obviously some relation between local changes in sea-level pressure and changes in the 

height of a surface of constant pressure at some higher level, it evidently requires information which the 

integrated equations cannot furnish, namely, a knowledge of the density changes throughout the layer below 

the equivalent-barotropic level. In this connection, it is perhaps more fortunate than significant that 

derivatives of ^i enter into the quasi-linear form of Eq. (82) only in the fourth term, which, as was pointed 

out earlier, is much smaller than (say) the second term and might even be omitted altogether. With the 

assurance that the final result cannot be seriously affected by doing so, we therefore approximate the fourth 

term of Eq.   (82). expressing it in terms of derivatives of the contour height z. 

t Thin rarrim ihr furthrr impliration that r »  I  -(- A,1, whrnrr r > I. 



59 

5.09. The ronnertion between the sea-level proMUre tendenev and the height tendency at the equiva- 

lent-barotropir level will be provided Himply by stating that the pressure disturbances at different levek are 

"rigidly coupled together," in that the horizontal direction of movement and speed of the iar(:< - ale dis- 

turbances are independent of height. This appears to be a very reasonable assumption, for it ia observed 

that large-scale disturbances maintain their identity over long periods of time, traveling along for several 

days without essential change in vertical structure. Stated in mathematical terms, the relation between pg 

and /- is then 

dpo/dp\        /dp\ dpo 

da \dt/.       \ds/t dt   ' 

where s is the coordinate along curve« which are. let us say, locally orthogonal to the isobars on a surface of 

constant height.     Making use of the condition for geostrophic equilibrium. 

"-©. 
and anally, introducing the hydrostatic condition. 

Substituting this result into Kq. (82) yields an equation which, in its quasi-linear form, involves only one 

dependent variable. 

- V2z -f r^X-1 J(z, V2z) +$- - \cn-
2VQV-'[K + f0 + (r - Dfl -" 

dt dx dt 

+ Xc-'For-'IX + foIV • VA = 0. (83) 

This is the prognostic equation, whose solutions may be regarded as predictions of the mean flow conditions, 

integrated pressure-wise throughout the entire depth of the atmosphere, or of the flow actuallv occurring at 

the equivalent-barotropic level. 

5.10. At this juncture it is appropriate to review the development of Kq. (83) with regard to the pre- 

viously discussed difficulties of the general problem. In the first place, the prognostic equation refers to the 

height of a constant pressure surface (or, in other words, the pressure at a surface of constant height). Of 

all the physical variables, this is the one least sensitive to disturbances whose scale is smaller than the mesh 

size of the observation network. Moreover, the equation applies to motions which are representative of the 

vertically integrated mean motions, in that the equivalent-barotropic level is the "center of momertum" of 

the atmosphere. It will later be shown that the solutions of Kq. (83) may be interpreted as horizontally 

integrated mean values of the initial data, whence they evidently satisfy all of the original requireiiients on 

the representativeness of "statistics" formed from incomplete observations of the state of toe atmosphere. 

With regard to the difficulties discussed in Section 2.00, it should be noted that Kq. (83) is essentially a vorticitv 

equation, which expresses ehe Iwal time derivative of vorticitv (the Kaplacian derivative of z) in terms of 

computable quantities—i.e., computable in the sense that the local derivative is not invariably given as the 

small difference between individually large terms. The other major difficulty, that of attaining time- 

resolution sufficient to continue solutions corres|M>nding to sound and gravity waves, has been met by 

introducing the filtering approximation to exclude the "high-speed" solutions. In this connection, it is 

relevant to note that Kq. (83) is of the same general form as Kq. (53), which was obtained by introducing ;he 

approximation c <^cm directly into an equation containing all types of motion.    Finally, it is important to 
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realize that the progn<N«tir e<|iiation deal» with a tperin of "iVMMiimenHional" motion.     I li.ii i» to aav, inte- 

grating out the vertiral coordinate ohviate« tin- «lifTirult\ of computing the vertical component of velocity 

from observed initial data.     In nummary.  Kq.   (83) apitear*  to have none of the ohviouidy   mi.l.-it.iM. 

features outlined in the previous diHCUhsion of knov^n diflicultien. 

3.11. It »hould alt«o be rec«)gnized that Kq. (83) differs only in minor respecta from the (iharrey- 

KliasHen equation (22). The iti..-i significant difTereixr. perhap. lieb in the fact that Charney and Kliatwen 

later assumed that the slonly varying function r is equal to one. This has the general effect of making the 

eastnard progress of the disturbances too slow, bv an amount (T — l)( . It has frequenth been observed, 

of course, that the eastward movements predicted by the Hossby "trough-formula" are too small I Namias 

and Clapp, (1944)). The real |H)int, however, is that Kq. (83) was arrived at bv a different and. in many 

ways, more attractive route. The fact that the two independently derived equations do agree is simply 

added evidence that both are essentiallv correct. 

The next concern, of course, is to extract observable consequences from Kq. (83) or, in other words, to 

solve it subject to given initial conditions. Inasmuch as the method of solution presented here is rather 

unusual (at any rate quite different from that proposed bv (iharnev, Kjortofl, and von Neumann), consider- 

able attention will be given to the details of the melhod, as well as to details of the linal solution. 

MM)    VKTIIODS KOK SOLVING TIIK PROGNOSTIC KOI \ PION 

6.01. The simplest nuntrivial form of Kq '83) will IM- solved as a preliminary to the discussion of 

methods for solving the general prognostic equation. In particular, we shall consider small deviatior from 

a uniform west-east flow over perfectly flat terrain. For the sake of simplicity, it will be required also that 

the velocity disturbance be independent of v, in which case the linearized prognostic equation takes on the 

one-dimensional form. 

d:,2 t.d
Az dz        .,      ,dz 

.,      + rf   — + 0        - X-cr*        = 0. (81) 
dx1 öl dx* dx at 

In fact, as has been noted several limes earlier, the fourth term of this equation is. in general, much less than 

either of the first two. whence the essential features of the large-scale motions will not be lost bv restricting 

attention to the simple equation for Hossbv  waves 

I In- is an equation of the telegrapher's type, and the bonndarv and initial conditions necessary and sufficient 

to determine its solutions are well known. What is evidently required are the data along the semi-infinite 

line / = 0, representing the initial conditions, laken together with (he data along a line / = mx + b(ni ^ 0) 

in the (x, l) plane. The external constraints on the problem, on the other hand, are such that information is 

provided only up to / = 0. On the face of it. therefore, the solution is not uniquely determine«! by the 

information actuallv available, namely, the initial data at f = 0. In passing, however, it should be noted 

thai, in the limiting case when m approaches zero, the curves along which the bonndarv data must be known 

do approach tl.e ir'inite 'ine / =   0. 

6.02. Despite the apparent indeterminacy involved in regarding the solution of Kq. (83) as an initial 

value problem, we continue with the formal development of solutions which satisfv previously specified 

initial conditions.     \ fundamental set of wave solutions is given by the function 

z = anmalt - x + rl), (86) 
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nhere r = rll — ßcT*. Sinn- both tin- «mplilnH«' factor a and the phaie anplc ( an- arhitrarv, the funrtioni« 

of I '| (86) form a «-omplctc *<-t of ■olutiona. I li«' solution of the initial value problem if« regarded as the 

•uprr|Mwition of a eontinnoiis r>|»ertrijm of KIICII nave funrtiaiM, rorreK|M>nding to u oontinuout ■equmcf of 

nave numbers a. Sinee K«|. (8.>) i« linear, we may «um up the Kolutiom« for an> or all value» of the nave 

number to obtain more general solutioaSi later adjusting the arbitrary eonMantH a and i to fit the initial 

valuer.     At this |M)int, of eoun*e, it nould be quite natural to pahs over immediately to the Fourier integral 

I 
J      dctj      zl{. 0)  -osaU - jr + rf / ' j «/{ 

Mhieh in simply a sum of solutions of type (HOI, ostensibly satisfving the initial eonditions. That is tosav, 

nhen t = 0, the above integral appears to reduce to Kourier"s representation of the function z(:r, 0) on an 

infinite interval. The eliaraeter of this integral undergoes a complete change, honever, vthen / is set exactK 

equal to zero. We shall therefore resort to a device for eliminating the irregular behavior of solutions near 

/ = 0, firxt considering trigonometric solutions whose wavelength« are submultiples of a fixed length L. 

nr 
a,, sin — (x - cnt) 

nir 
o„ rm —{x - cnl) 

where rn = W — lilSr~2n~2. The romplete solution of Kt\. {So), according to the principle «if superpotn- 

tion, is then 

z = L. <!" s'n r '* - '"" + L "n ro«  r <* - <■„/). (87) 
n-I ' n-1 L 

It remains to d« termine the «-«»nstants a,, and h„. Now, instea«! of determining the arhitrarv ««mutants 

directly from the initial values s(Jt, 0) = F(jt). they will be fixe«! by inverting the e«piati«in f«»r dz dx »t I = 0. 

T   " nrx       v   ' nrx       dF 
2_. noncoi-— - .  L "/»„sin--     = — • 

Ln-\ I*        L»m\ I,        ax 

Making use of the «trtbogonalitv  prop«,rti«,s «if lh«> trig«)n«imetri«' fun« tions. 

/. 
/i dF       nr 

.1, 

2    fidh   .   ,.*!, 
«*•«/_'- dt L 

2 

Substituting these expn-ssmns f«)r a„ an«l h„ in K,«|. (87 I and int«'rchanging the order «>f summation and inte- 

{      L   L\ 
grati«>n, gives the l,«nirier s«'ries s«>lution ex|ian«led «>n the interval I  —   .,',)■ 

/2dF[ '    I        /or "I , 
,   ,\Y.    - sin - (* - £ -c,t) \di. 

hinallv, because then1 i> no natural periodicity, we h-t L become infinitely large.     I'assing directly to the 

limit, yields the Fourier iiilef;ral solution «d K«p (8,')). 

2  C dh ,   C \  . 
i(x.t) =       /        ,'/£  / smalt - i - cal)da. 

ir J - '  d£      t/o     a 
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"equivalent barotropic level," i.e., the level at which the observed wind «peed equal» the «peed of the density- 
weighted mean wind. Since it apparently makes no difference where the burden of interpretation is placed 
the latter point of view will be adopted, because there are other advantages in doing so. From i In- point 
onward Eq. (73) will be treated as if it applied to the flow observed on a surface of constant pressure, located 

somewhere near the "equivalent-ba>-otropic level" 

Po (jt + rV • Vf + ßv} - I(r - l)f -f Z«! ^ + gpoWo   V* - 0. (81) 

Since we shall deal exclusively with conditions at the equivalent barotropic level from now on, the variables 
at that level will be denoted by unbarred quantities. As a consequence of Eq. (77), A( is very nearly equal 
to A„ and the vorticity at the reference level is the curl of the horizontal velocity at that same level. Thus 
Eq. (81), regarded as a quasi-linear equation, involves the derivatives of only three variables, u, V and /> 

5.08. In the course of developing the scale theory, it was shown that to introduce the geostrophic ap- 
proximation into the vorticity equation, at the same time requiring that the motions be quasi-horizontal, is 

equivalent to introducing the tiltering approximation into a single reduced equation. Since the vertical 
coordinate has been integrated out, the mean vorticity equation already applies to purely horizontal motion, 

however fictitious it might be. and it remains only to replace the "true" velocity by the corresponding 
geostrophic velocity in Kq. (81) 

V = K X^X-'Vz. 

Because the quasi-Lagrangian variables will not be discus, ed further, z will be used to represent the height of 
a constant pressure surface.    The "geostrophic" vorticity, expressed in terms of the contour height, is then 

K   V X V = V   iX-'Vz 

= gX'^'z -f ^X-'u. 

Now, the order of magnitude of the second term on the right-hand side is given by the number of times an 
imaginary point, traveling at a speed of 2ru along the equator, will completely circle the earth in one day. 
The left-hand side, of course, is of the order of ten radians per day, and the second term on ihe right-hand 
side is at least one and generally two orders of magnitude less than the first 

In similar fashion, it can be shown that X may be regarded as a constant with respect to all other differentia- 
tions required by Eq. (81).    Substituting the above expressions into the vorticity Eq. (81), 

- Vaz + rgX-lJ {z, Vai) + 0 ^ - Xa-'/vr'lX + fo + (r - Dfl ^ + Xc.-2(X + fo)Vo ■ Vh = 0.     (82) 
ot ox ol 

Ag^in regarding it as quasi-linear, this equation still contains derivatives of two dependent variables, z and 
po- Although there is obviously some relation between local changes in sea-level pressure and changes in the 
height of a surface of constant pressure at some higher level, it evidently requires information which the 
integrated equations cannot furnish, namely, a know ledge of the density changes throughout the layer below 
the equivalent-barotropic level. In this connection, it is perhaps more fortunate than significant that 
derivatives >•! /> enter into the quasi-linear form of Eq. (82) only in the fourth term, which, as was pointed 
out earlier, is much smaller than (say) the second term anu might even be omitted altogether. With the 
assurance that the final result cannot be seriously affected by doing so, we therefore approximate the fourth 
term of  Eq.  (82), expressing it in terms of derivatives of the contour height z. 

t This rarrin ihr further implication that r " 1 -f A*, whence r > 1. 
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5.09. The connection between the Be«-level presnurf tendency and the height tendency at thi- equiva- 

lent-ba rot ropic level will he provided ttimply hy stating that the preBBure dmturbance« at differeni levels are 

"rigidly coupled together," in that the horizontal direction of movement and speed of the large - ale dis- 

turbance« are independent of height. This appears to be a very reasonable assumption, for it is observed 

that large-«cale disturbances maintain their identity over long periods of time, traveling along for several 

days without essential change in vertical structure. Stated in mathematical terms, the relati«>n between p^ 

and /> is then 

ds ydt/g      \dsjt dt 

where s is the coordinate along curves which are. let us say, locally orthogonal to the isobars on a surface of 

constant height.    Making use of the condition for geostrophic equilibrium, 

fyo 

01 
= PoP ^■C-f). 

and finally, introducing the hydrostatic condition, 

Substituting this result into Kq. (82) yields an equation which, in its quasi-linear form, involves only one 

dependent variable. 

j V2z + rgX"1 J{z, Vh) + ß^- Xcn-^F-'W + fo + (r - l)f) ^ 
at dx dt 

+ Xcn-
2VoV-% + folV • VÄ = 0. (83) 

This is the prognostic equation, whose ' olutions may be regarded as predictions of the mean flow conditions, 

integrated pressure-wise throughout the entire depth of the atmosphere, or of the flow actually occurring at 

the equivalent-barotropic level. 

5.10. At this juncture it is appropriate to review the development of Eq. (83) with regard to the pre- 

viously discussed difficulties of the general problem. In the first place, the prognostic equation refers to the 

height of a constant pressure surface (or, in other words, the pressure at a surface of constant height). Of 

all the physical variables, this is the one least sensitive to disturbances whose scale is smaller than the mesh 

size of the observation network. Moreover, the equation applies to motions which are representative of the 

vertically integrated mean motions, in that the equivalent-barotropic level is the "center of momentum" of 

the atmoephere. It will later be shown that the solutions of Kq. (83) may be interpreted as horizontally 

integrated mean values of the initial data, whence they evidently satisfy all of the original requirements on 

the representativeness of "statistics" formed from incomplete observations of the state of the atmosphere. 

With regard to the difficulties discussed in Section 2.00, it should be noted that Kq. (83) is essentially a vorticity 

equation, which expresses the local time derivative of vorticity (the Laplacian derivative of 2) in terms of 

computable quantities—i.e., computable in the sense that the local derivative is not invariably given as the 

small difference between individually large terms. The other major difficulty, that of attaining time- 

resolution sufficient to continue solutions corresponding to sound and gravity waves, has been met by 

introducing the filtering approximation to exclude the "high-speed" solutions. In this connection, it is 

relevant to note that Kq. (83) is of the same general form as Kq. (53), which was obtained by introducing the 

approximation c <Kcm directly into an equation containing all types of motion.    Finally, it is important to 

1 



rfalizc that the prognotUir t*<|uatii>n (iraU vtilh a ■pectM of "tHo-iiinirnHioiial" motion. That IH to say, intr- 

grating out the vertiral (*o«>nlinat«' obviatM th«' difTirulty of rornputing thr vertical roin|M>nent of velocity 

from observed initial data. In Hutnniary. Kq. (83) appear» to have none of the obvioutdy undesirable 

features outlined in the previous discussion of knoun diflicultieg. 

