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ABSTRACT

The luminescence properties of aromatic hydro-
carbons in plastic matrices were examined.

The relation between luminescence and photo-
conductlvity of zinc oxlde and lts dependence on
environmental factors was established.

A fluorescein plastic having properties
indicative of induced emission was made and tested.

. A new method for determining the degree of
coherence of non-monochromatic light sources was

deviged.
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1. Introguction and Summary

The original purpose of the project was to investigate the
possibility thet fluorescent organic substances in high
polymeric matrices might exhibit stimulated emission. Early
findings in our labovatory showed that aromatic hydrocarbons
dissolved 1n plastics exhibit at room'temperature a phosphores-
cence with a lifetime of the order of one second (oster,
Geacintov and Khan, Nature, 196, 1089 (1962)). It was sub-
sequently found that the detaills of the emission (spectra,
lifetime, order of decay)were dependent on the nature of the
polymeric matrix and other factors (paper No. 1). Ultraviolet
excitation of such systemg produces not only phosphorescence
but.also thermoluminescencg (paﬁer No. 2). The thermoluminescent
species 1s a distinct chemical species and has a characteristic
electron spln resonance signal.

Some effort was devoted tc the detalls of sample fabrication.
We have developed a differential heatihg technique for the |
polymerization of methyl methacrylate whereby the resulting
plastic is free of atrains (as shown by the absence of bire-
fringence) and free of refractive index gradients (as shown
by the absence of séhliéren). The method for obtaining plastic
samples free of optical inhomogeneities consists of polymer-
izing the monomer in a thgrmal gfadient with gradual extensiop
of the tube (contalning the oxygen-free monomer) into the hctier
portion of the gradient, the system being driven by a slow clock

mechanism.
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We also were aule to make homogeneous boric oxide glasses.
The method consists of careful control (temperature and time)
of the heating of bvoric oxide being cognizant of the various
hydrates which are transformed. The aémples aiso do not
crystallize (and thereby become opaque) as do the éamples
heretofore déscribeé iu the literature. incidentally, this
material also makes a convenlent matrix for inorganic ions as
well as for organic dyes and metal chelates. The materiﬁl is
as hard as sllica glass yet requires only 200°C for the firing
temperature. |

Dibenzanthracene, as well as several other fused-ring
aromatic substances, in plastiic matrices exhibit strong triplét-
triplet spectra in the visible range with a lifctime of one
second. When such samples in the'formvof rods are placed in a
helical xenon flesh lamp the visible 1ight emission from the
lamp has a lifetime far shorter than the decay time of the
xenon lamp (i.e. much shorter than io°3 sec.); Apparently due
to the formation of the triplet species {which we estimate to
0-12

occur in less than 1 sec.) there is a filtering effect which

acts as a shutter. Due to the long duration of the triplet
species the shutter is closed for about one second. ,By'the
proper choice of aromatilc comppund (e.g. picene whidh has a deep
red absorbing triplet-triplet spectrum) this should also work
for the ruBy laser. |

One obvious drawback of the aromatic hydrocarbons as
Jossible laser materizls 1s that their tripiet-triplet absorption
bands seriously ove;lap with the phosphorescence emission band

(beta phosphorescence). This problem does not appear to be the
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3.

case with fluorescein, at least in the manner in which we employed
this substance (paper No. 3). Our samples are in the form of
rods (but not silvered ends) and are exclted by a helical xenon
lamp.  Fluorescein (in the unionized form) in polymethyl
methacrylate gives off a strong burst of light of several milili-
seconds duration after the exciting flash has decayed. The
natural lifetime of emission is shorter than the lifetime of the
pumping flash lamp. The'opposite is the case with ruby and
hence results in shortened lifetime when threshcld 1is. exceeded.
Doubling.the sength of the flvorescein rod increases the
intensity of emlssion by a factcv of one hundred. Our system
bears some resemblance in performance at room femperature te
that of the europium chelates at low temperatures where -
stimulated emission seems to occur (Lempicki and Samelson,

Appl. Phys. Letters 2, 159 (1963)). Thus, we are convinced

that we have demonstrated induced emission in the fluorescein
organic system but we do not have a narrowing of spectrum of
emission as is the case with the ruby laser.

We noticed that zinc oxide phosphorescence at low temper-
atures is excited by red light from a ruby laser or from a
helium-neon laser. In order to follow this through we undertook
a defailed study of the luminescence and photoconducfivity of
zine oxide (paper No. 4). Although this work may not have
immediate application to laser technology it does, however,
boint out a neglected area, namely, environmental factors, in
the physics of solids;

- Since the emlssion spectra from the fluorescein plastic
are broad we felt the need for a method whereby cohcrence as

a function of wavelength could be determined. Our method
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was tried with a tungsten source ard consists of the examination
of the spectra of the ce“tral portion of the 1ntéfferenée
patiern from a Michelson Interferometuor (paper Nb;ls). _The
method proved to be sensitive and coherence of 6ne part in a
thousand seems to be feasible to detect. Our work shows that
interference can occur at path differences a hundred times

greater than the calculated coherence length.
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the interactions between the phosphorescent metastable species is greatest for
polyvinyl chlcride sipes the band widthe cf the phosphorescence is greatest
(1000 cm* for both the @ and O bands) yet abeorption snd ficorescent band
widths are practically identical with those of thy other polymers. Furthermore,
the @ and O bands show a small red shift relative to those for the other plastics.
Presumatly these phenomena are manifestations of the influence of heavy
atoms, such as chlorine, on the triplet state {5].

