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ABSTRACT 

Reduced tranflltion probabilities for electric monopole transitions 
2 

p   have been calculated using a collective model with deformation 

2 2    ^J- vibrations but no asymmetry vibrations.    Both p    and X = p    R /B(E2) 

have been evaluated within the context of the model by exact numerical 

methods for transitions within positive as well as negative parity 

rotational bands of even nuclei.    Comparison of experiment with theory 

shows quite good agreement in the actinide deformed region; however, 

for the rare earths theoretical predictions are generally an order of 

magnitude greater than the measured values. 
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SUMMARY 

Recent exact numerical calculations of the influence of deformation 

vibrations on electric quadrupole transitions in deformed even nuclei 

have "been extended to a study of electric monopole transitions in such 

nuclei. These monopole transitions can provide an insight into the 

nature of the excited 0+ states, in particular into the excited K=0 

beta bands. Comparison with experiment shovs that model predictions 

are adequate for the very heaviest nuclei but are far too great for 

nuclei in the rare earth region. 

ii 
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1.    Introduction 

Recent investigations of the low-lying rotational levels in even 

nuclei have shown that the ground state rotational band structure can 

1 2 be accurately reproduced '   ) by using a very simple collective model 

first introduced by Davydov and Chaban ).    It was also shown that if 

the stiffness parameter \i weis determined from the energy level spacings 

in the ground state rotational band then the beta (K=0) band head could 

be predicted to within 20^, and often considerably less  ).    'Jhe 

consistency of this model has been checked by calculating exactly the 

effect beta vibrations have on the electric quadrupole transitions in 

such nuclei  ).    Dae results of this calculation showed by properly 

including these beta vibrations the E2 branching ratios compare well 

with experiment.    In particular,   in the coulomb excitation of the beta 

band 1=2 level it was found that the theory is within experimental 

/ 154 error of the measured values (recent unpublished data on   "^ Sm gives a 

value of about half that predicted by theory )).   Agreement between 

theory and experiment has also been found to be quite satisfactory for 

the coulomb excitation of the so-called gasma band 1=2 level ).    It 

would seem that this simple collective model is capable of quite 

accurate predictions not only of energy levels but also of B(E2) 

> -     I 
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branching ratios. With increasingly more experimental data available 

on electric monopole transitions it appears useful to compare this type 

of data with the theory. Indeed; Davydov and co-workers have done Just 

7 8 
that ' ); however, their work includes the effects of ganma or asymmetry 

vibrations and is therefore necessarily approximate in nature. It Is 

the purpose of this paper to treat the effect of deformation vibrations 

on BO transitions exactly vhlle at the same time not requiring axial 

12    k 
symmetry. The results of refs. ),  ),.snd ) show that asymmetry 

vibrations can be treated as a small perturbation. In general the gamma 

band mixing into the ground state and beta bands Is small and a 

perturbation treatment of gamma vibrations Is probably adequate except 

where rather strong monopole transitions occur between gamma and ground 

state bands. At present there seems only one nuclide where this occurs 

and that is in   ulh. Here the 1-2 levels of the beta and gamma bands 

are only 11 keV apart and a relatively strong BO transition from the 

Q 
gamma band 1=2 level to the ground state band has been observed-7). 

In the remaining part of this section an outline of the vlbrational 

problem will be given in order to fix the notation. In Section 2 the 

electric monopole transition probabilities will be derived. Finally, in 

Section 3 we compare experiment with theory. 

In what follows we shall use a generalized treatment of deformation 

vibrations ) equally applicable to quadrupole vibrations and octupole 

vibrations. While no BO transitions have been definitely observed 

between negative parity levels they should in principle be no different 

L 



from such transitions observed "between appropriate positive parity- 

levels. Ihis treatment is essentially the usual one for quadrupole 

surfaces ) (it should oe noted that a diagonal term omitted in the 

vibrational Hainiltonian of ref.  ) is included here and has a signifi- 

cant effect on the eigenvalues of the 1=0 and 2 levels )).    For 

octupole surfaces the condition which diagonalizes the momental 

ellipsoid is used ),  so that no terms with K=l or 3 appear ?n the 

state functions. Ihis is consistent with a recent microscopic calcu- 

lation of Soloviev and co-workers ) in which they find that the \=3^ 

I H I = 1 and 3 degrees of freedom do not possess very collective 

properties. 