5.11. It should also be recognized that Kq. (83) differs only in minor respects from the Charney- 

Kliassen equation (22). The most significant difference. |>erlia|ts, lies in the fact that Chamey and Kliassen 

later assumed that the slowly varying fuirtion r is equal to one. This has the general effect of making the 

eastnanl progress of the disturbances too slow, by an amount (T — 1)17. It htm frequently been observed, 

of course, that the eastward movements predicted by the Kossby "trough-formun" are too small (Namias 

and Clapp, (1944)). The real point, however, is that Kq. (83) was arrived at by a different and, in many 

ways, more attractive route. The fact that the two independently derived equations do agree is simply 

added evidence that both are essentially correct. 

The next concern, of course, is to extract observable consequences from Kq. (83) or, in other word», to 

solve it subject to given initial conditions. Inasmuch as the ineth<»d of solution presented here is rather 

unusual (at any rate quite different from that proposed by ('barney, FjortofU and von Neumann), consider- 

able attention will be given to the details of the method, as Hell as to details of the final solution. 

6.00   MKTIIODS K)R SOLVING THE PROGNOSTIC EQUATION 

6.01. The simplest nontrivial form of Kq. '83) will In- solved as a preliminary to the discussion of 

methods for solving the general prognostic equation. In particular. He shall consider small deviations from 

a uniform nest-tast flon over perfect!) flat terrain. For the sake of simplieitv, it nill be required also that 

the velocity disturbance be independent of v. in which case the linearized prognostic equation lakes on the 

one-dimensional form. 

dlz ,,d3z dz        „       0dz 

^+'l;«?+»*-Xc-"'s-0- (84, 

In fart, as has been noted several times earlier, the fourth term of this equation is, in general, much less than 

either of the first tno, Hhence the essential features of the large-scale motions nill not be lost by restricting 

attention to the simple equation for Kossby naves 

r-T + rfZ-j + fli- 0. (85) 
dx dl dx 

This is an equation of the telegrapher's type, and the boundary and initial conditions necessary and sufficient 

to determine its solutions are well known. What is evidently required are the data along the semi-infinite 

line / = 0, representing the initial conditions, taken together with the data along a line I = mx + 6(m ^ 0) 

in the (x. l) plane. The external constraints on the problem, on the other hand, are such that information is 

provided only up to / = 0. On the face of it, therefore, the solution is not uniquely determined by the 

information actually availaUe, namely, the initial data at I = 0. In passing, however, it should be noted 

that, in the limiting case when »i approaches zero, the curves along which the boundary data must be known 

do approach the infinite line / = 0. 

6.02. I>«-spite the apparent indeierminacy involved in regarding the solution of Kq. (85) as an initial 

value problem. He continue with the formal development of solutions which satisfy previously specified 

initial conditions      \ fundamental set of nave solutions is given by the function 

2 = ocoaaU - x + cl), (86) 
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Hhere c ** TL — ßa~3. Sinw both tin- amplituil«' farlor o and the phan«' anpl«' f are arbitrary, th • funrtioni« 

of Kq. (86) form a cotnph'tc H«-t of milutionH. Th«* Holution of the initial value problem in regarded as the 

Hii|>er|Mwition of a eontinuouH i*|»eetruni of toirh wave funrtumt«, eorret«|M>nding to a oontinuouft sequenee of 

Have nninl.. r- a. Sinre Kq. (85) IH linear, we may sum up the ftolutionn for any or all values of the wave 

number to obtain more general Holutions. later adjusting the arbitrary ronMants a ami ( to fit the initial 

values.    At this |»oint, of rourse, it would be quite natural to pass over immediately to the Fourier integral 

whirh is simply a sum of solutions of type (86), ostensibly satisfying the initial eonditions. That is to say, 

when / = 0, the above integral appears to reduee to Fourier's representation of the function «(x, 0) on an 

infinite interval. The rhararter of thm integral undergoes a complete change, however, when I is set exactly 

equal to zero. We shall therefore resort to 8 device for eliminating the irregular behavior of solutions near 

r ■ 0, first considering trigonometric KolutionH whose navelengths are submultiples of a fixed length / 

z = 

an sin — (at - cnt) 

nr 
bn COS-T-(* - c„t) 

v»here rn = ri' — ßLiir~2n~2.    The complete solution of Kq. (85), according to the principle of superposi- 

tion, is then 

Jl nv " nr 
z = 2- o« »in — (« - cHt) -I- 2- 6B COB — (x - c,t). (87) 

n-l L n-l L 

It remains  to determine the constants a„ and h„.    Now, instead of determining the arbitrarv constants 

directly from the initial values z(x, 0) = F(x). they M ill be fixed by inverting the equation for d: dx at t » 0. 

T   "                 nrx       r   " nwx      «//■' 
- £ na„ cos —  2- nh„ sin —r- = — • 
Ln-l / Ln-I / ax 

Making use of the orthogonalitv pro^NTties of the trigonometric functions. 

2    pdh        nrf 

2    A HF .   r.ifi J 

2 

Substituting these expressions for a„ and h„ in Kq. (87) and interchanging the order of summation and inte- 
{     L   L\ 

gration, gives the Fourier series solution expanded on the interval I — « ' „1* 

s(*, 0 = 2 /    --    E - -'n — (x - | - cnt)   dl 

Kinallv. because there is no natural  periodicity« we let L become infinitely large.     Passing directly to the 

limit, yields the Fourier integral solution of Fq. (85). 

2  C dF ,    C \   . 
z(x.t) =      I        ,   «/( /      -sina(« - { - r0/)rfa. 
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Up to this point thr location of the origin ha» b«*en left unsprcifird, and it may therefore be shifted in such a 

way that the dependent variable always applies at the point    • I 1.1   to the east of the origin 

xirUut) = —J{t)di, (88) 

where the "kernel function" J is 

.     2 r- Mh 

-2hv>s-m (KO) 

0 (e>o) 

As it turn» out, the k< »nel J is a well-known (Watson, (1922)) integral representation of the Bessel function 

of ordc zero with real argument. 

7 = 

Introducing thes»  values of J into Eq. (88), 

i(rl/t,l) ' J_Jj: JoVV^ftt) d*. 

Finally, integrating by parts to obtain z directly in terms of its initial values, 

ziri't, t) = 2(0, 0) - V^j^ »(I, 0) llV-W dl (89) 

It is quite clear that this solution of Kq. (85) does satisfy the initial conditions. 

6.03. It might be added that the foregoing procedure is exactly equivalent to breaking down the initial 

distribution of contour height into its Fourier spectrum, moving each wave component along at the phase 

speed corret-ponding to its wavelength, and finally super[>osing the displaced wav -8 to obtain the distribution 

at some later time. The advantage of the Fourier series or Fourier integral metboda is simply that they 

perform all those operations simultaneously and in a single step. 

6.04 Viewed in the light of Kq (89), the indeterminacy of the initial value problem is only apparent, 

for the solution is completely determined by the values of z at some arbitrarily chosen initial moment. 

Although this demonstrates the uniqueness of suitably continuous solutions, there still remains the difficulty 

of calculating the height change as a semi-infinite integral—a process which, in view of the fact that z((, 0) is 

generally not analytic, must be carried out numerically by Simpson's rule or some other such method. We 

shall, therefore, investigate some of the properties of the integral on the right-hand side of Eq. (89), concen- 

trating attention on the function 

^^ (l « 0,, 

This function plays the role of a Green's function or influence function, in that it measures the influence 

which a unit point disturbance, situated at ((, '' . has on the local change in contour height at the origin. 

As shown in Fig. 2, the Green's function "dies out" rapidly as one proceeds away from the origin, approaching 

zero as a limit. It decrease« so rapidly, in fact, that the integral can be truncated at some fairly great dis- 

tance from the origin without seriously affecting the accuracy of the result. This suggests that the "effective 

domain of dependence" i.e., the region over which data are required to compute the solution with a fixed 

degree of accuracy—is not infinite, but has a finite radius which depends on the period of the forecast and on 
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the le .< i of accuracy deaired. It is significant that the radius uf the effective domain of dependence also 

depends on 0, the latitudinal variation of the Coriolis parameter. This result is not wholly unexpected, 

because 0 is a measure of the "restoring force" in the oscillating system and therefore controls the rate at 

which disturbances are propagated. It should be noted that this rapid decay of dependence on initial condi- 

tions remote from the origin is evidently due to destructive interference at great distances and is a property 

peculiar to dispersive wave systems. 

6.05. As will be shown, it is typical of all solutions of the linearized prognostic equation that the local 

change in contour height can be expressed as an infinite line or surface integral, whose integrand can be 

naturally separated into two factors. The first factor is simply the initial value of the contour height. The 

second is essentially a Green's function, a function which is analytic, independent of the initial conditions, 

and which measures the influence of disturbance« remote from the origin on the local change in contour height 

at the origin. In general, the Green's function for this initial value problem dies out quite rapidly as one 

proceeds away from the origin in any direction, limiting the "effective domain of dependence" to a radius 

which depends on the period of the forecast, a measure of the "restoring force" 0, and the degree of accuracy 

required. 

THE CHARNEY-VON NEUMANN METHOD 

6.06. The more general problem of integrating the nonlinear Eq. (83), for lack of sufficiently powerful 

exact methods of analysis, must be solved by numerical methods. This question ha- also been discussed by 

Chamey, Fjörtoft and von Neumann (1950), who have proposed a rather straightforward iterative scheme 

for solving a prognostic equation of the same general type as 1 «j (83). The key to their method lies in 

regarding Eq. (83) as a nonhomogeneous linear equation in which the dependent variable is the height 

tendency. That is to say, all those terms in which local time derivatives do not appear explicitly are regarded 

as nonhomogeneous terms in the sense that they can be computed from the initial data and might be con- 

sidered known for a short time after the initial moment. With this interpretation, Eq. (83) then takes the 

form 

a:).- -a i V%V-x\k + fo + (r - Df) (2), ^'•(x.y). ,.»(.) 
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whrir /•',(*. V/ i* the value of 

- r^x-'ju, vh) + /»£ + xr,r2» „r-Vx + M\ ■ vh\ 

computed at the ith stage of the iteration. The roeflirient of the MOOnd term of Kq. (W) Hill l»e treated a» 

a ftlowlv varying funrtion. It li.i- already heen |iointed out that the •ecood term of K<|. ',n it« much le** 

than the first, whence we are quite safe in a|>|)ro\iinatin^ its «-(M-flieient. K«|iiation ',n hecomes a linear 

etpiatinn nith ron^tant eiM-flicients. the large nonlinear terms of Kq. lW) heing lumped together in f'^Jt. v). 

r-C;)-■■(::),-'•"-'• 
nhrreM2 - X^,-2»;!-1. 

This is an equation of the  I'oisson  lypr.    The general properties  of its solutions  are Mell   knonn and 

numerical methods for actually computing its solutions are developed to a high degree. 

6.07. To summarize the details of the (!harney-von Neumann method, let us consider conditions at a 

single, arbitrarily chosen initial moment. Since all derivatives nith respect to the horizontal coordinates 

can be computed from the initial data, it is possible to calculate l\ as a function of r and v. The next step 

is to compute the instantaneous heipht temlency at the initial moment by inverting Kq. i^l ). There arc a 

variety of nays in which the inversion can be carried out. arnonp them the "relaxation" methods developed 

bv Southwell iT(>46). Charney and von Neumann have chosen a variant of the latter. There are certain 

features of the relaxation method HIUCII make it difhcult to insure rapid convergence. This stems from the 

fact that the solution of an elliptic type equation, for which the relaxation methods are designed, requires 

previous knowledge of the unknown function or ita normal derivative on some closed curve. To meet this 

condition. Qiarney and von Neumann have been forced to assign artificial values of the height tendency 

around the boundary of a rather large region, surrounding the |Hiint (or area; at which the computed ten- 

dencies arc to apply. They have assumed, in fact, that the height tendency vanishes at the boundaries, 

ev idently reasoning that the solution in the central portion of the region is very nearlv independent of con- 

ditions on a geographically remote boundary and. further, that the distribution of the height tendency around 

tue houndary is essentiallv random or oscillatory.     Vie shall return to this question later. 

6.08. (iranting that it is |...--ilil. to compute the instantaneous height tendency in the manner outlined 

above, one can then e\tra|H>late from tin* initial value'- of contour height to predict its value al a short lime 

later. In this wav the information available at the initial moment ha* heen completely regenerated at a 

later time, making it possible to compute l'^. »gain to invert Kq. 'H ) and othcrnise to repeat this process 

over and over a'.'ain until the aggregate of short time intervals adds up to the required forecast period. The 

predictions made by this method, as presented in "Numerical Integration of the liarotropic Vorticitv Kqua- 

tion" (Kharney. Kjoitolt and von Neumann (I').')!))), are of course very encouraging as scientific results but 

are still not suflicicnlly accurate for practical purpotee. 

'■ " ' The draw hack to the Kharncy-von Neumann method for computing the instantaneous height 

tendency lies in the fact that an inordinately large region of integration is required to assure conve.gence on 

the true solution. \ rough measure of the error in assigning arbitrary boundary values is the value of the 

actual height tendency, integrated around the boundary curve, multiplied by a factor which MeightM the 

dependence of the solution .HI conditions at the boundary relative to its dependence on conditions m-ar the 

origin. If the inversion were carried out by the method outlined in paragraph 6.02, for example, the relative 

weight to be attached to the houndan v dues would be the value of the (>reen's function on the l»o<indarv 

curve.    Thus there are two elements that enter into the error estimate:   first, the mean value of the acMial 
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height tendenry on the boundary and. necond, the radiua of the "natural" domain of dependence as fixed by 

the properties of the fpverning differential equation. Taking up the first of thene conniderat.onK there it* no 

way of assuring beforehand that the atmosphere Hill not conspire against the forecaster h» producing bound- 

ary values of predominantly the same sign. In fad. jf one is unfortunate enough to choose dimensions of the 

regioi of integration which are comparable with the characteristic wavelength of the large-scale disturbances, 

that state of affairs would occur quite frequently. 

6.10. Turning to the secono consideration, it is extremely important to reali/.c that Kq. (91) yields no 

direct information about the manner in which large-scale disturhanccH are propagated. It is quite possihle, 

of course, that this information is implicitly contained in the form of /■',(*, v), but, even so, F(x, y) has a 

distinctive form only after the initial stage of the iteration. That is to say. one can imagine any number of 

physical systems which are governed by an equation of the same form as Kq. Ol ) and for which the cor- 

responding initial distribution / (x,y) is the samo. In short, the radius of the "natural" domain of depend- 

ence, as fixed by Kq. (91), is not determined by the rate at which disturbances are actually propagated. 

This conclusion is hard to reconcile with the results of paragraph 6.04. which indicate that the effective 

domain of dependence is actually quite small, owing to the [»eculiar nay in nhich the phase speed depends on 

wavelength. The reason for the disparity is clear when one realizes that the Oiarne\ -von Neumann method 

cannot take advantage of dispersion effects namely, destructive interference at great distances - simpl\ 

becat se Kq. (91) does not explicitly contain the actual mechanism of Mave propagation. 

6.11. Another, avid perhaps more satisfactory way of poiating up the shortcomings of the Charnev-von 

Neumann method is t.> discuss the problem of inverting Kq. (91) from the standpoint of (»reen's method. 

The Green's function for the problem is a solution of the homogeneous part of Kq. (91) with a logarithmic 

singularity at the point at which the solution is desired.     The Green's function is thus defined as a solution of 

V2C - M2G = 0. 

We may also require that C depend only on the radial distance r from the singularity, whence 

d2(;       1 dG 

TS+rl,-'0-0 

The solutions of this equation are Hessel functions of order zero with imaginary argument. In particular, a 

solution which has a logarithmic singularity at r = 0 is fCoOtf*)« whose asymptotic behavior is given by 

^■„(^ir) ^ r~H e~*r (r large). 

Now the fact of the matter is that /i is small, so the Green's function d«>es not decrease rapidly as one proceeds 

away from the origin. Accordingly, the natural domain of drpeadoocc for Kq. (91) .-. really quite large. 