For all cases, the degassed samples exhibit a strictly exponential decay
of phosphorescence over at least six lifetires (3.e. down to e of its initial
value). Whea, however, the solvent is not completely removed in the usual
manner {namely, by heating at 60°C in vacwo for 16 hours) the phospherescenco
decay i3 non-exponential. Furtherniore, the lifetime is of much shorter dura-
tion than for the essentially solvent-free plastic and sue 0/@ ratio is counsider-
ably smaller. These results demonatrate that the sclvent reduces the macro-
scopic viscosity {13) and that the solvent is not uniformly distributed. As
8 consequence there is a distribution of lifetimes (cf. [14)).

4. Effect of temperature

For polycarbonate the intensity snd the spectrum of fluorescence is
practically unchanged between —196°C and 62°C. On the other hand, the inten-
sity of phesphorescence decieases with increasing teraperature and the O and @
bands are broadened especially above room tempere*ure. In a similar fashion,
the polarization of fluc.escenc. is practically independent of temperature
while the polarization of phospkorescence changes with temperature being
-0.28, —0.26, —0.20 at —196°C, 25°C, and 62°C, respectively. The lifetime of
phosphorescence as a function of temperature follows an Arrhenius plot from
25°C to 87°C with an activation enerry of only 0.08 eV and the activaticn
energy ia still lower at lower temperatuies (lifetimes o? 1.1, 1.3, 1.3 sec at 25°C,
—73°C and —196°C, respectively). Polystyrene has the same temperature
dependence of lifetime up to 72°C above which *his plastic softens and the
lifetime drops precipitously. In polyvinyl chloride tiie lifetime of phospio-
Tescence is independent of temperature betweer. —195°C and 65°C above which
temperature the plastic softens.

5. Effect of oxygen

Oxygen quenches the phosphorescence of DBA in plaztics. The phosphe-
rescence gradually appcars as air is pumped out of the thin film. At the same
time, we noticed fthat the flucrescence intensity decreased by roughly the same
number of quanta appearing as phosphorescence. Typically, after complete
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evacuatior (6 min for polystyrene) the fluoressence peak at 420 mu has de-
crease (relative to that in air) by 169, and ¢p/¢, is 7%. In the reverse ex,seri
ment, namely introducing oxygen to a fully degassed sample, the flaorescence
is enhanced and the phosphorescence is suppressed. This cycle of degassing
and admission of oxygen can be repeated many times with the same results.
In the absence of oxygen the lifetime of phosphoescence is so great that even
with moderate exciting intensities, the concentration of ground state molecules
can be depleted in proportion to the rumber of molecules iu the metastable
state, and hence the fluorescence will decrease. Since oxygen quenches the
metastable state, the conventration of these species in oxygen-containing sam-
Dles is very iow and hence the fluorescence intensity will be higher t:an for
the degassed samples. This argument is based, of ocourse, on the assumption
that oxygen does not affect the probability of transition from the excited
einglet state to the metastsble state.

The phosphorescence decay and int~nsity of DBA in polystyrene films
in equilibnum with oxygen has been studied as a function of oxygen pressure
in the range of 0-100 microns of mercury. The decay which. is more rapiu the
greater the oxygen pressure is non-exponential in the first 0.4 sec after the
exciting light is venoved but is thereafter strictly exponential up to at least
six lifetimes. The initial portion of the decay curve corresponds to a distvi-
bution of shorter lifetimes than in the later exponential portion of the curve.
Those oxygen molecules which happen to be in the immediate vicinity of
& metartable species will quench it more readily than one wou'd expect from
the steady-state diffusional encounter theory of Smoluchows¥i [15] and Sveshni-
kov [16] (for review see Forster [17]).

The iifetimes determined from the exponential portions of the decay
curves decrease with increasing oxygen pressure in the same manner in which
the intensity decreascs. For low oxygen preasures (0-20 microns) the curves
follow the ftern-Volmer expression. From the measured quenching constant
wo calculate from the theory of diffusional encounters the constant of diffusion
for oxygen intc plastics which is in reasonable agreement with the values ob-
tained by direct measurements {for review sce [18] and (19]). At low tempera-
tures where diffusion is suppressed, the presence of oxygen does not influence
the lifetime but doer affect the decay during the first 0.1 sec, in which region
it deviates from exponentiality.
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ORGANIC PHOSPHORESCENT MATERIALS*

Gerald Oster and Gavrielia Gabor
Polytechaic Institute of Brockiyn

ABSTRACT

Irradistion by X-rays or by ultraviolet light produces an onhamc& phosphorescence
i1 plastics containing dibensanthracene. Samples which have been irradiated ‘ "
exhibit a thermoluminescence when heated above room temperature.

The phosphorascence enhanco'ment is accompanied by an incresase of the absorption
at 450 mitand by a {ree radical ¢ s r signal. On allowing the irradiated material

to stand for long periods of time at room temperature all these three cluuctorilticy
decay.



= g PP s S S et e 2 2 = g = o mmm“m.:;mwgg%

TR

AAHH LI 54

Introduction :

Fused-ring aromatic hydrocarbons dissolved in plastics exhibit phosphorescence
at room tomporatnre.l The phosphorescence is of a duration of about ons second.
On the oiher hand, the fluorescence has a lifetime of a fow nanoseconds. For the
aromatic hydrocarbons-the phosphorescence is of the beta type, that is, it is of
longer wavelength than the flucrascence. Hence. by the simple expadient of intro-
ducing a cut-off {ilter for the fluorescence, one cbserves only the phosphorescence.
The beta smission is sasociated with the transition from the long-lived metastable -
state to the singlet ground state. The situation is more complicated, howevar, since
in the case of 1, 2, 5, 6 dibenzanthacene, for example, two phosphorence bands
change their relative intensities under diiferent conditions (different plastic matrices,
different temperature, &_tg.z). Oxyzen quenches the phosphorescence. The effort
is reversible in that on removal of oxygen the phosphorescence is completely restored.

