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ANNOTATION

In the book the theory of a turb-
ulent boundary layer of a compressible
gas 1s set forth or based on a study of
the relative change of the coefficients
of friction and heat transfer with growth
of the M number, the heat trsnsfer factor
AY and the wall permesbility factor b.
The exlstence 1s shown of a limiting lew,
corresponding to very large Re numbers
and almost full of self-simulation of
relative changes of the coeffilclents of
friction and heet transfer. On this
besis simple engineering methods sre pre-
sented for solving the basic problems of
friction and hest transfer in turbulent
flow of a gas past a solid body.

The theoretical conclusions sre com-
pared with experimental data.

The book 1s designed for scientists,

engineers of aserodynemics and thermophysics,

students of senior courses in these speci-

alties and mey be used as a guide for prac-

tical calculsetions in design offices,
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PREFACE

In nature turbulent flows are the most wide-spread, starting with
the flow of water in a stream and finishing with the motion of inter-
stellar gas. Flow of operating medla in machines and apparatuses of
contemporary technology in the overwhelming majority of cases 1s turb-
ulent, During high speed flight, in combustion chambers and the
nozzles of motors, in nuclear reactors, in high-forced gas equipment
and so forth streamlining of solid bodies of different shapes by =
turbulent stream of compressible gas takes place., In addition, flow
is accompanied by intense heat transfer or mass transfer of some sort
of matter.

As 1s known, aerodynamic drag and heat and mass tronsfer ere de-
termined by the conditions of the transfer of momentum, heat, and
matter in the boundary layer of gas or liquid forming near a stream-
lined surface, In a stream of compressible gas, all phenomena are
complicated by innate compressibllity and by changes of temperature,

connected with high glow velocities. In thls connection, the grest

attention, which has been allotted in the past few years to the problem

of the boundary layer of a compresslble gas 1s understandable, How-
ever, 1f the theory of a laminar boundary layer can be consldered as

basically completed, then with respect to the turbulent boundary layer

vii



the position to now, remains far from satisfactory.

The semli-empirical thecries of near-wall turbulence of Frandtl-
Karman and Taylor to a certain degree permitted, explanation ¢! *he
existence of a logarithmic veloclty proille in an isothermal f£1uid
current with weak pressure gradients and Impenetrar’ e surface, :xfe}-
slon of this theory to nonlsothermal I .:w with zerc pressure gradlents
was carried out in the works of F. I. Frank'! and V, V. Voyshel!,

A. A, Dorodnitsyn, R. Delsler, L. Ye, ¥2 ikhman, V. ¥, lyevlev, E. Ven
Driest, W. Dorrance and F. Dore, V. P. Motulevich, Yu., V. lLaepln, et al.
In the works of K. K. Fedyaevskly, V. Stsablevskly, L. &. Loytsyanskily,
et al. Certain problems are considered of thv Ti:rw o an incompressible
liquid in the presence of a pressure gradient in the Ilow region, not
close to the point of separation of the btoundary layer. In addition,

it 1s necessary to accept a series of additional, physlcally insuffi-
clently vallid, and sometimes contradictory assumptions. As a result
calculations by these methods substantielly differ amcng themselves,
which was noted repeatedly in the iiterature., Therefcre, 1t 1s rnot
surprising, that in engineering practice purely empirlcal methods of
calcuiation of friction and heat transfer in thne turbulent bcundary
layer of a compressible gas, based on the intrcduction of some "gov-
erning" temperature, have obtalned wide circulation, It 1is necessary
to note that in the semi-empirical methods of calculation it 1s also
necessary to introduce a "governing" temperature for calculation of
physical properties of gas in a viscous sublayer. The problem of the
parameters of separation of the turbulent boundary layer remalns the:-
retlcally nearly unexplored.

This monograph 1is devoted to discussion of *he limiting law of

change of the coefficient of friction in a turbulent boundary layer
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under nonisothermal conditlons, transverse flow of matter, and pressure
gradient as established by the authors. Thils law, derived for Re = o,
in the general form does not depend on empirical constants of turb-
ulence and 1s not connected with any special type of semi-emnirical
theories,

The known fact of the weak influence of the Reynolds number on the
relative change of the coefficlents of friction and heat transfer in
connection with nonisothermal conditions and transverse flow of matter
permits extending the limiting law to flows with finite Re numbers,
with good accuracy. As a result we managed to construct relatively
simple methods of solving the integral equations for the momentur and
energy of a turbulent bounday layer.

Theoretical results are compared with a large number of diverse
experimental data,

It is possible to propose that the possibillties of the new method
are by no means exhausted by the problems, considered in this mono-
graph and will be still developed, supplementing the existing theory
of a turbulent boundary 1layer.

It 1s assumed that the reader 1s acquainted with the princionles
of aerodynamics and the theory of heat and mass transfer,

The authors will be very grateful for all critical remarks,

which are raised by readers in connection with the material considered

below,
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CHAPTER I

BASIC EQUATIONS OF A TURBULENT BOUNDARY LAYER

1.1, Equations of Motion and Thermal Conductivity of a
Plene Boundary Layer of Gas

List of Designations Appearing in Cyrillic

CT = wall = wall
KD = kg
M = m

A stream of fluld forms near a streamlined surface a dynamic
boundary leyer, i.e., a reglon, in which the velocity of the fluid
changes from the velocity at the wall (for a nonrarefied gas it is
equal to zero) to a magnitude very close to the speed of an undistrubed
flow = Wy In the presence of heat transfer and diffusion thermel and
diffusion boundary layers appear, In a thermal boundary layer the
temperature 1n practic: changes from Twall to TO; in a diffusion
boundary layer the concentration at the diffusing substance changes

" '

!
from Pwall to Po Strictly speaking, for a dynamic boundary layer
the boundary conditions take the form;

|¥=0. w,=0; y-- 00, W, = W,. (1.1)



Due to a sharp change of speed in direct proximity to the well, fhne

exact conditions of (1.1) can be replaced by the app-oximate;
]y:ﬁ, w,=0; y=" w, =l —-19) 2w,

where € 1s a prescribed small magnitude,
In that sense we are speaking of a toundarv laver of finite thickress
8.

In experiments the value of & cern colncilde with the gsencitivity

of the measuring instrument.

In Fig. 1 1s given a diagram of a boundery layer on a certein
curvilinear surface.
In a plane boundary layer in the abhsence of slgnificant ftrensvers:

forces (for instance, centrifugal) the following conditions are ful-
filled:

9 . 9p
dy = dx '
_o < 9 .
ox oy '
Bf . P
d xt gy " )

(1.3)
where for f1 are understood wx’ T, and p.

In connection with this,
the equations of thermal conduc-
tivity, motion, and continuity
for a stationary, plane boundary
layer of compressible gas on an

impenetrable surface have the f-vm,

0 (l oT )_1_‘4:‘(%_)3=

Fig. 1. Diagram of a boundary 9y L9y y
layer on a curvilinear surface, =‘~H('l~"r Al +w, di )_ Aw, dp :
In front of the body is a T ox oy . dx

shock wave,



dp . ] dwyg \ _ "’" ouw, ’_dv, . 1.5
dx K dy ( dy )—'(‘«" dx +u"dy )' ( )
ofpwy) . Odpwy) _
S s oy =0.- (1.6)

At cp = const -—g%— = cp —%%—, what 1s practically true for a

uniform gas.

To these equations one should join the equation of state, determ-
lning the magnitude of the density of the gas p, and temperature func-
tions of the coefficlents of thermal conductivity and viscosity.

For a gas, obeying the Clapeyron — Mendleyev equation, we have

- P
"“__K—R_;' (1.7)

The coefficients of thermal conductivity and viscosity are re-

lated to the epecific heat via the Prandtl number,

{

. _&BS
Pr=—" (1.8)

For undissoclated gases the values of Pr and c_ change little with

p
temperature and pressure, Therefore, for such a medium practically

one may assume that

-%-::umﬁ. (1.9)

The magnltude of Pr depends chiefly on the number of atoms in the

molecules of the gases, and its order 1s given in Table 1.1.

Table 1.1. Order of Pr number for undissociuted gases.

Atoms 1 2 3 24

Pr number..........'...... 0066 0075 0084 1

OQutside the boundary layer frictional forces do not appear
oW
-J;ﬁ— = 0 ):and for steady-state flow

_3-



dp de,
3 B g =
dx Py

N (1.10)

Substituting in equation (1.4) the value of —%E— from equation (1.5),

we obtain the thermal conductivity equation for a plane boundary layer

in the form of M., F. Shirokov (at G const)
LA [7" (Pr —1) il ]}—
oy oy [T T 2%, )T
- 0T 9T
=gc,go(w,—;;-+'w,—s—.). (1.11)
Here
2
Te = 7. _Aw,
2¢¢, (1.12)

1s the temperature of stagnation.

1.2, Turbulent Viscosity and Thermal Conductivity
in a Plane Boundagy Layer

The real (actual) instantaneous characteristics of turbulent flow
- effect at every polnt disordered oscilllations around a certain mean

value, Thus, for the flow veloclity we have

E‘ ir.,, (1.13)

81}

w =

where -v"? — vector of the averaged velocity at a given point of flow,
¥ — vector of pulsational component, giving the deviation of
the true veloclty, at a given moment of time, from the averaged value,
In a gompressible gas the flow veloclty, pressure, temperature,
density, and flow + rate of the medium pulsate., The corresponding

equation of motion of a plane steady state boundary layer has the form

dp |, 0 [ Tow,
T Tdx dy (» oy Jy V")_
=W —+f,w..._.7'__ (1'114')



Here a line above a letter signifies averaging during a time fairly
large as compared to the period of pulsation.
In turn, the averaged product of the vector components of pulsa-

tion of tie flow + rate Jy and vector velocity pulsation Vi are

=

jy = ;V;V_v - E’.\' Vi o W, .\'.a’ (1'15)

where 6 1s the density pulsation,
=
By comparing in equation (1.14) the members P-75L and 7V, 1t
is possible to arrive at the conclusion that the latter value can be
consldered as some tangential stress, appearing in the averaged stream
under the influence of turbulent pulsations,

In a gas, obeying cguation (1.7).
dmp—p = —p 2
=p-e=—t0g (1.16)

and correspondingly

o= - ViV, + L2 8V, +-L VY, (1.17)

7

~le

where 8 1s the temperature pulsation.

The value

7y (1.18)

is called the coefficient of turbulent viscosity. This value is a
complex function of velocity and temperature,

The idea of the coefficlent of thermal conductivity At is developed
in an analogous manner,

In the method proposed the values by and Xt are not used directly

and only their ratio i1s important

Pr, = £, (1.19)

-5-



called the turbulent Prandtl number.

This value near a solid wall 1s close to unity.

1.3. Integral Equations of a Boundary layer

The equation of motion can be written recorded ir the form

ow,

¢y (4.20)

dw, de dw,
=, —— 6N
“ + o’ (‘ x (’.T y

o W
true for laminar and turbulent flows, 1f corresponding velues of
variables are introduced into it.

Integration of this equation with respect to y from O to D gives

RE ety s 0=
é
_ dw, 0w ow, c
‘o P x v y d’ ,’ »
(1.21)

On the outer boundary of the layer, by definition v = O and we = Wqe.

On the surface of a streamlined body

= Ten w.t=0- Pwy :jl-
Here
I =t e
(1.22)

1s mass flow veloclty of matter througn a suriece, This flow may be
as a result of a change of the aggregate state (evaporation, conden-
sation), porosity of the wall (blast of gas intc the boundary layer
or pumping from the boundary layer), chemical reactions.

Subsequently, & surface, on which Ji # 0, we will call permeable.

Taking into account these boundary conditions and the equation of

continuity, it is possible to transform equation (1.21) to the form

oLl SO ST S NP S, 2
dx LY : ] £ Qw, (1.23)
where
- e Y d?u\
H=-—7 and w=—



In this equation, called the Karman momentum equation

-5 (i - Ly (1.24)

is the thickness of displacement,

YT 2 Lw, ‘ - _ﬂ'_.‘ I
y Wy ( L /’ y (1.25)

is the thickness of loss of momentum.

The upper limit of integration y = ® corresponds to the theory
of an asymptotic boundary layer; the limit y = © corresponds to the
theory of a layer of finite thickness.

Due to a sharp change of speed in the interval from O to b,

b* and 6#** have the same value for both upper limits, i.e., there are
certain "internal” linear scales, the one and the same within the
theory of an asymptotic layer, and in the theory of a layer of finite
thickness.

The analogous integration cf the thermal conductivity equation
leads to the equation of the energy of a boundary layer (without

consideration of radiation and inte:rnal sources),

ai’ [ w @1y o R
dx ' e AT I % "
Cp1 J1 . 9er -
€. Py X = gt’op.,w...\ T (1'%)

where (AT)!' =(d/dx)(AT),AT is the temperature difference,

cpi is the specific heat of the gas, introduced
through a permeable surface,

cpo is the specific heat of the basic ges.
The quantity
$‘S —E—1- W) dy
.‘o'v

(1.27)
is called the thickness of loss ¢f energy.

