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ABSTRACT 

A number of asymptotically optimum multidimensional filtering methods are 
investigated with the purpose of determining filtering techniques which require rela- 
tively little computing time to implement with a digital computer.   In particular, the 
asymptotic properties of the maximum-likelihood and minimum-variance unbiased 
multidimensional filters are investigated in the sampled-data case.   These two multi- 
dimensional filters are shown to be identical since they are both based on a conditional 
expectation.   In addition, the martingale property of conditional expectation assures 
that the asymptotic properties of these multidimensional filters are well defined. 

An asymptotically optimum frequeacy domain synthesis procedure is given for 
two-sided multidimensional filters.   This procedure is well suited to machine compu- 
tation and has the advantage with respect to the exact recursive synthesis method of 
requiring much less computation time.   A synthesis procedure for physically realizable 
multidimensional filters is presented .vhich is based on a factorization of rational 
spectral matrices.   This method is not, however, well suited to machine computation. 
An interpretation of optimum multidimensional filtering in terms of frequency wave- 
number space is also given. 
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I. INTRODUCTION 

It has been recognized that a considerable reduction of seismic noise is possible 

by employing multidimensional filtering for seismic arrays.    Some of the more impor- 

tant approaches to seismic array processing are the maximum-likelihood method, the 

minimum-variance unbiased estimator technique and multichannel Wiener filtering.   In 

general, these multidimensional filtering methods form a single output waveform which 

serves as an estimator of the unknown signal which comes from a fixed direction. 

The basic assumption in the analysis of multidimensional filters is that the out- 

f h 
put, X. (t), of the k    seismometer may be written as 

Xk(t) = S(t) + Nk(t) (1) 

I 

where S(t) is the signal waveform which is assumed to be the same in each seismometer 

and N. (t) is the noise present in seismometer k, k = 1,... ,K.   In writing Eq. (1) it is 

assumed that the azimuth and horizontal velocity of the event, or signal, have already 

been determined with sufficient accuracy to allow the signal waveforms from each seis- 

mometer to be shifted to bring them into time coincidence.   In most applications, the 

outputs of the seismometers are given in sampled form in which case Eq. (1) becomes 

kj J       kj 
JC= 1 j • • • y JV 

j=0,il,i2. 
(2) 

Only the sampled-data multidimensional filtering problem for seismic arrays will be 

considered. 



: 
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2 
l£ can be shown   that the maximum-likelihood estimator is the same as the 

minimum variance unbiased estimate of the signal when the noise has a multidimen- 

sional Gaussian distribution.   In addition, the multichannel Wiener filter is related 

very simply to the minimum variance unbiased estimator.   The synthesis of these op- 

timum multidimensional filters is achieved by means of a recursive matrix inversion 

algorithm which is well-suited to computer application.   The purpose of the present 

work is to point out that, asymptotically, as the memory of the filter gets large, 

there are synthesis procedures which can be used that in certain cases require far 

fewer computations than the recursive algorithm.   If a large array of say 525 sensors 

is to be processed, then these approximate synthesis techniques offer a considerable 

saving in computer time required to process an event relative to the exact recursive 

procedure.   This saving will be shown to apply only when the filter is two-sided, i.e., 

non-physically realizable.   This restriction poses no problem in the application of the 

results since all waveforms are recorded on magnetic tape and non-physically realiz- 

able filters are readily implemented. 

If the filters are specified to be physically realizable, i.e., one-sided with no 

output before any input is applied, then the synthesis problem becomes more compli- 

cated than in the two-sided case discussed previously.   It is shown that a spectral 

matrix factorization procedure is required to synthesize the filter in the physically 

realizable case and a method for achieving this for rational spectral matrices is 

discussed.   Another method, due to Wiener and Masani, is also described whicn is 

■•"^i W 



valid tor general spectral matrices.   Unfortunately, these spectral matrix factorization 

techniques are not well adapted to machine computation. 

An interpretation of optimum multidimensional filtering in terms of frequency 

wave-number space is given.   The structure of the filter in frequency wave-number 

space is also presented. 

II. DERIVATION OF THE MAXIMUM-LIKELIHOOD AND MINIMUM-VARIANCE 
UNBIASED ESTIMATORS 

The derivation of the maximum-likelihood estimator of the signal requires the 

assumption that the noise components have a multidimensional Gaussian distribution. 

