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LINEAR FILTER OPTIMIZATION t
WITH GAME THEORY CONSIDERATIONS

by

Mo CQ YCVits and Jo Lo JGCkson t
Applied Physics Lahoratory
The Johns Hopkins University
Silver Spring, Md.

Summary

The optimum reproduction of a signal in the presence of noise by
means of linear filters is considered when the signal is unknown., The prob-
lem is likened to a game. In such a game the sigral spectrum can be con-
sidered to be the strategy of one of the participants, while the strategy
of the other participant is specified by the transfer function of the fil-
ter. The payoff is taken to be the mean square difference between filter
output and signal. The signal producer by his choice of spectrum attempts
to maximize the difference while the filter designer attempts to minimize
it.

In order to obtain game theory solutions the optimum transfer
function for any fixed signal spectrum and also the optimum signal spectrum
for any allowable transfer function are found. The game theory solution is
then the intersection of these two functional equations,

In order to obtain the optimum transfer function for any fixed
signal spectrum in a convenient form a new variational procedure has been
developed which ylelds an integral equation for the amplitude of the trans=-
fer function. The form of the relationship is dependent only on the noise
spectrum, For simple noise spectra the results are both simple and con-
venient for game theory solutions,

The new variational procedure ensbles one easily to find the op-
timum transfer function when various of the mean square time derivatives of
the filter output are fixed. This is shown to be formally equivalent to
finding the optimum transfer function for polynomial noise spectra. De=
tailed calculations of the game theory solution for the case where the mean
square second time derivatives of both the filter output and the signal are
fixed, have been performed. The mean squsre difference has been computed as
a function of the ratio of the output to signal second derivatives. This is
presented graphically,

% This work was supported by the Bureau of Ordnance, Department of the Navy,
Under Contract NOrd-7386.

T Presented at the I.R.E. National Convention, New York City, March 21-24, 1955,
Now contained in the 1955 National I.R.E. Convention Record, Part 4, Computers,
Information Theory, Automatic Control, page 193,

{ Now on leave of absence with the Office of Naval Research, Washington, D, C.



Introduction

The problem which is considered in this paper is that of follow=
ing a signal in the presence of noise as closely as possible with a linear
filter. The filter input, which is s function of time, is in general made
up of both signal, xs(t), and noise, xn(t). It is desired to choose a

linear filter, the output of which, xo(t), matches the input signal. Due
to the presence of the noise in the input it is clearly impossible for xo(t)
to be identical to x,(t). The object, then, is to choose that linear filter

which matches the two as closely as possible, A convenient criterion for an
optimum filter is the one which minimizes the mean square difference between
the filter output and the input signal.

Schematically the system is depicted in Fig. 1.

xg(t) + x (t) x,(t)

Linear Filter
A F(w) :>

The Basic System
Fige 1

The filter is considered to be a box whose characteristics are to be chousen
in order to minimize the mean square difference between xo(t) and xa(t).

The input signal and noise sre taken to be stationary random func-
tions; that is, the probab. ity distributions which describe the time func-
tions are inverient with respect to a change of the time zero, Further, the
signal and noise are taken to be uncorrelated.



For such a system, the mean squore difference between the filtur
output and the input signal, the error, is given by

o 2 2
o° = 'f;l[-[ [S(m) | 1-Flw)| + ¥l F(o)] ] do , (1)
-

where S(w) is the spectral density of the signal and N(w) is the spectral
density of the noise., It is seen that the miss is made up of two parts.

The first part, f S(w) |1 - Fl)] 2 dw, is the miss which 1is obtained be=
cause the trans?g; function differs from unity and consequently does not
follow the sipnal exactly. The second nart, N(w) IF(m)|2 dw, is the
miss which is obtained because the system doés follow the noise,

Eq. (1) is a standard equation, the derivation of which is im-
mediate when the signal, noise, and output are transformed to their Fourier
components. The mean square error is then found by squaring the absolute
difference between the output and the signal and integrating over all fre-
quencies. The (2n) is a normalization factor which abpears because of the
way in which the power spectrum is defined.