Kinally, it should be noted that Gharney, Kjörtoft and von Neumann start «nit by assuming that p = 0. In 

this case the Green's function reduces to the logarithmic |M>tential. nhich contains nn physical parameters at 

ail. For these reasons, because there is no way of assuring! that the mean value of the height tendency on 

the boundary curve will be small and because the domain of dependence for Kq. (MI) is not limited by tin- 

rate at which disturbances are actually propagated, the Gharney-von Neumann method offers no way of 

insuring rapid convergence. 

A NEW METHOD FOR INTKGRATINc; THE PROGNOSTIC EQUATION 

6.12.    There is, however, a rather obvious and direct way out of this difficulty.     \s suggested in para- 

graph 6.10, the trouble stems from the fact that all terms of Kq. (83) not involving local time derivatives— 
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and, in particular, the term ß dx,dx representing the "reatoring force" on the systein—have heen regarded 

as known nonhomogeneous terms. The upshot, of course, was that the resulting equation contained no 

direct reference to the artual mechanism of propagation. Rather than to regard ttuch terms as wholly non- 

homogeneous, we shall separate their coefficients into two component parts: first, the mean value of each 

coefficient, integrated over a considerahle geographical extei.. of the initial data; and second, the deviation 

from that mean. The latter, of course, gives rise to nonlinear terms which arc often too large to justify 

linearizing Kq. (83) completely. On the other hand, the nonlinear residue terms are small enough that they 

can be regarded as nonhomogeneous, in the sense that they can be computed from the initial data and might 

be considered known for a short period of time after the initial moment. We therefore regard those nonlinear 

residue terms, bul only those terms, as known nonhomogeneous terms in a linear equation. With this inter- 

pretation, the prognostic equation (Kq. (83)) then takes the form 

I V. + ruf- V* -Mf - „«£ + ,«(/£ = Nt(x,y) = 
dt dx dx at dx 

, d     1 &     „ ,  «JA 
•«  — V z — v — v * — it v — » 

dx dy dy 
(92) 

where U is the mean value of u. taken over a considerahle area, and u is the dilation of u from that mean. 

As before, we regard the coefficient of the fo Ttli term of Kq. (83) as a slowly varying function. The equation 

we are dealing with is therefore a nonhomogeneous linear equation nith constant coefficients. 

6.13. The method profxised for solving the nonlinear prognostic equation is the following. Beginning 

with the initial data, we first compute N as a function of the coordinates x and y. Next, tentatively sup- 

posing that it is possible, we solve Kq. (92), subject to known initial conditions, to obtain a solution uhich is 

valid in the neighborhood of / - 0. We then continue the solution analv tirally to predict the contour height 

a short time fter the initial moment and, finally, having generated a nev* set of initial conditions, compute 

IS?. This completes the first cycle in an iteration process, which can be repeated indefinitely until the total 

forecast period has reached the desired length. 

6.14. The success of the method outlined above evidently hinges on whether or not Kq. (92) can be 

solved and, once the solution is attained, whether or not its convergence is assured. With regard to the 

latter, the results of our previous analysis of the difficulties inherent in the Charney-von Neumann method 

would lead us to suspect that the domain of de^H-ndence for Kq. (92) is natural]v limited by the rate a* which 

disturbances are propagated, if only for the simple reason that Kq. (92) docs contain the U rm $dz dx which 

represents the "restoring force." This conjecture is confirmed by the results of the n -xi section of this 

report, in which we shall present solutions of Kq. (92), the linear nonhomogeneous form of the prognostic 

equation. It nill be shown that the radius of the effective domain of dependence, which is determined by the 

behavior of the Green's function for Kq. (92), is quite small for values of / of the order of one day, and, 

further, that convergence is assured if the region of integration covers the effective domain of dependence. 

sn 
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7.00   SOLUTION OK THE LINK AH PKOGNOSTIC KQLATION 

7.01. As a result of prev ous discussion of methods for solving the nonlinear prognostic Kq. (83), we 

have been led to consider the properties of the linear Kq. (92), uhich, for later convenience, is written in the 

form 

d V'z +rU± V*z + ß^ - M2^ = Ni(*yi + M(x,y), dt dx dx dt (93) 

where M(x,y) = —it2ildh/dx. It is convenient to think of /V.fjr, v) as representing the effects of non- 

linearity due to finite deviations from a uniform west-east flow, and to thiik of M(x, y) as the effect of irregu- 

lar terrain.     In many—probably in most—cases, in fart, the amplitude of the large-scale disturbances is 
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small enough that it is permisHibie to iliftreganl the > fT.. i~ of nonlinearity. In that event, we may set 

N;(x,y) equal to zero. Similarly, there - some reason to believe that the <(T.«i of irregular terrain on the 

propagation of large-scale disturbances is negligible, in which case Mn. \ might be »et equal to zero. For 

the present, however, the possible effects of noniinearity and irregular terrain will be left an open question. 

7.02. Because Eq. (93) is linear, its solution may be expressed as the sum of the »olutions of three 

separate equations.   That is to say, 

2 = zr{x,y,t) + ZDv (*,>•) +x*(*,;y), 

where the functions 2f, zjy, and ZJV are defined as solutions of the equations 

(rt; £ Va -M £) zyv = Ni C«, y) (95) 

(%) 

The physical interpretation of this subdiviiiion of solutions is simply that the actual height distribution is 

the superposition of one system of free oscillations and two systems of stationary forced oscillations. In 

other words, siroe Kq. (94) is homogeneous, its solution z/r corresponds to free oscillations and. similarly, 

because Eqs. (9 •) and (96; are nonhomogeneous, their solutions :\ and Sjf correspond to forced oscillations. 

The solution zr, of course, is associated with the large-scale transient disturbances, with *liich we are pri- 

marily concerned. In contrast, z.w may be id( ntified with the semistationary "trough" of pressure observed 

in the horizontal flov •<, the lee of the mountain ranges in the western I nited States. The fact that the pres- 

sure-amplitude of the "lee truu«;h" is generally observed to be somewhat less than that of the large-scale 

traveling disturbances is added evidence that we might safely set M{x,y) and z.i/ equal to zero at the outset. 

For obvious reasons, there is no clearcut physical interpretation of the fictitious (and ever-changing) "forced 

oscillation" due to the effects of noniinearity. 

THE SOLUTION FOR LARGE-SCALE TRANSIENT DISTURBANCES 

7.03. With the foregoing barkßround, we shall proceed directly to the solution of Kqs. (94) and (96), 

simply noting that Kq. (95) is of exactly the same form as Kq. (96) and can be solved in much the same way. 

Because the free oscillations corresponding to the large-scale transient disturbances are of greatest intrinsic 

interest from the standpoint of prediction (and because they almost completely mask out the "lee wave") 

we shall first consider Eq. (94).    The first step is to reduce the equation to the simplest terms possible. 

7.04. On the face of it, Eq. (94) contains derivatives of the third order with respect to x. By a change 

of independent variable, however, it can be reduced to one which contains terms of no higher than the second 

order with respect to x, without altering the form of the remaining terms. In particular, we shall adopt a 

system of coordinates moving at the speed rV in the x-direction, whence the new coordinate x' is given by 

x' ~ x + rUt. 

With this change of variable, Eq. (94) reduces to 

£v>z + ^_^ = o, (94.) 
dt dx at 

where ß* = (i + rllp2.    We shall now drop the primes, bearing in mind that the origin of the coordinate 

system is traveling at a speed rV toward the east. 
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7.05. There is evidently a choice of methods to be followed in solving Kq. (94a). One alternative, 
which has already been explored in paragraph 6.02, is simply to develop a fundamental set of wave solutions 
with two arbitrary phase angles, two wave numbers, and an arbitrary amplitude, later adjusting the con- 
stants in an infinite sum of such solutions to fit any £'iven initial conditions. In general, such a procedure 

wruld lead to a double Fourier series or to a double Fourier integral. The difficulty with this method is that 
the kernel functions, which are given as definite integrals or infinite sums over all values of the wave numbers, 
arc either extremely difficult or overwhelmingly tedious to evaluate. In fact, in the last analysis, the diffi- 
culty in not so much one of obtaining solutions of Fq. (94a) as it is of satisfying the initial conditions. The 
Laplace transform methods, on the other hand, introduce the initial conditions explicitly at the very outset, 
shifting the burden of difficulty to obtaining solutions of the transformed equation and to carrying out the 
inverse transformation. For this reason, and becai se there is a fundamental difference betneen the ways in 
which time dependence and position dependence enter the equations, we shall next apply the Laplace trans- 
form to Fq. (94a), replacing / by s, the variable of the transform. 

*(x,y,s) = £,|#(«,jrfl)j  = /     «(jcy.Oe-"«//. 
•/o 

Interchanging the crder of integration with respect to ( and differentiation with respect to x and y, 

V2L 
a 

dx 
\-ß*i-L\z\ -M2L 

We next make use of one of the fundamental operational properties of the transform.     Integrating by parts. 

Idlj     Jo    \_dt 
(a--") + sze -(1* 

= -B(*y,0) + $L\*\. 

Substituting this expression into the transformrd equation. He obtain a nonhomogeneous equation whose 
dependent variable is the transform of z. 

(*V2 + 0*£ - M2») L\z\ = V2zo - M2*, - Hix,y). (97) 

It is worth emphasizing that the right-hand side oi this e(]uaii«»n depend» only on ZQ, the initial value of the 
contour height, and is therefore a knonn function of x and y. 

V.06. Since the solution nill be carried out by (ireen's method, and because there is otherwise some 
advantage in dealing with an equation whose homogen«'ouH part is inde|>endent of the choice of coordinates. 
He shall next introduce a change of de|>endent variable, setting 

Thus, Fq. (97) reduces to 

V2Z - SZ - *-lSttl2'H(x,y) 

(98) 

(99) 

where K2 = M2 + (00/2M)3. 

We now (Vfine the Green's function (»' for Fq. (99), first letting (i be a solution of the homogeneous part. 

r2G - v2C - 0. (100) 

Next, multiplying Fq. (99) by C, Fq. (100) by Z, and subtracting Fq. (100) from Fq. (99), 

GV3Z - ZV2G m S^'2'CH(X,Y). (101) 

This is the foon to which Green's theorem is most easily aoplied. 
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7.07. We now fix attention on some point at which the solution i» desired. Since the origin of the 
coordinate system has been left unspecified, ;t is permissible to fix it at the point in question, so that the 
point for which the solution is to be computed has coordinate« (0, 0). We consider next a closed path of 
integration in the Ix, v) plane which is constructed as follows (Fig. 3). A small circle C is described around 
the origin, with the origin as its center. A somewhat larger circle F is also constructed around the origin, 
concentric with the smaller one. The annular region enclosed between the two circles will be called S. 

Finally, we make a "cut" through 5 adjoining C and F. The path of integration P is traversed by beginning 
at the outer end of the cut, proceeding all the way around F in the counterclockwise direction, up the left- 
hand edge of the cut, all the way around C in the clockwise direction, and back dovsn the other side of the 
cut to the beginning point. 

7.08. The next step is to integrate both sides of Eq. (101) over the area S. 

JJ(CV2Z - ZV2G) d* dr, - rl JJS(l2tGU, n,»)//((. f) </{ dn (102) 

where ( and v are variables of integration corresponding to x and y. Because pressure is continuous and has 
no singularities, Z is also continuous and has no singularities. Moreover, although it will later be specified 
that G has a logarithmic singularity at the origin, we require that it have no singularities in S, whence 
Green's theorem may be applied to the left-hand side of Eq. (102). 

i(c-i-z£D/' - .-•//^«.*.)H(i.,)**. 

Fig. 3. Path of integration 

by Green's method. 
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The left-hand side of thin equation can be expreMed as the sum of integrals along the separate segments of the 
path P. Noting that the contribution along one side of the "cut" exactly cancels the contribution along the 

other side, 

i(C f " '£),* -i(C fr - Zf)c * - •-'/./>'"•<;«• - ■)««• '> « * »03)' 
S 

where r is the radial distance from the origin. Equation (103) forms the basis for further discussion of a 
method for determining the contour height at the origin. 

7.09. In principle, the right-hand side of Eq. (103) is known, for it involves only the initial data and 
certain analytic expressions which are independent of Z. Before estimating the integrals on the I /|t-hand 
side of Eq. (103), however, we shall first discuss some of the properties of the Green's function G. Up to this 

time it has only been specified that C is a solution of 

V2C - K2C = 0. | 

We now require that G be a function of r only, whence the above equation reduo** to an ordinary differential 
equation 

« + !*_«.„ 
rfr        r dr 

This will be recognized as the equation for Bessel functions of order zero with imaginary argument. There 
are two possible solutions, corresponding to Bessel functions of the first and second kind. 

(KoM 
C = 

l/o(w). 

We have already indicated that 6' will be required to have a 'ugarithmic singularity at the origin, a condition 
which is satisfied by ^(w), but not by l0(yr). The Greet 's function is, therefore, a zero-order Be«sel func- 
tion of the second kind with imaginary argument. As indicated in Eig. 4, the Green's function takes on an 
infinitely large value at the origin (r ■ 0), diminishing rapidly as one proceeds away from the origin. 

7.10. Having completely specified the properties of the Green's function, we shall next estimate the 

integrals on the left-hand side of Eq. (103), letting the radius p of the small circle C approach zero and the 
radius R of the large circle T become indefinitely large. Focusing attention on the first integral on the left- 
hand side of Eq. (103), we note that it can be written as 

r2' /    M dG\ 

Jo    {C* -**)** ,104, 

Since we are concerne.l only with estimating the value of this integral for large values of R, the Green's 
function may be replaced by the asymptotic expression for Ko(*r) 

Introducing the expression above, we obtain the following estimate of Eq. (104) 

where L «« L\x\, the transform of the contour height. Now, because the pressure is continuous and has no 
singularities, z and its derivatives are bounded and so also are L|z| and its derivatives.   Thus, the bracketed 



71 

Fig. 4.  Behaviur of the function Xo(w). 
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factor in the integrand is finite, whence the behavior of Kq. (104) a« R becomes infinite is dominated by the 

exponential factor 

,-|r-(tf»e<»#/2«)l« 

This is the decisive point in the argument.     An originally defined, v is given by 

-(f)1 
+ /i2. 

This definition, taken together with the fact that the cosine never exceed» unity, implies that 

0*       0* cos 0 

for all 0, provided /i is different from zero.     If .. is non-zero, the exponent is always negative, with the result 

that the integral (104) converges to zero as R becomes infinitely large.     Equation (103) therefore reduces to 

£{Zfr ~ ^ df)   * = ^ ffr'(2'C(t'"'*)"(*'ridtdn- (105) 

It is now understood that the region S covers the entire ({, tj) plane, except for the area lying inside the small 

circle C. 

7.11. It is interesting to note that the condition Mhich insures that the boundary integral at infinity will 

vanish for all 0 is that n be different from zero. Interpreted in the light of the development of Kq. (92), this 

condition is tantamount to requiring that there be some divergence in the flow, no matter how small, simply 

because p2 is the coefficient of the term representing the effect of divergence. We therefore conclude that 

the effects of disturbances located at an infinite distance from the origin might be felt immediately, unless 

there were some divergence, however slight. This result is in accord with Yeh's statement (1949) concerning 

the maximum group velocity- namely, that the group velocity is finite for all wavelengths only if there is 

some divergence to generate and destroy vorticity systematically. 
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7.12. The limit of th<> inlrgral on ihr left-hand itidr of Eq. (105) will next be evaluated as the radius p of 

the small rirrle C approaches zero.    We begin by considering the integral 

fc — it, (106) 
Jc     dr 

uhirh may be rewritten as 

I!.. ,iu-. the singularity of Ko(ir) at the origin is logarithmic, the factor fiK0(t>p) approaches a finite limit a» 

p goe« to zero. On the other hand, because Z is continuous at the origin, the integral factor become« vanish* 

ingly »mall as p approaches zero. That is to say, the value of the normal derivative of Z at any point on f." is, 

in the limit, equal but opposite in sign to the normal derivative at the point diametrically opposite. Accord- 

ingly, nhen the circle C is shrunk to a point at the origin, the integral (106) contributes nothing to the left- 

hand Hide of Kq. (105). 

7.13. Finally, we consider the one remaining integral 

c     dr 

which may be exprcaaed as 

Making use of the difTerentiation formulas for Bessel functi«>ns. 

