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LINEAR FILTER OPUMIZAXION . 

Wim GAME 'TOEORY CONSIDERATIONS    ' 

by 

M, C, Yovits and J, L, Jackson 
Applied Physics Laboratory 
Ihe Johns Hopkins University 

Silver Spring, Md. 

t 

Summary 

The optimum reproduction of a signal in the presence of noise by 
means of linear filters is considered when the signal is unknown. The prob- 
lem is likened to a game. In such a game the signal spectrum can be con- 
sidered to be the strategy of one of the participants, while the strategy 
of the other participant is specified by the transfer function of the fil- 
ter. The payoff is taken to be the mean square difference between filter 
output and signal. The signal producer by his choice of spectrum attempts 
to maximize the difference while the filter designer attempts to minimize 
it. 

In order to obtain game theory solutions the optimum transfer 
function for any fixed signal spectrum and also the optimum signal spectrum 
for any allowable transfer function are found. The game theory solution is 
then the intersection of these two functional equations. 

In order to obtain the optimum transfer function for any fixed 
signal spectrum in a convenient form a new variational procedure has been 
developed which yields an integral equation for the amplitude of the trans- 
fer function. The form of the relationship is dependent only, on the noise 
spectrum. For simple noise spectra the results are both simple and con- 
venient for game theory solutions. 

The new variational procedure enables one easily to find the op- 
timum transfer function when various of the mean square time derivatives of 
the filter output are fixed. This is shown to be formally equivalent to 
finding the optimum transfer function for polynomial noise spectra. De- 
tailed calculations of the game theory solution for the case where the mean 
square second time derivatives of both the filter output and the signal are 
fixed, have been performed. The mean square difference has been computed as 
a function of the ratio of the output to signal second derivatives, T^iis is 
presented graphically. 

* Thie work vat aupported by the Bureau of Ordnance, Departaent of the lary, 
Under Contract H0rd^7386. 

t Presented at the I.E.IS. National Convention, Hew Tork City, March 21-24, 1955. 
No« contained in the 1955 National I.B.X. Convention Record, Part 4, Conrputere, 
Infomation Theory, Automatic Control, page 193. 

f Now on leave of absence with the Office of Naval Research, Washington, D. C. 
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Introduction 

The problem which is considered in this paper is that of follow« 
ing a signal in the presence of noise as closely as possible with a linear 
filter. The filter input, which is a function of time, is in general made 
up of both signal, x (t), and noise, x (t). It is desired to choose a 

s n 
linear filter, the output of which, x (t), matches the input signal. Due 

to the presence of the noise in the input it is clearly impossible for x (t) 

to be identical to xB(t), The object, then, is to choose that linear filter 

which matches the two as closely as possible, A convenient criterion for an 
optimum filter is the one which minimizes the mean square difference between 
the filter output and the input signal. 

Schematically the system is depicted in Fig, i# 

x(t) ♦ x (t) 
s     n 

Linear Filter 

F(CD) 

x0(t) 

■> 

The Basic System 

Fig. 1 

Ihe filter is considered to be a box whose characteristics are to be chosen 
in order to minimize the mean square difference between x (t) and x (t), 

0 8 

The input signal and noise are taken to be stationary random func- 
tions j that is, the probability distributions which describe the time func- 
tions are invariant with respect to a change of the time zero« Further, the 
signal and noise are taken to be uncorrelated. 

i 
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For such a system, the mean square difference between the filtor 
output and the input signal, the error, is given by 

a2 ^-/     [S(cü) |   1 - FU) |       +   N(Cö)|P(Cü)|    ] dec ,        (1) 

-00 

where SCw) is the spectral density of the signal and N(ü)) is the spectral 
density of the noise. It is seen that the miss is made up of two parts« 

The first part, / SU) 11 - F((o)|  dco, is the miss which -is obtained be- 

cause the transfer function differs from unity and consequently does not 

follow the signal exactly. The second part, / N(aj) IF(Cü)| dw, is the 

miss which is obtained because the system does follow the noise« 

Eq, (l) is a standard equation, the derivation of which is im- 
mediate when the signal, noise, and output are transfonned to their Fourier 
components. The mean square error is then found by squaring the absolute 
difference between the output and the signal and integrating over all fre- 
quencies« The (2n) is a normalization factor which anpears because of the 
way in which the power spectrum is defined. 