It is desired to minimize the error of Eq. (1) by the proper
choice of a realizable transfer function, the so-called optimm transfer1
function. In previous work in this field as developed by Wiener et al,
it is necessary in order to find the optimum transfer function that both
the signal and noise spectral densities be known.

This paper however is concerned with the problem of finding the
optimum filter over a class of possible signal spectral densities. Specif-
ically, the situation is considered where the producer of the signal by his
choice of spectrum attempts to maximize the error. Whatever is producing
the signal prefers not to be followed by the filter. The signal spectral
density is thus no longer to be regarded as s fixed function, given for the
problem, but rather as the strategy of one of the participants of a game.
The strategy of the other participant, the designer of the filter, is spec-
ified by the transfer function of the filter. e payoff of the game is
taken to be the mean square difference between output and input signal,

The problem of the filter designer thu$ becomes one of designing the best
filter in view of what, from his viewpoint, is the worst choice of the sig=-
nal spectral density by the signal producer. From the viewpoint of the
signal producer, a sirnal is generated which has statistical properties that
will result in the greatest possible miss despite the best possible efforts
of the filter desipner. If these two considerations are mutually compat-
ible, then there is said to be a game theory solution snd the functions
which setisfy these requirements are that solution.



In order to obtain game theory solutions the optimum transfer
function for any fixed signal spectrum and also the optimum signal spec-
trum for any allowable transfer function are found. The game theory solu-
tion is then the intersection of these two functional equations.

To obtain the optimum transfer function for any fixed spectrum
in a form convenient for game theory analysis a new variational procedure
has been developed which ylelds an integral equation for the amplitude of
the transfer function, For simple types of noise svectra the resulting in-
terral equation is easily solveds The functional form of the solution is
dependent only on the functional form of the noise spectyum. The resulting
solutions have a form which make them especially susceptible to game theory
analysis,

The method utilized is basically s simple one involving only ele-
mentary mathematics. In the hope that it will provide additional inaight
into the general optimum filter problem it is sketched here. It should be
noted that this method provides a rigorous and straightforward way of ob-
taining the optimum transfer function for the cases where the noise spectral
density increases at large fréquencies with increasing frequency. Such a
situation is of more than academic importance, as will be shown later,

The Optimum Transfer Function

It is desired to minimize the mean squareosrror of Eq. (1) by the
proper choice of realizable transfer function. If is to be a minimum it
must be stationary with respect to any srall realizable variation in the
transfer function, F(w), For game theory analysis it is found to be neces-
sary to apply the variation to 1 - F(w) rather than to F(w) itself. For
corvenience 1 - F(w) is called G(w). The phsse which accompanies G(w) is
said to be P(w). The vectors F(w) and G(mg can be considered to be two
sides of a trisngle, the third side of which is unity., They are thus re-
lated to each other by the law of cosines. Consequently Eq. (1) becomes

© :
o = -2%/_{[8(&) + N(w)] - |G ? + N(w) - 2N(w) | 6(w)| cos ¢(w)} dwe
-0 (1a)

A general variation in the log of |G(m)| which can conveniently

be used is indicated in Fig. 2, The variation of height h and width P is
-applied at an arbitrary frequency @y :



log |1 - F.(w)-l

@p w=—>

General Variation in Log |1 - F(w)l
Fige, 2

Since the variation must be a realizable one, the change in phase associated
with it is given from the usual criterion for realizsbility. 2 Algebraically,

6¢ .- - zzﬁ ] e (2)

If one sets the first variation of o equal to zero, the following
integral equation results:

(1 0]
{|G|2 (s +N) - N lal cosp} e %f o N |Gl ;inﬂ do
W= w o O = 0
A
o
1 G
- %f%' ) do , (3)



where i1t is now understood that G, S, and N are all functions of w. The
right side of Eq. (3) for an analytically given noise spectrum is readily
evaluated by integration in the complex w-plane around the contour shown
in Fig. 3. The radius of the semi-circle is very large. Since G{w) has
no singularities in the lower half plane, the integral can be evaluated
in terms of the poles of N(w) in this region.

w=—>

The Basic Contour

Fig. 3

Simplification results when it is noted that the contritution from the
poles * o, is identically {- N |G| cos 9} . JThus an expression results
w
A

which gives |G|2 (S + N) in terms of the values of G at the poles of N,

For the case where N = No’ a constant (white noise), it is seen
that the solution for the optimum transfer function is