Pi    .    )    =  »'PAi(i'p) 

whence 

lim p (   r I - »• Or- 
Moreover, because / is continuous at the origin. 

lim   /     ZpHe = 2F/(0.0, s). 

Substiluting these values into Kq. (105), ue obtain a formula expressing Z at the origin in terms of only the 

initial data and known analytic functions which arc inde|>endent of Z 

/(0,0,») = -{2wMrlJjS*,uG{t,n,$)H(ttn)iUii. 
.s 

The right-'  IM.I side of iln- etpiatittn in therefore ihr formal solution of Kq. (90).    The relation between Z 

and the I   i, .ace transform of; is 

z = Uzi^"2: 

Thus the holulion for the Laplace transform of ; at any arbitrarUv chosen origin and. consequently, at any 

|M>iiit (jr, v) is given b) the formula 

L(0,0,*)= -(2**)-* ffSiluK0{pr)H(1^)4*1. (107) 
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HM rrjfion S now rovrni thr rntirc ((, q) planr. 

7.14. Mi- -|" • i.il |>t..|.. r ii. - ..( formula (107) mrrit »ome di«ruMion. In murh thr -.mi. way a« waa 

ili< iiolution of Kq. (85), thr solution for L|z| is givrn as an integral (in this ras«- a Hurfarr integral) ovrr an 

infinite domain. Its integrand e«msists of two distinrt fartors, one depending only on the initial values of 

rontour height, and the other representing the (Green's function for the problem a known analytic function 

independent of the initial data. The analogy between formula (107) and the results expressed in Kq. (89) 

can be carried further by noting that the infinite surface integral 

JJerii'K0(*)HU,l)dtdr, 
a 

can be truncated at a sufficiently large finite radius R, without significantly altering the accuracy of the final 

results.     Again making use of the asymptotic expression for A',, (w). the estimated maximum truncation error 

As before, the behavior of this estimate is dominated bv the exponential factor, nhosc exponent is aUays 

negative. In other words, by choosing R sufficiently Utf*« 'he error incurred by omitting conlributions 

beyond a certain finite radius R can be made less than any previously assigned finite value, no matter how 

small. This result has direct bearing on a statement made by Krl-I (I9i4), to the effect that the solution 

even a short time after the initial moment actually de|>ends on the initial data over the entire domain, and 

that it is accordingly impossible to predict nith complete accuracy. As it stands, this statement is quite true, 

but rather misleading. As we have just shown, the exact solution di»es ilrp.-nil on the initial values of con- 

tour height over an in Im it domain. ()n the other hand, if one is willing to make small mistakes, it is |»ossible 

to insure that they will not exceed a previously set value, by choosing the radius of the finite domain of 

integration large enough. 

7.15. Returning to the solution of Kq. (94a), it remains only to carry out the inverse transformation of 

L\z\ to obtain I at anv arbitrarily chosen origin. We next apply the inverse transformation to both sides of 

Kq. (107), interchanging the order of integration with respect to » and with respect to { and »j. 

1(0,0,1) = - -ffH%i)L-,\»-lir*luKo{fr)\ di<h. (108) 
.s 

As before, the contour height is expressed as an infinite surface integral, whose integrand consists of a factor 

involving only the initial data multiplied by the (ireen's function for the problem. 

7.16. We shall next discuss the properties of the (ireen's function. /((, TJ, /), where 

#(|.M) = ir,|»-V«','*o(")|. (10Q) 

Having already insured that the boundary integral converges to zero, it should be noted that «i is actually 

quite small; in fact, for purposes of evaluating the / function, we shall let .. equal zero exactly, in which case 

Kq. (109) reduces to 

= L-' irs-v^'^^T.-v'^Ko (^yi} • (no) 

To carry out the inverse transformation, ne make use of another of the fundamental o|»erational properties 

. 
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of t IK  Laplace transform, namely that the invenr transform of a product i« given by 

l-Wtl -fl/il •t-'l/al, 
where (    ) * (     ) ia the so-called "convolution operator."    Identifying/i and/j with the factors on the right- 
hand side of i <\   (110). 

0 
The inverse transforms of/i and/3 are known (Churchill, (1944)).    They are: 

/...-*,«•■"•*.(£) 

i iT'l/il-^cos^Vr-O« 
VH 

L-,|/,|--^K0(2V^). 
Vwt 

Finally, introducing these results into Kq. (110), we can express the Green's function /((, q, t) u * Faltung 
or convolution integral. 

HI n, t) = '   r   j   coa V2ß'{r- t){t- r) Xo(2%/^) dr. (HI) 

The remaining problem is to evaluate this definite integral for all values of the parameters {, n and I. By a 
long buries of substitutions and changes of variable, it is possible to reduce the integral on the right-hand side 
of Kq. (Ill) to a less formidable and more easily computed form. However, because some of the procedures 
are rather involved, we shall relegate the details of the final reduction to Appendix II, presenting only the 
most important intermediate results below. A result which will later be used to simplify the numerical 
calculation of the solution is that 

« 

#(|,th<)--  r2cos(2Mcos^)Ko(2<rsin0)d0, (112) 

where « - sin (0/2), » = '^OVr, and ^ is simply a dummy variable of integration. By introducing an 
integral representation of the Bessel function in Kq. (112) and inverting the order of integration, we finally 
obtain the most compact form of the Green's function.* 

/((,,.0-2Jo    -vT-r?      *. (113) 

where, again, z is a dummy variable of integration. At this {»oint it can easily be shown that I i. ■ i . 
regardeil as a function of the inde|temlent variables a and K, is a solution of 

dad. 
+ 4««/ - 0. (114) 

The / function has actually been computed b> numerically integrating Kq. (114) in the (v, a) plane, starting 
Mith km.vMi boundary values of /.    The latter Mere found by evaluating Kq. (113) analytically for the special 

* Thi* form of thr / funclion can l«r formally rapandr«! in an infinite aeries of producta of Braael funrliona, accurtiing to the 
addition throrrm of (>raf (VI alKon, (IV22)). However, beeauae it ia questionable that the aerie* ronvergea uniformly, we ahall 
reMtrt to numerical methtid» for evaluating Kq. (113). 
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vilum « = 0 and r " «.     For example, ihr valum /(a, 0) alonf the a-axis arc given by 

MU») «r ,</* = 2/„(«r)Xo{ff). vm5 

The in- i IM>• I outlined above in simpler and far let*»* laborious than evaluating Kq. (113) by finite sum*, simply 

bcrause the latter procedure must be carried out for each and every possible combination of the parameters 

e and K. 

7.17. Some of the mot*t Htriking propeitMl of the (Jreen's function, houever. can be discovered sim|>ly 

by inspecting the behavior of the integral (113) as the parameter a takes on successively larger values and as 

the parameter • varies over the range zero to one. As a increases indefinitely—i.e., as the distance from the 

origin becomes infinite the value of the integral decreases rapidly to zero. It should also be noted that 0 

enters only in K2, SO that 

l(r,#.l) = Kr, -e,t). 

Thus, the / function is symmetrical around the (-axis. It is not, however, symmetrical around the T;-axis. 

The latter property, in fact, indicates that the (Jreen's function does contain a mechanism for propagating 

the large-scale disturbances. 

7.18. Although Kq. (108) is a perfectly legitimate solution of Kq. (MS), it is inconvenient from the stand- 

point of actually carrying out the numerical computation of the solution from observed initial values. This 

comes about because the function //((, T;) involves the Laplacian derivative of the initial contour height. In 

tin connection, it is suggestive that part of the solution is given as a double integral of second derivatives of 

the contour height, multiplied by the (»reen's function. This suggests, in fact, that the right-hand side of 

Eq. (108) might be integrated hy parts to obtain the solution in terms of the undifferentiatfd initial values. 

We therefore retrace our way through the development of the solution to Kq. (101), noting that its right- 

hand side can be rewritten as 

rx[V ■ {S'*lUGVto - SoVe^'2'C) + MoiW^'G - MV</2,G)i. 

By introducing the definition of G((, t;, s), the above expression can be reduced to 

s-i V . (eW'GVz,, - ZoVeft'-G) + /J% r 's^Ge»^'2'). (115) 

To obtain an expression equivalent to the right-hand side of Kq. (108), we successively apply three operations 

to Kq. (115). First, Kq. (115) is to be integrate«! over the region S, and then evaluated as the radius R of 

the large circle V becomes infinite and as the radius p of the small circle C approaches zero. Second, the 

resulting limit must be divided by -2r. Finally, the inverse Laplace transform must be applied to obtain 

the new solution for the contour height. 

7.19. Fixing attention on the first term of Kq. (115), we first integrate over the region 5. Since neither 

G nor 2o has singularities in S, the surface integral may be transformed into two line integrals by applying 

Gauss* theorem, whence the first term of Kq. (115) becomes 

rfeft'-G^-zo-S^'G)   Rde 
Jo    \ dr dr /H 

Jo     \ dr dr /, Pde. 

Following an argument identical to that outlined in paragraph 7.10, it can be shown that the first of these two 
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integrals vanishr. M R brromra infinitr.     Similarly, for irasoi» already given in paragraph 7.12, the integral 

van»he§ a« p approaches aero.    The sole contribution from the first term of Eq. (115) therefore comes from 
the one remaining integral 

which, for small values of p, can be rewritten as 

Recause the integral of the cosine vanishes, the limit as p goes to zero is 

2w-,z(0,0, 0) lim p (-j   m -2ir»-,z(0. 0, 0). 
»->o 

It remains to divide by -2» and apply the inverse transform. After carrying out those operations, we find 
that the contribution of the first term of Eq. (115) to the solution of Eq. (94a) is simply 

IT11»"'*«), 0,0) j = «(0,0,0). 

Finally, we apply the operations of integration and inverse transformation to the second term of Eq. (115)' 

summarizing our results in a new formula for the contour height at any arbitrarily chosen origin and, con- 
»equently, at any point (x,y). 

*(0, o, r) = i(0, o, 0) - YJSZ{^ "'0) Jt ^~l ^••~V</2'KO(IT) ) di dfi. (116) 
■ * 

Kg indicated earlier, the advantage of this formula is that it expresses the contour height in terms of 
the undifferentiatfd initial values. 

7.20. As it stands, however, formula (116) gives the solution of Eq. (94a), whoac independent variables 
are the coordinates in a system moving toward the east at a ppeed rU. To obtain the solution of the original 

Eq. (94), it remains only to shift the original coordinates at time t a distance rUt forward to coincide with 
the new one« at time t. Simuitaneously expressing the fact that the location of the origin is arbitrary, we 
may therefore write the solution of Eq. (94) in the following form: 

*^(*-f TUt,y,t) = tr(x,y,0) 

+ Jf*r(t - *, n - r, 0)T({ -x,n-y,t) d{ d* 

where the new "Green's function" TU - x, ij - y, l) ia 

r(| - «. , - y. •) - - 1 ^ IT' |^rV^'>'2'Xo(H-) | 
 iiJU .  

(117) 

(118) 

and r2 » (( - x)* + (T, - y)5. 

The inde|M*ndent variables x, y and t now appear as parameters in the integral on the right-hand side of 
formula (117), { and TJ entering only ah dummy variables of integration corresponding to x and y. Equa- 

tion (117) represents the formal solution of the linear equation for large-scale transient disturbances, valid for 
any initial distribution of contour height. 
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7.21. The chief advantafe and power of this method lie in the fact that the exact manner in which 
the prediction depends on the initial value« ia bound up in the behavior of a single analytic function, 
T({ - *, n - y. 0. which is independent of the initial values. One may think of the value of the Green's 
function at the point ({ - *, n - >") ■» the effect of a unit point disturbance located at that same point. 
With this interpretation, the integral on the right-hand side of Eq. (117) represents the integrated effect of 
an infinite nunuier of point disturbances with strength «({ - x, i» - y, 0), distributed over the entire (x,y) 

plane. It is therefore possible to infer some of the general properties of the solution by examining only the 
behavior of the Green's function, without regard to the initial values. We shall next discuss the special 
properties of the / function, first evaluating it by the method outlined in paragraph 7.16. The definition of 
TU, n. 0 given in Eq. (118) mav be rewritten as follows 

-2,7U.M) - zWl  [•-*<-iß''U)ir-()]\rV"*'K0(^)] 
^t IL J L \ 2J /J 

-hrWMtU (ii9) 

where 

A-.-V*x.(^). 
The inverse transforms of/i and/j are (Churchill, (1944)): 

IT'I/II - ' ainV^(r-0« 

iT'l/il ~-y= KoVVß^). 
V wt 

Finally, the inverse transform of the product /I/J can be expressed in the form of a convolution integral 

IT'I/.AI - -   if    .        1 sinV^T 
'^      ßm(r - ()r 

-t)it-r)Koi2Vß*rr)dr, 

which, after some manipulation, can be rewritten as 

L~llfih\ - -^- /^coa^sin (2«<rcoa^)#C0(2«rsin*)^ (120) 

where, as before, » - v0V* and « = sin {9/2).    We next return to Eq. (112), differentiating both sides with 
respect to «. 

I 
* cos 0 sin (2«« cos ♦)Ao(2ff sin <>) <h 

Substituting this result into Eq. (120), 

L-'w-ik*i 
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Finally, rrplacing L ' |/i/j| in Eq. (119) by the above exprnsion, we obtain T({, »;, t) in ternu of the function 

l(i n, I). 
j_ j/1 dA 
4T a« V« a«/ '■«•'•"-r,.-iUW- (12,> 

It bhould be noted that A((, »j, l) is actually a function of only two variable«, a and g. Thus the / function 

can be tabulated once and for all by the method described in paragraph 7.16. The Tfunction has been calcu- 

lated from formula (121) simply by differentiating the previously tabulate! values of /({, TJ, l). Since / 

enters in the Green's function only in the combination ß*t, it is simplest to compute T((, v, t) as 7'({. ri; 

-'i . a one-parameter family of functions of ( and n. corresponding to various values of the single parameter 

'/ The /" function has actually been tabulated for values of ß*t ranging from 0.5 to 1.1 radians per five 

degrees of latitude, at intervals of one-tenth units. A typical example of the results of these calculations is 

presented in Fig. 5. Although it is not indicated in the figure, it should be realized that the T function has a 

singularity at the origin, changing from negatively infinite values on the left-hand side of the origin to posi- 

tively infinite values on the right, as one proceeds along the {-axi- across the origin. Because the integral on 

the right-hand side of Fq. (117) must ultimately be evaluated by finite sums, we have simply replaced ;*'-■ 

value of T at the origin by its average value, integrated over a unit area surrounding the origin. 

7.22. The most important aspects of the T function are illustrated in Fig. S. The most striking fea- 

ture is that it "dies out" rapidly as one proceeds away iron) the origin in any direction, decreasing to about 

one-tenth its maximum value at a radius of twenty degrees of latitude. In other words, for values of ß in the 

middle latitudes and for a forecast period of one day, the radius of the effective domain of dependence is on 

the order of 1500 kilometers. It is also significant that the T function is not symmetrical around the • a\i-. 

taking on predominantly negative values to the left of the origin and predominantly positive values on the 

right. As an example oi the conseqi ences of this property, let us suppose that He wish to compute the 

change in contour height resulting from an initial distribution which is symmetrical around the (-axis and 

exactly asymmetrical around the q-axis, the region of low pressure lying to the left of the origin and ihe area 

of high pressure to the right. Thus the value of the integral on the right-hand side of Fq. (117) would be 

positive, whence the contour height at time ( and at the point x = rUt must be greater than it was initially 

at the origin. This implies that 11 disturbances must move westward relative to an imaginary current oj air 

moving at a speed rU toward the east, a result which is in accord with the simple Kossby "trough" formula. 

The very asymmetry of the T function therefore contains the mechanism for propagating large-scale dis- 

t'irbances. 