-7-



The cocefficient of friction 1is
e

L N Fa G
R 1 20

t‘,z

and the coefficient of heat transfer is

ez

aT (1.29)
The dimensionlegs forme of the hee’ coefficient “rernzfer (Stanton
and Nusselt numbers) have the form,
I .
peTe®e 1.30)
L
Ne == (1.31)

where lo is a characteristic linear dimension,
In integral (1.27) ¢ is & certain dimens'ic.less temperature, At
Pr = 1 and dp/dx = O, the value of § is exsotly squal %o the ratic
- -T * * valie of the inhititlan temperatu
Tyall T*/T,a11-To*» where T* 1s the valiz of the inhi an temperature
*
at a given point and To is’ the value of the stzgnation temperature

outside the boundary layer,

The temperature difference 1s determined by the expression

T=71,- 75,
8 = (1.32)

n

where T;;ll is the adlabatic temperature of the wall, i.e., thet
temperature, which is established on a given surface, if the latter
is completely heat-insulated and Denil ™ C.

In genereal it is assumed that

Aw}
¢ ' (1.33)

1‘:.=T.+r

where r is the temperature recovery factor.
In a turbulent boundary layer
r=Pr'?, (1.34)

i.e,, for gases close to or equal to unity.



Fig., 2.

Dlagram of a
boundary layer on an axlally
symmetric body.

9w R,)

In Fig. 2 1s given a diagram of a
boundary layer on an axlelly symmetric
body. Because of the small thickness
of the boundary layer relative to the
radius of curvature R.» the equations
of motion and thermal conductivity do
not change their form as compared to
Planar flow. The form of the con-

tinuity equation changes, taking the

form:

ox

d‘P',R“ B _o
oy. |

(1.36)

In connection with this the equations of momentum and energy are

somewhat modified; namely,

b 8“(2+H)+( L IBh G )"’*—
dx g [, ] R,
— jl — &L ; 1037
fo W h'z ( )
a} ” ar fo R, \..
dx +( », -\7+'h+kx)"_
S1h Yer
fpofo o ECptawe AT (1.38)
Here
] , v
Wy
e -2 (EE L ETR R O
-l -
- Wy ___!5_. y % .
3..__5 i_;( e )(l:}: R, coa,s)dy. (1.40)
ond
%,“=J 22 ll—ﬂ)(lj;——g’—cosp)dy. (1.41)



1.4, Characteristic Reynolds Number .
& Boundary layer

The trivial determination of the Reyncldeg nurber hasg the form:

Yo

y

| )

where w, 1s characteristic velccilty:

lo the charecterlstic linear dimensi-n of g2 slreemlined body:

Yo the kinematic viscosity at & characteristic point of the
system, However, in boundery leyer thecry such = detcrnlineticn of e
basic hydrodynamic criterion is ineffective. - uslily, rrom the
momentum equation it is clear that such 2 very imuorient integrel
characteristic of the interaction of flow with & body; as the coefri-
cizsnt of friction Cos is connected not with the length x, but with
certain "internal" dimensions of the boundary leyer — O*+* and 0%,
Besides the structure of the momentum equetlor shows that the firct
of these quantities is the most importent,

The universality of the linear characteristics O%, 0U** and B %
becomes especially evident, if we remember that (heir devermination
is not connected with the idea of a layer of finite thickness and the
change of the upper limit in integrals (1.24), (1.25), and (1.27)
from & to ® does nct change thelr value, In ccnnection with this
characteristic Reynolde number for a dynemic boundary layer it is

expedient to construct in the form of the quantitys

-“..A

Re** = (1.43)

or

‘.
Ret = 2=,
LN

(1.44)
In an isothermal turbulent boundery layer fer from tLhe point of

breakaway, the ratio 5*/6#* ig almost constant (see formula (3.13)),

-10=-



i.e., in this case the numbers Re** and Re* differ only by a constant

factor,

For a thermal boundary layer we have correspondingly

.y
w, b

- (1.45)

The dominating role of the quentity 06#*#* in the momentum equation

p
Re! =

and consideration of the expedient uniformity of the characteristics
of dynamic and thermal boundary layers force us to select as basic
modifications of the Reynolds the expressions (1.43) and (1.45).
Regarding selection of the quantity Vs it is more convenient to
relate to conditions outside the boundary layer. Such a determination
is convenient from a computation point of view, inasmuch as the param-
eters of undisturbed flow usually are known.

The relation hetween the Reynolds number

. (1.46)
and the numbers Re#*¥*, Ret** is established vie the equations of momentum

and energy, 1f the following relations are known:

and .
s':/t‘R¢|" (1.48)

These relations are called, respectively, the law of resistance
and law of heat transfer,

Definition of these laws 18 a basic problem of boundary layer

theory.

1.5, Similarity of the Velocity and Temperature Fields

The equations of motion (1.5) and thermal conductivity (1.11)
become identical relative to the quantities Wy and T* upon fulfillment

of the conditions:

-11 -



Pr = i}.

. o ’

Py G
But ldentity of the differential equations signifies identity cf
thelr Integrels during simliarity of boundery ceondltlons,
Consequently, during pressureless
by & polyatomic gas (Pr = 1) and for similarly defined boundary con-
ditions the longitudinal flow velocity ancd stegnation temperature

fields are similar, 1.e.,,

O\
<50

b

(
These conditions are exactly fuifilled during iongitudinal flow by an
unbounded stream of a polyatomic, planar gas w!.h a constant surface
temperature,

Similarity the velocity and tempereture fields &t Pr = 1 meens

that between the heat flux q and the tangentlal stresses 7 there

exlsts the relationship

)......_._.
o I 1 e )
: ows L 151
F \ /
[4
St — 24 :
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CHAPTER 1II

LAWS OF RESISTANCE AND HEAT TRANSFER

Definitions of Cyrillic Items in Order of Appearance

T = t = thermal, turbulent
cT = wall = wall

Kp = cr = critical

2ids Tangential Stresses in a Planar Boundary Layer
of a Compressible Gas

Molecular friction is comnensurate with turbulent only 1in the
thin near-wall layer. This region of the turbulent boundary layer 1s

called the viscous underlayer,
The relative thickness of the viscous underlayer
s.=,-{l- (2.1)
in a flow of an incompressible liquid is 1-3%, and in a flow of a
compressible gas can reach 10-15%,

In the remaining part of the turbulent boundary layer, the so-

called nucleus,

Be>p
and
1:1,:—;"7",(1—.3). (2.2)
where
3= B VB + V;V,0 : (2.3)

' V.V, ?



— g coefficlient, taking into account the influence of density pulsa-
tions on momentum transfer, '
Below the sign of the average values of p, w,and 7 wlll ve ooltle .
A8 cen be seen from formula (2,2), the fundamcotal p3

theory of turbulence 1s the connection between the sverage products

&

the vector components of the pulsational compconent of the flow velocity
and the average velocity, Thils relation 1s expressed very generally

ty the Prandtl formula,
VoV, = (157 (2.4)

where 1 1s a certaln proportionality factor, having the dimension of
length, Usueally the gquantity i iz called the length of the mixing path,

Formula (2.%) follows from dimensional analysls, if we assume that
in the reglon of significant changes cf the average velocity, momentum
1s proportional to the derivative FTN

Introducing the value VX V., from (2.,4) in (2.2) we can write that,
J

~ a turbulent nucleus

- Qu, ¢ (2.5)
t=e, —ofl —= — 9. D)
5 ’( dy )‘l
Thiz expression leads to the form
. . p(1 —-P) ow, \? 5 \
. = (t "'), (2.6)

: T mede

is the distributive law of tangential stresses elong

Twall
-ne thickness of the boundary layer,

2.2. Law of Reslstance

From equation (2.6) it follows that

By

/g o® g R (2.7)

! 1;2%:3

=14 -




where Yy is the thickness of the viscous underlayer,i.e., the
coordinate of the lower boundary of the turbulent
nucleus of flow,
W
Wy = Wi 1s the dimensionless velocity at this boundary.
0
Equation (2.7) is written in a form, not connected with any sort

of theory concerning a boundary layer of finite thickness, The transl-
tion of the terms of the theory of a boundary layer of finite thickness

is accomplished according to equation

1
“—_—-_z A 2.8
Vs j _5_/,_, (2.9)
” Gt )
where 6 1s the thickness of the dynamic boundary layer;

£ = % 1s the dimensionless distance from the wall;

61 = z} is the dimensionless thickness of the viscous underlayer,
The upper integral of equation (2.7) has the same limits in the
theory of an asymptétic boundary layer and in the theory of a layer of
finite thickness,
Let us introduce the relationship

; -‘ t’ [} L[]
€=( e (2.9)
where Ce is the value of the local friction coefficlent at given con-

ditions of streamlining of a body;

Ceo is the value of the friction coefficlent at an 1sothermal,
gradient less streamlining of an impenetrable wall, 1i.e.,
during isothermal streamlining of a planar impenetrable
plate by an unbounded flow,

Comparison the friction coefficlents 1s carried out for identical
values of the characteristic Reynolds number of the boundary layer,
because integration in (2.8) is carried out with respect to the thick-
ness of the latter,

Multiplying both parts of equation (2.6) by the quantity‘?o,

u-(izj" %") (2.10)

-156~

it 1s possible to write:



whers

Z=‘/ P ['/- £« _dy (5 44
“‘T",- T e (2.11 ;
In the formuleacs ~b 1s the distributive law of tne quantlty &

elcng the thickrniess of the lsctheimal boundary laye: at an impenelravlic

piate, with streamlining of an unboundsd unliimited flow (1,
dp

ax = 9

From the glven formulas it is cleer that for estzblishment ol law
of resistance it 1s necessary to know tne !2ws

ties 1, Yqs T and B. The quantity W, cau be computed by calcula-

£,
Po
tion of molecular friction and moleculay thormal conduction, if the
guantity y, and the relation w(T; =re known.
i
In the contemporary semi-empiricsl trecories equsation (2,7) is

celculated on the assumption that £ = 0, 1 = Tua1l? L~ ¥s OF which is

rre-tically the very same,

-7 the dimensioniess thiceness f the viscous uradsriavery,

P %

magintains the value, found experimentally for ilsothermal flow on a

=
zte, if the viscosity is related tc a certzin "determining" tempera-
ture., It is clear that boundary layer theories for a compressitle
Z2& based on such assumptions cannot lead tc sufficiently reliable
results,

However, equation (2,10) obtains special properties at Re — o,
0 wnich attention has not been paid until now, We will now turn to

en examination of these properties,

-
-

2¢3, Values of the Quantities [, W,
and £, at Re =

We wlll show that =2t Re = ® the quantities =, «, end *.  =zpproach

-16-



Zzero,

Equation (2.4) assumes the existence of a correlation between
the vector components of the pulsotlonal portion of the velocity of

the form: N
V'-V’s( -,)
Analogously, for temperaturs pulsation it 1s possible to assume the

relationship:

e oT
V,0~n2% o7
4 dy dy

From (2.,2) it follcws that

d
-. =Vvv, =v, . (2.12)

where v.==l/rst- is the dynamic velocity.
With accuracy up to the coefficients, taking into account the in-
fluence of density pulsation, the relationship between the heat flux

and tangentlial stress in a planar turbulent boundary layer has the form

9 . Ve .
— =86 0
< v, V’

In the degree of similarity temperature and velocity filelds con

dition (1.51) is fulfilled, i.e.,

V8 _ a7 (2.13)
VeV, )

Introducing these relationships in formula (2,3), we can write

that in order

’ 4 , ~
=y 7)o (ool

A )

The transverse velocity component at an impenetrable wall in

succession is equal to the quantity:
ay - 3 L e 3 . €
. 3 'Tf_

-~ "l."

W “ax > dx N

i.e., in thils case
-c AT
z( o +'/ ) ' (2.15)

Let us consider flow with "disappearing viscosity," 1.,e., with

.

L=+ 0, In this case Re — ®, and the friction coefficilent Cp —* 0.

467t



Correspondingly, the coefficient P also approaches zero, ¥t 4 cermeeble

wall the maximum additional component of the velccity -omponent wy

occurs at y = O and, as 1s shown in Chapter IV, is eauati to Woall s
c p ¥ L.
£0ro g R O o — pemrg— ey o
S where b is a finite coantity, oveo sy ontly, 3t
P Por¥or cr : ¢
Puall
- Woo.. &L arproeTnes Zero,
Ce 0, the quantity well 2+350 "EPruC e
The equation of motion of a planar bcundery layer in dilrec
proximlity to a wall has the form (since ‘n this <2se w_ = O).
4% . o . 9w PR
dx ' dy Py sy (2.1€)
ow
Aty <y, «<BT=u —X% and, in the first aprroximation, p = Pl
oy -’
=3 . = i the guasntlty v , 1s urdersto
M bwall’ wy Wieall Here for < At ¥ derstoocd the
value of wy at y = 0,
Integrating (-.1€) we have
5 dp du') \
Tt = | —— == —- Gpw Weq ——— 1Ay =
ot J d}' { Py + e @y, dy ) b,
dp i o 7
T dx Y i Pl ® . \""">
Correspondingly, the v2locity distributi-n 'n the nearest proximity
of the wall 1s determlned by the eauation:
ow. d, i
Pu“;’—='ct’* d: Y T Per W W, . (2.18)

By reducing this equation to the dimensionless form and taking

into account dependency (1.10), we have

do 00 } & bt Wer 2.19
=R (g ), (2.19)
where
..— .05..
Re~ = _—“n

the characteriitic Reynolds number of the boundary layer, referred Lc
the wall temperature,

The quantity
f=1  de _ (2.20)

», dx

-18-



can be considered as a measure "of aerodynamic curvature" of a stream-
lined surface and is called the form parameter,

During streamlining of an impenetrable surface Wiall = O and
integration of equation (2.19) gives:

= pe* 3 & 3V .
o = Re., g ( 9 . = Nee ")' (2'21)

The value of 9%1 is finite for any Re numbers. The value of W,
by definition lies between O and 1. The coefficient of friction o
1s always inversely proportional to the Re number in a degree, leés
than 1 (see, for instance formula (3.24)).