It is desired to minimize the error of Eq. (l) by the proper 
choice of a realizable transfer function, the so-called optimum transfer, 
function« In previous work in this field as developed by Wiener et al, 
it is necessary in order to find the optimum transfer function that both 
the signal and noise spectral densities be known« 

This paper however is concerned with the problem of finding the 
optimum filter over a class of possible signal spectral densities« Specif- 
ically, the situation is considered where the producer of the signal by his 
choice of spectrum attempts to maximize the error« Whatever is producing 
the signal prefers not to be followed by the filter« Ihe signal spectral 
density is thus no longer to be regarded as a fixed function, given for the 
problem, but rather as the strategy of one of the participants of a game« 
Die strategy of the other participant, the designer of the filter, is spec- 
ified by the transfer function of the filter« •The payoff of the game is 
taken to be the mean square difference between output and input signal, 
Ihe problem of the filter designer thui becomes one of designing the best 
filter in view of what, from his viewpoint, is the worst choice of the sig- 
nal spectral density by the signal producer«. From the viewpoint of the 
signal producer, a signal is generated which has statistical properties that 
will result in the greatest possible miss despite the best possible efforts 
of the filter designer« If these two considerations are mutually compat- 
ible, then there is said to be a game theory solution and the functions 
which satisfy these requirements are that solution« 
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In order to obtain game theory solutions the optimum transfer 
function for any fixed signal spectrum and also the optimum signal spec- 
trum for any allowable transfer function are found. The  game theory solu- 
tion is then the intersection of these two functional equations« 

To obtain the optimum transfer function for any fixed spectrum 
in a form convenient for game theory analysis a new variational procedure 
has been developed which yields an integral equation for the amplitude of 
the transfer function. For simple types of noise spectra the resulting in- 
tegral equation is easily solved. The functional form of the solution is 
dependent only on the func tional form of the noise spectjrum, Ihe resulting 
solutions have a form which make them especially susceptible to game theory 
analysis« 

Ihe method utilized is basically a simple one involving only ele- 
mentary mathematics« In the hope that it will provide additional insight 
into the general optiiron filter problem it is sketched here« It should be 
noted that this method provides a rigorous and straightforward way of ob- 
taining the optimum transfer function for the cases where the noise spectral 
density increases at large frequencies with increasing frequency« Such a 
situation is of more than academic importance, as will be shown later« 

The Optimum Transfer Function 

It is desired to minimize the mean square error of Eq, (l) by the 
proper choice of realizable transfer function. If o^ is to be a minimum it 
must be stationary with respect to any spall realizable variation in the 
transfer function, F(Cü)« For game theory analysis it is found to be neces- 
sary to apply the variation to 1 - F(Cü) rather than to F(Cü) itself« For 
convenience 1 - F(Cü) is called G(Cü). The ohese which accompanies G((o) is 
said to be 0(ü)). Ihe vectors F(Cö) and Oiu)  can be considered to be two 
sides of a triangle, the third side of which is unity« They are thus re- 
lated to each other by the law of cosines. Consequently Eq, (l) becomes 

o2 
00 

2^-/.{[s(£ü) + NHl ' lG^)l2 + N(w) - 2N((ü) |G(co)| COS ^U)} d«. 

-0° (la) 

A general variation in the log of I ON«)I which can conveniently 
be used is indicated in fig, 2, Ihe variation of height h and width ß is 
applied at an arbitrary frequency oa.« 
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log |l -F.U) 

CO. 
co- 

General Variation in Log 11 - FCos)! 

Fig. 2 

Since the variation must be a realizable one, the change in phase associated 
with it is given from the usual criterion for realizability, * Algebraically, 

60 2hß 
n  T 

CO 
(2) 

(0  - CO. 

If one sets the first variation of cr equal to zero, the following 
integral equation results: 

00 

{ Id2    (S + N) - N |G|   cos p} -   | /   ^lQL|isJ     d(D 

CO  ■   CO. 
0        co    - co. 

CO 
1    C <* N Q 

" ni; T"—r d£ö' (3) 
-CO  co   - CöA 
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where it is now understood that G, S, and N are all functions of co. The 
right side of Eq, (3) for an analytically given noise spectrum is readily 
evaluated by integration in the complex a)-plane around the contour shown 
in Fig, 3, The radius of the semi-circle is very large. Since G(w) has 
no singularities in the lower half plane, the integral can be evaluated 
in terms of the poles of N((p) in this region. 