7.23. In concluding the discussion of prediction formulas for large-scale transient disturbances, it is 

appropriate merely to mention one other important property of the final solution. Formula (117) expresses 

the predicted contour height at any given point as a linear combination of its initial values at points in the 

immediate neighborhood, neighted according to their distance from the point in question. We may there- 

fore interpret the predicted contour height as a itort of weighted mean of the initial data, integrated over the 

effective domain of dependence a region nhich, for forecast periods on the order of a day or so, has linear 

dimensions comparable nith the characteristic half-wavelength of the large-scale disturbances. Thus the 

solutions (117), computed hy finite sums from discrete and widely separated values of the initial contour 

height, display the statistical stability of the mean of a finite but large sample. Owing to the observed 

"continuity" or "smoothness" of meteorological variables, the mean of the sample will closely approximate 

the true mean of the c«>ntiniiouH distribution of contour height. In fact, if the errors in observing the initial 

values of contour height are not systematic, the percentage deviation from the true mean may actually be 
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less than the ratio of the error in an individual observation to the true variability of the sample. Viewed in 

the light of previous remarks (paragraph 1.15), concerning the stability of statistics of the observed state, 
the values computed from formula (117) evidently satisfy the requirements imposed on the form of the solu- 
tions by the enforced inobservabiUty of the atmosphere and by the inaccuracy ol observations. In summary, 
because we are already dealing with the vertically integrated mean motions, it appears that the predictions 
computed from Kq. (117) are representative of conditions integrated over a volume whose horizontal diinen- 
sions are of the order of the characteristic half-wavelength of the large-scale disturbance«, and whose vertical 
dimension is comparable with the entire vertical extent of the atmosphere. 

THE SOLUTION FOR QUASI-STATIONARY FORCED OSCILLATIONS 

7.24. We shall n «xt discuss Kq. (96). whose solutions correspond to forced oscillations induced by 
irregularities of the underlying terrain. Aa mentioned earlier, the amplitude of the semipermanent "lee 
trough" is generally somewhat less than that of the superposed transient disturbances—enough smaller, in 
fact, that it is difficult to detect the "lee trough" at all, whether it is reconstructed from the mean flow 
averaged over a long period of time or from individual cases. For this reason, and because the semiperma- 
nent features of the large-scale flow are naturally of least concern from the standpoint of short range predic- 
tion, we shall merely outline the method for developing the formal solution of Eq. (96), finally presenting the 
solution in the form of a surface integral analogous to Kq. (117). We first note that each term of Eq. (96) 
has been differentiated with respect to x. A single integration with respect to x therefore reduces Eq. (96) 
to an equation of the second order. 

Vax -|- m2z = -v2r-lh{x,y), (122) 

where m2 - ßr^lT1. 
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7.25. At thi« point, it should be rmphaBizrd that the problem of solving the equation for transient di«- 
turbanoefl ia raaentially different from that of solving the steady-state equation (Kq. (122)). The former, 
although it is superficially a problem of both boundary and initial values, turns out to be completely deter- 
mined by the initial values alone. The solution of the steady-state equation, un the other hand, is by its 
very nature a boundary-value problem. In physical actuality, even the steady-state solution is completely 
determined by requiring only that the solution be everywhere continuous, because a "horizontal" surface is 
actually closed. In this respect, the locally Cartesian coordinate system we have adopted is highly artificial. 
To simulate the true state of affairs, we shall tentatively assume that the radius of the "effective domain of 
dependence" for Eq. (96) is no greater than, let us say, the width of the major oceans, later justifying this 
assumption a posteriori. Temporarily granting that it is valid, a consequence of this postulate is that the 
forced oscillation associated with any one land mass can be treated as if it were unmodified by the presence 
of other continents. It will therefore be required that the disturbance created by an isolated irregularity 
vanish everywhere over a semi-infinite region on the windward side of the irregularity. Owing to the fact 
that it introduces such boundary conditions explicitly, it is again natural to apply the Laplace transform, 
this time replacing x by the variable of the transform. 

L{s,y) = L\z{x,y)\ = £' z{x,y)e-"dx. 

By making use of the operational properties of the transform, we find that Eq. (122) takes the form of a non- 
homogeneous "ordinary" differential equation whose dependent variable is the transform of z. 

d2 A* y + -a = -MV//^ v) + (£)      + M(0.r). 

where«2 = m2 + s2    and    H{s,y) = L\h{x,y)\. 

Since the line x = 0 is assumed to lie entirely within the semi-infinite region where z vanishes, the above 
equation reduces to 

d2L 
—j -I- «2L = -Sr-lH(s,y). (123) 
dy 

The remaining problems are to solve this equation for the Laplace transform of z and to carry out the 
inverse transformation to obtain z itself. 

7.26.    We next consider the Fourier integral 

L{*,y) ~ -— f   i»/     //(.,.,) 1 j coa o (y - .,) rfn- (124) 
irT«/o »/-• K   — a 

-^ -f «aL =  - ^ J^    daj _ His, r,) cotaiy ~ r,) dr,. (125) 

Differentiating both sides of Eq. (124), 

,r7. 

*/ 

According to Fourier's theorem, however, the integral on the right-hand side of Eq. (125) is simply the expan- 
sion of H (s,y) on an infinite interval, whence 

^ + «2L= -M'r-w^r)- dy' 

Thus expression (124) is the solution of Eq. (123), the equation for the transform of z. To simplify mattere, 
we invert the order of integration on the right-hand side of Eq. (124), writing the solution for the transform 
of z in the form 
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L(i,y) 1     H{»,y\)K{»,y — i») </i», 
FT«/-" 

(126) 

whrrr thr krmd function K is 

/C(i,y — n'        /     "J-^—^coBa(y — n)^». 

Ill- intrgral AC is wrll known and has brrn fval,iat«'<i.    Its valur is 

X-j 2 cos a{y - ij) «/o = - sin «(y - n). 
K   — a -« 

After substituting this exprrssion for K(s,y — if) in Eq. (126), wc obtain thr rciluccd Fourier integral for 

L{i,y) 'L\x\ - - ^jr]//(s.n)Rsin«(^-,)l^. (127) 

It remains to apply the inverse transform to Rq. (127) to And thr solution for z itself.    Interchanging the 

order of integration and transformation on the right side of Kq. (127), 

*{**?) ~ - ^j^^L"'   //(s.^TsinMr -n)j[</n. (128) 

The inverse transform of thr intrgrand can be wriucn as the convolution of thr inverse transforms of thr 

separate factors in the product. 

L-1 WioHsin«^-,) || = IT'IH(•.*)! •L-,|-wa«(y- ») 

= h{x,r,)'L * I-" 
I 

sin K(y — ti) 

-Ä(x,n) **{x,y - ri). 

Finally, replacing the integrand of Fq.    I-',    by the convolution integral, w« obtain thr folution :(x,y) in 

thr form of a doublr intrgral 

nhrre 

trgrai. 

«jir(«.y) - -rXjf^ n)*{x - t-y - n) </{ dr, 

♦U,r-n) .,-    
1 sin W2 hy-r,)}- + m 

V,3 + m2 

(129) 

(130) 

The expression on thr right-hand side of Kq. (129) is the formal solution ij| of Kq. (%). (x>mparing it with 

Eq. (117), we see that formula (129) is very similar in form to thr solution of thr equation for transient dis- 

turbances, in that it expresses the solution as an infinite surface integral whose intrgrand contains two factors 

of essentially different kinds. The first factor, which is analogous to thr initial valur of z^-, is simply thr 

height of the underlying terrain. The second is the (»rren's function for thr problem, a function which is 

analytic and independent of the boundary data. Thr diffrrrncr brtwrrn the two solutions lies in the : <■ i 

that the integration of Kq. (129) is to be carried out ovrr ihr srmi-infinitr planr to thr left of the line £ - v, 

whereas the transient disturbance xr depends on initial values over the entire plane. This implies thai the 

height-disturbance due to the terrain-induced forced oscillation dr|>rnds only on the character of the terrain 

to thr windward sidr of thr |»oint in question, and is not affected by conditions on thr leeward side. 
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7.27. Wf sliall next investigate Honu* of the properties of <!»(*, y — ij), the Green's function for Eq. (%), 
with a view to estimating the radius of the effective domain of dependence. Up to this point it has only been 
indicated that '.he Green's function can he found by applving the inverse transformation to a known function 
of y and », a process which is actually rather complicated. Some of the general properties of ♦(x,y — »;), 

however, can be deduced by elementary methods, without carrying out the inverse transformation completely. 
We begin by considering the integral equation which defines 4» 

X" *{x,y - yi)e-" dx ~ (a2 + marH sin [y - I,)(J
2
 + /na)H. 

By introducing new variables, this equation can also be written as 

♦ (/, u)e-at dt = (o2 + irH sin u(a2 + 1^, (131) r 
where l — mx, u = m{y — y), and i = ma.    This equation alone carries the implication that i> involves x 

and {y -  tj) only in the combinations m.t and m(y — »;).    The right-hand side of Kq. (131) may be expressed 
ar. 

(a2+ irw8inu(a2+ 1)H -  - - — coau(a2 + 1)H. (132) 
ua da 

Moreover, differentiating both sides of Kq. (131) with respect to u, 

X" M 
— e-a'dt = cos«(a2 + 1)H. 
du 

(133) 

Subfltituting the above expreMion for co« u{a2 + 1)^ on the right-hand side of Eq. (132), 

u* (/. u )ae-a (dt ~  I     I — e""' dt. 
o Jo       du 

The left-hand side of Kq. (133) can be integrated by parts as follows 

f   iA{l, u)ae-at dt ~ - f   u*{t,u)- e-^'dt 
Jo «/n dt 

= - ru*(r, lOe-0']   +f     u-e-'-'dt. 

Introducing this result into Kq. (133) gives 

u (—«-"' d« » u*(0, u). 
o    \    dl du/ 

Finally^ we differentiate the above equation with respect to a to obtain 

(u I — lie"'dl = 0. 
0    \    dt du I 

There is only one way in which this equation can hold for all u and a, and that is if 

u I — = 0. 
dt du 

This is a linear partial differential equation of the first order, which can be solved by the nn iln-.l of Lagrange- 

Charpit.    The characteristic curves are solutions of the following ordinary differential equation. 

dt _        du 

u t 
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whence 

♦ - ♦(i3 + u2) - ♦imV + (r - •J)
2
!) • 

I Im- the GreenV funr'ion depend« only on *he radial distance from the point (0, i>). 
7.2?.    To gain more detailed information about the general form of 4>, we return to Eq. (131), differ- 

entiating both sides twice with respect to u 

Jo du' 
€-<"&= -(a2+ l^sinufc2-h 1)H 

=  -(a2+ 1)/*   *e-"dt. (134) 
«/o 

The right-hand side of Eq. (134) can be integrated by parts as follows 

-(a2-|- I) f tor"dt = - f to-*1** f t — e-"'* 
Jo Jo Jo       dl 

Substituting this result in Eq. (134) gives 

'" /a«*     d2* 

Finally, we differentiate the above equation twice with respect to a to obtain 

- /a2*    a2* 

/•- /d2*    a2*     \     ( . /d«i>\ 

X (aT' + ^+*)'"'*-°»(0"', + U),.. 

r©^-)"—- 
Again, this equation ran hold for pll u and a only if <t> is a solution of 

a^    a2* 
^ + ^ + ♦-0. (135) 

It has already been shown, however, that 4> is a function of only one independent variible, (/2 -\- a2). Intro- 
ducing this information into Eq. (135), we find that $ must satisfy the following linear ordinary differential 
equation: 

rf2*      1 <«> 

l? + -.7.+*-0 

where z2 = t'2 + u2. This equation will be recognized as Bessel's equation of order sero, whoae solutions 
are Beasel functions of order sero with real argument. 

Jo(*) - yo(V?T?) - MmVx3 +[y- ,)«! 

Yo(*) - YoiVFTJ) - YolmW + (r - ,)»). 

The Green's function is therefore a linear combination of such Bessel functions.* 

*{x-t,Y-il) - AJo{mr) +BY0(mr) (136) 

where r* ~ (x - *)'+ {y - r,)*. 

•I 

* The author ha* »inrr ditcovered that A — 0 and 0-1. If anything, thi* result »trengthm* (he argument« to follow, becauac 
the Beaael function of the aecond kind haa a tingularity at the origin. The latter impliea that bv far the largeat conthbutioni 
rone from conditions near the origin, whence the effective domain of dependence ia even »mailer than that eatimated from 
the behavior »f the Keaael function of tbe hrat kind. 
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It «nould I"   noted that, in thin   a-. . ihr Grrrn,s function w (tymmrtriral around the point (x, v). 

-''' Thr signifiranrr of thrsr rrsult« lira in thr brhavior of 4>(mr) as r inrrraam from zero to vrry largr 

valura. Both kind* of Bnwrl funrtion* and, ronarqurntly, tht* t.rmi"- funrtion ii-. If drcrraar rapidly aa r 

inr.raara from zrro t<> thr fimt root of Juimr) = 0. Bryond thr arrond root of Joimr) = 0, thr brhavior 

of thr Braarl funrtion» i- rlnarlv appmximatrd by thrir aaymptotir exprawiona 

I Im- a« r brromra im r»a-mpl\ large, thr Braarl function»« oarillatr around thr valur zero with very alowly 

drrrraHing amplitude. The full wavelength of the <wrillati«m 1- approximately given by thr aaymptotir 

exprrsaionft a*« 2vm~\ nhirh, for valura of T(J of thr ordrr of 20 mrteni per arrond, ia about 4000 milea. Thia 

dintanre in romparable with the width» of the major rontinenta and iM-rana. For thia reaaon, owing to the 

oerillatory propertirt» of thr (irern'a funrtion bryond the second zero of Jo(mr) = 0, thr nrgativr rontributiona 

to 1I1. integral I-"' dur to surface irregularitira bryond that radiua will tend to • ■■iii|.. n-.ii. the positive 

rontributiona. Wr may, therefore, take the radiua of the effective domain of dependence to be somewhere 

between thr second and third zeros of Jo(mr) = 0—i.r., comparablr with thr first "wavelength" of the 

HeHst-l functions. The first full cycle ia com[ilrtrd al about mr = 7, whence the radius of the domain of 

dependence is of the order of (hrrr or four thousand milrs. This result implies, for example, that the flon 

over the mountains of the western I mi. .1 Slates is not much affected by the presence of the liimalayaa, a 

fact which was tentatively assumed in paragraph 7.2S. 

7.30. To summarize the result» of this Kection, the solutions tp and zy—corres|M>nding to large-scale 

transient disturbann-s and the forced oscillations due to irregularities of the underlying terrain are pre- 

sented in formulas (117) and (129). Both are given in terms of quantities which are initially known or 

computable. That is to say. the initial valuo are expressed IP terms of the undifferentiated contour height, 

a «piantity which is measured as a matter of routine, and the (»reen's functions can be evaluated in terms of 

aireudy tabulated anulvtir functions. I m.ilK it has been |M»inted out that Kq. (95), representing the effects 

of nonlinearity, is of the same general form as Kq. (96). Although the solution of Eq. (95) requires a few 

modifications of the nn IIMMI- used to solve Kqs. (94) and (96), it can te carried out in much the same way. 

In short, the "linear" progn<»stic equation (Kq. (92)) can be solved completely 

8.00   A  MKTIIOD OF NLMKRICAL PREDICTION 

8.01.    Formulas (117) and (129) provide the basis for a rational system of predicting the height of an 

isobaric surface at the equivalent-barotropic level.    This method we shall briefly outline below, leaving the 

detailed description of its application for the second report mentioned in the foreword,    (a) Starting with 

the initial distribution of contour height, we first compute r and the mear zonal component U of tht» horizon- 

tal velocity,     (b) \X iih this information, Z.M can be computed from Fq.  (129).    (r)  We next subtract ZM 

from z, the total initial orntour bright, to obtain [ip -f  zs).     (d)  Using the latter distribution of contour 

height, we calculate the initial values of .V.U, v) and compute z.v by a method similar to that used in solving 

Fq. (96).    (c) The initial values of s^ are obtained by subtracting ZA from the previously calculated values 

of (zy -f z.v).     (f) We next compute the predicted value of z^  from formula (117), continuing the solution 

only a short time beyond the initial moment,     (g) Kinally, the total contour height z at a time later than the 

initial moment is obtained by adding z\i. the initial value of z.\, and the predicted value otzp.    Tht- |M-edicted 
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«Iwtribution of contour height at a tim«- latrr than the initial momrnt 11« then rt-panieH a» a nem Hrt of initial 

data, when«'«- ili< |inxT»tH outlinrti abovr ran \» r« |Miiiri| intlchnitflv. until tin- a^grrgati* of hhort time 

intirvaltt hai« rrarhr«! ihr requiml total length. 