We assume, for simplicity, that the noise components have zero mean, and that the 

covariance matrix is 

W^ '- "k-^i'9 = E{VW •      ' %k>kl zK <3) 

where E denotes expectation, and it is assumed that the estimator is to use 2v + 1 

samples extending in time from -v to v-   Thus, the likelihood function can be written 

-|(2vfl)       -^ K v 
L  =  (2TT) |p|       exp{-±    2 Z 

k.k^l j.j^-v 

P^CJ.JlXXy-SjXX^^-S^)}   . (4) 



where jpj denotes the determinant of the matrix p which is a matrix of K x K submatrices, 

the jjj   submatrix has the elements p     (j.jp, k,k   = l,...,Kt j,j, = -v v, with 

a corresponding notation for the inverse matrix p     whose elements are p..   (jj,). 
kk |        1 

We assume throughout that the matrix p is positive definite.   Differentiating the 

logarithm of the likelihood function with respect to S.   and equating the result to zero, 
• J. 

we obtain 

.kpl    j=-v        1 J       J 
}l = -v,...,v , (5) 

where S .  is the maximum-likelihood estimator for S.. 
vj i 

We can rewrite Eq. (5) a i follows 

v   Ä K j K v 
(6) 

;■ 

Jj—v • • • l v • »• • • » 

Let us define the (2v+l) x (2v+1) matrixGCj,j.) in terms of its inverse G   (j,j,) 

whose elements are defined as 

-1 K        -1 
1      k,k*l    ^i       1 

JtJj =  -v v (7) 

We can solve for S ., as 
vj 

^*L 2 KM)\ . 
J       j=-v k=l 

(8) 

where 

ttf" '~ 
fi-' 



K       v 

Viin * E   Z p^ (j.jpacjpf)        k = i K (9) 
k^l jj^-v        1 j = -v,...,v • 

It should be nov ,'d that a different set of weights is obtained from Eq. (9) for different 

values of v and also for different values of j', which can vary from -v to v.   The fact 

that 9. (j |f) depends on v has not been brought out by the notation.   It is easily seen 

from the quadratic nature of the logarithm of the likelihood function that; the solution 

given in Eq. (9) is unique. 

We now consider the minimum-variance unbiased estimator of S.,, denoted by 
A 

S' .,, expressible as 

v      K 
s'. =  I    E  elOlJ')^ (10) 

with the constraints 

K 

E  flL<JlJ') = 6H» • j = -v v» ("J 

where 

k=l    K " 

= 0 ,   otherwise  . (12) 

The variance of S* ., is 

v K 
E(S^) =  E      E    ^ (jjr) \(j\r) p^ (J.JJ) • (13) 

h3i'~v   k,k^-l       1 

Using the calculus of variations, we obtain that the minimum-varif.nee uuoiased 

estimator has weights which satisfy the system of equations 



K    x 
j = -v,... ,v 

where the X . are 2v+1 Lagrangian multipliers chosen to satisfy the constraints given 

h\ Eq. (11). 

If we define 

e'K+1(J If) = xvj (15) 

^K^J.Ji) =  PK+l.k^^P =  ^J/^VK+I^ (16) 

k= l,.,.fK+l 

jijj = -v,...,v. 

then Eqs. (11) and (14) may be written as a single set of equations as follows 

K+l 

1 
=1    j^-v       1 i . JJ 

6.,. (17) 
—■ ■ ■ K  •■ « »   ex  « i IP.   .   a% T- ■ 

is     -. 
k= 1,...,K+1 
j = -v,...,v • 

This set of equations is equivalent to the set given previously, cf. Reference o, pp. 21- 

21.   The reason for writing the equations in the above form is that we now have a 

4 
Toeplitz matrix of submatrices and a recursive procedure   can be used in the solution 

of filter weighting coefficients. 

We can .vrite the system of Eqs. (14) as 



ki=1 Jr-V 
K = 1| • • • ^ &. 

j = -v,... »v 
(18) 

using Eq. (11) in (18) we get 

- V        1 

1      h=~v       * 
j = -vf...,v, (19) 

and using Eq. (7) 

vj 

v 
= -   Z      a(j,j )5 

j^-v J'J 

= - cdufy* j = -v, •.., V . (20) 

Therefore, we see from Eqs. (18) and (20) that 

K       v 

kr1 jr"v    1 
K " X|« • • $ Iv 

j = -vf...fv. 
(21) 

which is the same as Eq. (9).   Hence the maximum-likeliliood and minimum-varianco 

unbiased estimators are identical.   It is easily seen from the quadratic nature of the 

expression in Eq. (13) that the solution given in Eq. (21) is unique. 

Using Eqs. (11), (13), and (14) we obtain 

.0 K      v 
Ms:,.} - Z  Z  Milm-u 

vj k*l   j"-v 

- ? 

vj 

J—V 
X . 6...  ■ -X .,  ■ ^j'.j') , 

vj   JJ vj j ■ -v,...,v (22) 



In addition, we have 

k=l j=-v 

= aij'.D. j'.j" = -v,...,v • (23) 

It should be noted that 

E{^.}   S  E{S2
v,..} . v* s v (24) 

This follows from the fact that the minimum value of a quadratic form, subject to 

certain constraints, in a v'-dimensional space cannot be increased if the dimension of 

the space is increased to v ^ v'. 

