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ABSTRACT

Tt classical theory of the scattering of a plane electromagnetic wave by a sphere is re-
viewed, and the difficulties in getting numerical answers from this formal solution are dis-
cused. It is shown how the computations may be simplified by using suitably defined
logarithmic derivative functions and the recurrence formulas due to Infeld. By this method,
numerical answers for the scattering amplitude coefficients of any order can be computed
exactly, even if the index of refraction is complex.

The technique mentioned above has been used to determine the scattering amplitude
coefficients and the back-scattering cross section for one special case involving water spheres
with comparable to the wavelength. The theoretical results are compared with those
obtained experimentally.

A rigorous solution is also given for the scattering of a plane electromagnetic wave from
two concentric spheres of different dielectric constant. This problem is formulated in a
manner similar to that for a single sphere, and the scattering amplitude coefficients are ex-
pressed in terms of spherical Bessel functions and the logarithmic derivative functions.

The application to a particular physical problem is indicated.
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BACK-SCATTERING OF ELECTROMAGNETIC WAVES
FROM SPHERES AND SPHERICAL SHELLS

1. INTRODUCTION

When any object is placed in the field of an electromagnetic wave it removes energy from the field.
In general, some of the energy in disipated intcrnally as heat, and some of the energ: is reradiated 10 pro.
duce a secondary or scattered field. One of the important problems of electrody namics is to determine
the amount of energy absorbed and the amount and distribution of the scattered energy for a particular
scattering object illuminated under specified conditions. One of the simplest problems of this tspe 10
visualize is that of a plane wave incident upon a spherical particle. Although the geometrs of this problem
is simple, the problem itself is very important and has received considerable attention from investigators
throughout the years.

Pioneering in this field, Tynd:!l (1869a) showed experimentally the relation of the size of suspended
spherical particles to the intensity and polarization of scattered light. Although he wae mainly interested
in studying the chemical action of light, he discussed the problem of the color and polarization of scattered
light in several additional papers (1869b, 1870). Shortly after Tyndall’s work, Lord Rasleigh (1871, 1881,
1897, 1899) published a series of papers which became the basis for 1h= classical theory of scattering. lle
handled the case of particles verv much smaller than the wavelength of light and established his famous re.
sult that under these conditions the scattering is inversely proportional to the fourth power of the wavelength.

The first thorough treatment for a spherical particle of any size and any electrical properties wax given
by Mie (1908). His solution is an infinite series of spherical-mode funclions with amplitude coeffivients
that are determined from the boundar\ conditions at the surface of the sphere.  Fach of these spherical-
mode functions itself involves infinite series. so that in the general case of a large sphere with a complex
index of refraction the problem of getting numerical answers is quite involved. However, the Mie paper
still remains the fundamental contribution to the subject.

Since publication of the paper by Mie. additional investigations have heen made by debne (1909),
Gans and Happel (1909), Bromwich (1920), Ray (1921), Jobst (1925). Blumer (1925, 1926). Stratton
et al. (1930, 1931, 1941), Trinks (1935), Ergelhard and Friess (1937). Ryde et al. (1911, 1914, 1945, 19106),
Ruedy (1941, 1943, 1944), LaMer e al. (1943, 1946, 1948), Brillouin (1913, 1911, 1919), L. Goldxtein
(1945), Sinclair (1947), Houghton et al. (1949), Klotzbaugh and Duckett (1919) and others. The com-
plete theory is given concisely by Stratton (1941) and L. Goldstein (1943). This will be reviened in Sec-
tion 3.

It is not the present purpoee to review all the papers dealing with the scatlering problem.  Instead,
the discussion will be restricted to one particular aspect of the problem.

With the development of microwave radar during World War 11, it was found that. for sufliciently
small wavelengths, rain could produce an appreciable echo and substantial aticnuation. The echo phe.
nomenon, was important for several reasons.  For the usual tactical use of the equipment. it was imporiant
to distinguish between atmoepheric reflections and operational targets. Moreover. ax a meteorological
tool, the observance of echoes was very useful in mapping the rain areas and in showing their movemenin.
The problem of attenuation was important 1o both radar and communication. It is not surprising. then,
that these problems received considerable attention.
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To investigate theoretically the microwave reflection from rain, it is nccessary to assume that the
arope are randomly distributed in space and that the mutual inreraction between drops is negligible. The
first assumption appears to be valid without further comment. ‘I'ne second assumption is based on Trink’s
(1935) analysis that for Rayleigh scattering \he mutual interaction is negligible for sphere spacings greater
than two or threc sphere diameters, plus the fact that in actual rain the average spacing between drops is
many times this value (Palmer (1949)). Under these conditions the problem can be divided into two
parts: (1) finding the drop-size distribution and (2) finding the reflection from a single drop. The drop-
size distribution is strictly a meteorological problem; the reflection from a single drop is a problem in electro-
dynamics.

The firs: thorough investigation of the reflection and attenuation effects from rain was made by Ryde
et al. (1941, 1944, 1945, 1946). His method was 10 compute the numerical results for a single drop using
the Mie theory and to use the assumptions listed above to make application to the case of many drope.
The main difficulty lay in getting the numerical results from the Mie theory. Despite the tremendous
labor involved, however, he computed numerical results for a variety of cases. For radars of longer wave-
length, it was found that the Rayleigh theory was adequate, but for radars of shorter wavelength, a more
exact theory was needed. The work of Ryde is discussed briefly by L. Goldstein (1945), who has extended
it somev.hat, using more detailed meteorological data. Recently a table of scattering functions has been
prepar:d by Lowan (1949) and these results have been used by Haddock (1947) in a further contribution to
this proble:- .

In all cases, a2 major difficalty has been the evaluation of the reflection from a single sphere. It was
an interest in this problem that prompted part of the present investigation.

In Section 2, the common absorption and ecattering parameters are defined. Particular attention is
given to the back-scattering cross section, which is the main subject of this report.

The classical theory of scattering from a sphere is reviewed in Section 3. The difficulties in getting
numerical answers are discussed, and it is shown how the computations may be simplified by using log-
arithmic derivative functions and the recurrence formulas due to Infeld (1947). This method is used
1o evaluate the back-scattering cross sections for water spheres at 2 = 16.230 em in the size range from
0.6 < 2xa/) < 6.

In Section 4 a method for measuring the back-scattering from water spheres is described briefly. Com-
parison is made of the experimental and the theoretical results.

Another physical problem of interest is the reflection from a melting snowflake or ice particle. Asa
first approximation, one may consider, as the mathematical model corresponding to this phenomenon, the
reflection from two concentric spheres with different complex dielectric factors. Using the same method
as for a single sphere, it is possible to determine a rigorous formal solution for this scattering. This is done
in Section 5.

2. CROSS SECTIONS FOR SCATTERING AND ABSORPTION

2.1. TOTAL CROSS SECTIONS

The concept of scattering and absorption parameters is found in many branches of physics. The most
commonly used parameters are thoee related to the total power scattered and the total power absorbed by



an ohject in the field of an electromagnetic wave. They may be defined as follows: Let
Wi = the power density incident upon the object,
P. = the total scattered power,
P, = the total absorbed power,
P, = the total power removed from the incident wave
= (P, + P,).

