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ASYMPTOTICALLY OPTIMUM MULTIDIMENSIONAL FILTERING FOR
SAMPLED-DATA PROCESSING OF SEISMIC ARRAYS

J. Capon
R. J. Greenfield

Lincoln Laboratery, Massachusetts Institute nf Technology
Lexington, Massachusetts

ABSTRACT

A number of asymptotically optimum multidimensional filtering methods are
investigated with the purpose of determining filtering techniques which require rela-
tively little computing time to implement with a digital computer. In particular, the
asymptotic properties of the maximum -likelihood and minimum -variance unbiased
multidimensional filters are investigated in the sampled-data case. These two multi-
dimensional filters are shown to be identical since they are both based on a conditional
expectation. In addition, the mar.ingale property of conditional expectation assures
that the asymptotic properties of these multidimensional filters are well defined.

An asymptotically optimum frequeiicy domain synthesis procedure is given for
two-sided multidimensional filters. This procedure is well suited to machine compu-
tation and has the advantage with respect to the exact recursive synthesis method of
requiring much less computation time. A synthesis procedure for physically realizable
multidimensional filters is presented which is based on a factorization of rational
spectral matrices. This method is not, however, well suited to machine computation.
An interpretation of optimum multidimensional filtering in terms of frequency wave-
number space is also given.
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L. INTRODUCTION

It has been recognized that a considerable reduction of seismic noise is possible
by employing multidimensional filtering for seismic arrays.” Some of the more impor -
tant approaches to seismic array processing are the maximum -likelihood method, the
minimum -variance unbiased estimator technique and multichannel Wiener f{iltering. In
general, these multidimensional filtering methods form a single output waveform which
serves as an estimator of the unknown signal wi.icl: comes from a fixed direction.

The basic assumption in tae analysis of multidimensional filters is that the out-

put, Xk(t), of the kth seismometer may be written as
Xk(t) = S(t) +Nk(t) (1)

where S{t) is the signal waveform which is assumed to be the same in each seismometer
and Nk(t) is the noise present in seismometer k, k= 1,...,K. In writing Eq. (1) it is
assumed that the azimuth and horizontal velocity of the event, or signal, have already
been determined with sufficient accuracy to allow the signal waveforms frecm each seis-
mometer to be shifted to bring them into time coincidence. In most applications, the

outputs of the seismometers are given in sampled form in which case Eq. (1) becomes

X . =8 +N k=1,...,K ()
DA §=0,41,£2,...

Only the sampled-data multidimensional filtering problem for seismic arrays will be

considered.
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1t can be shownz that the maximum -likelihood estimator is the samc as the
minimum variance unbiased estimate of the signal when the noise has a multidimen-
sional Gaussian distribution. In addition, the multichannel Wiener filter is related
very simply to the minimum variance unbiased estimator. The synthesis of thcse op-
timum multidimensional filters is achieved by means of a recursive matrix inversion
algorithm which is well -suited to computer application. The purpose of the present
work is to point out that, asymptotically, as the memory of the filter gets large,
there are synthesis procedures which can be used that in certain cases require far
fewer computations than the recursive algorithm. If a large array of say 525 sensors
is to be processed, then these approximate synthesis techniques offer a considerable
saving in computer time required to process an event relative to the exact recursive
procedure. This saving will be shown to apply only when the filter is two-sided, i.e.,
non-physically realizable. This restriction poses no problem in the application of the
results since all waveforms are recorded on magnetic tape and non-physically realiz-
able filters are readily implemented.

If the filters are specified to be physically realizable, i.e., one-sided with no
output before any input is applied, then the synthesis problem becomes more compli-
cated than in the two-sided case discussed previously. It is shown that a spectral
matrix ractorization procedure is required to synthesize the filter in the physically
realizable case and a method for achieving this for rational spectral matrices is

discussed. Another method, due to Wiener and Masani, is also described which is




valid for general spectral matrices. Unjortunately, these spectral matrix factorization
techniques are not well adapted to machine computation.

An interpretation of optimum multidimensional filtering in terms of frequency
wave-number space is given. The structure of the filter in frequency wave -number

space is also presented.