Taking into account these circumstances and reducing equation

(2.21) to the form:

Y

CIE| o -.7).:.- 53 - -: ':RC:,'; ’ (2.22)
we note that at

Re—’m s. _’0.

Thus, the thickness of the viscous underlayer decreases with
growth of the Re number relatlively faster than the thickness of the

whole turbulent boundary layer.

At £ =0
Relpl: ."'— -"’.5..
Ver
T (2.23)
Ren e — W) py M
at f = fcr « 0, i,e., at the point of breakaway of the boundary layer,
Cp = O and
Wy a0 /f 2Re;;
Req, = == =wi'}/ —7e—. (2.24)

Since as the critical Reynolds number of the viscous underlayer is
always finite then at Re = w, w, = 0.
An analogous result 1s also obtained for a permeable plate, 1.e.,

in general:
" | Re - « — 0. (2.25)



&

2.4, Limiting Law cf Resistance

4

At Re = o, v, = 0, 51 - O, Bp=0, and accora.is omie (2.t )

1
Z". 4"/"“,‘._ “‘/ s ?‘v—- u’i. .{‘t‘.‘ Bt
') e 3
= .

1

Let us expand the funetion W-?’V/WV n o cevin Yy degrees -F
! )
the perturbation factor ana let us c20.crate tha wum of the terms “rom

1 =2 tol =c«by &b, Then in accordance with torm (2,11)

Z == Z" wE Aq) ﬁ‘i ‘.';. A ? i ;3'."
The quantity Z, = 1 - w,,, which follows *rom fe.l¢), 1r in this
equation are inserted p = Pos T = T andg Y = 1.

Thus, it is possible to write thaou

Z =, &bi f?;_ (D 281

-

At Re= o w, =0, c ~ 0, Cons~equently, 1f the function A at

1( fo
Re = ® remalns finite or approaxhes irfinity more weakly than V «.

approaches zero, then there occurs the conaltion:

Zpe . ) (2.0Q)

Thus, during certaln conditions there exist certain limiting laus
of the relative influence of nonisothermalness, compressibllity, and

other dilsturbing factors on the coefficient of friction in a turbulent

boundary layer, determined by an integral of the form:
1

d o
(‘ = — =1. (2.30)
v ‘/ ‘A '.:t._

" ¢

-
L1

More detailed information about the properties of the limiting
relative laws of friction in a turbulent boundary layer can be obtainea,
if one considers 1n a sufficlently general form the connectlion between
the length of the path of mixing i and the coordinate y. Let us expand

the function %(E) in a series by degrees of the coordinate £:

- 2() -



_.l_:.‘: 2!‘54-,. (2051)
=] :

Experimental material shows that the quantity % can be considered

as some universal constant, but the sum of the terms Miﬁi"'i

1s always
finite, although the coefficients "1 are also functions of the non-
isothermalness, pressure gradient, transverse flow of the substance,
and other disturbing factors,

In particular, during diffusion flow of an incompressible liquid

0<Z'45"'<l.

From experimental data it follows (see chap, III) that at Re = ®

on an impenetrable surface

2 In Re**

Introducing these relationships in (2.26) and expanding the func-

tion ¥ § 1n a series by degrees of £, we find that at Re = @

r
.

« +-‘-'=i€‘)-‘c—-
Y s B m—n':j' (2.32)

From the data, given in chapter III, it follows that on an
impenetrable surface at %§ = 0O the relative thickness of the viscous

underlayer 1s related to the Reynolds number by the relationship:

| —l Re** s
In addition the values 111,

¥*
= Y always are finite,
Putting this value at 61, in formula (2.32), we find that in the

considered case at Re — :

v, 4% e

lnlnkc“~ln—T—}
Z 11— = - 1.

ln .‘O.

In Chapter V it 1is shown that during diffusion flow (%% > 0) of an

isothermal boundary layer on an 1mpenetrable surface at the point of



AN

breakaway of the boundary layer:

E| const

Y ——————
Rete U5 -
e

Putting the value &1 in (2,32), we find that ot Re — ) 7 = (£

L

Thus, 1n the general care the lntegral (o,7.; .. cgual vo » cortal
value %n’ not beling a function 4 Fsynr ids numbter, H-cid=zs the faranm-
eter ;m is exactly equal to unit or zic-se to 1t,

2,5, Approximetion of vhe Tanpontial
Stresses Pro! .

From determination of a dynamic coundary laver o1 finite thilckness
we have the condition:

E=0. < -, |

S.B3)
s (3222
Frcm the condition of smoothness o7 the “uncticn 1(f, at the point £ =
= 1 it follows that
' | 8V g
YRR (2.34)

In the region € =~ O with accurecy up tc smail guantities ot the scoond
orcer equatlcen (2,17, should be satisiica,

Conditions (2.17), (2.33), and (2.34) are oatlsii=u by the cubic

parabola, - -
=1 =0 L NE b (] = (235
where
dp 26 - 7\
A:—- —— T e 3 \
er dx ey g (2.30]
— oy =
h-—j;;ﬁf—- (2.37)

The first of these quantities 1s a certain modification of the

form parameter, The second quantity characterizes the influence of the
feeding or removal of a substance thrqugh the surface of a streaml’'i.za
bod&. We will call 1t the parameter of wall permezblity.

Subsequently we will deal again with several modifications of the

form parameter and permeablility parameter,



V2§
s

L_- . L ; e ?‘ : 3

At gradlant less streamlining of an impenetrable wall according
to the given approximation:

;=:.=l—3’+2?°. (2'38)
Correspondingly
=14+ b)) (2.39)
%
where
KR =(2%+1)

The value of this function changes from 1 at € = 0 to-% at € =1,

Tc formula (2.39) corresponds the relation

-~

¥ ; =!'.+(A.E+bm)f(5). (2.40)

where
A= - ,,'ﬁ.. f; (2.41)
b= ;':'h—'f"— (2.42)

2.6. Approximation of the Temperature Profiles

Inasmuch as pressure across boundary layer does not change, then
in accordance with (1.7) the density in equation (2.2) at a uniform
boundary layer can be expressed by the density of an undisturbed flow
by formula

p=|~—%- (2.43)

Thus, for solution of equation (2.30) it 1is necessary to know the
connection between the temperature and velocity flelds, Thls relation
was known previously only for the case of simllarity of the velocity
and inhibition temperature flelds examined in section 1,5,

For gases the Pr numbers are equal to or differ 1little from unity,
i,e.,, one of the baslc conditions of the exlstence of such similarity

1s always fulfilled. Therefore, 1t is possible to put dependency



& 2 RO . ™ by TR d 4 2, " "i-m'll.& F
¥ X : * y o (»&ﬁ’ h
# g . padl i ,

(1.52) in the base of the unknown relation. However. 11 1t necegrary

to glve 1t a form, taklng into aczount the <isturbance f similarity,

due to the Independent effect of the Inkhipitlon ' ha f"-~:% at, P°r 7
# 1, which !1s seen from the gtruccure o equation . 1L1).
Let us take the re:.:>t o0l
Tey = T° iy W .
Zur A e (2.54)
/ :1: LI - . {"-‘\
P T or )
2L e .
g (2.1;5)

The form of the functions e€(£) and r/¢), in general, depends on the

vressure gradient, nonlsothermainecs, ana mas ranster,

»
At e =T =1, ™ = T and equation Lo, v, transforms to (1.50),

i
b

.» there occurs exact similarity I .. veloclty and stagnation

[=]
=

temrarature fields.
~el us require, that on the coundar.cs oi tne thernal layer the
quantity

e T (2.46)

satisii~2d the same conditions as the quantity @ on the boundarles of

a dynamic layer, Then at y = bts = 1, to which correspond the values

-v-*" T*

wall
has the order Pr;/B, i.e,, for gases close to unity. Therefore, with-

and r(€) = 1. 1In a turbulent boundary layer the quantity r

out z2ppreclalbe error it is possible to assume 1in all sections of a

thermal boundary layer r(€) = r and

Aw)

7o (2.47)

The problem of the function e(£) 1s considered in section 2,7.

P=T-r

The vaiue of the dynamlc temperature can be connected wilth the

dimensionless velocity

= 2 (2.48)



by the relationship

Aw? A1 2.49
PPy i ( )
where
M= :" (2.50)
e

1s the Mach — Mayevskiy number, referred to parameters outside the
c
boundary layer; k = ER i1s the index of Polsson's adiabatic line,

v
From (2.44) and (2.47) it follows that

= -830— (3* - 1), (2.51)
[ ]
or
—- = ¢ dpem— (§* — e, (2.52)
[ )
The quantity ' .
$=—3— (2.53)

is called the temperature factor;

The quantity
T, k— 1| = S gl
| _Je— L34 X .
9 _'-i:'-l'+' 5 M (2.54)

is the kinetic temperature factor, determining the degree of aero-
dynamic heatlng of a body;

Av¢ —° (2.55)
is the heat-transfer factor, since at Ay = O adiabatic streamlining
of a body occurs;

At Ay > O a body giveﬁ up heat to a flow, at &Y < O a body recelves
heat from a flow,

2.7. Coefficient of Nonsimilarity of the
Temperature and Velocity Flelds

The veloclty and temperature fields in the nucleus of a turbulent
boundary layer are well approximated by exponential formulas of the

form:

J's (2.56)



In flow regions, not close to the polnt cof brearaw.y of the
bouidary layer (see chaps. IV and V), both exponsn sl 1.8,
the protiles are very complete.

frum (2.56) 1t fullows that

'r ( \‘F”‘f')
N 8- v b
wnere
. 3 e
e (______)”,. { :;.58)
&

Far from the poirt of bregkaway n =~ »n , 1.o,. tuere cxicte o
relative similarity of the temperature an’d ve. oy flelis, expressed

by tne formula

’—l\
)I

f~ew. Ea
The ratio £— 1in a uniform tourinre lasev i “elermined by formula
0
©.L7) and equation (2.51). In add!tion, two cases ar. .atingulsbed:
wnen the thickness of the dynamic bounisry layer 1s less than the
*hRinceoc of the thermal and when Lher: Is sn dnverse relationshlp.
n the filrst case & < $r arid e process of heot transfer occurs
2 *ha whole thilcknes~ of +he dimnamic layer. Correspondingly, in the

i)

oole reglon 0O < ¥y < B formuia “2.52) fs walld,

In the second case b > ﬁt, i.e., in the reglcn Et <y < t, heat

transreyr i« absent and the temperature is determined by the condition

)
-+

7T = ~onst, Correspondingly, in the region 0 < y < b, formula (2.52)

s valid, and in the region bt <y < b — formula

T — a8 _ (h% ) m?, .
LSO (2.60)

2.8, Limiting Law of Heat Transfer

In the nucleus of a planar turbulent boundary layer the heat 1lux
along the normal to the streamlined surface 1s determined by formula
1=q,=-—c,1'l7;_6(l-.3,), (2061)
where BTAis a coefficient, taking into account the influence of density
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pu.«:tions on turbulent heat transfer.

