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ANNOTATION 

In the book the theory of a turb- 
ulent boundary layer of a compressible 
gas Is set forth or based on a study of 
the relative change of the coefficients 
of friction and heat transfer with growth 
of the M number, the heat transfer factor 
A^ and the wall permeability factor b. 
The existence is shown of a limiting lew, 
corresponding to very large Re numbers 
and almost full of self-simulation of 
relative changes of the coefficients of 
friction and heat transfer. On this 
basis simple engineering methods are pre- 
sented for solving the basic problems of 
friction and heat transfer in turbulent 
flow of a gas past a solid body. 

The theoretical conclusions are com- 
pared with experimental data. 

The book is designed for scientists, 
engineers of aerodynamics and thermophysics, 
students of senior courses in these speci- 
alties and may be used as a guide for prac- 
tical calculations in design offices. 
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PREFACE 

In nature turbulent flows are the most wide-spread, starting with 

the flow of water in a stream and finishing with the motion of inter- 

stellar gas. Flow of operating media in machines and apparatuses of 

contemporary technology in the overwhelming majority of cases is turb- 

ulent. During high speed flight, in combustion chambers and the 

nozzles of motors, in nuclear reactors, in high-forced gas equipment 

and so forth streamlining of solid bodies of different shapes by s 

turbulent stream of compressible gas takes place.  In addition, flow 

is accompanied by intense heat transfer or mass transfer of some sort 

of matter. 

As is known, aerodynamic drag and heat and mass transfer are de- 

termined by the conditions of the transfer of momentum, heat, and 

matter in the boundary layer of gas or liquid forming near a stream- 

lined surface. In a stream of compressible gas, all phenomena are 

complicated by innate compressibility and by changes of temperature, 

connected with high glow velocities. In this connection, the great 

attention, which has been allotted in the past few years to the problem 

of the boundary layer of a compressible gas is understandable.  How- 

ever, if the theory of a laminar boundary layer can be considered as 

basically completed, then with respect to the turbulent boundary layer 

vii 



the position to now, remains far from satisfactory. 

The semi-empirical theories of near-wall turbulence of Prandtl- 

Karman and Taylor to a certain degree permitted, explanation of the 

existence of a logarithmic velocity profile in an isothermal fluid 

current with weak pressure gradients and impenetrable surface.  Zxten- 

sion of this theory to nonisothermal flow with zero pressure gradients 

was carried out in the works of F. I. Frank» and V. V. Voyshel', 

A. A. Dorodnitsyn, R. Deisler, L. Ye. Kslikhmanj 7. M. lyevlev, E. Van 

Driest, W, Dorrance and F. Dore, V. P. Motulevich, Yu. Y. Lapin, et al. 

In the works of K. K. Fedyaevskly, V. Stsablevskiy, L. G. Loytsyanskiy, 

et al.  Certain problems are considered of the.  fl; w of an incompressible 

liquid In the presence of a pressure gradient in the flow region, not 

close to the point of separation of the boundary layer.  In addition. 

It is necessary to accept a series of additional, physically insuffi- 

ciently valid, and sometimes contradictory assumptions.  As a result 

calculations by these methods substantially differ among themselves, 

which was noted repeatedly in the literature. Therefore, it is not 

surprising, that in engineering practice purely empirical methods of 

calculation of friction and heat transfer in the turbulent boundary 

layer of a compressible gas, based on the introduction of some "gov- 

erning" temperature, have obtained wide circulation.  It is necessary 

to note that In the semi-empirical methods of calculation it is also 

necessary to Introduce a "governing" temperature for calculation of 

physical properties of gas in a viscous sublayer.  The problem of the 

parameters of separation of the turbulent boundary layer remains theo- 

retically nearly unexplored. 

This monograph Is devoted to discussion of the limiting law of 

change of the coefficient of friction in a turbulent boundary layer 
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under nonlsothermal conditions, transverse flow of matter, and pressure 

gradient as established by the authors. This law, derived for Re -♦ oo, 

in the general form does not depend on empirical constants of turb- 

ulence and is not connected with any special type of semi-empirical 

theories. 

The known fact of the weak influence of the Reynolds number on the 

relative change of the coefficients of friction and heat transfer in 

connection with nonlsothermal conditions and transverse flow of matter 

permits extending the limiting law to flows with finite Re numbers, 

with good accuracy. As a result we managed to construct relatively 

simple methods of solving the integral equations for the momentum and 

energy of a turbulent bounday layer. 

Theoretical results are compared with a large number of diverse 

experimental data. 

It is possible to propose that the possibilities of the new method 

are by no means exhausted by the problems, considered in this mono- 

graph and will be still developed, supplementing the existing theory 

of a turbulent boundary layer. 

It is assumed that the reader is acquainted with the principles 

of aerodynamics and the theory of heat and mass transfer. 

The authors will be very grateful for all critical remarks, 

which are raised by readers in connection with the material considered 

below. 
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List of Basic Cyrillic Symbols 

Kr m kg 

M - m - 

xxaji = kcal 

Km m kg.m 

OT = wall = wall 

oeK = sec - sezorA 

rpafl = deg = degree 

T = t = thermal or thickness 

XI = hr = hour 

rp » b = boundary 

Kp = ct » critical 

T _ t = thermal turoulent 

Basic Symbols 

"^«tfl^w*! " dermal equivalent of work; 

«=-SE*_ - relative speed of blowing (In pumping) of matter Into 
w*        the boundary layer through the wall; 

"["TSr] - thermal dlffuslvlty coefficient; 

«[——] - speed of sound; 

*= 2ttmWte~r  wall permeability factor; 
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J>t=  ggJ&a  _ wall permeability factor,  referred  to the real value 
</*»..        of the frictlon coefficient; 

c/   -  local friction coefficient 

C
F   -  average friction coefficient; 

*>•'.*>..  - friction coefficients during streamlining of a  flat, 
impenetrable plate to an unlimited Isothermal flow; 

^1 "'*       a]" sPeci^ic heat at constant pressure; 

I—**<l-t     ]_ specific heat at  constant volume; 

DW- diameter; 

0[~-]" diffusion coefficient; 

F [M*] -  surface area; 

y-1- . •^" -  shape parameter; 
V|,    B.t 

0\'Kt  I - mass flow rate; 

jfl—7 I- acceleration of gravity; 

//=-^-- shape parameter, the ratio of the depths of displace- 
ment to loss of momentum; 

if—']- specific enthalpy; 

yf-^-—I- pulsational component of mass velocity (flow + rate); 

y r w• iw V m8ss velocity of transverse flow of matter through a 
i   **    i    permeable wall; 

K~— criterion of phase transition; 
elT 

k = St~-  index of the adiabatlc curve; 
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/ W - linear dimension; 

11*| - length of the path of hydrodynamic mixing; 

/f(jir|- length of the path of thermal mixing; 

L \M\ - full length of the body; 

m- exponent; 

Atos-j-- Nusselt number; 

n  - exponent; 

Msz—z— Mach — Mayevskiy number; 

Pr=—-  Prandtl number; 

#f~] - pressure; 

^■...- 

Qf-^l - heat flow; 

f\~] - heat  flux; 

#[-~~p]- gas constant; 

R{M\ - radius; 

Re= — Reynolds number; 

^•♦-•sl'l- characteristic Reynolds number of boundary layer; 

r - temperature recovery coefficient; 

f^*iLj - latent heat of flow transition; 

St= ~ Stanton number; 
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T'l'KI - absolute temperature; 

TTKl- Ihhlbltlon temperature; 

^Al'^i- adlabatlc wall temperature; 

rTKl - calculated temperature, determined by formula (2.^5); 

t{0C\-  temperature on the centigrade scale; 

U-  —£^— ratio speed of undisturbed flow to the maximum pos- 
x/i£ifu      slble speed of flow; 

«= —*x the same for the local value of velocity component w ; 

/i " 

V (JM31  - volume; 

^l"^""! ~ v"olime flow + rate; 

Pf-^-l - pulsatlonal vector component of velocity; 

vj-i-| - specific volume; 

■**s y   "rf^/ " dynamic velocity; 

«•[—^-| - flow velocity; 

«»,[-—-] - velocity outside the dynamic boundary layer; 

«•,1—^-1 - velocity on the calculated boundary of turbulent nu- 
l «w J  cleus and viscous underlayer; 

wit = -^"~ -  longitudinal gradient of velocity outside the boundary 
*r   layer; 

x - coordinate, directed along the flow according to the 
outline of the contour; 

y - coordinate, normal to the streamlined surface; 
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I 

,yi - calculated thickness  of the viscous underlayer; 

I—^^—  - heat  transfer coefficient; 
| .w* ■ •• • .'patt | 

fi0- angle; 

ß -  compressibility factor  in the expression for turb 
lent tangential stresses; 

r——^—f~ form parameter; 

^HH" d^s^yj 

A - sign of difference; 

A •> = -y- - heat transfer factor; 
■ 

 j 1- pulsational component of density; 

AW- thickness of the dynamic boundary layer; 

M-*] - thickness of the thermal boundary layer; 

fi*(*J - thickness of displacement; 

■ 

b**[M] -  thickness of loss of momentum; 

■ 

IJ'ljifl- thickness of loss of energy; 

* -  coefficient nonsimilarity temperature and velocity 
fields; 

$9-  coefficient nonsimilarity of concentration and velocity 
fields; 

- 

;- coefficient of aerodynamic drag during flow in a pipe; 

V"-^-- dimensionless distance from wall, expressed in the form 
of "local Reynolds number;" 
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T,, = 2aJa— dimenslonless thickness of the viscous underlayer; 

efKI - pulsatlonal component of temperature; 

♦- dimenslonless temperature  (see formula [2.46]); 

A = — • —£- - form parameter; 

At-VA - form parameter,  referred to c    ; 

> 1 J* T^ww» 1" c06^101611* of thermal conductlulty; 

T   *t'€9«   1    coefficient of dynamic viscosity; 

"l——1- coefficient kinematic viscosity; 

i = -f- - dimenslonless distance from wall; 

»r^LlSSg.] - density of the medium; 

'I-^Tj - tangential stress; 

t = -—- - relative magnitude of tangential stress In the thlck- 
ness of the boundary layer; 

mm 

?=-— - dimenslonless velocity; 

**(■?■]*»" ' rela"tlve change of coefficient of friction at Re*» = 
* = Idem; 

• = (jjJ/iT^* - relative change of the Stanton number at ReT*» = Idem; 

•> = -^B-- temperature factor; 
*• 

•>• = —il - kinetic temperature factor; 

flful " cross sectional area; 

w0 - dimenslonless velocity; 
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rp . b ■ boundary; 

KP« cr ■ critical; 

T . t » thermal, turbulent; 

CT ■ wall « wall; 

0 -    scale point, parameters outside boundary layer; 

00 -    conditions for inhibition parameters; 

1 -    parameters of matter,   introduced into the boundary 
layer at the intersection of the wall; 
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CHAPTER      I 

BASIC EQUATIONS OF A TURBULENT BOUNDARY LAYER 

1,1. Equations of Motion and Thermal Conductivity of a 
Plane Boundary Layer of Gas 

List of Designations Appearing in Cyrillic 

CT      =   wall    -    wall 

Kr     =   kg 

M      =   m 

A stream of fluid forms near a streamlined surface a dynamic 

boundary layer, i.e., a region, in which the velocity of the fluid 

changes from the velocity at the wall (for a nonrarefied gas it is 

equal to zero) to a magnitude very close to the speed of an undistrubed 

flow — w0. In the presence of heat transfer and diffusion thermal and 

diffusion boundary layers appear. In a thermal boundary layer the 

temperature in practic . changes from T 3, to T . in a diffusion 

boundary layer the concentration at the diffusing substance changes 

from pwall to p   Strictly speaking, for a dynamic boundary layer 

the boundary conditions take the form; 

jy = Of w,~0; y- co, «•,=;»,!. (1.1) 
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Due to a sharp change of speed in direct proximltv to the wp'll,  th« 

exact conditions of (1.1) can be replaced by the approximate; 

|y = 0. », = 0; y = o. wx = . I - «) a-« 
( 1 P i i.   r   1      > 

where e is a prescribed small magnitude. 

In that sense we are speaking of a boundary layer of finite  thickness 

Ö. 

In experiments the value of e can coincide with the sensitivity 

of the measuring Instrument. 

In Pig, 1 is given a diagram of a boundary layer on a certain 

curvilinear surface. 

In a plane boundary layer in the absence of significant transverse 

forces (for instance, centrifugal) the following conditions are ful- 

filled: 

if 

d.r 

d.t« 

'< 

ix  ' 
d/i   . 

dj- 
(1/3) 

where for f*  are understood w  T, and p. x x. 

In connection with this, 

the equations of thermal conduc- 

tivity, motion, and continuity 

for a stationary, plane boundary 

layer of compressible gas on an 

impenetrable surface have the form, 

*. 

Fig. 1. Diagram of a boundary 
layer on a curvilinear surface. 
In front of the body is a 
shock wave. 

y   \    dy   }        ' ' d y / 

/   di 
dx *   dy 

) - ••*«% 4x   ' 

(1.^) 
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4.x 

öi ÖT 

(1.5) 

(1.6) 

At   c    = const      g-    = c g~   , what is practically true for a 

uniform gas. 

To these equations one should join the equation of state, determ- 

iiiJ.ng the magnitude of the density of the gas p, and temperature func- 

tions of the coefficients of thermal conductivity and viscosity. 

For a gas,  obeying the Clapeyron - Mendleyev equation,   we have 

(1.7) gRT 

The coefficients of thermal conductivity and viscosity are re- 

lated to the specific heat via the Prandtl number. 

(1.8) 

For undissociated gases  the values of Pr and c    change little with 

temperature and pressure.    Therefore,   for such a medium practically 

one may assume that 

-~ —const. (1.9) 

The magnitude of Pr depends chiefly on the number of atoms in the 

molecules of the gases, and its order is given in Table 1,1, 

Table 1.1. Order of Pr number for undissociated gases. 

Atoms l     2     3   ^4 

Pr number  0.66   0.75   0.84  1 

Outside the boundary layer frictional forces do not appear 
dw x w = 0 ).and for steady-state flow 



— dp     = 6 ü dW* 
<'* * ^" (1.10) 

Substituting in equation (1«4) the value of  »P  from equation (1.5), 

we obtain the thermal conductivity equation for a plane boundary layer 

in the form of M. P. Shirokov (at c ■ const): 

-£4-7rH'''-'■-£-11= 

Here 

T*-r Aw} 

2crf (1.12) 

is the temperature of stagnation. 

1,2. Turbulent Viscosity and Thermal Conductivity 
In a Plane Boundary Layer 

The real (actual) instantaneous characteristics of turbulent flow 

effect at every point disordered oscillations around a certain mean 

value. Thus, for the flow velocity we have 

»~Sr V, (1*15) 

where w — vector of the averaged velocity at a given point of flow, 

7— vector of pulsational component, giving the deviation of 

the true velocity, at a given moment of time, from the averaged value. 

In a compressible gas the flow velocity, pressure, temperature, 

density, and flow + rate of the medium pulsate. The corresponding 

equation of motion of a plane steady state boundary layer has the form 

-JP- + JLuI**. - IX| = 
ftx 0 y   y'     dy ' / 

_ r-nr- «»*.  . r=r d** (1.14) 
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Here a line above a letter signifies averaging during a time fairly- 

large as compared to the period of pulsation. 

In turn, the averaged product of the vector components of pulsa- 

tion of tlie flow + rate J and vector velocity pulsation V are 
y * 

y7^ - ivFr -:- «^ ■ Wv«.       (1.15) 

where 5 Is the density pulsation. 

By comparing in equation (1.14) the members „"y^ and J/V,,    It 

is possible to arrive at the conclusion that the latter value can be 

considered as some tangential stress, appearing in the averaged stream 

under the Influence of turbulent pulsations. 

In a gas, obeying equation (1,7). 

and correspondingly 

tt=-?l^ + -^öT,+-^ev^.      (1.17) 

where 6 is the temperature pulsation. 

The value 

^t (1.18) 

is called the coefficient of turbulent viscosity. This value is a 

complex function of velocity and temperature. 

The Idea of the coefficient of thermal conductivity Xt is developed 

in an analogous manner. 

In the method proposed the values [i.   and X are not used directly 

and only their ratio is Important 

#v^ —"' (1.19) 
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called the turbulent Prandtl number. 

This value near a solid wall is close to unity. 

1,5,  Integral Equations of a Boundary Layer 

The equation of motion can be written recorded lr the form 

äwn dt        Ott,- dv r 

'•••JS- + T7=f'T'-^r + ''Jr'-77--    (i.2o) 
true for laminar and turbulent flows,  if corresponding values  of 

variables are introduced into it. 

Integration of this equation with respect to y from 0 to 5 gives 

'■•"77 

On the outer boundary of the layer, by definition T - 0 and w =» w0. 

On the surface of a streamlined body 

Here 
J\ ~ Per «"CT 

(1.22; 

is mass flow velocity of matter through a surface.  This flow may be 

as a result of a change of the aggregate state (evaporation, conden- 

sation), porosity of the wall (blast of gas intc the boundary layer 

or pumping from the boundary layer), chemical reactions. 

Subsequently, a surface, on which J. / 0, we will call permeable. 

Taking into account these boundary conditions and the equation of 

continuity, it is possible to transform equation (1.21) to the form 

"" +A-J«(2-f//)-f--^-3-- '' 

where 

H = —  and fr-—- 

-6- 
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In this equation, called the Karman momentum equation 

J  '      ?oV„      ' 

Is the thickness of displacement. 

(1.24) 

(1.25) 

Is the thickness of loss of momentum. 

The upper limit of Integration y « oo corresponds to the theory 

of an asymptotic boundary layer; the limit y « 5 corresponds to the 

theory of a layer of finite thickness. 

Due to a sharp change of speed in the Interval from 0 to 5, 

5* and  5** have the same value for both upper limits. I.e., there are 

certain "internal" linear scales, the one and the same within the 

theory of an asymptotic layer, and In the theory of a layer of finite 

thickness. 

The analogous Integration of the thermal conductivity equation 

leads to the equation of the energy of a boundary layer (without 

consideration of radiation and Internal sources). 

ilx i   wt IT ft J dx 

where (AT)1 ■(d/dx)(AT),AT Is the temperature difference. 

(1.26) 

The quantity 

c ^ Is the specific heat of the gas. Introduced 

through a permeable surface, 

c Q is the specific heat of the basic gas. 

J  ft.». 
' (1.27) 

Is called the thickness of loss of energy. 

-7- 



~e coefficient of friction is 

c, = 

and the coefficient of heat transfer is 

The dimenaionless forms of t he hea !; c eff ~ "" e , t ·., e.n - fe r (St a •. on 

and Nuaaelt numbers) have the form, 

Sl =- _ _ __..! • · ,., ....... 
AI •1,. ... =-- , 

~ (1 . 31) 

where t 0 is a characteristic linear d~n~ns i on ~ 

In integral (1.27) i l s a cer t ain dimens~ c .l e. u s ~ emperature. At 

Pr • 1 and dp/dx • 01 the value of~ i s exa~t · y eq ' a : : o t he rat i o 

Twa11-T*/Twall-T0•, where T* is the va l'le of t he i::' ... '1ib i...1an t emperat ur e 

* at a given point and T0 is' the value r ~he s t agnati on t emperat ure 

outside the boundary layer. 

The temperature difference is det ermi ned by t he expr essio:1. 

(1 .32 ) 

* where Twall is the adiabatic temperature of the wall, i.e., t hat 

temperature, which is established on a given sur f ace, if t he latter 

is ca.pletely heat-insulated and qwall • o. 
In general it is assumed that 

(1 .. 33 ) 

where r ia the temperature recovery factor. 

In a turbulent boundary layer 

(1. 34) 

i.e., tor gases close to or equal to unity. 

-8-
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Fig. 2, Diagram of a 
boundary layer on an axially 
symmetric body. 

*jr 

In Fig. 2 is given a diagram of a 

boundary layer on an axially symmetric 

body. Because of the small thickness 

of the boundary layer relative to the 

radius of curvature R . the equations 

of motion and thermal conductivity do 

not change their form as compared to 

Planar flow. The form of the con- 

tinuity equation changes, taking the 

form: 

^ d(tw,RA)     _ 0 

(1.56) 

In connection with this the equations of momentum and energy are 

somewhat modified; namely. 

Here 

 Ji__ _ _*t_.   —3r; 

4M4^+4+4K 
fcr _ *ßtJt _.   

(1.37) 

(1.38) 

(1.39) 

(1.40) 

*-fiS" ~*>h~t <**)*' (1.41) 

-9- 



Characteriatic Retaolds Numbe:>:· . ~':· 
a Bounaary yer · - - · ---

1.4. 

The triviJ.l determination of the Reyn lds nwc. e .r .t1a s th.e f or, : 

•·=~, 
.. ., f • ..L. ;! 2 1 

where w0 is characteris t i c ve_-..<.it 

z
0 

the characteris tic linear d1 nt=-:'.= ~- ) D. f :- - t r ·e..."lll i ned body: 

v0 the kinematic viacosity at a characterist ic point of the 

system. However, in boundary l ayer t !:eor.r gu ~~l a ~ e: t....:.·~ ::.:-.e. t. :C'n f a 

basic hydrodynamic criterion is ineffec t v e • . , ua:i. ly} f -rom t he 

aamentum equation 1 t is c l ear that such a very 1 ~ :-> r7 ? ':t lntegral 

characteristic of the interaction of fl ow wit.b 6. '!:' dy; as thf> c ef i -

cient of friction cf, is conn.ec · r ~' .; ~ ,~,.- c.!·.~. =: J.C lt;t~l }., bu-c 1 t~ 

certain "internal" dimensions of the boundary l e.ye r - 5* "' and 5*. 

Besides the structure of t he momentmn "'que.t i on shows t hat the fi r st. 

of these quantities is the most imp ortant. 

The universality of the linear characi:erie tics 5* 5** and 5 ** 
I t 

becomea eapecially evide r, , if ws rememt er tf a t · l'.he r der.;e rminrt ti on 

is not connected with "the i dea of a l aye r of f '!. nite t hieknP-ss and t he 

change of the upper limit in in'tegrals (1.24), ·1.25), and (1.27 ) 

from 6 to CD does nc t change their value. In c01mection with this 

charac·teriatic Reynolds number for a dyne.mic boundary layer it is 

expedient to construct in the form of the quantity& 

.... .= 
......... 

(1.43) 

or 
•• ~ = . .,, ,,~. 

·~. (1.44) 

In an iaothermal turbulent boundery layer f a r f r om t he point of 

breakaway, the ratio 5*/6** is almost constant (see formula (3.13)), 

-10-
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I.e., In this case the numbers Re** and Re* differ only by a constant 

factor. 

For a thermal boundary layer we have correspondingly 

He, JL-L 
(1.45) 

The dominating role of the quantity 6** In the momentum equation 

and consideration of the expedient uniformity of the characteristics 

of dynamic and thermal boundary layers force us to select as basic 

modifications of the Reynolds the expressions (1.43) and (1.45). 

Regarding selection of the quantity vQt  It Is more convenient to 

relate to conditions outside the boundary layer. Such a determination 

Is convenient from a computation point of view. Inasmuch as the param- 

eters of undisturbed flow usually are known. 

The relation between the Reynolds number 

^ = 
r.>jr 

^  • (1.46) 

and the numbers Re**, Ret** Is established via the equations of momentum 

and energy. If the following relations are knowni 

and 
(1.^7) 

(1.48) 

These relations are called,   respectively,  the law of resistance 

and law of heat transfer. 

Definition of these laws la a basic problem of boundary layer 

theory. 

1.5.    Similarity of the Velocity and Temperature Fields 

The equations of motion (1.5) and thermal conductivity (i.ll) 

become identical relative to the quantities w    and T* upon fulfillment 

of the conditions» 

-11- 



f~L = 0· Pr = tJ · 
\ 4.( • 

Bu iden i t y of the different ial equat i ons s i _;n1f ~ Eo i:1 n:. ty uf 

t he r i nt g r a ls during similari ' ' s . 

Con s e qnentl , durin· ;-re e E !' f 1 s . .... ..,.., r:- 1 .. .... • ~ -: 'f s id b o1y 

b y a polya tomic gas ( Pr • 1..) n d for ;:. rn 11. a .. _ · c ~ fj F> r~ ounda. y con-

di i ons the longitudinal flow velocit~ ar d sta~n&tion ~emperature 

ii l ds are similar, i.~.J 

( 1. 50) 

1' ese c onditions a r e exac ly f u f 1 d dur 1 g J.Jne;.i ·uo ir:aJ f ow b y an 

unbc n ded s tream of a pol a ·o .ic . . ,.:.a .ar g s "''J ~;. a ;-·onstant s u rfa ce 

emper a t ure. 

Similarity t h e vo oc t y a nd t per ~ure field £ ~+ P · = 1 means 

't~'lat be t 1 en the heat f l u x q and T.n 1~ ·u!;e i a. :i.. trE:: s s e s -r there 

exis s t. e rela t i onsh p 

or 

0 1 
). ----

t .v • srr, 1. .,.•. 
- - - · - ~- rt t ~} • 

., «'..r "' c .,.-,. 
St = _!L. 

2 

- 12-
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CHAPTER  II 

LAWS OF RESISTANCE AND HEAT TRANSFER 

Definitions of Cyrillic Items In Order of Appearance 

T = t = thermal, turbulent 

CT = wall = wall 

Kp = cr = critical 

2.1. Tangential Stresses in a Planar Boundary Layer 
of a Compressible Gas 

Molecular friction is comnensurate with turbulent only in the 

thin near-wall layer. This region of the turbulent boundary layer is 

called the viscous underlayer. 