II. DERIVATION OF THE MAXIMUM-LIKELIHOGD AND MINIMUM-VARIANCE
UNBIASED ES'TIMATORS

The derivation of the maximum -likelihood estimator of the signal requires the
assumption that the noise components have a multidimensional Gaussian distribution.
We assume, for simplicity, that the noise components have zero mean, and that the

covariance matrix is
i,j.) = i ,i) = } l=k,k;j =K 3

where E denotes expectation, and it is assumed that the estimator is to use 2v + 1

samples extending in time from -y to y. Thus, the likelihood function can be written

- X v % K v

L= bl 2exp{-3 L L
k’k1=1 j,j1='V

S UM )
Oy 31 =8 ;=S } ()
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where !pl denotes the determinant of the matrix p which is 2 matrix of K x K submatrices,
the jjih submatrix has the elements pkkl(j'jl)’ k,k1 =1,...,K, j,j1 = =Vyees, Vv, With
a corresponding notation for the inverse matrix p-1 whose elements are pl;kl( i l).
We assume throughout that the matrix p is positive definite. Differentiating the

logarithm of the likelihood function with respect to Sjl and equating the result to zero,

we obtain
¥ i 1 "
Z; o) (J!Jl)(s T ,-) = 0’ j1='V"'°9V' (5)
kk=l jev <Kl U

where § i is the maximum -likelihood estimator for Sj.

We can rewrite Eq. (5) a-» follows

i S § ..1 § i
S . p.. (isiy) = X.p (J’Jl) ’ (6)
j=-v Vi k,k,=1 kk; "1 kK=l =y kj "kky

.

J1=-V,ooo'vo

. -1, .
Let us define the (2v+1) X (2v+ 1) matrix G(j, jl) in terms of its inverse G (j, ]1)

whose clements are defined as

K
-1, . -1 , _
«Gi) = L P (i) Jodp = “VaeeesV. @
k,k.=1 1
1
We can solve for gvj' as
. Y }15
S ., = 8, Gl X, . , (8)
M j:-v k=1 . Xk]
where
4
§ e E e g - i




-1 q o . -1 -
pkkl(J’Jl) a(jl'l ) k." l""IK (9)
" J=’\)’uu.’\)-

v
8 (lin = L )
Flips
It should be ru. :d that a different set of weights is obtained from Eq. (9) for different
values of v and also for different values of j', which can vary from -v to v. The fact
that ek( jli) depends on v has not been brought out by the notation. It is easily seen
from the quadratic nature of the logarithm of the likelihood function that the solution
given in Eq. (9) is unique.
We now consider the minimum -variance unbiased estimator of Sj" denoted by

"

S' .., expressible as
V]

. i K
‘o= LGN XL 10) .
S\)j' j=-v kél ek(lh ‘ )Sq o

with the constraints

K

él Qi((ﬂl’) = 5”0 ] j='\),---,\), (11)

where

5., = 1, j=j’

1] 12
0, otherwise . (12)

A
The variance of S'vj' is

v K
‘I 2 s 1] s 1 o s
BS ) = ) ) 6 (5,11 8,615 o i) (13)
V] j’jl:-v k’k1=l 1 1

Using the calculus of variations, we obtain that the minimum -varicnce uiniased

estimator has weights which satisfy the system of equations




g

R

K
NooL & Gylive, Giptr, =0, k=1,...,K (14)
Yoo E X} 1 kk 1 Vj

kl—l =y 1

j = -\). ss 0y \) 9
where the ij are 2v+1 Lagrangian multipliers chusen to satisfy the constraints given
in Eq. (11).

If we define

Orn (G 1) = A, (15)

P ket 000D = By i) = 655 =8 ) (16)
k=1,... K+l

jljl = TVyeee 3V

then Eqgs. (11) and (14) may be written as a single set of equations as follows

Kil i
8. (§,1i") Py Gsiy) = 6 5. . (17)
k=l § =y k1 7 Fkk Yl k,K+1 "jj

k=1,...,K+1
j= ‘\),....\) .

This set of equations is equivalent to the set given previously, cf. Reference ¢, pp. 21-

24. The reason for writing the equations in the above form is that we now have a

Toeplitz matrix of submatrices and a recursive procedure can be used in the solution

of filter weighting coefiicients.

We can write the system of Eqs. (14) as




K v
/ ' ] \ -1 . -
gGHY =~ X Y e Ghidh k=1,...,K (18)
k PR kk 1" vj .
k=l jp=-v 1 1 JT “Vseee,v.
Using [Eqg. (11) in (18) we get
LS A -1
- p s ] )\ : = 5.. j= - s0 0y 1
"y j=Z_V ek, G0Ny = O J= Vaeensy, (19)
i 1
and using Eq. (7)
v
kvj = - Z_ alisj;) Sj,j.
]1_ Vv
== G-(jsj')s J= "Veee,v. (20)

Therefore, we see from Eqs. (18) and (20) that

K

\Y)
g0y Y‘ -1 a g q -9 -
g .(ili" = L Ok Godp) oy, k=1,...,K (21)

k.=1 J= “Vyeoe,V,

which is the same as Eq. (9). Hence the maximum-likelihood and minimum-varianc»
unbiased estimators are identical. It is easily seen from the quadratic nature of the

expression in Eq, (13) that the solution given in Eq. (21) is unique.

