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ABSTRACT 

Methods are presented for calculating the laminar boundary- 

iuyer flow through separation to reattachraent under the influence 

of a prescribed pressure gradient or, in the case of a supersonic 

main stream, under the influence of "free interaction" between the 

boundary layer and the main flow.  In contrast to the earlier work 

of the authors using the Tani method and quartic profiles, the 

present method is base^ on the Dorodnitsyn method of integral 

relations and uses a rational velocity profile which accounts 

properly for the separation singularity.  As a result, the possi- 

bility of higher approximations is inherent in the method.  The 

calculated solution for free interaction goes smoothly through 

the separation point and is in good agreement with certain fea- 

tures of the Navier-Stokes solution in the neighborhood of separa- 

tion.  Good agreement is exhibited between experimental and cal- 

culated pressure distributions up to reattachment for the several 

cases for which the comparisons were made.  A computer program 

based on the work has been prepared for two-dimensional flow.  It 

is planned to continue the work to cover nonadiabatic boundary 

layers and axisymmetric bodies. 
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i axial length of compression corner, see Fig- 
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00 
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n index 
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$ mass flov in the boundary layer in the Dorodnitsyn 
plane,   T] 

/ 
u dt] 

o 

ip* stream function used in Reference 10 and shown 
in Equation (90) 
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CALCULATION OF LAMINAR SEPARATION WITH 
FREE INTERACTION BY THE METHOD OF 

INTEGRAL RELATIONS 

PART I - TWO-DIMENSIONAL SUPERSONIC ADIABATIC FLOW 

1.  INTRODUCTION 

This report deals with automatic computation studies which 

have been directed toward the calculation of laminar separated 

boundary-layer flows at subsonic and supersonic speeds.  The 

objective of the present study is the development of a computer 

program for determining the viscous field including the separa- 

tion and reattachment zones over flat plates with compression 

surfaces.  In Reference 1, Abbott, Holt, and Nielsen developed a 

method for calculating such a flow field using the method of Tani 

and utilizing quartic velocity profiles.  While the method pre- 

dicted the experimental pressure distribution accurately up to 

separation and slightly beyond, it had definite limitations with 

regard to the region downstream of separation and with regard to 

cooled boundary layers.  In Reference 2, Lees and Reeves used the 

method of Tani, together with similarity velocity profiles.  In 

this report the authors abandon entirely the method of Tani and 

adopt the Dorodnitsyn method of integral relations of Reference 4. 

The general approach of the foregoing methods is to make some 

plausible assumption regarding velocity profiles which is sufficient 

to reduce the integro-differential equations of the boundary layer 

to ordinary differential equations which can be readily solved 

numerically.  For instance, in Reference 1, a one-parameter family 

of quartic profiles was used while in Reference 2, a one-parameter 

family of Stewartson reverse flow profiles was us^d.  It seems 

that the critical factor determining the degree of success enjoyed 

by any one-parameter method for any particular case is the degree 

to which the assumed velocity profiles will fit the nonsimilar 

family of profiles which actually occurs. 

However, a shortcoming of a one-parameter family of profiles 

in the existing methods is that they do not permit higher 
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approximations to the solution and thus do not permit assessment 

of how closely the assumed velocity profiles approximate the actual 

nonsimilar family of profiles.  Another shortcoming is that one 

cannot expect a one-parameter family of velocity profiles to repre- 

sent accurately all possible velocity profiles that can be developed 

in separated and attached flows. 

In accordance with these critical remarks concerning one- 

parameter families of profiles, the method of the previous investi- 

gation (Ref. 1) has been completely abandoned and the Dorodnitsyn 

method of integral relations (Ref. 4) has been adopted.  This 

method contains within its mathematical framework the possibility 

of carrying out higher approximations, and with the proper treat- 

ment of the singularities appears to contain the possibility of 

approximating exact solutions as closely as possible.  In the 

present work a fourth approximation is used so that the velocity 

profile used in a four-parameter profile. 

Aiaong the questions to be discussed is the interesting one 

of whether the boundary-layer equations give an adequate represen- 

tation of the flow in the neighborhood of the separation point, 

or whether the Navier-Stokes: equations are required.  Also, some 

light is shed on the question whether the concept of free inter- 

action can be expected to apply with any degree of precision in 

the neighborhood of the separation and reattachment points.  "Free 

interaction" implies that the body contour is increased by the 

boundary-layer displacement thickness when using inviscid super- 

sonic flow theory to calculate the pressure distribution acting 

on the boundary layer. 
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2.  GENERAL CONSIDERATIONS 

2 .1  Description of Problem 

The problem under consideration is that of calculating 

accurately by automatic means laminar separated flows under the 

action of prescribed pressure gradients or under the influence of 

free interaction between the boundary layer and the supersonic 

outer flofw.  By "free interaction" we consider that the pressure 

distribution of the outer flow is the result of a mutual inter- 

action between the boundary layer and the outer flow.  The bound- 

ary layer, on the one hand, through its displacement thickness 

turns the outer flow; and the outer flow, on the other hand, 

through its pressure rise tends to thicken and separate the 

boundary layer. 

Usually the boundary-layer equations are solved in a step- 

by-step integration as a straightforward parabolic boundary-value 

problem, despite the fact that pressure waves in the subsonic part 

of the boundary layer always make the boundary-value problem ellip- 

tic.  In a sense it is a corollary of the free-interaction concept 

that the separated flow is independent of the direct influence of 

the downstream configuration.  By this we mean that the downstream 

configuration cannot influence steady separated flow by means of 

upstream pressure waves, although it is thought that the downstream 

configuration actually fixes the position of separation in accord- 

ance with some reattachment criterion.  The correct position of 

the separation point must be found by iteration in accordance 

with a reattachment criterion, and in this sense the boundary- 

value problem is elliptic. However, once the separation point 

has been specified, then solution of the boundary-layer equations 

including free-interaction is independent of the direct influence 

of the downstream configuration until the calculational marching 

procedure reaches the configuration. 

The particular configuration which we will consider is shown 

in Figure 1.  Herein a ramp induces separation on a flat plate 

and reattachment occurs on the ramp.  This paper will present 

results for the pre-separation, post-separation, and reattachment 
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regions. The flow beneath the u » 0  line will be called the 

inner flowr and that above the u " 0  line, the outer flow. 

With regard to the slopes of the compression surface, the 

assumption has been made that these are small so that the boundary- 

layer equations in a coordinate system parallel and perpendicular 

to the flat plate can be retained all the way to reattachment (see 

Fig. 1).  The additional terms introduced into the boundary-layer 

equations in the reattachment region by not taking the vertical 

axis normal to the ramp are proportional to the slope of the ramp 

and are therefore negligible for small enough slopes. 

2.2 Assumptions 

A number of assumptions are made for the purpose of this 

paper. 

(1) The governing equations are those for a compressible 

laminar boundary layer. 

(2) The Prandtl number is unity. 

(3) The air behaves as an ideal gas. 

(4) The wall is adiabatic and at stagnation temperature. 

(5) Within the range of interest the viscosity varies 

linearly with temperature. 

(6) The pressure at the outer edge of the boundary layer 

is governed by the Prandtl-Meyer relationship. 

(7) There is no upstream influence due to pressure waves 

in the boundary layer. 

(8) A compression ramp with small slopes but otherwise of 

arbitrary shape induces separation of the boundary layer. 

2.3 Partial Differential Equations and Boundary Conditions 

2.3.1  Physical plane 

The laminar boundary-layer equations being used are the 

usual ones. 
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M£ul + ^£vl.0 (2) dx dy 

The domain within which a solution to the boundary-layer 

equations   is being  sought is   shown  in Figure  2. 

Boundary A:       w(x)   =  0;   x    < x ^. x (3) 

w(x)   ■ given  function;   x    < x ^ x 

Boundary B:       x=x O^y^.00 

Boundary C:       y = oo x<x^.x 

The velocity boundary conditions  are: 

Boundary A:       u ■  0 v =  0 (4) 

Boundary B:        u =  u.(y) 

u =  uaty = a> (5) o ' 

|U. .   0     at     y = oo 
dy 

Boundary C:        (a)     Prescribed pressure distribution: 

u =  ux{x) (6) 

u,   =  u       at    x *  x i o o 

(b)     Free  interaction: 

u=uatx»x (7) 1 o o 

The pressure boundary conditions include the usual boundary- 

layer assumption that p depends only on x. 

For prescribed pressure distribution: 

p ■ p,(x), a given function (8) 
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For   free  interaction: 

p - p      at    x -   x (9) 

The total   temperature    T.      is  constant throughout  the   flow 

T     =   T  fl   + "Y   "  * M2J =   Tt (10) 
> ^ o 

2.3.2 Stewartson plane 

In introducing the Stewartson transformation, Reference 3, 

we first make a nonlinear stretching in  x and y to  X and Y 

as follows: 

x - / r^ ^      Y = /    Irr • i^ (n) 
^    ^o  o J ,   v   ro  o       r i o w(x) 

Under this  transformation,   it can be  shown  that Equations   (1) 

and   (2)   transform to 

dX dY i   dX o   ^v2 

(13) 

where 

U  = 

V 
p, (t1 ■ i 

y 

f 
Piai 
P  a 

(14a) 

. .    tr0* *ff %-v       (14b) 

It is noted that the U profile is simply a uniform stretch- 

ing or shortening of the u profile for a fixed value of x. The 

V profile is a nonlinear stretching or shortening of the v pro- 

file for fixed x. 
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Notice that the entire Boundary A goes into Y = 0  and 

lary C goes into Y ■ «.  Boundary B go 
thus have the velocity boundary conditions: 

Boundary C goes into Y ■ «.  Boundary B goes into X = X .  We 

Boundary A: 

Boundary B: 

Y = 0 U = 0 V = 0 

X = X 
o 

U = U. (Y) 

(15) 

(16) 

Boundary C:   Y = U = U, u 
a 

i a 
^ = 0 
ÖY   0 (17) 

P.3.3  Dorodnitsyn plane 

Following Dorodnitsyi. the physical coordinates  ^  and T^ 

are introduced as follows: 

P - fUi M ^    /v Y 
^  o o  V o 

(18) 

New velocity variables  are  introduced  as  follows 

U    - _ v_ u = ü" '  v  u, 
(19) 

The partial differential equations then become 

U 
^ + ^(v+ün^)=0 

u. 
u tf +(v + uri IT 

Introducing the new variable 

du - „  (1 - ü2) + ^ 
^       Ui ÖT!2 

A 

)(20) 

y 

-  -  - ui 
W " V + UT] — (21) 



AFFDL-TR-65-107 

v/e have 

^i-  + ^- »   0 (22a) 

di dti       U (1   - u2) (22b) 

The dot denotes differentiation with respect to ^. 

Under the Dorodnitsyn transformation, the velocity boundary 

conditions are transformed as follows: 

Boundary A:   T]=0;  U=V = W=0 

Boundary B:   £,= £,;  u ■ u. (rj) 

Boundary C: u = 1 ^u 
ÖT1 

- 0 

(23) 

8 
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3.  REDUCTION OF IJNTEGRO-DIFFERENTIAL EQUATIONS TO ORDINARY 
DIFFERENTIAL EQUATIONS 

3.1  Derivation of Integro-Differential Equations 

The scheme used to obtain solutions to the foregoing boundary- 

value problem is to derive from the system of partial differential 

equations given by Equation (22) a set of ordinary differential 

equations, the solution of which will be a close approximation to 

the exact solution.  The possibility of increasing the accuracy 

of the approximation is also a feature specially being sought. 

The method of integral relations of Dorodnitsyn, Reference 4, 

seems to be one containing these features.  For this purpose we 

derive the integro-differential equations for the inner and oater 

layer from which the ordinary differential equations are derived. 

Let us first introduce a boundary s(x)  in the physical 

plane, Figure 1, which connects the separation point and reattach- 

ment point.  Let u be zero along this line so that the direct 

flow and the reverse flow are separated into two regions called 

the outer and inner regions, respectively.  Consider first the 

outer region in the Dorodnitsyn plane in which the boundary s(x) 

transforms into rj (^) .  Introduce a family of smoothing functions 

f (u)  given as follows: 

fn(ü) = (1 - ü)n (24) 

Multiply the continuity equation (Eq. (22a)) by  f(u)  and the 

momentum equation (Eq. (22b)) by  f'(u), add and integrate between 

n  and 0°  to obtain 's 

00 OU 00       • 00 

j    ^  (fuJdT) + | ^ (fwMn - J f ~ (1 - ü2)dr]  +| f ^S dT! 