Then the total scattering cross section is

P,
=5 .1)
the total abeorption cross section is
P,
Q= v, (2.2)
and the total attenuation cross section is
Q=m0+ @3)
[

2.2, THE BACK-SCATTERING CROSS SECTION

The back-scattering cross section o is a lumped measure of the ability of a scattering obstacle to re-
radiate energy in the direction of the source. Under the assumption of a plane electromagnetic wave inci-
dent upon the scatterer, this parameter can be determined from a knowledge of the far-zome ncattered field.
It is commonly defined as followes:

V.
- = 24
¢ = 4ot V. 24)
where
W: = the power density in the plane wave incident upon the scatterer,
W, = the power density of the far sone scattered ficld in the direction of the source and
r = the distance from the scutterer at which the evaluation of N, is made.

It should be noted that for an isotropic scatterer, the back-scattering cross section ¢ is equal 10 the
total scattering cross section Q, as defined by Eq. (2.1). In fact, ¢ may be defined in general as the total
scattering cross sectiom of a fictitious isotropic scatterer which scatters energy in all directions with intensity
equal to that scattered directly back toward the source by the actual scatiering object.

Equation (2.4) may be written in alternative equivalent forms by writing B, and W', more explicitly.
Thus W, is given formally by
dP,
-— 2.5
V.= @.5)

where dA is an element of area located a distance r from the scatterer in the direction of the source. In
addition, d4 = r’d0, where dQ is an element of solid angle measured from the scatterer. Using thix,
1 4P,

W. -= ; 'E (2.6)

v u S db, 2.7

W, da
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where dP,/d%2 is evaluated in the direction of the source.
Since the radiation incident upon the scattering object is zssumed to be a plane wave,

E.!
W,=—, 2.8
2% (2.8)
where E, is the magnitude of the electric field in the plane wave and {, is the characteristic impedance of
space. Using Eq. (2.8), Eq. (2.7) becomes
_ Sty dP,

B 2o 29)

At any point in the far zone from the scatterer, the scattered field is also essentially a plane wave. There-
fore, in terms of the far-zone scattered field E.,

’ W, = 'lz%l' (2.10)

Substituting Eqs. (2.8) and (2.10) into Eq. (2.4) yields

o = 4xr? IEE-: . .11

Finally, if the far-sone scattered field is referred back to unit range — i.e., let E, = rE,— then Eq. (2.11)
becomes
E,|

o= 4x E

(2.12)
All of these equivalent forms are found in the literature.

2.3. RESTRICTIONS ON THE CROSS SECTIONS

In the preceding sections, several cross sections have been introduced as convenient parameters for
indicating the scattering and abeorbing properties of material objects. So long as this is all that is implied,
no difficulties arise. However, they are often associated with the arbitrary picture that the Poynting vector
is a unique measure of the power flow through space. The pitfalls of this incorrect picture are pointed out
by King (1945). It should be noted that although all the cross sections defined have the dimensions of an
area, none of these “areas”™ is in general equal to the physical area of the object. The value of any one of
the cross sections depends in general on the wavelength, polarization and angle of incidence of the impinging
radiation, as well as on the dimensions, shape and material of the object.

3. THE THEORY OF THE SCATTERING OF A PLANE WAVE BY A SPHERE

3.1. INTRODUCTION

The general problem of a plane wave scattered by a spherical particle was first studied in detail by
Mie (1908). He treated the problem rigorously according to classical electrodynamics. Briefly, his method
is as follows: The Maxwell field equations are written in spherical coordinates. These equations are simpli-
fied by resolving the electromagnetic field into transverse electric (TE) and transverse magnetic (TM)
waves, and particular elementary spherical-wave solutions of TE and TM type are found. The complete



solution for the scattered field is then written formally as the sum of all the elementary solutions with un-
known amplitude coefficients. The incident plane wave is also expressed in terms of a linear combination
of the elementary spherical-wave solutions. Finally, the initially undetermined coefficients are evaluated
by applying the boundary ronditions at the surface of the sphere. This completes the formal solution.

The complete solution to this problem is given concisely by Stratton (1941). Following Hansen (1935),
he develops a set of orthogonal spherical vector wave functions, each of which is a solution to the vector
wave equation. The incident plane wave is expanded in terms of these functions, and the scattered field is
expressed formally as a similar expansion with unknown amplitude coefficients. As in the Mie solution,
the unknown coefficients are determined by applying the boundary conditions at the surface of the sphere.
The method of Stratton is also given by L. Goldstein (1945), who shows the relation between the coefficicnts
of Stratton and those of Mie.

In the following sections the method of Stratton is reviewed following essentially the notation of Gold-
stein. The difficulties of obtaining numerical answers for the case of & sphere with a complex dielectric
constant are discussed, and it is shown how logarithmic derivative functions and the recurrence formulas
due to Infeld (1947) may be used to simplify the computations. Finally, this method is used to obtain
quantitative results for one special case involving water spheres.

3.2. FORMULATION OF THE PROBLEM

Consider a sphere of radius a, complex dielectric factor ¢ and permeability uo which is isolated in free
space.® The interior of the sphere is called region 1; the surrounding space is called region 2. The center
of the aphere is chosen as the origin of a rectangular coordinate system. A plane electromagnetic wave,
with the electric field parallel to the x axis, is propagated along the z axis and strikes the sphere. Periodic
time dependence of the form ¢* is assumed * but in general will not be written explicitly. MKS units are
used throughout. Quantities with bold letters represent space vectors; accented quantities in roman letters
— e.g.,?, j’. %78, 3 ~— represent unit vectors.

The incident plane wave may be expressed as

B, =1E, = 1Ee™ @3.1)
B. =18, = ?% s (3.2)
where
k= o) = 2 (3.3)
is the wave number of space and
o= Gt = (3.4

is the characteristic velocity of space.

* This is a special case of the more general problem treated by Mie and Stratton where the surrounding medium may atso bave
complex olectrical properties. However, the method of salution is identical. '

+ Seratton assumes ¢~ time dependence. Therefore, in comparing equations written hers with those of Stratton replace  +j
by —i.
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Frc. ). Spherical coordinate system.

The orthogonal spherical vector wave functions are obtained as follows: The scalar wave equation in
spherical coordinates is solved by separation of variables to vield

/.

- ‘:: mé P, (cos8) 5. (kr). 3.5)

Here, P,” (cos #) is the associated Legendre polynomial of the first kind, nth degree and mth order; x,® (kr)
is the spherical Bessel function defined by

[}
5.9 (kr) = (2%') Juyy(kr) (3.6)
. ]
£V () = (2;) Ho ) ® (kr). 3.7

Ju4y(kr) is the Bessel function of the first kind and half-integer order; H...Hm (kr) is the Hankel function of

the second kind and half-integer order. The subscripts e and o refer to the even and odd ¢ dependence.

