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ABSTRACT

Formulas are derived for volume scattering coeffi-
cients applicable to aercsols, Different types of size
distribution for the aerosol, such as normal distribu-
tion, log-normal distribution, and exponential distri-
bution, are assumed.
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Numerical results obtained by the author and those pub- - ' 3
lished in the literature are given and discussed. o

. G

o The volume scattering coefficients become smocth
o - functions if the size distribution is very wide. Hence,
o _simpler mathematical formulations can be used than

those obtained from the exact Mie theory. However,
£ . only the number of aerosol particles can be obtained
< S - from an evaluation of experimental data, but details
‘ " of the size distribution cannot be extracted from ex-
perimental data,
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i, INTRCDUCTION

Th: :-at'ering functions for single particles with real index of refractionn are
known for many values ofn, and a very large range of size parameters

a(a =271/A ), Total scattering coefficient, angular scattering coefficients, and

degree of polarization are known. Because of the electronic computer technique,

such computations pose no problem and scattering coefficients can be generated

for any desired value of n and size range. For aerosol studies, where integra-
- tions over a particle size range and wavelength range are needed, the minor

fluctuations, the so-called ripples, are unimportant. Smoothed values without
ripples are often completely sufficient. Hence, this problem is well understood
(van deHulst, 1957). ' )

The scattering, absorption, and polarization coefficients for single particles.
with complex index of refraction ¥= n -ix are also known for many values of
Tanda. However, less extensive datz have been generated than for realn.

The results are well understood; absorption reduces the fluctuations, the ripples
vanish first, and the major fluctuations become weaker the larger the absorp-

- tion, i.e.,x . There exists a steep increase of the scattering coefficients in

the Rayleigh range for a < 1 and a very simpie functional behavior for a > 1,

* This zpplies to tke total as well as to the angular scattering coefficients, Again
the problem is understood; data exist to derive the genzral behavior and machine

computations pose no difficulties (Deirmendjian, 1963),

The most important problem of today is the scattering from a small volume
containing an aerosol of uniform refractive index " orn., The particles inside
the volume are not of uniform size, but possess a size distribution, The size
distribution can be described by reasonably simple functions, As such, one may
assume an exponential law (as in Junge's distribution function), or a Gaussian
distribution function, or any other which has been proven to exist (Deirmendjizn,

1963; Dettmar et al, 1963), A literature survey was published by Penndorf

(196 3).

In this report we discuss some theoretical derivations for representing the

scattering coefficients for assumed size distributions and show some of the
results of such computations,
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2. TOTAL AND ANGULAR VOLUME-SCATTERING COEFFICIENTS

The total volume scattering coefficient B, for an aerosol with uniform size
distribution is '

ﬁ-rarrrzl(la,niN (1)
where

r = radius of aerosol particle

a = size parameter;a = (2mr)/A = k¢

N = number of particles of radius

n = refractive index of aerosol particle

K = total Mie scattering coeificient.
The angular volume scattering'coefﬁcient By >i_s correspondingly

Bg = niligla, q, 61 N | _ | - (2

where iy is the ahgular Mie scattering coefficient for 2 single particle in the

direction 8; 6 = 0 degree for forward scattering.

The relation between ig and X is (see Penndorf, 1960)

4n

/ igda = K .. o S

0

Hence

4nm .
/ Bodw'ﬁT-I - {4)

0

In the following, the formulas are written for K but by replacing K with i, the

results for . follow automatically for B,; we used the symbol B for B in the

following for simplification only,
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- The computations of the volume-scattering coefficient for an aerosol containing
particles of non-uniform sizes; i.e., and aerosol with a specific size distribution
follows from

dN. S '
= 1I_r2 K lai, al dal (5)

i

dp
da

1 1
where r; = radius atr = (— ) Ar or a% (-2- ) Aa, and dN;/da = number of
particles between ¢ % Aa,

This can be written as
(6)

It is understood that all these consideratio 1s refer to a specific wavelength A,
and the integration over the selected wavelength range should be performed if
a wide band is chosen. We will come back to it later. It is also understood
that n remains unchanged for the full wavelength range selected.

We write the size distribution function p {2l as
i tef ‘ ’ 7 |
dr P ; ' (7)

1
or with dr i da

dN 1 _
PP ALK - (8)

The total number of parficles follows from equation (8) as

\ ‘ i}
N-jdh. .- / p lalda . (9)
Y]

For p ial we shall later on introduce specific population functions.

Using equation (8) we can now write

a8 ral
—_ - — X .
"o e (10)

a relationship which holds for a fixed interval de¢ gnd a fixed wavelength A,

«3.
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The integration over all ayields

B =— / a‘l(la!plalda . . (11)
k3
0 .