^S ^S ^8      ' ^8     ^ 

(25) 

Let us now consider the velocity boundary conditions on the line 

s(x)  as it transforms into Y (X)  in the Stewartson plane and 

T) (4)  in the Dorodnitsyn plane 
B 
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s(x) : u ■  0 

vs = 

w(x) 

YS(X): u = 0 

V s - 
poao    P(xvslv 

Pi3!             Po             S 

Ys = 

WJ(X,     P°U°    ^ 

nBiV: u = 0 

V s 
■ 

v         /u -^ s       /   o 

•i.      V     o 

s 
= V s 

\ 
■ 

Ü   i    V  v       Ys 
o      V     o 

(26) 

(27) 

(28) 

We  can now  show easily  that 

00 

/ 

'S 

d_ (fu)dTi = 

00 

dT) 

00 

'S 

^ (£«)än -f v       since     f(«>)   ■  0 
s  s )      (29) 

J 

00 

rf'^dn S    ÖT) 

00 

■ rg) ^ 
'S 

'S T1< 

Equation (25) thus becomes 

10 
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'JO 
p 

oo  v2 

'S Tl 

f" S) d" 
(30) 

This is the integro-diffcrcntia] equation of the outer flow. 

With regard to inner flow, let us integrate between  TJ = 0 

and TI ■ n  to obtain 1   's 

/ k (fu)dT1 + J k (fw)dT1" / f ~ a - u2)dn 

+ f
s f ^dn (31) 

It is then easy to see that 

_d_ 
d(l 

's    U, , du ~t I    fu dn + fcvc - j    f ^ (i - u^dn + fs ^ s s w dn 

-/■-(i;)" (32) 

This is the integro-differential equation of the inner flow. 

If we let  öU/öT) be a function only of  u, Equations (30) 

and (32) become 

_d_ 
d4 

fu du 

u       dn 
s 

f v = / f ^ (1 :-^) au s   s       ^ U1 ^u 
u0 ^n 

- f •   ^u 
S    ÖT] 

u 
S 

1 

_ r f« du du (33) 

u 
s 

11 



AFFDL-TR-65-107 

u 
A. I 

s u 
fu du   ,   c — 
—N=:    +    f    V ou s  s 

u 
f,   _L     (1   -_M   }dM   +  f ,   ^u 

S    hf] u 

- f 
w öl) 

öS 

U 

f    ^   du 

U 

(34) 

Note  that     u       is   zero but   is  retained  in  its   notational   form to 
s _ 

indicate the integration of Equation (33) is from the u = 0  line 

in the flow to u = 1, while the integration of Equation (34) is 

between two lines on which u = 0. 

3.2 Velocity Profiles 

The choice of velocity profiles is a critical item in the 

success of the present method.  In Reference 4, Dorodnitsyn uses 

a representation for the velocity gradient  öu/ör|  in terms of 

u  in such a fashion that if r\       iz  zero,   the integrals in Equa- 

tion (30) are all converted to integrals of  u with limits of 

0 and 1.  Consider only the outer flow and note the following: 

At r) u = 1 

At  separation,   T) =  0:       u =   0 

du/dr) =  0 

du/öi| ='  0 
(35) 

If we  assume  that  the   zero  at     u =   1     is   a  simple  zero,   neither 

integral with    öu/dr|     in  the  denominator will be  divergent because 

the  particular  choice  of  smoothing   function  has   a  compensating 

zero  in  the  numerator.     However,   if the  zero  at  separation   is   a 

simple  zero,   then the   integrals will be  divergent.     If we  choose 

the  zero  in     öu/öi]     at  separation  as   a square  root,   the   integrals 

will be   convergent.     Also,   this   form  is  compatible with  the   fact 

that     du/drj     is  a  double-. alued  function  of     u     just downstream 

of  separation.     Accordingly,   we  choose  the   following  form  for  the 

velocity profile  for the  outer   flow: 

(i - uj-yu + c. 

c     + c,u  + c ^u 
o i - 

(36) 

12 
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In  this   formulation     c   .   c,.   c   .   c   .   •••     are  taken  as   functions 
O'   1'   2 3 

of  |  only.  Equation (36) is introduced in Equation (33) and as 

many of the  f (u)  smoothing functions are used a3 there are  c's 

Since the known singularities are explicitly exhibited and the 

"smooth part" is represented by a Taylor series, the accuracy of 

the approximation should increase as the number of terms in the 

series is increased. 

With regard to the inner flow, there is a zero of du/ör|  at 

the point of maximum velocity in the reverse flow.  This zero 

causes divergent integrals in Equation (34).  Accordingly, Equa- 

tion (32) will be used for the inner flow since it will not be 

divergent if u  is expanded in a power series in r\     in the usual 

way.  Let us consider the following boundary conditions for the 

inner flowr 

(37) 

n = 0     u = 0    ^ = aw 

^=   % " = 0    tf ' as 
The velocity can then be written as a cubic equation 

_        (2a + a )     (a + a ) 
u = a n * B—  n2 + — s-  n3       (38) 

's n 's 

3.3  Integral Relations for Outer Flow 

In the following work we will use a fourth approximation for 

the outer flow so that four ordinary differential equations for 

c , c , c2, and c  will be required.  Through the use of Equa- 

tions (24), (33), and (36), we obtain 

13 
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^ + c. 
^ ( c  + c u + c u2 ) du - v 

^i. / n(l - ü)""^! ±  ü) 

^ + c, 
+ C U + C2u2) dU " 

n ^/c 

n(n - 1)(1 - ü)11"1 ^ü + c. 

c  + c u + C0U O     1       2 

du (39) 

It is to be noted that all the integrals are tractable.  If a 

fifth approximation were used, the last integral v/ould contain a 

cubic in the denominator, and the definite integrals would involve 

elliptic integrals.  If higher approximations than the fourth are 

desired, it is probably a practical necessity to evaluate the 

integral by numerical means rather than analytical means. 

To obtain v  we make use of the inner flow velocity pro- 

file.  From continuity we can write 

v  = w = - -TT /  u dii 
s    s     dfc; /      ' 

(40) 

Substituting  u  from Equation (38) yields for v 

v • . 1~   A. 
s   12 d^ '•s2' a  - a ) s   w J (41) 

wherein from Equations (36) and (37) 

^ 
a = 
s   c (42) 

since     du/dq     is   to be  continuous   across   the     u =  0     line. 
Let  us  define  two  families   of  definite   integrals  encountered 

in  Equation   (39)   by  the   following  notation: 

14 
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—n u gn(c3) = du (43) 

V^ + S 

u -v/u + c, du 

c  + c , u + c u 
O     •»■       2 

O 

Formulas for evaluating g (c ) are derived in Appendix I. The 

P integrals are evaluated numerically because of the numerous 

subcases in the analytical integration. A set of four equations 

for c , clt c2, and c is obtained from Equation (39) for the 

four smoothing functions with n = 1, 2, 3, and 4. This set can 

be r.omewhat simplified by addition or subtraction of the four 

equations to yield the following set: 

^O    +   g26l     +   ^    +     (Cogi    +    Cl92    +    C^3)h3    +    [C0g0    +     (C0    +   Cl,gi 

+   (ci   + c2)g2    - c2g3J   ^ " v s c o 

(45) 

g6     +gc     +gc^   +   (cg:>+cg     + c0q   )c„  -[eg 
^20 ^31 ^42 O2 13 2->43 [_0^0 

u 
+   (c1  - oo)g1   +   (c2  - cl  - 2.o)g2  -   (2cl  + c^g,  - 2c2g4J ^ 

o 

(46) 

g3<=0    +   g46l    +   g56
2    +     (Cog3    +    Cig4     +    C2

g5)63    +    ["^Q9! 

u. 
- (2ci - c. :o)g2 + (3co + c1 - 2c2)g3 + (3c, + c2)g4 4- 3c2g5] j± 

- -2P  + 8P, - 6PQ O       1       2 

(47) 

15 
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,4co  + q5ci   + g662   +   (cog4   + c1g5   +  c^^c^  -   [+3cog2 

-I   0i ■(-co  + 3^)93   +   (3c2  - c1   - 4co)g4   -   (c2  + 4c1)g5   -  4cLjg6J  — 

=   -6P,    +   18P„   -   12PQ 

(48) 

In Equation (45) the value of  v   evaluated using Equation s 
(41)   is 

—rco - Tr% (49) 
24c   ■\fc~ 12c 

o »    3 o 

It is noted chat Equations (45) to (49) are a simultaneous set of 

linear ordinary differential equations for c , c , co, c3, and 

U .  For a prescribed pressure distribution l^  is known, and 

Equations (45) to (48) are adequate for evaluating the boundary- 

layer flow up to separation.  When free interaction is assumed, 

an additional equation is required. 

3.4  Integral Relation for the Inner Flow 

Equation (32) for the inner layer involves a finite range of 

integration and contains no singularities.  No particular advantage 

occurs, therefore, in transforming to u  from T\.     In fact 

divergent integrals are so introduced.  Furthermore, there is no 

necessity to use the same smoothing functions used for the outer 

flow.  However, it is convenient to use  1 - u  as the smoothing 

function in Equation (32), which now becomes 

.d 

6 

% %  Ü 
fr (1 - u)u di] + vs - -    iT (! - u^dn " (as " aJ   (50) 

Through Equation   (40)   we   further   simplify  to 

16 
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di u    dT» = (51) 

Carrying  out  the   integrations  yields  the  inner  flow equation 

Vvvl f _2_ V!I   v\.    Jk 
c  2        V105       co     " 10J Co  "  c 

i^i aw ^. 
/—    \ 105c 140 y "a V c       \        o O  *      3 

-n 
a  2       3at^rc~        c 

V/ W  Y      3     , 3 

s        35 70c 37c 
2    /     'S 'S 

+ \ i - n 

105   "  70c    yaw 

v; V   3 
70c 105c 

Vs u. 
U, w c 
i o 

(52) 

3.5     Free-Interaction Equation 

The   free-interaction equation  is  one  relating  the  axial pres- 

sure  gradient  to the  rate  of  increase of the boundary-layer dis- 

placement  thickness.     The  increase   in    d6*/dx    turns  the external 

flow causing  a pressure  rise.     The  pressure  rise  tends  to cause 

further   increases   in    5*.     We will  assume  that  the  pressure  dis- 

tribution  is  related to the  turning  angle     0    of  the external 

flow by  the  Prandtl-Meyer  relationship for   inviscid  compressible 

two-dimensional   flow. 

dp. YM,2  d0 

COS    0 V"^ 
(53) 

2 2 , 
-   COS    0 

The turning angle 0 is determined by the slope  dw/dx of the 

boundary and the slopes  do */dx  and d6. */clx due to the dis- 

placement thicknesr of the outer and inner flows.  The relation- 

ship is 

17 
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dö *  db.*   , 
—z— + —z— + 3~ = tan 0 (54) dx    dx   dx 

It is Equations (53) and (54) together which govern free interaction 

between the outer flow and the boundary layer.  The values of the 

boundary-layer terms in Equation (54) are derived in Appendix II 

for the assumed profiles. 

18 



II  I^IIMI^HM 

AFFDL-TR-65-107 

4.  PRE-SEPARATTON ANALYSIS, PRESCRIBED PRESSURE DISTRIBUTION 

In order to see how accurately the present method will predict 

nonsimilar velocity profiles in the face of an adverse pressure 

gradient, it would be desirable to compare it with some solution 

of known accuracy.  A suitable example for comparative purposes 

is given in the work of Hartree and of Leigh, References 5 and 6. 

These particular numerical solutions apply to an incompressible 

laminar boundary layer in which the main stream produces a pressure 

gradient with a free-stream velocity given by 

u^x)     x 

U (X) = 1 " 8l (55) 

o 

We will now apply Equations (45) to (48) to the solution of this 

problem, and then make a comparison with the previous numerical 

solutions.  The proper initial conditions for this solution are 

the values of  c , c^ c2, and  c  which best represent the 

Blasius profile. 