The  Basic Contour 

Fig. 3 

Simplification results when it is noted that fhe contribution from the 

poles ♦ cü. is identically |- N |G| cos f\    . Uhus an expression results 

which gives |G|  (S + N) in terms of the values of G at the poles of N, 

For the case where N - N , a constant (white noise), it is seen 
0 ' 

that the solution for the optimum transfer function is 

2   .       .2 
N(o>) N |o(»)l .  11 - FWI   - H/HM . (U) 
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2 
N    a 

For Markoffian noise, N(Cö) ■    g       x , the optimum transfer function is 
CD   + a 

readily Riven as 

HC«) - fl_2 , | QU)|2 -    |1 - FU)| 2 - K     gg^Q    J (S) 
w   ■»■ a 

where 

Ka - exp [if- f   HU) log ro^y    doj    . (Si) 

More complicated types of noise spectra give similar albeit, more 
cexplicated, results«    Should it be desired to obtain the actual -transfer 
fvüiotion,    F((o), this can be done from the law of cosines where the phase is 
otudned uniquely from the realizability criterion,   ^t can be shown that 
for simple noise spectre like those above, G(a)) must be minimum phase« 

The above results are of course in agreement, although in differ- 
ent forms, with the results as given by Wiener^ 

One can integrate each term of Eq,  (3) with resppct to co. from 

-flOto ♦00«   If N(ü)) goes to zero at infinity, the order of integration of 
the double integral on the ripht hand side of the equation can be inter- 
changed and is then seen to be identically zero«    The relation is obtained 

then for the optimum lol1, , where co. is now called (p 

CD 00 

N(«) ->0    i        J    \G\2o t (S + N) dm - ^N  |G|O t   cos 0 dco    « (6) 
CD->0O O O 

This leads to the relationship for the- optimum error 

00 

c2 

CO—> 00 

KM-to   , Jmt ■ ; / [N - ,Glopt (s + H>] d» •        M 
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As will be shown later, cases where the noise soectrel density 
increases at infinite frequency are of importance. For such casesi the in- 
tegral of Eq, (3) does not converge", It is necessary to use a less general 
variation than that shown in Fig, 2; i.e., a dipole, quadrapole, or higher 
order variation depending on the behavior of the noise srectrum at infinity. 
A slightly different variational equation for the optimum transfer function 
results. 

For example, when the noise spectrum is a polynomial of order co 
then the variational equation to be solved is 

N(cü)    -   N   ♦ N. w2 ♦ N,   u4 j 
0       2 h       ' 

A n      n    fO 
||G|2  (S + N) - N |G| cos 0] -   |a)A

2    t  N |GI   sin 0       da>   ,    (7) 

co ■ 0 Q    co(as   " ^A  ^ 

Ihis is readily solved to give for the optimum transfer function 

NU) - No * N2co2 ♦ N^ , |G(co)|    -    |l - F(«)|    -   Jfef^TC)  *    (8) 

where K is given by 
00 

m-TrrTTz\   dco  -   0 , (8a) /lpß ÜUJ ? SU) dco 

o 

Similar results are obtained for polynomial noise spectra of other 
orders. 

It is important to note that the functional form of the relation- 

ship for the optimum |G(co)| is dependent only on the functional form of the 
noise spectrum. 



-9 - 

For noise which does not decrease at infinity, Eqs. (6) and (6a) 
are no longer valid. It can be shown that Iq. (6a) then becomee 

N(Cü) is a polynomial! 

00 
a2- opt - I /   [H - I 0loPt (5 * N) + N log |0|2J   da, .      (8b) 

Note for the case of white noise, 

00 

N ' No'    ^opt " " ^ / No loe iTTTTST d" •        (8c) 

Optimum Signal Spectrum and Game 'iheory Solutions 

Ihat transfer function which minimizes the mean square error for 
any given stationary input signal has now been found. This transfer func- 
tion can be considered to be the strategy of one of the participants of a 
game. The strategy of the other participant can be considered to be the in- 
put signal spectrum. This participant attempts to maximize the error for 
any given transfer function. 

Clearly thu input spectral density which maximizes the mean square 
error is dependent on the restrictions imposed on this spectrum. If there 
are no restrictions placed on the input then evidently the error is a maxi- 
mum when the spectrum is everywhere infinite. 

If the mean square value of the n— time derivative of the signal 
is fixed to be some constant,M, then it can be shown that S(Cö) must have the 
form 

SU) - ^  g(co) , (9) 
CO 

where g(w) is the signal choice function defined oo that 

00 
/  g(co) dw   -   1    , (9a) 

-00 
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The  signal producer desires to choose gta) in such a way as to 
maximize the mean square error for any given transfer function. It is clear 
upon examination of Eq, (l) that this is accomnlished if the signal soectrum 

has a value only at the maximum values of |G((o) /CO  and is elsewhere zero. 
The intersection between this functional relationship snd the applicable re- 

lationship for the optimum |G(ü))| for any input signal spectrum is said to 
be the game theory solution. 