The spherical vector wave functions are defined as

L =vf 3.8)
[ 4

-
€
'-I

m, =X (L) (3.9)
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’ 1 ]
n:__ i v X rn:_.- (3.10)

Carrying out the indicated operations vields

’ -%a“"(kr) P."(c0s ) 7% ma ?

+- :."’(b)—P'(eo-a) med

Fon ) P (omt) e (3.11)

m, = F o a0k P (00 0) S my

-z.”(kr)—P (cos 0) % m“ (3.12)

nf__-[l"'bﬂ] 2 0(r) P” (cont) P me?

+ ——|rs."’(kr>1—r (cos ) o me

¥ b:"%[n.“’(kr)l " (cos 0) :’:m& (3.13)

The incident plane wave is now expanded in terms of the spherical vector wave functions. The rela-
tion betwren the rectangular and spherical coordinate systems is readily seen from Fig. 1. Thus,

T = ™™ (sin0cos¢? + cosdcos ¢ § — sine §) (3.14)

Je= R = e *%* (gin 0 sin ¢? + cos 0 sin ¢ § + cos ¢ ). (3.15)

Since e~ and ?e""' are solencidal vectors, they may be expanded in terms of nl:_. and n:_' alome. They

are finite at r = 0; therefore their expansions require Bessel functions of the first kind. Also, their ¢ de-
pendence requires that m = 1 in the expansions. Finally, comparison of the even and the odd properties
of Eqs. (3.12) and (3.13) with Eqs. (3.14) and (3.15) shows that the formal expansions are

R omt f'(c.x‘md_n + Ctnaab) (3.16)
?e—m ot i(C.'m-I-' + G nahl)' (3'17)

The coefficients are evaluated in the usual way by applving the orthogonality conditions. For examiple, 10
evaluate C.!, Eq. (3.16) is multiplied scalarly by sin # m,,.! and the resulting equation is integrated over
8 and ¢. This gives

‘/:p‘/:?-m.;.-‘ e et ynd o de

-f i(cll m,.' + Cca nuul) ‘m,,." sin § o “- 3. I8)



Using the relations

f f Mot 000 sin 8 dO dg = 0 (3.19)
[ ] [ ]

- - 0 forn’ # n
./: [ e Mol ain 0o dg = 2?1""("—-%"')']! __[;_"’ e forn' =n (3.20)
n+1
f f Tmale " inodode = 2x(— )" n(n + 1) 2.0 keI, (3.21)
it is ween that .
2n 4+ 1 . v
| [Z(..+1)]"” )
Similarly,
: 2ntl - g
- ‘[(..+n](” =
: 21, -
4,__2_"+I —nntl _ g2 9 =
C. [n(n ¥ I)] -ntt=cr (3.25)
Therefure, the incident plane wave expansions are
hod | 2n +__|,_ o, ;
E = E._};l(—;) [_—“n(n 3 l)] (m..' + jn.,.t) (3.26)
| wa] In+1 o ;
B =~ IEI(—J) [—'——-—"(" T ”] (m...! — jn..0. (3.27)

The induced secondary field is constructed of two paria. one applying inside the sphiere and the other
applying at all points outeide. These parts are written ax expansions similar to those for the incident plane
wave but with unknown amplitude coefficients.  The part applyving outside the sphere is referred 10 as the
reattered field and is indicated by a subscript . Since this field must be regular at infinity and must satisfy
the radiation condition. Hexsel functidhs of the necond hind are required.  The scattered field i written

e By 2t 2 o
E = b.}sll( 5) [”(" v “] (a,'m.;.> + jb.'naad) (3.28)
l'-‘n d 2" + |
= — — | — - " X _ g 1 3 I
B y .,Z-S s [n(n + |)] e (3.29)

The fiekl inside the sphere ix referred (o ax the transmitied field and it is indicated by a submeript 1. Since
this field is finite at r = 0. Bewsel funciions of the first kind are required.  Also. the free space constants are
replaced by the comples constanix of the sphere.  Thus, the complex wave number
) - w‘ ; D
b= w(md) =w (ﬂot- —~J ":) (3.30)
replaces £, and the complex velocity

N = (uf)”* (3.30)
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replaces nn. In Eq. (3.29), ¢, is the real eflective absolute dielectric constant and o, in 1he real effective
conductivity. The transmitted field is now written

L] “m 2n + 1 ot , .
B = BEC" [ | mat + o0 a3
Erx el 2n +_]— . | .
B' == _-Z_l(_l) ["(n + l)] (b.hcl-‘ [G.‘Il.h. ). (;'&’)

Equations (3.28) and (3.29) represent a formal solution for the scatiered field. Al that is needed to
complete the formal solution is the evaluation of the amplitude coefficients a.’ and b.". This is done by appl: -
ing the boundary conditions at the surface of the sphere. The boundary conditions at r = a are *

QX(E-“FE.)-?XEc (3.34)

?X B:+B,) =?XB. (3.35)
The ¢ component of Eq. (3.34) yields

P".i(:m_. _‘) [’.0) (a) + ﬂq'hw (a) — ‘n'lu(l) (Na) }

+j‘P-(|) (cos 8) {[a:.(l) (@) + bfaz.® ()}’ _ b.[Nas." (Na)l.} —o. (3.36)
&» ka ke
The 0 component of Eq. (3.34) yields
JP-'(‘O'J‘ ) [,.m (@) + au 2®(a) — a.3.Y(Na) ]
P (c08 0) [ [az.” (@) + b,az.¥(@)]'  b.[Naz" (Na)f' ]
i e { ka ) be - -

The ¢ component of Eq. (3.35) yields
P, (cos0) (5.7 (a) + bz P (a) b2 (Na) |
sin ¢ o n J

w ’ [¢)] ’ s v
+ij.'£w-')ll¢=- (a)] -:;-‘laz-’ @) _ e[V r:;';(Na)l ! - 0. (3.38)

The # component of Eq. (3.35) yiclds

dP,} (cos 0) lz.‘"(a) +b.5.% (@) _ b/2"(Na) |
- N - " J

= 0. (3.39)

p j Pel coet) { [az.” @) + axlas.® @) _ @.'[Naz." (Na)]' |
voka vk !

Equations (3.36), (3.37), (3.38) and (2.39) are all satisfied if the quantitiex in the braces !} are identically
equal to sero.  This yvields

6.5, (Na) ~— a.2.¥ (@) = z." (@) (3.10)

+ Equation (3.35) takes this simple form, without the magnetic constants, since luth region | and region 2 arc asumed 0 have
the same permeability.



&.\Naz.” (Na)) — a.9a2.® (@)} = [a5.® ()}’ (341)
N5, (Na) — ba'2.%(a) = 5,9 (a) (3.42)
8. 1Nax,® (Na)Y — Nbufas.® (a))’ = Nias.® ()] (3.43)

These simultancous equations are solved for the cooficients. Thus,
22 (Na){ax. (@)l — 5. (a){Naz," (Na)}’

T T R T (Naex® (a)) — 27 (@)[Nax® (Va)} 340
o o 2" (@){Nas.” (Na)l — N's,® (Na)las.® (a))' (3.45)

.2 (a)|Nex.” (Na)l — N'5.® (Na)[az.® (a)}

Here the primees at the square brackets indicate differentiation with respect 10 the argument of the Bessel
function inside the brackets. « = ks = 2v8/\; Na = ka; N = ki/k = ({/«)! is the complex index of re-
fraction for the sphere.