4.1  Initial Conditions for Velocity Profile 

It is necessary to specify an initial velocity profile in the 

4, r) plane.  The initial conditions are specified at some point 

t       in front of the separation point, and for  £ < £ , it is^ 

assumed that the static pressure is constant.  In a real flow, 

interaction starts at the leading edge.  However, we will not 

start the solution at  f; = 0  in order to avoid the leading-edge 

problem associated with infinite shear.  The initial velocity 

profile in the  ^,T] plane under the assumed condition will be 

the Blasius profile.  In cases where induced pressure gradients 

do occur at the leading edge of a plate, the effects of the pres- 

sure gradients on the velocity profile will diminish as the down- 

stream distance increases, and the profile will approach the 

Blasius profile. 

Let us consider the analog of the Blasius solution in the 

Dorodnitsyn plane.  The equations in the X,Y plane are those 

19 
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for incompressible laminar flow.  For such flov/ with no pressure 

gradient, we have 

U = U  = constant 
o   i 

p    =   u     =   constant r o   i 

X X,   ui = U^   i  =  j (56) 

With these relationships the Blasius profile can now be developed 

using Equations (45) to (48) provided a suitable set of initial 

conditions are found for these equations.  However, the suitable 

initial profile is the Blasius profile itself.  We overcome this 

dilemma by noting that a laminar boundary layer on a flat plate 

with no pressure gradient will develop the Blar :.us profile asymp- 

totically even if the initial conditions vary substantially from 

the Blasius profile.  Accordingly, a rough approximation to the 

values of  0,0,02, and  c,  for the Blasius profile was used 

for the initial conditions, and the true Blasius profile was 

sought asymptotically. 

The question arises how the asymptotic profile will be 

recognized in the computed results.  We note that the similarity 

of the Blasius profile states that, for constant Reynolds number 

in the free stream, the value of  Y  for a given value of  u 

increases as  X1/2.  ^or the slope  öu/öq, we can thus write 

asymptotically 

20 
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The only way that the desired result can be approached is if 

c ci     ,       c
2 

VT^0'   vT^ki'   vf"'2'   c^k3       <57) 

as ^ -*■ UJ 

In Table I the initial values of  c , c., c„, and c^  are 

shown and the above ratios are tabulated as a function of  4  to 

see if a similar solution is developing.  It is seen that a simi- 

lar solution does develop vith the following approximate values 

k  = 3.157,   k. = -1.923,   k? = -0.3133,   c  = 1.1000 O '      1 »2 '3 

It now remains to compare the profile obtained this way with 

the Blasius profile.  For this purpose we solve Equation (36), 

u       _    _ 
k  + k,u + k^u2 

du (58) 
(1 - u)Vu + c. 

In this way the value of  T]  for a given u  can be readily cal- 
1/2 culated.  The velocity gradients vary as  (•     so that we have 

U  ;       _ N-   (1 - u)7u + C3 

k  + k u + k^u' 
01    2 

The values of the velocity profile and its derivative as cal- 

culated by the preceding equations are tabulated together with 

those of Blasius in Table II.  The Blasius values are from Refer- 

ence 7, page 107.  From the table it can be seen that for a given 

value of Y, the values of  u  do not differ by more than 0.002. 

This accuracy is considered adequate for specifying the initial 

velocity profile. 
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The skin friction calculated from the present results is a 

close approximation to that obtained by the Blasius formula.  We 

thus have 

T = ^oi* ,      Q  ^U_ 

- -   V     o"        / /U 

2 1 VC3 =   v  p U   oHo 0     JVW      ko »   o    o 

=   0.332   p U  ^ ^/ ^rr (60) 00      V  Uo 

4,2 Calculative Example 

Utilizing the initial values shown in Table III, a numerical 

calculation has been made for a pressure gradient prescribed by 

Ui      1 X r- l-s ! (61) 
o 

Under this pressure gradient, we find 

The initial conditions are 

P     - 0.010000 
^o 

X 
•f-  = 0.010006 

c  = 3.157 VT" " 0.3157 

c1 « -1.923 -^T" " -0.1923 

c^ = -0.3133 -yfi"  - -0.3133 

c - 1.1000 
3 

22 



AFFDL-TR-65-107 

Starting the solution at  (• - 0.01  rather than  £ = 0  could 

influence slightly the value of  4  for separation, but its effect 

on the actual velocity profile near separation will be unimportant 

The values of c , c,, c , and c  for this case are tabu- 

lated in Table III and plotted in Figure 3 versus axial distance. 

The separation point occurs where c3 goes to zero.  This value 

of  X /i  obtained by running the solution on a fine interval 

near separation is found to be 

X 
-j-  = 0.9627 

This   compares very well  with  the value given by Leigh of 

X 
-f-  = 0.958542 + 0.000002 

4.3  Comparison with Results of Leigh 

Leigh has presented tabulated velocity profiles for small 

distances upstream of separation but not at separation itself 

since his numerical methods did not go through to separation. 

His positions are as follows: 

Xs   X -J- -  J =   0.000142, 0.000542, 0.001542, 0.002542 

The calculated values of  c , c,, c^, and  c   are tabulated 
O    l    2 3 

versus     X/Ü     in Table   III,   and velocity profiles   for  comparison 
with  those   of  Leigh  are  presented  in  Table   IV.     It  is  seen  that 
the  results   for    u     agree with  those  of  Leigh  to  about 0.002. 
We  can  therefore  conclude  that  the method  of   integral  relation- 
ships   is  yielding excellent  approximations   to  the  true velocity 
profiles   for  this  test  case.     We  can  also  approach other  cases 
of  separation with  some  degree  of  assurance  that  our  four- 
parameter   family  of velocity profiles will  yield a close  fit. 
We  can,   of  course,   increase  the  accuracy by going  to a  fifth- 
order  approximation. 
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r< 

In comparing our results v/ith thoje of Leigh we note that the 

linate Y.  of Tei 

coordinates as follows: 

coordinate Y.  of Teigh normal to the wall is related to our 

4.4 Velocity Profiles at Separation 

The point was made in the Introduction that a one-parameter 

family of profiles cannot be expected to represent accurately all 

possible profiles occurring in separated and attached flows.  For 

instance, one cannot expect all profiles with zero wall shear to 

reduce to a universal function when considered in the nondimensional 

form of  U/Uj^  versus  Y/5*.  Yet, quartic profiles and similarity 

profiles each yield such universal functions for zero shear, and 

such universal profiles would be expected to be an accurate repre- 

sentation of the separation profile in all cases including the 

present calculative example.  Since we have shown that the present 

calculated profile at separation is very accurate, we can use it 

as a standard of comparison in this particular case.  Accordingly, 

a comparison has been made between the Dorodnitsyn separation pro- 

file and the corresponding quartic and similarity profiles in 

Table V.  The Dorodnitsyn profile is accurate to 0.002 in  U/U 

for a given value of Y/5*.  The quartic profile differs from the 

accurate result by as much as 0.030.  The corresponding figure 

for the similarity profile is 0.016.  These errors apply, of 

course, only to the Hartree-Leigh case. 

The slopes of the velocity profiles are compared for the 

present calculative case and the quartic case in Table V(b). 

Substantial errors in slope occur within the boundary layer for 

the quartic case. 
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5.  CALCULATIVE EXAMPLE FOR FREE INTERACTION 

It is now of interest to investigate separated flows under 

the assumption of free interaction.  This will be done first for 

the pre-separation region, then the post-separation region, and 

finally the reattachment region.  Some particularly interesting 

results around the separation point will be examined.  For the 

purposes of illustration we have selected a case for which data 

are i-v i ■' ole.     The configuration for the calculative example is 

showr    Figure 4. 

5.1  Initial Conditions 

In addition to the initially prescribed velocity profile, it 

is necessary to prescribe some initial condition on pressure for 

the free-interaction equation.  The initial condition should be 

such that a small disturbance will initiate the free interaction 

which results in the development of a separated flow.  Attempts 

were made to initiate such an interaction by perturbing the veloc- 

ity profile, by specifying a value of  U1, and by perturbing  pi. 

It was found that a small perturbation in the value of pl     was 

a satisfactory way to induce separation, and that, as the per- 

turbation became small, the pressure distribution tended to 

approach a limit. 

To determine the change in Ui  accompanying a prescribed 

increment in p,  let us first write for the main stream in the 

compressible plane 

dp1 = -piu1 du1 

or 

dp du 
—- = -yM 2 —- (64) 
Pi      ! ui 

We now utilize the constancy of the stagnation temperature together 
with the relationship 

u. a 
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to establish the  equation 

dU, -H^": du. 
2 \ 1 

U 
(66) 

Accordingly we  obtain  the  desired relationship 

dU 
 j 

U, 

1 + ^Hr1 Mx2 ^i 
7M 2       Pl 

(67) 

giving the change in the initial value of U  to induce a pre- 

scribed change dpi/p1. 

In addition we must specify a value of 0  for the free- o 
interaction equation.  The free-interaction equation can be written 

tan 0 • ^o 
dB' 
dx (68) 

It is convenient to determine this quantity in the Stewartson 

plane where the displacement thickness 6 * and the momentum 

thickness  5C** are given for no pressure gradient by 

V = Ax 

6S** = 7.2 

v X o 
U   ' 

v X o 
U o 

X1 = 1.73 

'h2  - 0.664 

(69) 

where A  and X   are taken from Reference 7.  From Appendix II, 

we can show that, in general. 

•.• 

Ö* = 
P a LSL-2. 
Piai 

00 

(1 - "'.I -O-^/tC1-^:) 77-  idY 

(70) 

and in this case 
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v_X 
ö* =   (1  + m )A1 u + m 7 

v X 
o 

o 2   W  u (71) 

and     x =  X. 

We  thus have   for  the  initial value  of    0 

(72) 

A series of runs were made to see how the interaction pres- 

sure distribution behaved as the magnitude of Ap  applied to 

the boundary layer at x /£    was reduced.  The following set of 

initial values was used: 

P/Po 
1.001039 1.01 1.02012 1.039251 

R o 
48000 48000 48000 48000 

M 
O 

2.7 2.7 2.7 2.7 

y 1.4 1.4 1.4 1.4 

x0/i 1 1 1 1 

^o 
1 1 1 1 

c o 
3.157 3.157 3.157 3.157 

cl 
-1.923 -1.923 -1.923 -1.923 

c
2 

-0.3133 -0.3133 -0.3133 -0.3133 

C3 
1.1000 1.1000 1.1000 1.1000 

Vü
0 

0.9997500 0.9976041 0.9952046 0.9907388 

^O 
0.011872 0.011872 0.011872 0.011872 

M, 2.69932 2.69353 2.6Ö705 2.67499 

The free-interaction pressure distributions accompanying the 

various pressure impulses are shown in Figure 5.  The results 

are readily plotted against  (x - x )/x  where  x  is the point o  o        o 
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of the beginning of interaction.  The separation pressure ratio 

is indicattd by the points.  It is clear that the pressure distri- 

butions are approximately parallel to each other by the amount of 

the initial impulse with little change in the position of separa- 

tion.  Also, the distributions appear to tend toward a limit as 

the impulse approaches zero.  Apart from the question of the 

existence of a limit, a pressure impulse of one-tenth of a per- 

cent is considered small for the present purposes and is used 

henceforth to initiate interaction. 

5.2 Other Parameters of Calculative Example 

A calculative example has been made for the CS.25 -1 model 
of Reference 8 for which l-^iminar data are available in Figure 17 

of that report.  The following initial conditions were used in 
the calculation: 

x Pi 
R = 39000,  M = 2.70,  -f = 1.000,  P  = 1.000,  — = 1.001 
o '    O        y        l '   O P ^o 

The value of £     is taken as the distance from the start of the 

boundary layer to the onset of free-interaction in the calculative 

example.  For this case we have taken the reference length to be 

~- = 0.238 
c 

where L  is given in Figure 4.  The free-interaction was started 

at the known experimental location since the objective in this 

case is not to predict the separation point from some reattachment 

criterion but to test the adequacy of the free-interaction theory 

to explain the observed pressure distribution. 