2 2
N(w) = N_; lo()l = |1 -F@)| = NmN,,m =~ (L)
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2
N a
For Markoffian noise, N(w) = -g——-—z- s the optimum transfer function is
w +a
readily given as
2
N a 2 2
0 N(w
N(w) = -;z—:zz 3 lG(m)' = |1- Flw) = K Torest .. F (9)

where
®
Ky = oxp [m“: [ ¥ o6 gyt d‘*’] - L2

lMore complicated types of noise spectra give similar albeit, more
cenplicated, results. Should it be desired to obtain the actual transfer
frrotion, Flw) s this can be done from the law of cosines where the phase is
ot tained uniquely from the realizability criterion, 1t can be shown that
for simple noise spectre like those above, G(w) must be minimum phase,

The above results are of course in agreement, although in differ-
ent forms, with the results as given by Wienerel
One can integrate each term of Eq. (3) with resppct to w, from

~@to +®, If N(w) goes to zero at infinity, the order of integration of
the double integral on the right hand side of the equation can be intere
changed and is then seen to be identically zero. The relation is obtained

n
then for the optimum 1Gl“ , where @, 1s now called ¢

® ©
¥e) >0 5 f 612, (6 + W) dw= [ lal,y cos § a0 . 6)
® ->» © o o

This leads to the relationship for the: optimum error

(10,
N(w) =>»0 ; o . " f[N- lG'ipt (s+N)] do (6a)

w—> 0 >

N
2l



As will be shown later, cases where the noise spectrsl density
increases at infinite frequency are of importance. For such cases, the in-
tegral of Eq, (3) does not converge. It is necessary to use a less general
variation than that shown in Fig, 2; i.e., a dipole, quadrapole, or higher
order variation depending on the behavior of the noise srectrum at infinity,
A slightly different variational equation for the optimum transfer function
results,

For example, when the noise spectrum is & polynomial of orcer mh
then the variational equation to be solved is

. 2
N(w) = N+ Ny 0 +thh;

2
W
A Q
{|G|2 (s +N) -Nlal cos¢} - %wAz f N |G| sinf  do . (7)
w=o0 ole? = ©,°)
o) A
This is readily solved to give for the optimum transfer function
N o e ngtend ] . 1) - MeliEo )
o 2 ye 3 - my ?) ?
where K is pgiven by
N
[ e F&HE w =0, (8a)

o

Similar results are obtaingd for polynomial noise spectra of other
orders.
It is important to note that the functional form of the relation-

ship for the optimum |G(a>)|2 is dependent only on the functional form of the
noise spectrum,



For noise which does not decrease at infinity, Eqs. (6) and (6a)
are no longer valid, It can be shown that Iq. (6a) then becomes

N(w) is a polynomial;

A

©
2 1 2 2
Coot ™ - J [N -|G|opt (S + N) + XN log |G|opt] do « (8b)

Note for the case of white noise,

NeN ; o2 --lfN 1o No dw (8c)
o?! opt no 0 8N°+§zm5 8 <

!’

Optimum Signal Spectrum and Game 'theory Solutiong

That transfer function which minimizes the mean square error for
any given stationary input signal has now been found. This transfer func-
tion can be considered to be the strategy of one of the participvents of a
game, The strategy of the other participant can be considered to be the in-
put signal spectrum. This participant attempts to maximize the error for
any given transfer function.

Clearly the input spectral density which maximizes the mean square
error is dependent on the restrictions imposed on this spectrum. If there
are no restrictions placed on the input then evidently the error is a maxi-
mum when the spectrum is everywhere infinite,

If the mean square value of the n-t-h- time derivative of the signal
is fixed to be some constant,M, then it can be shown that S(w) must have the
form

S(w) = A g(w) ’ (9)

W
where g(w) is the signal choice function defined o “hat

0
[ glw) do = 1 (9a)
-0
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The signal producer desires to choose g(») in such a way asg to
maximize thc mean square error for any given transfer function. It is clear
upon examination of Eq, (1) that this is accomnlished if the signal spectrum

has a value only at the maximum values of |G(m)|2/m?n and is elsewhere zero.
The intersection between this functional relationship snd the applicable re-

lationship for the optimum IG(m)'2 for any input signal spectrum is said to
be the game theory solution,