As usual one begins by expanding the nuclear surface in the 

laboratory coordinate system 

R(e.<») = R0|_«0 + ^ ■V V6'*'!' (i) 

here X=2 for positive parity and X=3 for negative parity states while 

a   is unity to first order and the second order differences are 

usually neglected. It is known, however, that these volume conserving 

12 
second order terms are important in electric monopole calculations ) 

and they will be retained here. Small oscillation theory then yields 

the classical Hamiltonian 

\ = 2 WV 2 CX V %' (2) 
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For vlbrational nuclei this can "be quantized straight away and,  using 

the number representation 1 N >,  one can easily show that EO transitions 

are allowed between any two states of the same spin for which AN=2. 

Diis selection rule then prohibits such transitions between the one 

and two phonon 1=2+ states.    Making use of the transformation 

V = \ %X*'9l) ^ (3) 

vhere the D       are the (21+1)-dimensional representation of the 

rotation group    ) and the 0. are the Euler angles relating laboratory 

and body-fixed axis systems.    It is useful if the body expansion 

coefficients in (3) are parameterized as    ) 

% " ßK % W 

^ere ß    are the \    -order deformation parameters while the asynmetry 

parameters cr     may be subjected to the additional condition 

2    CL   
2 = 1. (5) 

Ohe expansion of the nuclear revdius in the body-fixed system becomes 

Sflf"" 



R(e ,(j) ) = R 
o 

1 - is (3PKS + \3 V 
(6) 

+ ^^ vV9''*'» 

The quantity T , vhich arises from the condition of volume conservation, 

is 

Tx = / nSr   -(\XX;000) S , a  a , a 2\+l 
l|.n   v/v/w>.,wvv^ ^ , u   u  i u      i 

(7a) 
i  t 

which for deformed nuclei will give rise to EO transitions "between 

gamma-like and ground bands.    Prom the properties of the Clebsch-Gordan 

coefficients ^L^Lp,L-jiiL,m?,m ) it is seen that T   vanishes for X 

odd.    Thus,  in principle this model permits no monopole transitions 

between negative parity states except between zeta and ground bands. 

For positive parity states on the other hand transitions between 

gamma and ground state bands are possible.    By expressing the asymmetry 

parameters in the familiar form 

a20 = cos 7,  a2±2 = ^ sin 7, 

CT30 = cos n,   a3±2 = ^ sin n 

i      ■ i 
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•7 
T   can be expressed as  ) 

cos 37 

= 0 

.=£> 

X=3 

(7b) 

Die Hamlltonlan of the system is obtained from eq. (2) by using 

relation (3) and recalling that since the deformation vibrations are to 

be treated exactly and the asymmetry vibrations only in perturbation 

theory the space with respect to vhich the quantization is carried out 

contains but four dimensions:    ß   and the three Euler angles Ö  .    Ohe 

a.     are taken as fixed.    The Schrodinger equation separates into 

rotational and vibrational parts. 

I ? (W - £M1 W =o L
    k 

+ I C^X ' ßXo)2 " ^ *™ ißx) - 0. 

(8) 

(9) 

Ehe I, are the body-fixed angular momentum operators while the reduced 

moments of inertia of eq. (8) are defined by 

Ö(KX)(\'V> ^A ^V' 

' «3F»1 
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and the functional forms are knovn for the cases \=2 ) and \=3 ). 

The solutions to eq. (8) have also "been given for these two cases '  ). 