HI.       THEORETICAL JUSTIFICATION FOR THE ASYMPTOTIC APPROACH 

We now wish to show that the use of filters based on only a part of either the 

past, future, or past and f'ture, can be used to approximate the performance of filters 

based on, respectively, the full past, the full future, or the Ml past and future.   In 

order to do this it will be convenient to introduce new random variables, as indicated 

by Rozanov, 

v       = x Vj    Vj 

kj K*j    Hkj 
K ^ K   j  K —  Ij • • • y Ix 

j = 0, ±1,±2,... 
(25) 

8 



Let us denote the set of random variables Y   , k / k* j = -v,..., v, by Y .   It should 
k) v 

be noted that the random variables Y   , K ^ k*, do not depend on S., i.e., 

%'Vj-V k^'- <26) 

and that 

Vj-Sj+Nki- <27) 

It therefore follows that the minimum-variance unbiased estimator of S., may be written 

as 

s   t = K*'-N a,*-» » (28) vj k*j        \M*y v   ' 

where N , A.t is a linear combination of the Y, *st k ? k*, j = -v...., v. i.e.. N , 4.t vk'j kj * vk*j 
A 

depends only on Y ,   When written in this form, it follows easily that N    +., is given 

by 

Vr = ^Vr'V» (29) 

A 

i.e., N    j^., is the conditional expectation of N ♦,, with respect to Y , cf. reference 6, 
A 

pp. 150-155.   However, N    ^ is a martingale since, cf. reference 6, pp. 91-94, 

EiN^, .♦.,|Y }   =  E{E[N „.JY ^]|Y } 
\H-l,k*j '   v k*j '   v+1      v 

- E<V|Yv} = %'j' • <30) 



m 

Thus, it follows from a martingale convergence theorem, cf. reference 6, p. 167, 

Theorem 7.4, and also pp. 560-562, 

N - -t.i.m. N , (31) 

for fixed j*.   If we wish to consider sequences of physically realizable filters for which 

j' = v, we obtain in a similar manner 

Nk^ = t.l.m.    N (32) 
v-»oa 

and for filters using future values, j* = -v, and 

Nk,       = t.i.m.    N v. (33) 
' ^ —♦   CO • 

The minimum-variance unbiased estimators for the above three cases are, 

respectively. 

S.t  = -t.l.m.    S .,  = X*.t—N.*.,   , (34) 

S   ==   -Ci.m.   S      = X. +   -N,*     , (35) 

^ -V    "        K*,-oo k*,-< 
s.. = ^i-m. S.       = X,,, _-N^ _  . (36) 

Thus, we have shown that filters based on a large part of either the past, future, or past 

and future, can approximate the performance of filters based on, respectively, the full 

10 



past, the full future, or the full past and future.   It is easily seen that all results 

remain valid when k* is any integer between 1 and K. 

We have already shown that the maximum-likelihood estimator for S., is 

identical with the minimum-variance unbiased estimator for S.,, cf. Eqs. (9) and (21). 

However, at this point it is extremely simple to show that this is true.   The joint 

probability density of \*.,t Y^ is 

Vx**j,,v = psj.
<xk*J-

|Yv>p(V' (37> 

since Y   is independent of S.f.   In addition, we have for the Gaussian multivariate case 

1 

■W'V= ™   PW^HH'   W...?)    '}      (38) 
) ^•i-'V 

where aO^,*., IY ) is independent of S.f aal 

vr (39) 

The maximum-likelihood estimator for S., is obtained by differentiating; with respect 

to S.t, the probability density function in Eq. (37), or equivalently that in Eq. (38)t 

from which we get, when using Eq. (39), 

S   ..  = X,,,.,- E{N .„.JY }  , (40) 

11 



which agrees with Eqs. (28) and (29).   Thus, all asymptotic results derived for the 

mi limum-variance unbiased estimator remain true, of course, for the maximum- 

iikelinood estimator. 

. 

IV.   APPROXIMATE FRECUENCY-DOMAIN SYNTHESIS PROCEDURE FOR TWO- 
SID7,0 FILTERS 

An approximate frequency-domain synthesis procedure will now be presented 

for maximum-likelihood filters which use a large part of the past and future.   Such 

filters which use the past as well as future values will be termed two-sided filters. 

We begin by assuming the noise is wide-sense stationary and by letting v = o0, j' = 0, 

so that Eqs. (13) and (14) may be written as 

- 
E{SJ limit    E{S    } 

vo 

TT 
r 

J 
■T 

K 
J    t. (x) A*(x) A (x) 

j,k=l jk 
dx 
2TT   » (41) 

and 

where 

TT       K 

;  Z ux)vx)€-to % + \ 
-TT    k^i r = o. (42) 

^ = 0, il, ±2,. 
j = lt... ,Kt 

A
k(x)  =    2    9k(j|0)€ljX, JC "^  -I-JI • • • j "s (43) 

12 



rr 
•i-tx dx 

and 

pjk(t) - J yx) e    ^ . 

f^<x) =  E p^w€Rx. jk 
-1/= -00 

jk' 

j,k = lt... t K 

t*0,±l,±2,... 

j • K- * i •»•»« i (44) 

is the sampled cross power spectral density function, x = uuT, T is the sampling 

interval.   We have from Eq. (43) that 

et(j|o) = JAM €-* % . 
-TT 

2TT 
k= 1 K 
j=0,±l,±2,... 