The relative thickness of the viscous underlayer 

5, = -a- (2.1) 

in a flow of an Incompressible liquid is 1-J5& and in a flow of a 

compressible gas can reach 10-15%, 

In the remaining part of the turbulent boundary layer, the so- 

called nucleus, 

^t^-fPT^d-!*). (2.2) 
and 

where 



- a coeffi c ient, taking into account t he i nfluence : f dens i t y pu~sa­

tions on momentum transfer. 

Below the sign of the average values of p, w, anci J.' wi l l l: :: :.·\, le: . 

theory of t u rbulence .s t ho:> onnect~ on beh .r'?e!' t't1 ~P rage pr oju t uf 

the vector components o the pulsat.ional component of t he f l ow velo i ty 

and the avera1e velocity. This relati on is expres se d very general l y 

y t he Prandtl for.mula, 

(2. 

whe r e Z. is a certain proportionali ty f actor, hav i ng t he dimension of 

_engt h. Usually the quant i ty Z is cal led t he ·1 en 1:h of the mi xi ng p.., t h . 

Fonnula (2. b ) f ol l ons f r om dimensior.al anulysl!: , i f 1;e a s sume that 

::n i:he region of s i gnifi cant changes of' t he average vel o"' i ty, moment um 

r tional t o t he de r iv 

I nt roctvc ing t he value v;vy f ~'('TI ( ~· .lt.) :l.n ( ::? .2 v:e an write t ha t , 

~~ a turbul ent nucleus 

(2 . 5) 

I h::s exp ress ion leads to the form 

-!J_ = -w~ (~1 --~·):;......_ (1 It • r )' , 

2 _2- ,, ' ..... (2.6 ) 

~·:ne :-c; 'T' = -r is the distributive law of t a.ngential s tresses a l ong 
-rwall 

t~e t hicknes R of the boundary layer. 

2.2. Law of Resistance 

From equation (2.6) it follows that 

_!/_,= .., .. ~ ( 
tv' _t_ __ tl•·• )·· 

t • 

I ,,":..-=-, 

-14-
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where     y^ is the thickness of the viscous underlayer,i.e., the 
coordinate of the lower boundary of the turbulent 
nucleus of flow. 

wl oi. = — is the dimensionless velocity at this boundary. 
1  WU 

Equation (2.7) is written in a form, not connected with any sort 

of theory concerning a boundary layer of finite thickness. The transi- 

tion of the terras of the theory of a boundary layer of finite thickness 

is accomplished according to equation 

1—7^=" * f   /  ;  • (2.8) 

where      6 is the thickness of the dynamic boundary layer; 

| ■ 4 is the dimensionless distance from the wall; 

y1 f    = -*= is the dimensionless thickness of the viscous underlayer. 

The upper integral of equation  (2.7) has the same limits in the 

theory of an asymptotic boundary layer and in the theory of a layer of 

finite thickness. 

Let us introduce the  relationship 

M-U,..' (2-9) 
where cf is the value of the local friction coefficient at given con- 

ditions of streamlining of a body; 

C^Q is the value of the friction coefficient at an isothermal, 
iw   gradient less streamlining of an impenetrable wall, i.e., 

during isothermal streamlining of a planar impenetrable 
plate by an unbounded flow. 

Comparison the friction coefficients is carried out for identical 

values of the characteristic Reynolds number of the boundary layer, 

because integration in (2.8) is carried out with respect to the thick- 

ness of the latter. 

Multiplying both parts of equation (2.6) by the quantity TQ, 

it is possible to write: 

'■-('JVJH (2-10) 

-1R_ 



where 

Z= .. r;;- r· ·' ;: . ~-r-r-.r · - ~ , ,, 
-In the formulas -r 0 i s the distributivE: uw of t.ne .~uanti ty 

( ,~ ., , ' 
..::. "' . ..l I 

a long the thi cknes s f t he i scthe 111, 1 ·b · ..... r da.r y ldy <.; a t an impene :-aolt. 

p:i..a t e, wi th streaml i ning f a. un"); ,:nc ::: 0. un:. i.rr·l t ,:;:: :~: ~;,;( i . e:. for 

~i = 0 ). 

From the given formulas it is .::! ler: r t hat ~'or e.s _.,,_ ,lishmen 'Jf lai 

'J f re sistance it is necessary to know ,. ;,e ~ '"'- ~' ' ~' .• ·'et ern,l r :j_ng the qu . . t i ­

"t i es L, y
1

, T, f;' and t3. The quantity w
1 

c a.i·J ·r .: co:np·1te d b y c a lcu le.­

tion of molecular friction and molecular· t h ·. :rmc. l onduc t i on, if t he: 

~~antity y1 and the relation ~(T ) Gr e ~1owr. . 

In the contempora ry semi -empiri ca l t beorie s equ .. ~j. on (2 . 7) :!. 

ca::!.culated on the assumption that ~ = 

F:'a ·:- tically the very same , 

J -r = 1 1 1 , L ~ y , or wh i ch i s wa ... 

" I '. : t-he dimens i on e s s t.h1ci'.ne s s ·. f t.he yj_ ~ c ou~ urC:srL ye r _. 

"· to ... =---. 
ma-~.ntains the value, found experimentally :t'or i sothe r mal fl ow on a 

::_:;l.1te, lf the viscosity i s related t c a certai n "de t ermining" tempera-

~ure r It is clear that boundary layer theories for a compre ss i b l e 

gas based on such assumptions cannot lead to sufficiently reliable 

:results. 

However, equation (2.10) obtains special properties at Re - oo, 

t o which attention has not been paid until now. We will now turn t o 

an examination of these properties. 

2.3. Values of the Quantitie s ~ ' w1 
~d ~1 at Re-m 

We wil l show that at Re ... m the quantitie s p_, (ll., Pnd ~ Rpproach 

-16-
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zero. 

Equation (2,4) assumes the existence of a correlation between 

the vector components of the pulsotlonal portion of the velocity of 

the form: 

Analogously, for temperature pulsation It Is possible to assume the 

relationship: 

' *y       ty 

From (2.2) It follows that 

(2.12) 

where «, 
.-/■ 

<et Is the dynamic velocity. 

With accuracy up to the coefficients, taking Into account the In- 

fluence of density pulsation, the relationship between the heat flux 

and tangential stress In a planar turbulent boundary layer has the form 

TP; 
In the degree of similarity temperature and velocity fields con 

dltlon  (1,51)  Is fulfilled,  i.e., 

(2.15) v,%        AT 

Introducing these relationships in formula (2.5), we can write 

that in order 

The transverse velocity component at an impenetrable wall in 

succession is equal to the quantity: 

m ä W   —-— •  * tt»..  • —*- 

l,e,, in this case 

Let us consider flow with "disappearing viscosity," l,e., with 

H. -♦ 0,  In this case Re -♦ co, and the friction coefficient cf -► 0. 

-17- 
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Correspondingly, the coefflaient ß also approaches zero.  At a permeable 

wall the maximum additional component of the velocity ■: opponent v:, 

occurs at y = 0 and, as is shown In Chapter IV, is equal to w,,-, s 
c  p 

^ ^Q 0 b  wn, where b  is a finite •J:-?-.M t>-,  Cc^seT.iently.. at 
2     cr 0*       cr 
pwall 

cf -♦ 0, the quantity w .-, also approaches zero. 

The equation of motion of a planar boundary layer in direct 

proximity to a wall has the form (since In this case w ~ 0}. 

At y < y1 <.< 6 T = ^L —^ and, in the first approximation, p = Pwai] 
Oy 

M = Kwall. wy = wwall.  Here for the quantity v.w&11 is understood the 

value of w at y = 0, 

Integrating (2.16) ive have 

dp , f O   4 "7 \ 

4x 

Correspondingly, the velocitj^ distribution 'n the nearest proximity 

of the wall is determined by the equation: 

mf-^»tCT-»--^-y-fp««c,«V (2.18) 

By reducing this equation  to  the  dimensionless  form and  taking 

into account  dependency  (1,10),   we have 

^ü_=:if#-_i_/_£^ L_/5 4-^2^^ (2.19) 
tfg      "•" a«»  V   2 v J*^    po«,    r 

v/he re 

the characteristic Reynolds number of the boundary layer, referred tc 

the wall temperature. 

The quantity 
*   *"   dw» (2.20) 

•u   dx 

-18- 
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can be considered as a measure "of aerodynamic curvature" of a stream- 

lined surface and Is called the form parameter. 

During streamlining of an Impenetrable surface wwall = 0 and 

Integration of equation (2.19) gives: 

•=*'=-iH^-?-5M- (2.21) 
The value of —g— Is finite for any Re numbers. The value of a). 

by definition lies between 0 and 1.  The coefficient of friction cf 

Is always Inversely proportional to the Re number In a degree, less 

than 1 (see, for Instance formula (3.24)). 

Taking Into account these circumstances and reducing equation 

(2.21) to the form: 

we note that at 
tie ~* (ys :( _, Q 

Thus, the thickness of the viscous underlayer decreases with 

growth of the Re number relatively faster than the thickness of the 

whole turbulent boundary layer. 

At f = 0 

at f * f  s 0, I.e., at the point of breakaway of the boundary layer, 

cf = 0 and 
f- — 

*#„, = ——-», [        ,.,  • (2.24) 

Since as the  critical Reynolds number of the viscous underlayer Is 

always finite  then at Re -* co,  OL -♦ 0. 

An analogous  result Is also obtained for a permeable plate.   I.e., 

In general: 
••'.l^-v-O. (2.25) 
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2,4,  Limiting Law of Re3istance 

At Re -♦ oo, 'JO. -» 0, ^ -♦ 0, p -* 0, and according V. /ormula [J.'LJ.) 

  i 

Let  us  expand the   f-unction  '•'   7 »/  Cf"   in  r?   rerln'   ly degrees   -rf 

the perturbation factor ana  let  UF  aes :p:rB.te   the   iiiun of  the  terms  "roiri 

1 = 2  to  1  = oc by A*.     Then in accordance  with form  (2.11) 

Z^^-rA* ^ '--J    • (2.27) 

The  quantity ZQ = 1  - ^Q»  which follows.   ' rom   (.•. U ),   If  in this 

equation are  Inserted p =  p^,   T = T0 and u.   = 1. 

Thus,   it  is possible   to write   that 

Z-l-.,,,,^«!) y   _C^L. (2.28) 

At Re-♦ oo a310-♦ 0, c,,0 -♦ 0,  Consequently, if the function Av at 

Re-♦ oo remains finite or approaxhes infinity more weekly than K rf- 

approaches zero, then there occurs the conaltion: 

2/fr..«--'. (2.29) 

Thus, during certain conditions there exist certain limiting laws 

of the relative influence of nonlsothermalness, compressibility, and 

other disturbing factors on the coefficient of friction in a turbulent 

boundary layer, determined by an integral of the form: 

--==^ = 1. (2.50) 

1/ i--^. ._!_ 
t   *        ?       r 

More detailed Information about the properties of the limiting 

relative laws of friction in a turbulent boundary layer can be obtained, 

if one considers in a sufficiently general form the connection between 

the length of the path of mixing l  and the coordinate y. Let us expand 

the function iA*' in a series by degrees of the coordinate |: 
o 

-on- 
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f... %,,-. (2.51) 

Experimental material shows that the quantity M can be considered 
1+1 as some universal constant,  but the sum of the terms ^i        is always 

finite,  although the coefficients H.  are also functions of the non- 

isothermalness, pressure gradient, transverse flow of the substance, 

and other disturbing factors. 

In particular, during diffusion flow of an Incompressible liquid 

on an impenetrable surface 

Prom experimental data it follows  (see chap.   III) that at  Re-► oo 

V- </. 
2 Int^* 

Introducing these relationships in (2.26) and expanding the func- 

tion r* in a series by degrees of £, we find that at He -► ao 

f   (t+*»;*>-7- 
Z^JLT^ ZÜÜL. (2.32) 

From the data,  given in chapter III,  it follows that on an 

impenetrable surface ^ -g? = 0 the relative thickness of the viscous 

underlayer is related to the Reynolds number by the relationship: 

C ^ JL 

In addition the values ij., ^—, IF always are finite. 
"L  5 

Putting this value at f., in formula (2,32), we find that in the 

considered case at He -► 00: 
T, »♦•      — 

liilBÄ»**-ln—i2-—1    1 
2-I li „1. 

In«»** 

In Chapter V it is shown that during diffusion flow (-^ > 0) of an 

isothermal boundary layer on an Impenetrable surface at the point of 
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breakaway of the boundary layer: 

Putting the value  ?.   In  (2.52),  we  find  that   at  *• -* cu 7 — 0,65. 

Thus,   in the general care  the  integral   y^..:,;   ...  equal  to o  certa: 

value Z ,  not being a  function ot   F-^/r.'1 In number. Ides  the param- 

eter Z_ is exactly equal to unit  or cl  ^  to  ii 

2.5.     Approximation  rf   nhe Tang.-r:tiai 
Stresses  Prol" 11 e 

From determination of a dynamic  boundary  layer   :i   finite   thicknes: 

we have the condition: 

5 = 0. r .-.x„;   | 

5 " l. '~V. (2.33) ^) 

From the condition of smoothness of the *"unction T(^} at the point i  = 

= 1 it follows that 

1J?' '  - 0 

In the  region i « 0 with accuracy up  to  small quantities  of the  second 

order equation  (2,17;   should be  satisfied. 

Conditions   (2.17),   (2.33;,  and   (2.3^)  are  satisfied  by  th.r  cubic 

parabola, 
x = 1 -^ -}- 2V + [\t -t A; «>> (I - If; (2.35) 

where 

/; (2.36) 

The first of these quantities is a certain modification of the 

form parameter.    The  second quantity characterizes the  influence  of the 

feeding or removal of a substance through the  surface  of a  streamlinea 

body.     We will call it  the parameter of wall pemieablity. 

Subsequently we will deal again with several modifications of the 

form parameter and permeability parameter. 

A = »        ftp 
te,         dx 

28 
c, I** 
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At  gradlant less streamlining of an impenetrable wall according 

to the given approximation: 

; = ;#=l-«« + 2;«. (2.38) 

Correspondingly 

4-= 14(A?+ *,•.)/(*). (2.59) 

where 

/(0-(26+i)-. 

The value of this function changes from 1 at | = 0 to -^ at £ = 1. 

To formula (2,59) corresponds the relation 

»-—• = 1^+(A, t+ *«)/(;). (2.40) 

where 

A-= — A*=—^r/i (2.41) 

2.6. Approximation of the Temperature Profiles 

Inasmuch as pressure across boundary layer does not change, then 

in accordance with (1.7) the density in equation (2.2) at a uniform 

boundary layer can be expressed by the density of an undisturbed flow 

by formula 

f=lb-^-. (2.45) 

Thus, for solution of equation (2.50) it is necessary to know the 

connection between the temperature and velocity fields. This relation 

was known previously only for the case of similarity of the velocity 

and inhibition temperature fields examined in section 1.5. 

For gases the Pr numbers are equal to or differ little from unity, 

i.e., one of the basic conditions of the existence of such similarity 

is always fulfilled. Therefore, it is possible to put dependency 
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(1,50)  In the base  of the unknown relation.    However,   IT,  1c necessary 

to give  It a form,   taking into  account  the  disturbance   of similarity. 

rtV,  . 

due to the independent effect of the Inhibition '^.haloy —;• at Pr f 
■ b 

? 1,   which  is  seen  from the  structure  of equal ion   (-..11). 

Let  us  take   the  r? l.+'l ■ :.r) :h[r 

rCT- rl 'V — . (2.44) 

vnere .. ^ 

^'•'J (2.45) 

The form of the functions e(C)  and r(^)»   ln general,   depends on the 

pressure gradient,  nonlsothermainess,   and mass   transfer. 

At  e = r = 1,   T"*" = T    aj'id equation   ,^. K,  transforms to   (1.50), 

i.e.,  there occurs  exact  similarity   :.i' oo..- velocity and  stagnation 

temperature fields. 

Let us require,   that  on  the  coundarlos  of  the thermal layer the 

quantity 
T Vl- 

(2.46) h_    T- 

satisfied  the  same  conditions as  the quantity 03 on the boundaries of 

a dynamic layer.     Then at y =  5.* = 1,   to which correspond the values 

= T
wall 

an<i T{i)  = r*     J-1"1 a turbulent boundary layer the quantity r 

has t.'ie  order Pr '^,   i.e.,  for gases close to unity.     Therefore,  with- 

out  appreclalbe  error it is possible to assume in all  sections of a 

thermal boundary layer r(|)  » r and 

The problem of the function e(^)  is considered in section 2.7. 

The value  of  the dynamic temperature  can be connected with the 

dimensionless velocity 
a». (2.48) 
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by the relationship 

where 

A* 
2 

Af«««. *t',T„ 

M = vtf 

(2,49) 

(2.50) 

is the Mach — Mayevskiy number,  referred to parameters outside the 
c 

boundary layer; k = -£ is the index of Poisson's adlabatic line. 
cv 

or 

From (2.44) and  (2.4?)  it follows that 

-^- = '{.-A^0-('i*-I).oS, (2.51) 

-i-=*-**€•-ft»-l),«'. (2.52) 

The quantity 
t=-*r (2.5?) 

is called the temperature factor; 

The quantity 

*• = -$--!+r-i-=±-Ar (2.54) 

is the kinetic temperature factor, determining the degree of aero- 

dynamic heating of a body; 

A^r^—^ (2.55) 

is the heat-transfer factor, since at A^ = 0 adiabatic streamlining 

of a body occurs; 

At A^ > 0 a body gives up heat to a flow, at A^ < 0 a body receives 

heat from a flow. 

2.7.  Coefficient of Nonsimilarlty of the 
Temperature and Velocity Fields 

The velocity and temperature fields in the nucleus of a turbulent 

boundary layer are well approximated by exponential formulas of the 

form: 

= (i-)*: (2-56) 

. = (-*-)'... 
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In flow regions,  not  cioae  to the point  of breaicawuy  of  the 

bouiiiary layer  (see chaps,   IV and V), both expun^ii . :.:ijaj.i.,   1 

the  profiles are  very complete. 

r'rom  (2.56)   it follows  that 

I   -    r-7 \ 

wnere 

Far from the poirt  of breakaway n '■■ n   ,   i.e.,.   taere  exists  p. 

relative  similarity of the  temperature and   vel   ,   üV fields,   expressed 

by the  formula 
0«e(i). (2,59) 

The  ratio £—  in a unifonn boundarv lay-^r  .]..   determined by formula 

'':.^1)  and equation  (2.51).     In additioiij   two cases at-,   rilstinguished: 

when the thickness  of the  dynamic boundary  layer Is less than  the 

r.hi'.-'-T-icns  of the  thermal  and when  ther^  is  an  Inverse  relationship. 

In the first case 5 < '-"',. and ihe ,:rjcess of heat transfer occurs 

li ■,■,r;•',• whole thickness of ths djnn.aju^c layer.. Correspondingly, in the 

■rhele   ^C-ori  0 < y <  6  formula   '2.52)   's  valid. 

In the second case   5  > 5.,   i.e.,   in the  region  &.   < y <  r,   heat 

transfer Is absent  and the temperature  is  detennlned by the  condition 
» 

TT  =   "onst.    Correspondingly,   in the  region 0  < y < 5^   formula   (2.52) 

is valid,   and in the region 5+ < y < 6 — formula 

_JL_^_(.i*._l) ,„•-•. (2.60) 

2,8.    Limiting Law of Heat Transfer 

In the nucleus of a planar turbulent boundary layer the heat flux 

along the normal to the streamlined  surface  is determined by formula 

f-9t=-^TlV&(l-3f), (2.61) 

where   ßt is a coefficient,   taking into account the influence  of density 
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pulsations on turbulent heat transfer. 

Analogously to (2,4) we can write that 

In the general case it / I,    From (2.57) -c follows that 
m     » — «f 

At c = const equation (2,61) is reduced to the form 

(2.63) 

where q = -SL 
^all* 

In a region, not close to the point of breakaway n « nt, and from 

(2.64) it follows that: 
i 

(2.65) 

where 

*' ''"iTW- (2.66) 

J '  l-P,   /t (2.6f ) 

Transition to a thermal boundary layer of finite thickness is 

carried out according to equation 

% «IT 

where ^ « «?—. 
t  5t 

In these equations SIQ is the value of the Stanton number for the 

conditions P =• PQ' ^x = 0' wwall = 0• 

The quantities $,, St», ß. and Z^ possess the properties of the 

quantities cu^, cf0, ß and Z, i.e,, at Re -♦ oo, StQ "* 0* *i "* 0>  ßt "* 0* 
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Z+ ^ i. 

Correspondingly,   at Re-* 03 equation  (2.65)  ai^.   -•   ^^n..i.i,iiig solutlor) 

of   ;.he   form: 

.   ((/ 

i 

t ' c .6v) 
3., ^ ' ' 

This equation  is  analogcui t.    eqju  ..   ii   . :\:-'')  ^cr t.^e  1 uniting law of 

resistance, 

2.9.     Approximation of  li.,   ;-:■ ■ f. x:u:<:  .i-Tofil«..^ 

From determination of  the  thermal   bt unuE;/y   _:^rer  of  finite  thick- 

r:es5j  we have  the  conditions: 

.  ..  the  condition of  smoothness  of  '.}-.■.   iunction ({t^)   «t the  point 

1   it  follows  that: 

?he thermal  conductivity equation near  the wall   (v; . ~ 0,  T - T   } 
.A 

h"   form: 

dy o ¥ 

Integrating (2.72), we find that in the neighborhood of the wall 

^=^0 MpTcr^r. (2.75) 

These  conditions are  satisfied hy the cubic parabola: 

Jr-. 1 _ 35; + 25? +*lT0(l    ;T)a. (2.74) 

Correspondingly 

*> 

?•=! - 35T
2 +2JT

3; (2.75^ 

,P
»-4- = ^ + *»6/(5T). (2.76) 

where 

*" = -&-; (2-77) 
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*'=-1&s (2.78) 

/(W-C^+ir1. (2.79) 

At cp / const the quantities blt and bt should be multiplied by 

Q 

the ratio -P a11, 
CP0 

At Pr = 1 and-^-^o 8 = 8f, 5=.5f and J«^ 
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CHAPTER       III 

LONGITUDINAL STREAMLINING   OF  ■   .   IMPEiiETRABLE   PLATE 

Definitions  of Cyrillic   Items   In Order   .-*'    'pec1 ranee 

CT = wall = wall 

Kp = cr  -  crLti?a] 

T =  t =  thermal,   :;iirbulent 

".. the chapter the streamlining  of      flat   plate  by  an unbounded 

of ga.s for tne conditions 

—•--- ='J and  r.T--const 

'vUdered. 

\  boundary layer for the variables w^ and T,,. ,-, is considered in 

er V. 

A large quantity of experiments confirms for the region i  < OA, 

■MI  logarithmic distribution of velocities in a well-developed tur- 

..il. isothermal boundary layer is expressed by the Prandtl-Nikuradze 

;:.ula: 

SP-5,5+2.5 Intj. (3.1) 

Here 

■ i- 

Tne last quantity is called the dynamic velocity. 
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vn'iff.'.y 

Formula (3.1) is not applicable at a large distance from the wall 

and because in it an unlimited increase in y leads to unlimited growth 

of w , whereas the latter quantity at y-► oo is equal to w0# Thus, 

this formula should be used within the framework of the theory of a 

boundary layer of finite thickness. 

Since in the region ?> 0.4 in a turbulent boundary layer on 

an impenetrable plate cu > 0.9, then the indicated circumstances do 

not introduce appreciable errors in the calculations of friction and 

heat transfer. 

In Pig. 3 is given a graph of 9(TI), also including data for the 

region of the viscous underlayer. Distribution of velocities in it 

is determined by the expression 

f-1. (5.2) 

which corresponds to formula (2.21) at f = 0. 

JO 

n 

I 

1 1 

r~ 

.•- 
• *c 

0*~' 
.•-, 

** 
' 

*    * 0     « t n \ »t. n «i k> ««i n jano SMO irnoo* 

Fig. 3. Universal velocity profile 
on a flat plate. 

Intersection of the lines, calculated by the formulas (3.1) and 

(5.2), gives the calculated thickness of the viscous underlayer in a 

two-layered diagram of Isothermal turbulent flow r\10  = 11.6. Dimen- 

sionless velocities on this boundary are equal to: 

f»-II.6; (5.5) 

•.0-11,6 l'-f^. 
Such a diagram, which nominally divides the stream into a viscous 

underlayer,  in which M- »  M-x and a turbulent nucleus,   in which p. « p.^, 
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turns out to be fully acceptable for calculations of friction.  It 

is also applicable for calculations of heat tranö.' ..-r for Pr * 1 

i.ir.bers.  At y = 6 w = w0, and from (J.l) It follows that 

wnere 

V 

Further,   we have 

v» (?•-) 

^--j-^h^^^/'f *■• ^ r 

«♦ 

(5.6) 

Putting the value of 5"  in (.3.^) Instia.    5, we will obtaLn 

!•:'.■ Law of resistance: 

1/-^—= 5,5-2,^ hi ^ 

,2.51/^- (5-7) V 
Calculations  show that  the quantity   In  (^.3  - 1£.5W~-^—) changes 

* » 
.<_:■,/ slightly in a wide range of vaxues of Re  and in practice 

•au of expression (j5.7)» it is possiule to use tne significantly 

convenient formula of T. Karman: 

C/*~      U.SlnRe** + 3.H}' W'®) 

From   (5.1)   it  follows   that 

P r, ^ e 

m.=o''"-i'f- (5.9) 

s"=''"(-^r).1= ,"4«^-1/^-)- (5.10) 

Ine  logarithmic velocity profile is an envelope of a family of expr - 

nential profiles 
9= Ayr. (5.11) 

For many calculations the use  of such an approximation of the velocity 

profile  is very convenient. 
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By putting in 0.11)  the values of wx = w0 and y = 5, we find 

that 

-2- = M Ret)^. (3.12) 

For the thickness of displacement and loss of momentum we obtain: 

i 

i 

1 + « * 

(l + ii)(I+2«) 
(3.15) 

A/ = ^- = l+2/,. 