In this form B is valid for a specific A only, because k contains A,

Next we define a new total Mie coefficient Kp for a size distribution, so that
equation (1) can be used '

“na, )
- Kp la,iN . , (12)

™
]

This equation (12) is identical to equation (11) and it follows

' ! 2 13
Ky lag} = — / a‘ K lalp lalda . (13)
at kN

° 0
In this form a, denotes the a value at which the distribution function reaches a
maximum; i. e., dN/da reaches a maximum.

Introducing N from equation (9) into equation (13) leads to

/ e? Klaip lal da
1 0
Kp la,| = - - . ‘ (14)
%
/ p lal da

0

In the case of angular scat.ering consideration we define an angular Mie
scattering coefficient as

o
/ «?iglalp lal da

igp el = "";' : ' (15)

ay it
. p lal de
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. | | 3. AVERAGE SIZE

3.1 AVERAGE SIZE @ FOR p la} -

The average radius r of particles having a size distribution p lr} is the arithme-
" tic mean value of all the radii, if N is the total number in the sample.

Thus

r--— E (ey +0 4.0 - N E r(AN) (16)

i

b e AR L, 158

Replacingr by ok and the sum by the integral leads to

Qa -E&- / ap lafda .- (17)

Q

Since

- V 1
';-/ plalda,.
0
/nplclda
6

f / plalde
0
é 3.2 AVERAGE SIZE « FOR NORMAL DISTRIBUTION
‘ The normal distribution is
g , | 2 .
Tj plal = s/;? ep ( ;.) ' (19)

with

ve{a-aq)I md aoov taq .
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Equation (!8) can be solved

% 2 ) i |
a?la;da = + - , - ;

g

g v 7
0

and

Q|-

[ e

0
Hence

- 2
a-a°+o-/-;-a°+0.798'v.j (20)

Thus, for a normal distribution, the average size is determined by the g, and
the standard deviation 0. a is always larger than q, .
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3| oL 4. K, AND iap FOR NORMAL DIf TRIBUTIDN

We select a population function for which the aerusol particle.é have a normal
distribution with respect to e. The total number of particles in the sample is N,

N
plai e fxp(—u2/2o) = (N.’o)¢lul (21)

where ¢lui denotes the normal distribution.

: The maximun of the distribution is given by
plal = Woyin) = 0.39N/o).: | (22)
Equation (14), using the result of the last section, namely
/ plalda = /o
o
% . ‘becomes X
? ) (4 2 -
K, laf = = a*K lalp tal da (z23)

o

cr

) N
K la°!=—/ al(la!'ﬁ{ (
: 0

The integral has to be solved numerically because Kics not a sxmple function of
a; ¢{u) is tabulated in standard text books on statistics.

Nlo—

a_— In the case of angular scattering consideration, K is replaced in equation (23)
\ by iOp and Kby iy, The general formalism remains unaltered.

o In many aerosols the so called logarithmic distribution (log-normal) has been
found, In this case the guantity u in equation (21) is defined as
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u = [ln(a/a))/u

a = g exp(ou). o 7 (24)7

We can solve f plalde which is
0

N 1 2 »
a = e - n a“. ) Qa 25

0

Such an equation can be brcught to the form f ™ ¢~An“ 4y for which a solution
0 .

is given by Grovner and Hofreiter (1950, p. 57)

2
/ plal = Na, exp (:2-) 1~ 0/\/_2)] : . . (26)
0 . | ,

X
with ¢(x) = f e"tz » the error intregal, which is tabulated in standard
0 - .

textbooks.

The sojution for angular scattering is now obtained from equations (15) and
{26) as

1 . | 1 a 2

in. la | = — - i exp | - [lu_] da
fp o aios/2[exp(02/2)][l-¢(—0/\f2)] [ % ( 2621 %
(27)

Because of the Mie function in i ép , a numerical evaluatior of the integral has
to be performed.
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5. EXPONENTIAL POPULATION FUNCTION

Junge (1963) has shewn that a good agreement for the natural aerosol in the
range 0.1 < ¢ < 20p is given by

NN ‘ (28)

d{log  °
A good agreemert is normally found for y = -3. In all cases y is negative and
il 2.