(45) 

The constraint Eq. (11) becomes 

S   A (x) -   1 
k=l     K 

(46) 

If we let 

A(x) =     Z 
k=-' 

then Eq. (42) may be written as 

Ikx 

TT 

r € -i^x 

-TT 
E 

k=l 
fjk(x) Ak(x) + A(x) dx = 0 , i«0,±l,±2M 

j   =   ly • . • i iv   « 

(47) 

(48) 

According to Eq. (48), the Fourier coefficients of the quantity in the brackets 

in E ) must all be zero.   It follows that the quantity itself must be zero so that 

13 



Y    f   (x) A (x) + A(x) =  0 , 
k=l    JK 

-TT £ X A TT 

j = 1 K . 
(49) 

Thus 

Ak(x) 

K 

jS qti(x) 

j,k=l 

K~   11 ■ • • | K. y (50) 

-A(x) =i    j ^j« 

-1 
(51) 

where {^^(x)} is the inverse of the spectral matrix {f.. (x)|, j,k = 1,...,K.   We note 
JK JK 

that 

':-■ 

VX) q*.**)   . (52) 

since 

Vx> f'jW. (53) 

and 

qjk(x) q'k(-x) . (54) 

since 

^ 
t*u(-X) jk 

(55) 

Therefore 

14 
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A (x) = A*(-x)t 
k K K~ 1| • • • i K. (56) 

We obtain from Eqs. (41) and (50) 

n 
Ms2} - r TT 1  o J      2n -n 

K 

j,k=i   kJ 

-i 
(57) 

The filter weighting coefficients are obtained from Eq. (45) as 

rr 
9k(j|0) =   J"    2^   tReAk(x)cos jx + Im Ak(x)sin jx],      k=lf...,K 

j = 0,±lt±2,, (58) 

It is easily seen that the constraint conditions are satisfied since 

K 

S 
k=l 
E    9

k<il0) =  I cos Jx 2^ 
-n 

=  6.      . 
jo 

(59) 

The filter weights given by Eq. (58) would have to be obtained by inverting the 

spectral matrix at all points on the frequency axis between -TT and n.   This is clearly 

impractical so that an approximation would have to be used in practice.   Such an 

approximation is most easily obtained by approximating the integral in Eq. (58) by a 

finite sum 

15 

-. 



ek(j|o) 
V 

-^    £      l Re AAl -) cos il- + Im A a ~) sin ji - ) , 
t=-vfl v V 

k— l,. >., K. 

j = -v,,..,v (60) 

The symmetry properties of A (x) expressed in Eq. (56) enable us to simplify the above 

equation 

v-1 
Mj|0) = T" rA.(0) + (-nj A,(n) + 2 7 Re A. («t-) cos j't-+Im A^-) sin K - ] 
k 2v  '   k kx '      M k    v ^   v k    v J   v 

j = -v,  ...v . (61) 

The constraint equations are still satisfied since 

K 

E 
k=l 
E   \(i\o>°i 

v-1 
(-1)34-2(|+ ^COSK^) 

^1 

J_ 
2v 

1. .n 

.   1 . n 
sm23v 

2v 
[+1 + 2V-1]   =  1 , j=0 

JL 
2v (-1)J- 

.     , 1 . TT      .    . sm(-j--.iTT) 

.     1 . TT 
srn-j- 

= ~   l(-i)j-(-i)ji = C j^0. (62) 

where we have used the identity 

16 



l       n l   sm(n+-)u 
- +  >,   cos ku  = j     . (63) 

k= 1 sin - u 

It is easy to see that as v-"*, the estimator based on the approximate filter weights 
A 

given by Eq. (6D converge^ in the mean to S . 
o 

In order for the asymptotic results to hold, we must have 

2vTW >   I (64) 

where T is the sampling interval, and W is the bandwidth of the major spectral peak 

of the f., (x) and is assumed to be roughly the same for all j,k.   It has been found ex- 

perimentally that for microseismic signals T should be about 0,1 seconds so that 

W > 5/v cps.   For 21 filter points, v = 10, so that W > —cps.   It appears from pre- 

liminary spectral analysis that W is approximately -cps, or slightly smaller, so that 

it is difficult to say whether the time-bandwidth product given in Eq. (64) is sufficiently 

large for the asymptotic results to hold for 21 filter points.   In general, the rate with 

which the asymptotic results are achieved would have to be determined experimentally 

by means of computer calculations. 