The initial conditions are 

x^ 
-f- = i.ooo, i   = 1.000 i '   ^o 

c = 3 157,  c  - -1.923,  c, = -0.3133,  c  = 1.1000 
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77^ = 0.99975,   0 = 0.01317 U '    o o 

The calculation proceeded without any difficulty and gener- 

ated the variation of c , c^ c2, and c3 with  x shown in 

Figure 6.  The variations downstream of separation will subse- 

quently be discussed.  The comparison of the calculated pressures 

with the experimental ones up to the separation point shown in 

Figure 10 is considered good.  It appears that the assumption of 

free interaction is a valid one up to separation. 

5.3  Behavior of the Solution in the Neighborhood of Separation 

One point of particular interest is the nature of the singu- 

larity at the separation point, and the manner in which the free- 

interaction theory copes with this singularity.  The solution 

which goes smoothly through the separation point is one based on 

Equations (45) to (48) and the free-interaction relationship. 

Equations (45) to (48) have no discontinuities at separation but 

the free-interaction equation does. 

Consider the free-interaction equation 

(73) 

where the two terms on the left-hand side are given by Equations 

(11-10) and (11-15) of Appendix II.  In crossing the separation 

point the right-hand term in continuous.  Equation (11-15) con- 

tributes a discontinuous term  n  on the left-hand side.  How- 's 
ever, an equal and opposite discontinuity is contributed in the 

c c g  term of Equation (11-10) so that equality is maintained. 

The singularity in the c c g  term arises from g  since 3 o o o 

^o= 2 (V1 + c. - v^r) (74) 
and, therefore. 

R  l/2      fab  *       d5.*\ 
o                       O                1      ) 

R 1^2   tan  0 o 
1   + m      V dx     '     dx   / o 

1   + m 
o 
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^o  = 

V^T       V1   +  c3 

Since  c  is zero at separation, g  is infinite.  If in the 

neighborhood of the separation point, vve write 

%  = \^   -  V 
c = k (4 - ^ ) 
3      4  ^    ^S 

(75) 

we  readily  obtain across  the  separation point 

VC3Cogoyp  _e      \c~icogo)t + 
n    =  k     =   iim 

S 5 6-0 
^"S 

n     =  k    =   4c  V k 
'S b O  V       4 

(76) 

(77) 

We have  thus  determined  the  slope  of  the     u =  Ü     line  at   separation, 

Another relationship ir needed in addition to those utilized 

upstream to carry out the integrations downstream of the separation 

point. It will now be shown that this relationship, compatible 

with Equation (77), is the continuity of the second derivatives of 

the velocity profiles at the u = 0 line. If we use a quadratic 

for the inner velocity profile we can expand the velocity profile 

about  the     u =   0     line   as   follows: 

u  = ^u , »1     d2u 
(T1  "  T's)   + 2    ~T 

Oil 
(n - V (78) 

where the derivatives evaluated from the outer profile are 

's 

-1 + 2c (79) 

Since     u =   0     when     rj -   0,   we write 
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%= z; 
on2 

''s 
(80) 

%  ' 

The dominant  term as     * -^ ^       in  this  expression  is 

n    =  4c   ■yfcZ    as     t -* t 's o v    a s 

n    =   4c  -\/k 's o V    4 

The inner velocity profile is thus a quadratic just downstream 

of separation, and the proper condition required to continue the 

pre-separation solution smoothly through separation is thus the 

continuity of the second derivatives of the inner and outer veloc- 

ity profiles at the u = 0  line.  Only by taking the inner 

velocity profile as a quadratic immediately downstream of separa- 

tion has it been possible to make the numerical integration 

proceed. 

It is of interest to note that the conditions of a quadratic 

inner velocity profile just downstream of separation can be 

inferred from an analytical continuation argument.  Consider 

several profiles as shown in Figure 7.  Downstream of separation 

the inner profi e corresponds to a quadratic which will have two 

points for a given u and the values of öu/ör) at these two 

points will be equal and opposite.  Thus, that part of the post- 

separation profile marked "inner profile" will hcve the u-axis 

as an axis of symmetry.  What this, in effect, means is that the 

inner profile could be represented as follows: 

^= + t1 - u)Vu + c: 
s- - x       _    _ (82) 
^    c  +cu+cu2 

O     1       2 
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v/here the plus sign refers to the first and second quadrant and 

the negative sign to the third quadrant.  The observed behavior 

of the inner profile can thus be explained by an analytical con- 

tinuation of the outer profile into the inner region. 

In Figure 8 a plot is shown of the computed values of c , c^, 

c2, and c3  in the neighborhood of the separation point for the 

case where the solution is continued on the basis of a quadratic 

profile and a second derivative match.  It is noted that ^j c, 

is linear in x  so that c  is quadratic as previously assumed. 

5.4 Adequacy of Boundary-Layer Theory in Neighborhood of 
Separation Point 

While it has been shown that the present boundary-layer cal- 

culative method goes smoothly through the separation singularity, 

it has not been established that boundary-layer theory is a 

satisfactory representation of the viscous flow in such a neigh- 

borhood.  In this connection we will show that the slope of the 

u = 0  line at separation calculated on the basis of the Navier- 

Stokes equations is in good agreement with the present calculative 

results.  We will also show that the use of free interaction 

together with the boundary-layer equations yields reasonable 

physical behavior at the separation point, whereas the imposition 

of a prescribed pressure distribution as in the case of Leigh and 

Hartree can lead to physically implausible behavior there. 

With regard to the slope of the dividing streamline and the 

u - 0  line at separation, Oswatitsch gives the following results 

based on the Navier-Stokes equations: 

tan ßD    3 öp/ÖX 
(83) 

tan ß = -2 |^ 
'u     dp/ox 

The anqles ß_,  and ß  are shown in Figure 9.  Based on the 
^     D       u 

present analysis it can be shown that 
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4- « äS. tan  p     =  "^ = u       dx 1   +^i^M: 
2 o R 

1/2 
(84) 

öp/ö i ■ (■ • ^ V) ^ ftf Vc c 
3    O 

(85) 

The following values at the first calculated point beyond separa- 

tion were found from the calculations: 

M. = 2.58,  M = 2.70,  c  = 5.567xl0~6,  c  = 3 
i '    O '3 '3 

.43X10"3 

Ux       Ux 
R  = 39000,  — = 0.95675,  77^= -0.09277,  c  = 2.190,  n  = 6.39 
o        '  U '  U '   o        '  's 

o o 

The calculated values from Equations (84) and (85) are 

tan 0  = :r- = 0.0795 u  dx 

-2 ^T-  0-0854 dp/ox 

It thus appears that the precise result of Equation (83) based on 

the Navier-Stokes equations are duplicated within 10 percent by 

the boundary-layer equations at the separation point. 

The second point has to do with the rate of change of shear 

with axial distance at the separation point. 

T ~ 
^.^O 

T - 
Vs 

(86) 

hi 
-\/c c 
V  3 o 

as i -* i 
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In the present   free-interaction  solution where 

c    =   k   U   "   ^J2 
3 4     ^ ^S 

we find a finite limit as  (• -♦• fc , as follows: 

The wall skin friction is thus a linear function of  £,  passing 

through the separation point as shown in Figure 9.  In the case 

treated by Leigh, c  has a value of about 0.2 at separation so 

that  öx/c^  is infinite.  The difficulties encountered by 

Goldstein, Reference 9, in finding a physically satisfactory 

mathematical description of the flow in the neighborhood of the 

separation point for Leigh's case thus appears to be associated 

with the inadequacy ot the boundary-layer equations in that case 

to yield a physically realistic flow.  The introduction of free 

interaction into the problem, however, does cause the boundary- 

layer equation solution to be physically realistic. 

5.5  Continuation of Solution Downstream of Separation 

We now consider continuing the solution downstream to the 

point where the ramp starts the recompression.  There is some 

question regarding the best method for accomplishing this. 

Various cases have been investigated based on different equations 
i! 

and boundary conditions. 

In the first place, several different momentum relationships 

can be applied to the inner layer.  We can try the inner momentum 

relationship represented by Equation (52).  However, a simpler 

wall relationship can be used instead based on applying Equation 

(1) to the wall. 

äx  öy V" öy ) (88) 
y=o 
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With regard to the pressure at the outer edge of the boundary layer, 

two possibil:ties exist. Firstly, we can continue to use the free- 

interaction concept in an attempt to produce a unified theory for 

the entire separation region. Secondly, it is possible to invoke 

the boundary condition of constant pressure as exemplified by the 

concept of a plateau pressure region. Another boundary condition 

which can be invoked is continuity of the velocity derivatives at 

the  u = 0  line. 

In order to investigate the consequences of various combina- 

tions of the foregoing conditions, five different cases were 

studied as follows: 

Case A: 

(1) Quadratic inner profile. 

(2) Wall relationship, Equation (88). 

Case B: 

(1) Cubic   inner  profile. 

(2) Wall   relationship. 

(3) Inner momentum equation.   Equation   (52). 

Case C: 

(1) Cubic inner profile. 

(2) Wall relationship. 

(3) Continuity cf  ö2u/öij  on  u = 0  line 

Case D: 

(1) Quadratic inner profile. 

(2) Continuity of d2u/bi]2     on u = 0  line. 

Case E: 

(1) Quadratic inner profile. 

(2) Continuity of  ö2u/öi(
2  on u = 0  line. 

(3) Constancy of static pressure from point where U = 0 
in Case D. 

Some calculated results for these cases are shown in Figures 10 

and 11.  In Figure 10, the calculated pressure distributions are 
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shov/n and, ir Figure 11, the calculated velocity profiles and veloc- 

ity gradient profiles.  On the basis of these calculated results, 

certain conclusions are drawn. 

Cases A and B, v/hile demonstrating reasonable pressure dis- 

tribution, shov/ a singularity in  c^u/drj2  in Figure 11(b) at the 

u = 0  line.  Furthermore, this singularity tended to cause dis- 

turbances in the velocity profiles which emanate from the  u = 0 

line and propagate both upward and downward as the downstream 

distance increases.  Such disturbances are a result of either 

flow instabilities or calculative instabilities; it is not known 

which.  As a result, these cases were discarded and it was con- 

cluded that continuity of  ö2u/ön2  on the  u = 0  line is a 

required boundary condition. 

It was decided to adopt Case C as the one for the automatic 

computation program rather than Case D or Case E because it uses 

a cubic rather than a quadratic inner profile and because it per- 

mits a unified free-interaction theory for the entire separated 

region.  Also, Cases D and E do not satisfy a momentum relation- 

ship for the inner flow. 

It is noted that Cases A, B, and C involve a momentum rela- 

tionship for the inner layer and that Cases D and E do not.  It 

is also noted that the inner profiles for A, B, and C are much 

flatter than those of D and E.  An explanation of this behavior 

is to be sought in the momentum equation which states that for 

constant pressure 

If the wall shear is forward; that is, if  Cf is negative, 5** 

should decrease as  x  increases.  Therefore, if the part of the 

boundary-layer profile above the u = 0  line tends to fill out, 
that below it must flatten. 
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5.6  Asymptotic Behavior of Case C 

No downstream boundary conditions or reattachment criterion 

has yet been used in the analysis.  The point of view is taken 

that a starting point of interaction is assumed, and the downstream 

conditions are calculated by the computer program.  If the calcu- 

lated downstream conditions are not in accordance with some 

reattachment criterion (to be specified), the starting point of 

interaction is changed and a new set of downstream conditions 

calculated.  If a suitable set of downstream conditions is found, 

then the solution is a possible one.  However, a question of flow 

stability can be raised at this point.  No stability analyses are 

included in the present work. 

It is interesting to see what type of downstream boundary 

conditions are developed by Case C.  To investigate this point, 

the solution was continued far downstream on the computing machine. 

The resulting pressure distribution is shown in Figure 12, together 

with calculated positions of dividing streamlines and u = 0  lines. 