From this the exponential law of resistance follows: 

Cfi^BRe**-*, 

where 

in 

(5.14) 

Ä=2>i"«"^ r imaiLLia ]>- 

m = 2« 
l + ii 

(3.15) 

For the thickness of the boundary layer and the relative thickness of 

the viscous underlayer we have: 

5lf=ll.6^(-^-)" 

The momentum equation takes the form: 

4x 2 

(3.16) 

(3.17) 

(3.18) 

or 

(3.19) 

Putting in (3.19) the value of c^. from (3.1^) and considering 

boundary layer,  developing turbulently from a certain cross section 

x,,«, we find that cr 
*€****-R^l * m = -LJ!L.B(tox-fiexup> (3.20) 

If x  « 0, i.e., the turbulent layer in practice starts at the 

leading edge of the plate. 
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Re*   =^-l^-ß^'r) 

to v/hich  corresponds  the value: 

f/., = H, Re, m 

1  !   'I 

f'''l 

.ti 

i   i m 

{Z.21) 

The values of the coefficients iT ■;..■ exponent le.l laws of resis- 

tance and the velocity distributions . -iven ii\  Table 3.1.     In the 

L.-inv.- place are also given certain other q'.ant 1 ; '• o.~ ensuing from these 

laws . 

Table 3.1.  V?.] "s. r 
f icients in For ,. ■ i i 
(5.14), (5.22) 

'■ ) 

• 1(7 i '■ 1   .- MW 

A 8.71 S,?.' lf'.6 11.5 
I  ** 

0.0975 0,0^9(1 0,(W18 r,07:: 

H 
m 
H 

I,:'- 
0.?50 
0.0252 

0.it576 

!.2.'. 
0.222 
0,0206 
0.182 
0,1.1'.!) 

1.22 
0.200 
0.0 90 
a.iö? 
.1,0362 

1.20 
0.182 
ü.0148 
0.154 
O.üyid 

I), practice in the region of Re  numbers < 10 ,   it is possible 

'i.:>o the formulas for the distributive law of velocities according 

the exponent n = 1/7. 

4    ♦*    6 In the region 10 < Re  < 10 the Faulkner formula gives good 

■ s u 11 s: 

0,0 = 0,0131^* (5.24) 

For a turbulent layer, developing from a cross section x = 0, the 

formula 
i 

£>-0,0263 ÄeJ 7 (5.25) 

corresponds to relationship (5.24),  In Pig. 4 is given a comparison 

of the given formulas with experimental data. 
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Fig. 4. Average coefficients of friction during isothermal stream- 
lining of a flat plate: 1) Blasius' law (laminar conditions); 2) 
the Prandtl law; 5) the Prandtl-Schlichting law; 5a) transition 
region; 4) the Schultz-Grunov law. Measurements by Wiselsberger, 
Hebers, Frude, Kempf, Schenger, 

3.2. Heat Transfer Coefficient for ^ — 1 

For polyatomic gases Pr * 1 and in the case considered the 

dependency (1.52) is fulfilled. 

Putting in it the value of c^ from (5.14) we have: 

5/,= Re **•■• (3-26) 

For a plate, on which dynamic and thermal boundary layers are 

developing from a cross section x = 0, the dependences 

Äi St. - — ^ Re. (3.27) 

or 

2 M»» = -^-Ä#i—' (3.28) 

correspond to the formula (5.26). 

For a region, in which we will apply distributive law of veloc- 

ities by the degree n « 1/7, B1 - 0.0576, and m^ - 0.20. Correspon- 

dingly, at Pr « 1 

AT«, = 0,0288 itö". (3.29) 
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In Fig. 5 are given the experimental data of B. S. Petukhov, 

A. A. Detlaf, and V. V. Kirillov on the local values of the Nusselt 

number during subsonic streamlinin ; '       Mupr'0,4 

*0*        I     3   4 5 6 /3  to*    2      J 

PI;      "■.     Local values  of NU 
a..   ..L^ subsonic  streamlining 

plate by air   (according 
.:.  the experiments  of B.   S. 
r'';--r ;khov):    O — w0  =  260 m/sec; 

^ .- y , s 24^ m/sec; 0 — w^ = 

rn/secj  x — w0 = lo8 m/sec; 

•. n =  162 m/sec;   ++ — WQ = 

ry.1 m/sec; 0 - w0 = 62.5 

v/sec; © — WQ =  42.5 m/sec; 

kv0 = 34.1 m/sec. 

of  i  .. — .t  by  .u '. . 

As  can  be  ;>.v•-'.;.,   introduction 
n   i 

of   ', i.   factor Pr puts  those 

data  on the  line  of formula  (3.29). 

'I^i;;   , Lrcumstance  is  confirmed by 

the  experiments  of Ernas,   Frank, 

et al. 

Therefor-', for gases it is 

posLU:.''1 vvitn great, accuracy to 

postuLate that 

Nut      ^   P^ReV"".      (3.30) 

to which corresponds the dependence 

St^-^-Pr-'^Re^'.      (3.31) 

At (dp/dx) = 0 and T^ = 

= const the energy equation takes 

the form: 

aR0J St (3.32) 

Putting in  (3.32)   fhe value of St0 

irom  (3.31),   we  find that for the   conditions examined: 

«« 
replacing,  according to this formula,  Bex in (3.31) by Ret  ,  we 

lind that 

St^JL-Pr M*1   m)'.fiev (5.34) 

Inasmuch,  as the experimental value of the exponent for the 

Prandtl number is  determined for m = 0.25,   and the number itself for 



I 

gases Is close to unity, it is possible to consider with a sufficient 

degree of accuracy that 

SL -0.75  ■» ••- Pr^Re, 

From,  formulas (3.53) and (5.14) it follows that 

Comparing formula (5.21) and (5.55) we find that 

(5.55) 

(5.56) 

(5.57) 

Consequently, according to formula (2.58) the nonsimilarity coef- 

ficient for the velocity and temperature fields for a plate, com- 

pletely covered by dynamic and thermal boundary layers, is equal to: 

.*/»/•-. (5.58) 

By this formula for air e * 0.97,  i.e., it differs little from unity. 

5.5. Law of Resistance for a Nonisothermal Boundary Layer 

Let us integrate equation (2.1.0) for the case of nonisothermal 

streamlining of a flat, impenetrable plate by an unbounded flow of 

gas. Assuming T = TQ and determining the ratio P/PQ by formulas 

(2.45), (2.52), and (2.59), i.e., for conditions of relative simil- 

arity of the temperature and velocity fields, we will calculate the 

right integral of the equation. 

For the case 5 < 5, we obtain: 

(♦•-DZ»^ arc sin 
2(f*-n4 <A; 

— arc tin 

y   4 i+»-i)(t+4+)+(tAi)« 

iW-Dmt + tW v. 
(5.59) 

In the case 5 > 6, 

JV^H-' 4<- 

/"  <|,_44»«.  (V»-- 1)«» 

4* 

*•-(+♦  !)«• 
(5.40) 

-IT 



where Cü^ is the dlmensionless velocity at the point y = 5.. 

For the relative similarity CD+ = e    ,  because at the point y = 

- ot* - 1. 

Carrying out the integration, we find that at B > 5. 
0 ^ 

»• = -..   '. ,   iarc sin Ü*'    '>'   ' +'**  a* - iuT arc si" 

+ tfc tin ■■/ r- >        arc sin  ,   r ^-1 f. 

It is necessary to consider that in formula (5.39) e < 1, and 

in formula (5.^1) e > 1. These formulas can be used not only for 

theoretical analysis, but also for the experimental determination of 

the functions Z and ü).. 

3.^.  Limiting Lav; of Resistance 

Assuming in formulas (3.39) and (3.:fl) ux, = 0 and Z = 1, we find 

that at Re -* oo: 

a) at e < 1 

— arc sin 

b) at e > 1 

(3.42) 

» = —Lp[.»c »in    '<r-l).-«t^l_ 

I'  ♦(♦• - !)(♦• + **)  («A+f 
(3.^3) 

Formulas  (3.42) and (3.43) express the limiting laws of friction 

for a nonisothermal turbulent boundary layer on an impenetrable plate. 

They do not contain empirical "constante of turbulence" and are not 

connected with any special type of semlemperical theories of turbulence. 
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The quantity cf0 In the limiting law is defined independent of 

the method of its derivation, i.e., can be defined both from special 

theoretical considerations (for instance, proceeding from any sort of 

semlemplrlcal theory of turbulence in Isothermal flow), and directly 

from experimental data. 

During adiabatic flow the limiting ratio cf/cf0 does not depend 

on the degree of nonslmilarlty of the temperature and velocity fields. 

This follows from formulas (2.52), (5.^2), and (5.45), which at /^ = 0 

give one and the same expression. 

(™ "" V-^} (3.if ill' I*: 

For V ~* lj i.e., for subsonic flows, we obtain: 

a) for e < 1 

[ TrwferH5 (3-45> 
b) for e > 1 

v = 
* 

c) for eel and V" ■■ 1 

The formulas obtained show that the quantity e affects the relative 

change of the friction coefficient due to nonlsothermalness the most 

noticeably during subsonic velocities. The degree of this Influence 

is seen from Table 5*2. 

It is interesting to note that the Influence of the nonslmilarlty 

of the velocity and temperature fields on the quantity f during 

cooling and heating of a gas is opposite and small. 

In the majority of practically important cases the ratio 5/5^ 

is located in the limits from 0.5 to 2, which allows one to assume 
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in the formulas for C^/C-Q the quantity e = 1. This circumstance 

essentially simplifies calculation of boundary layerc. 

Table 5.2. Values of (cf/cfo)Re*-* 
During Subsonic Velocities from the 
Limiting Formulas (3.^5) and (3.46) 

1 i        ! 
•'    4 s «.as   ti,5       i , < t 

• 0 4.00 3.00 0,50 0.33 0.25 0.25 
«.a O.Tl 2.65 2.35 ().«2 0.45 0.35 0.29 
0.5 O.90 I.R8 1.45 0.65 0.50 0.4: o.»5 
0.1 0.«7 t.oi 1.41 .».67 0.52 0.43 0.J7 
i l^ 1.78 1.38 0.69 0,54 0.45 0.38 
2 ■•i5 1,60 1.33 0.71 0.5« 0.47 0.43 
S 1.» 1.50 1.^9 0.75 0,«i3 0.54 0.49 

to 1.» 1.54 1.86 0.77 0.65 O.iS 0.54 
00 ai I 1 1 I 1 1 

1The quantity £ is defined by 
formula (2.58) at n = 1/7. 

During supersonic flow the influence of e decreases with the 

growth of f  ,   i.e., the number N.  In general,, the quantity e does 

not effect the limiting friction law during adiabatlc flow. 

In Fig. 6 is shown the dependence of ^ on ^ and A^, calculated 

by the formula: 

arc sin 
2(i» -l) + A'|< 

— arc aln 

I       4(4* - IM** + A4)-MAtf 

Tnis formula is from (5.^2) and (3.^3) at e = 1. 

W   J 

(3.48) 

As is seen, the function ^(V ; ^) has a complicated character. 

whereby the degree of influence of the heat transfer factor ^ 
« 

decreases with growth of the II number. The upper limit for ^ is 

determined In this case by the fact that at M * 8-10 a noticeable 

dissociation of the gas begins due to high temperatures, developed 

during inhibition of flow in the boundary layer. 

Cooling of a gas (A^ < 0) causes an increase of the resistance 
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of friction of flow against the wall; 

heating of a gas (A^ > 0) lowers this 

resistance. 

During subsonic flow V ■' 1 and, 

according to formula (3.^7), the ratio 
cf/cf0 a"t Kß "^ ^ depends only on the 

temperature factor ^. The solution Is 

asymmetric In relation to heating and 

cooling. During cooling of a gas the 

temperature factor f  cannot be less 

than zero, to which corresponds at 

e = 1 the limiting value Y *= 4. In the 

region of heating the growth of f  Is 

unlimited (If the problem of dissociation is excluded) and the 

quantity Y can vary from 1 to 0. 

In the neighborhood of ^ ■ 1 expansion of the right side of 
formula (3.47) gives 

19 \ 

V z^nnGrLaB?] 
'.0 AA// ̂  

S 

\^ 

y 
0,9 

0.« 
^ M S m^ 

f% 9 

^ 

^ ^ 

.,,,■.„.,, 

M* i. 
6 

Pig. 6. Dependence of IF on 
V* and ty  from the limiting 
formula 3.48 (r = 0.9). 

r=<rM = 
♦ + » (3.49) 

The quantity 
t+j = Tct* r, 
2     ar. 

is the dimensionless arlthmethlc mean temperature of the boundary 

layer. 

The dependences (3.49) satisfactorily approximate the exact 

solution of (3*47) in the practically important range of values of f 

from 0.5 to 3. 

3.5. Limiting Law of Heat Transfer 

If 6 < 6t, then in the region 0 < y < Ö distribution of the 

temperatures is determined by formula (2.51). In the region y > 6 
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CD = 1, i.e., at ö < y < 5t 

~—  -l + A^i! ft). (3.50) 

Besides the Integral 

(fr^-) 
/^« <^< 

following from (2.69) at q = q0 and p = Pn^"'  "breaks up into two: 

.iy?'ii • \« 
A^-W -»(7-)' 

(3.52) 
1 

+ f-    " .  - 

Putting in (5.51) the corresponding expressions for T/T0 and 

integrating, we obtain an expression for the limiting relationships 

of the Stanton numbers: 

a) for 5 < 5t(e < 1) 

"j = I I «fc sin —   
ll   i* — I   I / 'l*      I 

-r -~- (/ I + A+d-«)      l'     I ♦ A4    ]}!; 

b) for 5 > 5t(e > 1) 

v - r .    ^^ 

— arc sin (5.53) 

— are tlii 

(3.5^ 

During subsonic flows, when y    & lf the limiting relationship of 

the Stanton numbers. In general, does not depend on 
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The given analysis shows that during the majority of ratios of 

the thicknesses of the thermal and dynamic boundary layers met in 

practice in a region not close to the point of breakaway, it is pos- 

sible to assume: 

<•. = *• (5.56) 

3.6. Comparison of the Limiting Law of Resistance with 
fexperimental Data for supersonic Flow 

In Fig. 7 is given a comparison of calculations by the limiting 

formula (3.48) with experimental data, obtained at fairly large values 

of He , and mainly at very high velo- 

cities and intense heat transfer. 

Not only the qualitative, but also 

full satisfactory quantitative agreement 

of theory and experiment is clearly 

revealed. 

Thus, the limiting law of the 

relative change of resistance of friction 

with nonisothermalness1 sufficiently 

well describes real flows with finite 

0    tft  t.0 XO   40   Sfi tfi JO  9,0 90 

Fig. 7. Comparison of cal- 
culations bv the limiting 
formula (5.48) with experi- 
mental data for large fac- 
tors of heat transfer: 
O — experiments of Lobb, 
Winckler, and Persh; 9 — 
experiments of Sommer and 
Short. 

Be numbers. This result agrees well 

with the known experimental fact of the weak influence of the WB number 

on the ratio Cx/c-0. In this case it has an exclusively important 

value.s 

Indeed, the limiting formula (5.48) Is obtained from the general 

solution of (5.59) by means of conversion to limiting values of the 

1 Subsequently, for brevity, the term "limiting law of resistance" 
will be used. 

'Additional confirmation was obtained In the last work of Matting, 
Chapman, and Nyholm. 
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quantities Z and co., which depend on the Reynolds number.  But close 

agreement of the limiting ratios C^/C-Q with the corresponding ratios 

for fully finite Be numbers means that the joint Influence of the 

functions Z and cu^ is small.  Therefore, it is fully permissible, for 

calculation of the influence of the Re number on the relative change 

of the coefficient of friction due to the nonisothermalness of flow, 

to introduce in (5.59) the second known limiting value of these func- 

tions, corresponding to isothermal flow: 

(5.57) 

For a plate 910 « 11,6. 

With such a substitution we obtain the formula (at e < 1): 

I i- _ =rn arcsin—       T  
(*•- I) (1-8.2.1 <•/« n    T MV !)(♦• +Al) («A»! 

For adiabatic flow (A^ ■ 0) we have 

(3.58) 
arc sin 

r 

In Fig. 8 is given a comparison of a large number of experimental 

data with calculatlonB by formula (5.5Ö). Characteristics of the 

experiments are given In Table 5.5. Experimental data, obtained in 

the presence of heat transfer are reduced to adiabatic conditions by 

recalculation by formula (5.58). As can be seen, change of the Be 

number from Its smallest value, at which a turbulent boundary layer 

can still exist to Infinity leads to a change in the quantity T less 

than two times for M - 10. Essentially, the zone outlined by the 

.iiii. 



Flg. 8. Comparison of experimental data with 
formula (5.59) (designation see Table 3.5). 
Experimental data with heat transfer are re- 
duced to heat-Insulated conditions by equa- 
tion (5.58). 

theoretical dependences for Re  ■ ICr and Be  - oo embraces a zone 

of scattering of experimental points. 

A fairly distinct tendency toward subdividing the experimental 

data according to Be  numbers can be noted, which corresponds to 

theory. 

Appearance of certain groups of points 10-200 from the theoret- 

ical value hardly can be considered significant, bearing in mind 

the whole complexity of carrying out the experiments in supersonic 

streams. 

On the graph are placed also data on heat transfer. They are 

disposed together with data on aerodynamic drag. Thus« there is 

direct experimental confirmation of the validity of formula (5*36) 
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, 
for a boundary layer of a gas in the range of values e close to 1. 

Table 5,5. Parameters of Experiments, from 
Which the Graph Pig. 8 Is Constructed 

a) Turbulent friction on a plate 

Authors 

m GO 

Is, a>_aa 

m           • 
^ll. Conditions 

of experi- 
ment 

Method of deter- 
Bdnation of C 

i 
Twl i 

2.6 

2.6 

1.7 

6600 

10200 

4100 

1.0 

1,0 

Heat- 
insulated 
plate 

Direct measure» 
ment ivith the 
aid of a float 

Coles 0 3.T 4560 1.0 

m 4.5 2900 1.0 

4.5 3470 1.0 

0 4.5 SM0 1.0 

• 4.5 6590 1.0 

9 
• 

e 

8.99 

9.0» 

9.07 

1245 

10U7 

IflOO 

0.448 

0.460 

0.471 

Cooled wall 
of a coni- 
cal  nozzle 

tiy the velocity 
gradients or. 
the wall 

s 9.10 2287 0,495 

Hill 9 8.22 2<«l 0.493 

9 8.33 2498 0,497 

e 8.27 2885 0.500 

• •.29 32<)2 0.500 

e 8.29 3151 Q,W 

Korkegl 

♦ 
♦ 

5.7»»r 

5.77 

2477 

2780 

1.0 

1.0 

Heat. 
insulated 
plate 

Direct measure- 
ment with the 
aid of a float 

♦ 5.T« 3129 1.0 

_ ♦ 5.M6 4m» i.o 

<5 4.99 

5.01 

53S0 

6460 

0.169 

0,713 

Cooled wall 
of a plan* 
nozzle 

By velocity 
gradients or. 
the wall v* 

Lobb. 
Wnckler, 
Par* 

G 

5.03 

5.00 

6.83 

6.63 

[0.76 

7960 

7370 

8U0 

12610 

6100 

0.575 

0.535 

0.613 

0.S06 

0.513 

vi a the 
Reynolds' 
analogy by 
Beasurements 
of heat 
fluxes in th« 
Investigated 
Motion 

■S' U» 7900 0.157 

•    M» MI6 0.465 i 
1 1 

1 

-46- 



Table I .5a Continued 

Authors r m ff—nl   Condition« 
4.#.. f'mll 1     . ä-M . Method of 

determination 
of Cf ££ Wll nwnt 

o 1.5> 1.0 H«at- By change« of 

® 1.10 i.o Inaulatad 
plat« 

velocity pro- 
files and 

Wilson 9 
© 
0 

1.75 

1.83 

2.18 

l.o 
to 
1.0 

momentum 
equation 

9 0.51 1.0 Streamlin- Direct meaaure- 

O 0.81 1.0 ing of a 
heat- 

ment of mean 
value« 

Chapman, © 1.8» i.o insulated 
Kester cylinder 

€ 2.49 1.0 In the 
longitudl- e 2.85 1.0 rel direc- 
tion 

<» 8.36 i.o 

• 3.80 1.0 

0   2'S 
1.0 Streamlin- Direct measure- 

Llpnan, '•ü ing of a ment of local 
Davan 

f   1  1.28 
•      1.45 

1.0 heat- value« 
i.o 
1.0 

insulated 
Plate 

2.11 0,100 Shot by a Ely measurement« 
A 3.82 O.JNI hollo« of the velocity 

Sommer, 
Short | 

5.63 
6.90 

!'22 
0.176 
0.161 
0.103 

cylinder in 
a wind 

of flight of a 
model 

• 
3.78 
3.67 

0.272 
0,285 toward the 

flow 

Mo nah an . • 2.43 1.0 

♦ 2.55 | 1.0 By measurements of 
Rubesin velocity profiles 

Brinich • 3.06 1.« Cylindrical By velocity 
•urfae« profiles 

b) Turbulent heat exchange on plate 

Authors PclntsI      m. 
(Fi«.e)l 

Conditions of 
experiment 

Method of deter- 
mination of St 

Bred field, 
Coursin 9 ( 2.586 

1 8.1*0 
3.410 

Streamlining 
of a cone 

Measurement of heat 
transfer by a non- 
«teady state method 

Pappaa % 
1.823 
2.290 

Plate with 
uniform pre- 
heating 

By consuaption of 
electric power and 
wall temperature 
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Table 5.3t) Continued 
Authon Point» 

'Jig.e] 
M Conditions of 

experiment 
Meth.oti of Jtfter- 
minail on o-   St 

Shulberg 
2.00 
2> 
300 

Platt with 
uniform pre- 
heating 

Hy conaumpiion of 
htat trar.Pler by 

•>. r'.or.8'"a';,v 3' ate 
tj athuü 

Slack, 
Mills ^! 

2.5 
2.5 

Tata not sited 

3.7. Plate with Initial Adiabatlc Section 

A diagram of the problem is shown in Fig. 9, A dynamic turbulent 

boundary layer is developed from the leading edge of plate. On the 

section with length XQ heat transfer is absent. From section x = x0 

heat transfer begins between the plate and the gas. The forming 

thermal boundary layer is submerged in the dynamic layer, i.e., 5. < 

< 5. 

Fig. 9.  Plate with initial heat- 
insulated section (Pr = O.72). 

Assuming Br « 1, p = p0, ßt = 0, l^ = I,  q ■ q0, and 5 > 6.^ we 

bring equation (2.64) to the form: 

%«. = /»-—-• 
d» 

(3.60) 

On the other hand,  for these conditions it follows from (2.6)  that 

'-£-V-£:*• (5-61) 
Combining these equations and integrating, we obtain the dependence 
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From (5.6l) we have 

•    

(3.62) 

(3.63) 

Consequently, 

where 

-^-'-»-•»•) = «"•it (5.64) 

-^Hf-)'- (5.65) 

The dlmenslonless temperature difference In the viscous under- 

layer : 

•.. s -Y»- = j»^,M# ^/-i- 

l.e.. 

•.. = -£L^«... (5.66) 

Putting this value of *in In  (3.64), we find that at PJr ■ 1: 10 

^L = -L.. (3.67) 

In a first approximation, for n = 1/7 and Pr = 1, 

a*,    _    0.01» 
"^r ~ UP? : 

tf«»**   0.01» 

'ä».   Äf1^ 

(3.68) 

Let us Integrate the first of these equations, assuming that at 

x « x0 5. a 0. Let us Integrate the second equation, assuming that 

atx«05=0. As a result we obtain relationship for the thicknesses 

of the boundary layers: 
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Correspondingly, 

** =i * rv (5.70) 

As can be seen from Pig. 10, this formula Is well confirmed by expcr 

ment. 

v 

t ' 
—- 1 
  

— 

\ 
L 

\ 

i 

^f^ 

V        il        V        '.* O 

Fig, 10. Heat transfer to a 
plate with Initial heat- 
Insulated section:   cal- 
culation by equation (5.70); 
O — calculation by the equa- 
tion, describing the experi- 
ments of W. Reynolds, W. Kays, 
and S. Kline. 

Since in this case !•* « (öt/ö)R« , then 

51 = j» 

Mr 

or 
_J»_ _ / x-jr.. <fi** 

St., I *      I 

(5.71) 

(5.72) 

where 
M* 

A second approximation slightly refines this result. 

The correction for isothermalness can be calculated by the for- 

mulas given earlier upon substitution in them of the value: 

= [^(-7-7)7 (5.75) 
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Table 3.4. The Ratio Bt/Bt0 by 
Formula (3.72) 

1 U» in I.» i.n •         9        • 

• 
0 0,11 

1   1 
0.17 O.f 1 O.W O.fl V.9S   1 

For quasllsothermal conditions it is possible to assume: 

(3.74) 

Hence, for a plate with a completely turbulent boundary layer: 

Correspondingly, 

or 

(3.75) 

(3.76) 

(3.77) 

Here 

HH- 
4. 

(3.78) 

The function 9(X/XQ) is represented graphically in Fig. 11. 

At (x/x0) > 1.30 with an error not exceeding 8$, it is possible 

to assume: 

Nmt^lVWPrVRtf, (3.79) 

i.e., to calculate heat transfer by the usual formula with substitution 

in it of the true length of the heated section: 

X.srJC-JC,. (3.80) 
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>«■■■ -     4 

er 

c 

it     t.4     H     (t  /.« u§ 

Flg. 11. The funciion q>(x/x0) 

In formula (3.78). 