The present work is based on the observation that samples of dibensanthracene in
plastics and in the presence of air increase thair phosphorescence with increasing
dosage of either ioniting radiation or of ultraviolet lighte. We have also observed a
thermoluminescence on heating these samples which had previously been {rradiated.

The effect of ionizing radiation seems to be of the same character as that observed
with irradition by ultraviolet lighte For convenience we have employed in the present
studies mainly ultraviolet light. We have confined most of the workto 1, 3, 7, 8
dibenzanthracene, since this substance gives a more pronounced effect than does
1, 2, 5, 6 dibenzanthracene or, for that matter, any of the other available hydro- _
carbons. ‘

Exp erimental

In the present studies we confined our attention to only two matrices, namely
polyvinyl chloride and polymethyl methacrylate. Polyvinyl chloride was found to be
a more effective matrix for the production of increased phcsphorscence:. The fused-
ring aromatic hydrocarbon 1, 2, 7, 8 dibensanthracene (hereafter abbreviated as
DBA) was mixed and ground with the powdered polymer. The mixture was subjezted
to pressure (18, 0" p.1.i.) and heat (150* C for polyvinyl chloride and 180° C for
polymethyl methacryla. 2, in a heated hydraulic press.

m

The absorption spectra of the clear plastic films were measured in a Cary 14
spectrophotometer, The absorption spectra of DBA in the filmc are identical with
~ those in ordinary organic solvents.? The absorption spectra above 280myiconsists
of many peaks grouped into three bands. The first region which corresponds to the

transition to the first excited singlet stife is between 365 and 400 mj4 while the
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secend excited singlet transition is between 320 to 365 mit

The emission spectra were determined with Pczkin = Elmer monochrometer and
the intensity was recorded photometrically. The exciting l.ght was a mercury arc
(point source Osram HBO-100) where the mercury lines were isolated with a Baush .
and Lomb grating monochrometer.

On irradiztion of the sample with a )00 watt mercury lamp (GE type AH4) zt a
distance of 30 cm. the phosphorescence (as observed by excitation with a 4 watt GE
Black lamp emittmg mainly 365 m}{ increases with time of irradutinn(F iz- l)-
ination of irradiation wavelengths below 33 mil (using appropriate cut-off filters)

did not influence the effect, Elimination of 365 mjifrom the irradiation source, how-

ever, practicdly eliminated the eifect. Irradiation with a mercury resonance

lamp (emitting mainly 254 ) resulted in decomposition of the aromatic hydrocuban.
This destruction of the hydrocarbon was not, however, apparent when irradiation was
carried out using X-rays since the effective dosages were quite small, In the case

of jonizingradiation the source was a tﬁngpten target Machlett tube operating at 50 KV
and 10 milliamps. ‘

On irradiation the absorption spectrum of DBA is modified, In particular a new
peak is produced at 450 myi (Fig. 2). Both the absorption and the phosphorsscence
increase in paralle]l manner (Fig. 1, Table I). In the phosphorescence spectrum of
unirradiated polymer (in the absence of oxygen), -the ratio of the orange to green
peaks is mearly unitys, With irradiated polymer, the orange to green ratio progressive
ly increares (Table I).

Plartic films which are thin show a greater sensitivity to irradiatior than those _
which are thick. Thus, for the production of the same degree of phosphorscence and
of the 450 m{t absorption peaks a dosage of forty times more is required for a 0,46 mj:
sample “hen for a 0. 16 mm. sample. The 450 my absorption peak decays slowly with
time at room temperature and the decay (first order) is more rapid for the thin sample
than for the thick sample (decay times of 1.9 x 102 sec. and 1.1 x 103 sece, respec-
tively)e The decay in the intensity of phosphorescence follows that of the decay in the
absorption at 450 mi4 The decay is slower in vacuo than in the presence of oxygen.

On rapid heating {about 80-%0° Cﬂhe irradiated sample the loss of the 450 my
peal: is immediate and a thermoluminescence is otserved. This effect should not be
confused with the low-temperature thermoluminescences The plastic containing DBA,
whether or not it had been previouslv been irradiated, will show a thermoluminescance
when it is excited with wesk ultrav st light at liquid nitrogen temperature and then
warmed up. At liquid nitrogen temiperature the sample exhibits a very long lived
phosphorescence which is independent of whether or not the sample had been
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irradiated. After the phosphorescence is allowed to decay &t -196° C the sample

is warmed up and a strong thermoluminescence appeired with its greatest intensity
at about -130° C. Here again, the effect is independent of the previous irradiation.
The plastic doue (i.es DBA absent) likewise exhibits a low-temperature thermo-

luminescence® but this effect is several orders of magnitude weaker than when DBA
is present.

UMb
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Electron spin resonance of the samples were meuurqu ina Va.i-iu; apparatus
(Model }o The unirradiated samples showed no signal nor did the irradiated
polymer (free of DBA). The irradiated samples containing DBA showed a strong
signal at a frequency of 9506 I 0.5 megacycles and H = 3,400 gauss with a signal
width of about } gauss. This is a characteristic free radical ligna.lﬁ'. The signal

decays at room emperaturs; with time exactly parallel to the decay in the 450 my
absorption peak (Fig. 3},

I

lsast
With X-rays the effect is linear with dosage at down to £00 r, the lower detectible
limit of the phenome-om.

iR

Discussion

There are three related phenomens whick occur when irradiating a sample of
polymer containing DBA. There are the increases in the phosphorescence, the
absorption at 450 mii and the free-radical ¢.s.r. signal. All three phenomena decay
at room temperature with the same rate. -