8.02. To carry out thin -■ in-me completely would involve a trrmendoiM numher of calculations—to 

many, in fact, that it would be imptmHible to carry them out "h\ hand" in a time comfiarable with the length 

of the furecaM period, and barely feasible to carry them out with the automatic coin|)iiting machines avail- 

able at the |.I.-I m time.    Judging from the numerical ex|>erimentH <>f ( liarn»\. Kjortoft, and von Neumann 

I'* .|> . the time interval between Huccetutive Htagett of the iteration should not be more than two (»r three 

hount, HO that a twenty-four hour prediction would require «HI the order of ten iterationH. In Hhort, the 

application of tin- method to the prartual problem of contour progmwiH would -nil (Nme a very formidable 

computational problem, even if automatic facilities were available exclwuvelv for that purpose. 

8.03. It ha» already been noted, on the other hand, that >.II and tu are frequently -mall in comparison 

with z and Sp. I nderitome condition)«, therefore, it may be |>errniHhible to regard the observed irregularities 

in the initial distribution of contour height as due entirely to linear transient disturbances. From this point 

of view, the first five steps outlined in paragraph H.l'1 simpl\ add small corrections to the prediction that 

would result if formula (117) were applied directly to the observed initial values of contour height. The price 

one pays for those corrections, moreover, is a tenfold increase in the total number of computations, for the 

-••lull.in (117) depends explicitly on the length of the forecast |teriod and can be carried out over a single 

time-stage. From a purely economic standpoint, therefore, it is desirable to appl\ formula (117) to the 

oliserved initial values of contour height, if onl> to establish the |»ossibility that the resulting uncorrerted 

predictions are significantly less accurate than the predictions which are corrected for the effects of non- 

linearity. L nies» the inclusion of nonlinear effects produces a >igni leant increase in accuracy, the enormous 

added ex|>en.He of including them would hardly be justified. \X ith the passing remark that corrections for 

the terrain-induced forced oscillation can be included without materiallv increasing the total effort, we shall 

next turn to a discussion of tbe results of applying the solution for transient disturbances to observed (but 

uncorrected) initial values of contour height. 

8.04. As the first step in testing the general validity of the theory, formula (117) was applied to two 

sets of initial data, which had already been exhaustively analyzed in connection with other studies. Aside 

from the fact that the network of observations Mas particularly dense at those limes, there nas no hasis for 

selecting th»»se two cases in preference to any others. When this rejiort was begun, tbe twentv-f ur bour 

predictions computed from the two sets of initial data bad just been completed.* The results of both 

computations are presented in the last part of this section, along with the sequence of events that was 

actually observed. 

8.05. In order to give a brief description of the manner in which formula (117) has been applied to the 

problem of predicting the height of an isobaric surface at the equivalent-harotropic level, it w simplest to 

describe how all the quantities which enter into the formula the initial values, the Given*! function, and (he 

. I., ili, p ni- of I i| 'M have been computed from the basic data, discussing each ipiantity separately. It 

is natural to begin with the initial values of:, which are most directl> connected with physical measurement*. 

The basic data are routine observations of wind and pressure, received via teletype from a network of I'. > 

Weather Hureau, U. S. Navy Aerological Service, A'r Weather Service and Canadian weatherstations over 

the continental U. S.. the North Atlantic, the Western Pacific, Canada ami Alaska. This information is 

transmitted in standard numerical code, giving the wind direction to the nearest value on a iU>-|»oint nrale, 

the wind tpeed to the nearest five knots, and the height of certain selected isobaric surfaces to the nearest 

* In the meanwhile, ■ Mrim of twenty ■fo»r Midi {»rrdiclion« hax been t-ompletrd.    The 11 -nil- of tlir latter teal will be dim-usard 
in the wi .mil rr|M>rt rrfrrrrd to earlier. 
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imillipl«* of t»*n fr«'! akmr mean m*« Irvrl. Thf rnrodi*d praMre data, to|{<*lhfr with thp wind vHority. 

were plottrd on tilank mii|m, fach chart rrprntcntin^ comiitionH on one of the Htandard «urfacrs of mnftlant 

prranurt—i.e.. the KHM), 8S0, TOO. ftOO, 500, 400. 300. 200 and 100 millihar «urfarn». The wind direction 

within each prennure Hiirface wa« rrjirettented graphically, by drawing in (with a protractor) line* with the 

direction« of the wind vector*«. The topography of each ourface of conntant pret»ure wa« then reconstructed 

hy interpolating contin.jouH contoun» at interval« of 100 feet. In region« where the data were quite den«e, 

-(" > IHI care wa« taken not to violate direct measurement« of height in favor of wind observation«. ()n the 

other hand, wherever several aiijacent observations of wind and pressure or of pressure alone appeared 

mutually inconsistent, the radio-halloon sounding« were checked for internal consistency by using the hydro- 

static equation. In region« where the data were quite spars.-*, a little more emphasis was placed on the wind 

observation« that i« to «ay. the true uind wa« identified «iih the geostrophic wind, «o that the direction of 

the contours and (to some extent) the spacing of the contour« correspond to the direction and speed of the 

true wind. In addition, in region« where data are transmitted irregularly or where the network of observa- 

tion« i« particularly ItMwe, the topography of the pressure surface« wa« partially inferred, by requiring spatial 

continuity in the horizontal and from one level to another, and by assuming temporal continuity over a series 

of 12-hour interval«. The first numerical experiment was ba«ed on four seta of contour charts, representing 

the topography of the standard pre««ure«urfaces at the limes 0300hours Z ((Greenwich) Time, 8 January 50; 

1500/, 8 January 50; 0300/. •' January 50; and 1500/, '' January 50. The topography of the 500-millibar 

surface at each of those inn.- i« di«played, for purposes of orientation, in Fig. 6, (a), (b), (c) and (d). The 

first two «et« were regarded as initial data and the last two as verification data. The area covered by each 

analysis extended from 20° north latitude to 75° north latitude and from 40° west longitude to 140° weat 

longitude. The density of the network of radiosonde, pihal. raninsonde, and surface observation stations 

over that area is, of course, greater than that over any other region of the earth. 

8.06. Preliminary estimate« of the vertically integrated mean wind«, computed at a number of points 

over the area of the data, showed that the equivalent-barotropic level lay at a mean pressure altitude of about 

550 millibar«. This height was considered sufTiciently close to the 500-millibar surface to warrant applying 

formula (117) to conditions at the latter level, which is one of the so-called "standard" levels. The height 

of the 500-millibar surface at the intersections of meridian« and latitude circles, spaced five degrees apart in 

either direction, was estimated by interpolating between continuous contours. At this point, it was realized 

that a perfectly legitimate (although degenerate) solution of Kq. (94) is the function 

where 2 is a constant, for convenience chosen equal to the mean height of the 500-millibar surface integrated 

over the entire extent of the data. This solution correspond« to zonal flow at a uniform speed f . It is also 

quite clear, for physical reasons, that the integral on the right-hand side of Kq. (117) must vanish in the case 

of uniform zonal HOH. TO insure that the solution would reduce pro|>erly in this special case, the height of 

a liclitious plane of constant pressure, whose mean height is f and whose Blo|>e is that required to maintain 

zonal flow with a 'iniform «peed / , was subtracted from the prrviouslv tabulated height of the 500-millibar 

surface. The resulting difference« at standard gridpoints (the intersections of meridians and latitude circles, 

spaced at five-degree interval«) were then recorded on punch card« with a locator index. The latter data are 

the initial values z(x — (, V — v. 0) which enter into the integral on the right-hand side of formula (117). 

8.07. lU'cauHc^i was set equal to zero in the course of evaluating the (rreen's functi« iT(;t — (, r — »MK 

only two of the coefficients in Kq. (94) ap|>ear in formula (117). These are the parameters rl) and ji. The 

latter de|>ends only on the angular «|»eed and radius of the earth and the geographical latitude of the point 

(jr. v).    The first factor T in the one remaining parameter was computed as a mean of the values at the 
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■tandard gridpoinu, integrated over the entire area of the data. U wu computed a* a longitude-dependent 
mean value of the tonal component of the geoatrophir wind at the standard gridpoints, integrated over in- 

tervaia of 25 degrees of longitude and over the entire north-south extent of the data. Karh "running" mean 
of the zonal wind was considered to apply at the center of its region of summation. 

8.08. As indicated earlier, the Green's function T(x — t,y — 1,1) has been computed for a number of 
value« of the single parameter Jt. each corresponding to a combination of the latitude of the point (JC.V) and 
the length t of the forecast period. The values of the T functions at gridpoints spaced five degree« of longi- 
tude apart in one direction and five degrees of latitude apart in the other were also recorded on punch cards, 
each deck of cards corresponding to a single value of the parameter ßt. The area for w hich the T functions 
were recorded extends at least 20 degrees of latitude or longitude in any direction from the origin (x,y), 

approximately covering the effective domain of dependence. 
8.09. The integral on the right-hand side of formula (117) was computed by finite sums for each 

gridpoint i.t, v), ranging from 40° north latitude to S50 north latitude and from 60° west longitude to 120° 
we«t longitude. The first stage in computing the integral was to select the value of ßt appropriate to the 
geographical latitude of the point (x, y). Two decks of cards, one bearing the coded value« of the / function 
for the proper value of 0t and the other bearing the initial value«, were next arranged in such a way that the 
two cards with the same locator index (x -- {, v — TJ) were paired together. The combined deck was then 
passed through a Remington-Rand automatic multiplier, to form the products of paired values of the initial 

height-disturhance and the Green's function at the points (x — t, y — »»)• The output of this o|>eration is 
the sum of all such products, taken over the 81 points for which the T function was recorded— i.e., over the 
effective domain of ilependence.    That sum is an approximation to the integral at the point (x. y). 

8.10. Two more operations were carried out before arriving at the predicted height of the SOO-millibar 
surface. First, the computed value of th«- integral at the point (x, v) was added to the total initial height of 
the 500-millibar surface at the same point, to obtain the value that would apply if there were no mean zonal 

flow. Finally, the point '.». v i to which that value is attached was displaced a distance rl/l toward the east. 
The resulting value of contour height is the one which, on the basis of formula (117), is predicted to occur at 
a time 24 hours later than the initial moment. 

DISCUSSION OF RESULTS 

8.11. The results of these computations are summarized in Fig. 7 (a) and (b), in the form of geo- 
graphical distributions of the predicted change in the height of the 500-millibar surface, over the 24-hour 
periods ending at 0300Z, 9 January 50 and 1500Z, 9 January 50. These results are to be compared with the 
observed changes over the same periods, as presented in Fig. 8 (a) and (b). In both cases, the predicted 
positions of well-defined maxima and minima of height change are located within a distance of five degrees of 
latitude from their observed positions. With regard to the magnitude of the change«, it should be noted 

that the predicted height changes over the first period are systematically greater (more positive) than the 
observed change«—i.e., the predicted mean value of the contour height is greater than the actual mean value. 
In this same connection, it should also b.- noted that Eq. (94) is homogeneous and contains no term of order 
aero. This implies that the solution of Kq. (94) can predict the height change only to within the value of 
an arbitrary additive constant or, in other words, that this method is incapable of predicting a general rise in 
pressure over a limited area. If the area of the data extended over a much larger region, |>erha|»s over an 
entire hemisphere, it would probably be safe to assume that the mean value of contour height integrated 
over that area does not vary from one day to the next. At the same time, it must be pointed out that we are 
not primarily interested in predicting the absdiite height of the 500-millibar surface, but in predicting the 
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(a)    0300/    9 jANUAn 19.9) (b)    1500Z    9 JAMUABT 1950 

F'ig. 9. Predicted contour« of the 500>millibar surface. 

circulation resulting from vori'ttions in the contour height. The latter depends onlv on derivatives of the 

contour height, and is therefore independent of the mean height. In order to estimate the accuracy with 

which this method can predict re/ad're changes in height, we therefore focus attention on the relative strength 

of the maxima and minima. In the first case, the predicted diffeu-nce between the maximum and minimum 

height changes is about 1600 feet, as compared with the observed difference of about 1450 feet. In the 

second case, the predicted relative amplitude of the height change was about 2100 feet, whereas the observed 

difference betneen the maxima and minima was around 1600 feet. In judging the accuracy of these predic- 

tions, it should be borne in mind that the probable error in the present system of pressure measurement is 

of the order of 1 millibar, which, at the SOO-millibar level, corresponds to a height error of 50 feet. This is 

the irreducible minimum of error in the predict«^ values of contour height. Comparing errors against that 

standard, the predicted distributions of height change are in very good agreement with the observed dis- 

Iribulions. 

R. 12. These r.ame results are presented in another way in Fig. 9 (a) and (b), which are simply the dis- 

tributions of contour height predicted to occur at 0300/, Q January 50 and at 1500/, 9 January 50. Turning 

back to the sequence of contour charts in Fig. 6, one is most struck with the very slow movement of the 

"ridge" of high pressure over the central I'niled States and the relatively rapid eastward movement of the 

trough off the east coast, with a resulting increase in wavelength. In the 24-hour period from 0300/, R 

January 50 to 0300/, 9 January 50, for example, the ridge line moved only about 7 degrees of longitude, from 

a mean longitude of 97° W to 90° W, nhile the trough line moved about 13 degrees of longitude, from 69° W 

to 56° W. In that 24-hour period, the half-wa .elength increased from 2R degree« of longitude to 34 degrees 

of longitude. As indicated by Fig. 9 (a), the ridge line was actually predicted to move eastward a distance 

of 7 degrees of longitude, while the trough line nas predicted to move very rapidly to longitude 50°, a dis- 

tance 19 degrees of longitude east of its initial position. Accordingly, it was predicted that the half-wave- 

length would increase from 2R degrees of longitude to 40 degrees of longitude. 
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8.13. The srcond rase is evrn more Htriking. For 24 hour» after 1500Z, 8 January riO, the ridge of high 

presfture remained stationary at a aean longitude of 90° W. while the trough eontinued to move rapidly off 

the east coast. In the |>eriod from 150QZ, 8 January !>0 to 1500/,. 9 January 50, the trough moved about 12 

degrees of longitude, from a mean longitude of 63° W to 51° W. The half-wavele igth increased by a distance 

of 12 degrees of longitude, from 27 degrees to 39 degrees of longitude. According to Fig. 9 (b). it was 

actually predicted that the ridge line would remain almost stationary over that |»eriod. moving only about 

2 decrees of longitude from 90° W to 88° W. The trough, on the other hand, was predicted to move very 

rapidly to a mean longitude of 45° W. a distance of 18 degrees of longitude in 24 hours. The predicted 

increase in the half-wavelength was therefore 16 degrees of longitude, as compared with the actual increase 

of 12 degrees. Needless to say, it would be extremely diflicult to predict such changes in wavelength by the 

extrapolation methods in common use, especially in view of the fact that the eastward movement of the 

ridge during the 12-hour period following 0300/, 8 January 50 ceased abruptly after 1500/, 8 January 50, 

the ridge line remaining stationary for the succeeding 24 hours. 

8.14. In concluding the discussion of these results, it should be emphasized that the two cases presented 

here were the first two to be analyzed by these methods, and were not selected as the best examples from a 

larger number of cases. As it turned out later, the two described above were better than the average of 

24 such predictions, but were still not among the exceptionally good examples. 

9.00   SUMMARY, CONCLUSIONS AND OUTLOOK 

9.01. In the eight preceding sections, we have discussed at considerable length the general problem of 

predicting the behavior of large-scale disturbances in the flow of the earth's atmosphere. It is a matter of 

experience that such disturbances, gradually growing and moving slowly eastward for periods of days or 

weeks before they finally decay, are directly associated with the more tangible aspects of weather. Hecause 

of the impossibility ot observing the complete state of a ohysica! system on so grand a scale, and because of 

other difficulties inherent in the general problem, we hav« been forced to retreat further and further toward 

successively more special problems, first restricting attention to the problem of predicting the mean local 

state of the atmosphere, and finally to that of predicting the behavior of large-scale disturbances of atmos- 

pheric pressure. 