Formula (5.79) "aß offered by M. A. Mlkheev on the basis of 

treatment of the experimental date (Fie. 12). 

m,**'4 

Fig. 12. Comparison of experimental data 
for heat transfer to a plate with formula 
(3.79). Dotted lines —calculation of the 
initial laminar section. 
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3.8,    Solution of Equations of Momentum and Energy for 
a NoniBothermal Boundary layer for 

TwaU - conBt 

The analysis conducted showed that the difference In the thick- 

nesses of the dynamic and thermal boundary layers slightly affects 

the relative change of the coefficient of friction In connection with 

the nonlsothermalness of the flow. This Important result allows In a 

majority of the practically Interesting cases to assume In the expres- 

sion for T the quantity e ■ 1. 

Just as Important Is the fact of the weak Influence on the f 

Reynolds number. The latter allows Introduction In the equations of 

momentum and energy the quantity f, referred to the B*  number, aver- 

age In the considered section, or simply the limiting law, strictly 

self-simulating relative to the Be number. 

Both these circumstances are the result of the small value of 

the exponent In formula (3.11)# I.e., high population of the velocity 

profiles In turbulent flow. 

Let us consider nonlsothermal turbulent layers, developing from 

the leading edge of a plate at T « const. We have 

,*,   Ti^ (5.81) 

-££-=••.*,. . (3,82) 

Introducing In these expressions the values of cf0 and §t0  and carrying 
##    #♦ 

out integration for the conditions f - const, x - 0, !•  - M»t   - 0 

we obtain 

hH..=(-E-k = r7^ (3-83) 
Thus, the ratio of the coefficients of friction and heat transfer 

for Identical values of Re numbers more weakly depends on the  non- 

isothermalness than for identical values of la  and Rat . 
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In Pig. 13 is given a comparison of calculations by the theoret- 

leal formulas (5.58)-(5.85) with calculations according to a method, 

based on the »emleipplrlcal Prandtl-Karman tneory. At the same place 

are placed experimental points. The known fact tnat, at large M 

numbers and Intense heat transfer, the contemporary semlemplrlcal 

theory does not give satiafacwory results. Is clearly confirmed. 

Fig. 13. Comparison of experimental 
data with calculations by various 
methods: 1) Van Driest's method; 2) 
by formula (3.83); # - experiments 
of Sommer and Short. 

• 
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CHAPTER      IV 

LONGITUDINAL STREAMLINING OP A PERMEABLE PLATE 

Definltiona of Cyrillic Items in 
Order of Appearance 

CT    = wall ■ wall 

Kp ■ cr - critical 

T  ■ t ■ thermal« turbulent 

M3Ji - rad ■ radiated, radiation 

OTR ■ rel ■ ralatlon, relative 

4,1, Formulation of the Problem 

The problem of calculation of a boundary layer on a surface, 

penetrated by a flow of substance, has an extraordinarily important 

significance. Such processes arise during protection of parts of 

machines from the influence of high-temperature gas streams (so-called 

"porous cooling" of blades of gas turbintj, the enclosing surfaces of 

combustion chambers, and so forth) during evaporation and condensation, 

the presence of chemical reactionr 1* the flow and at the wall, hard- 

ening of a liquid, and fusing of solicta. 

Below is considered a turbulent boundary layer of a gas on a 

surface permeable at all points. If gas is injected into a boundary 

layer or is pulled from It, then the number of openings in the wall is 
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great» and their dlaenslone are small. Therefore, the temperature of 

the penetrating gaa should be equal to the wall temperature. A 

diagram of the flow problem is shown in Fig* 14. 

Mas? velocity of a stretr 

of gas Intersecting a wall, 

T I f f IT f T T MM 11 M II Jt**h*t' (4,1) 

Fig. 14« Diagram of a Boundary Layer       Inside the boundary lay • 
on a Permeable Plate« 

this flow causes an additlona 

component of the velocity vector w and gradually it is dispersed so 
y 

that at the wall J^ ■ Pwaiiwwaii» ^d in the region y « 6 transverse 
flow of the injected substance is equal to zero. 

Transverse flow of the substance causes the turbulent viscous 

underlayer. This circumstance favors application of the method of 

conversion to the limiting laws of friction and heat transfer, corre- 

sponding to Is ^ oo. 

In connection with the above further research is built on the 

basis of equation (2.30). 

Distribution of tangential stresses is determined by formula 

(2.40) at A « 0. 

We have 

Jv am  _ . 
~ = 1' (4.2) 

|V+ »-/«» f 

This integral has a finite value, i.e., growth of the integrand 

should be limited. Since the quantities ou and f(|) lie in the interval 

from 0 to 1, then changes of the integrand in this case are connected 

with the change of the permeability factor b. During injection of a 

gas through the wall into the boundary layer the quantity b is positive. 

Consequently, there should exist some limiting value of the permeability 
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factor b - b . at which the value of f turns out to be equal to zero. 

This phenomenon can be Identified with separation of the boundary layer 

fron the streamlined surface.l 

The critical value of the permeability factor will be determined 

by equation 

*• = 

which ensues from (4.2) at f • 0. 

Subsequently, we will be limited by solutions of equations (4.2) 

and (4.3) In an approximation, corresponding to the conditions f(C) ■ 
- 1 and e « 1. 

Theoretical calculations, and the principal comparlslon with 

experimental data, show the full acceptability of these conditions for 

the majority of practically Important cases. 

Putting In (2.69) the value of f, • -£- from formula (2.76), we 

obtain an expression for the limiting law of heat transfer on a 

permeable surface: 
i 

|/  ir.-MM/uw-J 
'*       °'- (4.4) 

Since t(it)  - t{i)>  then solution of equations (4.2) and (4.4) 

at e = 1 have the same form. I.e., 

»•«(♦.I = *(*). (4.5) 

The gas Introduced through the wall can differ from the substance 

of the main flow; therefore, we will distinguish uniform and nonunlform 

1For greater detail see Chap, V, 

-57- 



«•MMMMMW>. HMi in——^M—ntri'-*—'Jffr—^- 

boundary layer«#    A nonunlfoxm boundary layer appears during Injection 

of a gas, differing from the gas of the main flow.    In this case the 

boundary layer consists of a mixture of gases, whereby at the wall the 

concentration of injected gas has the largest value, but at the external 

boundary of the layer is equal to zero, 

4.2.  Law of Resistance for a Uniform, 
Isothermal Boundary Layer 

Assuming in equations (4.2) and (4,3)   p = PQ and f(^)  ■ 1, we find 

that 

(4.7) 

Correspondingly, formula (4.6) can be written in the form: 

, = (,--£.)•. ('U8) 

As will be shown below, this simple formula possesses great universal- 

ity. 

The moment in equation for gradientless streamlining of a permeable 

plate has the form: 

.i»^_ _ JaJfe. = _a_ (4.9) 
** M«>     3 

or 

-1^-.-.(♦+V)^_. (4.10) 

Let us integrate equation (4.10), assuming that the turbulent 

boundary layer is developed from the leading edge of plate. 

For the case of b « const we obtain: 

H^*^'•>-"' (4.11) 
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When the quantity f is determined by (4.6), 

Here m Is the exponent In formula (5.14), 

At m - 0.25 and b,,. = 4, from (4.12)  It follows that 

(4.12) 

(4.15) 

For the case   wal1 wal1 = const the solution obtained Is very 
Powo 

awkward« but at m = 0.25 is well approximated by formula 

f-^-L = (I -0.25*)«(l +0.25* «. (4.14) 

Formulas  (4,15) and (4.14) agree with an error, not exceeding 2& 
cf 

In Fig. 15 Is given a comparison of the values of -=—, compared 
cf0 

for Identical values of Re** and Rex.   The corresponding curves are 

In Fig.  16 Is shown a comparison of the 

theoretical formula with experimental data. 

It Is possible to ascertain full satisfaction 

of theory. 

Due to the large slope of the relation 

Y(b)  In the pre-breakaway region, experi- 

mental determination of the point of 

breakaway Is Inaccurate. 

In practice In experiments the condition 

of breakaway of the boundary layer for the 

case considered can be fixed already at 

values of b of the order of 3, 

& §fi       *fi       4fi 

Pig. 15. Dependence 
of the coefficient of 
friction on the 
permeability factor: 

cf 
1) -i- for He** = Idem; 

qf0 
cf 

2) rr-   for Re 
; cf0     2 

Idem. 
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• ••■• » - «..^»-•■.^/JIW?-»- - ^ 

I«    i 

Fig,  16, Comparison of calculations by formula 
(4,14) with the experiments of Hacker, Mlcfcley, 
Pappas,  and Okuno. 

1 
O — experiments of Hacker      -O— experiments of 

ßo)S Mickley (t> 
® — experiments of Mickley 

(cfo)' 

— experiments of 
Pappas and Okuno, 

Since the quadratic term In formula (4,8) begins noticeably to 

have an effect only In the range of values of the permeability 

parameter, close to the critical, then for b, not very close to 

cr* 

T*!  2 (4.15) 

The linear relation between the quantities IF and b was notea by several 

experimenters and Is well explained by the theory expounded. At 

bcr « 4 and b « bcr 

V^I-0.5 6. (4,16) 
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4.3, Law of Heat Transfer for a Uniform, 
Quasllsothermal Boundary Layer 

For small temperature differences, when ty ** 1,  the physical 

properties of a gas In a boundary layer can be considered constant. 

By formulas (4,5) and (4,8) the limiting law of heat transfer for 

a quasllsothermal boundary layer at a permeable wall has the form: 

In addition: 

*r. «P = V (4.18) 

In the presence of relative similarity of the velocity and 

tenperature fields It Is possible to apply formulas (3.36) and (3,37). 

Then 
_•_ 

' (4,19) 

During development of both boundary layers from the leading edge 

of the plate condition (3.38)  Is fulfilled,  and 

t'^bPr". (4,20) 

4,4. Calculation of Cooling 

Usually In the calculation of a boundary layer on a cooled wall 

distribution of the temperature Twaii(
x) and the Initial temperature 

of the liquid coolant T^ are assigned. It Is necessary to determine 

the flow rate of this liquid through each cross section of the 

protected surface. 

The quantity of heat, transmitted by the main flow to the wall, 

in a given section Is 

^CT =a (7» ^") - VMW (4,21) 

where qrad is the heat flow due to radiation. 



Let U6 assume that part of this heat q. Is transmitted through 

the waliU not In connection with Introduction through It^ of the cooling 

medium (for Instance, by means of thermal conduction through 

structural metal). Then the quantity of heat, which the cooling 

medium should receive Is: 

^«y«-Vi -gWi(r"" ^ (4.22) 

where J., ■ p1w1 Is the flow of the mass of cooling medium through the 

wall. Combining these equations, we find that 

i 

where 

1      flfM ~ ¥l 

On the other hand, for f we have the dependence (4.17). Combining s 

equations (4,17) and (4,23) and solving them relative to the value of 

the thermal permeability factor of the wall, we obtain the value 

t--' -'H    \ -M-Hl- (4.24) 

where 

At 

/f = 0 *f = ^. when/f>0 »,<*, up 

4,5, Laws of Resistance and Heat Transfer for a 
Uniform, Nonlsothermal, Subsonic Boundary Layer 

In a uniform subsonic boundary layer of a gas e = 1 according 

to formula (2,52) 
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«♦-^-D-. (^.25) 

Putting this value of -~ In equation (4.2) and solving It at 

f(C) - 1, we find that: 

a) at V < 1 

4       fin   ^   C-W+M     +1   *.    f. 
(14*.   [ /|_+ +|/ »^ J (4.26) 

b) at ^ > 1 

*=rah ^ /irr^Tö-- - ^ /^il • (4.27) 

At ^ = 1 we have formula (4.6), 

Correspondingly, the critical value of the parameter of 

permeability of the walls, calculated by equation (4.3) upon substl- 
Pn 

tutlon In It of the value of — from (4.25) and f($) « 1, are determined 

by the formulas: 

a) at ^ <'l 

'-M'^^-)'- (4.28) 

b) at ^ > 1 

^=^r(-co.^-)'. (4.29) 

Table 4.1. Values of brtV. by formulas 
(4.28) and (4.29).    cr 

♦ 0.» «JO 0.75 l MB 4M 

»or 9.4 6.2 4.8 4 2.5 1,4 

2.3 3.1 3.6 4 5.0 5,7 
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The relation "b (^) Is shown graphically in Fig. 17, cr 

#41 * \ 
fO' 

MM* \ Iß 

*ß 

t/t . 

\ L   

\ 

»M. 
"  

rrrr—-   

— 
V 

41 t« V ifi 2.S 3.0 

Tc 
40 

% 

Fig,  17.     Influence of heat transfer on the 
parameter of breakaway h      for a uniform 
boundary layer. cr calcuiation by 
equation (4.28) for the case V < 1 and by 
equation (4.29) for the case ^ > 1. 

It is interesting to note that in the region f > 1  the critical 

relationship of velocities changes significantly weaker than the 

critical relationship of mass flow rates. In the region f < 1 both 

parameters change almost equally, although there is observed a 

(Wwall\ 
 1 . 
w0  /cr 

For engineering practice the case i'  < 1 has the greatest 

significance since in this case introduction of a substance through 

the wall into the boundary layer protects the streamlined body from 

the thermal Influence of the main flow of gas. 

In Fig. 18 is given a comparison of calculations by formulas 

(4,26) and (4,27) with calculations by formula 

-A^-l (4.30) 
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As can be seen, this simple combination of formulas (3.47) and 

(4,8) well approximates the exact solution. 

Fig, 18, Comparison of calculations by 
formulas (4,26) and (4,27) with formula (4,30) 
during determination of b  by formulas (4.28) 
and (4,29). cr 

Calculation by aquation 

(tM) «.»») 

4-          0L5 
Designation  Q 

0.4 
d 0*6 

0.8 
0 

2 
0 

4 
0 

s 

In Fig, 19 is given a comparison of calculations by formula (4,30) 

for heat transfer on a plate and in the inlet section of a pipe with 

experimental data. In spite of a significant scattering of the 

experimental points, they are grouped in a mass around a theoretical 

line. 
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Flg. 19. Influence of injection of a gas on 
convectlve heat transfer,  calculation 
by equation (4,50), A — experiments of Mickley 
(plate); experiments of Friedman (pipe). 

9*0. W-i U U.S Ü.25 nj ■i.r, I.SS o.; 1.90 ujr» li,(n 

'Designation . r'< r--. 1 

T 
6) + • 1 - 

4,6, Law of Resistance for a Nonuniform, 
Isothermal Boundary Layer 

During supply through a wall into a boundary layer of a foreign 

gas the process of diffusion arises. The partial density of the 

injected gas is changed from the value pwall on a streamlined surface 

to zero In the region y = 5D, where 5D is the thickness of the diffusio? 

boundary layer. The field of concentrations can be connected with the 

velocity field by a formula of the type (2,44), For the flow, not 

close to the point of breakaway, it is possible to assume the relation1 

(4,31) 
fct 

1In the general case, for instance, during evaporation of water in 
humid air, PQ ^ 0 and in the denominator of (4,31) one should write the 
difference Pv&11  - P0. 
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where 

t D =HH- {t.JS) 

Since In gases the diffusion Prandtl number is close to unity, 

then all the conclusions, made in chapters II and III about the weak 

influence of the degree of nonslmilarity of the temperature and velocity 

fields on the relative changes of the coefficients of friction and 

heat transfer, are also valid for the process of diffusion. Therefore, 

for a plate it is possible to consider the limiting law of friction, 

assuming en « e « i. 

The gas constant of the mixture is connected with the density of 

the mixture and partial density of the injected gas p1 by a known 

relationship: 

*    -    f    t  *        «N . . 

Here R, R», R0 are, respectively, the gas constants of the mixture, 

injected gas, and basic gas. 

On the other hand, the density of the mixture p is connected with 

the density of basic gas outside the boundary layer p0 by the equation:
1 

*T, (4.34) 

i.e.,  under isothermal conditions 
_JE    ft* 

H   ~~*" (4.35) 

Combining formulas (4.31), (4.33), and (4.35), we find that at e = 1 

and T = const 

+ (,--M"- (4.36) 

Since in the boundary layer J2- = o. 
y 
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Introducing this value of £- In equation (4.2), we find that: 

a) at R1 > R0 (IS Injected with a small molecular weight ji' < |i0) 

b) at R1 < R0 (gas Is Injected with a large molecular weight 

H' > H0) 

xh- ySpE. .relg /J^EJ1. (4.58) 

where 

♦' = -£- (4.59) 

Is a quantity to a certain degree analogous to the temperature factor 

In a uniform flow of gas, obeying the Clapeyron-Mendeleev 

equation &. = f. 

Definition of the parameter tp*  depends on the method of supply of 

the foreign gas to the boundary layer. 

If a gas Is Introduced through a porous wall, then the flow of 

substance Is 

A = ^-.-^(-^-)IT. (*•«)) 

where D I^TTT    1S the diffusion coefficient. 

From (4.51)  It follows that: 
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On the other hand« 

Hence, 

where PrD ■ «• Is the diffusion Prandtl number. 

From these equations It follows that at PrD * eD w 1 

Taking Into account  (4.35)* we determine the quantity 

(4.44) 

In Fig. 20 Is given a comparison of calculations by formulas 

(4.37), (4.38), (4.45) with experimental data. The theory well 

describes the results of the experiments with such heterogeneous pairs 

of media, as helium-air and freon-12-alr. 

At b = b  separation of the boundary layer occurs and the surface 

of the wall Is covered by a film of Injected gas. Thus, In this case 

Pwall * Pwall and for the c01"11^011 T " const 

Putting this expression In equation (4.3) and carrying out 

Integration at f(£) =1, we find that, 

a) at R» > R0 
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b) at R» < R, 

^ = 

[■ 
If 

VJ 
arc cot (2 

-l (4.48) 

Prom formula (4.47) It follows that at ^y-* 0 bcr -* 1, 

■MjS^© 

«•• •   T°w^ft 
db0*^.^^^^^^ «#• \ %L* 

N.           0% 

tö *.o <c 

Pig, 20,  Influence of injection of a foreign 
gas on the coefficient of friction on a plate, 
— — calculations by equations (4,6) — (air-air), 
(4,37) - (helium-air), and (4.58) - (Preon-12-alr), 
O — experiments of Hacker (air-air), 9 — experiments 
of Mickley (air-air). Experiments of Pappas and 
Okuno: O — air-air, 9 — helium-air, 9 — Preon-12-alr, 

In Pig, 21 is shown the dependence of the critical value of the 

parameter of wall permeability on the relation of the molecular 

weights of the injected gas and basic flow. 

In Pig, 22 is given a comparison of the experimental data with 

calculation by formula (4,12) during determination of the quantity b 

by formulas (4,47) and (4.48). 

In that case, when the streamlined surface is covered by a film of 

cr 
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Fig.   21.     Dependence of the 
critical parameter of injection 
b      on the ratio of the molecular cr 
weights (Y = 1): a) l)r— "by 
equation (4.47), 2)—"by the 
equation , 

*„ =1+3-2-; 

b)—by equation (4.48). In the 

range of ^— from 1 to 10 is the 

linear approximation is valid: 

liquid and evaporation occurs, the 

value of the density oi' the mix- 

ture at the wall is determined 

by the total pressure and partial 

pressure of the volatile liquid. 

The latter with a great degree of 

accuracy is equal to the saturated 

pressure at the evaporation 

temperature. In addition: 

♦• = 

-(-M4 • (4.49) 

where p0 is the pressure outside 

the boundary layer. 

For quaslisothermal condi- 

tions, when ^ w i, 

I ♦.= 

-(■»^ ' 
(4.50) 

*.p - 1,4' T 2.53 ■£- . 

It is also possible to use 

these formulas for calculation of 

heat transfer during quaslisother- 

mal conditions with replacement of the factor b by the factor 

>.= (^.51) 
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Flg. 22, Comparison of exper- 
imental data with formula (4.12), 
O — experiments of Hacker, (& — 
experiments of Mlckley. Exper- 
iments of Pappas and Okuno; CD — 
alr-alr, 9 — hellum-alr, Q — 
Freon-12-alr, 

4.7. Law of Resistance for 
a Nonuniform, Nonisothermal, 

Subsonic Boundary Layer 

During nonisothermal flow 

the intensity of the process of 

diffusion is more correctly 

determined by the difference of 

partial pressures. Let us assume 

that the following condition is 

fulfilled1 

p' 

ret 

which at T = const coincides with (4,51). 

Taking into account (4,53)* we obtain: 

••». (^.52) 

p 4 (i - «o 
(^.55) 

At the wall 

^=-f['-4('-^)l- (4.54) 

Hence, 

7-=-Hl-('-l)"-4 (4.55) 

Determining the temperature by formula (2.52) at #* = 1 and 

^^In the more general case in the denominator one should write the 
difference Piall - PQ« 
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e « 1, we have 

t -. ±±±t 
h ♦ + (i-*)-                  (4.56) 

In these formulas the factor f.  is defined by (4.39).  Introducing 

this value of £— In (4.2) and (4.3) and assuming f(£) = 1, we obtain 
PQ 

the equation: 

V f   I^ Ml »H (» + ».■•) 
(4.57) 

>AW^ -^),.,| (4.58) 

During derivation of equation (4.58) It Is taken Into account 
R* 

that at the point of breakaway pwall = PtL-n 
and r^ = V's—• 

In Fig, 23 are given the results of the numerical solution of 

R, equation (4,58) In the range of values of §- from 0.1 to 1.0 and 
'0 

values of f  from 0.2 to 2.0, Along the axis of ordlnates on the graph 
R' Is placed the ratio of the quantity b  at given values of V and w— 

to the quantity b  at the same value of V and S— = 1 (l,e, b . Is 

calculated by formula (4,28) at ^ < 1 and by formula (4,29) at V > 1). 

These results are shown the graph by the points. The line given by 

these points Is described by the formulas; 

at M.' > Mv "0 

^^(0.37 + 0.67-^-); (4#59) 

at li' < PL0 

u« N (4.60) 



i 

In these and the other formulas 

p.1 Is the molecular weight of 

Injected gas and M,Q the molecular 

weight of the gas of the basic flow, 

For the case p,' « HQ the Integral 

(4.58) is substantially simplified 

and for h we have the formula: cr 

'«p 

-^-o   (/T+i) "   (4-61) 
»Hi 

fO   ^ 4«   40   40   40   ^    4040   re 

Fig, 4« 23. Dependence of the 
critical parameter of injection 
the ratio of the molecular 
weights and the temperature 
factor. Thus, the temperature factor affects 

"b  in approximately the same manner 

as It does the coefficient of friction during streamlining of an 

Impenetrable plate. 

In Pig, 24 are given the results of the numerical solution of 

equation (4,57). Along the axis of ordlnates is placed the ratio of 

^ (for given values of f  and ft— ) to Y, calculated by formula (5.55). 

Along the abscissa Is placed the ratio of b to b , calculated by 

equation (4,58), Curve 1 corresponds to formula (4,8). 

As can be seen, the exact calculation for the case of injection 

of freon-12 in a flow of air is near the approximate formula (4.50). 

In any case the divergences are of the same order as with the 

experimental data in Fig. 22, Exact calculation for the case of helium 

injection in a flow of air confirms satlsfactoriness of the approxi- 

mation of the influence of the temperature factor f,  but deviates 

more significantly from approximation of the influence of the factor 

b . 

cr 
From the data of Fig, 22 on the injection helium into air, it 
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Fig.  24.    Solution of equation (4.57).    1) 
calculation by equation (4.8);  2,  5} by 
experimental points. 

Is clear that this divergence decreases upon transition to a 

calculation by Re . 

Considering this circumstance, and also the absence of experi- 

mental data for a nonlsothermal nonunlform boundary layer.  In a 

first approximation It Is possible to assume the approximate relation 

(4.50). 
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CHAPTER  V 

STREAMLINING OF A CURVED SURFACE 

Definitions of Cyrillic Items In Order of Appearance 

CT = wall = wall 

Kp = cr = critical 

T = t = thermal, turbulent 

5.1 Limiting Parameters of Breakaway of an Isothermal 
Boundary Layer on an Impenetraole Surface~~~ 

During streamlining of a curved surface the flow velocity on the 

external boundary of a dynamic boundary layer changes along the stream- 

lined contour and, consequently, -*£> ^ 0. 

Nozzle flow Is distinguished, when -?£• < 0, and divergent, when 

^>0. dx 

During nozzle flow, the stream Is accelerated, the direction of 

motion of the liquid coincides with the direction of the pressure force, 

and the boundary layer is always stable in the sense that it is not 

detached from the streamlined surface. 

During diffusion flow the stream is slowed down, pressure increases, 

and its action is directed toward the motion of the liquid. 

The pressure gradient in the boundary layer is determined by 

formula (1.10), i.e., a change of pressure occurs in strict conformity 

with a change of veolclty WQ, 
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Inside the dynamic boundary layer flow Is Inhibited by friction 

and w < w0. Therefore, the reserve of the kinetic energy of flow Inside 

the boundary layer Is Insufficient for full surmounting of the action 

of the field of pressures directed toward It. As a result a positive 

pressure gradient evokes Inside the boundary layer Inhibition, and then 

stopping and reverse of the current of liquid near a streamlined body. 

This phenomenon Is called separation of tht boundary layer. 

Beyond the point of breakaway a vortex motion of the liquid appears, 

accompanied by sharp growth of the resistance of pressure and still not 

yielding to theoretical calculation. 

Schematically the sequence of 

deformations of the velocity profile 

In the region of divergent flow Is 

Fig. 25. Diagram of deforma-     shown In Fig. 25. 
tlons of the velocity profile 
during flow of a boundary Inasmuch as separation of the 
layer with a pressure gradient, 

boundary layer Is characterized by 

conversion of the flow In direct proximity to the wall. I.e., there, 

where the flow Is the most Inhibited, then the point of breakaway Is 

determined by the condition 

Correspondingly, at the point of breakaway c- = 0. 

Actually, separation of the boundary layer does not occur at any 

exactly fixed point, but embraces a certain finite domain. In this 

region the velocity profiles are deformed from the mlmimum stable form 

to a form, corresponding to condition (5.1). In addition, pulsations 

are possible, accompanied by oscillations of the point of breakaway 

within the limits of a certain region Ax. 