The phosphorescence of the irradiation product is richer in green than in orange
emission in contrast to the normnal pBA3 suggesting that the enhanced emission
arises from a new ¢i:zmical species. This species is free radical in nature
(as shown by e.s.r. spectra) and might be a photo-ionized form of DBA., The '
ionization potential of DBA in pelymeric matrices is not known and might be
considerably lower than those calculated for aromatic hydrocarbons molecules
in vacuoe« The slow decay at rocm temperature of these species may be due to the
slow diffusional encounters of the trapped photo-electrons and the ionized species.
On warming the irradiat~ sample the plastic is softened and hence the recombination
(accompanied by emiss_ . , is considerably accelerated, It is well known that free
radicals are readily attaciked by oxygen (to give peroxides) and hence the enhanced
rate of disappearance of these species by oxygen is understandable. This also
explains why the thinner sa:nples in 2ir show a greater rate of decay than the
thicker samples since oxygen diffusion is the rate-controlling step. Oxygen also
playr a role in the formation of the radical species since for a given dosage of
absorbed ultraviolet light the effect is greater the thinner the sample.

e e

R

o




e e

oda

We are now engaged in a &tudy to find conditions which will increase the
sensitivity of the phosphorescence enhancement effect. At the present time the
effect is suitable for Xe-ray closimetry in the 1000 to 10,000r range.
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1, 2,7, 8DBAin PVC 5% .31 mm thick.
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, FIGURES _ A
Fige 1 Parallel increase of optical density at 450 my {D) and phosphorescence 8o
: fluorescence ratio (p/f) on UV innoculation. Circled points represont the

the decay of the effects.

Fige 2 Production of emitting species as measured by production of new absorption b
band '

Fige 3 Decay of emitting specics as meas
and decay of e.s.x, signal.

ured by decrease of absorption at 450 my
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FLASH-INDUCED EMISSION FROM A FLUORESCEIN PLASTIC*

Amditze) !:acsymgi* ard Gerald Oster
Falytechnic Institute of Brooklyn

Brooklyna, Nesv York, 11201

VWhen dyes are present during the free radical polymerisation of vinyl monomers
the dye i3 incorporated into the polymer chain by virtue of chain trwferlo The |
luminescence properties of the resultant plastic may differ from thode observel by
merely dissolving the dye in a rigid glass or in a plastic matrix, V/e l.ave observed
that fluorescein chemicallv combined with polymethyl meibwryhte. plastic exhibits
at room temperature unusual juminescencg behavior when excited with a strong flash
of light.

Fluorescein (acid;-free) was dissolved in freshly distilled methyl methacrylate
containing 0. 1% benzoyl peroxide anc the mixture was allowed to polymerize in 6 min.
diameter glass tubes se;led at both en’s. | I order to reduce optical inhomogeneities
the polymerization was carried out in a thermal gradient.' The resultant plastic rod
was removed from the glass tube and its ends were cut and polished, Re;:‘eated
selective solvent extraction of the material shows that fluorescein had been chemically

combined with the polymer.

In the monomer fluorescein absorbs maximally at 320 njtand at 450 muwith a
fluorescence er'ni_;sion band al 505 my thé band width being about 100 mis The long
wavelength absérption peaky depends strongly on the concentration but the fluorescence
ermission spectrum remains practically unchanged. 2 On polymerization the absorptior
band at 320 my (which, by the way, corresponds to the strongly absorbing region of |
the polymer) shifts to 355 myl with a marked increase in extinction coefficient but the

.imninelcance spectrum is still muxi.nit.lly at 505 mi.
' 4 .
On excitati:gn of this rigid system with ‘a low intgnsity-flash the phosphorescence

(alpha type) has a lifetime smaller than one milligec, With high intensity flash

' uﬂugm#“ A




excitation (achisved with a FX-42 flash lamp with the sample replacing the ruby rod
of a type 3542 Maser @ﬁc. lager) the emission is prolonged and shows maximy .

several milliseconds after the flwsh is initiateds In Fig. 1 is shown a typical result
which can be repeated several times for a givern sample. The efrect depends critic-

ally on the concentration of the dye amnd is best for concentrations hstween 10"

19-5

and
gm. dye pdr gm. of originsl :nonomer. The hign concentratizn limit may be
due to reabso ntion of the emission dwe to the long wavelength absorption bard
which for the polymer is also strongly dependent on dye concentration. Doubling of
the length of the rod incresases the intensity of umission by a factor of one hundred
but in this case, after a few flashes, burnt-out zpecks appear along the core of the
sample. There is a critical threshold of flash intensity (500 joules for 2 2.5 cm
sample bt much lower for a 6 cm. sample) below wiuch this unusual emission
disappears.

The fact that the emission does not decay monotonically rules out the possi-
bility of delayed emission due, for example, to the recombination of trapped
electrons and holes. The effpet is not due to thermoluminescence (evoked by heat
production during the flagh) since we observed » threshold energy and a critical
dye concentration for the effects The existunce of a tureshold and of the enhanced
effect when the length of the rod is iacir.»~2d suggest the possibility of atimulated
emigsion. Chi,mo3 of stimulated emission for aromatic compounds in low tempera-
ture glasses have not heen lubgt&ntiated" 5. Such compounds exhibit a beta
phospherescence in plalticl6 and their triplet-triplet aboorptionbé u seriously
overlaps with the emission. Indeed, we were unable to observe the fluorescein
type emission with picene or with dibensanthracene, both of which exhibit a beta
phocphorelcenceb. The emission characteristics of our system are very similar
to those oburvcds for europium cheiatu at low tempcratures.
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Figure

Fige 1  Time course of ercissi n from a fluorescein plastic 2.5 cm. loz § (dye

concs 5 x 1073 " gm per gm of monomer). Input energy 600 joules. Dotted

curve represents Cecay of flash tube, Light detector: RCA 7102 multiplier
phototube,
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ENVIRONMENTAL FACTORS IN THE LUMINESCENCE
AND PHOTOCONDUCTIVITY OF ZINC OXIDE#*

by

Gerald Oster and Masshide Yamamoto
Department of Chemistry
Polytechnic Institute of Brooklyn
Brooklyn. N. Y. 1201

ABSTRACT

Oxygen quenches the room temperature fluorescence of powder sinc oxide but
enhances the low temperature phosphorescence and tbermoluminegcence. The low
tempefatuse ultraviclet emission (edge emission) is quenched by oxygen. Water in
the presence of oxygen is particularly effective and this is ascribed to the production
of hydrogen peroxide.