3.3. THE FAR-ZONE FIELD AND TOTAL POWER RELATIONS

To determine the scattered and absorbed power, it is necessary 10 know the far-sone scattered field —
i.e., the field for 7 > &. This is found by introducing the asymptotic value for the spherical Hankel function

P (kr) & bi,- e Av=(n+Ne/3 (3.46)

into the expansion formulss for the scattered field, Eqe. (3.28) and (3.29), and neglecting terms of higher
order than (1/r). When this is done, it is scen that the far-sone scattered field in component form is

Ee=Ba=0 (3.47)
- = (L\E e ™5 241/, P 4P,

Fa =l (b) E n(m + l)( + b (3.48)
- - — L - - 2n + 1 .ﬂ . A .

E, wB, (,,)E. "'.}_:‘ e 2 T ‘)-n¢. (3.49)

The total field at any point external to the sphere is obtained by vector addition of the incident and
scattored ficlds. Thus,
E=E.+B; B=B;+B,. (3.50)

The complex Poynting vector corresponding to this total field is defined by
8=k XxB". (3.51)

The asterisk indicates the complex conjugate, and » is the magnetic constant of space (w = 1/x,). Since
the far-some ficld is transverse, the Poynting vector is radial. Substituting Eq. (3.50) into Eq. (3.51) and
carrying out the vector product yields



s - ?’S, - ?[’E‘ (E."B... - E.‘.B,"-) + 3 (E..B“ - E.‘B,O.)

+ 5 (EaBy® + EaB.,* — EoB.s* - E..B..‘)]- (3.52)
The complex Poynting vector corresponding to the incident field is
S, =4S, = ?-3 (EuB,* — E B.*), (3.33)
and that corresponding to the scattered field is
S, = ¢S, = ?'E' (EB* — E.B.*%). (3.51)

The total scattered power is obtained by integrating S., over the surface of a large sphere of radius r
and taking the real part. Thus,

Pom 3R [7 (BB - BB s s, (3.55)

The total power absorbed by the splhiere is obtained by integrating S, over the surface of a large sphere and
taking the negative of the real pert. Thus,

P, - —:Z.ReffSJ’dnld“. (3.56)
[ ] [ ]

The total power removed from the incident wave is equal 1o the sum of P, and P.. Denote this by P..
Since the integral of S;, over a closed surface is sero, P, can be expressed as an integral of the third term in
Eq. (3.52). Thus,

Pi=P,+P, = - '—;Re'-/: T [ (EwBo® + EuBy® — EqBa® — EB.*) Psintdde. (3.57)

The integral for P, is evaluated as follows: From Eqs. (3.48) and (3.49)

E, 2n +1 2m +1
..B.’ -_( )--l--ll["(“”‘l)] m(m+l)]

oo PalPs! dP.' dP.! o P! 4P}
["‘“‘“ P T
dP,} P.
3.58
+ ey -ino]‘”"’] +:58)
and
. ‘{[2"'“][2"'*"].[.-,-1’_’:'!'1';'
E, B -—(kr)n-lugl aln+1) m(m + 1) T M
P.'P. N L
+ baha” n0+-'$' o sind

+ b,’a."* :T"" ":"] sin’ ¢ ] (3.59)



Substitute Eqe. (3.58) and (3.59) into Eq. (3.55) and recall that

_/:'eoua - [T intess .

Then,
2+ 1 2m + 1
P L E ey )] -(-+l)]
PuP. | dP.dPy P.P.! | dP}JP.}
['- e '@ )“-‘- 7] +77)
P. dP.!  dP) Py
+ e ( '@ t % snt
dP. Pt P dP.
+bifeu” (‘ sin ¢ nnO J)] }‘ (3.60)
Using the following identities,
f( "P' ‘P"&'-)-'nun-o for il » and m (3.61)
sinf sin §
and
(JP P PJP. 0 fornrim
f += )..nun- An(n + 1P
@ & wn'e dn(n + DF - J
2n + 1) forn = m, (3.62)
oone gets
P.= %F" z':' 2n + 1) (a8 + b8). (3.63)
By a similar process,
Po= - ':5" Re T (2n + 1)(a.* + ba). (3.64)
s=l

P, and P; may be expreased in terms of the cross sections defined in Section 2. Thus, using Eq. (2.1),
the total scattering cross section is

Q.- i—: i' (27 + 1)(aa'aa" + ba%%."), (3.65)
and, using Eq. (2.3), the total attenuation cross section (including both absorpion and scattering) ie

Q=-—= Re 2 (2n + 1)(a.* + &°). (3.66)

(LY
34. THE BACK-SCATTERING CROSS SECTION
It is now possible to determine the back-scattering cross section defined in Section 22. From Eq. (29)

B P,

~E @l (3.67)
From Eq. (3.55)

‘ﬁ - (E. B.,* — E4 Bs*). (3.68)



Using Eqa. (3.48) and (3.49), and woting that
P. P.(cos 8)

) a(n+1
0—0. -. —.;h.‘i’-—'(:'—.z = (-l)-‘ﬂ[—(;—)]' 3.69)
it is soen that
._'l - N £ L (1"@n+ Em + Died = (e — b (3.70)
] R
Therefore,
-z .{:,' .i.. (=1)""(2a + 1)(2m + 1)(0* — b) (@™ — b.). @3.71)

An alterfative method of deriving the equation for the back.scattering cross section is to use the equiva-
lent definition of ¢ involviag only the far-some scattered field. In view of the orientation of the coordinate
system veed (soe Fig. 1), Eq. (2.11) is

Enpes ||
v = 4urt E‘j—&’l 3.72)
o
S L
=1 o

Using Equ. (3.48) and (3.49) together with Eq. (3.69) yields
IE.ol - |E..| - (&) P It l)( (c.‘ - b.’)l (3.79)

E(n 1) (-1) (w-w) r‘ (3.75)

-

Equation (3.75) is ideatical with Eq. (3.71).

35. THE SCATTERING AMPLITUDE COEFFICIENTS

From the preceding sectioms it is seen that the evaluation of the far-sone scattered field and the various
croes sectioms reduces to the determination of the scattering amplitude coefficients,s,’ and b.’, and the summa-
tion of the appropriate serics. The scattered field may be regarded as due to the forced oscillation of mag-
petic and electric multipoles. If this point of view is taken, it is easy to sce that the coefficients a.’ are
associated with oscillations of magnetic type, and the coefficients b,’ are associated with cacillations of electric
type. lthmled(ﬁq.(!.lz))Mttbvmwanfmﬁun;_humn&dmput. Therefore, if
the coefficients b,’ are all sero and the coefic'ents a,’ are not sero, the E field is purely tramsverse and the
B field has a radial component. (Sor Eqe. (3.28) and (3.29).) Similarly, if the cocflicients o.” are all zero
and the cocficients b.° are not, the E, field has a radial component and the B, field is purely transverse. The
magnetic and electric types of cscillstion are sometimes called transverse electric (TE) and transverse
magnetic (TM) types, respectively.