Measurements, conducted by many researchers, show that during 
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nozzle flow the velocity profiles are more populated, and during dif- 

fusion flow are less populated than the velocity profile for the  case 

dx      ^ 
For the point of breakaway of an isothermal boundary layer at an 

impenetrable wall we have the condition: 

U>--0; prrp.,, 1-0; y.-^O;. (5.2) 

Putting in equation (2.5) the value of the considered quantities, we 

obtain the equation, determining the velocity profiles at the point of 

breakaway of an isothermal turbulent boundary layer at an impenetrable 

wall: 

The Index "cr" indicates that the corresponding quantities are 

referred to a cross section, in which separation of the boundary layer 

appears. 

Distribution of the tangential stresses across the boundary layer 

at an impenetrable wall in a sufficiently general form it is possible 

to write: 

'«~ = f.(5) + A?91(5). (5.4) 

During approximation by a cubic parabola in accoradance with 

(2.35) 

fl(*) = (l.-5(«.    j (5.5) 

and, taking into account that the form parameter A is determined by 

formula (2,56) and at the point of breakaway T ,, = 0, we have 

■^=■^■-^6MH-/^0J?■(S,• (5.6) 

where f = -—- * -r— is the form parameter, not related to the quantity 
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Putting the value of T^ In (5.3)* we find that 

(5.7) 

cr 
i 

. / , i v.. r 
u) = a». 

Assuming in (5.7) ^ = 1 and, correspondingly, the upper limit in 

the right integral to equal 1, we find that 

(-'•H-r i  "•"—T      (5-8) r—:—'-'•"     T 

Thus, if the Integrand and lower limits of integration in equa- 

tions (5.7) and (5.8) are known, then the breakaway velocity profile 

in the turbulent nucleus of a boundary layer and the critical values 

6** 
of the parameters f, —5—, and H, are calculated, i.e., all the quanti- 

ties, characterizing the phenomenon of breakaway. 

Equations (5.7) and (5.8) can be solved, if we accept the assump- 

tion of the conservation of the dependence of the length of the path 

of mixing I on the form parameter f and we approximate tangential 

stresses profile by a cubic parabola. 

Both of these assumptions always can be considered as a first 

approximation of the real distributive laws of the quantities I  and 1 

in the critical cro s section, and in any case they do not emerge within 

the framework of assumptions, accepted in the contemporary semiempirical 

theories of a turbulent boundary layer. 

Any further more precise definitions of these dependencies can be 

easily considered by the corresponding change of integrands in equations 

(5.7) and (5.8). - 

Regarding the lower limits of integration, i.e., OJ^ cr and i*       , 

then for their determination in the general case knowledge of the law 

of stability of the viscous underlayer is necessary. 
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At Re -♦ CD ^ -► 0, (HA -* 0,  and the critical parameters of the break- 

away of the isothermal turbulent boundary layer at an impenetrable wall 

are determined by equations: 

JH-VjgL^ (5-9) 

Taking as primary experimental fact logarithmic velocity profile 

at |£- = 0, we find that 

4--*/?. (5.10) 

According to formula  (3.1) H = 0.4, 

According to the other experimental data the value of this constant 

lies  in the range 0,58 to 0.41,  i.e.,  very close  to the  quantity, 

defined by Nikuradze. 

Putting relations   (5.5) and  (5.10) in equation (5.9),  we  obtain 

the  limiting velocity profile in the  region of the breakaway of the 

turbulent layer: 

M = 
_    In (2/    46« ^26   4 45 + 1) (5.11) 

In (2 /T + 5) 

Accordingly, 

(-/-^-)if=2[-fln(2pT + 5)p. (5.12) 

From formula (5.11) it follows that for the accepted assumptions 

the limiting velocity profile in the cross section of the breakaway 

of the boundary layer does not depend on the empirical constants of 

turbulence. The limiting critical value of the form parameter f 

depends on the constant n. 
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(5.13) 

At H = 0,^,  for the considered consltlonc   (T = const,   J    = 0, 

Re -♦ oo),   we have1: 

(-/-^-l=ao62;(Jrl=0;30; 

(-—-)   =0,16;   //.,= lf87;   ^ = 0.010. 

The velocity profile (5.11) Is approximated by the exponential 

relation 
- = e».«. (5.14) 

This value of the exponent for the cross section, in which break- 

away of the turbulent layer from the Impenetrable wall occurs, is very 

close to the value n  =0.5, found earlier from other considerations 

in the works of oss, Stratford, and Townsend. However, it seems to 

us that In these investigations less general assumptions are accepted 

and not all of the complex of parameters, characterizing the region of 

breakaway are obtained. In particular, the critical values of the form 

parameter f were not calculated. 

From the given calculations it is clear that Just the form param- 

eter f preserves a finite critical value, even at Re -* oo, whereas the 

critical value of the Buri-Loytsyanskiy form parameter 

r.= -^- (5.15) 

approaches  Infinity (since at Re -*■ oo, c     "♦ 0).     In the region of not 

very large values of Re number the quantity T      has fully finite values. 

Qualitatively,  this conclusion was earlier substantiated in the 

works  of L.   E.  Kalikhman and G.  M.  Bam-Zellkovlch, 

In Fig.  26 is given a comparison of the velocity profile,  calcu- 

lated by formula  (5.14), with results of the measurements of 

Values  of 5* and 6** are  found by formulas   (1.24) and  (1.25) upon 
substitution in them of a> from (5.11) and p = p0. 
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Pig.  26,    Comparison of 
calculated velocity pro- 
file at the point of 
breakaway of the turbu- 
lent boundary layer wich 
experimental data:    1) 
calculation by formula 
(5.11);  2) calculation 
according to the 1/7 
power law; O — experi- 
ments of I.  Nikuradze; 
• — experiments of A.   I. 
Leont'ev, A.  N.   Oblivln, 
P.   N.  Romanenko. 

I.  Nikuradze and A.   I.   Leont'ev,  A.  N. 

Obllvln,  and P. N,  Romanenko, 

It Is clear that the  theoretical 

limiting velocity distributions In the 

prebreakaway region of flow Is satisfac- 

torily  confirmed by the  experimental data 

for finite Re numbers. 

The  critical value  of the form param- 

eter H from the experiments  of I, Niku- 

radze are equal to 1.8,   from the experi- 

ments of E.  Grushwitz — 1,9,  I.e.,  very 

close  to the found theoretical value. 

According to some other experiments 

the  quantity H      attains  2-2,5,    It is 

possible  that this increase  of the value 

H      Is connected with the roughness of the streamlined  surface or some 

other sort of factors,  not considered by the accepted approximations 

of the functions l(y)  and T(y), 

5.2,    Condition of Stability of the Viscous Underlayer 

During streamlining of an Impenetrable plate by an Isothermal flow 

with 3?" = 0#  the condition of stability of the viscous underlayer can 

be written in the form 

^#, = -^- = ^0 = const. (5.16) 

In the two-layered diagram of a turbulent boundary layer Tji0 = 1,6 

and R»^ = 1^4 [- ? - original illegible]. During gradient flow the 

condition of stability Is changed due to a change of the configuration 

of the velocity profile in the viscous underlayer. The character of 
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this change can be clarified by proceeding from the following consid- 

erations. 

Let us aFsume. that formula (5.i^) approximately describes the 

velocity profile in the cross section of breakaway and at finite Re 

numbers. Such an assumption is more valid the larger the Re number. 

Furthermore, it is also confirmed by the experimental data (see 

Fig. 26). 

In the viscous underlayer the velocity distribution is determined 

by formula (2.21), which at cf = 0 takes the form 

2 M i" )«p 
Re**\*. 

(5.17) 

Intersection of profiles  (5.1^) and  (5.17) at the values of the 

critical parameters from (5.13) will give the values of 4 and 

to a first approximation. 

We have 

1  cr 

s      ^       2.84 
It» •' «^^        --„0.fi4       • 

Hence, 

*** = - "*< -KH,*'"a ^^"28 

In addition the sum of the exponents for Re#* in formulas  (5.18) 

is rounded off to 1 with accuracy up to 0.1, which is fully permissible, 

taking into account the approximate character of these dependencies. 

Thus,  the Reynolds number for the viscous underlayer essentially 

decreases with an increase of divergence. 

Obviously,  such a decrease of stability of the viscous underlayer 
is connected with a corresponding distortion of the velocity profile 

with an increase of the pressure gradient.     In some measure this cir- 

cumstance is taken into account in the Reynolds number, constructed 

from the velocity derivative on the external boundary of the viscous 

underlayer: 
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*'' = (-^--^,U- (5.19) 

At (dp/dx) = 0 ke1 is identically equal to Re1 or T]^0. Assuming, 

as in all the preceding calculations, the quantity T)10 = 11.6, we 

find that at f = 0 R^ = 154. 

At the point of breakaway 

*«. = -/,(-pr)>--?.,.- (5.20) 

Introducing here the value of the critical parameters from (5.13) 

and (5.18) and rounding off to two the exponent for lit  number in 

the cube of the quantity i*       , we find that 

Thus, R«. actually is stabler than Re, . 

The condition 

^,-const (5.21) 

is identical to the Stseblevskiy condition introduced earlier 

(HTK TL,. " Cün8t " T•,- (5.22) 
5.5. Approximation of the Relation Between the Form 

~*       Parameters H and f 

Above was shown the method of calculation of the values of the 

form parameters at the point of breakaway. The value of the form 

parameters at (dp/dx) = 0 is calculated from the experimental univer- 

sal velocity profile V{T\). 

According to the degree of the population of the velocity pro- 

file that occurs with an increase of the form parameter f, the magni- 

tude of the exponent n decreases. Assuming that at f-»• oo n-► oo 

from (5.13), we find that in this case H-*l. 

Thus, we have the conditions: 

/=0;  //=//„; 
/= *: //=!. 
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In addition 2 > H > 1, i.e., changes minutely in the segment 

from f to f = oo. cr 

All these conditions are well satisfied by the simple inter- 

polation formula: 

~( %~r T* (5.24) 
H-l 

where f = (f/fcr). 

To the logarithmic velocity profile corresponds the value 

(5.25) 

Consequently, 

H^mf^Re**). (5.26) 

In Fig. 27 is given a comparison of calculations by formula (5.24) 

with the experimental data of I. Nikuradze, plotted in the coordinates 

{H; f], where H = (H/Hcr). 

**(0 

49 
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Fig.  27.    Dependence of the pa- 
rameter H on the parameter f: 
1) by formula   (5.24);  2)  cal- 
culation for a laminar boundary 
layer;  points  from the experi- 
ments of Nikuradze. 

We  can see  the satisfactory agreement of calculation with experi- 

ment. 
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5.4. Law of Resistance for an Isothermal Boundary Layer 
on an Impenetrable Surface at 

Piom equations (2.6) and (13.4) It follows that the velocity pro- 

file in the turbulent nucleus of an isothermal boundary layer on an 

impenetrable curved surface is determined by the equation: 

= -H-J-7- V v-f-r^   Jhr^m </!.      (5.27) 

where, as before, * ■ ^f^fO^R«*** 

Distribution of velocities in the viscous underlayer is described 

by equation (2.21). 

The condition of stability we will write by means of the quantity 

Re1. 

Taking into account equation (2.19) for the case T = const and 

J. = 0, we have 

At the point of breakaway * = 0 and from (5.28), (5.19) follows. 

The system of equations (5.27), (2.21), and (5.28) determines 

the quantity IF, if the function ^(i);  <P0(|); ^(S); ^(f) and cf0(Re*) 

are known. 
Actually, by assuming in (5.27) CD = 1 and correspondingly the 

upper limit of the right integral is also equal to 1, we have the 

system of equations: 

When the indicated functions are known, then the system of equa- 

tions (5.29) is solved in a first approximation, if we introduce in 
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value 5 /&,  defined via the quantity H from the formulas (3.15), and 

the quantity H, in turn, is determined by approximation (5.24). 

Further, by Introducing in equation (5.27) the thus found values 

of ^; i1;  and CD., we will calculate the quantity 6 /5 in a second 

approximation and again solve the system of equations (5.29). As a 

result in the second approximation are calculated not only T; 1.; and 

ü^, but also 5 /5 and H. 

The authors together with N. N. Kirillova and G. P. Zykln solved 

the system of equations (5.28) in a first approximation. In addition 

the quantity 1/5 was determined by formula (5.10) at H - 0,4; the 

functions VQH)  and ^(5) —by formulas (5.5); the quantity c^0 -by 

formula (3.7); the quantity H - by formula (5.24); the quantity H 

was taken equal to I.87. 

Thus, in the semiempirical theroy of a turbulent boundary layer 

developed here, as a primary experimental fact is taken a definite 

universal velocity profile 9(T]), and not some special hypothesis on 

the length of the path of mixing.1 

The full system of equations of the examined first approximation 

takes the form: 
i  

- = ' -2*H- V'^-prW-sur«: (5>50) 

^n the majority of works I = ny (Prandtl formula) or I ■ 
2    2 

= H[(dw /dy)/(d w /dy )] (Karman formula) is assumed. "Constants of 

turbulence" H and r|10 are determined from the same experimental velo- 

city profile. Experiment shows that these dependences are sufficiently- 
accurate only in a narrow prewall region.  Usually T = * i, « const 

is assumed, i.e., a condition valid also in direct proximity to the 
wall. 

The hypothesis on the conservation of the function l(y), naturally, 
is also necessary in these theories. 

-87- 



" I  i 

I 
5?+^r-|/v|/«f = 

A«. 

/-^-=w+2.51„(-jjrÄ...-v/^:); 

!••      //-I  *' 

H,-l = vg 
u-]/-^ 

(5.50) 

The critical parameters are determined preliminarily from this 

system of equations at IF = 0 and ? = 1. 

Calculations were carried out on the electronic computer of the 

Calculating Center of the Siberian Section of the Academy of Sciences 

of the USSR. The results are given in Table 5.1 and in Figs. 28, 29, 

and 30. 

Table 5.1. Values of the Parameters of an 
Isothermal Boundary Layer at the Point of 
Breakaway from a First Approximation 

«f a.io< LtO' s.w« Mi» s.io- \.w 

•lor 0.133 0.077 0.0446 o.oa'.4 0.0294 0.0183 

•tor 0.0113 0.00625 0.00215 0.00135 0.00046 0.00029 

(TL 0.16 0.16 0.16 0.16 0,10 0.16 

-/or 0.010 0.010 0.010 0.0100 0,0010 0.0010 

-ror 4.7     6.7 «.0 10.0 12.8 14.1 

"or I.W 1.67 1.87 1.87 1.87 1.87 

As can be seen, the thickness of the viscous underlayer increases 

in the region of diffusion flow, and the velocity on the external 

boundary of the viscous underlayer decreases. Besides the larger the 

Re number, then the relatively stronger are these changes. 
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The relative change of the coefficient of friction in the dif- 

fusion region is very significant and depends both on the form param- 

eter and Reynolds number, i.e., 

<r=V(/; Re**). (5.3 
*♦ In addition, the greater the value of Re , the more rapidly the 

coefficient of friction decreases with the growth of the parameter f. 

Calculations were performed for two conditions of stability: 

V^*i " ^10 " ^'^ and VieT = 11.6 - 4.Of. The latter is a linear 

interpolation between the value of the quantity (JL -i/ J. )   t 
V •    r      p    'y = y. 

determined experimentally for the case f = 0,   and the value of this 

quantity at f = 1,  calculated from the limiting velocity profile. 

Calculations by both conditions of stability practically coincide, 

i.e.,  possible inaccuracy in approximation of the function Rei(f)  is 

immaterial for calculation of the parameters of a turbulent boundary 

layer, 

5.5.    Solution of Equation of Momentum for an Isothermal 
Boundary Layer on an Impenetrable Surface 

It is convenient to write the momentum equation in the form: 
tlite** 

äX -ApReid ~. HuyH)f=ReLVt-t (5.52) 

Here       Be  = (woB /v) is 'the flow value of the Reynolds 
number, constructed according to 
the thickness of the momentum loss; 

ReL = (w0I/v) is the Reynolds number, constructed 
'    according to the local value of the 

velocity w0 and the characteristic 
linear dimension of a streamlined 
surface L; 

X = (x/L) is the relative distance from the 
inlet edge; 

f ; H  are the values of the form param- 
eters f and H at the point of 
breakaway of the boundary layer; 
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f = (f/fcr); H = (H/H ) are relative values of the form 
parameters; 

^f is relative change of coefficient 
of friction under the Influence of 
a pressure gradient. 

H and Yf are complex functions of ? and R« . Therefore, an exact 

solution of the momentum equation can be obtained only by numerical 

methods for a given velocity distribution outside the boundary layer. 

The solution Is radically simplified by linearization of equation 

(5.31). 

We will represent this equation in the form: 

2     äKe** 

where 

At ? = 0 we have: 

at f = 1 we have: 

^(7)--»,-(!+//„.//) 7rM. (5.54) 

Linear Interpolation gives the formula: 

r(7)*i (i f/^)//;p. (5.55) 

Calculations by the approximate formula (5.35) coincide very 

closely with calculations by the exact formula (5.3^) upon substitution 

of the values of H and f, which are determined by formula (5.23) and 

the graph in Fig. 28, at |fcr| « 0.01. 

Introducing in (5.33) the value of F(f) from formula (5.35) and 

cf0 from formula (5.14), we obtain the equation: 

Integrating this equation, we find that: 

Re** = w« " f—5 a«*o f «o rf.V + 
1 ,2    1( (5.37) 

+ (/?*•• will "•J^'-. 
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where 

*i<t 

v01  is the velocity of the current incident on the leading edge of the 

streamlined body; X^ is a dimensionless coordinate of the beginning 

of the turbulent boundary layer. 

By equation (5.37) the Re  is distributed along the contour 

of the body, covered by the turbulent boundary layer. In addition, 

the flow velocity outside the boundary layer w0(X) should be given. 

The local value of the form parameter is determined by formula 

'--^■-TT- (5.36) 
«« 

For given values of f and Be  the value of ^f is given by the 

graph in Pig. 28, and by formula 
r/ = ,|*f/.. (5.39) 

the local value of coefficient of friction is calculated. 

The values of the coefficients B and m during solution of the 

momentum equation are selected for a given interval of values of 
♦♦ Re  numbers in accordance with Table 3.1. 

The quantity cf0 in formula (5.39) can be calculated by formula 

(5.8). 

For not very large values of the form parameter f, it is possible 

to put H = 1.3 and ^ = 1 in the momentum equation. In this case 
x 

/?#•• = »ir»-3[-i±^-Ä/?e(. f wl*  r*mdX r 
*. i (5.40) 

4- {Re** i")' "^l ~* . 
*♦ 4 

For Re  numbers < 10 it is possible to assume m = 0.25 and 

B - 0.0258. Then 

/?#- = ^[0,0l6IÄe fr'-'d^ M^*^#x'f.      (5.4l) 
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In the works of Gruschwltz, Dengot, and Tetervln it Is shown 

that the form parameter H may be a good criterion for determination 

of the point of breakaway of the turbulent boundary layer. Besides, 

as was noted above, the critical value of the form parameter H, found 

experimentally by Gruschwitz, practically coincides with those cal- 

culated by us. In the opinion of the above researchers, distribution 

of the form parameter H along the contour of a streamlined body 

depends not only on the local value of the Re  number, but also on 

the distributive law of pressure, i.e., on function w0[H].  In this 

connection empirical relations of the type, 
4**    äH -     "« 

L dX 

are introduced. 

The degree of reliability of these relations is vague, inasmuch 

as the corresponding experimental data are not published in sufficient 

volume. 

The presence of some sort of influence of the character of the 

function w0(H) on the local parameters of the boundary layer does not 

contradict the general considerations about similarity and, within 

the framework of our theory, should be taken into consideration by 

introduction of the corresponding correction in the approximation of 

the tangential stress profile. 

Regarding the quantities f , H , and Y(f; Re ), the influence 

on them of the indicated factor has not yet been observed. 

5.6.  Law of Heat Transfer in the Diffusion Region 
of a Quasiisothermal Boundary •~"~~'^" 

Layer on an Impenetrable 
wa J. J. 

The presence of a pressure gradient essentially disturbs the 

similarity between the processes of friction and heat transfer in the 

boundary layer.  In addition the process of heat transfer possesses 
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a significant degree of conservation which is revealed already upon 

comparison of the distributive laws of the tangential stresses and 

heat flux along the cross section of the boundary layer. 

By formulas (2.55) and (2.74) for an impenetrable surface (b = 0): 

t«l + AS  (2A~3);2- (A f 2);»; 

^ = 1-3^ + 2;;. 
(5.42) 

Within the limits of the given approximation the distribution of 

the heat flux, in general, does not depend on the pressure gradient, 

whereas the distribution of tangential pressures changes substantially 

with a change of the quantity (dp/dx). 

In Fig. 31 is shown the distribution of tapgential stresses and 

heat flux along the cross section of the boundary layer at the point 

of breakaway, calculated by formulas 

(5.42).  In the wall region the path of 

the curves q(^) and [2T/P0W0j (^) is quite 

different. 

Let us carry out a calculation of 

the intensity of heat transfer at the 

point of breakaway at PP *» 1 and B^ < 5. 

In this case ^t * ^ and equation (2.64) 

for quasiisothermal conditions will take 

the form 

o       M    u    an     Q*    <*( 
Fig.  51.    Distribution of 
tangential stresses 1)  and 
heat flux 2) at the point 
of breakaway of the boun- 
dary layer by formulas 
(5.42). 

■ii 

du dh 
or,  taking into account  (5.10), 

Taking the velocity distribution from formula (5.14),  we have 

(5.44) 

.W=fc 0.0685 -A.  0.0o95 go.« 

11.43 

I-tt, 
(5.45) 

-f-^r 
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Here 

Disregarding the quantity [(5/5t)^i^0   as comPared to 1  and assuming 

Pr = 1, we obtain the value: 

Ä.,* 

Putting in (5.46) the value of (5*#/B) «0.16 and ^ from formula 

(5.18), we have 
«. (MM6  

•P"  *r-^(I+ü.71^r ' (5.^7) 

Assuming St = 0.0129 Re**"0,2", we find that in the considered 

conditions 

Jr.. ^ i?#-,,•",+0.7J^r••"•', ' p.^o; 

By formula (5.48), in the region of Re  numbers • (3-10)'10^ 

the ratio StCI/Bt0  is equal, on the average, to 1. 

With growth of the Re number the critical value of the fit number 

becomes less than St. 

Thus, a theoretical appraisal shows that for the practically 

most frequently met values of Re**, the law of heat transfer almost 

does not change with a change of the pressure gradient. This 

important conclusion is well confirmed by the experimental data shown 

in Figs. 32, 33, and 34.  It is distinctly clear that upon a signifi- 

cant decrease of the coefficient of friction and an abrupt deformation 

of the velocity profile with an increase of the diffusion nature of 

the flow, the values of the criterion St and the temperature profile 

almost do not change. 

Nonetheless, the theory shows that at Re-► oo the value of 8t, 

a"1 though slowly, approaches zero. This tendency also is revealed 

in experiments. 
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5.7. Solution of the Energy Equation for a Quasllsothermal 
Boundary Layer on an Impenetrable Surface 

The equation of the energy of a boundary layer (1.26) during 

constancy of the physical properties of the flow and an Impenetrable 

wall can be written in the "arm 

.^+«^.-^ = «.^.-■-2*        (5.49) 
IX IT dX L XPr 

Here    X = (x/L) is the relative length; 

ReL = (w0L/v) is the Reynolds number, calculated from the local 
value of the velocity w0 and from the character- 
istic linear dimension of the body — L; 

St = (a/c7W.-,) is the local value of the Stanton number; 

Nu = (coc/X) is the local value of the Nusselt number. 

Due to the conservation character of the law of heat transfer 

relative to the pressure gradient, in the majority of practical cal- 

culations (at Re*' < 10 ), it is possible to assume the value of the 

St number equal to its magnitude at (dp/dx) = 0. Consequently, for 

quasllsothermal flow formula (3.35) can be used. Putting this value 

of St in (5.49), we obtain a linear equation relative to the quantity 

Re**l4in. Carrying out the calculation, we find that 

Arli*    i (5.50) 

where R«n = (wnil/
v) is ■the Reynolds number, calculated on the velocity 0    U1  '   of the approaching stresun WQ^ and the charac- 

teristic length of the body Lj 

w0 = (WQ/W^) is the relative velocity outside the boundary 
layer. 

Putting the value of ■»£*' determined from formula (5.50), in 

formula (3.35), we find the local value of the Stanton number and 

correspondingly the heat transfer coefficient.  In addition, the 
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functions WQ(X) and AT(x) should be given beforehand. 

5.8, Influence of Nonisothermalness on the Parameters of 
Breakaway of the Boundary Layer from 

""""' an Impenetrable Surface " 

The velocity distribution in the region of the breakaway of a 

nonisothermal layer on an impenetrable wall is determined by equation 

JV1^'---2'5 /FHJW      (5-51) 

The solution of the right integral is expressed by formula (5.8). 

Prom here we obtain, that in the limiting case, when 

/?# - ^, !, >» 0, «, -». o, ? -* 0. 

J7 25« ^8 

At p ■ p0 we obtain formula (5.9) for the limiting case (a^ * 0) 

Thus, the relationship of the limiting critical values of the 

form parameter for nonisothermal and isothermal flows is determined 

by integral 

i m-a i-tr'l J/TT'"). (5.53) 

The value of this integral for a constant coefficient of non- 

simllarlty of the temperature and velocity fields was calculated in 

Chapter III. For gradient flow in the general case e = e(4). Thus, 

during isothermal flow at the point of breakaway the velocity profile 

is determined approximately by formula (5.14). At the same time in 

the region of Ra  numbers, at least up to 10 , the law of heat trans- 

fer almost does not change with a change of the form parameter, i.e., 

ru •» ntQ •'(1/7) .  For these conditions from formula (2.57): 
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. = nf-» (5.54) 

where eQ  is the value of the coefficient of nonsimilarity of the 

temperature and velocity fields at (dp/dx) ■ 0. 