9.02. As we have seen, even the special problem of predicting the behavior of macroscopic pressure 

disturbances is far too general, for the complete hydrodynamical equations |>ossess solutions rorres|>onding 

to sound and gravity waves, which, from our limited point of view, are irrelevant and simply obscure the 

solutions in which we are primarily interested. In order to isolate the met -orologi'-al as|>ects of the problem 

and to reframe it in terms which make it explicitly meteorological    rather than acoustical or aerodynamical 

a "scale theory" of atmospheric motions has been developed for classifying the various types of motion 

according to the values of certain nondimensional characteristic numbers. It has been shown, for example, 

that the large-scale "meteorological" disturb^ces are distinguished from all other types of motion b) the 

fact that their characteristic phase speed (relative to the medium of propagation ) is much less than the speed 

of sound and of high-speed internal gravity waves. By introducing the "filtering approximations"—i.e., 

the strong inequalities which characterize the large-scale motions it is then i«..—iM.- to reduce the complete 

system of hydrodynamical equations to a single equation which governs only the large-scale motions, the 

extraneous solutions corresponding to sound and gravity waves having been excluded. 

9.03.    The development of a suitable prognostic equation is necessarily centered around one of the 

many forms of the vorticity equation.    We have derived a vorticity equation which applies to tin- adiahatic 
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flow of an ideal gas in quaBi-hydro«tati<- equilibrium, introducing for convrnienrr a »yslem of quatti-Lagrangian 

coordinates in which the entropy replaces the vertical coordinate. In order to obviate the difliculty of com- 

puting the vertical component of velocity, we have completely eliminated vertical dependence, simply by 

integrating the vorticity equation through the entire depth of the atmosphere. The resulting equation 

applies to the density-weighted mean value of the horizontal component of velocity, integrated vertically 

from the surface to an infinite height. It therefore governs the motions of a fictitious two-dimensional fluid 

which, in a mathematical sense, is equivalent to the true atnuisphere. In the course of developing the mean 

vorticity equation, it has been found convenient to consider a special, but frequently observed ty|tc of 

baroclinic flow- namely, flow in which the wind direction is independent of height. It.has been shown, 

in fact, that the direction of adiabatic flow associated with the very larfp-scale disturbances cannot vary 

appreciably from one level to another. 

9.04. Upon introducing the "filtering approximations," the mean vorticity equation reduces to a third- 

order partial differential equation, involving only one dependent variable—the pressure or, which is the same 

thing, the height of an isobaric surface. This equation— the so-called ( rognostic equation- is demonstrably 

free of the major difficulties inherent in the unreduced primitive equations, but has the considerable dis- 

advantage of being nonlinear. An iterative scheme is therefore proposed for solving the nonlinear prognostic 

equation, based on the solutions of a succession of linear equations. In the course of developing this method, 

we have been led to consider the linear equations for large-scale transient disturbances and for the forced 

oscillations induced by irregularities of the underlying terrain. The general solutions of those equations 

have been expressed in terms of known initial values and the tabulated values of the appropriate Green's 

functions, which are analytic and independent of the initial data. These solutions form the basis for a 

rational system of prediction. 

9.O.S. Finally, as a simple and rather sensitive test of the theory, the solutions corresponding to large- 

M-ale transient disturbances have been applied to observed initial conditions. The resulting predictions of 

the height of an isobariv surface near the equivalent-barotropic level are in good quantitative agreement 

with the observed fact«. Although the number of cases presented here certainly does not justify an un- 

qualified positive statement, these results indicate that the theory is essentially correct.* In this connection 

it should be pointed out that the predictions exhibited here are based on il solutions of linear equations. 

It is probably safe to say that the pro|N>sed iterative scheme for solving the nonlinear prognostic equation 

would yield better results.! The extent to which the. inclusion of nonlinear effects improves the accuracy 

of prediction will he the subject of future studies. 

9.06. With regard to practical applications, the most ntriking aspect of the theory is that it provides a 

general method for predicting the large-scale mean flow of the atmosphere. It will be shown in the second 

report that the general level of accuracy of predictions based on formula (117) is comparable with that 

attainable by a skilled forecaster, armed with techniques in current use in the field. It also appears, however, 

that the accuracy of contour predictions can be significantly improved by discriminate application of the 

method. 
9.07. A necond source of power lies in the fact that the application of this method, because of the very 

objectivity of a rational system, mn be reduced to a routine and can therefore be carried out by machin« 

methods.     At first glance, it might appear that the procedure outlined in paragraph 8.05 necessarily contains 

* Again, it must br arknowlrdgrd that thin tlirory difTrni from thr (.harnr> -Kliannen theory principally in the mrthod of develop- 
ment and in thr mrthiid liy which thr prognonlic rijuatiim ha* Itrrn »olvrd. The pntgnuatic equation itarlf differ* only in 
minor reapecta. 

t < t( thr 22 prediction» complrtrd aincr thr beginning of thi« report, thr wonit frw were rompulrd from initial conditiona in 
which thr amplitudm of Ihr diaturhancm obviouitly wrrr not «mall. 
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§ome rlrmrnt of thr »ubjertive, in that the mntinuoiiH oontoun of the mobarir surlares are generally drawn 

in "by eye." However, »inre the only purpose which thi« operation serve« i* to facilitate the inter|H>lation 

of rontour heights at standard grid^Ntinttt, it can just as readily be carried out b* machine. That is to «ay, 

the initial value« at the gridpoint« can be computed in terms of the irdtial values over stations in the imme- 

diate neighborhood of each gridpoint, from a numerical interpolati'tn formula vkhose coefiicients de|>end onK 

on location and not on time. Because the coding and programming of the interpolations is an unvarying 

routine, this entire operation can be made a "built-in" function of a special machine, possibly a device of the 

analogue type. It is frequently argued that the analyst performs the additional functions of discovering 

gross errors and maintaining the internal consistency of the initial data. Hut it is certainly possible, by 

forcing the meteorologist to analyze his impressions, to establish acceptable standards of compatibility, 

deviations from which can be detected even by a machine. In any case, so long as the analyst can give 

adequate rea«on« for the things he does, his functions must be capable of some more or less objective descrip- 

tion, whence the routine functions of data analysis can, in principle, be carried out by an automaton. In 

short, there are no obvious limitations--other than the purely engineering problem of modifying existing 

transcription equipment—to prevent carrying out all the operations of this method automatically, feeding 

la directly from the teletype equipment into a computing machine, with only the passive intervention of 

human hands. 

9.08. Whether or not it is feasible, from the standpoints of logic and engineering, to predict the large- 

scale mean flow »f the atmosphere by machine methods, it remains to discucs the economy of doing so. At 

the present time, by the efficient organization of human and machine effort, the computation of the predicted 

contour height over an area about the size of the I nited States can be carried out by formula (117) in a time 

comparable with the period of the forecast. If the entire process were made fully automatic, it could be 

carried out in a small fraction of the forecast period, e\en if standard production models of the "business- 

machine" type were the only ones available for this purpose. At the time of writing, in fact, the only auto- 

matic computing machines of standard make and proven reliability are those of the mechanical or electro« 

mechanical type. 

9.09. To continue the discussion of the econcmy of machine methods, it is also {H-rtinent to add that it 

would be neither ne.-essary nor economical to install automatic forecasting equipment at each station. 

Because existing communications facilities provide data from a considerable area, permitting the prediction 

of conditions over a region of comparable size, it nould be sufficient to maintain such facilities at only a fe* 

weather "centrals." Moreover, because it v.ould require a highly trained team of s|>eciaiists to o|M-ratc and 

service the equipment, it would also be most economical to do so. The yearly cost of procuring, installing, 

continuously operating, and maintaining a facility of this type, amortized over the life of the equipment, 

would be comparable nith the yearly salaries of ten professional forecasters. 

9.10. It is also relevant to indicate the degree to which the normal activities of a Heather service would 

be dislocated by the introduction of a few automatic forecasting units. As it stands, the method outlined 

in Section 8.00 requires no special data. I doe«, however, require that the winds be integrated through th« 

entire vertical extent of the data, in order to locate the level at which the true nind equals the mean wind 

i.e., to find the equivalent-barotropic level. Since those integrations comprise full> half the total computa- 

tion time, the efficiency of the method would be considerably increased if those particular calculaticns could 

somehow be obviated. There is. in fact, a way of expressing the mean wind in terms of a single thenno- 

dynamic variable / . wnich bears the same relation to the mean geoatrophic nind as the pressure /> bears to 

the point value of the geostrophic wind. To show this. He introduce the geoslrophic and Imlrostalic rela- 

tions into the definition of the density-weighted mean nind. 
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Pi) Jo 

= KX —V f nHz 
X/>n    Jo 

Finally, making UM of thr equation of state, 

V = K xx- lpo~lvt: 

whrrr* 

Since it ii.volvrs only the pressur«- and trmprraturr, the new variable F. ran be evaluate«! directly from the 

original radimonde record, in much the same nay a» the "height evaluation" is now carried out, and in a com- 

parable time. If E were precomputed at the time when the "height evaluation" is normally carried out and 

transmitted as a matter of routine along with other meteorological variables, the components of the mean 

wind i .ml.I later be computed simply by differentiating K, much as the pressure or contour height i- now 

differentiated to obtain the geostrophic wind. In short, if the,reliability of the method were proven sufficient 

to justify it, it might become desirable to adopt some slight changes of standard practice, to the extent of 

modifying existing methods of evaluating radiosonde records.f 

10.00    CONCLUDING REMARKS 

10.01. Although the physical nature of the atmosphere is not well enough understood to discuss it as if 

it were completely kno^n, it is nevertheless hard to keep from speculating about the essential features of the 

physical system which determine its "meteorological" behavior. In fact, if a general theory of meteorological 

phenomena is ever to be evolved, it is desirable and perhaps necessary to hazard some guess as to how the 

"fundamental" but otherwise isolated problems of meteorology are related in physical fact and how their 

separate solutions are to be pieced together to form a single complete theory. Moreover, unless the entire 

problem is suddenly and completely resolved at a single stroke—which is unlikely—we shall eventually be 

forced into such speculation. At such time as two of the hierarchy of fundamental problems have been 

carried as far as their very isolation will allow, one must then consider the way in which the solution of one 

* In view of the proprrtie« of it» derivative«, the variable h. appear« to be an important meteorological quantity. It i« mo«t 
readily interpreted a« a meaiturr of the total preMure forre acting o.i one «ide of a wall of unit width, extending from the «ur- 
face to an infinite height, or of the total potential energy in a column of unit croaa «ection and infinite height. 

t It «hould alao be noted that, if the initial value« of ' were precomputed and tranamitted on a routine baai«, there would be 
-..in. point to redeveloping the theory from Rq. (81/ onward along slightly different line«. It ha« already been «hown tlut 
the mean geostrophic wind ran be expreaaed in term« of derivative« of I ' 

V - K X\-lp6-lVE. 

Similarly, the mean vorticity i« 

f - K-v x V - X-'po-'v'f;. 

The introduction of these expresaions into Kq. (81) lead« to a new prognoatic equation, identical in form to Eq. (83), but in 
which the contour height of an isobaric «urface at the equivalent-barotropic level i« now replaced by /•,'. From that point 
onward, the development and «olution of the prognoatic equation follow the pattern outlined in Sectiona 6.(N) and 7.00. The 
advantage of introducing the new variable /■.. aaide from the obviou« computational advantage« of doing ao, lie« in the fact that 
it ia no longer necea«ary to interpret the prognoatic equation a« applying at any one level. Thia obviatea the need for locating 
the "equivalent-barotropic level" -a concept which, although convenient, i« rather artificial. 
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problem affccU the condition» of the other, whether the remaining problem« have been solved or not. Now, 

it is certainly premature to anticipat* the exact nature of the Solutions to the fundamental problems of 

meteorology, but it is alto true that to i. :e a problem as a meaningful question is, in a certain sense, to reveal 

what one wishes and expects to attain. For these reasons, and m order to define more clearly the problem 

we have tried to solve, this report will be concluded with some speculative comments on the physical rela- 

tionship between several of the fundamental and, by reason of their difficulty, isolated problems of meteor- 

ology. In substance, these remarks constitute the statement of one's viewpoint. They should therefore be 

received for what they are—as articles of meteorological faith. 

10.02. To start with, it is probably safe to say that nhat makes the meteorological behavior of the 

atmosphere so distinctive lies in the peculiar way in tthich energy is supplied and Mithdrann from the 

system, and in the way in nhich that energy is redistributed and dispersed within the system. The only 

thing that is particularly remarkable about the energy economy of the system is that the net rat«* at HIUCII 

energy per unit volume is gained and lost is evidently quite small \»li<ii averaged over a volume nith the 

horizontal dimensions of the characteristic wavelength of the large-scale disturbances and v*ith the depth of 

the atmosphere. It is observed that the total hrat energy of the atmosphere does not vary rapidly. Turn- 

ing to the dynamical properties of the physical system itself, it also appears that the atmosphere reacts so 

rapidly to external impulses that energy from outside sources is redistributed and dis|>ersed on a lar/fe »ro/e 

almost as fast as it is fed in. This is manifested by the fact that the atmosphere never "blows up." creating 

surface pressures of several thousand millibars or. in other words, that there is never any great local con- 

centration of energy. The features of the atmosphere which truly characterize its large-scale motions are a 

direct consequence of the postulated energy economy and energy-distributing properties of the cystem pro- 

vided (1) that we consider the system in the larp/e and (2) that the up|»er limit on tli- rale at which potential 

energy can be converted into kinetic energy and finally into the heal energy of molecular motion (or the rale 

at which large-scale disturbances can develop and die out) is not great. That is to say. if th< atmosphere is 

capable of redistributing or dispersing energy on a large scale as fast as it receives it. then the system must 

always remain near the state of mechanical equilibrium. The latter, as we have already seen, is the key fact 

in the development of the theory of large-scale motions, from which virtually all other rharacterislics of 

the motions are deducible. 

10.03. As a result of such considerations, one is led to conceive of the meteorological behavior of the 

atmosphere as a sequence of fairly distinct and isolatable physical processes. 

(1) Because of local differences between incoming and outgoing radiation, the residual sources and sinks 

of heat energy induce weak pressure forces. The state ultimately attained as a result of rapid adjustment to 

those forces is one in which the pressure forces, due to the nonuniform distribution of heat s >urces, are almost 

exactly balanced by the Coriolis forces. This balance requires a mean or "general" circulation of the atmos- 

phere, whose potential and kinetic energy is slowly built up to tremendous magnitudes over a long |»eriod of 

lime. In general, this process tends to concentrate or localize the available energy of the general circulation 

in certain preferred regions of the atmosphere and it can continue (as an isolatable process) only as long as 

it does not create an inherently unstable situation. With modifications to be introduced later, the problem 

of giving a complete physical description of this process is the so-called "general circulation problem." 

(2) Once a locally unstable situation has been set up as a result of the nonuniform distributit.n of energy 

sources, we then regard the general circulation as given and disregard all other elTecls of external sources of 

energy, except to postulate that there are frequent and pcrha|)s random impulses of energy MiprrpnMHl on 

the undisturbed distribution of energy. In principle, the smallest impulse is siillirienl lo initiale u disturh- 

ance which, through adiahatic transformation «if the |>o|enlial and kinetic energ} of the general circulation 
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into kinetic energy of the disturbance, will develop of it« own accord. Since it is probable that the atmos- 

phere does receive sudden and frequent impulse« of energy, disturbances will tend to develop in regions where 

the local state is unstable and favorable to such development. In a manner of speaking, therefore, the only 

part which the energy from external sources plays in the development of disturbances is to set the stage for 

the development—i.e. to build up latent instability to the critical point, after which the energy of the dis- 

turbance is derived mainly from the energy of the general circulation by purely adiabatic processes. The 

problem of establishing the conditions under which small disturbances will develop spontaneously, without 

the further addition of energy from external sources, is the "stability problem." 

(3) Because the conditions for instability are probably quite critical, and because the development of 

disturbances is evidently brought about by the juxtaposition of two independent (and.not easily observed) 

sets of circumstances namely, the condition for instability, taken together with the occurrence of an impulse 

sufficient to initiate the disturbance—the problem of predicting the initial development of disturbances is an 

inherently difficult one. The best one is likely to do, therefore, is to place the probability of development 

within certain broad limits determined by observability. If, on the other hand, the disturbance has already 

developed to a perceptible degiee, there is some hope of predicting its further development as if it were 

brought about entirely by adiabatic readjustment of the existing energy distribution, because the change in 

the energy of the developing disturbance is much too great to be accounted for by nonadiabatic energy 

changes alone. ()n the other hand, as has been pointed out earlier, the period of full development is on the 

order of days, rather than of hours, whence the instability of the atmosphere is not so great that we are 

forced to deal with this problem in all cases. For purposes of predicting the course of events over two or 

three days, we might even treat the disturbance at each instant as if it were already fully developed, accept- 

ing its existence without inquiring into the manner in which it Mas created. The problem of predicting the 

future course of already de\eloped or partially developed disturbances we shall call the "short-range fore- 

casting problem."    It might properly be termed the "propagation problem." 