As stated above, the coclicients ¢.’ and §." may be associated with the forced oscillations of magmetic
and electric multipoles. Whenever the forced frequency approaches one of the natural frequencies of vibra-
tiom, a condition of resomance occurs. The natural frequencics of vibration are determined by setting the



denomin-..o:» equal to zero in'Eqs. (3.44) and (3.45). However, the natural frequencies are complex while
the impressed frequency is alwavs real. Therefore, no difficulties arise at resonance.

The problem of the numerical evaluation of the scattering amplitude coefficients will now be considered.
This problem is solved formally by Eqs. (3.44) and (3.45). However, they are quite formidable, and atten-
tion is usually directed toward the special cases where certain simplifications are poo;ible. These will be
reviewed, following Stratton (1941), before the more difficult general problem is taken up.

For a metal sphere, [Na|:3> 1 and the asvmptotic expressions for the Bessel functions may be used.
The) are

2 (Na) & ~—con [N.. - ‘szll’] (3.16)
[Naz." (Na)) & — sin [Na - (";—])f] (3.77)
Substituting these expressions into Eqs. (3.44) and (3.45) yields
. z.(l) (a)
a’& — {m ’ (3.78)
vy [len?® (a)l'].
b {[az.“’ @r .1

The final equations are exact for a perfectly conducting sphere.

For a large sphere, a>» 1, the asymptctic expressions may be used for all the Bessel functions involved
in Egs. (3.44) and (3.45). The result is

. we ml8NA — NcosAtan M
a. % (—j) c"'[ T T N an M ]! (3.80)
. 2wl maAlanM—NsinA]
bty "’[ tan M — jN ’ (3.81)
where
.\=a—-(—':-*-2]l'; M=Na_("_.‘2-_‘£- (3-82)

These equations are included because they illustrate the general oscillatory behavior of the scattering ampli-
tude coefficients.

For a small sphere. a <€ 1, it is possible to get a zood approximation for the scattering amplitude coeffi-
cients by substituting the scries expansions of the spherical Bessel and Hankel functions into Egs. (3.4)
and (3.45) and keeping only a few terms of the resulting se-izs. This has been done by L. Goldstein (1945),
who corrects the results of Stration (1941). The series expsasions of the spherical functions are

, S (=1)"(n + m)!
" (a) = 2% E.[m!(zn ¥ om + 1)!]“’- (3.83)

- (= 1" (n+m)!
5% (@) = 2% _E[,,,!(z,. + 2m + l)!]a’.

= r@Ee-2ml] .
+ 2’:"'"'._.[111!(» - m)!]a’ ' (3-84)




Substituting these expansions into Eqs. (3.44) and (3.45) and keeping only a few terms,

ea n! N =1 aais
e’ & ]2”[(2n+l)!:r [2n+3]“

D]l + ] e
R el B e s i T

@n + DI@n - DN — n — 1]
'[1+“'{(zn+3)(2.. DN +na+ 1)] tee

- { (2n'i ol ]"{(2" +(:1)v(*"++nllmlr; - l)]"w + ] (3.86)
If a is 50 small that powers of  higher than the sixth may be neglected, only three coeflici>nts are needed:
@ - :‘3}- (N = 1)at* (3.87)
e P R I s R ke i o B
bt - [{g%] o, (3.89)

This is an important case since it applies to the raindrop problem for many of the radars in use. Equations
(3.87), (3.88) and (3.89) are the same ones used by Rvde (1941, 1944) if account is taken of the difference in
definition between the coefficients defined by Stratton (used here) and those of Mie (used by Ryde). The
relation between the two sets of definitions is given by Goldstein (1945):

P = (- 1) j(2n + Daa* . (3.90)
a M = (= 1)"* j(2n + 1)bat. : (3.91)

It should be noted that if « is so small that powers of a higher than the third may be neglected, only the
electric dipole mode is needed. This is the case of Rayleigh scattering.

It is seen that even with the simplifications afforded by the approximations involved in the special cases,
the numerical evaluation of the scattering amplitude coefficients is quite involved. An exact evaluation
would be even more so. Goldstein (1945) remarks, “An exact computation of these coefficients is out of the
question on account of the lack of :ables of Bessel and Hankel functions of complex argument needed here.”
The special cases discussed, bowever, do not cover all the problems of interest, so that il is necessary to con-
sider the problem of getting reliable answers in the general case.

Although the evaluation of the scattering amplitude coefficrents is difficult in the general case, it can be
accomplished. In their study of the effects of meteorological elements on microwave radiation, Ryde and
Ryde (1945) set up a schedule for computing the coefficients directly by calculating the values of the spherical
Bessel and Hankel functions for the arguments needed and substituting them into the Mie equivalent of
Eqs. (3.44) and (3.45). Since the work by Ryde and Ryde, Lowan (1949) has computed the coefficients for
various values of a and six values of N corresponding to water in the microwave region. There are still no
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extensive tables available, however, for the spherical functions of complex arguments, and there is no general
method for getting exact values of the coefficients except the “brute force” method. In Section 3.6, such a
method will be given.

3.6. EVALUATION OF THE SCATTERING AMPLITUDE COEFFICIENTS USING LOGARITH.
MIC DERIVATIVE FUNCTIONS

The general solution for the scattering amplitude coefficients is given by Eqs. (3.44) and (3.45).
These equations may be rearranged as follows:

las. (a)] [Naz,® (Ne)]'\ )

o = — [:.“’ (a)] [a:.'”(a)I’) N (INaz.‘"(l\'a)]) | (3.92)
[ z.m(a) (lg,‘,"(a) (‘1)_11) ~ N(IN“-“) (N"_)l')
laz.® (a))] [Naz.® (Na)] /|
[ ([Naz. (N«)r) _ N(laz.“’ @ry)

b = — [z.(l’ (a)] [N"z-m (Na)] la‘-m (a)] L. (3.93)

n zm(:)(a) ([]vaz.(l) (IVa_)]') B N(laz_(:) (a)]') B

\\[Naz." (.Va)) laz.® (a)] / ]

It should be noted that in this form the equations involve the logarithmic derivatives of jaz." (a)},
[Naz,® (Na)] and [az.? (a)]. Logarithmic derivatives of this ty pe were used by Infeld (1947) in his study
of the spherical antenna with a gap. and by Smith (1948) and Tai (1949) in the study of biconical antennas.
If the notation of Smith and Tai ix uxed, the Besse) density functions are defined

Sh(x) = [x;-lu+ : (I)]v (3'94)
R.(x) = [©11,4,9 (). (3.95)

Following Tai (1949), the logarithmic derivatives of these Bessel density finctions are defined as new func-
tions, a.(x) and p.(x). Thus,
Su(x) _ ez @)

“® 5@ T ) (399
R.x) [xz.®x)]
) = R T len ) 357)
In terms of these functions, the scattering amplitude coefficients are
. z.‘"(a)]_ o.(a) — Now(Na)
™= [’-uw (a) [p.(a) - Nc.(Na)] (3.98)
. 5"(@)7 [ea(Na) = Neu(a)]
bit= - [z.“’ (a)] [..(M.) = Np-(d)] @99

This form appears to be simpler since there are fewer functions and no derivatives of functions involved
explicitly. To make the apparent simplification real, however, it is necessary to demonstrate that values for
the logarithmic derivative functions can be easily obtained. This will now be done.