But at Re -♦ oo flt  -* 0, i.e., the processes of friction and heat 

transfer in the diffusion region become similar. Therefore, inasmuch 

as integral (5.53) expresses the relationship of the limiting critical 

values of the form parameter, its solution coincides with formula 

(5.^8). 

This result will also apply for finite R§ numbers. Actually, 

even for moderate values of Re , from formula (5.54) the quantity 

e > 0.5e0 already at^=0.1jat|=0.5e= 0.82e0j at £ - 1 e = e0. 

At the same time the same quantity e, as was shown in Chapter III, 

weakly affects the considered integral. 

From the above it follows that: 

a) during moderate flow velocities of a gas 

b) during significant flow velocities of a gas1 

— «re sin —       T     1 • 

Taking into account the value of ncr, obtained in (5.14), we find 

that the limiting velocity field at the point of breakaway Is deter- 

mined by equation 

1The formulas (5.55) and (5.56) were obtained previously by 
L. E. Kalikhman, but not as limiting. 
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For subsonic flows, when ^    • IJ 

* -1 
(5.58) 

For flows with high velocities, when $    Is noticeably larger 

than unity. 

^F""« •rctin- 
1{£~l) + *b   , 

- .rc .in J*±~] ?* + arc .In -^-) - ^^ (5.59) 

where 

m 

4/ 

In Pig. 35 Is shown the Influence of the temperature factor on 

the limiting velocity profile at the point of breakaway of a boundary 

VT—n    i i x^i     layer of gas during subsonic flow. In the 

same place is given a graph for the adiabatic 

supersonic flow of gas at ^ «6 which corres- 

ponds to M » 5 at r « 1 and II - 5.5 at r « 0.9. 

The temperature factor comparatively 

weakly deforms the velocity profile at the 

point of breakaway of a boundary layer of gas 

from an Impenetrable wall. 

In Pigs. 56, 57* and 58 are given the 

values of the limiting critical parameters 

m      • —— 

I   — —. _ 
4     V   9*   Qt   09   to 

Pig. 55. Influence 
of heat transfer on 
the limiting velo- 
city profile at the 
point of breakaway: 

1) * 
2) i 
5) i 
4) ^ 

1, V - 0,25; 
1, V = 1.0; 
1, V - 2.0; 
6, V - 6. .** 

f I H ; (5/5 )cr In dependence on the 'cr cr- 

temperature factor rj/  at subsonic flows (V ■•I)« 

The quantity H  almost linearly changes with the growth of the 

temperature factor^. Cooling the surface (if < 1)  increases the sta- 

bility of diffusion flow. 

During heating of a streamlined surface {f > 1)  the stability 

of diffusion flow decreases. In Pig. 59 is shown the change of the 

quantity of the critical value of the form parameter fcr during 

supersonic streamlining of a body. 
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As can be seen,  during high flow velocities the region of 

existence of a stable turbulent boundary layer at  (dp/dx) > 0 is 

extremely limited. 

Pig.  39.    Dependence of f 
♦♦ 

on V      and up. 
cr 

r1— ■  I J~ 
T d& 

 1 
WW * '^Z ̂ y j 

i 
""T— 

—, Vi 
^ S ^ H 

^ ̂ v ̂ .-/s^--<} 
ti^s H ̂ ; < >^-ff' 

^ ^ 
x Nir^' w y k 1 

1 

Jf 

49 
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Fig.  ^0.    Dependence of H 
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In Fig, kQ  is given a graph for the value of H  during super- 

sonic flow of a gas.1 

5.9.  Solution of Equations of Energy and Momentum for a 
Nonisothermal Boundary Layer on an 

Impenetrable Surface During """ 
Subsonic Flow of a Gas "" 

The integral energy equation for the region of finite values of 
♦♦ ■el" numbers, in which one may assume that the St number little depends 

on the form parameter f, will take the form 
4*9,* Re** ä*T 

where 

ax if dX 
= ReLVJSt„. (5.60) 

•,=[T==E—r (5.61) 

is the correction for nonisothennalnees taking into account the 

finlteness of the IU number. 

^ more conservative parameter (f »H)  which is explained by mutual 

compensation In the change of fcr and Hcr. 
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Formula (5.6l) is obtained from formula (3.58) at V • e * 1. 

The limiting value of the function T. during subsonic flow of a 

gas is determined by formula (5.55)> which coincides with the corres- 

ponding limiting formula (5.^7) for the ratio of the coefficients of 

friction. 

In practice in calculations it is possible to be limited by the 

limiting formulas for f. or to introduce this function, referred to 

the mean value of C^Q for a given streamlining. Then f. * ^(V), i.e., 

it can be considered independent of Re . The solution of equation 

(5.60) under these conditions has the same form as equation (5.50), 

but under the integral sign stands the product f.WQAT  . The value 

of the local Stanton number is determined for the obtained value of 

the Re^ number by formula 

5/=»rT5/,.,- (5.62) 

where St0 is determined by formula (3.55). 

During linear interpolation of the function F(f) its value during 

nonisothermal flow will be determined by formula: 

For the coefficient of friction we will obtain the expression 

where ¥f is the correction for the influence of the pressure gradient 

during isothermal flow. 

As was explained in Chapter III, the function T. for the coef- 

ficient of friction differs from the analogous function for the 

coefficient of heat transfer by the form of calculation of the coef- 

ficient of nonsimilarity of. the velocity and temperature fields e. It 

was also shown there, that for the most frequently met ration 0.5 < 

< (5 /ö. ) < 2, in practical calculations the influence of the coef- 

ficient e on Y. can be ignored and e = 1 can be assumed, 
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Solution of the momentum equation takes the form 

«^M-TM-fM^        (5.65) 

where 

Here H  iß a function of the temperature factor V. 

During a constant wall temperature, the integral (5.65) is 

simplified and can be written in the form 

(5.66) 

where 
«=i . /v 

In that case, when it is necessary to determine the distribution of 

the wall temperature at a given law of feed (discharge) of heat 

q 1,(x), the energy equation is written in the form 

rf(Arifr") _ «„(*) (5.68) 

Hence 
j" «er*« 

Kfn**T (5.o9; 

Taking into account formulas (5.62) and (5.55)* we find that at 

1 
At. Y ■ 0 the local difference of temperatures of the wall and the 

flow 

♦ 

(5.70) 
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Putting in (5.70) B - 0.0258, m - 0.25, and *t from the limiting 

formula (3.55)* we have 

"hJ,5*feHf-HT     ,J•71, 

Here, as before. 

? — —z— ,   fo —  1 Wo        

5.10.    Resolution of the Equations of Energy and Momentum 
" During Supersonic Flow of Qas ^~       * 

At V    > 1 the energy equation preserves the form of equation 

(5.60),  if we a&Bume: 
A r= r;T - rcf; 

*» (5.72) 

where M-QQ 1S ^e  viscosity of the gas at the temperature of stagnation 

outside the boundary layer. 

The Integral of this equation has the form: 

A. 
(5.73) 

Here 

A«       »_..   ■•* 

The function ft is calculated from the respective fonnulas of 

Chapter III for supersonic flow. The limiting value of T at e * 1 

is determined by formula  (3.58). 

The Stanton number will be determined by the formula 

St -     B%*   I ~ * \m 
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♦« 
whtffe the value of B«t is found from equation (5.75). 

Taking into account the compressibility, the integral of the 

momentum equation will take the form 

«•"-«MM-T;V)( *«'■•■•)',-1-H'* 
xv{t-U)   ' tsrw .\ i-<]' ", 

(5.74) 

where 
Re ** _ >.«.»♦ 

.«•».» 

At Twall " con8t 

(5.75) 

where 
«- i + //kP. 

The value of the form parameter is determined by formula 

/_ *r^ _rf^ 

T~'      ' äX' (5-76) 

The critical value of the form parameter is determined from the 

graphs of Pig. 39. 

The drag coefficient is calculated by formula 

'/^•/^(-^-jV (5.77) 
## 

where Cr.Q is referred to the value of Rft , determined by equation 

(5.74) or (5.75). 

In practice^ equation (5.75) can be used and in the case of not 
IN 

very strong changes of the wall temperature along the length of the 

contour. Connected with this is the fact that errors in the deter- 
4 

*♦ mlnation of the value of Hit     weakly affect the value of C-Q due to 

the small value of the exponent m in the law of resistance for a 
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turbulent boundary layer. 

5,11,    Solution of the Equations of Energy and Momentum 
for Axlsymmetrlc Flow of a qas "" 

For an axlsymmetrlc boundary layer the equation of energy and 

momentum can be written In the form: 

*''ij7-iir  -„-■ 7* )'*"*■        (5-7S) 
rf.Y 

'*'     ' ^   ^ ^ReiFj)   "• äx  .      R      rf.v  " '  . '      (5.79) 

where R Is the current radius. 

The law of heat transfer remains practically the same, as for a 

flat boundary layer. 

The Integral of equation (5.78) differs from the Integral of the 

energy equation of a flat boundary layer only by the fact that the 

product RAT enters Into It Instead of the value of AT, 

The Integral of equation (5.79) at Twall * const has the same 

form as formula (5.75), but Instead of the value of UH In It one should 

put the product RUH. During subsonic flow in formula (5.67) the 

quantity wJJ Is replaced by RwJJ. 

During flow of a gas In a cylindrical nozzle (Internal problem) 

the integral of the energy equation Is conveniently written in the 

form 
t 

**' ~| in»**?**   \D)     U^I/ U+I' 

U 

(5.80) 
* l-m 

Besides,   It is assumed that the turbulent layer starts from the Inlet 

section of the nozzle. 

Equation  (5.80) Is obtained from the basic  solution of the energy 

equation.  If we bear In mind that during flow of a gas In a nozzle, 

with a good degree of accuracy.  It Is possible to assume 
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»W*-'.{-tt-fhh-fiT 
Q   ' (5.81) 

•eby In this case (flcp/fl) - (Dcr/D) , 

•e 0 Is the cross-sectional area.    In these formulas DAW Is the cr 

leter of the critical cross section of the nozzle. 

The value of the local Nusselt number will be determined by 

mla 

•   N'**T^ *'*'*''föftäri^r), (5.82) 
'e 

AT«. 
*L 
K„ 

characteristic linear dimension L should be one and the same In 

IÜ and lit numbers. 

The quantity V during flow of a gas In a nozzle Is a slngle- 

led function of the dlmensionless cross-sectional area of the noz- 

that essentially simplifies calculation of the function *+{%)  and 

julatlon of the thermal boundary layer. 
y 

*um 

toooo 
• 

BOOO 
, J k tooo J 

Sin 4000 
« \1 n i 

• 

2000 P 3 
0 flf <U 4^ 4« 05 a# 4^ at 40 <P 

Pig. 41. Comparison of calculations of heat transfer in a super- 
ionic nozzle by formula (3.82) with the experimental data of 
U I. Leont'ev. 

In Fig. 41 is given a comparison of the calculations of heat 

isfer in a supersonic nozzle by the proposed method with the results 

■ 
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of an experimental Investigation. It Is possible to ascertain a very 

good agreement of theory and experiment. 

5.12. Solution of the Equations of Energy and Momentum During 
Subsonic Flow of~a Gas on a Permeable Slightly 

Curved Surface "" 

The laws obtained In Chapter IV of friction and heat exchange 

for a permeable plate can be used for solution of the equations of 

nomentum and energy during streamlining by a subsonic, nonlsothermal, 

turbulent boundary layer of a permeable slightly curved surface. 

The energy equation for the considered case Is written In the 

"orm 

-^r- + -T? ^- = «»1 «.(»• + ».).      (5.8?) 

rhere the function Y Is determined by formula (4.30), I.e., 

n-^v^i --£L—J (5.84) 

rhere Y. is chosen from formula (5.47). 

In the general case, the quantities IL, b*, and b^ are func- 

ions of the coordinate X. Then the Integral of equation (5*83) has 

he form 

(5.85) 

♦ ♦ 
or the given functions w0(x), AT(x), and bt(x) the value of l»t is 

alculated from equation (5*85) as a function of the coordinate X. 

Distribution of the feed of the cooling gas along the length of 

he circuit is calculated by formula 

■£ =-£-**- (5-86) 
The local Stanton number is determined by formula 

Ä=rt(l--^)tJt. (5,87) 
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The local heat flux 
f«=f^P*ir.Ar5».      ,        (5.88) 

From the known eonsunptlon of the cooling gas its initial temper« 
1 

ature is determined i , 

T''r~--i%r- (5.89) 
During evaporation and sublimation the surface temperature 

usually is given. The quantity of gas (vapor) discharged from this 

surface is subject to determination. 

In the considered case 
ft^'I/i.. (5.90) 

where r is the latent heat of vaporization. 

Hence 

r=-^='f*" ' (5.91) 

where K m  (r/c .AT) is the criterion of phase transition. 

On the other hand, the value of T is determined by expression 

(5.84). Combining formulas (5.84) and (5.91), we find that 

»■ = ^--^(1 *£-'-')•        (5.92) 

Introducing the value of f from (5.91) end b^ from (5.92) in equation 

(5.83), we find 

*(l ■s^r*'-')}'"*7*""-*- (5-93) 
i 

*« 
From the found value of H»t    the value of St0 is determined; 

the value of bt from formula (5*92); and from formula (5.86) the 

flow rate of the cooling gas. 
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For relatively small IntenaltleB of evaporation or BUblimation 

(which is usually the case) it is possible to be limited during cal- 

culation of Hi* to the first approximation, i.e., to conduct a cal- 

culation of this quantity by formula (5.^0) taking into account the 

nonisothermalness of the flow from Section 5.6. 

We will consider the case, when the parameters are given of the 

external flow, the wall temperature, and the initial temperature of 

the cooling gas, passing into the boundary layer through a porous 

surface.  It is necessary to determine the needed distribution of 

the cooling gas along the circuit of the warmed surface.  In this 

case 

IT V=I><-T^* (5.94) 

where AT^ « ^wall " ^1 and Tl ^B  the 'temPera"ture o* tlie 8a8 a* the 

entrance to a porous surface. 

The value of b. will be determined by formula (5.92) upon replace- 

ment in it of the value of the criterion X by the ratio (AT^/AT). The 

value of Re. will be determined by formula (5.93) upon the same 

replacement of K by (AT^/AT). Further calculations are also con- 

ducted Just as in the preceding problem. 

For an axisymmetric boundary layer, solution of the energy equa- 

tion has the same form as in the case of a flat boundary layer, but 

instead of AT the product RAT enters, where R is the radius of the 

streamlined body. The whole remaining course of calculation does not 

change. 

The momentum equation for a flat boundary layer on a permeable 

wall of small curvature has the form 

** **     4X (5.95) 
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^M'--£-)' (5-96) 

We have the dependences *t(x), b(x), bcr(x). Assuming H « H0 ■ 

■ 1,5, we obtain 

k .- ' (5.97) 
i 

x^^rl*••«*8)i;",) *. 

For em axisynmetric boundary layer the solution remains the 

same, but Instead of the quantity VQ      the product Rw,j  appears. 

The local value of the coefficient of friction will be determined 

by formula 

'/-"•(' --^)V (5.98) 

When the distribution of the flow rate of Injected gas J1(x) 

along the contour of a streamlined body is known, the problem is 

solved by the method of successive approximations. The first, and 

fully sufficient approximation for the determination of Re* is 

calculated by the formulas for an Impenetrable wall of small curvature. 

The methods presented allow calculation of heat transfer and 

friction on a porous surface of the frontal part of bodies (flame 

regulators, the frontal parts of a sphere and a transversely stream* 

lined cylinder, the head part of axisymmetric bodies). 
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CHAPTER      VI 

FLOW IN A PIPE 

Definitions of Cyrillic Items In Order of Appearance 

OT ■ wall ■ wall 

T » t = Thermal, Turbulent 

6.1.  Distribution of VelocltleSj Friction^ and Heat 
Transfer During Quasllsothermal, Stabilized Flow 

During flow In a pipe a flow stabilization section and a section 

with stabilized flow are distinguished. Stabilized flow approaches 

after merging of the boundary layers, which arise in the Inlet section 

of the pipe, and for isothermal conditions is characterized by con- 

stancy of all the flow parameters.  In the inlet section (stabiliza- 

tion section) the flow parameters are changed in connection with the 

build-up of the boundary layer on the wall of the pipe. A diagram 

of the flow in the inlet section of the pipe is depicted in Fig. 42. 

t 
During stabilized isothermal, tur- 

bulent flow the velocity distribution In 

a smooth pipe is well described by formula 

(3.1). This is explained by the fact that 

flow In a pipe is nozzle flow with com- 

paratively small values of the form para- 

Fig. 42. Diagram of the 
build-up of the boundary 
layer in the inlet sec- 
tion of a cylindrical 
pipe. 

meter. The pressure drop in a pipe is determined by formula 
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• 

(6.1) 

where C is the drag coefficient; 

D is the Internal diameter of the pipe; 

w Is the average consumption flow velocity; 

p0 is the density of the flowing medium, referred to the average 
consumption temperature of the stream. 

During isothermal flow p « PQ » const. 

From the condition of equilibrium (Fig. 42} It follows that 

{(<"""y"" 

l    . , 
—•r- 

777- 

Flg. 43« Diagram 
of the action of 
forces on an ele- 
mentary cylinder 
of fluid In a pipe. 

4a (6.2) 

i.e.. 

«Si 

The average consumption velocity 

(6.3) 

pwRdR. (6.4) 

Putting In (6.4) the velocity profile (3.1) and assuming p 

const, we find that 

where 

»-(/»(175 r 2.S In -i^?-1, 

^=n/t 

(6.5) 

From here the law of resistance follows! 

~-L-. = 0.«8llifftoi    i )-0.9. 
I  c (6.6) 

In the region 5*10^ < Ip < 1*10^ the Blaslus formula gives good results 

(6-7) 
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where 

«••=•¥-. 
The velocity distribution to the n ■ 1/7 power corresponds to 

formula (6,7), 

The form parameter f can be calculated by formula (2,36)« 

f---^**—i—t- (6.8) 

In the region of stabilized flow, when the boundary layers merged, 

5 » RQ. According to formula (6.2) — §§ - ■*ra11. 

Hence during Isothermal stabilized flow in a pipe 

At n « 1/7 

/=-T--^ (6.9) 

/=-JL
09ts* 

*&    * (6,10) 

k 
l,e., at Bejj > ICT 

At IteD > 10
5 

/<0.003; (6,11) 

/<0,002. (6.12) 

The law of heat transfer in the region of stabilized flow of a gas in 

a pipe is described by formula, 

Nmo = 0.023 Pi*4 Re,t (6.13 ) 

where 

**.-^ 

Correspondingly 

«=-5^-- (6.1*) 
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6,2. WoniBothennal^ Stabilized Flow of a Gas 

Stabilized flow In a pipe of constant cross section can exist 

only at N < 1. 

Inasmuch as In this case the boundary layers are merged, then 

condition It - Idem Is equivalent to the condition Re** - Idem. There- 

fore, the limiting formula (^.47) for given case takes the form 

In Fig. 44 Is given a comparison of calculations by formula 

(6.13) with experimental data. The limiting formula in this case 

also correctly depicts the real character of the Investigated relation. 

i £ 1 • 

.JSE. fc^ 

• 

J g »Ts 

^ t £ £4 hi A 
"•^ r V? JfJ» oi 

- • t • 

4« 
oi  at«   i.o       t.4      ♦. 

Fig. 44. Influence of temperature factor 
on friction and heat transfer during 
stabilized flow of gas In a pipe: 1 — cal- 
culation by formula (6.13)« O — Jordan, 
O — Greber, • — II'In, A — Ivashchenko, 
0 — NASA (averaged by series), Experiments 
on the resistance of friction: O — II(In. 

If we consider the flnlteness of It the numbers, then we should 

use formula (3.38), which at fr* * 1 takes the form 

(6.16) 

For stabilized flow In a pipe this formula should be written 

with consideration of the ratio -fi. Inasmuch as in the theory of a 
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boundary layer the coefficient of friction is referred to the maxiraum 

velocity; during flow in pipes this coefficient pertains to the average 

consumption velocity. Proceeding from these considerations we can 

write that for stabilized conditions 

IV 4,-4,1«.-DM' a +i J (6.17) 

where *=-i 

a* 

  

— R — — 

Q» £ • 

W 
sn*   v'   a»' 2**  #«* /«\ 

Fig. ^5. Dependence of 

h ■ ^- on Itejs during 
m 

Isothermal flow of a 
gas in a pipe. 

At values of the temperature factor 

V > 1 the velocity profiles become less 

populated and the value of h less than during 

Isothermal flow. At ^ < 1 the velocity 

profiles are more populated and the value 

of h is larger than during isothermal flow. 

In Fig. 45 is shown the dependence of 

h on ReD during isothermal flow in smooth 

pipes. 

In practice at ^ > 1 It is possible to use the limiting formula 

(6.i5)# and at V < i by formula (6,17), assuming h • 0.9, 

6.3. Calculation of Heat Transfer and Friction 

in the Inlet Section of a Cylindrical Pipe 

In the inlet section of the pipe a boundary layer is developed 

Just as during external streamlining of a body as long as the opposite 

points of the external boundary of the layer do not touch. 

The over-all flow rate of a gas along the whole pipe is constant, 

and the flow velocity in the undisturbed nucleus of flow changes due 

to the build-up of the boundary layer. Taking into account this 

circumstance all the equations of a turbulent boundary layer derived 

above can be used. 
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We will assume that upon entry Into the pipe« the velocity dis- 

tribution Is uniform« and a turbulent boundary layer Immediately 

arises. The latter condition Is always fulfilled because of the 

turbulence causing action of the finite thickness of the leading edge. 

We will be limited by the case, when the pipe Is warmed« starting 

from the leading edge. The build-up of dynamic and thermal boundary 

layers occurs simultaneously along the whole length of the Inlet 

section of the pipe. Correspondingly« the parameters of the gas In 

the undisturbed nucleus of the flow also change. 

The equation of continuity of the flow will be written in the 

form 

fc,«fMJ«=2jpip<f/? = const, (6.18) 

where pQ^ and w01 are the density of the gas and flow velocity in the 
inlet section of the pipe. 

For a cylindrical pipe according to formula (1.59) 

••=J('-£r)('-ilrK (6.19) 
a 

Taking Into account this expression of the thickness of displace- 

ment« It is possible to bring the equation of continuity (6.18) to 

the form 

Sl«r),1 = 90»,(!-2-^-). (6#20) 

where p0 and w0 are the density and flow velocity outside the boundary 
layer in the cross section x. 

The density of the gas p0 is raalted to the density PQQ for the 

parameters of stagnation (PQO* ^Q)  anci the dimensionless velocity U 

by known the expression 

1 

-fc-rrd-tf«)*"1, (6.21) 
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which has already been used In Chapter V during derivation of formula 

(5.73). 

Combining equations (6.20) and (6.21), we find that 

'■£-=■--3-(-T^-),:'' v-'v 
where 

(6.23) 

Introducing the parameter H, we obtain the value 
JL -J- 

^•--^[W-^/"'-^««- W*"1]. (6.24) 
where, as before 

The momentum equations will take the form 

^+^^<,+^ = "''-ü,'^,*T-fM-^ÄH"  (6.25) 
where 

We will be limited by flows for not very large values of the N 

number. Then supersonic flow of a gas In a cylindrical pipe, which 

is always diffusion flow, flows at values of the form parameter f, 

not close to the critical value. In this case the function f can be 

equated to the function if., i.e., will depend only on the parameters 

if/*  and V. On these parameters also depends the quantity H. 

As L. E, Kallkhman showed, the quantity 

/(•--S-Hr* (6.26) if = -A 

depends on the parameters of nonisothermalness significantly weaker 

than the quantity H. 

Between the quantivies H and H1 there exists the dependence 
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I 

(6.27) 

where 

r' = -^r-f («-•l-^-^y. (6.28) 

Upon solution of equation (6.25) It Is possible In practice to assume 

S  IL - H^ - H0 during isothermal flow, i.e., 1,5. 

Then 

4L+■.»(.-   ''"-^ ]] (6.50) 

The momentum equation will be rewritten thus: 

i 

Putting in this equation Et  from equation (6.30), we obtain 

JL i 

+24/«/1(i-^F']-|
(,-6/',r£"'c/- 
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t 

-«•»(-jÄ-) «/(l-^-1^ 
(6.32) 

For a given law of change of the wall temperature and known 

velocities and stagnation parameters at the inlet in the channel, 

equation (6.32) allows us to determine the law of the velocity change 

in the undisturbed nucleus of the flow along the length of the pipe 

X. 

From equation (6.30) the change of It  along the length of the 

pipe is calculated suid by formula (5.77) the local values of the 

coefficients of friction are determined. 

The values of the Nusselt number are determined by formula 

It is necessary to note that the presented method of calculation 

can be applied only if impactless entrance of a gas into a cylindrical 

pipe takes place. For the region of subsonic gas velocities it is 
p 

possible to consider U « 1, In this case we have Twftll - const 

(6.34) 

where 
».=:-&. 

-121- 



tt'      4 

Assuming m - 0,25# B - 0.0258, and taking the limiting value of 

the function f+ for subsonic flow, we obtain 

(«fl.3*)-j-fl](4CfP.-I -—In X 
I  3 

-I   2arctfX 

where 
Ä».---^^. 

■^ 

(6.35) 

(9    (#      (f     <J     (!<      '5      I!«     (/      '.•    t*      »fi*. 

Fig. 46. Dependence of the 

parameter X«ltZ  ^ on w0 
1 

and ii by equation (6.55): 
1) ^ - 0.4; 2) ^ - 0.6; 
5) * - 0.8; 4) f « 1.0; 
5) K' - 1.4; 6W « 1.8; 
7) ^ - 2.2; 8W * 2.6; 
9) ^ - 3.0; 10) ^ - 4.0. 