Analogously to (2.4) we can write that

_pow, OT
m—li'w * dy C (2.62)

In the general case 14 # 1. From (2,57) .c follows that

PRI ] (2.63)

L Ry

At c_ = const equation (2,61) 1s reduced to the form
S‘: [ _ o . l“ 1'17 ’2 de . 00

6T % o 3 oy dy ' (2.64)

L_o
Qa1

In a region, not close to the point of breakaway n = ng, and from

where

ob;
]

(2.64) 1t follows that:

K (7:_ (‘/%“) ’ (2.65)

where

Y S e (2.66)

= r=| G _dy
x ‘"’.h/l—a. L, (2.67)

Transition to & thermal boundary layer of finite thickness 1s

carried out according to equation

- 1
o . &y o . b 4.
S'/ -k & "5'/ EERCE (2.68)

n

where €t = %%%
t

In these equations sto 1s the value of the Stanton number for the
conditions p = Pos %E = 0, Wogll = O,

The quantities 91, Bto, B, and Z, possess the properties of the
quantities W5 Cpps p end Z, 1.e,, at Re = o, 8t, — 0, 31 - 0, Bt - 0,
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7

.’A+ = lt
Correspcnaingly, at Re = « equation (2.66) Nas » Llneving solution

ot che tform:

]
e f-—.—-.. \
Y _( ‘1/ f ‘ RN
\ aWa ‘
This equation 1s ancelogiue © eaun Pyl TEy wha 2 Ymd tdne Claw Gf
i} )

resistance,

2.9, Approxlimation ol ti.. = i Frux erofil

R - ——— e o

I'rom determlnation of tne thermal v und:rv _.yer of f[inite thick-
v

L. we have the conditlons:

3 - - .
At e ] q & qCYv ! / IS r‘-”k
A l W50 ]

B == L. ’
. the conditicn of smoothness of il :unctlion r(?r) al the puint
2 1t follows that:
—%—:'_,;,‘;L:(}' (2.71)

(AW 3 . = +
e thermal conductivity cquetlion near the wall (wx ~ 0, T = T )
e Torm:
e aTr 7:\\
o —‘pTCthtT- (2'l =V

Integrating (2.72), we find that 1in the neighborhood of the wall

[

9 =G -+ can'w“ T*. (2'7—7)

These conditions are satisfled by the cubic parabole:

g=1— 38 + 28 £5,,00 ) (2.74)
Correspondingly
Go=1 — 3t + 2, (25"
v, "=m+48fmx
- v (2.76)
where
— __Pex® .
M= g (2.77)
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-— fer Wer

b,—-TM_o—'; (2.78)
@) =@2,+1)"". (2.79)

At ¢, # const the quantities b,, and b, should be multiplied by
c

the ratio p all

At Pr = 1 and—%.—.o 6=38, ¢=¢, and ;a;.
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CHAPTELR p 1

LONGITUDINAL STREAMLINING Of . " UEWWTRALLE PLATE

Definitions of Cyrillic Items in Order - * -corance

eT = wall = wall
KD = Cr = crit’ nl

T =t = thermal, ‘.riulent

2.1, dscriiermal Scundmry Las

‘(D

4 the chapter the streamlining of Fiat nlale Ly an unbounded
I gas for tne conditions
Iz .
—f..z= and 7. const
dx o ?
couniary layer for the variables Yo and Twall is considered in
i ! t:'r Vo
A large quantity of experiments confirms for the region £ < C.4,

Logarithmic distribution of velocities in a well-developed tur-

L 1sothermal boundary layer 1is expresced by the Prandtl-Nikuradze

ula:
¢=55+2,5 Iny, (3.2)
llere
:Pa—!L_.- 1:.!._,- 'v - _‘." = /,/'-‘.;'
. ". » 5 ] E P — 0 ‘ 2 .

Tne last quantity is called the dynamic velocity.
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Formula (3.1) is not applicable at a large distance from the wall
and because in it an unlimited increase in y leads to unlimited growth
of L whereas the latter quantity at y — ® is equal to Woe Thus,
this formula should be used within the framework of the theory of a
boundary layer of finite thickness.

Since in the region € > 0.4 in a turbulent boundary layer on

e an lmpenetrable plate w > 0.9, then the indicated circumstances do
not introduce appreciable errors in the calculations of friction and
heat transfer,

In Fig. 3 is given a graph of ¢(n), also including data for the
region of the viscous underlayer. Distribution of velocities in it

is determined by the expression
o=n, (3.2)

which corresponds to formula (2.21) at f = O,

v T T

0
o®

o~

2 i : > ,lL
VO'/I .."__,.w"
L4 L (i
bl -.‘( ) v
s

a "M ™ @0 00 300 43 2000 5000 0000 ]
Fig. 3. Universal veloclty profile

on a flat plate.
Intersection of the lines, calculated by the formulas (3.1) and
(3.2), gives the calculated thickness of the viscous underlayer in a
two-layered diagram of isothermal turbulent flow o = 11.6. Dimen-

sionless velocities on this boundary are equal to:
C ee=lls (3.3)

</ e
=116 |’ —‘,‘{-—
Such a diagram, which nominally divides the stream into a viscous

underlayer, in which u > by and a turbulent nucleus, in which p < by s
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turns out to be fully acceptable for calculations of friction. I+

is also applicable for calculatlions of hea' tran:' .~ [or Pr = 1

\

poohers. Aty =0 w = wy, and from (3.1) it follows =uat

/

- - ——

2 " {7
——- 9525 R -t
tfu o] :
where
Re - =0
) ]
Further, we have
W _‘g_;___ L. v ’ -
L - \?). )
' . - .
Qo —— w, @, Coe,
— = L L \dE=15 //_’ tes e -
' J‘ L) ( «, ’ l 2 e (3.)
* * R - 0
Putting the value of © in {3.4) ingt - © 8, we will obtain
1. law of resistance:
*
V‘ 2 = 5,5 "é' 2,5 |ll —Re el -~’ ,
clo . \ €0 (3’ 7)

el
valculations show that the quantity In (8.5 - 1z.5 ~%g) cher.ges

-y *‘ ’ [3
oo, 3lightly in a wide range or valiues of' Re and in practice
ad of expression (5.7), it is possivie to vie tne significantly
convenient iormula of T, Karman:
) .

Crg = -,

”» (2.5!nRe** + 3,8 (3.9)
From (3.1) it folliows that

(":‘ ), = ot ewlx' == (3.9)

i ~
S aTals

N e (3-40)

1ne logarithmic veloclty profile is an envelope of a family of expc -

nential profiles
,: 447‘.. (3.11)

I'br many calculations the use of such an anproximation of the velocity

profile is very convenient,
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By putting in (5.11) the values of W, =Wy and y = b, we find
that

- (ARe'a‘)‘*—"‘. (3.12)

o

For the thickness of displacement and loss of momentum we obtain:

e s
¥ T o 1+n
 (d [
= ; .1
J (1 + n)(1 +2n) (3.13)
H=-:.—:=l'+2n.

From this the exponential law of resistance follows:
¢y =BRe* ™", (3.14)

where

a=2a'n’f?'[ (1+ n) (1 + 2n) ].-i——
n

b1 (3.15)

1+na '

For the thickness of the boundary layer and the relative thickness of

the viscous underlayer we have:

()= 4 F s (3:16)
.2,.:11.6.4':'_(—'2&'—)7". (3.17)

The momentum equation takes the form:

s ¢

s (3.18)
or

dRe**

= (3.19)

Putting in (3.19) the value of c, from (3.14) and considering
boundary layer, developling turbulently from a certain cross section
X, ps WE find that

Ret*' +™ _ Re:;' =

- Lg-’l'-B(Re,- Re,., . (3.20)
If Xop = 0, i.e., the turbulent layer in practice starts at the

leading edge of the plate,
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1

) 1 - m -
eﬁa'r. i R v e -
R k 2 -8R ) . ( S
tn which corresponds the value:
C/tp:H] Re|-m‘ \ = ALY,
v I§ €D
- ,.'l‘ 3 - )
Vi M) | i 9 i - N
t m (= <
i S
(]
,.‘v k3 . 1
' 1l m '
The valuves of the co2fficients 1+ " e¥xponenties? laws of resis-
tance and the velocity distributions . UGV 1 U IR R b T ol

~ame place are also glven certain other oot = encsuing from these

lawes,

Table 3.1. V= o r -
ficlents in Foruiis: )
(3.14), (3.22) L i
. | w 5 R RTE
T T
8.7{ | 9.7: l”,() . A.L)
X H A
ry 0,0075 | ©.78u0 | 0018 | €077
i
H i, 1oy 1,22 l 1.20
m 0,20 0,222 | 0,200 | 0182
B 0,052 | 00206 | 0,0:90 | 6,148
m, 0,204 0,182 | 2,167 ‘ 0,154
&, FG0si6 | 000 15,0362 1 0,uv8

4

¥* ¥ 1
. practice in the region of Re numbers < 10, it 1s possible

V.o formulas For the distributive law of velocities according

i L&

‘he exponent n = 1/7.

In the region 104 < Re** < 106 the Faulkner formula gives good

iltse
-
C/‘):0,0l:}l Re*" " .
t'or a turbulent layer, developing from a cross section x = 0, the

formula
(3.25)

In Fig. 4 is given a comparison

srresponds to relationship (3.24).

of the ¢iven formulas with experimental data.
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7 S -
’ e
?
¢
’ ! N : 1
4
@
T 1- e
l’ .
11 q - 2
< [ . :‘ :
p] a 0-::
'] N
o ($2252 456 ‘m' 1$2250 450 8 (522534568 (52283 45¢ 0 " ($2263 48
© e 0 ©
Ro=-:—

Fig. 4. Average coefficients of friction during isothermal stream-
lining of a flat plate: 1) Blasius' law (laminar conditions); 2)
the Prandtl law; 3) the Prandtl-Schlichting law; 3a) transition
region; 4) the Schultz-Grunov law. Measurements by Wiselsberger,
Hebers, Frude, Kempf, Schenger.

3.2, Heat Transfer Coefficient for ¢ =1

For polyatomic gases Pr » 1 and in the case considered the

dependency (1.52) is fulfilled.
Putting in it the value of c, from (3.14) we have:

St =2 Rere . (26)
For a plate, on which dynamic and thermal boundary layers are
developing from a cross section x = O, the dependences
Sty = 2 Re; ™ (3.27)

or
Nn..zz-l,:—'kc',' = (3.28)

correspond to the formula (3.26).
For a region, in which we will apply distributive law of veloc-
ities by the degree n = 1/7, 31 = 0.0576, and m = 0.20. Correspon-

dingly, at Pr = 1
Nu, = 0,0288 Re’". (3.29)
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In Fig. 5 are glven the experimental data of B, 3. Petukhov,

A. A, Detlaf, and V. V., Kirillov on the 1local values of the Nusselt

4

-0, ; . N
¢ Nupr nunber during subsonlce streamlining

5 I T

4 —— |-~J of 2 el LY

1 : o R § A

' | As can be 3271, iIntroduction

2 L . S

| H | o 1. factor Pr puts these
- | dat~ on the l'ne of tormula (3,29),
8 1 i ircumstance 1s confirmed by
6

s i the experimerts of Emas, Frank,

‘ | h

’j : | et al,

2 ___-I There e, for gases it is

A i

4 | POSs 1T witn great accuracy to

- |

o

% A 7 45678 .”c 2 4 poctulate that

Re
x No,— -8 PR ™, (3.70)
o . Local values of Nu_ B
X = LF ] o s . e N
.. subsonic streamlining to which corresponds the dependence
plate by air (according B 5 s m,
.he experiments of B. S. S 2 Prm""Re, ™. (3.31)
Ty o - r = 2" 3 o .
0t Hk.V). C VVO o}V m/ ec; At (dpl/,;‘x/» ~ O and P 11 -
Wy = 245 m/sec; O — Wy = Lis
A.':*/sm:; X =Wy = 168 m/sec; = const the ,mergy equation takes
woo . = 102 m/sec; ++ — Wy = the form:
10 o m/secs - w, = 62, =
T om/sec; © g 5 dRe, St (3.32)
secy @ =Wy = 42,3 m/sec; dRe,
iy = 34,1 m/sec. Putting in (3.32) the value of 8t
rom (3.31), we find that for the conditions examined:
. -06
Rey - P Re,-™. (3.33)

2(l — m,)
., replacing, according to this formula, Re  in (3.31) by Re:*, we

fil’ld that
Sty= 2 pr 040 e " (3.34)

Inasmuch, as the experimental value of the exponent for the

Prandtl number is determined for m = 0.25, and the number itself for



gases 18 close to unity, it is possible to consider with a sufficient
degree of accuracy that
Sty = —— Pro . Rel’" (3.35)
From formulas (3.35) and (3.14) it follows that

R

St=Lopr ()" (3.36)

T

Comparing formula (3.21) arnd (3.33) we find that

t {44

-an‘~ ‘

(3.37)

1

Consequently, according to formula (2.58) the nonsimilarity coef-
ficient for the velocity and temperature fields for a plate, com=-
pletely covered by dynamic and thermal boundary layers, 1s equal to:
tx Prtn. (3.38)
By this formula for air € = 0.97, 1.e., it differs little from unity.

3.3. lLaw of Resistance for a Nonlsothermal Boundary Layer

Let us integrate equation (2.10) for the case of nonisothermal
streamlining of a flat, impenetrable plate by an unbounded flow of
gas. Assuming T = ?b and determining the ratio p/p, by formulas
(2.43), (2.52), and (2.59), i.e., for conditions of relative simil-
arity of the temperature and velocity fields, we will calculate the
right integral of the equation,

For the case 6 < Gt we obtain:

Le K

T w-n2 VT AW - D)(g+ 8 + (A1)
2(4* ~ Do+ e8¢ I

(3.39)

- grc sin

Vo A0 = D4+ A) + (s8Y)

In the case & > bt

;‘:‘/:E' d.:;;‘: v *_“_‘:-‘.n“o_, o S ” e (3.40)

_x77



i - A

where W, is the dimensionless velocity at the point y = 6t.

For the relative similarity W, = 5'1, because at. the point y =

=5t3=1.

Carrying out the integration, we firc¢ *that at & > St

24" - 1) T4 a8 .