Since the following derivations hold for all the Beseel density functions, involving either the Bessel,
Neumann or Hankel functions, it is convenient to et
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Ju(x)

Z.(x) = { Nu(x) } = the general cylindrical function, (3.100)
H.(x)
D.(x) = x*Z,,,(x) = the general Bessel deusity function and (3.101)
Su(x) = ll);'—g:; = the general logarithmic derivative function. (3.102)
Differentiate Eq. (3.101) with respect to x:
Do) = x*Z' 41 (x) + §27V2Z, 4, (). (3.103)
Substitute the recurrence formula®
Zlyi(x) = Zy_i(x) — [" -: ‘] Zusr(x) {3.104)
into Eq: (3.103) to eliminate the derivative of 7
.(x) = x [Z,._-,(x) - :Z.+;(x,)]- (3.103)
Divide by D.(x):
D.(x) Z.._-(x)] n .
b KA ekl ot il AN A (3.106
6.(") D-(x) [Z,,{;(-\’) X ‘)

This is the standard equation used to evaluate the logarithmic deriv ative functions when x is real.

The difficulty comes when x is complex. Equation (3.106) cannot be used then becaune tables of
Z,4)(x) are not available for x complex. In this case. use is maie of the recurrence formula due 1o lufeld,
(1947), which will now be derived. From Eq. (3.101),

Zss(x) = x7D(x). (3.107)
Differentiate:
Z\yi(x) =27 D (x) — (;,l'r ) D.(x)). (3.108)
Differentiate again:
Z" i (x) = x7HD " (x) = : .+ (4—}_) D.(x)). (3.109)
The Bessel equation of halfinteger order is
B2 () + xZ 0 (x) + [ = (n 4§,y (x) =0, (3.110)
Substitute Eqs. (3.107}, (3.108) and (3.109) into Eq. (3.110) and collect terms.
e = [HED - 1] mo @.nn

This is the same as Eq. (ID.1) of Infeld if n is replaced by p — §. 1t ix now neceraary to get an exoeex-
sion for D'.(x). Substitute Eqgs. (3.107) and (3.108) into the recurrence forn-ula®

¢ See, for example, W steon, A Treatise on the Thewrv of Bessel Functisns, pp. 45 and 66.



Zon) = [2 ] 20 - 2o (3.112)
and collect terms:
D) =~ Duosx) = Duosa)- (3.113)
Diflerentiate: ‘
Do(x) = > Duss(a) = S Duca(a) — D'asi(a)- (3.114)

Substitute Eq. (3.111) into Eq. (3.114) and collect terms:
D) = 2D y(2) - % Do_y(x) + Doy (3)- @3.115)
x x*
Now, divide Eq. (3.115) by Eq. (3.113). Then,

® Doos(®) — " Dosy(x) + Doey(a)
D’.(x) x -—l(xl—x‘ n-1{X + n—1\X .

du(x) = - (3.116)
D-(x) 2 D s(x) = s @)
But,
D._\(x) ,
D.-.(x)] = 8a)
Therefore,
2 a4 1
x x2
.(x) = . (3.117)

)
F 4

This is the same as Eq. (D.6) of Infeld if n isveplaced by p — §. It is sometimes easier to use Eq. (3.117)
if both numerator and denominator are cleared of fractions. Thus,

2+ nxdy_1(x) — n*
nx — 2%, (x)

Fquation (3.118) gives the recurrence relation whereby the logarithmic derivative function of any
order can be found if the function of the next lower order is known. It will now be shown that the lowest
order can be computed directly. Since ¢.(x) is the only function with complex argument in Eqs. (3.98)
and (3.99), only this function will be considered:

i(x) = (3.118)

)
$) = ey = (2) s, (3.119)
)
54 = Y = (2) eons. (3.120)
Therefore,
o(x) = i‘—c(:))- = cot x. (3.121)
Now, if x = ¢ — jd, thea, ' »
a(x) = cot (c — jd) = sin 2¢ + j sinh 24 (3.122)

ocosh 2d — cos 2¢



Higher-order terms may now be found using Eq. (3.118).

It is seen that by using Eqs. (3.98) and (3.99) together with Eqgs. (3.106), (3.118) and (3.122), the
scattering amplitude coeflicients of any order can be computed exactly, even in regions where the spherical
Beseel functions of complex arguments are not tabulated. In the next section thiz method is applied to the
evaluation of the hack-scattering cross section for one particular case involving water spheres with sizes
comparable to the wavelength. This case has also been studied experimentally and comparison between
the theoretical and experimental results is made in Section 4. '

3.7. NUMERICAL COMPUTATIONS

The method given in Section 3.6 was used to compute the scattering amplitude coefficients for water
spheres at A = 16.230 cm and 0.6 < a < 6. These coefficients were then used to compute the back-scattering
cross section, using Eq. (3.75). For plotting purposes, it is convenient to normalize the back-scattering
cross section with respect 10 the geometrical cross section. If this is done, Eq. (3.75) becomes

i 1 ¢ hd s ph o !.
okl El(zu 4+ 1) (= 1)" (an* — ba*) (3.123)

This is the equation actually used in the computations. Since the values of a.* and b.* decrease rapidly
for n > a, it is necessary to carry the summation only to n 2 2a.

Since the computed values of the back-scattering cross section depend on the index of refraction, it is
important to hav~ reliable values for this quantity. It is recalled that with u; = s, the complex index of
refraction is related to the complex dielectric factor by

- 5 ‘_ - VAN
N (.) @) = @ — &), (3.124)

where ¢, is the relative dielectric factor, and ¢, and —§”, are the real.and imaginary parts of {,. Ryde
(1941, 1944) and Goldstein (1945) determined §, by using the Debye (1929) formula,

- fr, — &n ,

E=f+ —""—1 + j0u/N) (3.125)
where £ is the relative optical dielectric factor; §,, is the relative static dielectric factor; and ), is the
transition wavelength. They determined A, from Eq. (3.125) by using Collic’s (1944) measured values of
¢, and £, for A = 1.26 cm. The validity of using the Debye equations for the frequency dependence of §,
at constant temperature has been verified by Saxton (1945) and Collie et al. (1948). Slight differences
have been found in the experimental values of A, but in general the agreement is good. This same method
has accordingly been used in the present research. The result is §, = 81 — ;7.8 at A = 16.230 and temper-
atures near 20° C.