Parallel effects are observed for the photoconductivity but water is less

effective due apparently to enhanced contact conductivity.

Flash desorption of oxygen shows a parallel behavior of room temperature

luminescence ard photoconductivity.
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Introduction

Zinc oxide is a photosensitizer for reduction or oxidatiea roactionl". FQr
example, when zinc oxide is excited by ultraviolet light, in the presence of water
and oxygen, hydrogen peroxide is produced. In recent ycurs 'a.n electrostatic
photographic process ('Elektrofu'z) has been developed which depends on the
photoconducting properties of zinc oxide. Practice has showa that this process de-
perds critically on ambient conditions. The role of cxygen in the photoconductivity
of zinc oxide has been extensively studied3. A correlaiion of photoconductivity and
luminescence of zinc oxide has not been established. Furilk:rmore, the effect of
water, which is iinportant for the catalytic properties of zinc oxide; has not been

heretofore examined.

In the present work the luminescence (fluorescence, phosphorescence and
thermoluminescence) and photoconductivity of zinc oxide are studiedunder a variety
of environmental conditions (oxygen and water pressure and 2t variaus temperatures)
using a single type of zinc oxide powder. One resuit of this work is to separate
intrinsic properties from properties associated with the surface of characteristics
of the polycrystalline material. Our results help to establish a connection between
these properties and the photocatalytic properties of zinc oxide. |

Choice of Zinc Oxide and Ssmple Prep~ration

Zinc oxide is available in many forms but usually excess iriorstitial zinc is
present and hence the material is an n4ype semiconducior. For our ztui.ss we used
the purest zin: oxide powder (diameter approx. 0.3 microns, specific surface area
about 4 square meters per gram) commercially availabls, namely tjye SP-500
obtained from the New Jersey Zinc Company. This material contains one part
per million of iron, copper, and manganese as impurities. It .« made from the
oxidation of zinc vapor and is pure whit?. unlike ginc oxide samples which have heen
sintered above 600° C which sre yellowish.

For photoconductivity studies the powder was pressed iato a pellet using a
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hydraulic press (400 kilograme per cmz) and the pellet {discicm in diameter and -
C.5 mm thick) was sintered at 400° C for one hour. This latter treatment is known
to have no effect on the electricul preperties of the material. Conducting elect}-odec
were applied to the pellst using Silpaint (type 3043- 01 from Hardy and Harmona Co.,
New Yorx). tho distance betwsen electrodes being 5 ram. The sample i3 mounted
with ite conduccing wires on to a Lucite support which is inserted into a glass con-
tainer which can be evacuated. For luminescence studies the zinc cxide powder was

used directly in a flat container which is connected to the vacuum sysicm.

Apparatus and Methods of Measurement

A variety of radiation sources were employed. For the 365 m u radiation

(approx. 4 x 10-10

einsteins per gec, falling on the sumple) a 100 watt mercury lamp
(GE-AH4) wns used in conjunction with 2 Wood's glass filter. For visible light a
500 watt tungsten lamp was used in a 35 mm slide projector equipment with a heat
filter and varicus filtered (Bausch and Lomb interference filters ard Corning Giass
cut-off filters) were emp16w¢ In one experiment a He-Ne laser (General Tele-
phone) was used. The X-ray source was a 5 kilowatt tungsten target (Matchlett

tube) installation whose voitage and current were varied. The dcse-rate was de-
termined by the current produced in 2 silicon P-N junctioa of known diffusion path'
length. °

For most of the studies of luminescence intensity the detecter is a RCA 931-A
photomultiplier with an ultraviolet cut-off fiiter (Cerning 3-71) used in conjunction
with an Aminco stabilized voltage supp)y and cu.crent circuit4 wit! ihe output re-
corded on a Varian G-10 recorder. For the spectral analysis of luminescence we '
used a Carey 14 spectrophotometer with the fluorescence attachment (medium

pressure mercury lamp with Wood's glass filter).

Photoconductivity was measured under an applied voltage of 4.5 volts across

the sample and the current across the load resistance (10, 000 ohms) was determined

|
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with z Genaral Radio DC electromater (type 1230-A) and the output was applied to a

recordex:

The vacuum system is of the conventional desijn and pressures dowa to 5 x 10"'
Hg were abtainable when the sample was in the aﬁtem. Purified oxygen {Matheson
Resecarch Grade) was us=d and the water was rendered free of oxygen by repeated
freezing and thawing under vacuum.

For thermoluminescence studies the apparatus of Randall and Wilkins6 was
employed. The sample is attached to a ccoling block which is surrounded by a
heating coil. A thermocouple is inserted closs to the sample. '_Wo: modified the.ir_
apparatus so that the sample could also he evacuated. Theo rat:e of heating of the

system {0.1° C per sec.) was controlled with a variable transformer.