It is noted that as the pressure falls the reverse flow behind 

separation point  S  is flowing against an adverse pressure gra- 

dient which reverses the inner flow.  As a result, a second divid- 

ing streamline and second u = 0  line develop.  It is clear that 

the solutions can be associated with two bluff downstream bodies, 

one corresponding to the inner u = 0  line with a prescribed 

normal velocity distribution and the other corresponding to the 

inner dividing streamline with a prescribed slip condition.  In 

the concept of free interaction, the pressure distribution up to 

the plateau region is independent of the downstream means of 

causing separation.  (The pressure distribution starting at the 

compression surface, of course, does depend on the shape of the 

compression surface.)  Because separation usually occurs close 

to the compression surface, no appreciable falling pressure occurs 

in the plateau region.  It thus appears unnecessary to invoke a 

constant plateau pressure as a boundary condition. 

The foregoing flow field actually corresponds to two stand- 

ing vortices in the separated region wich reversed signs.  To 

37 



AFFDL-TR-65-107 

obtain this pattern requires going to a cubic inner profile.  It 

is not clear if going to a quar-ic profile will produce three 

standing vortices.  We have certainly not developed a convergent 

solution for the inner flov/, although the outer flow should be 

quite accurate for the solid boundary condition previously men- 

tioned.  Higher approximations can be made by the present method. 

However, if a second separation point developes, we can argue 

logically that the inner profile should be represented by a veloc- 

ity profile with a square root singularity comparable to that for 

the outer flow based on the same arguments advanced for the square 

root singularity in Equation (36). 

Let us examine the velocity profile of the outer flow to see 

if an asymptotic outer profile is developed.  It turns out that 

the profile outside the outer  u = 0  line approaches that given 

by Chapman in Reference 10.  Also, the velocity profile can be 

non-dimensionalized with respect to  x  in the same manner as the 

Chapman solution.  In this form the velocity profile  U/U   is a 

function only of the parameter C,     defined by Chapman as follows: 

y 
^ f pu dy 

r  _ Jil a  
00 

(90) 
Vx*   Vu v (x - x )C '        V  oo oo x       s 

The correspondence between the foregoing notation of Chapman and 
the notation of the present report is 

u=u     v=v     T=T (91) 
00        1 00       i 00       i y ' 

In  the  present   analysis   a  parameter     ty     is   evalve ted as   follows: 

(92) 
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It is then easy to show that 

c-J^.,/^ £* -^1== 
V x *    v / >: - 

s 

so that a direct comparison with the results of Chapman can now 

be made. 

A comparison is made between the velocity profiles of Case C 

and that of Chapman (Ref. 10) in Figure 13.  The two points where 

(p =  0     and the two points where  u = 0  are seen in the velocity 

profile for Case C.  The velocity profile above the  u = 0  line 

originating at  S'  shows a close approximation to that of Chapman 

in an asymptotic sense. 

5.7  Continuation of Solution to Reattachment Point 

The present analysis allows for introduction of a compression 

ramp of fairly arbitrary shape at some point downstream of separa- 

tion.  Case C has been made to go through to the reattachment 

point by observing that the velocity profile approaching the 

reattachment point is quadratic just as is the profile coming out 

of the separation point.  As the solution for Case C proceeds 

downstream of the beginning of the ramp, the cubic velocity pro- 

file becomes quadratic.  At that point, a quadratic profile is 

assumed and continued up to reattachment.  In this way the solu- 

tion was made to go smoothly into the reattachment point. 

In Figure 14, the calculated flow characteristics are shown. 

The value of c,  and c.  are both zero at the reattachment point 

just as at the separation point.  At a point about half way up 

the compression surface toward the reattachment point, the cubic 

profile turns into a quadratic profile.  At this point the pro- 

file is taken as quadratic and is so continued into the reattach- 

ment point.  The dividing streamline is shown together with the 

ü = 0 line which Is about two-thirds of the distance between 

the wall and the dividing streamline. 
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Comparison of the calculated and experimental pressure dis- 

tributions shows a long delay downstream of the beginning of the 

ramp before the pressure starts its rise.  The significance of 

this fact can be seen by comparison with the inviscid pressure 

distribution.  The calculative and experimental pressure distribu- 

tions are in fair agreement.  The reversal in curvature of the 

calculated pressure distribution approaching reattachment is 

exaggerated by the large scale and is not nearly so pronounced in 

subsequent calcu.latj.cns to be shown for wedges.  It thus appears 

to be dae to the increasing slope of the ramp.  As a matter of 

interest, the calculated total pressure on the dividing streamline 

is also shown. 

In Figure 12 it was seen that without a compression ramp, 

the reversed flow separated at a point  S'  located at  x/i  of 

3.9.  Since the compression ramp ^s introduced at  x/i  of about 

2.1, we will still have separation at  S'  with tue ramp.  The 

calculated separation region and velocity p).   '.es for Case C 

with the ramp are illustrated in Figure 15.  It is  seen that the 

ramp causes the inner separated flow to reattach very rapidly. 

In fact, the small amount of inner separated flow and its very 

low velocity makes it of no physical importance insofar as the 

overall flow is concerned. 
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6.  CALCULATIVE PROGRAM 

6.1  General Aspects of Calculative Program 

It has been the primary objective of this study to develop 

an automatic computational program for calculating laminar sepa- 

rated flows.  The program which has been developed is described 

completely in an operating manual.  While it is not intended to 

describe in any detail the calculative program herein, neverthe- 

less, certain general features of the program are of interest 

and should aid in utilizing the program to maximum advantage. 

The calculative technique is basically an iterative one.  The 

beginning of interaction between the boundary layer and the outer 

flow is assumed to start at a certain position, and the resulting 

separated flow is calculated up to the reattachment point.  If 

the calculated reattachment point does not fulfill the particular 

reattachment criterion which may be invoked, one then changes the 

beginning of interaction and computes a new reattachment point. 

In this sense the method is rn iterative one.  No particular 

reattachment criterion has been built into the method.  No guaran- 

tee of the existence of a solution is given.  Even if a solution 

is found by calculation, no guarantee of its stability is made. 

A discussion of the reattachment criterion will subsequently be 

made. 

The method can be applied to a compression or expansion ramp 

of fairly general shape, but the particular program here is written 

for a flat plate with a flat wedge faired together by a circular 

arc.  The radius of this arc can be varied.  Within reasonable 

limits, the radius size does not influence the calculated results. 

The velocity profile external to  the  u = 0  line has been 

taken as a four-parameter profile, and the inner profile has been 

taken as a cubic except near separation and reattachment.  On the 

basis of comparison of calculated results by the present method 

with "exact solutions" from other methods and on the basis of com- 

parison between calculated results and experimental results, it 

is believed that the above profiles will give sufficiently accurate 

approximations to the flow field for most purposes.  Possibilities 
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for higher approximations are inherent in the method, but none has 

been carried out.  This should be done. 

The program is based on the concept of free interaction between 

the boundary layer and the external flow in that the pressure dis- 

tribution acting on the body in viscous flow is assumed to be the 

same as the inviscid pressure distribution for the body thickened 

locally by the amount of the boundary-layer displacement thickness. 

The Prandtl-Meyer relationship is used to calculate the pressure. 

The calculative method will be accurate to the extent that "free 

interaction" accurately describes the fluid mechanics of the separa- 

tion and reattachment processes.  The calculation is started by 

assuming that the flow up to some point termed the beginning of 

interaction is of the Blasius type, and that free interaction 

starts discontinuously at that point.  The precise formulation of 

the initial conditions will be subsequently discussed.  The intro- 

duction of free interaction together with a small pressure impulse 

applied to the boundary layer is sufficient to cause the computing 

scheme to generate the separated flow solution. 

From the mathematical point of view the computational program 

is simply one that solves a simultaneous set of ordinary differen- 

tial equations step by step starting at the beginning of interac- 

tion and continuing downstream to the reattachment point.  The 

set of equations is obtained from the method of integral rela- 

tions applied to the laminar-boundary-layer equations and from 

the free-interaction relationship.  The unknowns in the equations 

are the parameters which specify the velocity profiles and the 

pressure distribution.  For the region in front of the separation 

point there are four velocity profile parameters which, taken 

together with the pressure, require five simultaneous differential 

equations for their determination.  Downstream of the separation 

point a cubic profile is utilized for the inner flow with three 

parameters determining the inner velocity profile. Equation (38). 

However, the use of the boundary condition of the continuity of 

two velocity derivatives at the boundary between the inner and 

the outer flows results in the addition of only one more differ- 

ential equation downstream of the separation point. 
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The program can be utilized for arbitrary values at the 

beginnir.g of interaction of the Reynolds number, Mach number, and 

ratio of specific heats.  By eliminating the equation of free 

interaction and specifying an external pressure distribution, the 

method can be used to calculate with excellent accuracy the change 

in shape of the laminar velocity profile in the face of an arbi- 

trary pressure gradient.  It is possible to increase the accuracy 

of the program by increasing the order of approximation used to 

represent the velocity profiles.  (Until the stability of the 

calculative process has been demonstrated, no positive claims can 

be made.)  It is also capable of extension to much broader appli- 

cation as discussed in "Recommendations for Future Work." 

6.2 Assumptions of Calculative Program 

A number of assumptions have been made in the analysis as 

listed in Section 2.2.  In addition, several additional assump- 

tions or conditions have been specified for the calculative pro- 

gram. 

(1) A four-parameter velocity profile has been used for the 

outer flow. 

(2) A cubic profile has been used for the inner flow. 

(3) The configuration is a flat plate with a wedge com- 

pression surface joined by an arc of constant radius. 

(4) The initial conditions of the boundary layer correspond 

to those for the Blasius case. 

6.3 Initial Conditions 

Some discussion of initial conditions is required for cases 

of very low Reynolds numbers or very large Mach number?.  For 

these cases it is found that the streamwise slope of the displace- 

ment thickness at the beginning of interaction is not small, being 

of the order of 10 in some cases.  In the work contained through 

the first five sections, the assumption was made in calculating 

the initial conditions that the velocity u  at the edge of the 

boundary layer is parallel to the plate. However, it was found 
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necessary to take  account of the  difference  in direction between 

the velocity at the edge  of the boundary  layer  and the  direction 

parallel to the plate  for the  above  cases  if the  calculative 

solution  is  to start smoothly. 
Consider  the  following sketch which  illustrates  the  initial 

condition problem: 

p,   5* 

At some point     x      we  assume  that the static pressure   jumps  dis- c o 
continuously from p  to p .  This increment is small, being 

only one-tenth of 1 percent of p .  Up to x  one assumes the 

pressure was constant and that the boundary-layer profile just 

before x  corresponds to that for uniform pressure.  In some 

cases, interaction between the boundary layer and the outer flow 

will produce large induced pressure gradients before x . We 

have neglected such pressure gradients or alternately consider 

that the plate was cambered to counteract them and to produce a 

uniform pressure.  At x  the slope of the 5* curve changes 

by a very small amount from 0  to 0  in accordance with the 

Prandtl-Meyer relationship.  The Mach numbers M  and M  are 

defined on the basis of the velocity parallel to the wall. 
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Applying the Prandtl-Meyer relationship to the slope of tne 

streamline at 5* with the outer flow Mach number defined parallel 

to the plate, we find 

Pi 

P« 

(y-d/y      1 + 1  - I 
M 

COS 0, 

M 
1 +^^ , 2 V COS 0 

M 
—  = COS 0 

■(: 

v1/2 

2   o 

1 + 
\  2 J ^cos   4>0J 

Pi 
(T-^/T 

1/2 

u 
 J 

ü" 

(94) 

We wish to determine the values of M  and 0  as initial 

conditions for the calculation program.  In the preceding 

equation we have used the following initial values to calcu- 

late M : 

Pi 
-=■ = 1.001 

0. » 4> ■ tan- 

i   o "&t°- 860823 + 1.193715 (^ 2 ^ )M 

(95) 

(96) 

The second relationship is based on Equation (72) and neglects the 

small difference between  0  and 0n  in the calculation of M,. o 1 1 

However, in determining the initial value of 0  itself, we 

utilize the relationship between Mach number and turning angle. 