Using Egs. (11), (13), and (14) we obtain
9 K 3
E{S,t = ) L uiey)
d] . V)
km] jm-y
£ = %zv o ==X, = afi'i'), 3% veee, v, (22)

A6
j_‘-j\, Vj ] vj



In addition, we have

A o K Y
B8 oSt = 0 L 8GN G,
k=1 j=-vy
= C!(j',j"), j"j" = "Vyesa,y Ve (23)
It should be noted that
a2 1 _ ora2 ;
E{SV]'} = E{SV']"} ’ vV =v. (24)

This follows from the fact that the minimum value of a quadratic form, subject to
certain constraints, in a \'-dimensional space cannot be increased if the dimension of

the space is increased to v = v'.

1118 THEORETICAL JUSTIFICATION FOR THE ASYMPTOTIC APPROACH

We now wish to show that the use of filters based on only a part of either the
past, future, or past and fture, can be used to approximate the performance of filters
bascd on, respectively, the full past, the full future, or the full past and future. In
order to do this it will be convenient to introduce new randoin variables, as indicated

by R.ozanov,5

Y = X

k*j k*j
Y, =X, -X. k#k* k=1,...,K (25)
kj Fery ™ X i=0, £1,22,...
8
I—— —— =,



Let us denote the set of random variables Y

k' k#k¥j=-vyens,v, by Yv' It should

be noted that the random variables ij, k # k*, do not depend on Sj’ i.e.,
= - *
Y = Ny ~Nye k # k*, (26)

and that

Yk"‘j = Sj + Nk*j 5 (27)

It therefore follows that the minimum -variance unbiased estimator of Sj' may be wriiten

as

§ ,=X N

vt~ Kisr TNy (28)

ki is a linear combination of the ij’s, k#k* j=-v,eee,V, i.e., N

depends only on Yv' When written in this form, it follows easily that N

where N e

«;0 1S given

vk*j
by

N = EINGaalY 1 (29)

vk *j'

~

i.e., N is the conditional expectation of Nk"‘j' with respect to Y\’, cf. reference 6,

vk *j'

pp. 150-155. However, va‘j’ is a martingale since, cf. reference 6, pp. 91-94,

L)

E{N

vl k*j' ‘ Y\)} E{E [thj' |Y\J+1] ‘Y\)}

E{Nk,j,le} = N K (30)

L S ——— — ~-




M A

Thus, it follows from a martingale convergence theorem, cf. reference 6, p. 167,

Theorem 7.4, and also pp. 560-562,

~

Nk*j' = 4.i.m. va*j' , (31)

v

for fixed j'. If we wish to consider sequences of physically realizable filters for which

i' = v, we obtain in a similar manner

k% o vk*y! (32)

and for filters using future values, j' = -y, anG

N = 4.i.m. N ) (33)
-0

The minimuni-variance unbiased estimators for the above three cases are,

respectively,
§j. = f,i:l S = xk,,j,—&k*j. . (34)
S = f.im. S, = S S (35)
g
§__= L Xeo -0 New o (36)

Thas, we have shown that filters based on a large part of either the past, future, or past

and future, can approximate the performance of filters based on, respectively, the full

10



past, the full future, or the full past and future. It is easily secn that all results
remain valid when k* is any integer between 1 and K.

We have already shown that the maximum -likelihood estimator for Sj' is
identical with the minimum-variance unbiased estimator for Sj" cf. Eqgs. (9) and (21).
However, at this point it is extremely simple to show that this is true. The jcint

probability density of xk"'j" Y\' is
ij- (Xk,.j., Y v) = psj, (Xk.j.lY R p(Yv) , (37)

since Yv is independent of Sj" In addition, we have for the Gaussian multivariate case

1
"2 .—E 1Y)
N -1/2 1 xk*]' (xk*]‘ v .2
(X, o0 Y ) = (20) E"(x WY Yexp{-5 [ i} (38)

where g(xk,j. le) is independent of sj, and

E{ xk,,j.lyv} = E{N Vk,,,j,lyv} '*-svj, . (39)

The maximum -likelihood estimator for Sj' is obtained by differentiating, with respect
to Sj" the probability density function in Eq. (37), or equivalently that in Eq. (38),

from which we get, when using Eq. (39),

s = _ , 40
Sy = Xpap ~ EAN g Y} (40)

11
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L T

which agrees with Eqs. (28) and (29). Thus, all asymptotic results derived for the

miizimum -variance unbiased estimator remain true, of course, for the maximum-

likelinood estimator.