Luminescence at Room Temgerature

Zinc oxide ai room temperature has a feeble luminescence when excited with
radiation below about 330 mp the limit of edge absorption as shown by reflection
meusurements.! The emiusion is greenish-whiter(maxiamat 500 mp Fig. 1A) ;ad. in
addition; there issnuitraviciet emissjonpesdiat 312 mp which it 16w um“;. icn
cxhibiu:g#e::ture as shown im Fig, 1B (¢lige emistion spectrum),

Oxygen depresses the luminescence in both the visible region and in the ultra-
violet region as shown in Fig. 1A, Water has no effect oa the viaibl’e luminescence a
least up to a pressure of 24 mm Hg. But the combination of water and oxygen quenciue
the fluorescence. Thus if the intensity of fluorescence in vacuois 100%, then with
oxygen at 27 mm Hg the intensity 13.347. but with 24 mm Hg of water vapor and 24
mm Hg of oxygen the lumin:scence is riduced to 31%. Allylhydroxyethylthiouzes, .

a mild chemical reducing agent, increases the fluorescence of sinc nxide in the
presence of air, the compound being &pplied in the form of aa alcoholic solution to
give a mulls The ﬂuore‘lcence after a short induction period increases with time

of ir-adiation with 365 mp(Fm‘

H’%WWWWW i M B

2) indicating that the compound is being consumed
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. by active oxygen produced by the axcited zinc oxide. A similar resuit is obgserved
with X-ray excitation.

Photoconductivity at Room Temperature

Oxygen affects not only the photoconductivity of zinc oxide but also its dark

- conductivity. Oxygen decreases the dark <:¢mdu<:tivity3

but on introduction of oxygen
to an evacuated sample the behavior is complicated. A aampl; of zsinc axide was
irradiated for a long period of time with ultraviolet light while being evacuated and
left in the vacuum for two days. The dark curront was measured at various oxygen
prenui'u (Fig. 3). The temperature dependence of the dark con&uctivity showed an -
activation en¢ gy of 0.03 ev in agreement with that found by Harriaon9 who used the
same sample of zinc oxide which we employed but with iifferent sintering conditions.
As seen by curve A-B the current d.ecrenu most rapidly as a ﬁyécﬁon of euygﬁn
pressure in the naighborhood of 15"%mm Hg and thence is insensitive to oxygen
pressure. If now the oxygen pressure is decreased (curve B-C') the dark current
remains a¢ the low level and only increases if the sziaple is allowed to stand for
very long periods of time (24 hours for C'-C* , 12 hours for C*-C™, 8 hours for

3

C®.D) at pressures below 10 ° mm. oxygen. Now on introduction of oxygen thée

curve (D-E) follows roughly the original curve (A-B) in that the greatest decrease

2

in current . occurs at about 10” “mm Hg.

The photocurrent, as a function of oxygen pressure starting with the evacuated
sample (curve F-G) has a similar form to curves A-B and D-E but the photoconduc-
tivity with decreasing oxygen pressures (curve H-I) actually shows a broad minimum
in the neighborhood of 10! mm Hg.

In all cases the current measured at the various oxygen pressures is the

reasonably steady valuve observed after ten minutes of current flow.

Waicr vapor whether alone or in the presence of oxygen slightly increases the

dark conductivity. Oxygen considerably docreueé the photocorductivity but addition

A
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of moisture does not appreciably eshance this effect.

After reinoval of excitiag light the decay in conductivity in vacuo ie extremely
slow but withrmfcinmre it is repid and the decay is intermediate with oxygea (compar:
ref. 8)e The fluorescence intensity at room tefnparature follows thie conductivity as

" regards the eiiegto with oxygex. This parallelism is {llustrated in Fig. 4. The
exciting light is & xenon photographic flash lamp whica is &ctivatgd mor_:"nonurﬂy :

3 yec.) which is superposed on the weak iteady illumination

(flash duration azbout 10~
from a weak 365 myisource. Oxygen decreases both the photoconductivity and the
fluorsscence under weak ‘rradiation. The superposed fluoresce e produced by the -
flash demonstrates the action of the flash in temporarily removing oxyger from the

0

sarface of the mlidl + The slow decay of fluorescence in the absence of cxygen -

atmosphere is parallel with the slow decay of photocurrent. .

Ionizing radiation also increases the conductivity _.of sinc oxide. The eifect is
very sensitive and the relative change in conductivity is disectly i:roporﬁoul to the
docage as shown by electrom beam irradiatioh“. In Fig. 5 are shown our results
for X-ray excitation as a function of do?e rate. This systom appears to be a practicn

dosimeter of ionizing radiationl?‘

« Incidenteily, we fov-1 that the "Elecirofax"
process is also susceptible to X-rays. The zinc oxide paper wae electrically
charged with a Tesla coil and then expoud to X'--i-ayo through s lead mask. On
subeequent dusting with an oppositely charged powder {the "toner") an image ia the
non-irradiated portion 'appears; This method is sensitive to dosages of about 5

roentgens.

Luminescence at Low Temperatur“

The time response of photoconductivity of sinc oxide at low temperatures is
too siow to be convenienﬂy measured since the material has a very low co@cﬁvit'y
when cooled. At low temperatures (e.g. liquid nitrogen (-196° C) xinz oxide

exhibits a phosphorescence of duration of some minutes and on *arming the sample

L
{
H
3




-1‘
trom the low temperature it /hows thermcluminescence. The phosphorescence

shows only visible emission (max. 500 my.

At -19€* C the phosphorescence dacays according to a second order recom-
binatior, i.e. the intensity follows closely the expression I = 10(1 +J n!o t)'z. We

" found that if t is expreased in seconds then with our light source (AH-4 lamp with

Wood's glac . (ilter) Jafo = 2.57x10°2 gec”?

o Thus the intentity decays to one
balf its initial value at t = 16.1 sec. Light above 430 myiquenches the phosphoresce

(also the thermoiuminestence) and even 2 weak laser beam (632.8 mjf is effective.

Oxygen enhances the intensity of the low temperature visible emission, in
contra:* to its effect at room temperature. Thus the maximum in the visible pesk
is enhanced by 10% on addition of oxygen (60 mm Hg) to an evacuated sample. Water
vapor also increases the effect (46‘_7. at 23 mr.: Hg) and the combination of water and
oxygen is zlditive in their enhancement effect. On the other hand th«: intensity of the
uyear nitraviolet fluoreacence emission bands at low temperatures n& quenched by
oxygen (Fig. 1)« Oxygen also extends the long wavelength portion of the visible

emicsion of the phospherescence.