0 - -V y + 1 .    -1 
f-i-Ttan 

f
T - 1 
7 + 1 

M 
COS 0 - 1 + tan -1 M2 - s 0 / cos 0 1 + C 

(97) 
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The constant C is evaluated from the conditions 

o    ^  ^o 

so that 

C = 0 V Y ->• 1 
Y - 1 tan 

-i - 1 
+ 1 

M 

COS 0 - 1 - tan 

We then compute 0  from Equation (97) using  C evaluated from 

Equation (98) with M/cos 0 equal to M1/cos 0 .  Iteration of 

Equations (94) to (97) to establish more precise values of M 

and 0  is usually not required because of the small difference 

between 0  and 0, . ^o       i 
In the calculations discussed through Section 5, the  cos 0 

term was included in the pressure distribution calculations but 

was not included in the initial condition calculations.  It has, 

howevi3r, been included in both calculations henceforth. 

6.4 Calculative Accuracy 

In order to assess to what extent any differences between 

experiment and theory can be ascribed to theory rather than inac- 

curacies in numerical methods, it is important to investigate 

the calculative accuracy of the method.  In this connection, we 

will consider the question of interval size, corner radius, and 

order of approximation of the velocity profiles. 

First, a point concerning stability of the calculative method 

should be mentioned.  If a laminar boundary layer on a flat plate 

is given a distorted profile as an initial condition and is per- 

mitted to proceed along the plate at uniform pressure, it will 

develop a Blasius profile asymptotically to any desired numerical 

accuracy.  If we were to assume a Blasins profile at some point 

and were to integrate upstream to find the initial conditions, we 

would have a numerically intractable problem since any number of 

initial conditions could result in a final Blasius profile within 
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prescribed numerical accuracy.  Integrating the boundary-layer 

equations downstream of separation into the reversed inner flow 

has some of the aspects of the foregoing problem.  In this case, 

however, it is complicated by the existence of inner and outer 

flows.  It was found that if the inner profile was represented as 

a cubic, the integration immediately downstream of separation 

became unstable.  In the program, the inner profile is started as 

a quadratic and changed to cubic when numerical differences of 

the order 10 4 between the magnitude of the slopes at the wall 

and the u = 0  line is found in a side calculation.  This pro- 

cedure eliminates the instability completely.  It is not known 

what caused the instability for the cubic case.  The other insta- 

bility encountered in the calculations occurred as a result of a 

singularity in the second derivative of the inner and outer veloc- 

ity profiles at their juncture. 

The interval size is not constant in the integration scheme 

but is variable to maintain certain prescribed accuracies.  At 

the start of the numerical solution a Runge-Kutta integration 

scheme is used for the first four steps.  Thereafter a fourth- 

order Adams predictor-corrector method is used. With the value 

of the variables known for steps  j-3, j-2, j-1, and j, 

the value for step j + 1 is predicted by the following formula: 

B'?! = B' + i fsSB. - 59§.   + 37B. „- 9B.  ^ (99) 

• (D) (C) Using the predicted value of B:v , a corrected value of  B: ' 
^           ^                                               D+i j+1 

is  calculated as   follows: 

B-^   =   B.   + ^r (Süty   +   19B.   -   5B.   ,   + B.   S) 

The truncation error    Ax    is estimated by the  formula 

(100) 

^--iö(^-B^) (101, 

The  absolute error estimate  is 
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B(c)        -(p) 
Bj-H        3j+i 

14.2 =     Ax (102) 

and the relative error estimate is 

Ax 
(c) B 
3+1 

(103) 

—« 

For the calculations of this report, the relative error has 

been taken as 10 5 and the absolute error as 10 7.  If the rela- 

tive error exceeds 10 5 but the absolute error is less than 10 7, 

the integration proceeds.  If both tests fail, the increment is 

halved, and the calculation started again using the Runge-Kutta. 

If the relative error is less than 1/200 of the relative error 

bound, the interval is doubled. Also, if the absolute error is 

less than 1/200 of the absolute error bound, the increment is 

doubled even though the relative error test fails.  These criteria 

are established to avoid oscillating between two interval sizes. 

These tests are built into the IBM Fortran II subroutine used to 

solve the system of differential equations.  A discussion of the 

method and the Runge-Kutta starting technique is presented ir 

F. D. Hildebrand's "Introduction to Numerical Analysis," McGraw-Hill, 

New York, 1956, Chapter 6. 

During the calculations run for comparison with the results 

of Hartree and Leigh, the allowable relative error was decreased 

from 10 5 to 10 4.  The calculated values of  x for a given value 

of  c  did not change by more than one in 10 4.  This was also 

the accuracy of prediction of the position of the separation point. 

Accordingly, a value of relative error of 10 5 was considered 

sufficiently accurate for the calculations. 

In order not to introduce any discontinuities which might 

generate calculative instabilities, it was decided to fair the 

plate into the ramp with a circular arc.  For this reason, calcu- 

lations were made for the configuration of Figure 16 with fairings 

of several radii.  The calculated results for the pressure distri- 

bution are shown in Figure 17.  It is seen that fairing the corner 
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causes modification of the pressure distribution only over its 

length and that the final pressure distribution on the ramp does 

not depend on the size of the radius.  Also, as the size of the 

radius tends Xo  zero, the calculated pressure distributions tend 

to a limit.  It thus appears that fairing the corner causes no 

inaccuracies in the calculated pressure distributions.  Some 

1-»cal modifications of the velocity profiles may be anticipated 

in the region of the fairing.  In the program, the actual radius 

of the fairing is left arbitrary. 

It has been mentioned that the present method contains within 

its framework the possibility of obtaining higher-order approxima- 

tions to the calculated flow.  Such approximations are obtained by 

increasing the number of parameters in the velocity profiles. With 

regard to the outer profile, a four-parameter formulation has been 

used throughout the paper and a higher-order approximation has not 

been investigated.  Based on the excellent agreement of the four- 

parameter approximation with the results of Leigh, it was felt 

that a fourth approximation for the outer flow is enough for most 

purposes.  Furthermore, we must consider the question of increas- 

ing the degree of approximation of the outer profile simultaneously 

with that for the inner profile. 

It is felt, insofar as the pressure distribution is roncerned, 

the number of arbitrary parameters in the inner profile can be 

less than that for the outer profile.  In the case of the cubic 

profile, we have matched the velocity and its first two derivatives 

at the boundary between the inner and outer flow, leaving only 

one free parameter to satisfy an inner momentum relationship 

(Case C).  For Case D with a quadratic inner profile, continuity 

of the velocity and its first two derivatives fully determines 

the profile, and momentum is not satisfied for the inner layer 

(although continuity is). 

A comparison between Cases C and D and the data for the par- 

ticular case is shown in Figure 18.  It is clear from a comparison 

of the calculated results for Cases C and D that for accurate 
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results we must use a cubic inner profile.  For the cubic profile, 

the agreement between experiment and theory is considered fairly 

good. How much, it would be further improved by going to a quartic 

inner profile is a question recommended for future study. 
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7.  SOME CALCULATIVE EXAMPLES 

7.1 Systematic Calculations 

In order to check out the calculative program over a wide 

range of Reynolds numbers, Mach numbers, and ratios of specific 

heat, a systematic series of computation runs were made by the 

IBM 7094 Computer at RTD, W-PAFB, under the supervision of 

Mr. Eugene Fleeman, Project Monitor.  The following tabulated sets 

are presented to show the influence on the above parameters for a 

flat plate with a 25 compression wedge: 

1  x i  o 
R 
o 

M 
o y xs XR 

103 4 1.4 2.073 00 

104 4 1.4 1.827 6.830 | 

105 4 1.4 1.559 6.018 j 

104 2 1.4 1.956 6.082  1 

10 4 6 1.4 1.779 7.779 | 

104 8 1.4 1.743 9.768 | 

104 10 1.4 1.719 00      | 

104 4 1.2 1.461 6.903 | 

104 4 1.67 2.283 6.573 j 

A value of »  for x0 indicates that reattachment did not take 

place. 

The systematic effect of Reynolds number. Mach number, and 

ratio of specific heats is shown in Figure 19.  In this and sub- 

sequent figures, the reference length i is taken equal to x . 

In fact, this equality is built into the program so that inter- 

action begins when x/i is unity. 

The results for the effect of Reynolds number show a decrease 

in the distance from the onset of interaction to separation as the 

Reynolds number increases, as well as a decrease in the value of 

the plateau pressure. The results cannot be compared directly 

with the earlier results of this study in Figure 2(a) of 
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Reference 1 because the beginning of interaction has been defined 

differently in each case. However, the plateau pressure levels 

should be comparable and do show good agreement. 

With regard to Mach number, there is an increase in plateau 

pressure and a decrease in the distance between the beginning of 

interaction and the location of separation as the Mach number 

increases. The plateau pressures for Mach numbers of 2, 4, and 

6 are in good accord with the earlier calculated values in Fig- 

ure 2(b) of Reference 1. As the ratio of specific heats increases, 

Figure 19(c) shows an increase in the distance to the separation 

point but no significant change in the plateau pressure. 

7.2 Comparison Between Theory and Experiment 

The calculative method has been applied to several cases 

for which data on laminar separation and reattachment are avail- 

able in order to assess its accuracy.  The Ames Research Center 

of NASA has furnished several sets of such data for a flat plate 

with a 10 wedge placed at various angles in the wind tunnel. 

These data and the calculated pressure distributions are compared 

in Figures 20 and 21. 

In obtaining the calculated pressure distributions, the 

beginning of interaction was varied until the position of the 

calculated separation point coincided as closely as could be 

estimated with the experimental position of the separation point. 

There was relatively little change in separation point as a 

result of changes in plate angle of attack.  Comparison is shown 

for the upper surface for angles of attack of 6 , 15 , and 16.7 . 

It is felt that the agreement between the experimental and cal- 

culated results is good.  It is of interest to speculate whether 

the agreement would be further improved by going to a higher 

approximation in the calculative method.  Also, it is of interest 

to inquire what part of the difference between experiment and 

theory can be ascribed to the assumption of free interaction. 

These questions are a fitting subject for future investigation. 
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8.  FLOW IN NEIGHBORHOOD OF REATTACHMENT POINT 

Let us now use the calculative program to study the nature 

of the flow in the neighborhood of the reattachment point and to 

study relationships between the locations of separation and 

reattachment.  First, a series of computations were made for the 

flat plate with a 10 wedge systematically varying the position 

of the beginning of interaction.  The calculated pressure distri- 

butions, separation points, and reattachment points are shown in 

Figure 21 where they are compared with the measured pressure dis- 

tribution.  Two points of interest are immediately evident. For 

all the cases calculated, there are no substantial variations 

among the calculated wedge pressure distributions; that is, the 

position of reattachment does not seem to influence the wedge 

pressure distribution substantially.  Secondly, small changes in 

the position of the beginning of interaction are sufficient to 

cause large movements in the reattachment point and, for the most 

upstream position, reattachment did not occur at all. 

It is of interest to examine the slope of the dividing stream- 

line approaching reattachment and to see how this is related to 

the calculated Oswatitsch reattachment angle. Equation (83).  For 

this purpose, the calculated solution from the previous figure 

corresponding to  i = 0.0550 was used with the results shown in 

Figure 22.  It is noted that ßD of the dividing streamline 

decreases approaching the reattachment point.  The Oswatitsch 

reattachment angle calculated from Equation (83) using the numeri- 

cal values for the present case increases and then decreases 

approaching reattachment.  The values at the reattachment posi- 

tion are considered to be in good accord considering one theory 

is based on the boundary-layer equations and the other on the 

Navier-Stokes equations.  For position of reattachment lower on 

the wedge, the agreement is not as good. 

Examination of the calculated Oswatitsch reattachment angle 

as it varies with the position of the beginning of interaction & 

shows that the reattachment point has an upper limiting position 

on the wedge.  To show this result. Figure 23 has been constructed. 
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The variation of Oswatitsch reattachment angle for the previous 

figure is shown together with those for the other positions of 

the beginning of interaction.  It is seen that if the beginning 

of interaction starts at i » 0.0525, reattachment cannot occur 

for a greater value of x from 0.325 feet.  At this point the 

dividing streamline is tangent to the wedge. 