The particular vibrational potential used in eq. (9) has "been 

17 
Justified from binding energy data ) and need not be discussed further 

here. By expanding the sum of this term and the previous one about the 

new equilibrium position ß (l,N), keeping only the quadratic term for 
At 

the new equivalent potential and defining new independent and dependent 

variables by 

y = ^ ßx - ß,(lN) /ßx(lN), 

N 
t) X) 
Dj^y)=ß^/2$IN(  ^ 

\       -n ^K' 

N   a normalization constant,  eq,  (9) can be placed in the form 

d"    + (213 + 1 - y2) 
•dy 

D^y) = o 

iß 
which is Weber's equation for parabolic cylinder functions    ).    Ihe 

quantity t) is determined by the boundary conditions 

*f (ß, = o) ^ 0 

lim 4j'N (ßx) = o 

7 
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while the Z, are knovn functions of V) ), 

Calling I the integral 

h'  /^C^x)dx 
-Z 

1 

the normalization constant, N ,   can he expressed In the form 

N2 = Z./nß, ZI 

where |i Is the stiffness parameter and Z is the positive real root of 

zh - (i/n) z3 .|(eiN
x +|) =o 

and is related to Z^ "by 

^ _ ^ + 3 (e X + 3. 

2.    Electric Monopole Transitions 

The absolute transition prohabillty for electric monopole con- 

19 v version has been defined by Church and Weneser    ) as 

T(EO) = a p 

8 



where ehe electronic factor, Q.,   is available in graphic form ) while 

the nuclear strength parameter is 

P = ^/^[4-^#—' 0. dT (10) 

the 0 being the nuclear wave functions, r the radius vector of the 

p— proton, R the nuclear radius, and a is a numerical coefficient of 

the order of 0.1. In collective model calculations it is customary 

to neglect all but the first term of eq. (10). Using the assumption 

of a uniform charge distribution one can define an electric monopole 

operator C?( BO) such that 

P =<*^\)l^(E0)l    ^\ßx) > • (11) 

Then 

fiTCEO) = |f (^ + Px
s + | ^ V, (12) 

Z the atomic nimiber.    The first term in eq.  (12) makes no contribution 

to p,  the second term induces transitions between "beta" bands and 

ground state bands while the third term induces transitions between 

the gamma and ground state bands for \=2.    For \=3 this term is 

identically zero so that no E0 transitions can occur between the 

20 octupole analog of the gamma band (sometimes called the "g"  - band    )) 



r.^.^^.-  --■: 

/ 

and the octupole ground state band, e.g., in the notation of ref. ) 

the model permits no BO transitions between the 311- and 321- levels, 

even if asymmetry vibrations are included. 

Since we are going to consider monopole transitions between "beta" 

2 
and ground state bands only the term proportional to ß  in eq. (12) 

A. 

will be retained. Thus eq. (ll) can be written 

where the overlap integral I   (o) is defined by 
f i 

I   (o) = / D (N/2 x-zn ) D (N/2 
^f^i    ^  V L  lj/ ^iV 

o 

x-z1 X2(l!C (1^) 

which is identical in form with the overlap integrals arising from 

the vibrational contributions to the electric quadrupole reduced 

matrix elements between states of positive parity ). 

2 
In fig. 1 p is plotted for transitions between the positive 

parity beta band and the positive parity ground state band for I = 

0,2,4,6 and 8 as a function of the stiffness parameter |i.  The 

asymmetry parameter has been taken as 7 = 0 , i.e., axial symmetry; 

however, the curves for other values of y  are only slight different 

2 
from those given here. In fig. 2 we have plotted p as a function of 

10 
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2/2 4 
Fig. 1 The raonopole nuclear strength parameter p /Z ß  of eq. (13) 
plotted as a function of the stiffness parameter n for an axlally 
Symmetrie system (7 = 0°). Ihe curves are labeled "with the spin of 
initial and final state and are transitions from the beta band to the 
ground state band for quadrupole deformations. Here Z is the atomic 
number and ß the equilibrium deformation. 
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2/2 k 
Fig. 2 The monopole nuclear strength parameter p /Z t      plotted as a 
function of the stiffness parameter \x for an almost axially symmetric 
octupole system (t) = 5°). The  curves are labeled with the initial and 
final state spin and are for transitions from the ''b-band" to the 
octupole ground state. Here Z is the atomic number and t    the octupole 
equilibrium deformation. 
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\i for monopole transitions between the ^ band and the ground state 

octupole band for I = 1,2 and 3.    The octupole asymmetry parameter has 

been taken as T) = 5    since for T) = 0    the 2- level lies at infinitely- 

high energy.    Baese curves do show more variation with asymmetry 

parameter than do those for transitions between positive parity states. 