In Fig. 46 is shown the depen- 
-0 2*5 

dence of the parameter X»irtD * ^ on 

WQ and if,  calculated by equation 

(6.35). 

Using this graph, we can deter- 

mine the velocity change in the nu- 

cleus of flow along the length of the 

pipe for given parameters of the gas 

at the pipe inlet and for a given 

wall temperature. 

For subsonic velocities from 

equation (6.30) we have 

(6.36) 

The local coefficients of friction are determined form the law of 

resistance: 

f/ = 
O.06lt 

(/ ♦ + if**»** (6.37) 
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Tile local coefficients of heat transfer are calculated by formula 

(6.33)• Using equation (6.35) from equation (5A0),  generalized for 

nonlsothermal flow« we obtain the value 

tf = . SStisLfJl   1(2+ IM) UtLlMi 

xf4(?..ir-iTict,>T^-^r - 

rT  fe ir-rTfc-if-.i Jl 
(6.38) 

Thus, during flow of a gas (fr «1) In the Initial section of 

the pipe we have 

■s-h^-inSH"--"-- 

-/T„. ^ft-;r f. (6.39) 
In Fig. 47, Is shown the 

Fig. 47. Dependence of 5»» on 

R ** 
—iy on X.ReZ?'25 and ^. As 
Ba ül 

can be seen from the graph, 

during subsonic gas velocities 

In the Initial section of a 

cylindrical pipe, simultaneous 

build-up of thermal and dynamic 

X-Ht"0,25 and V by formula (6.39): 
ul 

1) V - 0.4; 2) V = 0.6| 3) V' - 0.8; 
4) V - 1.0; 5) ^ » 1.4; 6W « 1.8; 
7) V - 2.2; 8) V = 2.6; 9) V' » 3.0; 
10) V - ^.0. 

layers ^ < 1 and 
»♦ 

Talcing Into account this cir- 

cumstance it is possible to 

propose a convenient method of 

-123- 



generalization of the experimental data on heat transfer 1.. the Initial 

section of a cylindrical pipe.1 

From equation (3.39) It follows that 

«•Trr-t—--. (6.40) 

Flirther we have the relation:8 

* : *i%*'*4f   : (6.41) 

i     J 

i^0r= l/il-l/».t-,""r.Ä^: (6.42) 

Thus, by measuring the distribution of the static pressures, the wall 

temperatures, and the heat flux along the length of the pipe by these 

equations, it Is possible to construct the experimental dependence 

of St on It" . 

If in the experiments measurements of the static pressures are 
_ »» 

not carried out, then, by taking into account the condition ■•t • 

«It , it Is possible to calculate the Stanton number for subsonic 

velocities by the formula 

Stt feiZV 
(Ar, + 5.2 4 ä»;*) *«>?.. ä r (6.44) 

In Flg.  48 are shown the results of treatment, by the proposed 

method, of the experiments of B.  S.  Petukhov, V.  L.  Lel^huk, B. V. 

Dedyakin, V.   N.  Fedorov, A.  I.  Leoont'ev,  I. A. Kozhinov, and S.  I. 

Kosterin.    All these data are reduced to the conditions ^ « 1 by the 

limiting formula (5.55).    As can be seen, the average line, drawn 

through all the experimental points,  is described by formula 

1Method was developed Jointly with V. K.  Fedorov. t    K_ ,. 
u,      I T  i</4 2During derivation of formula (6.42) It is assumed that-c-« Np I 
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ft - ».ON 

(6.45) 

which coincides with the relation 

«.-T^rr (6.46) 

where cf0 is calculated by formula (3.8) upon Substitution In it of 
•• 

♦"• 
«0 

Jti 

*o 

<#-- 

40 

r 
^^4^^^! . 

^MafclJj.aiaii', '          ^WWWS^UL. 
^v.                 i" 

 i^d^^«. 
1 

^^s fc.            1 1 
/.« rtf /.• s.o 9.i 14 J.# I.I 4.0 4.9 4,4 igßt • • 

Fig. 48.    Results of treatment of the experimental data on 
heat transfer in the initial section of a c/lindrical pipe: 

fi^j-r,    a-Ulmtr 1 ~ turbulent conditions St 

0.22 conditions 8t 
* fr VT j • — experiments of B. V« 

Dedyakin and V. L. Lel'chult; A — experiments of B, S. 
Petukhov; O — experiments of I, A. Kozhinov, S. I, Kosterin, 
Leont»ev, and V, N, Pedoroy, 

It is necessary to emphasize that these experimental data, pre- 

sented by their authors in the usual a. enslonless number treatment, 

diverge noticeably. 

The obtained result distinctly confirms the generality of the 

laws of heat transfer and friction in a turbulent boundary layer for 
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the internal and exterior tasks of aerodynamics. 

In Fig. 49 are shown the results of treatment, by the proposed 

method, of the experimental data on heat transfer for pipes, nozzles, 

plates, and nose cones. These experiments embrace a wide range of 

changes of the numbers M and ty. In spite of a signlflclant variance 

of the points, all of them are grouped around a line, corresponding 

to formula (6.46). 

••• 14 9,$ 1% 9,0 X9 **        *,* 9,9 4,0 4,9        4*9*' 
Fig. 49. Results of generalization of experimental data on con- 
vective heat transfer in a turbulent boundary layer of compressible 
gas; 1 — turbulent conditions; 2 - laminar conditions; B ■ (P e — 

V. K. Fedorov, (pipe), ft - —fl 4g 'fl E* • ~ Pappas (plates); 0 - 

Fisher and Norris (V-2 rocket); ^•—Eber (cone-cylinder); €)— 

0.22 D - Petukhov (plate);   O — Fedorov (pipe M < i);    8t ■   ■    -  T'/m 

Bradfield (cone);    <i — Leont'ev (nozzle);    A — Petukhov (pipe); 
® — Sveshnlkov (pipe);    -♦• — Fallls (plate); • - Lel^huk, Dedyakin 
(pipe). 

The equation of a thermal boundary layer can be written ins 

49** 
4X 

»•• 
4X \\n\\-i)\~St'Pto, (6.47) 

where 

^#* • ~ ■wS .    P*D 
w*D 
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or taking Into account equations (6,20),  (6.22) 

where 

ÄA _ m*'Ü 

For the case f ■ const 

(6.48) 

For subsonic velocities of a gas (and m • 0.25) after Integration we 

obtain 

jr= 
M* 4 ^^   i»y 

*.!♦ 

+ 2afclf 
!2 •( la ) 
l  5.2*  / (6.49) 

From equation (6.49) we obtain a change of the parameter Ji*# 

along the length of a pipe for given parameters of a gas at the Inle'; 

of t pipe and for a given wall temperature. 

Local values of the Nusselt number and heat flux are determined 

by equations, 

(6.50) 
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and 
B-(7=771    no   rK. 

^« = jJsarT^To y (6.51) 

For the case of a given constant thermal load along the length 

of a pipe from equation (6.47) we obtain 

0   *> * (6.52) 

where 

St = ^- - ^ (6.55) 

From equations (6.20) and (6.22) it follows that 

Ho = toi>t+*2'i'to**' (6.54) 

As a result we have a system of three equations  (6,52),   (6.52)* 
*♦ and (6.54) with three unknowns it, f%     and ftp. 

## 
For determination of the change of fe     along the length of the 

pipe,  from equations  (6.52),  (6.53)« and (6.54) we have 

-VvtmH^+UAHNf-H^wfiPAY . \,\9MmxH,.\»'"TP\, (6.55) 
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In the range of a change of V from 0 to 5,0 the function if.   can 

be expanded In a series and can be bounded by the first term, i.e., 

assume (5^9): 

Then 



Knowing local the values of Pi , from equation (6.32) we de- 

termine the local values of the wall temperature: 

The proposed method of calculation can be also be extended to 

the case of an arbitrary law of supply or removal of heat along the 

length of the channel. Only In this case Instead of equation (6.32) 

we should use equation (6.47). Further considerations remain the 

same. 

6,4. Heat Transfer to a Vapor During Critical Pressures 

The theory of the limiting laws of friction and heat transfer 

can be applied also to flows of gases, not obeying the Clapeyron- 

Nendeleev equation of state. The problem Is solved most simply for 

the bounded temperature Integrals In that case, when there Is possible 

a linear approximation of the dependence of the gas density on the 

temperature (or enthalpy). 

In this case for a uniform medium 

^-=ti-(ti-li». (6.56) 

where, as In Chapter IV, 

The limiting law of heat transfer at c * const for subsonic 

flow Is expressed by formula 

-S-=H=^—r (6-57) 

For an Ideal gas 

T% 
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In more complicated cases, for Instance duilng a significant 

change of the heat capacity. It is possible to obtain if not exact 

quantitative, then in any case correct qualitative results. 

Let us consider In this plan the character of the changes of the 

coefficient of heat transfer during flow of a vapor in the region of 

near critical (in a thermodynamlc sense) parameters. 

to 
icoal/m2.g. degrees 
a —fl  

•   - / /L 2 

yi ̂  

^ 

i 

— —= ^ 

S^S A, 
^ 

«^ 
to. 

300   W     320    JJO    340    350   380    3fO    380    390  400  *€ 

Pig. 50. Change of coefficient of heat trans- 
fer during flow of water and steam in the 
region of critical parameters from the experi- 
ments of A, A. Armand et al.:  1 — P = 240 atm; 
2 - P = 260 atm; q = 1.7 • 105 kcal/m2 . hr; 
7w = 650 kg/m2 .sec. 

In Fig. 50 are shown the results of the experiments of A. A. 

Armand on the determination of the coefficients of heat transfer 

during flow of steam having supercritical parameters in a cylindrical 

pipe. As can be seen, during passage through the critical temperature 

there is observed a sharply expressed maximum of the coefficient of 

heat transfer. Such a course of the curve ct(T) is analogous to the 

course of the dependence c (T) in the region of critical parameters. 

In Fig. 51 is shown a comparison of the results of the experiments 

of Z, L. Mlropolskly, M, A. Styrikovlch, and M. E, Shitsman with 

calculations by formula (6,15). No unambiguous relation between the 

formula and the experimental data on the graph is observed. An ana- 

logous result was also obtained in the above-mentioned work of 
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dtessiisäStt 

(QQHO t 9     4   5*7*9» 

Flg.  51.    Comparison of   experiments of Z. L, 
Miropolskly,  M.  A.  Styrlkovlch,  and M.  E, 
Shitsman with Formula (6.13). 

A. A. Armand,    At the same time, according to the experiments of 

V. E. Doroshchuk and V, L.  Lel'chuk, at ^ •• 1 formula (6.15) Is also 

valid In the region of supercritical parameters  (Fig.  52).    Conse- 

quently,  deviation of the experiments with 

calculations by formula (6.19) are connected 

with the nonlsothermalness of the stream. 

During simultaneous change of the 

quantities c    and p the Intensity of tur- 

bulent heat transfer will be determined by 

the relation 

^^.0.4        jfcajgMP^O 
0.4 

4fi </ <«   4.9  %9 it   M   M 

Pig. 52.    Heat transfer 
for critical parameters 
and quasi-isothermal 
conditions from the ex- 
periments of V.   E. 
Doroshchuk and V.  L. 
Lel'chuk. 

^=!»/« 
iw_ 

*y *1 (6.58) 

where 1 is the specific enthalpy. 

The limiting relative law of heat trans 

fer is derived from equation (6.58) by the already known method: 

iH/i/1^) (6.59) 
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But in distinction from equation (2.69)  In the given equation 

St = 

t_   l*f~l 

fta«l«tT-U (6.60) 

In the region of near critical parameters the specific volume 

of the vapor is almost a linear function of the enthalpy, i.e., for 

definite intervals of Al formula (6.47) can he applied, if in it we 

introduce the value of ♦ from (6,60). Then the integral (6.59) is 

expressed by formula (6.57)* if we compare the heat flux qwall. We 

have 

(6.61) 

Multiplying and dividing the left part of formula (6.6l) ^y At, 

we find that it is applicable to the ratio of the coefficients of 

heat transfer. 

In Figs. 55 and 5^ are given the results of the treatment of the 

experimental data on heat transfer to vapors of water, carbon dioxide, 

and oxygen in the region of near critical parameters. The logarithmic 

straight line, drawn on this graph, is calculated by the formula 

Nmv = 0,023/»/v4/&;•'/ ^ \2. (6.62) 

Physical properties, entering into the criterions HOQ, Pr« and 

Re are referred to zhe  average stream temperature by the best content. 

It is possible to ascertain that the introduction of a correction 

by formula (6.6l), to a significant degree, approaches the experimental 
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data with the formula for quasi-Isothermal conditions. Thus, also 

In this case the influence of the nonlsothermalness basically Is ex- 

pressed via a change of the vapor density along the cross section of 

the turbulent stream. 

V, V. Krasnoshchekov and A. I. Protopopov proposed the empirical 

dependence 

where 

(6.63) 

{-vjtri'^r 

Pig. 53. Comparison of experimental 
data on convectlve heat transfer In 
the region of critical parameters with 
the limiting formula (6.62), O - ex- 
periments of Z. L. Mlropolskyl and 
M, E. Shltsman (HpO); O— experiments 

of A. A. Armand (HpO); # — experiments 

of Bringer (COp); D— experiments of 

Dickinson (HpO)« x — experiments of 

V. S. Protopopov (COp). 
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In the region of the near critical state of the vapor the first 

of these factors Is practically equal to 1, 

Formula (6.63) gives quali- 

tatively the same relation between 

the change of the coefficient of 

heat transfer and the temperature 

difference, as the limiting 

formula (6,62).  It is possible 

to note in connection with this, 

that during criterial treatment 

it is expedient to introduce the 

ratio ^äll. 

Naturally, the given analysis cannot pretend to a full reflection 

of the whole variety of factors, determining such a complicated pro- 

cess, as heat transfer for near critical parameters of the vapor. 

However, from data presented it is clear that at least one of the 

important sides of this phenomenon is explained by the theory of the 

limiting relative laws of heat transfer in a gaseous medium. 

Fig. 5^. Comparison of experi- 
mental data on convectlve heat 
transfer to oxygen In the region 
of critical parameters with the 
limiting formula (6.55). — t>y 
formula (6.52); O — experiments 
of Powell. 

■.»»^* 
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CONCLUSION 

Definitions of Cyrillic Items In Order of Appearance 

CT = wall « wall 

T = t = Thermal, Turbulence 

Kp = cr = critical 

The proposed theory of the limiting relative laws of friction 

and heat transfer in a turbulent boundary layer of gas is based on 

two known theoretical conditions, which express the relation between 

turbulent friction and the averaged motion in a flat boundary layer 

in the form of equations (2.2) and (2.4). 

The problem of the influence on the coefficient of friction of 

the nonisothermalness, compressibility, diffusion, and pressure grad« 

lent is reduced to the integral 

Z = 

where 

An analogous equation is also obtained for the relation 

» ••=(-£-)*.- 
This integral at I» -* oo in a number of cases has a limiting ex- 

pression of the form 
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1. 

(2.30) 

Distribution of tangential stresses along the cross section of 

the boundary layer T =       is approximated by a polynomial, the 
wall 

coefficients of which are calculated from the boundary conditions, 

ensuing from the determination of the boundary layer. 

The relation between the gas density and the velocity profile 

is established via the equation of state and coefficient of nonsimi- 

larity of the stagnation temperature and velocity fields. 

Thus, problem is reduced to an analytic investigation of the in- 

fluence of the nonisothermalness, mass transfer, and pressure gradient 

on the relative changes of the coefficients of friction and heat 

transfer. 

Values of the coefficients cf,0 and itQ can be determined on the 

basis of the available reliable experimental data for isothermal 

streamining of a plate. 

For streamlining of an impenetrable plate by an unbounded stream 

of ideal gas an exact solution of the limiting equation (2.50), ex- 

pressed by formula (3.^7) for subsonic and by formula (3.^8) for 

supersonic flows is obtained. This solution does not contain empirical 

coefficients (including "constants of turbulence") and is not connected 

with any sort of special type of semi-empirical theories of turbulence. 

cf      Bt ** 
The weak dependency of the ratios   and %£      on the R»  and 

## cfo    •'o 
]tet numbers allowed us to extend the limiting laws to flows with 

finite values of the Reynolds numbers. 

For an Impenetrable plate in practice a first approximation 

expressed by formula (3.58) appears to be sufficient. 
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In the case of a permeable surface the Influence of the It number 

on the relative laws of resistance and heat transfer Is still less, 

due to perturbations, introduced in the near-wall region by a trans- 

verse stream of substance.    Qualitatively correct and quantitatively 

satisfactory theoretical formulas are obtained in an approximation, 

expressed by the equation (for a plate) 

i 

f       == «I. 

where b =  wall wall lB the wall permeablllty factor. 
cf0 p0 w0 

At f = 0  this integral gives the critical value of the factor 

b. 

It is shown, that for subsonic flows of a gas the exact limiting 

solutions are approximated very well by formula 

\ r * +i / 
(4.30) 

For values of b ^ solutions are given that take into account the cr 

influence of nonisothermalness and heterogeneity of the boundary layer. 

For flows with significant positive pressure gradients it appeared 

to be possible theoretically to determine the critical parameters at 

the point of breakaway of the boundary layer from an impenetrable wall. 

It is shown that breaking away is characterized by a critical value 

of the form parameter f, wher« by the quantity f ^ is a weak function 

of the It  number. Dependencies of the critical parameters of break- 

away on the temperature factor and the N number are obtained. 

In connection with the fact that the critical value of the form 

parameter f remains practically constant, but not the form parameter 
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Pf 
r - -—, as was assumed previously, a new method of solution of the 

cf0 
momentum equation Is proposed. General solutions of the equations 

of energy and momentum for flat and axlsymmetrlc boundary layers on 

a Impenetrable wall are taking Into account the nonlsothermalness, 

compressibility, and pressure gradient. 

For permeable walls solutions of the equations of energy and 

momentum for relatively small values of the form parameter f are given. 

The relative influence of nonlsothermalness and mass transfer on 

friction and heat transfer in the turbulent flow of gas is connected 

with a change of the density in the nucleus of the boundary layer and 

minutely depends on the molar viscosity and thermal conductivity. 

Thus, establishment of the fact of the existence of the limiting 

relative laws of friction and heat transfer for a turbulent gas stream 

allowed us to give a certain, logically consecutive method of research 

of the considered problem. 
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APPENDIX      I 

SUMMARY OF BA3IC CALCULATION FORMULAS 

I.I.    Streamlining of an Impenetrable Plate 

Coefficient of friction during Isothermal flowi 

r/t=   (?.5 In*"+ 3.8)1  ' (I#1) 

Coefficient of heat transfer during quasl-lsothermal flow1 

54    (».8l«il»r^3.8)» (1.2) 

Limiting relative laws of resistance and heat transfer (e «1 is 

assumed): 

a) during subsonic flow 

b) during supersonic flow 

T = --L-- trcsln W-IHyAi 

»     4(4*-!)(♦• +A*)+ (1*)» 

- ire lin A^  f 

(1.^) 

1Durlng use of the exponential approximation., 

where the coefficients B and m are taken from Table 3.1, 
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Relative laws of resistance and heat transfer taking into account 

the finiteness of the |i number (£ «1); 

a) during subsonic flow 

[K  1»  8.2(4-I) >' f^, 4- l| 

b) during supersonic flow 

(♦•-1)11-8.2 1 e/t) Y ,  4(*»_l)(^ + 4^ + (4^ 

_ arc sln    
l6'4^-1» ^J^l— (1.6) K ♦(♦♦-!)(♦• +A% + (A i)« 

The relation of the average coefficients of friction and heat 

transfer at T all ■ const and a turbulent layer, starting from the 

leading edge of the plate, 

(-*_)  =pL.)  =^, (1.7) 
I «p.9 J**x      \   <h   }*ex 

Average coefficient of friction for an isothermal turbulent 

layer, developed from the leading edge of the plate 

«>o = 0,45Pilg/fcrr
rM. (1.8) 

Coefficient of heat transfer for a dynamic turbulent boundary 

layer, developed from the leading edge of the plate and the initial 

heat-insulated section with length XQ 

^»^ [ ~r~j  • (i.9) 

I, II. Streamlining of a Permeable Plate II. Streamlining of a Permeable Pi 
during^Subsonic Flow (limiting laws! 

Relative law of resistance 

■im (na) 
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m «**'** 

»Ah«. (H.2) 

Critical value of the wall permeability parameter: 

a) Isothermal, uniform boundary layer 

^ = 4; (II.5) 

b) nonlsothermal, uniform boundary layer at ^ < 1 

c) nonlsothermal, uniform boundary layer at V > 1 

^=Tn-.{,,c"" "V^)' (II.5) 
a graph of the function b (V) Is given Fig. 17; 

d) isothermal, nonunlform boundary layer at R' > RQ (p. < M-Q)» where 

p. Is the molecular weight of the gas 

»„«1 + 3-^-; (II.6) 

e) isothermal, nonunlform botindary layer at R1 < It.  (p.1 > M-0) 

^«M7 + 2.53-^-; (II#7) 

f) nonlsothermal, nonunlform boundary layer 

^%0.25 ^, *„,, (II.8) 

where b „. and b    « are calculated,   respectively,  by formulas  (II.4), crl cr2 •» \ / * 
(II.5),  and (II.6). 

The relative law of heat transfer has the same form as (II. 1), 

but Instead of the parameter b the thermal parameter of wall 

-143- 



•I* I 

permeability is introduced: 

*.=  ./X*:— dl.?) 

Values of b., rt^ » brtW. t er   cr 

I. Ill, Critical Parameters of Breakaway of the Boundary 
Layer from an Impenetrable Wall "^^' 

Critical parameters at point of breakaway of isothermal boundary 

layer: 

-/., * 0.010; (IH.i) 

H^l,%7; (III.2) 

(-^-0.16. (III. 5) 

See also Table 5.2. 

Critical parameters during nonlsothermal, subsonic flow, see 

Figs. 56, 57, and 58. 

Critical value of parameters during supersonic flow, see Figs. 

59 and ^0, 
5* 

Change of parameter H = -75- 
6 

H~\+0fi7}(-   V**        V"7. (111.4) 

where 

The relative change of the coefficient of friction under the 

influence of a pressure gradient is determined from Fig. 28, 

The St number in the range of values It  < lO5 can be considered 

practically independent of the pressure gradient. 
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► i m m-mm 

(IV.l) 

I. IV. Integrals of the Energy Equation 

Subsonic stream on an Impenetrable surface 

The quantity f.   Is calculated by formula (1.3). 

Supersonic flow on an impenetrable plate 

xät*m äx+i**: AW 'r1*. (IV-2) 

The quantity V*. is calculated by formula (1.4). 

During supersonic flow 

Ar=.7^-r<r. (IV.3) 

The local value of the Stanton number, determined from the calcu- 

lated value of ItJ*, 

«= *■.(-*-)-«.. (lv<4) 

During subsonic flow M-QQ " ^n* 

Subsonic flow on a permeable surface 

+*]Af**dXT{R€r*r)t
x:

mr*. (IV.5) 

Distribution of supply of cooling gas along the length of the 

contour (coordinate X) 

;£ --£-*-w- (iv.6) 
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Local value of the Stanton number 

Si~YJi-*!-]'St.. (IV.7) 

Local heat flux 

«cr^gC^U'ATSt. (IV,8) 

Initial temperature of the cooling (injected through the wall 

into the boundary layer) gas 

r.^r,,- -^—. (IV.9) 

During evaporation and sublimation« 

*«»'*/,; (IV. 10) 

-||-=*TÄ-: (IV.ll) 

i 
i + 

+ (*#rAr)i:-r (iv. i4) 

The quantity *t i8 calculated by formula (1.3). 

In the case of gas injection and given values of T., T v,, and 

T0 in formulas (IV. 10) - (IV. 13) instead of the criterion K is Intro- 

duced the ration 

T„ - Tu 
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I.V. Integrals of the Momentum Equation 

Subsonic flow on an Impenetrable surface 

ifc" = m7'[ l+2
m   a^ f •' <,+-M «M^-f 

where 

The quantity f* Is determined by formula (1.5). The quantity 

H _ Is determined from the graph of Pig. 37. 

Local value of the coefficient of friction, determined from the 

calculated value of li , 

f, = W'j ̂ (V.2) 

where *-. Is determined from Fig, 28. 

Value of the form parameter 

Critical value form parameter Is determined from the graph of 

Fig. 36. 

Supersonic flow on an Impenetrable plate 

x I 

-Vi 

U* + "   •n-.dJC-r [Re** Ü'JÜ "P^. ( V. 4) 

The quantity ft Is determined by formula (1.4). The quantity 

H _ Is determined from the graph of Fig. 40. 
c r 

The value of the form parameter for the calculated value of Bt 

y_  t»** äU 
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Ht i 

The critical value of the form parameter Is determined from the 

graph of Pig. 59. 

The local value of the coefficient of friction for 1» , deter- 

mined by (V.4), 

Subsonic flow on a permeable surface at small f 

Local value of the coefficient of friction for Re  by (V.7) 

'/=''('-_L-)V (v>8) 

I.VI. Integrals of the Equations of Energy 
and Momentum for •Axlsymmettlc Flow 

During axisymmetrlc flow the Integrals of the energy equation 

have the same form as In the case of flat flow (see Section I.IV), 

but instead of the quantity AT the product RAT enters, where R is the 

radius of the surface of the body. 

Correspondingly, in the Integrals of the momentum equation during 

subsonic flow Instead of the quantly wj, the quantity R wg is intro- 

duced. 