VoAt DT AY) + (A

2(4° — et - edd
' + 1
Y 4@° - D £ 39+ eaygy (3.41)

+ arc sin f“l-amﬁn‘iijr
*O

e

L 2 =——-----‘ 1 (
T !arc sin

-- arc sin

It 1s necessary to consider that in formula (%.39) & < 1, and
in formule (3.41) € > 1, These formulas can be used not only for
theoretical analysis, but also for the experimental determination of

the functions Z2 and wl.

3,4k, Limiting Law of Resistance

Assuming in formulas (3.39) and (3.41) w, =0 and Z = 1, we find
that at Re =

a) at € < 1

¥ = -1.0' 1 ['rc sin — 2yt + o -
v A 1)+ 3 + (a3
.“ (3‘42)
— arc sin — r;
VoA - D+ A4+ (ed
b) at € > 1

_ 1 2(4° — 1) s~ b + s8¢ _

v= oy

[atc sin
V40 — 1)(4° + B%) + (B}

VAT DG+ 8 - (8P

+ arc sia ‘,f:*—;._'—'— —- arc sin ‘/ EI

184

Formulas (3.42) and (3.43) express the limiting laws of friciion
for a nonisothermal turbulent boundary layer on an impenetrable plate.
They do not contain empirical "constants of turbulence" and are not

connected with any special tyre of semlemperical theories of turbulence,
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The quantity Cro in the limiting law is defined independent of
the method of 1its derivation, i.e., can be defined both from special
theoretical considerations (for instance, proceeding from any sort of
semiempirical theory of turbulence in isothermal flow), and directly
from experimental data.

During adiabatic flow the limiting ratio cf/cfo does not depend
on the degree of.nonsimilarity of the temperature and velocity fields.
This follows from formulas (2.52), (3.42), and (3.43), which at & ='6

glve one and the same expression.

-1\ {
‘o ‘_\m: sin m ). (3.)“;),
-1
For w* -1, i.e., for subsonic flows, we obtain:
a) for e < 1
¥ = 2 :
VT L=k
b) for € > 1
¥ = . ’_2_ + Ll 2; .46
[ (Vv +1) ¢ ] (3.46)
c) for € = 1 and v -1
v=f(—2 \
( Y 4o+ ) (3.47)

The formulas obtained show that the quantity e affects the relative
change of the friction coefficient due to nonisothermalness the most
noticeably during subsonic velocities. The degree of this influence
is seen from Table 3.2.

It is interesting to note that the influence of the nonsimilarity
of the velocity and temperature fields on the quantity ¥ during
cooling and heating of a gas is opposite and small.

In the majority of practically important cases the ratio Q/ﬁt

is located in the limits from 0.5 to 2, which allows one to assume



in the formulas for cf/cfo the quantity € = 1, This circumstance

L M” ’_' ;a’;f‘ E

essentielly simplifies calculation of boundary layerc.

Table 3.2, Values of (Cp/Cpn)pess

' During Subsonic Velocitics tror the
Limiting Formulas (3.45) and (3.46)

s ' ‘ !
S~ o =02 65 g2 K} 4 S
[ ) t 1
e |o 400)|20| v |0,50|0,33]0,25]|06.25
0,98 0,7112,65]|2.35| 1 [0.62]0.45]/0,35]|6,29
0509 ]1,8]1,451 t |0,65/0.50!0,4110.35
i osloor|1 8|14t 1 |u,67|0,52]0,43] 0,37
; 1 |1,0001.78|1,38| 1+ |0.69]{0,5¢{0,45|0.38
2 |L0]1,69]1,331 1 }0,7i|0,58]0.47]0,43
g 11,8]159]1.8] 1t |0.75]0.63{0.,5 10,49
10 |1.®|1.54[1,86] 1t |0.77]0.65]|0.58 | 0,54
o | » |1 1 1 | 1 1 11

1The quantity e is defined by
formule (2.58) at n = 1/7.

During supersonic flow the influence of €& decreases with the
growth of w*, i.e., the number M. In general, the quantity e does
not =ffect the limiting friction law during adiabatic flow.

In Fig. 6 is shown the dependence of ¥ on w* and &), calculated

ov the formula:

¥= ..ol | ['rc sin — 2 N4 b -
¥ VoA - DR+ 8y < (apP
. (3.48)
- arc sin : I
b4 - DT A+ (A3

‘nis formula 1s from (3.42) and (3.43) at € = 1.

As is seen, the function !(w*; &)) has a complicated character,
wnereby the degree of influence of the heat transfer factor &
éecreases with growth of the M number. The upper limit for w* is
determined in this case by the fact that at M ~ 8-10 a noticeable
dissociation of the ges begins due to high temperatures, developed
during inhibition of flow in the boundary layer,

Cooling of a gas (& < O) causes an increase of the resistance
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V’ of friction of flow against the wall;

"4

R\ heating of a gas (& > 0) lowers this
* 4 resistance.
"0 During subsonic flow w* ~ 1 and,
08 /// according to formula (3.47), the ratio
. cf./cfo at Re = ® depends only on the

\\' temperature factor ¥. <The solution is
o4 ._—i asymmetric in relation to heating and
02 . cooling. During cooling of a gas the
d temperature factor ¥ cannot be less

o 2 < é 8 0

than zero, to which corresponds at
Fig. 6. Dependence of ¥ on

¥* and & from the limiting € = 1 the limiting value ¥ = 4, 1In the
formula 3.48 (r = 0.9).
region of heating the growth of ¥ is
unlimited (if the problem of dissociation is excluded) and the
quantity ¥ can vary from 1 to 0.
In the neighborhood of ¥ = 1 expansion of the right side of

formula (3.47) gives

—a— 0 _ 2
== (3.59)
The quantity
b+l _ T+ T
2 2 'y

is the dimensionless arithmethic mean temperature of the boundary
layer.

The dependences (3.49) satisfactorily approximate the exact
solution of (3.47) in the practically important range of values of Y
from 0,5 to 3.

3.5. Limiting law of Heat Transfer

If 6 < bt’ then in the region O < y < 6 distribution of the
temperatures is determined by formula (2.51). In the regiony > &
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DU N 4 a_‘L....__.-: sl w J‘i"

AT

(031, ioe., at5<y<5t

1
ru

(5 ) ) <

following from (2.69) at 'Ef - ?;'O and p = pO;l-,T-‘-, breaks up into two:
0

I S

‘-' boagh @t - "(—:-).

f;
|+A¢u 1)

Putting in (3.51) the corresponding expressions for T/TO and

24 AL W), (3.50)
Besides the integral '

M
N
H
~—

(3.52)

integrating, we obtain an expression for the limiting relationships
of the Stanton numbers:

a) for 6 < 5,(e < 1)

LAY
T, = |- 4 arc s! = - Se==
p -1 l/ 4.__?.:,_'._("‘ = al) (ALY
— arc sin 2 ¥ (3.53)

¢4 a4 o

+—‘2+—[I/I+A+(l--t) V1483 ]}’;

b) for & > Gt(e >1)
. 2_1‘—_' + M
v, = "'. srcsin - ¢ -

—
| e O ORI

(3.5%)
—arcsin L
‘/ 44’—.;'—(@'“&)“:{-»-

During subsonic flows, when v' e~ 1, the limiting relationship of

the Stanton numbers, in general, does not depend on

-42-



¥, = 2 )'
The given analysis shows that during the majority of ratios of
the thicknesses of the thermal and dynamic boundary layers met in

practice in a region not close to the point of breakaway, it is pos-

sible to assume:

v, =¥ | (3.56)

3.6. Comparison of the Limiting Law of Resistance with
*%iperimental Data for Supersonic Flow

In Fig. 7 1s given a comparison of calculations by the limiting
formula (3.48) with experimental data, obtained at fairly large values

2

F... of Re**, and mainly at very high velo-

LiJ ng clties and intense heat transfer.

To
f’*: %fj';_ Not only the qualitative, but also

=

iL_4i__§

of theory and experiment is clearly

0 20 20 40 50 &0 30 80 20
ki revealed.

Fig. 7. Comparison of cal-

culations bxethe limiting Thus, the limiting law of the

formula (3.48) with experi-

full satisfactory quantitative agreement

mental data for large fac- relative change of resistance of friction

tors of heat transfer:

O = experiments of Lobb, with nonisothermalness® sufficiently
Winckler, and Persh; & —

experiments of Sommer and well describes real flows with finite
Short.

Re numbers. This result agrees well

with the known experimental fact of the weak influence of the Re number

on the ratio cf/cfo. In this case it has an exclusively important

value,?
Indeed, the limiting formula (3.48) is obtained from the general

solution of (3.39) by means of conversion to limiting values of the

l1Subsequently, for brevity, the term "limiting law of resistance"
will be used.

2pdditional confirmation was obtained in the last work of Matting,

Chapman, and Nyholm,
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quantities Z and W, 5 which depend on the Reynolds number. But close
agreement of the limiting ratios cf/cfo with the corresponding ratios
for fully finite Re numbers means that the joint influence of the
functions Z and Wy is small. Therefore, 1t is fuliy permissible, for
calculation of the influence o the Re number on the relative change
of the coefficlent of friction due to *he nonisothermalness of flow,
to introduce in (3.39) the second known limiting value of these func-

tions, corresponding to isothermal flow:

l.‘-l = ?luV ‘:. ’

o = $o _%"’_ .

(3.57)

For a plate @,, = 11.6.

With such a substitution we obtain the formula (at e < 1):

V= L arc sin AL el R
¢ —n(1-8,2y'cr, ¥ VI DO+ 4 (A
— . (3.58)
- arc i OGNV ep b ety ]
S - 1)L+ AY) - (LAY
For adiabatic flow (& = O) we have
‘o (atcsln'/ -m:smﬁ)‘/ o Cp) (3.59)
% -l

- 0,2V o

In Fig. 8 is given a comparison of a large number of experimental
data with calculations by formula (3.58). Characteristics of the
experiments are given in Teble 3.3. Experimental data, obtained in
the presence of heat transfer are reduced to adiabatic conditions by
recalculation by formula (3.58). As can be seen, change of the Re "
number from its smallest value, at which a turbulent boundary layer
can still exist to infinity leads to a change in the quantity ¥ less
than two times for M = 10. Essentially, the zone outlined by the
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Fig. 8. Comparison of experimental data with

formula (3.59) (designation see Table 3.3).

Experimental data with heat transfer are re-

duced to heat-insulated conditions by equa-

tion (3.58).

%* % 3 * %

theoretical dependences for Re = 10“ and Re = ™ embraces a zone
of scattering of experimental points.

A fairly distinct tendency toward subdividing the experimental
data according to Ie** numbers can be noted, which corresponds to
theory.

Appearance of certain groups of points 10-20% from the theoret-
ical value hardly can be considered significant, bearing in mind
the whole complexity of carrying out the experiments in supersonic
streams.

On the graph are placed also data on heat transfer. They are
disposed together with data on aerodynamic drag. Thus, there is

direct experimental confirmation of the validity of formula (3.56)
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for a boundary layer of a gas in the range of values € close to

Table 3.3,

a) Turbulent friction on a plate

‘ Parameters of Experiments, from
Which the Graph Fig. 8 1is Constructed

e e® T y1*l Conditions Method of Jeter-
- 5 e wall >
Authors .g L] M Neo® = of experi- mination of C(.
n.;:':w | wnll ment
. !
O |26 600 1,0 Heat - Direct measure=
6 2.6 |10200} 1,0 | insulated ment with the
. 37 laioo! 1.0 plate aid of & float
eF - »
Coles ® |37 |460] 10
. ® 45 |2000] 1,0
4,5]U701 1,0
@ J45 |50 1,0
@ | 45690 1,0
® |8,99 ] 1245 0,448] Cooled walli | By the velocity
1 4 . of a coni- gradients or
' 9.0 an 0,460 cal nozzle the wall
© 9,07 1908 | 0,474
® 19,10 287 | 0,495
Hi11 o 8,22 | 281} 0,493
@ [08.35| 2498 | 0,497
© |98.,27] 2885 | 0,500
@ |0.29]322] 0,500
® 8,2 34651 | 0,502
|
¢. s, v 277 1.0 | Heet- Direct measure=~
insulated ment with the
plate aid of a float
5. 7,780 . 1,0
Korkegi ¢ z '
4 |50 10
@ |50 wn| 10
G | 4,93} 530 0,969 Cooled wall By velocity
of a plane oradients orn:
0 8,01 0,713 nozzle ' the wall and
via the
0 s.m 0.575 . R.ynold.. L J
oo, | © |58 w| e e
Winckler 20l 0 of heat
Persh ¢ .0 11 fluxes in the
¢ 681 0,508 investi gated
section
[..7. 0,313
*9'lcan 0,457
|
G |7.67] S0y 0,465 |
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Table 3%.3%a Continued