2 
The quantity p    is not the most useful one to compare with 

experiment.    Frequently one compares the relative rates of EO and the 

21 competing E2 transitions defined by    ) 

^h-v-^\ ^-V («) 
A somewhat more useful quantity is the dimensionless ratio defined by 

12 
Rasmussen ) for transitions between the beta band 1=0 level and the 

ground state band as 

zhk 

l/3   -13 
where R = 1,2 A '  x 10   cm is the nuclear radius. For transitions 

o 

other than from the beta band head we may generalize this quantity to 

2 2    4 

*( v - w=B(L0 iß -1^) (i6b > 

of course Ifl = I   ^ ^ 0'    ^ie relation between X and \i^ is Just 

13 



fV A   E 
X = 2.53 -—j L- x 10y (17) 

■where the gamma transition energy E is in MeV. 

By making use of the expression for the reduced E2 transition 

probabilities developed elsewhere ) these expressions for the 

dimensionless ratio X can be expressed in terms of overlap integrals 

(ih)  and the other parameters of the theory. For transitions from the 

beta band head eq. (l6a) becomes 

X(V -  Ögnd+) = (,ifW2 (ZA J  ^h  f/Zf )3 \ 
(18a) 

x I ü (O)2/!.. Iu „ (2)
2 b(E2: 0 ] + -* 21+) 

ui f    uf uiuf 

■while for transitions from other beta band levels eq. (l6b) may be 

written 

X(V-W'^^oVW2 

x \^0^\^s b(ES: rp N
P 

+ - \ v'- 

In eqs. (l8a;b) the subscripts i and f refer as usual to initial and 

final states while the notation (o) and (2) on the overlap integrals 

Ik 

(18b) 



refer to the integral of eq. {lk)  for monopole transitions or a similar 

one for E2 transitions ). (For the latter the functional dependence is 

different since Z and Z. are different in initial and final states.) 

The  quantity b(E2: IN -. I'N1) is defined from the adiabatic reduced 

transition prohahility of ref. ) by 

B (E2: IN - I'N') = 
av ' 

^3Z e R 
2 2 

h(E2: IN- I'N») 

Ze being the nuclear charge -. 

p 
In fig. 3 the ratio X(0ß - 0 ^/ßoQ ls plotted as a function of 

the asymmetry parameter, 7; for various values of n. In figs, k  and 5 

the ratio X(lA -• I j)/ßpn are Plotted as a function of 7  again for 

various values of \i.    Fig. h  is for the 2+ -♦ 2+ transition while fig. 

5 is for the ^H- -» ^4- transition. Examples of both have been measured. 

Finally, for monopole transitions between negative parity levels 

the ratio X(lj, -♦ I d) is especially simple since the EO and E2 overlap 

integrals are identical and thus cancel. Thus, eq. (l6b) can be 

written for such transitions as 

p 
The quantity X(lj- -» I    d-)/^    ,  where t,    = ß_ ,   is plotted in fig. 6 

as a function of the octupole asymmetry parameter,  r\,  for several 

15 
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Fig.  3    The dimensionless ratio   X(OQ -* 0^,3^)/ß0   plotted as a function 
of the quadrupole deformation parameter,   7,  for several values of the 
stiffness parameter |i. 

16 
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Flg. k    Die dimenslonless ratio X(2ß-» 2 ä)^ plotted as a function 
of the quadrupole deformation parameter, y,  for several values of the 
stiffness parameter |i. 