On the basis of the present calculations, it is seen that 

the reattachment angle decreases as the reattachment point moves 

up the wedge.  An extrapolation of the calculated results to ß 

of zero yields a value of x = 0.34.  The present calculation 

thus yields the same result as the Oswatitsch theory in that the 

flow cannot reattach to the wedge above a certain point.  This 

condition corresponds to the most upstream allowable position 

of the beginning of interaction and to a dividing streamline 

tangent to the wedge at reattachment. 

It has been stated that the prerent calculative scheme is an 

iterative one in that the separation point can be moved until 

some reattachment criterion can be fulfilled.  Insofar as the 

present calculative method is concerned, reattached flows are 

possible for a certain range of reattachment on the wedge.  Which 

one of these flows will occur in practice depends on downstream 

boundary conditions, and in this sense the present calculative 

scheme is an elliptical one.  One speculates that if the length 

of the wedge is less than the length over which reattachment will 

occur that reattachment might occur at the end of the wedge. 

This speculation is based on the physical argument that the end 

of the wedge is the only distinguished point.  If the wedge is 

longer than the critical value, one speculates that reattachment 

might occur at the critical length from the corner of the wedge 

since this position is a distinguished one.  These speculations 

require a stability analysis of the flow to establish their 

validity.  In addition to a stability analysis, careful experi- 

mental measurements are required. 

As a point of interest, the variations in stagnation pres- 

sure and Mach number along the dividing streamline for the several 
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cases are shown in Figure 24.  At reattachment, the stagnation 

pressure on the dividing streamline is equal to the static pres- 

sure at this point and these points are shown as solid points in 

Figure 24(a).  It is noted that for the case that did not reattach, 

the stagnation pressure continues to rise.  The Mach number shows 

an almost linear decrease with distance as it approaches reattach- 

ment. 
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9.  CONCLUSIONS 

The present paper presents a method for calculating the 

laminar compressible separated flow past a flat plate with a 

ramp of arbitrary shape and small slopes from an assumed position 

for the beginning of interaction to the reattachment point.  The 

method is based on the assumption of free interaction throughout 

the separated flow region. 

(1) The method has been successfully programed for a flat 

plate with a flat ramp connected by means of a circular arc. 

(2) For the several cases investigated, reasonably good 

agreement was obtained between the experimental and theoretical 

pressure distributions up to the reattachment point. 

(3) In the neighborhood of the separation point induced by 

a linear decreasing velocity, the present method yielded numeri- 

cal results in close agreement with the precise results of Hartree 

and Leigh based on finite difference equations. 

(4) For an arbitrarily imposed pressure distribution, there 

appears to be a singularity in the rate of change of wall skin 

friction with distance along the wall.  The assumption of free 

interaction between the outer flow and the boundary layer removes 

this singularity.  On this basis the present solution was made to 

go smoothly through the separation point. 

(5) The calculated slope of the dividing streamline at 

separation is in good accord with the value due to Oswatitsch as 

calculated from the Navier-Stokes equations. 

(6) The analysis indicates that the velocity profile just 

downstream of separation and just upstream of reattachment is 

basically quadratic. 

(7) The calculative method yielded reversal of the inner 

flow in certain cases. 

(8) It was found for a specific case that reattached flow 

was possible only over a region of the wedge within a critical 

distance from the lower corner.  At this critical distance, the 

dividing streamline comes in tangent to the wedge and the separa- 

tion point is at its most forward position. 
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(9)  The method contains the possibility of high orders of 

approximation and of extension to other flow problems as described 

in the next section. 

(10) The calculative program has been applied to a wide range 

of initial Mach numbers, Reynolds numbers, and ratio of specific 

heats to show the systematic effects of these parameters on the 

separated flow. 

(11) The present method can be applied to the calculation 

of the laminar-boundary-layer characteristics in the face of a 

prescribed pressure distribution for any Mach number. 

(12) It is believed that the concept of free interaction will 

yield results in sufficiently good agreement with experiment up 

to the reattachment point to warrant its continued development. 

In any event, it can serve as the zero-order approximation for a 

more precise theory which takes fuller account of upstream influ- 

ence and the basic elliptic nature of the problem. 

(13) It was found necessary to match the second derivatives 

of the inner and outer velocity profiles at their point of junc- 

ture to obtain stable calculated solutions. 
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10.  RECOMMENDATIONS FOR FUTURE WORK 

It is believed that the present work is capable of broad 

extension and exploitation.  A number of specific suggestions for 

future work follows: 

(1) The calculative program should be extended to axially 

symmetric flow under the assumption that the boundary layer is 

thin compared to the radius.  This the authors intend to do. 

(2) The analysis is capable of extension to nonadiabatic 

surfaces.  Such an extension is contemplated as continuing work 

under the present program. 

(3) Higher approximations within the framework of the present 

theory should be attempted.  These approximations should consider 

additional moments of the momentum relationship for the inner flow 

as well as continuity of velocity derivatives higher than the see- 

on ^ at the boundary between the inner and outer flows. 

(4) Extension of the calculative method downstream of the 

reattachment point is desirable.  For this purpose it appears 

desirable to rotate the coordinate system perpendicular to the 

ramp. 

(5) An investigation should be made to extend the analysis 

to higher ramp angles. 

(6) The computational program should be used as an analog 

device to study separated flows systematically.  Effects of Mach 

number and Reynolds number should be studied as well as reattach- 

ment flow and incipient separation. 

(7) A systematic comparison between the results of the 

present calculative method should be made with all available 

experimental data to assess its limitations and the necessity of 

higher-order approximations. 

(8) The present method should be capable of simple exten- 

sion to blowing or suction in laminar boundary layers including 

the separated region. 

(9) It would be of interest to apply the method to turbulent 

boundary layers through the use of the eddy viscosity approach. 
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(10) The present results for a Prandtl nuitiber of unity should 

be generalized to other Prandtl numbers and to raal gases. 

(11) Since the Blasius profiles used as initiaü conditions 

may be unrealistic at high Mach numbers or low Reynolds numbers 

because of induced pressure effects, an attempt should be made to 

start the calculative program at the leading edge. 

(12) Well-designed careful experiments are badly needed to 

obtain detailed flow information in the separated region at both 

separation and reattachment for evaluating theory. 

(13) As a result of the numerical calculations of flow in 

the neighborhood of the reattachment point, certain speculations 

concerning a reattachment criterion have been made.  Further work 

is required to develop a sound reattachment criterion both from 

the theoretical and experimental points of view.  Theoretical 

work is needed for wedges of finite length and infinite length. 

Experimental studies of the flow in the region of reattachment 

are definitely needed to guide the theory.  Accurate velocity 

profiles are needed, as well as measurement of reattachment-point 

locations. 
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TABLE  II 

COMPARISON OF  BLASIUS  PROFILE WITH 
DORODNITSYN  APPROXIMATION 

2~ 
VI 

Blasius Dorodnitsyn 

u vr öU/öT) u VTou/irj 

o.c 0.0000 0.3321 0.0000 0.3322 
.2 .0664 .3320 .0665 .3330 
.4 .1328 .3315 .1331 .3325 
.6 .1989 1  .3301 .1>94 .3305 

I   •* i  .2647 .3274 .2652 .3271 
1.0 .3298 .3230 ,3302 .3220 
1.2 .3938 1  .3166 .3939 .3151 
1.4 .4563 .3079 .4551 .3064 
1.6 .5168 1  .2967 .5163 .2956 
1.8 1   .5748 .2829 .5742 .2826 
2.0 .6298 1  .2668 .6292 .2675 
2.2 .6813 1  .2484 .6810 .2501 
2.4 .7290 .2281 .7291 .2307 

1  2.6 .7725 .2065 .7731 .2094  | 
1  2.8 .8115 . 1840 i   .8128 .1867 
! ?.c .8461 .1614 .8478 .1632 
1  3.2 .8761 .1391 .8781 .1398 

3.4 .9018 .1179 .9037 .1172  i 
j  3.6 .9233 .0981 .9250 .0961 

3.8 .9411 .0801 .9423 .0773 
4.0 .9555 .0642 .9561 .0610  | 

i  4.2 .9670 .0505 .9669 .0474 
4.4 .9759 .0390 .9752 .0363  | 
4.6 .9827 .0295 .9816 .0275 
4.8 .9878 .0219 .9863 .0206 
5.0 .9916 .0159 .9899 .0154 
5.2 .9943 .0113 .9926 .0114  1 
5.4 .9962 .0079 .9946 .0084 
5.6 .9975 .0054 .9960 .0062 
5.8 .9984 .0037 .9971 .0046 
6.0 .9990 .0024 .9979 .0033 
6.2 .9994 .0016 .9984 .0024 
6.4 .9996 .0010 .9989 .0018 

I  6.6 .9998 .0006 .9992 .0013 
6.8 .9999 .0004 .9994 .0010  i 
7.0 .9999 .0002 .9996 .0007 
7.2 1.0000 .0001 .9997 .0005 
7.4 1.0000 .0001 .9998 .0004 

|  7.6 1.0000 .0000 .9998 .0003  1 
|  7.8 1.0000 .0000 .9999 .0002 
!  8.0 1.0000 .0000 .9999 .0001 

8.2 1.0000 .0000 .9999 .0001 
8.4 1.0000 .0000 1.0000 .0001  | 
8.6 1.0000 .0000 1.0000 .0001 
8.8 1.0000 .0000 1.0000 .0000  1 
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VALUES OF     c o» i» 

TABLE III 

C2i   AND    < FOR  CALCULATIVE 

EXAMPLE  CORRESPONDING TO  LEIGH  CASE 

i X/i Co ci C2 C3 

0.0100 0.0100 0.3157 -0.1923 -0.0313 1.1000 
.0403 .0404 .6174 - .3806 - .0565 .9991 
.1005 .1011 .9350 - .5829 - .0775 .8550 
.1485 .1499 1.0980 - .6881 - .0854 .7495 
.2022 .2049 1.2325 - .7744 - .0906 .6425 
.2509 .2549 1.3255 - .8328 - .0939 .5559 
.2969 .3027 1.3959 - .8753 - .0967 .4821 
.3507 .3589 1.4616 - .9125 - .0998 .4055 
.4019 .4125 1.5117 - .9381 - .1035 .3409 
.4480 .4613 1.5488 - .9543 - .1073 .2890 
.5094 .5268 1.5889 - .9677 - .1136 .2281 
.5555 .5763 1.6134 - .9723 - .1193 .1878 
.6016 .6261 1.6341 - .9729 - .1261 .1517 
.6528 .6818 1.6535 - .9693 - .1351 .1159 
.7040 .7380 1.6699 - .9618 - .1456 .0845 
.7501 .7890 1.6828 - .9520 - .1567 .0596 
.8013 .8460 1.6960 - .9386 - .1708 .0356 
.8525 .9035 1.7095 - .9242 - .1863 .0155 
.8986 .9556 1.7265 - .9182 - .1978 .0014 
.9011 .9585 1.7279 - .9189 - .1978 .0008 
.9024 .9600 1.7288 - .9194 - .1977 .0005 
.9037 .9614 1.7297 - .9202 - .1976 .0002 
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TABLE  IV 

COMPARISON OF LEIGH PROFILE 
WITH PRESENT SOLUTION 

(a)  X^/i - X/i - 0 .000142 

yL 

I        U/Uo          | 

Leigh Dorodnitsyn 

0.0 0.0000 0.0000    | 
.2 .0026 .0027    | 
.4 .0096 .0099    j 
.6 .0210 .0216 
.8 .0366 .0376 

1.0 .0564 .0578 
1.2 .0802 .0819 

i   1-4 .1078 .1098 
1.6 .1390 .1412 

!  1.8 .1735 .1757 
1  2-0 .2110 .2130 

2.2 .2510 .2527    j 
2.4 .2931 .2944    j 
2.6 .3368 .3376    1 
2.8 .3815 .3819    j 
3.0 .4266 .4267 
3.2 .4716 .4714 
3.4 .5158 .5156 
3.6 .5586 .5586 
3.8 .5995 .5999 

j  4.0 .6381 .6389    1 
4.4 .7065 .7082    1 
4.8 .7619  j .7640 

i  5-2 .8039 .8054 
5.6 .8338  ' .8340 
6.0 .8536  ! .8525 

|  6.4 .8658 .8638 
6.8 .8729 ..8706 
7.2 .8767 .8745 

i  7.6 .8787  ! .8767 
i  8-0 .8802  | .8780 

Dorodnitsvn 

x8/i m 0.962814 

x/i 0.962672 

co 1.730535 

ci -0.92109 

c2 -0.197233 

C3 2.32X10"5 
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TABLE  IV.-  CONCLUDED 