IV. APPROXIMATE FRECUENCY-DOMAIN SYNTHESIS PROCEDURE FOR TWO-
SID'.D FILTERS

An approximate frequency-domain synthesis procedure will now be presented
for maximum -likelihood filters which use a large part of the past and future. Such
filters which use the past as well as future values will be termed two-sided filters.
We begin by assuming the noise is wide-sense stationary and by letting v==, j' =0,

so that Egs. (13) and (14) may be written as

a2 a3
E{So} = limit E{Svo}

\)—O [--]
m K
dx
= [ o = 41
g, kZﬂ £ 0@ A M| ST 4D
0 1}
and
m K
[ ) fe80c¢ Wi, =0, 42)
=i Ll L=0, +1, £2,...,
j=1,...,K,
where
W i'
A ) = Y ek(jIO)e’x, k=1,...,K, (43)
j:-:n ’
12




m .
Ppt) = [ fjk(x)e"':’x ‘;—T’i , i k=1,...,K
-m L=0,%1,+2,...
and
& .
£ ) = y o) g ivk=l,... K, (44)

is the sampled cross power spectral density function, x = wT, T is the sampling

interval. We have from Eq. (43) that

m
-ii d
8,(110) = [ A € =, k=1,...,K (45)
- j=0,41,%2,...

The constraint Eq. (11) becomes

K
Y A =1, (46)
k=1
if we let
Moo= L A e, 47)
k=-o

then Eq. (42) may be written as

mo Tk
Je™ )t mameno|ax=0,  t=0,sL12... (48)
'-TT k=1 J j=1,-oo,Kl

According to Eq. (48), the Fourier coefficients of the quantity in the brackets

in E ) must all be zero. It follows that the quantity itself must be zero so that

13

et — . N i




K
E‘él fjk(x) A () +Ax) =0,
g Thus
qk.(X)
A (x) = Ja =
k § ’
q, .(x)
=1 M
] § ]
-Ax) =| q, .(x)
iker M

STEX=ETn

i=1,...,K. (“49)

k=l’ °1K’ (50)
(51)

where {qjk(x)} is the inverse of the spectral matrix {fjk(x)} , i»k=1,...,K. We note

that
= q*
since
= %
fjk(X) fkj(X) '
and
= =% (-
since
= * (- .
fjk(x) tjk( x)
Therefore

(52)

(53)

(54)

(55)

14




A W) = AL, k=1,...,K. (56)

We obtain from Egs. (41) and (50)

A m K -1
d
E{s} =_JT“T = % 1 q, (%) : (57)

m
dx
e(jIO) = == [Re A (x)cos jx+Im A (x) sinjx}, k=1,...,K
k T ¥ k j=0,21,22,... (58)
It is easily seen that the constraint conditions are satisfied since
I—(\ 4 dx
2_, Bk(jIO) = [ cos jx o
k=1 -7
= § . (59)

jo

The filter weights given by Eq. (58) wovld have to be obtained by inverting the
spectral matrix at all points on the frequency axis betweet: -7 and . This is clearly
impractical so that an approximation would have to be used in practice. Such an
approximaticn is most easily obtained by approximating the integral in Eq. (58) by a

finite sum

15



Rt ol

A%

1 n T i n
5,(jl0) = =—— Y [RcA (t-)cosjt—+ImA (L) sinjl= |,
k 2\14;_\”_1 K'v v kv \
k=1,.,.,K
j=-V’l..’V. (60)

The symmetry properties of Ak(x) expressed in Eq. (56) enable us to simplify the above

equation
1 j V§11 m m m m
: - —— l' - — [ — -— . . —_
Gk(]lO) 5o A0+ (1) Ak(n)+2{:l Re A (¢ ) cos jL o+ Im A, (4 <) sin jL T ]
k=1,...,K
j=-\),,..,\). (61)
The constraint equations are still satisfied since
K 1 . 1 V-_\l -
2 8lo) = o [¢D+2A5+ ) cos i)
k=1 i=1
sin ( —l) ui
U P VTN
2v sintiT
215
-i-[+1+2v—1] =1 j=0
T2y ! )
sin(-l-jﬁ—irr)
- ‘!-__ (_1).]_ 27y
T 2y 1. m
sin = j —
2%y
_ 1 TS DRI R ,
=5 D -C¢D1=¢, j#0, (62)
where we have used tie identity
16
—— - — g B




1 n 1 sin (n +-§-) u
5 + 2_/ cosku = 7 T (63)
k=1 sinEU

It is easy to see that as v~ =, the estimator based on the approximate filter weights

given by Eq. (61} converges in the mean to So'

In order for the asymptotic results to hold, we must have
2VTW > 1 (64)

where T is the sampling interval, and W is the bandwidth of the major spectral peak
of the fjk(x) and is assumed to be roughly the same for all j,k. It has been found ex-
perimentally that for microseismic signals T should be about 0. 1 seconds so that
W > 5/vcps. For 21 filter points, v = 10, so that W > -él-cps. It appears from pre-
liminary spectral analysis that W is approximately %cps, or slightly smaller, so that
it is difficult to say whether the time-bandwidth product given in Eq. (64) is sufficiently
large for the asymptotic results to hold for 21 filter points. In general, the rate with
which the asymptotic results are achieved would have to be determined experimentally
by means of computer calculations.