£ . _n‘l Conditions | Msthod of
Authors |Sw | M | ke of experi- determination
£ walll ment of C,
==
o 1,83 1,0 Heat- By changes of
insulated velocity pro-
® 110 1.0 plate files and
Wilson o |17 1,0 momentum
Q . equation
1.9 1.0
@ |2.10 1.0
@ 0,51 1,0 Streamlin- Direct measure-
2 ,0 ing of a ment of mean
@ |08 ! heate values
Chapman, | @ | 1,99 1,0 insulated
Kester oylinder
©. |24 1,0 | in the
longitudie
® |29 1,0 rel direce
tion
P [8.3% 1.9
o |36 1.0
0,42 1,0 Streamlin- Direct measure-
Lipn, | ® {063 1.0 | ingof a ment of local
Davan 0,82 1,0 | heat- values
i 8 ::42: ::g inluI.lo.'tod
, 2,81 0, Shot by a By measurements
- 3,82 1,268 hollow of the velocity
Sommar, 5,63 0.176! oylinder in | of flight of a
Short , g-g g- :6] a wind model
* 7 0,21y bumel
¥ e toward the
[ ' 3,67 0,285 o
Monshan | @ | 2,43 1.0
2,55 | 1.0 By measurements of
Rubesin ¢ I : velocity profiles
® [3.0 5,0 Cylindrioal By velooity
Brinich surfaoe profiles

b) Turbulent heat exchange on plate

Authors

Points, N

Conditions of

Mathod of deter-

(Fig.8 experiment mination of 8¢
Bradfield, ® { 2,506 | Streamlining Measurement of heat
Coursin { 8,800 | of a come transfer by a none
© | 3.410 steady state method
s ;o Plate with By consumption of
Pappas . uni form pree electric power and
heating wall temperature
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Table 3.3b Continued

Authors Points M Conditions of Methoo of dutur-
(Fig. 6} exporiment mination of $¢

-Q 2.00 Plate with By consumption of

Shulberg { 2,% uniform pre- heat trarsfer ty
Q t 309 reating ? norgteany stnle

- 1n@Llivd
Slack, }; 2.5 | rate not sttec
Mllis 2,5

3.T. Plate with Initial Adiabatic Section

A diagram of the problem is shown in Fig. 9. A dynamic turbulent
bounciary layer is developed from the leading edge of plate. On the

section with length Xq heat transfer is absent. [Irom section x = X

heat transfer begins between the plate and *the gas. The forming

thermal boundary layer 1is submerged in the dynamic layer, 1.e., 5t <

< b,

FrrTTITrTIYYYY I ?
Heat trarsfer region ¥ J

T -
0 ¢+ 2 38 4«4 5 ¢ ’ 8 9 ®©

Fig. ©. Plate with initial heat-
insulated section (Pr = 0.72).

Assuning Pr = 1, p = po,‘Bt = 0, lt = 1, a'- ab, and 6 > Bt, we
bring equation (2.64) to the form:

St --pp 9% . 9%
Sty = F P TR (3.60)
On the other hand, for these conditions it follows from (2,6) that
de R ch -~
l‘a,_=‘/—r ' (3.61)

Combining these equations and integrating, we obtain the dependence
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T - e——
A £ N ) .
“j‘ ‘r T’- T‘l-—l-“... (3'62)
From (3.61) we have
i
.«.,.:JV—_-;L; —:—- dt. (3.63)
Consequently,
X 4
T"‘v".u)=‘“.m (3.64)
where
’ L]
- (). (3.65)
The dimensionless temperature difference in the viscous under-
layer:
o [
.,.:-—1'-——3!"1“.‘ ‘—"._o
ioeo,
o= :’“ Pra,. (3.66)

Putting this value of $,, in (3.64), we find that at Pr = 1:

288 = 1 ] (3.67)

7] L 1]

In a first approximation, for n = 1/7 and Pr = 1,

Ry 0,009

dRe, RO”?—. (3068)
dRe*s 001N

are, T Tpper

Let us integrate the first of these equations, assuming that at
X = X, Gt = 0, Let us integrate the second equation, assuming that
at x = 06 = 0, As a result we obtain relationship for the thicknesses

of the boundary layers:
_.%'__= ( X = Xu ‘)0.0. (3.69)

X
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Correspondingly,

r ¥ - X 0.104 2
“w "(t-x.) ' (3.70)

As can be seen from Fig. 10, this formula is well confirmed by ¢xper'-

\

o g .

ment.

) \ ) i AR

¢ I

|

v 1) @ 2 14 (s “i,
Fig. 10. Heat transfer to a
plate with initlal heat-
insulated section; ————- cal-
culation by equation (3,70);
O - calculation by the equa-
tion, describling the experi-
ments of W. Reynolds, W. Kays,
and S. Kline.

Since in thls case I.:’ = (bt/a)no**, then

§t = 00D ( X~ %y )"-‘- (3.71)

Lol X
Re;

or

$ ( X — X ‘)'."‘6

0, o \ X ! (3.72)

where
S, = 00120 Re; ** .
A second appronximation slightly refines this result.
The correction for isothermalness can be calculated by the for-

mulas given earlier upon substitution in them of the value:

o= [pra(2 - (3.73)

X — Xo
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Table 3.4. The Ratio 8t/8t, vy
Formula (3.72)

]
. 1L [ 131 j1® s} 2 ) l -

Rle

0| 0,81] 0,87 0,91 0,93 0,94 O.DI !

For quasiisothermal conditions it is possible to assume:

L 0.0129' PR 2
4 Re, - "P." ";’“' ( *

(3.74)

X

Hence, for a plate with a completely turbulent boundary layer:

Ref ™ Sl (1( 5 e g (3.75)
£y
Correspondingly,
' s::o.mrr"‘kc:'-’,(—f—) (3.76)
3 ( ]
or
Ns, ;m”"klf?( :. ;.o (3.77)

Here

P
)
-
'( lo) [x :.’ l ( )]
Re, = (s- 2 (3.78)
“ha=='%‘0“'30-
The function w(x/xo) is represented graphically in Fig. 11.
At (x/x5) > 1.50 with an error not exceeding 8%, it is possible

to assume:

Ns. = 0,0288 Pr™ Re', (3.79)

i.e., to calculate heat transfer by the usual formula with substitution

in it of the true length of the heated section:
"-—-X-x.. (3.80)

-51-



o(f) )"

——

’ 2 4 A e 1 20 22 §

Fig. 11. The func:ion @(x/x,)
in formula (3.78).

Formula (3.79) was offered by M. A. Mikheev on the basis of
treatment of the experimental dats (Fi

g. 22).
Fruoy o
1
; -
L ‘71“—-
|
ﬁ_.’ -
.//L 2
2 > ,‘E’"'
| o
of
o Y
K
&
P al
a 7
/
.. ’
F
’
[ | ",
¢ ¢ s o 2 « o o 0° ¢
Fig. 12.

Comparison of experimental data

for hiat transfer to a plate with formula
HE

Dotted 1lines — calculation of the
1 laminar section.
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3.8. Solution of Eguations of Eomentum and Energy for
a Nonlsotherma unda er for
wall = COns

The analysis condu:ted showed that the difference in the thick-
nesses of the dynamic and thermal boundary layers slightly affects
the relative change of the coefficient of friction in connection with
the nonisothermalness of the flow. This important result allows in a
majority of the practically interesting cases to assume in the expres-
sion for Y the quantity e = 1.

Just as important is the fact of the weak influence on the ¥
Reynolds number. The latter allows introduction in the equations of
momentum and energy the quantity ¥, referred to the I.’. number, aver-
age in the considered section, or simply the limiting law, strictly
self-simulating relative to the Re number.

Both these circumstances are the result of the small value of
the exponent in formula (3.11), i.e., high population of the velocity
profiles in turbulent flow.

Let us consider nonisothermal turbulent layers, developing from

the leading edge of a plate at T = const. We have

v, (3.81)
are; _ o
LR, X (3.82)

Introducing in these expressions the values of Ceo and lto and carrying
*
out integration for the conditions ¥ = const, x = 0, Re = I.:’ = 0

we obtain
|
-JL. — -!L. -
( o e, = (" Jpe, =¥ (3.83)
Thus, the ratio of the coefficients of friction and heat transfer

for identical values of Rax numbers more weakly depends on the non-

' *a
isothermalness than for identical values of In" and R.t .
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In Fig. 13 is given a comparison of calculations by the theoret-
ical formulas (3.58)-(3.83) with calculations accoriing %c & method,
based on the semiempirical Prandtl-Karman theory. At the samc plac:
are placed experimental points. The knowm fact that, at large M
numbers and intense heat transfer, the contemporary semiempirical

theory does not give satisfuctory resuits, is clearly confirmed.

L
"

7
-ar

Fig. 13, Comparison of experimental
data with calculations by various
methods: 1) Van Driest's method; 2)
by formula (3.83); @ — experiments
of Sommer and Short. .
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CHAPTER IV

LONGITUDINAL STREAMLINING OF A PERMEABLE PLATE

Definitions of Cyrillic Items in

Order of Appearance

CT = wall = wall

XKp =cr = critical

3

= t = thermal, turbulent
nax = rad = radiated, radiation

OTH = rel = ralation, relative

4,1, Formulation of the Problem

The problem of calculation of a boundary layer on a surface,
penetrated by a flow of substance, has an extraordinarily important
significance, Such processes arise during protection of parts of
machines from the influence of high-temperature gas streams (so-called
"porous cooling" of blades of gas turbines, the enclosing surfaces of
combustion chambers, and so forth) during evaporation and condensation,
the presence of chemical reactionr ir the flow and at the wall, hard-
ening of a liquid, and fusing of solias,

Below is considered a turbulent boundary layer of a gas on a
surface permeable at all points, If gas is injected into a boundary

layer or is pulled from it, then the number of openings in the wall is
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great, and their dimensions are small, Therefore, the temperature of
the penetrating gas should be equal to the wall temperature, A
diagram of the flow problem is shown in Fig, 14,

Mass velocity of a strear

of gas intersecting a wall,

h=nmw,. (4.1)

An N

Fig. 14, Diagram of a Boundary layer Inside the boundary layer
on a Permeable Plate,

this flow causes an additiona
component of the velocity vector wy and gradually it is dispersed so
that at the wvall J1 * Pwall“wall’ and in the region y = 6 transverse
flow of the injected substance is equal to zero,

Transverse flow of the substance causes the turbulent viscous
underlayer, This circumstance favors application of the method of
conversion to the limiting laws of friction and heat transfer, corre-
sponding to Re = ®,

In connection with the above further research is built on the
basis of equation (2.30).

Distribution of tangential stresses 1s determined by formula
(2.40) at A = 0,

We have

: ¢ =1. (4.2)
\/ ¥ +0eran -

This integral has a finite value, 1.,e,, growth of the integrand
should be limited. Since the quantities w and f(£) lie in the interval
from O to 1, then changes of the integrand in this case are connected
with the change of the permeability factor b, During injection of a
gas through the wall into the boundary layer the quantity b is positive,
Consequently, there should exist some limiting value of the permeability
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factor b = bcx' at which the value o ¥ turns out to be equal to zero,
This phenomenon can be identified with separation of the boundary layer
from the streamlined surface, ®

The critical value of the permeability factor will be determined
by equation

(x=m) @

which ensues from (4.,2) at ¥ = O,

Subsequently, we will be limited by solutions of equations (4,2)
and (4.3) in an approximation, corresponding to the conditions f(¢) =
=1and e =1,

Theoretical calculations, and the principal comparision with
experimental data, show the full acceptability of these conditions for
the majority of practically important cases,

Putting in (2.69) the value or ¥, - from formula (2,76), we
[
obtain an expression for the limiting law of heat transfer on a

permeable surface:

=1. (4.4)

]
4%
5 V %o+ o0y 0700~

Since f(£.) = £(€), then solution of equations (4.2) and (4.4)
at € = 1 have the same form, 1i.e.,
V,(0,)=¥(). (4.5)

The gas introduced through the wall can differ from the substance

of the main flow; therefore, we will distinguish uniform and nonuniform

lFor greater detail see Chap. V.
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boundary layers. A nonuniform boundary layer appears during injection
of a gas, differing from the gas of the main flow, In this case the
boundary layer consists of a mixture of gases, whereby at the wall thre
concentration of injected gas has the largest value, but at the external

boundary of the layer is ¢qual to zero,

4,2, Law of Resistance for a Uniform,
Isothermal Boundary Layer

Assuming in equations (4.2) and (4.3) p = p, and f(£) = 1, we find
that
V=(1 —-03250)%, (4.6)

bp=4. (4.7)

Correspondingly, formula (4.6) can be written in the form:
=fy- LY. 4,8
v..(n n._) (4.8)

As will be shown below, this simple formula possesses great universal-
ity.
The moment in equation for gradientless streamlining of a permeable

plate has the form:

“w* ey g
or
_‘". — ) . 4 4.10
dRe, ”(.+‘)_2£_' (4.10)

Let us integrate equation (4.,10), assuming that the turbulent
boundary layer is developed from the leading edge of plate.

For the case of b = const we obtain:

” ' .7 .
(-, =0+ 9 =0 (4.11)
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When the quantity ¥ is determined by (4.6),

(e, =

Here m is the exponent in formula (3.1%4).

At m = 0,25 and bcr
( Ul
€t

[¢ W
wall wall _ .15t the solution obtained is very

For the case

__EL
|-—,(l+ P (4.12)
.' ‘.
= 4, from (4,12) it follows that
re,= (1~ 0,238)"(1 - 0,258)~ . (4.13)

Po¥o

awkward, but at m = 0,25 1is well approximated by formula

(=

= (1 —0,256) (| + 0,255 -0S,

(4.14)

Formulas (4.13) and (4.14) agree with an error, not exceeding 2%.