We now compare the asymptotic results obtained for the maximum-likelihood 

filter, with those for the Wiener filter.   The Wiener filter functions are given by (see 

Reference 2, p. 10), 

Hjx) - Ajx)        -^ V ' kv '   G(x) - A(x)    * 

17 



■   lere G(x) is the assimod spectral density function for the signal, when the signal is 

ta^.n to be a stationary random process.   These filters are the h^r^e as the maximum- 

likelihood filters multiplied by the common filter function 

G(x) 
G(x) - A(x)    * 

The filter weighting coefficients are 

\ =    /     G 

n    G0(K)t-**   dx 

— TT 
(x)-Mx)   2n  * k = 0,il,±2,... (65) 

which may be approximated as 

\"2^ +  1      > 

G  (j-~) 
     cos jk — 

j=-v   Gn-)-A(J-) o~ V V 

k = -v,... ,v (66) 

We now compare the computing times required b> Jie exact recursive and 

approximate frequency domain procedures.   It is easily seen that the exact recursive 

procedure requires approximately, cf. Reference 4, pp. 98-105, 

2    3 
10v   K   (M + a) seconds , (67) 

where the amount of computing time required to invert a K X K matrix is taken to be 

K (ji + a), M and a are the multiplication and addition times, respectively, in seconds. 

If v and K are large, the approximate frequency domain synthesis procedure requires 

essentially the inversion of (v + 1) K x K Hermitian spectral matrices plus a Fourier 

tnnsform operation.   The matrix inversion requires 

18 
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(v+1)« -* 4K   (M + a)   - 2vK   ((a+ a) secvinds (68) 

and the I jurier transform operation requires 

4v   K(u +a) seconds (69) 

for a total of 

:vK   (u + a) [ 1 + 2 -^ ]   s 2vK   (M + a) seconds , 
2v (70) 

In Eq. (68) the factor 4K   is required far the inversion of matrices with complex 

elements and the factor of — enters due to the symmetry of the matrices.   Thus, the 

approximate frequency domain synthesis procedure requires 5v times less computing 

time than the recursive procedure. 

A convenient way to estimate the f., *s is to transform the estimate of the 

correlation coefficients, i.e.. 

J £=-2v 
j,k— i,..., K. , (71) 

where p.Al) is the estimated correlation coefficient obtained in the following way. 

0 ^ i+t s L 

j,k = 1,..., K 
-t = 0,1,... ,2v , 

where L is the number of samples used to estimate the correlation coefficients.   This 

method for estimating f., (x) leads to estimated spectral matrices which are nonnegative- 

A A 

definite for all frequencies, -TT < x ^ TT.   Note that p.. (--t) = P. . W»   -t = 0,1,..., 2v. 
,1* kj 

19 



The estimated covariance .  atrix is nonnegative-definite since 

K        v 

j,k=l mtn=-v 

V 1    K X 

0 £ i+m-n < L 

Is    Li LJ Li 
" j,k=i m,n=-v  0 ^ i+m 

0 s i-m s L 

L, LJ N. ..    N,   .    a.    a* " <: I j»1+«i    k,i-Hi   jm   kn 

L       K        v 
r  E      Z       T,       e(i+m)e(i+n)N. .      N,   .     a.    a* L  -Zk • u i j,i+m   k,i+n   jmTcn 1=0 J,k=l m,n=-v J * J 

fs L   .- 
i=0 

K v 

YJ 2 e<i+ni)aim
N4 i+m .  , *-'                    jm   j,i+m 

j=l m=-v 
0  , 

where 

e(i + m) =  1,   0 ^ 1 + m 2 L 

= 0, otherwise . 

We now show that the estimated spectral matrix {f .v(x)} is nonnegative- 

definite for all xf by noting 

2v 
I V«= !   a-JiL)^,^ 

so that 

1 ^       *   .      . ,-i(m-n)x 
2^TT    ti    Pjk<m»n)€ 

m,n=-v 

20 
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K 
V 

K 
_     V 

v 

j til     J   k  jk . r'       j Tc  2v + 1      ^ jk     * 
JA-I Jtk=l    J n,m=-v    J 

ci(m -n)x 

2v + 1 . f ,    j Tc      ^       ^ i L . jf 
j,k-l m>n=-v 

N.  .^       N. 

0 ^ i+m-n s L 

L(2v+1)   .^ 

K      v 
2     A    e(i+m)a. €imxN. . 
j=l m=-v 

i '■> 

s  0  . 

Ordinarily, the amount of computer time required to perform the Fourier transforma 

tion in Eq. (71) would be 

(2-4v) (v+ 1) y (u-f a)   s 4V
2 K

2
 (M+a) seconds , 

and this time should be added to that in Eq. (70). If v and K are of the same order of 

magnitude then the above computer time is comparable to that in Eq. (70). However, 

it is possible to compute the Fourier transform in Eq. (71) in less than, cf. Reference 

7, 

K 
(8v log2 4v) -r- (M + a) - 4v K^ log2 4v (|a + a) seconds. 