17 
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10 15 20 

/ (degrees) 

30 

Fig,  5    The dimensionless ratio X{ka - i+gri(i)/ß     plotted as a function 
of the quadrupole deformation parameter,   7,  for several values of the 
stiffness parameter |i. 

13 



^^p-^p^«»^^ alte 

'1 

tjRDL-iez-es 

10 20 30 40 50 
rj (degrees) 

Fig. 6 The dlmensionless ratio X(3(;- - Sg^-)/^ plotted as a function 
of the octupole defoliation parameter^ T], for several values of the 
stiffness parameter |i. This ratio is for transitions betveen the lowest 
3- state in the octupole "b" hand to the lowest 3- state in the octupole 
ground state hand. 
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value of \x  for the case 1 = 3-. 

3. Comparison with Experiment 

In table 1 we compare this calculation with the available experi- 

mental results for BO transitions from various levels of the beta band 

to the ground state band both for rare earth deformed nuclei and the 

actinides. In columns 2 and 3 are given the values of 7  and \i  which 

reduce the r.m.s. deviation between theory and experiment of the energy- 

level structure to a minimum. In particular it has been found that the 

values of \x  are high where a deformed region opens and decrease rapidly 

to about 0.2. Ihis value is maintained into the transitional region 

where \i begins a slow increase. The best fit values of |a seem to be 

correlated with the number of neutrons beyond the nearest closed shell 

and are independent of the deformed region in which the nuclide in 

question is found ). The fourth column gives the equilibrium 

deformations ß = ß0^ which have been fit to the reduced transition o   20 

probability for coulomb excitation to the first excited (in = 2+) state ) 

2 2 
|zeß |iR 

o B(E2: Oil - 211) = ( , 0 0 I b(E2: 01 - 21) 

VziV^) (v^-f)3 Vf(2) 

(20) 

Where the coulomb excitation data is either not available or of 

20 
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Table 1 

Vßo2 

Nucleus 7 n ßo Et(keV) I Thy Exp . Ref. 

10.73 

11.62 

0.3996 

0.4006 

0.314 

0.303 

685 
689 
681 

0 
2 

0 

3.4o 
16.6 

3.42 

0.88 + 
8.7   " 
0.84 

. 0.07 22) 
23) 
24) 

^Gd 
10.01+ 0.2735 0.342 1010 0 3.30 6.8 25; 

15ÖIV 
11.81 0.2916 0.335 986 2 15.8 4.61 26) 

16V 
l68Yb 

12.39 
10.35 

0.2509 

0.2561 

0.329 

0.325 

1217 
1104 

2 

4 

15.6 

18.0 
1.35 

0.731 

26) 

26) 

18U 
Pt 

230Th 

9.750 

12.43 

9.375 

0.2614 

0.5192 

0.2714 

0.281 

O.I98 

0.267 

1197 
1440 

677 
796 

634 

0 
0 

2 
4 

0 

3.33 
3.33 

20.45 
28.75 

3.25 

2.3 + 
6.7? 
3.36 
2.16 

3.11 

0.5 
2.0 

1.4 

27) 
27) 
9) 
9) 

28) 

232Th 9.0U9 0.2464 0.272 730 0 3.40 4.6 + 1.1 28) 

23^ Ö.365 0.2482 0.279 693 0 3.39 2.2 + 0.5 28) 

23^ 8.619 0. 2201 O.285 811 0 3.48 6.2 + 1.0 28) 

238u 7.914 0.2030 0.297 993 0 3.54 2.4 + 0.6 28) 

238u 7.898 0.2068 0.281 941 0 3.53 8.0 + 2.5 28) 

^0Pu 8.3^5 0.2131 O.283 870 0 3.49 0.62 j : 0.12 28) 

Comparison of experimental values of electric monopole transition 
probabilities with theory for transitions from the beta to the ground 
state band. In column 1 are the nucleus and A value^ columns 2,  3, and 
4 give the best fit values to the quadrupole asymmetry parameter, 
stiffness parameter and equilibrium deformation parameter. Column 6 is 
the energy of the monopole transition, column 7 the spin of the levels 
involved while columns 8 and 9 give the theoretical value and experi- 
mental value, with errors where quoted, of the dimensionless ratio x/ß^. 
The quantity X is defined in eq. (l6a) for 0 -»O transitions and in 
eq. (l6b) for all other EO transitions. 