We. now compare the asymptotic results obtained for the maximum-likelihood
filter, with those for the Wierer filter. The Wiener filter functions are given by (see
Reference 2, p. 10),

G(x)

Hk(x) = Ak(x) G(x)— AMx) °

17
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" lere G(x) is the assumed spectral density function for the signal, when the signal is
ta.._n to be a stationary random process. These fiiters are the scme as the maximum-

likelihood filters multiplied by the common filter function

G(x)
G(x) — A(x)

The filter weighting coefficients are

0 Go(x)e-ikx dx
o =—‘£ 6.6 — 160 o0 k=0,+1,+2,... (65)

which may be approximated as

n

v G (i7)
1 ) o,
= 66D - )

We now compare the computing times required by .he exact recursive and
approximate frequency domain procedures. It is easily seen that the exact recursive

procedure requires approximately, cf. Reference 4, pp. 98-105,

10\)2 K3 (u +a) seconds , (67)

where the amount of computing time required to invert a K X K matrix is taken to be
3, e s s . .

K {u +a), u and a are the multiplication and addition times, respectively, in seconds.

If v and K are large, the approximate irequency domain synthesis procedure requires

essentially the inversion of (v + 1) K X K Hermitian spectral matrices plus a Fourier

transform operation. The matrix inversion requires

18




(V+ 1) =+ 41\ (u+a) = 2\;1\ (u + &) seconds (68)

[\Ib—-

and the I ourier transform operation requires

2
4v- K(u1 + o) seconds (69)

for a total of

= 2\)1(3 (u + a) seconds , —>> 1. (70)

e 1 =
\JK (L+a)l +2"2] 5

In Eq. (68) the factor 41(3 1s required for the inversion of matrices with complex
elements and the factor of % enters due to the symmetry of the mnatrices. Thus, the
approximate frequency domain synthesis procedure requires Sv times less computing
time than the recursive procedure.

A convenient way to estimate the fjk's is to transform the estimate of the

correlation coefficie. ts, i.e.,

. 2y
L = ) o L o]kme ik =1,..0,K, (71)

!r--Z\) 2v+41

where pjk(L) is the estimated correlation coefficient obtained in the following way,

. 1

p' (..‘ B = Z N- : N_-’ j’k=l,aoa’K

Jk Lo<sT=sp it ki 1=0,1,...,2v,
0<itt=L

where L is the number of samples used to estimate the correlation coefficients. This
method for estimating fjk(x) leads to estimated spectral matrices which are nonnegative -

definite for all frequencies, -T = x = . Note that Bik(-l,) = Bkj“)’ £=0,1,.0.,2v.

19
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The estimated covariance . atrix is nonnegative -definite since

where

K v
)

js k=1 m,n=-v

A %
pjk(m,n) Cij %n

1 K \\—)\ g
=1L Z L o
j,k=1 m,n=-v 0=<i=L

0=itm-n=L
K

1 %’\ .
~ T Z o Z
jsk=1 m,n=-v 0=itm =L
0=itn =1L
L K Y

TR

i=0 j,k=1 m,n=-v

e(i+m) eli+n) N,

*
Nj,i+m -1 Nki cljm %n

*
Nj,i-l-m Nk,i+n ajm cxkn

*
i, i+m Nk,i+-n c”jm %n

o

AP i

= = ei+m)a, N, . =0,
L i=0 =1 m=-v jm  j,i+m

ei+m) =1, 0<i+m=1L

= 0, otherwise .

We now show that the estimated spectral matrix {‘fj‘_(x)} is nonnegative -

definite for all x, by noting

so that

fjk(X)

2y .
- Y - ot
1=-2y 2y+1 jk
N i - i(m-n)x
S W+l Pymsm) €

m,n=-v

20




{S a n*f (x) = {& . 1 Q"\ - \ c(men)x
j,i:;l ]qk jkx i j,?=1 GJ < 2v+ 1 n,?nl=-\) p.k(m’n) k
! S N imomx [ 1 v
B j.lz;:‘-'l GJ &; m,g‘;;-\) E( | i_t 0 SZJi =L Nj,i+m-nNki
O<i+tm-n=1L
S - i | i ‘\’—)‘ e(i+m) a Eime §
L(2v+ 1) i=0 | 1 mL=I-V j jyitm

v
o

Ordinarily, the amount of computer time required to perform the Fourier transforma-

tion in Eq. (71) would be

K2 2.2
(2-4v) (v+1) ) (u+a) = 4v” K" (u +2) seconds ,

and this time should be added to that in Eq. (70). If v and K are of the same order of
magnitude then the above computer time is comparable to that in Eq. (79). However,
it is possible to compute the Fourier transform in Eq. (71) in less than, cf. Reference
7y

2
(8v log2 4v) KT (W+a) = 4v K2 lc)g2 4v (u + o) seconds.