The ylow curve for zinc oxide, that is, the erniscion as a function of temperatur=
for the material wiich had been irradiaied at liquid nitrogen temperature is caown
in Fige 6. It was found “hat for short periods of illumination at (-196° C) the in-
tensity of thermoluminescenc: increases with increasing time of irradiation but that
for illuminacion times (with the AH-4 lamp) exceeding about one minuiz, the inteansity
of thermolumineacence is unchanged. As.secn in Fig. 6 the glow curve has a strong
maximum at ;130‘ C and a shonlder at -110° C, Oxygen does not infiuence the form

of the glow curve.

) The total visible thermoluminescence, i.e., the integral of the glow turve ie
enhanced by ocyyen by a factor of two over that in vacuo. A trace of moisture also

‘has an enbancing effecte The comlination of moisture and oxygen is pa.rtic'ularly

W
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effective in enhancing the total thermoluminescence.

Here, again the same results are obtained for X-.ray excitation as for ultra-

violet excitation.

DISCUSSION

Since the photoconductivity and luminescence require near ultraviolet light,
the en~rgy necessary to raise a.n electron to the conduction band is 2f the order of
3 ev. The midpoint >f the abaofption euge is about 380 myiand hence the mose pre-
cise value ie 3.3 ev. It is known from the exciton th.e(n'y of solids (for review see
ref. 13) that excitation at an absorption edge can give fine structure in the emission
spectrum. The origin of the fine structure of emission from zinc oxide 14 ie not,
however, unambigucus. The fact taat oxygen quenches ti.s luminescence strongly
suggests that the fiue structure may not arise entirely frcm the intriasic properties
of tae material but the surfice nawure of the zinc oxide powder has some role in tais
phenomenon. The fact that treatment of single crystals of zinc oxide alters ithe edge

absorption apectrum7 supports our contention.

The luminescence presumably arises from a reco:;:bination of electrons and
holes. The visible emission band (maximum at 500 my$ corresponds to a transition
fr m the conduction b2ad to a luminescent center 2.5 ev below. The maximum in the
glow curve, namely at -130* C, corresponds (see ref. 15) to an energy level of
0.27 ev which lies very close to the conduction i-and and on activation with heat ip
raised tc the coaduction band and thereby p'roducel {2¢ thermoluminescence. These
levels alzo corvecpond to traps for tﬁe low temperature phosphorucenée. The
luminescence is of long duration becavse of retrapping of electrons by these levels.
Another somewhat deeper trap corresponding to ~110° C lies at 0.32 ev belpw the
conduction band. The quenching of thermoluminescence by visible light suggests the
presence of intermediatn ‘energy levels corre.pomiing to absorption by visible

light., Another group of levels (shallow donor levels} are present since zinc oxide




serves as a sensitiser for the visihle light photoreduction of silver ions l.

At room temperature axygen suppressas the luminescence presumably by
irapping electrons from the conduction band. That is, these levels correspond to
surface traps. At low tempcratures these sarface traps serve as storage centers
and the electrons are proracicd t> the conductior band with u:comﬁmylng phosphorescema
or thermoluminescence. The surface traps suppress at room temperature the con-
dactivity by combining with electrons. The mechanism of combination may involve
the conversion of phyeically adsorbed sxygen into cheinisorbed oxygen (possibly 05 )e

In addition, a depletion layer is produced which increases the resistance at the
points of coatact of the zinc oride granules.

The unexpectantly large quenching of the room temperature luninescence by
the combination of water and oxygen iadicates an irreversible loss in electrons. This
is further ruggested from the fuct that hydrogen peroxide is produced efficientlyl.
The enhancement of low temperature phosphorescence and of thermroluminescencs by
water could arise from the polarizing action of the molecules on presexrving the
storage centers. The combination of water and oxygen does not lower the room
temperature photoconductivity appreciably below that for oxygen alone. Apparently

water may compensate for irreversible losses in electrons by enhancing the electrical

contacts between “.e grains of the powder.
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Fig. 1A.
Fig. 1B,
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Figo 6.
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FIGURES
Luminescence spectra of sinc oxide at 25° C.
Solid line: in vacuo. Dotted line: in oxygen.

Lurainescence spectra of zinc oxide at -196* C.
Solid line: i vacuo. Dotted lino: in oxygen.

Visible fluorescence increase in the presence of allylbydroxyethylthiour:
Excitation wave length :365mjs -

Oxvgen pressure dependence of dark current and photocurrent.
Solid line: photocurrents, Dotted line: dark current.

Comparison of the visible fluorescence and photocurreat ;fter -tron¢
ultraviolet flash excitation.

1

di} - - .
T versus dose rate.

Glow curve cf thermolumiaescence in vacuo.
Heating rate = 0.09° per second.
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Spectral Modulation of White Light as
Observed with an Interferometer®
ANDRIE] BACIYNSX1T AND GERALD OstEx

Polytechnic Insiitute of Brooklyn, Brooklyn, New York 11201
(Received 20 April 1968)

HIGH-FREQUENCY 1nodulation in the photocurrent was

ohserved by Alford and Gold?! by superposing on a photo-
clectric detector two slowly and coherently modulated light beams
from a common light source, although the path difference was
much greater (about 100 m) than the coherence length. Givenst
has suggested that the same effect should u- observable with two
stationary coherent hut unmodulated light heams. MandeP® has
shown theoretically that the superposition of two coherent light
Leams with a path diffcrence greater than the coherence length
ieads to a apectral modulation which depends on the path dif-
ference, The present note is a description of experiments with
polvehromatic light which gives such spectral modulation. In
addition to giving a measure of the temporal degree of coherence,
our method also hes some practical implications. Essentially we
examine spectrally the real interfere nce diagram (i.~, lens-freet)
ubtaioed with a Michelson iaterferometer, the oliservations lning
masdc of the central spot of the d'agram.