Some of the computed values for the logarithmic derivative functions and scattering amplitude coeffi.
cients are plotted in Figs. 2-19.

Figures 2 and 3 show ¢, (a) versusaforn = 1,2,3,...,12. The values of v.(a) were computed using
Eq. (3.106) with Z,, (a) = J,4(a). It is seen that ¢.(a) is a smooth, non-oecillating function. It ap-
proaches +  as (n + 1)/a when a approaches zero. It has poles at the zeros of J,.,(a). The poles of
#x(a), however, do not cause the scattering amplitude coefficients to blow up since it is alwayvs the product
Juti(a) - #a(a) which appears in Eqs. (3.98) and (3.99), and this product has no poles.
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Fic. 14. The scattering amplitude coelficients, &,° and m’.
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Fu:. 18.  The seattering amplitude raefficients, b," and b,". Fi. 19, The scattering amplitude corflicionts, &', b’ and by".

Figures 4 and 5 show the real and imaginary parts of p.(a). The values of these functions were com-
puted using Eq. (3.106) with Z.,;(a) = H,5,®(a). It is seen that they are also non-oscillatory. The real
part of p.(a) approaches — > as —n/a when a approaches zero. As a increases, the real part increases
rapidly from — ® and approaches sero. The imaginary part starts at zero and approaches — 1 as a increases.

Figures 6 to 13 show the real and imaginary parts of ¢(Na) for n = 1,2,...,8. [t is seen that these
are rapidly oscillating, highly damped functions. The real part approaches zero and the imaginary part
approaches 1 as a increases.

Figures 14 to 19 show the scattering amplitude coefficients a,’ and b,*, forn = 1,2,...,7. The general
oscillatory behavior of the coefficients is seen, as well as the rapid decrease in amplitude for 7 > .

The theoretical normalised back-scattering cross-section curve is shown in Fig. 20, where it is compared
with the one obtained experimentally.

4. EXPERIMENTAL DETERMINATION OF THE BACK-SCATTERING FROM
WATER SPHERES AND COMPARISON WITH THEORY

4.1. INTRODUCTION

Since the introduction of microwave techniques to the Reld of meteorology, much work has been done
on the specific applications to the detection of reflections from rain and other hydrometeors. Unfortunately,
most of this work has been qualitative in nature. Some quantitative measurements on rain have been



made by H. Goldetein (1945), Marshall et al. (1947), Langille and Gunn (1948) and Hooper and Kippex
(1950). Conmsidering the number of variables involved, these measurements show good agreement with
theory. It is difficult, however, to isolate the individual effects when there are many variables, and it
scems desirable 10 have some lahoratory messurements on single spheres. Recently, this need has been at
least partially filled by the work of Klotshaugh and Duckett (1949) on plastic spheres simulating raindrope
and the work of Aden (1950) on actual water spheres. In Sections 4.2 to 4.4, the techniques used by Aden
will be described briefly, and the results obtained will be compared with those determined from theory.

42. THE EXPERIMENTAL PROBLEM

The experimental measurement of the reflection of electromagnetic waves from individual water spheres
involves two important difficulties: (1) Sinee the sphere is a very low gain ref.ector, it is hard to obtain
reliable answers by ordinary pulsing techniques and (2) it is not easy to maintain & water sphere while
measurements are being made. For these reasons, no direct laboratory measurements had been under-
taken successfully prior to the work mentioned above. Evea now, these difficulties almost preclude the
taking of measurements in the region of greatest interests — i.c., the spectral region where water spheres of
actual raindrop size are comparable to the wavelength. However, it is possible 10 perform an experiment at
slightly Jonger wavelengths and to increase the size of ihe water spheres to get into the critical size region.
This is the cxperiment that actually was performed. It is believed that this technique is useful since com-
parison between experiment and theory at one frequency should give a good indication of the correlstion
to be expected at other frequencies.

43. THE EXPERIMENTAL TECHNIQUES

The experimental method used to measure the back-scattering cross section was the standing-wave
method of D. King (1948). This method utilines «n image screen techmique, and the standing waves set
up on the screen by the interaction of the incident and reradiated waves are measured along the radial line
between the scatterer and the source. This method offers the advantages of a system having absolute
calibration, relatively simple equipment and measurements at low power. The main disadvantages are
that it requires an image screen which is large, uniform and rigid, and that obtaining results is very time
coneuming. The derivation of the formulas needed and a discussion of the approximations, as well as a de-
tailed description of the equipment used, are given by Aden (1950).

One of the worst obetacles to making measurements on water spheres is the inability to maintain such
spheres while measurements are being taken. This obstacle was overcome by using as a container thin
bemispherical shell forms of Styrofoam® mouated on aluminum disks. Since Styrofoam has dielectric
properties extremely close to those of air, it had a negligible effect on the measurements. Thus, when a
form was filled with water and the disk was inserted into ita proper place in the image screen, the effect
wae that of a hemisphere of water exposed over a large image screen. By image theory, the measurements
takon were the same as for & complete spbere in free space.

4.4. COMPARISON OF THE THEORETICAL AND EXPERIMENTAL RESULTS

Measurements of the back-scattering cross section were made ou 30 water spheres in the electricl sise
region 0.74 < a < 5.90. In Fig. 20, the results of these measurements are plotted, together with those

® Preduct of The Dew Chemical Co., Midiend, Mich.
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determined from theory. The theoretical curve was obtained by using the method of logarithmic deriva-
tive functions given in Section 3. It is seen that there is very good agreement between the experimental
and theoretical results. For spheres very much smaller in size than thoee considered here, the results should
be given to a good approximation by the Rayleigh law. For spheres of larger size than those considered
here, the results should approach the large-sise approximation of about 0.64.

5. THE THEORY OF THE SCATTERING OF A PLANE WAVE BY A SPHERE
WITH A CONCENTRIC SPHERICAL SHELL

S.1. INTRODUCTION

In the preceding sections, the scattering of electromagnetic radiation by a single sphere has been con-
sidered, and its application to the more general problem of microwave reflection from rain has been indicated.
Another physical problem of interest is the scattering of microwave radiation by melting snow and ice
particles. For purposes of analysis, this physical problem may, to a first approximation, be replaced by the
mathematical problem of finding the reflection from a sphere with a concentric spherical sheli of different
dielectric factor. This latter problem can be solved rigorously.

The method of solution is a direct extension of that used for the problem of the scattering from a single
sphere. The incident plane wave is expanded in terms of the orthogonal spherical vector wave functions of
Stratton (1941). The induced secondary fields in the various regions are written as similar expansions
with unknown amplitude coefficients. As in the previous case, the unknown coeflicients are determined
from the boundary conditions. In this case, however. the matching must be done simultaneously over
two boundary surfaces instead of one.