Thus, if v is large so that

log2 4y
— <1,
Y

21
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o 8

a considerable saving in the amount of computer time required to perform the Fourier

transform in Eq. (71) is achieved. In addition, if we have

__ K
2 log,, 4v

then the amount of computer time required for the Fourier transformation becomes

negligible compared to that in Eq. (70), and may therefore be neglected.
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V. SYNTHESIS OF PHYSICALLY REALIZABLE FILTER BY MEANS OF A SPECTRAL
MATRIX FACTORIZATION METHOD

We now consider the synthesis of the filter for the physically realizable case,

j'=v, v==. In this case we have

AW = Y e Gl=me™ 72)
j=0
and
T x K
J€7{ ) £ 08@+r} dx =0 £=0,1, 2,...
—n k=1 I j=1,..., K (73)

Let us define z = E-lx and

l_(‘
Vi) = ), f

4k(z) Ak(z) +M2), j=l...,K, (74)
k=1 "

We have from Eq. (72)
= jlo ] =1,... 5 S
A, (2) .=ZO 8, (il=) 2, k=1,..., K (75)

Since Ak(z) is a power series in ascending powers of z, Ak(z) must be analytic

in the unit circle of the z-plane. In crder to have Wk(z) satisfy Eq. (73) we must have

@©

b (2) = b, z, k=1,...,K (76)
=1
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so that Wk(z) is analytic outside and on the unit circle of the z-plane. If we subtract

the first equation in (74) from all the others and substitute

K
A@ = 1- ) A @), (77)
k=2
we obiain a new system of equatious
K
k:jz [£,@) + £, ) ~£,@) 1), )] A @) = 1)) £ @ +¥ -V (@,
ji=2,..., K. (78)

The functions ¥ l(z) - Wj(z) » j=2,...,K are analytic outside and on the unit circle.
Thus, we have a system of (K-1) equations in (K-1) unknowns from which we

can solve for A 2(z), ces ,AK(z). We then obtain A 1(z) from Eq. (77). The system of

equations in (78) may be written in matrix notation as

A(z) f(z) = h(z) +V(2). (79)

The matrix f(x) is easily seen to be a spectral matrix. It will be assumed that f(z) has

a spectral matrix factorization

fz) = Pz) P'z")), (80)

where the matrices P(z), [P(z) ].l have matrix Lanrent expansions on |z| = 1 with no

negative powers of z and F'(z) denotes transpose. We have
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A@)P@) P = hiz)+V(2), (81)
and

A@) P@) = hin) (Fe ) + i) (Pl ). (82)

The matrix on the left-hand side of Eq. (82) has a matrix Laurent expansion with no
negative powers of z which is assumed to converge in some annulus containing the unit
circle. The second term oi "he right has only negative powers of z. Equating coefficients

we obtain, cf. Whittle,8 pp. 67, 100,
_ ) g | -1 .
Az) = {h@) [P D] "} [P@)] ~ , (83)

where the operation { } . indicates that only the non-negative powers of z in the Laurent
expansion of the matrix within the braces are to be retained. Equation (83) represents
the complete solution to the synthesis problem for multidimensional physically realizable
filters.

It is now necessary to show how the factorization in Eq. (80) can be obtained.
A procedure for obtaining the spectral matrix factorization for rational spectral
matrices has been given by Whil:tle,8 pp. 101-103, and is similar to that used in the
one -dimeusional case, cf. also Rozanov.g’ 0

As an example, let us consider that K = 2 and

1
105,00 = Toa=ah y lal <1, (84)
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(1-pz) (1 -8z )

f“(z)+fzz(z)'-flz(z)—fﬂ(z) " =) (I or] ° isl< 1. (85)
We have
ORE i (86)
and
Ayle) = I:(l-cz)l(l—BZ'r)] i—}g_z (67)
+

Since |a!.- < 1, the Laurent expansion of 1/(1-az) may be made in positive powers of z
3 . 1 . , .
and will converge in the circle |z| < —m- » Which encloses the unit cizcle. The
Lavrent expansion of 1/(z-8) must be made in negative powers of z, i.e.,
-1 -2 . . .
z +PBz +..., and will converge in the annulus |B| < |z| <=, which also encloses
the unit circle. Th.s, in order to peric:m the required operation on the term in the

brackets in Eq. (87} we perform a partial fraction expansion and neglect the term