21 
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insufficient ajccwracy  use was made of Grodzins1 analysis of the E2 

transition probabilities from which one can obtain the empirical 

29 
relation ) 

ß = 1108/A7//6 Ev
l/2 (21) 

E the energy of the first excited state in keV. This relation is 

quite accurate in the deformed regions and the values of ß given by 

eqs. (20) and (21) are very close. 

Table 1 shows that except for 17 Hf. 15 Gd and the 2Q - 2 , 
ß   gnd 

152 
transition in   Sm the monopole transitions in the rare earth deformed 

nuclei are from five to ten times smaller than predicted by theory. 

152 
(The experimental value for the 0ß -* 0 , transition in ^ Sm is that 

22 12 
reported in ref.  ). Rasmussen ) making use of some unpublished 

data of the Chalk River group takes half of this value which clearly 

leads to a no more favorable comparison.) On the other hand for the 

actinide nuclei agreement between experiment and theory is quite 

2h0 1 28 
satisfactory except for the nucleus   Pu. However, Bjprnholm ) has 

pointed out that in this case the very low value may be associated with 

the fact that the beta band head lies very close to the neutron energy 

gap. One might expect that this would offer an explanation for the 

failure of the theory in the rare earth region, and certainly in the 

middle of the region the beta band heads are rather close to the gap. 

22 
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However, this can hardly account for the lack of agreement for the 

152 
0_ -• 0 , transition in   Sm where the band head at 685 keV is well 
ß   gnd 

helow the gap. Furthermore, for the 2 -• 2   transition the comparison 

is adequate especially in view of the fact that the B(E2) from the beta 

band is romewhat smaller than predicted by theory ). It would seem 

152 
quite worthwhile for both of these monopole transitions in   Sm to be 

measured by the same group to see if this discrepancy persists. 

Several of the rare earth nuclcx listed in the table are known to 

have more than one 0+ excited state and for   Hf the X ratios for two 

such levels have been measured. In this nucleus we have taken the lower 

0+ level at 1197 keV as the beta band head for which the |i value is 

consistent with the general trend in the region. The x/ß  ratio for 

the ihOO  level has been calculated assuming that it too is a 012 level. 

It very probably is not the 013 level which the model would predict for 

these parameters in the neighborhood of 2 MeV. Qhis level must then 

have a different character from that of a 0+ beta vibrational level — 

perhaps it is a two quasi particle state. No attempt has been made to 

calculate the interaction of these two states and it seems hardly 

worthwhile to construct a theory of higher excited 0+ states until more 

are known and their characteristics determined. A true beta band should 

not only have enhanced reduced E2 matrix elements to the ground state 

band but should as well have large BO transition probabilities. Thus 

investigation of the excited 0+ levels must involve not only the 

23 
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determination of E2 strengths but EO strengths as well. 

It has been suggested that the failure of the theory in the rare 

earth region might be due to the influence of a non-uniform charge 

distribution^ which was assumed in order to derive the operator ^7(EO) 

21 
of eq. (12) or of the lack of irrotational nuclear flow ). It is 

doubtful if any but the most drastic innovation would induce the needed 

order of magnitude change in X and this in turn would influence 

greatly^ no doubt unfavorably, the agreement already obtained for the 

k  6 
E2 transitions ; ). Also it is difficult to believe that such a change 

in the theory would not destroy the agreement for the EO transitions so 

evident in the actinide region. In any event, we should like to see 

many more measurements of the monopole transition probability in the 

rare earth region especially for transitions other than 0R -• 0 ,. A 

150 
particularly good candidate is   Nd whose level structure seems quite 

152 
analogous with   Sm. 
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