For the simpler noise snectral densities which have already been
considered it is easily shown that the solution exists and is unique. It is
easily shown that the only conditions under which a solution exists is for

|G(m)|2 w?? to have a broad maximum which extends from w = O to some @y the

cutoff frequency. The input spectrum 5{w) must be continuous at the cutoff
frequency @, and indeed must be equal to zero at this point, Otherwise the

hypothesis that lG(m)|2/62n is a maximum in the frequency region below w
would be contradicted. o

The solution is here carried through for the case of white noise,
Nw) = No' As has been indicated, the optimum transfer function for this

case is given by

2 N
[15] N_—:—STJ S (10)
o

The quantity |G|2/h?n is a constant in the frequency region between zero and
© o Since S(w), by hypothesis, is zero outside this region, |G(w)l 2 1s unity

for frequencies greater than @ e Continuity at @ then dictates that the
game theory transfer funetion be given by

) . (m/mo)zn 5 o € o
l6(w)] = |1 -F) = (10a)
1 ’ o 3 @, o

The cutoff frequency is determined from the condition that

®
f gw)do = 1 (10b)

-®



=1 =

Substitution of Eq., (10a) into Eq. (10) gives for the game theory signal
spectrum, S(w)

' 2
N, Ewo/co) "o 1-J ; o Sao
8(w) =1 (1ue,
0 W El‘ﬂ, .
.

The relationship between S(w) and g(w) substituted into Eq. (10b) ylelds the
cutoff frequency, W o Thus

2
2n + 1 2n + 1 M
a)o = n 1 ( N; ) . (10d)

The quantity (MZ/NO) is a dimensional parameter which determines the error.

It is to be noted that G(w) is the well known so-called semi~in-
finite slope. The phase for such a transfer function is given by Bode, 2
Chap. XV. A knowledge of the phase enables one easily to obtain F(m), the
actual transfer function, from the law of cosines.

For other noise spectra the solutions are obtained similarly, al-
though not as conveniently., The results are generally not as simple as
those for white noise.

When the optimum transfer function is used, all of the mean square
time derivatives of the output become infinite. The argument follows. It

is to be noted from Eq. (1) that N(w) IF(w)| 2 and S(w)lG(m)|2 enter the expres-
sion for the mean square miss symmetrically. Thus an integral equation in
terms of Flw) similar to E§. (3§m2an be derived by replacing G(w) by F{w) and
interchanging S(w) and N(w). Examination of this equation indicates that for
the optimum transfer function

2
|F(<n)| N(w) — constant (11)
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In terms of its power spectrum the mean square value of the ng-l
time derivative of a stationary random function is known to be given by

o
'Q}ﬁ' [ m2n S(w) do + Thus the mean square value of the n-t'—l'l time derivative'
-
of the filter output is

drl xgtzf
n

: P 2
p” - -23’-!» / mzn lF(o))I [S(a)) + N(a)a do . (12)

-1

When the optimum transfer function is used it is seen that because of the
noise contribution all the mean square derivatives are infinite,
The minimization of o subject to the restriction that its n-t-:’-)l
mean square time derivative be finite can be accomplished by the method o;»
n
Lagrange multipliers, It is then desired to minimize 62 + A lg__Iéil .
dt
Here A is a Lagrange multiplier, the value of which determines the value of
the derivative, This process is especially simple if only the contribution
due to noise (the portion which causes the divergence) is 1limited. It is
necessary then to minimize

a” xgtz
at"
- o)

2 2
- %J {s(m) |1 - Flw)] + N) [1 + az'j | Pl }da) . (13)

For the case of greatest interest, white noise, it is noted that the problem

is formally equivalent to minimizing a fictitious 02 with a given input sig-
nal and a polynomial nolse spectrum.

The game theory error has been computed for the case where the mean
square second derivative of both the input signal and the output are limi ted.
The game theory error, normalized, has been plotted in Fig, L as a function
of the ratio of the root mean square second derivative of the output due to
noise to the root mean square second derivative of the input signal.
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