1/(z-8), to obtain

=1 _1_
82 = 128 162 L
_ B z(aB-1) —a
5@ = T8 T 1R ®9)
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We now wish to give an example ia which we will compare the performance of
the physically realizable filter with that of the two-sided filter. For simplicity we con-

sidex that K = 2 and

1
f,,(2) = - ’ <<l
H (1-0z) (t—oz "))
1
f)o2) = - T 0<B<1
(1-gz) (1—-8z )
f02) = £,,=) =0,

so that

1
(t-0z) (1-cz )

f“(Z) —f,,@) =

(l-az)(1-az )+ (1~8z) (=82 )
(I-az)(l-az ) (1-gz) 1 —z"))

fu(z) + f22(z) - flz(z) - f21(z) =

In addition, let us define
-1, -1 -1
(1-6z)(1—-06z ) = (1—-az)(l-az )+(1—8z)(1 -8z )
so that

8 = a+8B
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and
£ =1+ +68 .
Thus, a and B must satisfy the equation

0B = 1

and

Hence a and B must lie in the open interval (% » 1), 0 is in the open interval

(W2, %), and ‘we have

#(1 - e'lz) (1- e-lz-l)

(1-az) (1 -az ) (1- B2y (1~ gz )

fu(z) + fzz(z) - flz(z) - f21(z) =

Therefore, we can write

-1
_ B8(1—-98 "2)
PO M- a-m
and
Ay | 208 2) ] _ (1-az ) 1—gz))
27 |(1mez) (1= p2) 6(l-0az) (1—az ) a-0"tz7Y ,
_ o«
-,




_ 1 z-2
@ =5 T
_ 1 z—a

Ae) = 2 z-86

We have from Eq. (13)

E {82

n
By
g

. g 9x
A Ay ()1 () 7

K
1 Z -1 dz
— & Al A )f (@) =
2 unit  j, k=1 ] k Jk z
circle

Z ) K 1 -1
Residues { ). - Aj(Z) A,z )fjk(z)

inside jy k=1
unit
circle
| ! 1
zZ—0 a z—2a
= Res + = X
z=0-1 I 4a0(z—8)(Bz—-1) (i—az) 2 (z--8)(pz—1) (1-82) J
1 2 1

-1 otz

For the two-sided filter, we obtain

q,,) = (1-az) (1-2z")

Q) = (1= 2) (1= 82 )
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a,,@) = a;,() = 0

" 2 -1 1
l Z qjk(Z) =

jok=1 (1-6z) (1- 6z )

Using Eq. (57) we Lav-.

N ™ IZ( -1 -
E{S"} = J q., (x) =
o i, k=1 jk 2n
= o {, q (Z)- B L]
2M it | k=1 X z
circle ~
K -11
1
= ), Res(-| ) q@|
inside j,k=1 4 J
unit
circle
1
= Res
=01 (1—6z) (z—9)
_ 1
T oF-1
Thus
a2
E{S_} 5
ey S Y taE
E{s2}
c

The minimum value of the above ratio is unity and occurs when q¢ = 1/ J?. The maxi-

. — . 1
mum value, in the permissible range for a, is 5/4 and occurs when o = 3 or o — 1. Thus,
there can be 2 loss in noise variance red.:iction of between zero and approximately 1 db

by using the physically realizable filter rather than the two-sided filter.
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Another method for achieving the spectral matrix factorization which is valid

. . . CLi
for general spectral matrices is due to Wiener and Masani. Suppose

0<ml = ||[fx)]|] = Mi<= ,
where the norm ||a || of the matrix a = {ajk} is equal to E iajk |2, and
Jek
fx) = I+gkx) ,

Hgtx |l <1

Under these conditions we have

172

i) = bl ¢yl eV

where
bix) = I-g +@g - (€8 gl + ...

x

the matrix g_(x) is obtained from the matrix g(x) = Z gy E“kx by omitting the
ix = 0 ikx ke oo
positive powers of € , g (x) = Z gy €, and the matrix C is defined by
k=-=

C = b(x) f(x) b'(x) .

Thus, the factorization of f(x) is achieved in terms of b 1(x) C 1/ 2. It should be

noted that C is a constant nonnegat.ve -definite matrix which is independent of x so that
its square root may be obtained in the uvsual way, i.e., by diagonalizing C with a

unitary matrix and taking the square root of the resultant diagonal matrix. Unfortunately,
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b(x) can be obtained only as an infinite sum of matrices, the rate of convergence of
which is difficult to determine.

It is readily appreciated that the techniques for synthesizing physically
realizable filters by means of a spectral matrix factorization method for rational
matrices are impractical for machine computation due to the requirement of having to
determine roots of polynomials. In addition, the first step would require approximating
all measured spectral matrices with rational spectral matrices. This step could also
be quite complicated and could entail a serious loss with respect to the amount of noise
power which can be minimized.