In Fig. 15 1s given a comparison of the values of —

for identical values of Re** and Rox.

close to each other,

REER

"0 s 2 4

o0
.u.-’.
CAR G
Fig. 15, Dependence

of the coefficient of

friction on the
permeablility factor:
¢
1) £ for Re** = 1den;
£0

c
2) cf for Re, = idem,
f0

Ce
o
The corresponding curves are

——, compared

In Fig. 16 is shown a comparison of the
theoretical formula with experimental data,
It 1s possible to ascertain full satisfaction
of theory.

Due to the large slope of the relation
¥(b) in the pre-breakaway region, experi-
mental determination of the point of

breakaway is inaccurate,

In practice in experiments the condition
of breekaway of the boundary layer for the
case conslidered can be fixed already at

values of b of the order of 3,
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Fig, 16, Comparison of calculations by formula
(4.14) with the experiments of Hacker, Mickley,
Pappas, and Okuno,

]
O — experiments of Hacker -C.>-— experiments of
£ ) a )
— 13 Mickley{ =— k
(:fo ’ (“o :

® — experiments of Mickley @ — experiments of

(cf ) . Pappas and Okuno,
-— 1
€0

Since the quadratic term in formula (4,8) begins noticeably to
have an effect only in the range of values of the permeability
parameter, close to the critical, then for b, not very close to

bcr’

'%l- 2——‘—-. (‘4.15)

b
The linear relation between the quantities ¥ and b was noteu by several
experimenters and is well explained by the theory expounded, At
bc

r=-1\la.ndb<<bcr

el —05b. (4.,16)
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4,3, Law_of Heat Transfer for a Uniform,
Quasiisothermal Boundary Layer

For smalil temperature differences, when ¥ ~ 1, the physical
properties of a gas in a boundary layer can be considered constant,
By formulas (4,5) and (4.8) the limiting law of heat transfer for

& quasiisothermal boundary layer at a permeable wall has the form:

=1 - b}
=(1- %) (4.17)
In addition:
bow=by (4.18)

In the presence of relative similarity of the velocity and
temperature fields it 1s possible to apply formulas (3.36) and (3.37).
Then

b = Vg W
bPr . (4.19)

During development of both boundary layers from the leading edge
of the plate condition (3.38) is fulfilled, and

b, < bPr. (4.20)

4,4, Calculation of Cooling

Usually in the calculation of a boundary layer on a cooled wall
distribution of the temperature Twall(x) and the initial temperature
of the liquid coolant T1 are assigned, It is necessary to determine
the flow rate of this liquid through each cross section of the

protected surface,

The quantity of heat, transmitted by the main flow to the wall,

in a given section is

9 =12 (T, Tu) = duss ()4 . 21)

where dpgq 18 the heat flow due to radiation,



Let us assume that part of this heat QY is transmitted through

the wall, not in connection with introduction through 1% of the cooling

medium (for instance, by means of thermal conduction through

structural metal)., Then the quantity of heat, which the cooling

medium should receive 1is:

¢:=d— ¢y = L)y (Tee -~ B/

(4.22)

where Jn_- P4%4 is the flow of the mass of cooling medium through the

wall, Combining these equations, we find that

‘o — .' . rn - T. i
! 3 rn -- r" *
where
, e l _q!“_"._—-g.'... -
L

(k.23)

On the other hand, for YS we have the dependence (4.,17). Combining

equations (4,17) and (4.23) and solving them relative to the value of

the thermal permeablility factor of the wall, we obtain the value

where
f rg" r!
! To— Ter .
Av

fi=0 b,=0b,, when £, >0 b,<5,,.

4,5, Laws of Resistance and Heat Transfer for a

e el

Uniform, Nonisothermal, Subsonic Boundary Layer

(4.24)

In a uniform subsonic boundary layer of a gas € = 1 according

to formula (2,52)
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r
:' = T TPp— (9~ 1)w, (‘&.25)

P
Putting this value of _p_O in equation (4.2) and solving it at
£f(¢) =1, we find that:
a) at ¥ <1

2
)

= g fn Y —91(1 +8) T
("'4‘ bl ’/—l_* +'I .'1' (4.26)

b) at ¥ > 1

—11
(?—-l)b,[mt'l/u-n(bnn —mrcig ‘/ﬁ'.ti] (4.27)

At ¥ = 1 we have formula (4.6).

Correspondingly, the critical value of the parameter of
permeability of the walls, calculated by equation (4,3) upon substi-
tution in 1t of the value of -pp£ from (4.25) and f£(€) = 1, are determined

by the formulas:

a) at ¥ <1
bt f1g 1r 1% ’:
.""_ -1 TVavrall B (4.28)
b) at ¥ > 1
b= ¢|l arccos-——'l'—) (4.29)

Table 4,1, Values of b,, by formulas
(4,28) and (4.29),

¢ 028 |oso 075 |1 | 200 400

9462481425 1.4

. 9
(—!ﬂn) 2.3(3136|4] 5.0] 5.7
er



The relation bcr(w) is shown graphically in Fig. 17.

N\
0T \
&40
a0 - — — =
{0
\_ .
201+ P}*r—w::r-—- =
(\
) 490

o Qs 40 1 20 2,5 30

Fig. 17. Influence of heat transfer on the
parameter of breakaway bcr for a uniform
boundary layer, ———— calcvlatlon by
equation (4,28) for the case ¥ < 1 and by
equation (4,29) for the case ¥ > 1,

It 18 interesting to note that in the reglon y > 1 the critical
relationship of velocities changes significantly weaker than the
critical relationship of mass flow rates, In the reglon ¥ < 1 both
parameters change almost equally, although there is observed a

“wall
somewhat greater conservation of the ratio (————-— .
cr

Yo
For engineering practice the case ¥ < 1 has the greatest
significance since in this case introduction of a substance through
the wall into the boundary layer protects the streamlined body from
the thermal influence of the main flow of gas.
In Fig. 18 is given a comparison of calculations by formulas
(4,26) and (4.27) with calculations by formula

b \2
V=4(—’2——l———_ ) . (4.30)
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As can be seen, this simple combination of formulas (3.47) and

(4.8) well approximates the exact solution,

v ¥ .
()
ad

Qe

a4

22—

l ! 1 ol
g g8 g2 a3 a+« gs g6 q’ ar av

Fig. 18. Comparison of calculations by
formulas (4.26) and (4.27) with formula (4,30
during determination of b__ by formulas (4.28
and (%.29). cr

Caloulation by squation

(4.36) i)
¢ 0,% 0.4|0.6,0.l 2 ' 4 I 8
Designation Ol @ 1 D1 @ | D | © | L.

In Fig., 19 is given a comparison of calculations by formula (4.30)
for heat transfer on a plate and in the inlet section of a pipe with
experimental data, In spite of a significant scattering of the

experimental points, they are grouped in a mass around a theoretical

line,
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Fig. 19, Influence of injection of a gas on
convective heat transfer, -——————— calculation
by equation (4.,30), A — experiments of Mickley
(plate); experiments of Friedman (pipe),

Rep.ts 142 u5 | 0zs | e 63

L3 | LSS ' 0,7 1.95 0.3

' ,
‘Designation [ rr | 7 | « —’;,-' O | + '. § ] , I a
' ; :

4,6, Law of Resistance for a Nonuniform,
Isothermal Boundary Layer

During supply through a wall into a boundary layer of a foreign
gas the process of diffusion arises, The partial density of the
injected gas 1s changed from the value Pyall On & streamlined surface

to zero in the region y = 6D’ where 5D is the thickness of the diffusion

.boundary layer. The fleld of concentrations can be connected with the

velocity field by a formula of the type (2.44)., For the flow, not

close to the point of breakaway, it 1s possible to assume the relation®

ol (4.31)

'In the general case, for instance, during evaporation of water in
humid air, py # O and in the denominator of (4.31) one should write the

difference p .47 - Ppe
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where

o=(—)" (4.32)

Since in gases the diffusion Prandtl number is close to unity,
then all the conclusions, made in chapters II and III about the weak
influence of the degree of nonsimilarity of the temperature and velocity
fields on the relative changes of the coefficients of friction and
heat transfer, are also valid for the process of diffusion, Therefore,
for a plate it is possible to consider the limiting law of friction,
assuming Ey ™ e =1,

The gas constant of the mixture 1s connected with the density of
the mixture and partial density of the injected gas p' by a known

relationship:

(4.33)

Here R, R!, RO are, respectively, the gas constants of the mixture,
injected gas, and basic gas.,

On the other hand, the density of the mixture p is connected with
the density of basic gas outside the boundary layer Po by the equation:t

R To
; =—r (4.34)

'1.e., under isothermal conditions

| S %
o R (4.35)

Combining formulas (4.31), (4.33), and (4.35), we find that at ¢ = 1

and T = const

et ] (B L (4.36)

lSince in the boundary laver ay =0,
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Introducing this value of -g— in equation (4.2), we find that:
0
a) at R' > Rq (18 injected with a small molecular weight p' < uo)

.1 _
V= [V Wi+ h) |
e -1 -4 m)/.,h +-l_/ - +6) ]‘: (u037)
b hh D Voo +v -1

b) at R! < Ro (gas is injected with a large molecular weight

w! > l-‘-o)
v = 1 _‘_—T—""— Yy —1-—-b s
Y "/ K AT
2
X[arctg "—t'}}’:'”" -- arcig ‘/—L;—Ii—]]- (4.38)
where
b= (4.39)

Per

is a quantity to a certain degree analogous to the temperature factor
Ve

In a uniform flow of gas, obeying the Clapeyron-Mendeleev
equation wi = Y,

Definition of the parameter wi depends on the method of supply of
the foreign gas to the boundary layer,

If a gas 1s Introduced through a porous wall, then the flow of

substance is
Il=9;"g’ u(%‘)ﬂv (4040)

2 |
where D [%é?] is the diffusion coefficient.
From (4.31) 1t follows that:

(_:%—)«:"’ : (o;;, )«’ | (4.41)
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On the other hand,

Qm) LY.
( 0y Joo o er (4.42)
Hence,
—D, (-""—) o, Prytet o S
Ty o 0 0T BTeT (4.43)
where PrD - %-18 the diffusion Prandtl number,
From these equations it follows that at PrD ~ Ep ™ 5
fer - L)
i (4.44)
Taking into account (4.33), we determine the quantity
- L ]
"""[""(n. ') l+b.]' (. 45)

In Fig. 20 1s given a comparison of calculations by formulas
(4.37), (4.38), (4.45) with experimental data, The theory well
describes the results of the experiments with such heterogeneous pairs
of media, as helium-air and freon-12-air,

At b = bcr separation of the boundary layer occurs and the surface
of the wall is covered by a film of injected gas, Thus, in this case

Puall = p&all and for the condition T = const

L~ 2 +(x;_‘;_v- " (4.46)

Putting this expression in equation (4.3) and carrying out
integration at f(£) = 1, we find that,
a) at R' > R,

L. |+l/r|- R " \'
b:p= o in L H (4.47)
Yfi- 2 )
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b) at R' < R,

L
R R
do=f1— srccos (2 — - | .
' N (=) (4.48)
L R
Ro
From formula (4,47) it follows that at gv=0 Db, . =1,
(Ene,.
w0

Filg. 20, Influence of injection of a forelgn
gas on the coefficient of friction on a plate.
— — calculations by equations (4,6) — (air-air),
(4.37) — (helium-air), and (4.38) — (Freon-12-air),
O — experiments of Hacker (air-air), ® — experiments
of Mickley (air-air), Experiments of Pappas and
Okuno: O — air-alr, @ — helium-air, @ — Freon=12-air,
In Fig., 21 1s shown the dependence of the critical value of the
parameter of wall permeablility on the relation of the molecular
weights of the injected gas and basic flow,
In Fig., 22 18 given a comparison of the experimental data with
calculation by formula (4.12) during determination of the quantity bcr
by formulas (4.47) and (4.48).

In that case, when the streamlined surface is covered by a film of
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L = o ' 1iquid and evaporation occurs, the

value of the density ol the mix-

' 4= ture at the wall is determined

by the total pressure and partial

pressure of the volatile liquid.

" a2 a¢ as a O
o The latter with a great degree of
[}
& l accuracy 1is equal to the saturated
e .
‘2 ! ;fyf. _ pressure at the evaporation
I -
" e— I rfﬁfﬂy_ temperature. In addition:
e — I ‘ -
I 4= ¢
" Ty e
0 20 30 40 10 60 20 &0 20 10 hiIbn
”»
Fig. 21, Dependence of the
critical parameter of injection where p, 1s the pressure outside
bcr on the ratio of the molecular

weights (¥ = 1): &) 1)e=-= by the boundary layer,

equation (4.47), 2)== by the For quasiisothermal condi-

equation .
by = 1 +3%;
e tions, when y =~ 1,
b)=— by equation (4.48). 1In the |
= —
range of E- from 1 to 10 is the . R\ », (4.50)
u-o 1~ l--—R-'— —_—
[

linear approximation is valid:

It 1s also possible to use
m,a|¢7T253£l. these formulas for calculation of
e
heat transfer during quasiisother-

mal conditions with replagement of the factor b by the factor

— 0 Jy
b, = cpb%o% ) (4.51)
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4,7, Law of Resistance for
a Nonuniform, Nonisothermal,
Subsonic Boundary Layer

During nonisothermal flow
e, - ©
the intensity of the process of

]
o
a8 <
Qs
& diffusion is more correctly

i

determined by the difference of

p— L \d \ nJ v T ]
0 Q @ al Qs a5 ofF Q7 Q0 Q) (4,

partial pressures, Let us assume
Fig, 22, Comparison of .exper-
imental data with formula (1;,12) 3 that the following condition 1s
O — experiments of Hacker, & - "
experiments of Mickley. Exper- fulfilled
iments of Pappas and Okuno; @ —
air-air, @ — helium-air, @ — = p’
Freon-12-air, —_— X, (4.52)
Pex

which at T = const coincides with (4,31).