In passing, it should be noted that there is a serious consequence of accepting this view of the chort- 

range forecasting problem. It is simply that there must be a rather low practical limit on forecasting 

accuracy. This limit is fixed partly by the detail in which one can observe both the conditions that are 

necessary for the development of new disturbances, but neither of which is in itself sufficient, and partly by 

the rate at which disturbances can develop spontaneously and without warning. 

(4) Since disturbances are always present in the atmosphere, it is quite likely that they are instrumental 

in bringing about the redistribution of energy on a very large scale. In fact, as has been suggested by 

Priestly (1949), Starr (1948) and Rjerknes (1948), the horizontal eddy transport due to large-scale transien 

disturbances may be the dominant mechanism for redistributing the energy of the general circulation. This 

would bring us back full circle to the general circulation problem. One is thus led to think of the atmos- 

phere as a gigantic feed-back mechanism, in which the structure of the general circulation (taken together 

with certain properties of the medium itself) controls the Ktability and propagation of the large-scale dis- 

turbances, and the disturbances in turn bring about the redistribution of energy necessary to build up and 

maintain the general circulation. 

For this reason alone—i.e., because the conditions of one problem depend on the solution of a second 

problem which, in turn. de|»en<U on the solution of the first- the fundamental problems of meteorology are so 

inextricably bound together that it is apparently impossible to isolate them. As outlined in the foregoing 

discussion, however, it appears that there are certain points at which it is most natural and logical to separate 

them artificially, taking as external conditions for each problem the ohsenvd solution of the problem just 

preceding it in this hierarchy. 
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10.04. The problem that has been duruMed here is, of rouree, only a hinall part of Problem 3. How- 

ever tacitly it ha« been aaaumed, we have dealt with disturbanres whose connection with agencies outside the 

system lies entirely in the past and whose energy in the future is withdrawn from the i«ystem itself. To this 

eit nt the conditions of the problem are unreal, but not so unreal as to make it impossible to predict the large- 

scale motions of the atmosphere over a period of a few days. Summarizing the situation, it appears that 

Problem 3 is on the nay to solution. 

10.05. With the gradual realization that the structure of the general circulation probably control)* the 

growth of disturbances, increasing attention has been given to Prohlem 1. The recent results of Starr. 

Priestly, Bjerknes and Mintz (IQ^) hold out some hope of understanding hoM the energy from external 

sources can be redistributed on a macroscopic scale by the eddy transport of the large-scale disturbances. 

One must be aware, however, that this approach to the general circulation problem also (Nistulates the exist- 

ence of already developed disturbances. In short, even if Problem I *»en' Mtiafactoril) solved, the connect- 

ing link between Problems 1 and 3—the solution of the stability prohlem Mould still he missing. In this 

and many other respects, therefore, both the connection between the general circulation and the large-scale 

transient disturbances and the key to a fairly complete understanding of the atnutsphere's macroscopic 

behavior he in the stability problem. Although certain limited as|>ects of this question ha\e been studied 

very intensively, no theory has yet shown itself sufficiently general to apply to the large-scale disturbances of 

the atmosphere, and to draw together into one coherent v»hole the few isolated results that have been achieved 

in the past. The present point in the development of meteorological theory, therefore. apfH-ars an opportune 

time to review the general problem of atmospheric stability in the light of fehat is UOM knoMii about the gen- 

eral circulation and the propagation of large-scale disturbances. 
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APPKNDIX I 

STABILITY OF SOLUTIONS OF HYPERBOLIC DIFFERENCE EQUATIONS 

To illu-irai. tin- way in which rrrore ran be amplifird by the method of finite differenren, we shall ron- 

-nli f the simple caite of |.. n.xli" plane sound waves, refleeted bark and forth between two rigid walls parallel 

to the wave fronts.    Such motions are governed by the hyperbolic wave equation 

dx3 =I dt2 ' 

where r is the s|»eed of sound, u is the component of particle velocity m.rmal to the wave fronts and x is the 

perpendicular distance from one of the walls. Since the walls are rigid, the velocity of the particles in con- 

tact with them must vanish.    That is to say, 

ü(0, 0 - 0. 

For convenience, the other wall will be fixed »t x = r, so that 

«Or, 0 = 0. 

It remains to specify initial conditions exactly sufficient to determine the solution. We shall imagine that 

initial velocities were imparted to the medium at various points, but that this state of motion was brought 

about so rapidly that the resulting divergence of mass could not immediately produce adiabatic changes in 

the initially uniform distribution of pressure. The latter clearly implies that there are no initial accelera- 

tions. We therefore take as initial condit'wis the statements that the initial velocities are known and that 

the initial acceleration is zero 

u(x, 0) = sin rx 

du 
- ix, 0) = 0. 
dt 

where r is any integer equal to or greater than one. 

The exact solution of this boundary- and initial-value problem is well known.    It is 

u(x, t) = sin rx cos ret. 

The particle speed obviously vanishes at the walls at all times, and the accelerations arc everynbere zero at 

the initial moment. By direct differentiation it can be verified that this function satisfies the wave equation. 

Moreover, because it also yields the correct initial velocities, it appears that the above expression is indeed 

the true solution of the problem. 

We next turn to approximate solution of the same problem by the method of finite differences. This 

method consists in replacing the differential quotients in the wave equation by finite differences between the 

values of u at discrete points in the (x,t) | lane. We begin by subdividing the space interval (0, r) into /V 

equal parts, each of length Ax. We also define discrete instants in time at intervals of A/ after the initial 

moment and consider only those values of u which apply at the points whose coordinates are intef/rr multiples of 

the intervals Ax and A/.    The wave equation may now be written, in approximate form, as 

k- n n. m -|- I) — 2u(n, m) + u(n, m — 1)] = u(n + l,m) — 2u(n, m) + u(n — 1, /n), 

where A = A.t clt and the notation u(n, m) is an abbreviation for u(nAx, m \i The quantities n and m 

are |K)sitive integers. The equation above is the so-called "difference . .|u.iii>>ii corresponding to the 

hyperbolic wave equation. With reference to the coordinate system of discrete point«, the boundary con- 

ditions at the reflecting walls are now 
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u(0, m) = 0 

and 
u(/V,m) = 0. 

Similarly, if A( is rhosrn very small, the initial ronditionH take the form 

mw 
u(n. 0) = Kin — 

•   rnir 

u(n, 1) = iin — • 

It is rlear that the value of u at earh of the discrete points (n, m) is completely and uniquely determined. 

That is to say, the difference equation expresses the value of u at the point (n, m + 1) in terms of its values 

at the points (n + l,m), (n, m), (n — \,m) and (n, m — 1). Thus, because the values at the points 

(n, 0) and (n, 1) are known, it is possible to compute t-he values at (n, 2), and so on. It is important to 

note that, because the approximate solution is uniquely determined, any solution of the difference equation 

which satisfies the boundary and initial conditions must be identical with the one which is computed by the 

most obvious and direct means, namely, by re|»eated calculation. 

It happens that the solution of the simple problem outlined above can be obtained in closed form.    We 

first seek solutions of the "separated" type 

u(n, m) = /{n)g(m). 

Substituting this expression into the difference equation, and dividing both sides of the equation by/(n)^(m), 

k2 I 
— \g(m + 1) -2g{m)+g(m - 1)) » 7—: [/(n + 1) -2/(n)+/(n - 1)]. 

The left-hand side of this equation depends only on the index m, while the right depends only on n. It there- 

fore follows that each side is equal to a constant, e.g. 

^-[J{n+ I) -2/(n)+/(.•. - 1)1= -4sin2°. 

where a is a conveniently chosen constant of separation. After some rearrangement, the above equation can 

also be written as 

/(n+ 1) - 2cmaf{n) +/(n - 1) = 0. 

We next set/(n) = e1^".    The constant ß is then fixed by the equation 

e'" - 2 cos a + e-*4 = 0 

whence 
cos ß = cos a. 

Thus the admissible values of ß are 

ß = a ß =   —a 

and the corres|>onding solutions of the/-equation are 

/(«) = ae,<", + be-""' = ^1 sin an -|- « cos an. 

Thus far, no boundary and initial conditions have been imposed on/(n) and g{m). The conditions on 

n  n m   are evidently satisfied if 



101 

«(0) = 1 gil) = 1. 

I IK boundary conditionH on u(n, m) are tatufied becaus*- 

/(0) = 0 J(N) = »in r» = 0. 

Moreover 

ii(n.O) m/(n)g(0) = *™™ 

u(n, 1) =f(n)g{l) = »in^'- 

The above condition on/(n) in fulfilled if we take 

Ami, ß = 0. and a = nr/N. 

It remains to fix ^(m) subject to the conditions ^(0) = 1 and ^(1) = 1.    With the foregoing restriction 
on a, the difference equation which de'iermines g(m) is: 

-^l^m-H) -2e{m)+g{m- 1))= -4sin2^- 
gym) zrs 

which may be rewritten as 

g(m+ 1) -2^1 - l^in2 ^g{m) + g(m - I) = 0. 

We now distinguish two types of solutions, according as Ar is chosen greater or less than unity. In the first 
case, the bracketed factor in the above equation is never greater than 1 nor less than — 1, so that it is permis- 
sible to represent it as the cosine of some real angle 

^(m + 1) - 2coB0Ä(m) + g(m - 1) = 0, 

where cos 0=1 — (2/k2) sin2 (nr/2/V).    As before, we find solutions of the form 

g(m) = Csin Qm + O cos 4>m. 

The side conditions on um   are satisfied if 

c=L-rCo^ D=i 

sin 4> 

In the case when k > \, the complete solution is therefore 

rnir fsin 0m — sin 0(m — 1)"| 
u(n, m) = sin —     ;    • 

yv L »in 0 J 

It should be noted that, as \ takes on increasingly large values, 0 approaches rw/kN and the solution con- 

verges on 

sin (rnAx) coa (rcmAt). 

This result is in agreement with the exact solution. 
On the other hand, i/ ft w less than unity, there may exist some value of r for which the bracketed factor in 

the g-equation is less than —I.    In that case, the /(-equation takes the     MM 

g{m -|- 1) + 2,*(m) + g{m - I) = 0. 
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where ^ is a constant greater than one.    To »olvo this equation, we seek solutions of the form 

g{m) = pm. 

The constant p is then determine«! by the quadratic """ition 

p2 -I- 2M/> + 1 = 0, 

whence the admissible value« of p are 

/,,= -„ + Vn2 - 1 

p2 =   -M - VM2 -  1 

and the c<>rreH|M>nding solutionH of the ^-equation arc 

g{m) = Rpr + Sp2
m. 

The side conditions on g(m) are satisfied if 

In the case when k is choncn ICSH than unity, there is therefore tome value of r for which the complete solu- 

tion is of the following form; 

u(n,m) = sin -£ (ä/J," + Sp2
m). 

Thif ih the crucial |M)int in the development. The behavior of this type of solution clearly ■!. j» IPI- on the 

magnitudes and signs of the real constant)« p\ and p?. Both /> and /- are less than zero, but the absolute 

value of/>2 is greater than unity, nhereas the absolute value •■! /> is less than unity. Accordingly, the term 

of the solution involving p\m will approach zero as m increase« indefinitely, while the magnitude of the term 

involving p2m will grow ex|M)nentiall\ a« m increases. Thus the magnitude of the solution uin, m) tvill increase 

without limit as m increases. Moreover, because p? is negative, the sign of g{m) changes with each increase 

in "i. producing wild fluctuations of ever-increa*ing amplitude. This erratic behavior is called "computa- 

tional instability." 

Interpreting this result nith regard to the uniqueness of ihr solution, it is clear that the process of re- 

peated numerical calculation, if carried out without error, will lead to the closed forms derived above. For 

some values of r, the solution will be of the stable type whether or not k is chosen greater than unity. In 

practice, however, numerical calculations are at least subject to round-off errors. We now regard the errors 

of calculation at two successive stages of the iteration as a new set of initial conditions and assume that no 

calculation errors are committed beyond that (.•■mi Since the difference equation is linear, the computed 

solution will then be the superposition ..I the true solution and the solution which would be obtained by 

applying the difference equation to the initial errors, subject to the condition that the errors vanish at the 

boundaries. Now, because calculation errors are distributed in an almost random manner, there will in 

general exist some conqtonent of the error spectrum for which the "error" solution is unstable, if k is less 

than unity. In this case, regardless of the nature of the true solution, the amplitude of the computed solu- 

tion will grow without limit. 

If, on the other hand, /. is chosen greater than unity, no conqtoncnt of the error spectrum will be ampli- 

fied by the method of finite differences. In this case, no matter how the errors are distributed, the computed 

solution is stable in the sense that the errors will remain small if they were initially small. Therefore, in 

order to insure the stability of computed solutions of the hy|>erbolic difference equation, k must be chosen 

greater than unity. This implies that the increment of time ^i must be taken less than the ratio between the 

space increment -Vt and the natural wave speed c. 

or 

, and,t 
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APPENDIX II 

TRANSFORMATION OF THE CONVOLUTION INTEGRAL /(l.tf.l) 

In aooordaiioe nith the definition given in paragraph 7.16, we consider the integral 

/(I, n.') - -  r ^—^  coa V2ß*lr - t)(t - r) Ko^Vß^r) dr. 

Phis expression ran be considerably simplified by introducing a change in the variable of integration.    Setting 

= I sin' <t> 

/« 
4 rl 

»»»»*)" "   /    A.'o(2ff sin 4>) cos (2»* cos <t>) dtfi (II    1) 

^here i = sin (0 2) and c2 = /3*rf.    We next make use of a simple integral representation of the Bessel 
unction, also involving a trigonometric function in the integrand (Watson, (1922)). 

/•"    cos xz 

•*    V^l -|- z2 i 

here z is a dummy variable of integration.    Substituting thin expression into I -j   (II   1 I, and inverting 
be order of integration. 

4 P"      dz        n 
' ({. »7. 0 = _   / , .   /    cos (2az sin <t>) cos (2r« cos 0) «fy 

T «/o     v 1 -|- z  *'0 

''e now focus attention on the integral. 

/    cos (2az sin 0) cos {2t% cos 0) d(j> 

Inch, after some manipulation of the trigonometric identities, can be put in the alternative forms 

\ I    [cos (2M sin 4> + 2a« cos 0) -|- cos (2<rz sin 0 — 2<J> COS 0)) </0 

(11-2) 

JPoos (2<rV/«2 -|- z2 sin (0 + . )1 </« + ij[ 2«» [2avV + z2 sin (0 - ^)1 dt. 

lere ^ = arc tan («, J). We have now reached a decisive turn in the argument. Bearing in mind that 4> 
simply a dummy variable of integration, we let $ + ^ = a in the first of the above integrals and let 
— ^ = a in the second.     Introducing these changes of variables, the above expression can be written as 

w w 

\j      'cm (2OVK2 +,Z2 sin a)da - IJ      * co* (2<rVV -|- z2 sin o) da 

= IjT    2vm (2<rV*2 + z2 un a) rfa -|- ^ _ J COB {2a\/K2 + z2 sin a) da 

d, finallv, as 

\j    , ^ cos (2aV/?Tl5 sin a) da. 
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The integrand of this integral is not only an even function of a, but also is periodic with period w.    The above 

expreanion, therefore, reduces to 

i jT cos (2«rV«2 -|- z2 »in a) da. 

This integral is well known.    It is, in fact, one of the many possible integral representation« of the zero-order 
Bessel function of the first kind with real argument (Watson, (1922)). 

jf cos (W? + z2 sin a) da = rMZaV*2 + r2). 

Hnally, substituting this result into Eq. (II-2), 

/((, n, 0 = 2 I     .        .— nz, 
Jo VTT? 

which is the form given in paragraph 7.16. Aside from compactness, its integrand has the advantage of 
possessing no singularities. That the integral converges can he shown by regarding it as an infinite alternat- 
ing series of integrals, taken over the intervals between successive zeros of the Bessel function. 
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