Thus, if v is large so that 

log2 4v 
«   lf 
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a considerable saving in the amount of computer time required to perform the Fourier 

transform in Eq. (71) is achieved.   In addition, if we have 

2 log0 4v »   1   . 

then the amount of computer time required for the Fourier transformation becomes 

negligible compared to that in Eq. (70), and may therefore be neglected. 
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V. SYNTHESIS OF PHYSICALLY REALIZABLE FILTER BY MEANS OF A SPECTRAL 
MATRIX FACTORIZATION METHOD 

We now consider the synthesis of the filter for the physically realizable case, 

j's v, v~*ao.   In this case we have 

Ak(x) = E   ek(jH^ijx 

j-0 
(72) 

and 

TT K 

/  e        {   E   fik(x)A (x) + A(x)}    dx = 0 4, = 0,1, 2,... 
-n k=l   J j= 1,..., K. (73) 

~ix 
Let us define z = €      and 

Mz) =    E   f,.(z)A (z) + A(z), 
J   ■      ^   Jk       k 

j — 1,... ,K . (74) 

We have from Eq. (72) 

Ak(z) = E ek<jHz3. 
j=0 

K    ~     ly   •   •   •   y       IX    • (75) 

Since A (z) is a power series in ascending powers of z, A (z) must be analytic 

in the unit circle of the z-plane.   In order to have ^(z) satisfy Eq. (73) we must have 

(z) =  E   b   z'j . 
3=1    * 

Jc- 1,...,K. (76) 
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so that i|i (z) is analytic outside and on the unit circle of the z-plane.   If we subtract 

the first equation in (74) from all the others and substitute 

K 
A (z) =1-2   A (z). (77) 

k=2     K 

we obtain a new system of equations 

K 

E 
k=2 
£ [fll(z) + fjk(z)"fjl(Z)~flk(z>1 Ak(z) = tnM-tn(z) + yfi)~K(z) . 

j = 2,...,K. (78) 

The functions <Mz) — i|f .(z) , j = 2,... ,K are analytic outside and on the unit circle. 

Thus, we have a system of (K-l) equations in (K-1) unknowns from which we 

can solve for A (z),... ,Av(z).   We then obtain A (z) from Eq. (77).   The system of 
Z Is. 1 

equations in (78) may be written in matrix notation as 

A(z)f(z) = h(z) + i|/(z). (79) 

The matrix f(x) is easily seen to be a spectral matrix.   It will be assumed that f(z) has 

a spectral matrix factorization 

f(z) =  P(z)P,(z"1);. (80) 

where the matrices P(z), [P(z)]     have matrix Laurent expansions on jzj = 1 with no 

negative powers of z and Ffc) denotes transpose.   We have 
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A(Z)P(z)P,(z"1)  =  h(z)+Hz), (81) 

and 

A(z)P(z)  =  MzXP'Cz-^l^ + Hz) (P^z-1)]"1. (82) 

The matrix on the left-hand side of Eq. (82) has a matrix Laurent expansion with no 

negative powers of z which is assumed to converge in some annulus containing the unit 

circle.   The second term Oi   he right has only negative powers of z.   Equating coefficients 

a 
we obtain, cf. Whittle,   pp. 67, 100, 

A(z) = {h(z)tP,(z-l)r1}+  [P(z)]'1  . (83) 

where the operation {    }   indicates that only the non-negative powers of z in the Laurent 

expansion of the matrix within the braces are to be retained.   Equation (83) represents 

the complete solution to the synthesis problem for multidimensional physically realizable 

filters. 

It is now necessary to show how the factorization in Eq. (80) can be obtained. 

A procedure for obtaining the spectral matrix factorization for rational spectral 
o 

matrices has been given by Whittle,   pp. 101-103, and is similar to that used in the 

one-dimensional case, cf. also Rozanov. * 

As an example, let us consider that K = 2 and 

tnV-fnW     -   d-^'i-^-Tj- . I«I<1. (84) 
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f11(z) + f22(z) - f12(z) - f21(z) - ^Jf-:-^ .      i S| < 1 . (85) 

We have 

P(z) = f:-|-     . (86) 

and 

A2(Z> =    [a-otzXl-Bz-^J      T^" 
-gz 

ez ' 
+ 

(87) 

i Since jaj < 1, the Laurent expansion of l/(l-az) may be made in positüe powers of z 

and will converge in the circle |z| < -i—r- , which encloses the unit circle.   The 

Laurent expansion of l/(z-ß) must be made in negative powers of z, i.e., 

-1 -2 
z     + ßz     + ..., and will converge in the annulus | (31 < |z | < «j which also encloses 

the unit circle.   Th^.s, in order to perfOim the required operation on the term in the 

brackets in Eq. (87) we perform a partial fraction expansion and neglect the term 

l/(z-ß)f to obtain 

A2<Z>  "  ik   Ik (88) 

^  -  £*     ZJSI^    ■ ™ 
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We now wish to give an example u which we will compare the performance of 

the physically realizable filter with that of the two-sided filter.   For simplicity wc con- 

sidei that K = 2 and 

f   (z) =     , 0<'.<1 
(l-az)(l-az 1 

f   (z) = j-   , 0 < B < 1 
(l-ez)(l-Sz   ) 

f12(z) =  f21(z) = 0   , 

so that 

(l-az)(l-cxz   ) 

f11fe) + £„fe)-f12<z)-t21(z) = <l-«)<l-^)^'-6z)(l-9£: 
(l-azXI-OB   )(l-ez)(l-Bz   ) 

b 

In addition, let us define 

(i-ezxi-ez-1) = (i-ozXi-az'S + a-ßzXi-ez"1) 

so that 

9 = a+ g 
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and 

8P   =   l+of +03 . 