For the simpler noise snectral densities which have already been 
considered it is easily shown that the solution exists and is unique. It is 
easily shown that the only conditions under which a solution exists is for 

|G(Cü)| /Cü   to have a broad maximum which extends from co • 0 to some co , the 

cutoff frequency, ^he input spectrum Slco) must be continuous at the cutoff 
frequency co and indeed must be equal to zero at this point. Otherwise the 

O      I     . n   n 

hypothesis that |G(Cö)| /Cü  is a maximum in the frequency region below co 
would be contradicted, 0 

The  solution is here carried through for the case of white noise, 
N(CD) ■ N ■ As has been indicated, the optimum transfer function for this o 
case is given by 

■ 

lo^'2 ■ rfrcr   • (10) 
o   • 

The quantity |G| /W  is a constant in the frequency region between zero and 
co. • Since S(co), by hypothesis, is zero outside this region, IG(Cö)|2 la unity 

for frequencies greater than co • Continuity at co then dictates that the 

game theory transfer function be given by 

2 2.1 (ö)/ü>o)2n '     « < «0 » 
IGU)!  - |l -F(co)|  '- { (10a) 

, 

The cutoff frequency is determined from the condition that 

CO 
/ gU) do) • 1  , (10b) 

-0D 
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Substitution of Eq.  (lOa) into Bq. (10) plves for the gane theory signal 
spectrum, S(u) 

\    k/")2n -i]. 0) 
^ w

0   I 

(10c/ 
(Ü    >   CO 

"*    o 

The relationship between S(Cö) and gCco) substituted into Eq,  (lOb) yields the 
cutoff frequency, w •    Thus 

■(C) 
2n ♦ 1 2n + 1      ,    j n     | ,.n,N 

2 
The quantity (M /^ ) is a dimensional parameter which determines the error. 

It is to be noted that G((£>)  is the well known so-called semi-in- 
finite slope, The phase for such a transfer function is given by Bode, 2 
Chap. XV, A knowledge of the phase enables one easily to obtain F(ü)), the 
actual transfer function, from the law of cosines. 

For other noise spectra the solutions are obtained similarly, al- 
though not as conveniently. The results are generally not as simple as 
those for white noise. 

When the optimum transfer function is used, all of the mean square 
time derivatives of the output become infinite. The argument follows. It 

is to be noted from Eq. (l) that N(Cü) IF(Cü)|  and S(Cü)IG(Cü)|  enter the expres- 
sion for the mean square miss symmetrically. Thus an integral equation in 
terms of F(ü)) similar to Eq. (3) can be derived by replacing G(ü)) by F(Cü) and 
interchanging S(Cü) and N(üJ. Examination of this equation indicates that for 
the optimum transfer function 

JFU)!2  N(co)  > constant  ^ (ll) 
2 

CO 

60 
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In terms of its power spectrum the mean square value of the 
time derivative of a stationary random function is known to be given by 

th 

th 

-r- J   &    S(a)) dco .    Thus the mean square value of the 

of the filter output is 

time derivative 

dn x(t) 

dt n 
-s)0 

00 2    r —i 
/  cö2n  |F(co)|        ls(w) * N(CD) dco (12) 

When the optimum transfer function is used it is seen that because of the 
noise contribution all the mean square derivatives are infinite» 

The minimization of <r subject to the restriction that its nr- 
mean square time derivative be finite can be accomplished by the method o 

Lagrange multipliers. It is then desired to minimize a ••■ X 
V dtn 

,) 
Here X is a Lagrange multiplier, the value of which determines the value of 
the derivative. This process is especially simple If only the contribution 
due to noise (the portion which causes the divergence) is limited. It is 
necessary then to minimize 

a2 + X 

^ / (s(co) |l - FU)| ♦ NU) [l * X a)2**) | FU)| JdUo . (13) 

For the case of greatest interest, white noise, it is noted that the problem 

is formally equivalent to minimizing a fictitious or with a given Input sig- 
nal and a polynomial noise spectrum, 

The  game theory error has been computed for the case where the mean 
square second derivative of both the input signal and the output are limited. 
Ihe game theory error, normalized, has been plotted In Fig, U as a function 
of the ratio of the root mean square second derivative of the output due to 
noise to the root mean square second derivative of the Input signal* 
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MEAN SQUARE GAME THEORY ERROR 
AS A FUNCTION OF THE RATIO OF THE 
RMS OUTPUT 22^ DERIVATIVE DUE TO 
NOISE (DENOTED AS Me) TO THE RMS 
SIGNAL   2^   DERIVATIVE 
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