The diagrammatic represcntation of the Michelson interierom-
eter is given in Vig. 1, where § is the source whose images S and
3: obtained from the reflections of the mirrors M, and M, (sepa-
rated by a Jistance s) produce, with monochromatic light, inter.
ference rings on the screen at O-Y lying perpendicular to the X
axis, For this lens-free system the radius of the mth-order ring
for light of wavelength X is given by the expression fer the super-
position of two Huygens wave fields®

-2 S Py - YUk
)'m={x"-[ {n4 §N _1]+(n+§)k (n+3 m)x} W
Lt - m)in 4

where the distance between mirrors s= (n+4)A/2 (taking into
account the phase difference in the half-silvered heam splitter),
n heing on integer. Our observations are concerned with the
central spot, namely, the zero-order condition; i.e., ¥ ¢=0. Since
aur condition is equivalent to the olservation of two coherent
sources in the direction of the line joining them, all correlation
functions will depend on the delay time only {(cf., Ref. 6, p. 500).

The light soLrce used was a strip tungsten !amp operated at a

Y

M M

F16. 1. Diagrammatic representatica of the Michelsorn interferometer.
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FiG. 2. Specti.d modulation for blackbody radintion {23C1°K) al path
differener 194 ¥ 10§ e, Dotted enrve s for large bath differences { >1072
cm).

temperature of 2300°K. The light from the Michelson interferom-
cter (Atonmic Laboratories type M-4) was examined with a grating
monechromator {Perkin-Elmer model 112, slit opening 0.7 ram
and hence resolution about 20 &) along the axis §,5:0 of the inter-
ferometer at a distance of 2 meters. In Figs. 2 and 3 are shown the
photoelectrically recorded intensity distribution as a function of
wavelength for two different distances between the mirrers. The
dotted curve of Fig. 2 is the result when the mirrsr separation is
large (0.1 mm). The spectral modulation such as shewn in Figs. 2
and 3 depends on the mirroc separation; the smaller the separation
the greater is the amplitude and the greater is the wavelength
difference hetween the maxima. When the mirror separation is a
few wavelengths, the spectr=l-modulation curve is very sensitive
to air currents, owing to changes in optical path length resulting
in a continual shifting of the peaks. Hence the system was shielded
agaifst such influences.

The spectral curves of Figs. 2 and 3 can be described by the
formula

(») =& (n)[1+\T) cos2erT], (@)

where ®¢(») is the spectral distribution of the blackbody radiation
and T is the delay time of the two benins (7= 2s/¢). Our results
show (Table I) that the factor f(T) is &+ moictonically decreasing
function of T,. The function f(T) may ix readily calculated from
the modulation curves since it equals [@(y)mex —@uin]/[P(y)max
4@ (s)min], where $(»)™= and ®(»)™in are the envelopes of the
modulstion which themselves ace of the form &.(s); i.e., in our
case, the blackbody radiation distribution. The separation of the
two mirrors is deterinined by the expression 2¢= (w+§)Aa
= (843/2)Anp1 etc. and AgD>Aayi. For example, from the modula-
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16, 3. ¥Yaste as Uig. 2 but for path difference of 342 X107 ¢,

von curve of 1ig. 2 we calcudate 25 to be 0.0194 mm, accurate 1o
about pae 1 samd angstrems. With a higher resolution monn-
chromator . . the one we employed proporiionally greater
accutncy cuulit bz obtained The wavelenga position of the peaks
shifts with changes in s, which clearly indicates changes in the
ritror separation ameuating te a fraction of a wavelength.
Sunilarly, by this tecknique changes in opticai path length can i,
measurcd without 1y mechanical displacement of the mirrors nf
the iaterferometer,

‘I'hv: path differeaces in anr system for which spectral nindula-
tion gppears (Table 1) are some two orders of magnitvde greater
than the coherence length. Thus Mehia? caleulates for blackbody
iadiation a coherence length 0.67 he/2T, using Wolf's definitinn
of coherence time.® (Mawmdel's definition? gives abov! twice this

Tanck t. Modul “ion factor F{T) ax u function of yaih difference.

25 Xtee 1 e
cm) ) A7)
194 547 1.3528
2y .30 15,202
0.106

442 1t.4
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value.) Hence at 235 K ihe coherence fengih is $.14X1078 cm-
For such large path differences as in our case, no interference
should he expected but nevertheless spectral modulation can oc-
cur.” Fortwo cross-spect ratly pure*® light Leams of cqual intensities
Mandel's theory? yields an equation of the form of Eq. (2) but now
his 113(0},the tensparul degree of coherc -ce at zeru path difference,
ix reqdnced by (1), As seen in Table 11 the factor f(T) is inde-

Tantk 1. Modutatlon factor £{T) as a function of waveleugth
(23 =342 X10-% cm).

2 fpranz amin

(A) (rel) irel.) ATy
4300 160 130 0403
4400 208 t6s 0108
4500 261 213 0.007
4600 327 265 0.1
4700 462 327 0.143
4800 190 392 0.4t
4900 580 168 0118
5060 672 47 0.103
sten 767 [¥1.] (L1160
sami 873 018 u.1as
$300 998 792 @
$400 134 BAR 012t
av. D106

pemlent of wavelength. ‘The same is true for the temporal degree
of coherence for blackbody radiation as snown in the theery of

28

Bourrett and of Kano and Welf.® This ~aggests that the factor
J(T) is proportional to the temporal degr v of coherence.

* Work supported by the U. S. Office o1 Naval Re:eurch under t'ontract
Nonr-83%(36).
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