Thus, a and g must satisfy the equation 

2aß =  1 

and 

6 = a-r —    . 

Hence a and ß must lie in the open interval ( - , 1), 9 is in the open interval 

.     3 
(V2 ,   ~), and we have 

f11(z)+f22(z)-f12(z)-f21(2) = 
^ (i-e^zxi-e"^"1) 

(1 -az) (1 -az"1) (1 - ßz) (1 - Pz"1) 

Therefore, we can write 

P(Z) =  Qa-9'1^) nz)      (l-ou.)(l-ßz) 

and 

A2(z) 
9(1-e^z) 

(l-az)(l-$z) 
d-az'Sd-gz"1) 

9(l-az)(l-az"1)(l-9'1z"1) 

a 
1-az    * 
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Xz) = 
1   z"2a 
2   z -e 

AjCz)  = 1   z -a 
2   z-e 

We have from Eq. (13) 

E{s!}   =J      . Z    A (x) A- (x) f   (x) | 
-TT      Jfk=l        J J 

sr t • I, AJ(Z> A'=(z'1) fjk<z) ? unit    j,k=l     J J 

circle 

=     YJ       Residues <    J      - A (z) A (z' ) f   (z) 
inside 
unit 

circle 

= Res   < 
z=9'1 

j,k=l 
z     j        k jk 

z -a 
-1 

+ I z-2a 
4a(z - 9) (9z - 1) (1 - az)        2   (z - 9) (9z - 1) (1 - gz) 

2 .    1 
"^T    [a   +4^"] 

For the two-sided filter, we obtain 

q11(z) = (l-az)(l-az    ) 

q22(2)  =  (1 - 0z) (1 - 8z    ) 
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qi2(z) =  q21(z)  =  0 

.?, Vz) 
-1 

1 

(i - ez) (i - ez" ) 

Using Eq. (57) we ha\ , 

TT 

E{S^ = J 
— TT 

•^ , v:x) 
j,k=l    J 

dx 
2TT 

9TTi    >r 2TTi 
unit 

circle 

K 

.1, Vz) dz 
z 

S  <ijkfe) 
j,k=l J 

:
z=e-i   0-9z)(z-8) 

eP-i 

ITius 

E{S2} 
c 

24.       1 

The minimum value of the above ratio is unity and occurs when a = 1/^2 .   The maxi- 

mum value, in the permissible range for a, is 5/4 and occurs when a- - or a-* 1- Thus, 

there can be a loss in noise variance redaction of between zero and approximately 1 db 

by using the physically realizable filter rather than the two-sided filter. 
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Another method for achieving the spectral matrix factorization which is valid 

for general spectral matrices is due to Wiener and Masani.        Suppose 

0< ml  s   ilf(x)ll  s  MI< »   , 

where the norm jja || of the matrix a = {a    } is equal to   V   |a    )  , and 
J j.k     Jk 

f(x)  =  I + g(x) , 

llg(x)||<l   . 

Under these conditions we have 

f(x) = b"1<X)c
1/2[b-1(x)c1/2r , 

where 

b(x) =  I-g" + (g'g)" - [(g"g)"gl"  + ... 

the matrix g (x) is obtained from the matrix g(x) -    lj   gk^       by omitting the 
0 .. k=-°> 

IX " V* 1KX 
positive powers of €   ,  g (x) =    2J   Si.^      :   an^ t:^e matrix C is defined by 

k=-« 

C = b(x) f(x) b'Cx). 

-1 1/2 
Thus, the factorization of f(x) is achieved in terms of b   (x) C      .   It should be 

noted that C is a constant nonnegatve-definite matrix which is independent of x so that 

its square root may be obtained in the usual way, i.e., by diagonalizing C with a 

unitary matrix and taking the square root of the resultant diagonal matrix.   Unfortunately, 
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n 

b(x) can be obtained only as an infinite sum of matrices, the rate of convergence of 

which is difficult to determine. 

It is readily appreciated that the techniques for synthesizing physically 

realizable filters by means of a spectral matrix factorization method for rational 

matrices are impractical for machine computation due to the requirement of having to 

determine roots of polynomials.   In addition, the first step would require approximating 

all measured spectral matrices with rational spectral matrices.   This step could also 

be quite complicated and could entail a serious loss with respect to the amount of noise 

power which can be minimized. 