5.2. FORMULATION AND SOLUTION OF THE PROBLEM

Consider a sphere of radius a, complex dielectric factor ¢, and permeability ue which is surrounded by
a spherical shell of inner radius ¢ and outer radius b with a complex dielectric factor £ and permeability ue.
The resulting configuration is assumed to be isolated in free space. The interior of the sphere, the interior
of the shell and the surrounding space are called regions 1, 2 and 3, respectively. As in Section 2, the center
of the sphere is chosen as the origin of a rectangular coordinate system; the incident electromagnetic wave is
propagated along the s axis, and the electric vector is linearly polarised parallel to the x direction. This is
illustrated in Fig. 21.

With the conditions stated above, the expressions for the incident plane wave are exactly the same as
in Section 3:

2 Ay - ° nuf 2n 41 .
x‘ = .E. = l& - - Engl( -1) [ll(’l + l)] (Ml +J""l) (5'1)
QE - 2n +1 N '
B;=1B, = e - —.Z_:l( " [m] @aa! — jnaa'). (5.2)

The induced secondary field must now be constructed in three parts, one applying in each of the three
regions defined above. These parts are written as expansions similar to those for the incident wave but
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Fic.21. Plane wave incident upon a sphero with a concentric spherical shell.

with unknown amplitude coefficients. The part applying outside the shell is again referred 10 8s the scat-
tered field and is indicated by a subscript s. The form of this expansion is the same as in Eqs. (3.28) and
(3.29) although the values of a* and b* are different here:

had | 2n 41 a4 : s !

xn - &-gl( _]) [n(n + l)] (au.molu +an.ntll ) (5 3)
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By analogy with the previous problem, the field inside the sphere is called the transmitted field, and it is
indicated by a subscript . Again, the formal expansions are the same as before (Egs. (3.32) and (3.33))
with the understanding that a.’ and b, have different values:

2n+1 L

E. = E, .?;1‘ [(_+1)] (@M’ + jbaneY) (5.5)
[2n+1 . .

B. -— —.}:‘,l( - [ "t l)] (b'm,;." — jau'n,"). (5.6)

Here, oy = (uk1) ™" is the complex characteristic velocity of the sphere.
Inside the spherical shell, the terms involving Bessel functions of both first and second kinds must be
retained. The formal expansions may be writien

2n +1
na(n 4 1)

x‘ - a i ( -j).[ ][’-’m.lnl + A-'molu' +j(b-.nd-‘ + B-’ncl-.)l (5'7)
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B = - ZE.(— ) [..(.. + |\][b.’m... + Bom,! — j(ena! + 400" (58)
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where &', 4!, b}, B.? are unknown amplitude coefficients, and o = (uel) "} is the complex characteristic
velocity of the shell.

Equations (5.3) through (5.8) represent a formal solution for the induced secondary field. Al that is
needed to complete the formal solution is the evaluation of the eight amplitude coefficients. This is done
by applying the boundary conditions at the two surfaces of dielectric discontinuity. The boundary condi-
tions at r = ¢ are

exB| =2?XxE,| (59)
eXB| =9fXB)] (5.10)
and at r = } are -t
PX @ +E)| =xB| (5.11)
X (B«+B.)| . =9 X B, . (5.12)

These lead to two sets of simultancous equations each involving four unknowne as follows:

_ Mex "Nl |, | [Nes NV, + Wos 2Nl o (5.13)
N‘ Nl N’
- Niu,®(Nia) b+ Nst.®(Nsa) bl + Nst®(Ns2) B2 =0 (5.14)
- o ’ a) ’
- P e)b +0 b+ [Noz. ™ (N#))' bt + [Nwz™ (Nw)] B = [ () (5.15)
N N,
20 +0 b+ N (Np) b2+ N ®(Nw) B2 = z.90) (5.16)
and
- 2"(Na) @ +.5.9 (Npa) a.! + 5% (Ny) Al =0 (5.17)
— [N P (Ni@)l 0’ + [N1as® (Nga))' a.? + [Nsas.® (Nea)l' A2 = 0 (5.18)
-5%0) a'+0 a'+5Y(Ny) a.! + 5.2 (Np) Al = 5.90) (5.19)

—n20) @' +0 o'+ [Nes, P (Np)l @ + [N ® (Np)]' A2 = 1. 00)).  (5.20)

Here,a = 2va/\, » = 22b/); Ni = V§/g and N; = V §5/s are the complex indices of refraction for
the sphere and shell, respectively. As before, the primes at the square brackets indicate differentiation with
respect to the argument of the Bessel function inside the brackets. These two sets of simultaneous equa-
tions may be solved for the eight amplitude coefficients.

To evaluate the back-scattering cross section, it is necessary oaly to solve for the scattering amplitude
coefficients, e, and b.°. If this is done, and if the derivatives of the Bessel density functions are eliminated
by introducing the logarithmic derivative functions, the result is:

. 5=20) [Fi+ «.(G
b= - imor (At oe) G2h

_ 520) [Fi+ ()G

=2%56) LR+ n6 (5.22)
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where
Fi = Na."(Na)o.(Nia)[z." (Nea)2.® (Now)p. (Vo) = 2.V (Va»)ou (V)2 P (Nsa)]

+ Viz. (Nia)[z " (N#)ou (V)2 P (V2a)pa (V) — 5. (Via)ou (N2a)z ¥ (Nw)p, (Naw)] (5.23)

Gy = N7z (Via)ea (Vi) 5" (N9)2. 7 (Na) — 2.0 (Vaa)z, ™ (Vo))
+ NNz, " (Mia)lz. " (Vga)o. (Vaa)z, P (V) = 2.7 (V)2 (Vaa)p, (Nsa)] (5.24)

Fio= N2, P (N2, (V) on (V)2 (Vaa)p. (Noar) — 2. (Naa)o. (Nsa )z, P (Nav)pa (Nav)]
4+ NNz, (Nia)e. (Vya)[z. " (Ve )2, P (Nar)p, (Vo#) — 2. (Na)o, (Naw)z, ¥ (Naar)) (5.25)

C: = Nz, (Nia)[z." (Naa)ou (Vaa)z, ¥ (V) = 2. (Var)z. @ (Nsa)p. ( Vsa))
+ N.:.“'(1\'.0)0.(1\'.0)[:.'“(.\':r):.m(A\(-,-a) -z (Nea)z,™ (N} (5.26)

The equation for the bach-wmeattering crons vection ix the same an belore:

-

o= T =)t = b

wl L, i (5.279)

Equation (5.27). together with Fos. (3.21) through (5.26). gives the formal solution to the problem of
back ncattering from a sphere with a concentric spherical shell.*  Ax a check. it should be noted that
this solution should reduce 10 that for a single sphere if « = v and V, = V. = V. Since the equation for
the back -scatiering cross section ix the xame in both casex. this requires the xeattering amplitude coefficients
to be the same.  Examination of kgs. (5.21) through (5.26) reveals that they o reduce 1o Fqgs. (3.98)
and (3.99) under the conditions xtated.

Although the application of this peoblens to particular phy sical problems has been indicated. the details
of thene applications will not be given here, Tley are, however, being given attention by other members
of the Geophysies Research Division,

* N b crmnphetwn of s manaseript Aedes aned Kerhes (1931) hase treated the more general cuse whoere all theee regions
have comples paraneters,
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