(b)     xyi   -  X/^ -  0.002542 s 

u/u 
y. \J 

■^L 
Leigh Dorodnitsyn 

0.0 0.0000 0.0000 
.2 .0041 .0042 
.4 .0126 .0129 
.6 .0255 .0260 
.8 .0426 .0435 

1.0 .0638 .0650 
1.2 .0890 .0905 
1.4 .1180 .1197 
1.6 .1504 .1522 
1.8 .1861 .1877 
2.0 .2246 .2260 
2.2 .2655 .2665 
2.4 .3083 .3089 
2.6 .3524 .3526 
2.8 .3974 .3972 
3.0 .4427 .4421 
3.2 .4875 .4868 
3.4 .5314 .5307 
3.6 .5737 .5732 
3.8 .6138 .6138 
4.0 .6515 .6520 
4.4 .7178 .7193 
4.8 .7708 .7726 
5.2 .8106 .8116 
5.6 .8384 .8382 
6.0 .8566 .8552 
6.4 .8678 .8656 
6.8 .8741 .8717 
7.2 .8775 .8753 
7.6 .8792 .8773 
8.0 .8805 .8785 

Dorodnitsvn 

Xg/i - 0 .962814 

X/£  ~  0 .960272 

c  - 1 n .728945 

ci - -0.919618 

c2 - -0.197710 

C        m    4 .56 I8X10"4 
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TABLE V(a) 

COMPARISON OF DORODNITSYN, QUARTIC, AND 
SIMILARITY VELOCITY PROFILES 

AT SEPARATION 

Dorodnitsyn Quartic Similarity j 
Y/5* u/u1 u/ul u/ui 

!   o 0 0 0 
( 0.0848 0.0046 0.0066 0.0040 

.1696 .0183 .0252 .0158 

.3391 .0719 .0914 .0636 

.5935 .2098 .2406 .1927    | 

.8478 .3961 .4177 .3802 
1.0174 .5315 .5368 .5230 

i 1.2717 .7226 .7004 .7278   1 
1 1.4413 .8252 .7927 .8364 
1.7804 .9470 .9252 .9598 

I 1.9500 .9736 .9644 .9839 
2.6282 .9987 1.0000 .9999   j 
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TABLE V(b) 

COMPARISON OF DORODNITSYN AND QUARTIC VELOCITY 
PROFILE DERIVATIVES THROUGH THE 
BOUNDARY LAYER AT SEPARATION 

Dorodnitsyn Quartic 
Y/6* ÖOJ/UJ ^(u/uj 

d(Y/5*) d(Y/5*) 

0 0 0 
0.0848 0.1081 0.1519 

.1696 .2144 .2829 

.3391 .4141 .4866 

.5935 .6554 .6627 

.8478 .7882 .7110 
1.0174 .7977 .6870 
1.2717 .6786 .5894 
1.4413 .5256 .4962 
1.7804 .2095 .2832 
1.9500 .1116 .1812 
2.6282 .0059 .0132 
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FIGURE 2. -DOMAIN OF BOUNDARY-VALUE PROBLEM. 
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FIGURE 5. - PRE-SEPARATION PRESSURE DISTRIBUTIOMS FOR INITIAL 
PRESSURE DISTURBANCES OF VARIOUS MAGNITUDES. 
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FIGURE 7 -EXAMPLE VELOCITY PROFILES GIVEN BY EQUATION (36). 
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DIVIDING   STREAMLINE 

u-0 LINE 

SEPARATION   POINT 

FREE   INTERACTION 

PRESCRIBED PRESSURE 
DISTRIBUTION 

FIGURE 9.-SKETCHES. 
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-0.2      0 0.2       0.4       0.6        0.8        IX) 

u 

(o) VELOCITY PROFILES. 

FIGURE II.- VELOCITY PARAMETERS 
FAR DOWNSTREAM OF SEPARATION 
ON BASIS OF VARIOUS ASSUMPTIONS. 
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-0.05        0 0.05 0.10        0.15 

(b)  VELOCITY  GRADIENTS. 

FIGURE II.- CONCLUDED. 
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o 
O 

Q 

FIGURE 22-VARIATION WITH DOWNSTREAM DISTANCE OF OSWATITSCH 
REATTACHMENT ANGLE AND DIVIDING STREAMLINE SLOPE (RELA- 
TIVE TO WEDGE). 

94 



AFFDL-TR-65-107 
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UJ 
o 
Ö 

x,FT 

FIGURE 23.- VARIATION OF OSWATITSCH REATTACHMENT ANGLE 

FOR DIFFERENT POSITIONS OF BEGINNING OF INTERACTION. 
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APPENDIX  I 

CALCULATION OF     g        FUNCTIONS n 

The   family  of   functions  of  a single variable  occurring  in 

the  analysis   are given by Equation   (43)   as  follov/s: 

/     \ f     u     du g   (c   )  = —; n 3    i V^ 
>  0 

+  c 
(1-1) 

Simple integration yields, 

(1-2) 

The  other    g       functions  can then be  simply generated by the 
following recursion relationship 

gn "   2n  +  1 ]   +  c     -  nc 
3 3gn-i) 

(1-3) 

For large values of c  the recursion formula requires many 

more decimals of calculation than significant figures in the cal- 

culated result so that a series solution rapidly convergent for 

large c  is desirable. 

The following results are used for large c 

n  3 

n J u du 

V' 1 + u 
1/2 V 

(1-4) 

VS' V^ 

00 

n + 1 n + k + 1 

k«i 

(1-5) 

Dv = 
_ (-I)K(?H - D; 

22k ^1 (k - i): 
(1-6) 
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APPENDIX II 

DERIVATION OF FREE-INTERACTION RELATIONSHIP 

The basic assumption for calculating the pressure gradients 

of the external flow field is that such gradients are the same as 

those for an inviscid flow with the solid boundaries augmented by 

an amount  5*  due to the boundary layer.  The particular invisid 

flow relationship used for the calculation is not germane to the 

basic assumption, and in this case was taken to be the Prandtl- 

Meyer shock-expansion relationship 

dp yM 2 
1  —-— d0 (II-l) 

P 
0 Y^ 1 12 2. 

COS 0 ~\/M    " COS 0 

It is noted tnat in free interaction the pressure distribution is 

thus dependent on the variation of 5* along the body, and the 

variation of 5* in turn depends on the pressure distribution. 

This interrelationship will be termed the free-interaction equa- 

tion. Specifically, it will consist of two equations. Equation 

(II-l) and the following equation relating 0 to the boundary- 

layer quantities. 

do *   do o 
dx + —T"- + ^ = tan 0 (II-2) dx   dx      ^ 

where 

b *   displacer ant thickness of outer flow o      ^ 

5.*  displacement thickness of inner flow 

dw -r—      slope  of streamwise boundary 

Pre-Separation Region 

The  calculation of     6  *     and  its  derivative   is  a  fairly 
o ■' 

laborious algebraic operation which will now be carried out.  The 

definition of  6 * is o 
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v-/Vs)dy 

We will  transform the   integral  to     T] 

6. = ^ vp^ r/p._^ (II_4) 
o   p1a1   U1      I P   ui.' 

^s 

Now since 

T (i + ^-j- -y TI (i + -^— — 

Uig  (-Y - 1) 

a 
i 

a o 

we have 

P 2 
-i = -±- = (1 + m ) - m 5L— - (1 + m ) - m ü2      (II-5) 
^    1 u 

so that 

00 

p  a       ^flTJV   f   r _ _ _ i 
5o* =  -^      \V     0    /     [(1   + mx)il   -  u)   + m^d   -  u)J   df|   (II-6) 

\ 

In the outer flow the velocity profile is given by 

)u       d " ^)V^ + c 3 
1  c  + c u + c u 

O     1       2 

100 



AFFDL-TR-65-107 

with the result that 

5 * = 
o 

p a   -v/U ^v  p -i 

= -2-a -^-rr—-    (1 + m ) (c g +0,9, + c a ) + m, (c g, + c g0 + c^g ) pa U L lOO 131 2^2 1 %    O3! 12 233'J 

(II-7) 

We  now  form the  quantity 

1/2     do   * 
1 + m dx 

o 
o    I 1  + mo j dX    dx     di    V U;L 

[(1   + ra1){cogo + rigi   + c2g2)   + mi (cog1   + c^  + c^fU 

(II-8) 

Carrying  out  a  tedious differentiation and noting  that 

dm,       . U1 

^- = mi =  2ml ~ (II-9) 

yields 

R   1/2     do   * 
o o 

m. m. m. 

1 + in dx 
o 

=   g^ + g o    ^1   l + m. 
co+ [Vi + vz rrsrK + [Vz**: + m   / "i        VJ2    ^3  1 + m, /    2 

1/ \ 1 

mi 
eg   +cg   +cg)   + T—   (eg   +cg    +cg) O^O 1^1 2^2 1 + m O^l 1^2 2y3 

m. 

1  + ra1 
(crtg« + c-g, + c

agJ 
37-1    1 + "x 

0^0 1^1 2^2'  V   7  -  1 m 

'"1 * 

+   (c g,   + c g    + c g   )   ( 1  + ^  + j-    7—^— J 77^ 
o 1        12        2^3    y       y-i    l+my u 

z    ( tan 0  - — ) 

1  + m 
(11-10) 

Equation   (11-10)   taken together with Equation   (II--1)   constitutes 

the  free-interaction relationship. 
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Post-Separation Region 

After the separation point the inner flow causes the turning 

of the inviscid flov by an amount depending on  5.*.  By analyzing 

Equation (II-6) we can vnte an equation for  5.*  as follows: 

5.* = pia: 

p a   -Ju iv ro o  v o o 
u [(1 + mi)(l - u) + in1u(l - u)1 dri (11-11) 

In this case the velocity profile is given by 

a  + 2a \     /a + a % , _S W \  2  . /  S     W \  3 u = "v/i - i —; ) 'i   + ( — 1 n (11-12) 

The  resulting  equation  for     5.*     is 

5.*       U 
i o 
I 

1  + m   Qy+i/2 (T-i) 

U,     R  1/2    yi  + mo 
o 

(1  + m1) L 's 12 w s 

+ m n    (aw " as) "  ' 
/a 2       a a a  ' 

3 (    w     _    w s       _s_ 
s    \105 70 105 / 

(11-13) 

where 

^u a    = 5— 
s       or] n. 

(11-14) 

Carrying  out  a  differentiation  as  before yields 
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1 

R   1^2      d5.* 

1 + m dx 
o 12c  2 1 + m 

VVs   ^sXVs . 2Tis3c.- 
12c 70c 105c 

m 

24^fc~c 
v    3   o 

\3% 
1 + m 

\ 0V3 0V3 O 

_ ^ , !k  Vs , _J. + 
m 

1 + m,     ^   6    ^   "   6 
^s   Vs 

V1 

35        v 70c 

3T^S2OVVS _ v!f 
35c 

Tl< m 

12 1   + m 12 

2a  n   3        n   3Vc_ 

W 'S 'S      V     3 

105        T     70c 
o 

a w 

m m. 

1   + m. 
1   + 1 

1   + m      VY 
i     x ' 

H) A S 'S       V      3 _—   a       _     
12     "w 12c 

n<> ;> s :^ _ + 
Tk3avV^r    n 

3c 
S 3 

104 70c 
105c 

3T   -   1 
y - 1 

1   + m 

m. ^s + IT u 

(11-15) 

Introduction   of     do.*/clx     in  Equation   (II-2)   along with     do   */dx 

yields   the   free-interaction  equation when  taken  together with  Equa- 

tion   (II-l) .     Note  that  the wall  may have   any  arbitrary  shape  given 

by    w(x).     It  case  a quadratic  rather than  a cubic  is  used  for  the 

inner velocity profile,   we  set 

Vs 
a    =   -  a    =   - 

w s c 
(11-16) 
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