It is difficult in general to determine how well a physically realizable filter 

performs relative to a two-sided filter.   The two-sided filter must always be better 

than the physically realizable filter since 

E{S2}   ^   E{S2}   . 1   o * 

This follows from the fact that the optimum weighting functions in the two-sided case 

are subject to fewer constraints than those for the physically realizable case.   How- 

ever, we can obtain some results along these lines by using the theory of Toeplitz 

forms. 

We have already shown, cf. Eq. (57) , 

limit E{S2.,}   =    f vy ,J 

V -• ao ~ TT 

K 

I    qik<x) 

-1 
dx 
2TT  ' 

(90) 
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for a fixed j'.   The quantity on the right in Eq. (90) represents a lower bound for the 

variance of the processed noise and can only be attained asymptotically as the memory 

of the filter, (2v + 1), increases.   We obtaia from Eqs. (7), (22), in conjunction with 

some results from theory of Toeplitz forms, 

limit 
V -• oo 

1 V *2 
2v+ 1 

j'=-v 

l   - 
K v*1        - i 

2 A00 
j.k=l 

dx 
(91) 

This equation tells us what the average processed noise variance should be, where 

the averaging is done with respect to the time, j', at which the signal is to be 

estimated. 
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VI.        INTERPRETATION OF OPTIMUM MULTIDIMENSIONAL FILTERING IN TERMS 
OF FREQUENCY WAVE-NUMBER SPACE 

We now wish to show the manner in which maximum-likelihood filtering can be 

interpreted in the frequency wave-number space.   We introduce the wave-numbers 

k , k   and the frequency wave-number spectrum as follows 

K 
V, k. k) =     YJ Z    P1k^) exp { i I tx« - k (x -xj - k (y -y >) } 

y        j,k=l *,=-»    J x   j    K       y   j    K 

K 
=     2    fj^') exp Ii(kxx. + y.)] exp [[(k^ + kyyk)] , (92) 

where (x.,y.) and (x^,y, ) are the spatial coordinates of the j    and k    seismometers, 
j    j K    K 

respectively, measured with respect to some reference.   Since {f.. (x')} is a non- 

negative-definite matrix for all x*, it follows from Eq. (92) that f is nonnegative for 

all x*, k ,k  . 
x   y 

We have 

17     TT _ die,. dkv 

V0 Ä J J f(x^vVexplifrxxj+Vj)lexpl■i(kxxj+kyyj)1l^^•2^ * (93) 

so that 

9 TT   n    n Hv«   dkv   dK 
E{sh   = J   J    J   |B(x',kx,k)|2  f(x\kx,k)^  -£  -£   . 

J -TT-TT -H 7 ' 

(94) 

where 

K     » 
B(x,,k,k)=    YJ     Z    etklnexplifkx'+kx +1- y)]   . 

x   y      j=i k=-»   , * J     y J 

(95) 
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We now consider only the situation where j' = 0, in which case the constraint 

Eq. (11) becomes 

Bfr'.O.O) =   1  . (96) 

Thus, the maximum-likelihood filter, or minimum-variance unbiased estimator, has 

those filter weights 0.(k!o) such that the triple integral over frequency wave-number 

space, in Eq. (94) is minimized subject to the constraints in Eqs. (95), (96).   The 

solution to this problem would have to be obtained in the usual way, i.e., by using the 

recursive method of solution, assuming, of course, that v is finite, the approximate 

frequency domain approach for two-sided filters, if ^ is large, or the spectral 

matrix factorization technique for physically realizable filters, when v is 1 rge. 

However, ve can visualize to a great extent what the minimizing solution for B 

should be in the frequency wave-number space.   It is easi}y seen that if K is reasonably 

large and if the spatial coordinates (x.,y.) are reasonably different from (x^,y ), for 

all j,k, the minimizing solution for B will be such that IBJ is small whenever f is 

large, except at the origin of the wave-number plane, where, for all frequencies, B is 

equal to unity.   Thus, |BJ would tend to be needle-shaped, with amplitude unity, at 

the origin of the k -k   plane, for all values of the frequticy variable x', and would 
x    y 

tend to have sidelobes in those parts of the k -k   plane where f would be small, for a r x    y r 

given x*.   In general, the positions and amplitudes of these lobes would be frequency 

dependent. 
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vn.      CONCLUSIONS 

It has been shown that, basically, the reason for the equivalence of the 

maximum-likelihood and minimum-variance unbiased estimators is that they are 

based on a conditional expectation.   The martingale property of conditional expectation 

then assures that the asymptotic properties of these estimators are well defined. 

An asymptotically optimum frequency domain synthesis procedure has been 

presented which requires much less computing time than the exact recursive procedure. 

However, the frequency domain synthesis technique is valid only for two-sided filters, 

while the recursive procedure is always valid.   If two-sided filters are to be used due 

to their inherently better capability to suppress the noise, then the frequency domain 

approach is superior, assuming that v is large enough for the asymptotic results to 

hold. 

Synthesis procedures for physically realizable filters, in the asymptotic case, 

have also been presented.   These procedures were based on a spectral matrix factori- 

zation technique, and are not well adapted to machine computation. 
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