It is difficult in general to determine how well a physically realizable filter
performs relative to a two-sided filter. The two-sided filter must always be better
than the physically realizable filter since

B{8%} = B{8)} .

This follows from the fact that the optimum weighting functions in the two-sided case
are subject to fewer constraints than those for the physically realizable case. How-
ever, we can obtain seme results along these lines by using the theory of Toeplitz
forms.

We have already shown, cf. Eq. (57),

-1
~2 F é dx
limit E{S\)j'} =J | Z qjk(x) o (90)
\)—om -1 s =1
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for a fixed j'. The quantity on the right in Eq. (90) represents a lower bound for the
variance of the processed noise and can only be attained asymptotically as the memory
of the filter, (2v + 1), increases. We obtaia from Egs. (7), (22), in conjunction with

. 12
some results from theory of Toeplitz forms,

i —K =L
imin —— Y E{82.1 = [ | Y lw| & 1)
- i J i_l i !
U 2v+1 = Vj e ) jk 27

This equation tells us what the average processed noise variance should be, where
the averaging is done with respect to the time, j', at which the signal is to be

estimated.
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VI, INTERPRETATION OF OPTIMUM MULTIDIMENSIONAL FILTERING IN TERMS
OF FREQUENCY WAVE-NUMBER SPACE

We now wish to show the manner in which maximum -likelihood filtering can be
interpreted in the frequency wave-number space. We introduce the wave-numbers

kx' ky and the frequency wave-number spectrum as follows

K @
Tt - Y : ' _ - - -
o kok) = L L ey @esp {iit —k () ~k @)1}
]'k=1 {=-
K
= ! i exp i 9
L &) exp ik x +k y)) exp ik +ky)) (92)
]9k-1
where (xj,yj) and (xk,yk) are the spatial coordinates of the jth and kth seismometers,

respectively, measured with respect to some reference. Since {fjk(x')} is a non-
negative -dcfinite matrix for all x', it follows from Eq. (92) that f is nonnegative for

all x', kx' ky .

We have
T nw dkx dk
“w YR : -3 — _1
fjk(x) -_J;r _J;T f(x ,kx,ky) exp (1(kxxj+k yyj)] exp | 1(kxxj+kyyj)] o o (93)
so that
TmTn v d dk
A2 _ N 2 Y dx & y
(S} -_{JT _}r' IBex' ko k) |7 £,k k) S0 50 5o (94)
where
K o
' = " oa(kli") exp [i(kx' +k x. +% y)] . (95)
Bk ok ) = ) ) Oy(kli exp i +kox; + &y
j=1 k=-=
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We now consider only the situation where j' = 0, in which case the constraint

Eq. (11) becomes

B(x’,0,0) = 1 . (96)

Thus, the maximum -likeiihood filter, or minimum-variance unbiased cstimator, has
those filter weights ej(k!O) such that the triple integral over frequency wave-number
space, in Eq. (94) is minimized subject to the constraints in Eqs. (95), (96). The
solution to this problem would have to be obtained in the usual way, i.e., by using the
recursive method of solution, assuming, of course, that v is finite, the approximate
frequency domain approach for two-sided filters, if v is large, or the spectral
‘matrix factorization technique for physically realizable filters, when vis 1 rge.
However, v’e can visualize to a great extent what the minimizing solution for B
should be in the frequency wave-number space. It is easily seen that if K is reasonably
iarge and if the spatial coordinates (xj,yj) are reasonably different from (xk,yk), for
all j, k, the minimizing solution for B will be such that |Bi is small whenever f is
large, except at the origin of the wave-number plane, where, fo all frequencies, B is
equal to unity. Thus, |B| would tend to be needle-shaped, with amplitude unity, at
the origin of the kx- ky plane, for all values of the frequc 1cy variable x’, and would
tend to have sidelobes in those parts of the kx- ky plane where f would be small, for a
given x’. In general, the positions and amplitudes of these lobes would be frequency

dependent.
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VII. CONCLUSIONS

It has been shown that, basically, the reason for the equivalence of the
maximum -likelihood and minimum -variance unbiased estimators is that they are
based on a conditional expectation. The martingale property of ccnditional expectation
then assures that the asymptotic properties of these estimators are well defined.

An asymptotically optimum frequency domain synthesis procedure has been
presented which requires much less computing time than the exact recursive procedure.
However, the frequency domain synthesis technique is valid only for two-sided filters,
while the recursive procedure is always valid. If two-sided filters are to be used due
to their inherently better capability to suppress the noise, then the frequency domain
approach is superior, assuming that v is large enough for the asymptotic resuits to
kold.

Synthesis procedures for physically realizable filters, in the asymptotic case,

have also been presented. These procedures were based on a spectral matrix factori-

zation technique, and are not well adapted to inachine computation.
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