Such a funcl;iou leAds to

- dN

b -1
ryal N, (log €) L2

Replacing r by a

N 17 -
pial =— = N, (loge) (—) a1 = CN, ar-1 . (29)
) da x :

Such a exponential size distribution is only valid within specified limits of ¢
(and therefore a), Hence,.

a2 .
a K lai p laf da

K, la,} = (30)

1
2 a
ay 2
p lal da
o'

The denominator can be written as

(12 02
CN, :
p lalda = CN, Car-l e—}l—(az)’-al}').

| 9

Since the number of particles at the upper end (large r) a, is very small and
~ determined by the limitations of the instrument, we can set the integral equal
to

—
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Thus equation {30} becomes

2
Kp lagl = T / o K laip lal da
» Wk CNyq

|

a2 ’
Y 2 -1
= a‘ K laf ¥~ da
af) c'lly

4

' ] .
= - y / K te} a?*! da . {31)
02 Cly ; . )

«q

For selected values of y, it becomes even simpler. For y = -1, we obtain

a2

xpiaa=(f-"—)/ K lal da
e,

!
Since in this population function a = «,

1 2
K, lay| =~; K lal de - - : (32)
|

-For y = -2 we obtain

. (12 ' . .
Kp‘lall = 2 / a~l K la} da . - (33)

For y = -3 we obtain

_ %2
Kp la)f = 3q a~2 K lal da

(34)
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‘and for y = -4

(12 ) -
KP lal‘( = 4a12 a3k lal da . {35)
7‘1 .

Similar formulas can be written for iép; for exafnple. "for y= -3 one obtains

02‘

igp lagh = 3 ¢ a2iglelda . | _ (36)

ot |

It follows from the foregoing theoretical consideraticns that we can corhpute
Mie scattering functions for aerosols, provided the general size distribution
law can be assumed from other observations or general physical considerations.
Jf, however, ro knowledge on the general size distribution law exists, the
experimental observations cannot be interpreted. v
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6. RESULTS OF COMPUTATIONS

Using the theoretical derivations, we show in several examples what values

are obtained for KP and iﬂp .

Fcr a normal distribution, equation (23), we choose q, = 5, ¢ = 1.0, and

da = 0.2, and use the K values fora = 1. 33 obtained by Penndorf (1956).

The valne for Ki5.01 = 3,59, In tablel

In this case we obtain ¥,15.0{ = 3.69.
= 6.0(0. 2) 7.0.

we give some examples for n = ). 33 and q,
TABLE I

TOTAL SCATTERING COEFFICIENTS Kp FOR
SOME SIZE DISTRIBUTIONS

W1I'Ho = 1.0
6.0 6.2 6.4 6.6 6.8 7.0

K 3.84 | 3,82 | 3,83 ] 3.75 | 3.70 | 3.63

3.89 [3.89 [ 3.96 | 3.96 | 3.84 | 3.74

>

As expected, smooth variations in Ké result for size distributions.

Kerker (1964) conducte: experiments and theoretical computationsﬁ for refruc-

tive indices (n= 1.43, 1.51, and 2.07), a size range 4, = 1.9 (0, 1) 15, and

width parameter o, = 0.000 (0.05) 0. 155.

He used 2 logarithmic normal distribution and Y and ao are the parameter for

such a size distribution,

Experimental data are obtained and compared with the theoretical computations, .

He found that the experimental angular scattering data for the two polarized
components in the range # = 30 to 130 degrees can be fitted to the theoretical
data; he obtained the modal size and the width parameter of the distribution
function., The uniqueness of the solution has not posed a problem, The
experimental data always fitted one set of theoretical data with the least devia-

tions,

His results show that for very narrow distribution (o, < 0 155) theoretical
computations can be applied to experimental data and the important parameters,
namely, refractive index n and size-distribution parameters will be obtained,

For atmospheric aerosols the situation is not 80 good, because we have a
mixture of refractive indices and very broad size distribution,
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For an _eycponéntial distribution (Junge's aeroscl distribution) we have computed
data based on our theoretical results and find the following values for K, {see
table II) for the interval from =0.1to =50 using = =3, )

TABLE I

FOR EXPONENTIAL DISTRIBUTION
WITH Kp=-3

a 1.33 1 1,40 | 1,44} 1.486) 1.5 | 2.0

Kp 1.26 1 1.48 L 1.61 | 1.75 | 1.79 | 3.13

The value forn = 2.9 is not so accurate as those for the interval n = 1, 33 to
1.5,

The effect of different values of y, i.e., different‘steepness of the size dis-
tribution has been computed for the interral a= 0.1 to a= 30 and n = 1, 33,
We find for y = -2, Kp = 1.93; y = -3, K, = 1.17, aud for y= -4, K, = 0. 38,

Such a result is expected because the steeper the function the more aerosol
particles are contained in the very small ¢ range.
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