Local coefficient of heat transfer in an axisymmetrlc nozzle 

"—r^^A-Tirrn-m-r* 
e^)'*'— (VI.l) 
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where 

DM" - f      0+«)**«..       {P.,   *>     ",/_LlJ_|M v 

^("^r •/^^^(-^j' "^r-      (vi.2) 
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APPENDIX II 

EXAMPLES OF CALCULATIONS 

A. Heat Transfer in a Supersonic Nozzle 

There exists a supersonic nozzle, the geometric dimensions of 

the flow-through part of which are shown In Fig. 4l and In the first 

two lines of Table II. 1, The parameters of drag of air In the 

nozzle: p00 - 4.49; TQ « 5.9^.6
0K. 

Temperature of the wall T ■,, = 3470K Is constant along the 

length of the nozzle. 

Distribution of the local coefficients of heat transfer along 

the length of the nozzle and the corresponding distribution of heat 

fluxes on the wall is found: 

^ = «(7^ - T„). 

Parameters of air T = T0:  fr00 = 0.725; 

IIM-3.I2 • lO-«    k«.Mo/m2|     C,-0.251     koalA«'deg| 

h,= —^r. =  ^^ = 2,60   kg.-oVl 
f*7ft 9.81   29.27.899.6 

XM—0,0381 kcal/m'hr'deg. 

Hence 

0.203 

Take m » 0.25 and B - 0.0129.    Results of further calculations 
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täk m t *»** mm m .1 

are given In Table II.1. 

B, Cooling of a Porous Plate 

A plate of length 1 m Is streamlined by a flow of air with a 

temperature t0 * 2000
0c, and Is cooled by cold air, passed through 

the pores of the plate, flow velocity of the hot air w0 ■ 50 n/sec. 

It Is necessary to determine the specific flow rates of the coolant air, 

needed to maintain the temperature of the plate constant, equal to 

»wall " 500OC. 

The Initial temperature of the coolant air Is t1 ■ 500C (diagram 

of problem Is given in Pig, II,1), 

By formula (II.4) we determine the critical parameter of injec- 

tion 

By formula (IV. 15) we determine the quantity b. : 

MO-30 7.71»   y. A.sTJW- aouo-aoo        i.i 

(/ MCg-T —'H^ 
By formula (5.94) we determine the parameter f: 

f = 2.44 • J5=|a; =0.764. MO—MO 

Fig. II.1. Diagram for calcu« 
Ration of the cooling of a 
porous plate. 
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By formula  (V.7) we determine 
## 

1.110»;   », = ^55-10-« 
MO 

(^ = o,oi5S^-: 

i?#** = (1.1 • lO»' 0,0128 • 3.»* • 1.25)M ^s lOOO-Y"". 

By formula (1.1) we determine the local values of cf0.    After 

substitution of the results of the preceding calculations we have 

We determine the flow rate of coolant air: 

„       7.S • 2.44 ■ O.ttPftJ 
Tn^n^VaWf-^* ** 

We calculate the local values of the coefficients of friction. 

'/ = '„* = 0,00342 
*"•* 

Table 11,2, Results of Calculation of Cooling of a Porous Plate 

M M 0.3 11.4 M 04 M 04 «.« I.« 

7*11*1*11 \m2M J 0.08SS|O.0fi88|O,O62S 

4.ai 
9.13 

6,40 
3.66 

4,76 

9,3 

0.0498 
4.13 
9.0 

0,0479 
3,96 
1.92 

0.0481 

3.19 

1.85 

0,0443 

3,7 

I.« 

0,0489 
3.69 
1,75 

0,0491 
9,69 
1.71 

0.0413 

3.44 
1.875 

We determine the specific heat flux: 

*« = *,• T««« Uet - *|) = 

0.34 » 7.5 ■ 9.44 .0.0022C (500 - 30) = jo  

Results of the calculations are reduced In Table II.2 and are 

presented In Fig, 11,2, 
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Flg. II.2, Results of calculation 
of cooling of a porous plate. 

C. Heat Transfer in the Inlet Section of the Pipe 

In a cylindrical pipe of D = 0.011 m air enters, with parameters 

at the inlet, T0 = 297.5
0Kj G = 22.7 Kg/hour,  p. = 1.85«10"6. The 

temperature of the wall of the pipe is constant and equal to T •,, = 

= 572,50K.  It is required to determine the distribution of the 

specific heat flux along the length of the pipe. 

We find that 

4-22.7 = 4.06 10«; 
— 3800• 9.81 ■ 1.83. l(r*-3.14-0.11 

^r. = 0.725; Pe^  = 

-ReDPr = 2t95- ID«; 

•>-1.25. 

Equation (6,49), taking into account the given parameters, la 

reduced to the form: 

Jif = 60J0,616 • Pe**0Ä-0,89[2,3lg X 

^^11.6» ^-.67.4      ^ 2arc       JI 

^  p$**o* - 11.68 Pr^* - 6/.4 67 ,i-P0**M    J) 

♦ » 
Assigning the values fit      = 200, 400,  1000,  2000, 4000, by this 

equation we determine the corresponding values of X, 

• m.   i- 1 ■ ■« ' 



■ 

By formula (6.50) we determine the specific heat flux. Taking 

Into account the given parameters, equation (6,50) takes the form: 

*.= '»■» ea-Jffi^ 

Results of the calculations are reduced In Tahle 11,3, In Fig, 

11,5 are presented the results of calculations and experimental data 

of B. S, Petukhov, obtained for the Indicated parameters. As can be 

seen from the graph, the agreement of the analytic calculation with 

the experiment on heat flows as well as by values of f9     are fully 

satisfactory.  On the same graph are presented the results of calcu- 

lations for streamlining of a flat plate by the formula of B. S. 

Petukhov, From the graph It Is clear that the best agreement with 

experiment Is given by the proposed method of calculation. 

Table 11,3.  Results of calculation of 
Heat Transfer In the Inlet Section of 
the Pipe 

ßr* »" 4'«! H«l .14» «in 

X 1.49 3.74 10.45 22,*   47.S 

^1*-$$- 
16.2 14.1 12.6 12.42 1.1.7 
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Flg. 11,5. Results of calculation of 
heat transfer In the Inlet section of 
the pipe: 1 — qwaiT according to the 

method of the authors 2 — CLjan accord- 

ing to the method of B. S. Petukhov, 3 — 
^wall by the empirical crlterlal formula 

for stabilized heat transfer In a pipe, 
^ — fit according to the method of the 
authors, O — experimental data of B. S. 
Petukhov for qwali * ® — experimental 

data of B. S. Petukhov for ft    . 



.* M 

I, P. ölnzburg. Turbulent boundary layer In a compressible 
fluid.  "Vestnlk. Leningr. University," 1961, No. j. 

A. A. Oukhman and N. V. Ilyukhin. Bases of study about heat 
transfer during flow of gas at high velocity. Mash^.lz, 1950. 

G, A. Gurzhlenko. Application of universal logarithmic distribu- 
tive law of speeds to study of boundary layer and drag of well-streern- 
lined bodies for large Reynolds numbers. Tr. Central Aero-Hydrodynemlc 
Institute, Issue 257, 1956. 

A. A. Dorodnitsyn. Boundary layer in a compressible gas, 
"Applied math, and Mechanics." Vol. VI, 1942, p. 471-484. 

B. A. Dmltrlev. Heat transfer due to free convection during 
liquid cooling of gas turbine blades, "Izv. Academy of Sciences 
of USSR, OTN, 1956, No. 5. 

B. V, Dedyakin and V. L. Lel'chuk. Heat transfer from a wall 
to a turbulent flow of air inside a pipe during large temperature 
differences and calculation of the wall temperature. "Heat-power 
engineering," State Power Engineering Publishing House, 1958, No. 9. 

L. M, Zysina-Molozhen, Turbulent boundary layer in the presence 
of longitudinal pressure drop, "Zh, tech, physics," Vol, XXII, Issue 
11, 1952, 

L, M, Zysina-Molozhen. Method of approximation of calculation 
of a thermal boundary layer, "Zh, tech, physics," Issue 11, 1958, 

L. M. Zysina-Molozhen. Investigation of influence of longitudi- 
nal pressure gradient on development of a boundary layer "Zh. tech. 
physics," Vol. XXIX, Issue 4, 1959* No. 4. 

V. M. levlev. Certain questions of hydrodynamic theory of heat 
transfer during flow of an Incompressible fluid. "Reports Academy 
of Sciences of USSR," 86, 1952, No. 1. 

V. M, levlev. Certain questions of hydrodynamic theory of 
heat transfer during flow of gas. "Reports Academy of Sciences of 
USSR," 86, No. 1, 1952. 

N. I. Ivashchenko. Influence of the temperature factor on heat 
transfer during turbulent flow of a gas in pipes, "Heat-power 
engineering," State Power Engineering Publishing House, 1958,.No. 2. 

L, N, 11*111. Influence of temperature conditions on heat transfer 
and resistance during flow of air in a pipe, "Boiler-turbine construc- 
tion," Mashgiz, 1951, No. 1. 

I. Ye, Idel^hlk, Reference book of hydraulic resistances. 
State Power Engineering Publishing House, i960, 

L. Ye, Kalikhman. Turbulent boundary layer on a curved surface, 
streamlined by a gas, 1956. 

-157- 



. 

■ L. Ye, Kallkhman.  Turbulent boundary layer of Incompressible 
fluid on a porous wall.  "Zh. tech. flz," Vol. XXV, Issue 11, 1955. 

L, Ye. Kallkhman. New method of calculation of a turbulent 
boundary layer and determination of the point of breakaway.  "Reports 
Academy of Sciences USSR," XXXVIII, No. 5-6, 19^5. 

N. Ye. Kochln, I. A. Klbel', and N. V. Roze. Theoretical 
hydromechanics. State Technical Press, Vol. II, 19^8. 

S. I, Kosterln and Yu, A, Koshmarov, Turbulent boundary layer 
on a flat plate during gradlentless streamlining by a compressible 
fluid, "Zh, tech, physics," Vol. XXIX, Issue 7, 1959. 

S, I, Kosterln, I, A, Kozhlvov, and A, I, Leont^v, Influence 
of pulsations of pressures on convectlve heat exchange In a turbulent 
boundary layer,  "Heat-power engineering," State Power Engineering 
Publishing House, 1958, No. 5. 

S. I, Kosterln, A, I, Leont'ev, and V, K. Fedorov. Methods 
of generalisation of experimental data on convectlve heat transfer 
during motion of a gas In the Initial section of a pipe, "Heat- 
power engineering," State Power Engineering Publishing House, No. 7, 
1961. 

G, N, Kruzhllln,  Investigation of a thermal boundary layer. 
"Zh. tech, physics," 1936, No, 5. 

S, S, Kutateladze. Principles of the theory of heat transfer. 
Mashglz, 1957# 1962. 

S. S. Kutateladze, Certain questions of heat transfer and 
friction resistance In turbulent flows, "Heat-power engineering," 
State Power Engineering Publishing House, No. 7, 1956. 

S, S, Kutateladze,  Influence of temperature factor on subsonic 
turbulent flow of gas,  "Applied mechanics and tech. physics," 
I960, No. 1, 

S, S, Kutateladze and A. I. Leont^ev. Turbulent friction on a 
flat plate in a supersonic flow of gas,  "Applied mechanics and tech. 
physics," I960, No, 4, 

S, S, Kutateladze and A, I, Leontfev. Laws of resistance and 
heat transfer in a turbulent boundary layer of compressible gas and 
method of calculation of friction and heat transfer.  "Inzh.-physics 
zh.," 1961, No. 7. 

S. S, Kutateladze and A. I, Leont'ev, Laws of resistance and 
heat exchange in turbulent boundary layer of compressible gas. 
"Applied mechanics and tech. physics," 1961, No. 4. 

Ye. A. Krasnoshchekov and V, S. Protopopov. Heat transfer in 
the supercritical region during flow of carbon dioxide and water in 
tubes.  "Heat-power engineering," State Power Engineering Publishing 
House, 1959, No. 12, p, 26-30, 

-158- 



, , 

L, D«. Landau and Ye, M. Llfshlts.  Mechanics of solid me.dl8.. 
Edition 2,  State Technical Press, 1955. 

Yu, V. Lapln,  Friction emd heat transfer In a compressible 
turbulent boundary layer on a plate In the presence of Introduction 
of substance, "Zh, tech, physics," Vol. XXX, Issue 8, I960,., 

YU. V, Lapln. Friction and heat tranfer In a compressible tur- 
bulent boundary layer In the presence of chemical reactions, caused 
by Introduction of a foreign substance.  "Zh. tech, physics," 
Vol. XXX, Issue 10, 1060. 

A. I. Leont'ev.  Calculation of turbulent friction during. 
streamlining of a flat plate by a compressible gas. "Problems of 
power engineering." Publishing House of Academy of Sciences iof USSR, 
1959. 

A. I. Leont'ev.  Calculation of turbulent heat and mass transfer 
In the period of constant speed of drying. Nauchn, tr, Moscow 
Woodtech, Inst,, Issue 9, 1958, 

A, I. Leont^ev and V, K. Pedorov.  Influence of conditions of 
entrance on the law heat transfer In the Initial section of a cylin- 
drical pipe.  "Inzh, physics zh.," 1961, No, 7. 

A. I, Leont'ev and V, K. Fedorov. Application of the theory 
of local modeling to generalization of the experimental data on 
convectlve heat transfer. Collection reports Interhlgher educational 
Institution, Conference on theory of heat transfer, Moscow Inst. 
Inzh. transport, 1961. 

V. 0, Levlch, Physical chemistry of hydrodynamics, Flzmatgiz, 
1959. 

V. L. Lel'chuk. Heat transfer from the wall of a pipe to 
superheated steam at high pressures.  "Izv. VTI," 1948, No. 5*. 

L. 0. Loytsyanskly. Aerodynamics of a boundary layer. 
Pgostekhlzdat, 1941. 

L, 0. Loytsyanskly. Mechanics of fluid and gas. Flzmatgiz, 
1959. 

L. G. Loysyanskly. Method of approximation of calculation of 
a turbulent boundary layer on the profile of a wing, "Applied math. 
and mechanics," Vol. IX, 1945, p. 435-448. 

... . 

A. V* Lykov.    Heat and mass transfer In drying processes. 
State Power Engineering Publishing House,  1956. 

A. V. Lykov and Yu. A. Milhaylov.    Transport theory of energy 
and matter.    Publishing House Academy of Sciences of USSR,  1959. 

D. K.. Lyakhovskly.    Convectlve heat transfer of spherical 
suspended particles with the surrounding medium.    "Boiler-turbine 
construction," 1947, No. 5. 

-159- 



Ye, M, Mlnskly. Statistical determination of path of displace- 
ment in turbulent flow,  "Reports Academy of Sciences of USSR," 
Vol, XXVIII, No, 8. 1940. 

M, A, Mlkheev, Principles of heat transfer. State Power 
Engineering Publishing House, 1936. 

M, A. Mikheev. Heat transfer and hydraulic resistance of a 
plate. Collection: "Convective and radiant heat transfer," ENIN; 
Academy of Sciences of USSR, I960, p. 25-52. 

V. P, Motulevich, Heat transfer and friction of a plate in 
flow of gas during formation of a turbulent boundary layer with 
porous supply of foreign substance. "Inzh.-physics zh.," Vol. Ill, 
No. 8, 19b0, p. 51-58. 

V, P, Motulevich, Heat transfer at the frontal point of blunt 
bodies, washed by fluid flow.  "Inzh.-physics zh.," Vol. Ill, No. 5, 
I960, 

V, P, Motulevich, Calculation of heat transfer and friction 
of a flat plate, blown by a supersonic flow in the presence of 
porous feed of gas and sublimation, "Izv, Academy of Sciences of 
USSR, OTN, series energ. and autom.," 1939, No. 1. 

Z, L, Miropol'skiy, M. A. Styrikovlch, and M. Ye. Shitsman. 
Heat transfer in steam generating pipes at high pressures. Problems 
of power engineering. Izd, Acadmey of Sciences of USSR, 1939« 

Z, L. Miropol'skiy and M. Ye. Shitsman. Heat transfer to water 
and steam at variable heat capacity (in the near critical region), 
"zh. tech.-physics," Vol. 27, Issue 10, 1937. 

Z. L. Miropol1 skiy and M. Ye. Shitsman. Permissible heat fluxes 
and heat transfer during boiling of water in pipes. Collection: 
"Investigation of heat transfer to water, boiling in pipes at high 
pressures." Atomizdat, 1938. 

V. P. Mugalev. Experimental investigation of subsonic turbulent 
boundary layer on a plate with injection.  "Izv. higher educ. started. 
MVO USSR," series "Aviation technology," 1939, No. 5. 

A. P. Mel'nikov. Turbulent boundary layer of a wing and its 
calculation, tr. Leningr. air force academy. Issue 3, 1944, 

B, S, Petukhov, A, A, Ketlaf, and V, V. Kirillov. Experimental 
investigation of local heat transfer of plate in a subsonic turbulent 
flow of air.  "Zh. tech.-physics," Vol, XXIV, Issue 10, 1934, p, 
1751-1761. 

P. N. Romanenko, A. I. Leont^ev, and A, N. Obllvin, Investiga- 
tion of resistance and heat transfer in a turbulent.boundary layer 
at positive pressure gradients. Collection, Reports interhigher edu- 
cational institution. Conference on theory of heat exchange,, 1961. 

-160- 



• 

L. I, Sedov, Methods of similarity and dimensionality In 
mechanics OTTI, 195^. 

L, Prandtl». Hydroaeromechanics, Foreign literature Publishing 
House, 1949. 

K. K, Fedyaevskly and A, S, Glnevskiy. Method of calculation 
of turbulent boundary layer in the presence of a longitudinal 
pressure gradient,  Zh, tech, physics," Vol. 2, 1957, 

P, Prankl1 and V. Voyshel». Friction in turbulent boundary layer 
neat a plate in plane-parallel flow of compressible gas at high 
velocities, tr. central Aero-Hydrodynamic Institute, No, 321, 1957. 

S. A, Khrlstlanovlch, V, G, Oal'perln, M, D, Mlllionshchikov, 
and L. A, Slmonov. Applied gas dynamics, 1948, 

G. 0, Chemyy, Plow of gas with a large supersonic velocity, 
Plzmatglz, 1959. 

S. Chepmen, and T. Kaullng. Mathematical theory of nonuniform 
gases. Foreign literature Publishing House, I960, 

M, P, Shlrokov, Influence of the laminar sublayer on heat trans- 
fer during high velocities, "Zh, tech, physics," Issue 1, 1937. 

M, P, Shlrokov, Theory of heat transfer and hydraulic resistance 
during high flow velocities, "Zh, tech. fiz,,11 Issue 3, 1937. 

M. P. Shlrokov, Physical bases of gas dynamics and application 
of it to the processes of heat transfer and friction, GFMI, 1958, 

G, Shlikhting, Theory of a boundary layer. Foreign Literature 
Publishing House, 1956. 

E, R, Ekkert, Introduction to the theory of heat and mass 
transfer. State Power Engineering Publishing House, 1957. 

M. Yakob. Questions of heat transfer. Foreign Literature 
Publishing House, i960. 

W. S, Bradlfleld and D, V. De Coursin, Measurements of Turbulent 
Heat transfer on Bodies of Revolution at Supersonic Speeds. "J. Aeron. 
Scl." Vol, 23, No. 3, 272-274 (1956). 

H. Blaslus. Das Ähnllckeltsgestz bei Reibungsvorgangen in 
Flüssigkeiten,  "Porcsh,-Arb, Jnng,-Wes.," Nr, 131 (1913). 

R, P, Brlnger and J, M, Slllth, Reat transfer in Critical Region, 
"A. J. Ch. E, Journal," 1957, Vol 3, No, 1, 

A. Burl., Eine Berechnungsgrundlage fur die turbulente 
Grenzschicht bei beschleunigter und Verzögerter Grundstromung. 
Dissertation. Zurich, 1931. 

-161- 



K L. . M  ''"»*•  I 

D. Chapman and R, Kester. Measurements of Turbulent Skin- 
Friction on Cylinders In Axial Flow at Subsonic and Supersonic 
Velocities. T,J. Aeron. Scl.," Vol. 20, No. 7, 441-448 (1955). 

D. Coles. Measurements of Turbulent Friction on a Smooth Flat 
Plate In Supersonic Flow.  "J. Aeron. Scl.," Vol. 21, No. 453-448 
(1954). 

F. Clauser. Turbulent Boundary Layer In Adverse Pressure 
Gradients. "J, Aeron. Scl.," 1954, Vol. 21, No. 2. 

N. L. Dickinson and C. P. Welch. Heat Transfer to Supercritical 
Water. "Trans. ASME," 1958, Vol. 80, No. 5. 

W. Dorrance and F. Dore. The Effect of Mass Transfer of the 
Compressible Turbulent Boundary-Layer Skin Friction and Heat Trans- 
fer.  "J. Aeron. Scl.," 1954, Vol. 21, No. 6. 

R. 0. Diesler. Analitical and Experimental Investigations of 
Adiabatlc Turbulent Flow in Smooth Tubes. NACA, TN, 1950, No. 2138. 

Van Driest. Turbulent Boundary Layer in Compressible Fluids. 
"J. Aeron. Scl.," 1951* Vol. 18, No. 3, 145-160. 

E. R. Eckert. Engineering Relations for Friction and Heat 
Transfer to Surfaces in High Velocity Flow, "J. Aeron. Scl.," Vol. 
22, Aug. 1955, 585-587. 

B. Fallls. Heat Transfer in a Transitional and Turbulent 
Boundary Layer at Supersonic Speeds. "J, Aeron. Scl.," Vol. 20, 
No. 9,  1953# 646-647. 

J. Friedman. A Theoretical and Experimental Investigation of 
Rocket-Motor Sweat Cooling. "Jet Propulsion," 1949, No. 79* p. 
147-154. 

E. Oruschwitz. Die turbulente Reibungshict in ebener Strömung 
bei Druckabfall und Druckanstieg. "Big. Arch.," 1931* Bd. 2. 

P. Orootenhuls. The Mechanism and Application of Effusion Cool- 
ing. "I. Roy. Aeronaut. Soc," 1959* Vol. 63* No. 578. 

■ 

F. K. Hill. Boundary-Layer Measurement in Hypersonis Flow. 
"J. Aeron. Scl.," 1956, Vol 23m No. 1, 35-42. 

Hacker. Empirical Prediction of Turbulent Boundary Layers 
Instability Along a Flat Plate with Constant Mass Addition at the 
Wall. "Jet Propulsion," 1956, Vol 26, No. 9. 

R. H. Korkegl. Transition Studies and Skin-Friction Measurements 
of an Insulated Flat Plate at a Mach Number of 5.8 "J. Aeron. Scl.," 
1956, Vol. 23, No. 2. 

Th. Karman. Mechanische Ähnlichkeit und Turbulentenz. Nachr. 
Oes. Wiss. Cötlngen. Math. Phys. Klasse (1930), 38. 

-I62- 



L ,_..__ mi ii^iiii' 

R. K. Lobb, E, M. Wlnkler, and J, Persh. Experimental Investi- 
gations of Turbulent Boundary Layers In Hypersonic Plow. "J. Aeron, 
Scl./ 1955, Vol 22, No.  1,  1-10. 

I.  Nlkuradze.    Untersuchungen über die Stromnugen des Wassers 
In Konvergenten und divergenten Kanälen.    VIJ Porschungsheft.  Nr. 
289, 1929. 

I,  Nlkuradse.    Qesetzmässigkelten der turbulenten Strömung in 
glatten Rohren,    "Porsch-Arb, Jng.-Wes.," No.  556  (1932). 

C.  C.  Pappas and A. F.  Okuno.    Measurements of Skin Priction 
of the Turbulent Compressible Boundary Layer on a Cone with Poreign 
Oas Injection.    "I. Aero/Space Sei.," i960, Vol 27,  No. 5. 321-353. 

C. C, Pappas.    Measurement of Heat Transfer in the Turbulent 
Boundary Layer on a Plat Plate In Supersonic Flow and Comparison with 
Skin Friction Results.    NACA TN,  1954, No.  3222,  June. 

L.  Prandtl.    Über die ausgebildete Turbulent.    "ZAMM," 5  (1925), 
136. 

W.  Powell.    Heat Transfer to Fluids In the Region of the Critical 
Temperature.    "Jet Propulsion," 1957, Vol 27, No. 7, 776-783. 

B. A.  Pinkel,    Summary of NACA Research on Heat Transfer and 
Friction for Air Flowing Through Tube with Large Temperature Differ- 
ence "Trans. ASME," 1954, Vol 76, No.  2. 

M.  W.  Rubesln.    An analytical and Experimental Investigation 
of the Skin Friction of the Turbulent Boundary Layer on a Flat Plate 
at Supersonic Speeds.    NACA, TN, 1951, No.  2305. 

W.  C. Reynolds, W. M. Kays,  and S. J. Kline.    A Summary of 
Experiments on Turbulent Heat Transfer from a Novlsothermal Plat 
Plate.    "Trans ASME," Series C,  i960. Vol.  82,  No. 4. 

H. Relchardt.    Die Wärmeübertragung in turbulenten Reibungsschich- 
ten,    "ZAMM," 20  (1940),  297. 

S. C. Sommer and B. J. Short. Free-Flight Measurements of Skin 
Friction of Turbulent Boundary Layers with High Rates of Heat Trans- 
fer at High Supersonic Speeds.    "J, Aeron Scl.k" 1956, Vol 23,  No. 6. 

D. A. Spence.    The development of Turt ulent Boundary Layers,   "I. 
Aeron. Scl.,* 1956, Vol 23, No.  1. 

R. B. Snodgrass.    Flight Measurement of Aerodynamic Heating and 
Boundary Layer Transition on the Viking 10 Nose Cone,  "Jet Propulsion." 
1955, Vol 25, No.  12, 701-707. 

Stratford.    The Prediction of Separation of the Turbulent Bound- 
ary Layer.    "J. Fluid. IMech," 1959, Vol 5, No. 1,  1-16. 

0. J. Taylor.    The Transport of Vorticlty and Heat Through Fluids 
in Turbulent Motion Proc. Roy. Soc. A, 135 (1932), 685. 

-163- 