Taking into account (4.33), we obtain:

R o P R,
| 3 (1 p(l )

R \ R i
AT Y o
At the wall
S i Gl (29
Hence,
'_::_ =..1;_[1_(1— —{:-)(l : m)]. (4.55)

Determining the temperature by formula (2.52) at y* = 1 and

1In the more general case in the denominator one should write the
difference p!. 1, = PQ.

-
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e =~ 1, we have

- Y.
p ~ % +(‘ h )
b V+(—¢)e ‘ (4.56)

In these formulas the factor ¥, 1s defined by (4.39). Introducing
this value of %—-in (4.2) and (4.3) and assuming f(€) = 1, we obtain
0

Y=l

v D *u nuul;b“q de |* (4.5T)
SV )

A |++(l - )l m dep (4.58)

During derivation of equation (4,58) it is taken 1nto account

the equation:

that at the point of breakaway p .., = pl,y; @nd v, = WR .
0

In Fig. 23 are given the results of the numerical solution of
equation (4.,58) in the range of values of %L from 0,1 to 1.0 and

0
values of ¥ from 0,2 to 2,0, Along the axis of ordinates on the graph

is placed the ratio of the gquantity bcr at given values of ¥ and gl-
0

to the quantity b, . at the same value of ¥ and ﬁ- 1 (1.e. b,pq 18
calculated by formula (4.28) at ¥ < 1 and by formula (4.29) at ¥ > 1),
These results are shown the graph by the points. The line given by
these points 1s described by the formulas:

at u' > u,

b= by (0,37 + 067 —”—) (4.59)

at et <“-O

. w (4.60)
b.p = b‘p, (0.25 + 0,75 -—.:'—) )
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E& ’ In these and the other formulas
’ p! 1s the molecular weight of
‘—.
| injected gas and Ko the molecular
9l welght of the gas of the basic flow,.
2 For the case u'! << Ko the integral
’t (4.58) 1s substantially simplified
0 20 30 40 50 &0 20 & % 10 and for b,. we have the formula:

Fig, %.23. Depend £ th b = (=)

8 FecDe ependaence O e L W _( — ) .
critical parameter of injection o WV oy (4.61)
the ratio of the molecular
weights and the temperature
factor, Thus, the temperature factor affects

bcr in approximately the same manner

a8 it does the coefficient of friction during streamlining of an
impenetrable plate,

In Fig. 24 are given the results of the numerical solution of
equation (4.57). Along the axis of ordinates 1s placed the ratio of
¥ (for given values of ¥ and &L ) to ¥, calculated by formula (3.55).
Along the abscissa 1s placed tge ratlo of b to bcr’ calculated by
equation (4.,58)., Curve 1 corresponds to formula (4.8),

As can be seen, the exact calculation for the case of injection
of freon-12 in a flow of air is near the approximate formula (4.30).
In any case the divergences are of the same order as with the
experimental data in Fig, 22, Exact calculation for the case of helium
injection in a flow of air confirms satisfactoriness of the approxi-

mation of the influence of the temperature factor ¥, but deviates

more significantly from approximation of the influence of the factor

cr
From the data of Fig. 22 on the injection helium into air, it
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Fig. 24, Solution of equation (4.57). 1)
calculation by equation (4.8); 2, 3) by
experimental points,

is clear that this divergence decreases upon transition to a
calculation by Rex.

Considering this circumstance, and also the absence of experi-
mental data for a nonisothermal nonuniform boundary layer, in a

first approximation it is possible to assume the approximate relation
(4.30).
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CHAPTER V
STREAMLINING OF A CURVED SURFACE

Definltions of Cyrillic Items in Order of Appearance

cr = wall = wall
Kp = cr = critical
T =t = thermal, turbulent

5.1 Limiting Parameters of Breakaway of an Isothermal
Boundary Layer on an Impenetrable Surface

During streamlining of a curved surface the flow velocity on the

external boundary of a dynamic boundary layer changes along the stream-

lined contour and, consequently, %% # 0,

Nozzle flow 1is distinguished, when ap < 0, and divergent, when

dx
QE
dx > 0.

During nozzle flow, the stream 1s accelerated, the direction of

motion of the liquild coincides with the direction of the pressure force,

and the boundary layer is always stable in the sense that 1t 1s not

detached from the streamlined surface.

During diffusion flow the stream is slowed down, pressure increases,

and its ac*ion is directed toward the motion of the liquid.

The pressure gradlient in the boundary layer 1s determined by

formula (1.10), i.e., a change of pressure occurs in strict conformity

with a change of veolcity Wiy
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Inside the dynamic boundary layer flow 1s inhibited by friction
and Wy < Woe Therefore, the reserve of the kinetic energy of flow inside
the boundary layer 1is insufficient for full surmounting of the action
of the fleld of pressures directed toward it, As a result a positive
pressure gradient evokes inside the boundary layer inhibition, and then
stoppling and reversé of the current of liquid near a streamlined body.
This phenomenon is called separation of the boundary layer.

Beyond the point of breakaway a vortex motion of the liquid appears,
accompanied by sharp growth of the resistance of pressure and still not

yielding to theoretical calculation,.

Schematically the sequence of

o]
,__i ' deformations of the velocity profile
J‘I"l N
u -\\\'\\\\.\\\\\\“\\ N in the region of divergent flow is
Fig. 25. Diagram of deforma- shown in Fig. 25,
tions of the veloclty profille
during flow of a boundary Inasmuch as separation of the

layer with a pressure gradient,
boundary layer is characterized by

conversion of the flow in direct proximity to the wall, i.e., there,
where the flow 1s the most inhibited, then the point of breakaway is

determined by the condition
(2!;) =0. (5.1)

-

Correspondingly, at the point of breakaway Cp = 0.

Actually, separation of the boundary layer does not occur at any
exactly fixed point, but embraces a certaln finite domain. 1In this
region the velocity profiles are deformed from the mimimum stable form
to a form, corresponding to condition (5.1). 1In addition, pulsations .
are possible, accompanied by oscillations of the point of breakaway
within the 1limits of a certain region Ax,

Measurements, conducted by many researchers, show that during
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nozzle flow the velocity profiles are more populated, and during dif-

fusion flow are less populated than the velocity profile for the case
dp _ o

dx *
For the point of breakaway of an isothermal boundary layer at an

impenetrable wall we have the condition:

fep=0; p=ps 3=, j,=0. (5.2)
Putting in equation (2.5) the value of the considered quantities, we
obtain the equation, determining the velocity profiles at the point of

breakaway of an isothermal turbulent boundary layer at an impenetrable

et | (2) V3 (5.5

9

wall;

The index "cr" indicates that the corresponding quantities are

referred to a cross section, in which separation of the boundary layer
appears,

Distribution of the tangentlal stresses across the boundary layer
at an impenetrable wall 1n a sufficiently general form it 1s possible

to write:
<
ey

-~
e == .

=9 (é) + Aloy (F). (5.4)

During approximation by a cubic parabola in accoradance with

(2.35)
9J0=1—39+xul

o ®=(1--¢" (5.5)

and, taking into account that the form parameter A 1s determined by

formula (2.36) and at the point of breakaway Tyall = O» We have

tsp - (] . " E =(__ _B_ E > -
"3 '.z dx 'l (s) : f".)'. ?IC)! (5.6)
5 . %
where f = wg  ax is the form parameter, not related to the quantity
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Putting the value of 7, in (5.3), we find that

=t s ] (), ()

» i
Assuming in (5.7) o = 1 and, correspondingly, the upper limit in
the right integral to equal 1, we find that
1 — w4 (5.8)

1
3
_f (—,—) V En(®) dt
IS'
fiep .

o=

Thus, if the integrand and lower limits of integration in equa-
tions (5.7) and (5.8) are known, then the breakaway velocity profile
in the turbulent nucleus of a boundary layer and the critical values
of the parameters f, E%:, and H, are calculated, 1.e., all the quanti-
ties, characterizing the phenomenon of breakaway,

Equations (5.7) and (5.8) can be solved, if we accept the assump-
tion of the conservation of the dependence of the length of the path
of mixing 1 on the form parameter f and we approximate tangential
stresses profile by a cubic parabola,

Both of these assumptions always can be considered as a first
approximation of the real distributive laws of the quantities 1 and 7
in the critical cro s section, and in any case they do not emerge within
the framework of assumptions, accepted in the contemporary semiempirical
theories of a turbulent boundary layer,

Any further more precise definitions of these dependencles can be
easily considered by the corresponding change of 1nfegrands in equations
(5.7) and (5.8). -«

Regarding the lower limits of integration, i.e., @®; .p &nd &1 cr?
then for their determination in the general case knowledee of the law

of stabllity of the viscous underlayer 1s necessary,
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= t‘?j:"i ~¥,1

At Re =® §, -0, w; = 0, and the critical parameters of the break-
away of the isothermal turbulent boundary layer at an imnenetrable wall

are determined by equations:

(1), =l

j(—%—l’v"??ﬁa'ca (5.9)

) j(—:—)»'/ n® « |

Taking as primary experimental fact logarithmic velocity profile

d
at -&% 0, we find that

! =

—=uV 3. (5.10)

According to formula (3.1) n = 0,4,

According to the other experimental data the value of this constant
lies in the range 0.38 to 0,41, i.,e,, very close to the quantity,
defined by Nikuradze.

Putting relations (5.5) and (5.10) in equation (5.9), we obtain
the limiting velocity profile in the region of the breakaway of the

turbulent layer:

G MRV T E +a41) . (5.11)
2y +5)
Accordingly,
A\ _of L Y N
(_p?rh_zltlnhy6+dﬂ : (5.12)

From formula (5.11) it follows that for the accepted assumptions
the limiting ve.ocity profile in the cross section of the breakaway
of the boundary layer does not depend on the empirical constarts of

turbulence. The limiting critical value of the form parameter f

depends on the constant wn.
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At n = 0.4, for the considered consitions (T = const, Jil= 0,

Re — ), We have':

(-I .:. )- = 0,062; (_!_;‘_)” - 0.30;

(T‘),,=°"5= Hy=187; f,=0010.

(5.13)

The velocity profile (5.11) 1is approximated by the exponential

relation
0 = .G, (5.1“)

This value of the exponent for the cross section, in which break-
away of the turbulent layer from the impenetrable wall occurs, is very

close to the value n__ = 0,5, found earlier from other considerations

cr
in the works of ~-oss, Stratford, and Townsend, However, it seems to
us that in these investigations less general assumptions are accepted
and not all of the complex of parameters, characterizing the region of
breakaway are obtained, In particular, the critical values of the form
parameter f were not calculated.

From the given calculations it is clear that just the form param-
eter f preserves a finite critical value, even at Re — ®, whereas the
critical value of the Buri-Loytsyanskly form parameter

Fo= z (5.15)

approaches infinity (since at Re — w, cfo-* 0). In the region of not
very large values of Re number the quantity Fcr has fully finite values,
Qualitatively, this conclusion was earlier substantiated in the
works of L, E, Kalikhman and G. M, Bam-Zelikovich,
In Fig., 26 1s given a comparison of the velocity profile, calcu-

lated by formula (5.14), with results of the measurements of

'Values of 6* and 6** are found by formulas (1.24) and (1.25) upon
substitution in them of w from (5.11) and p = py-
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I. Nikuradze and A. I. Leont'ev, A. N.

Oblivin, and P. N, Romanenko,

It 1s clear that the theoretical

limiting velocity distributions in the

prebreakaway region of flow 1is satisfac-

torily confirmed bty the experimental data

0 92 o0« a8 os- e for finite Re numbers,

Fig. 26, Comparison of The critical value of the form param-
calculated velocity pro-

file at the point of eter H from the experiments of I, Niku-
breakaway of the turbu-

lent boundary layer wicth radze are equal to 1.8, from the experi-
experimental data: 1)

calculation by formula ments of E. Grushwitz —- 1,9, 1.,e,, very
(5.11); 2) calculation

according to the 1/7 close to the found theoretical value,
power law; O — experi-

ments of I. Nikuradze; According to some other experiments
@® — experiments of A. I.

Leont'ev, A. N, Otvlivin, the quantity Hcr attains 2-2,5, It is

P. N. Romanenko.
' possible that this increase of the value

Hcr is connected with the roughness of the streamlined surface or some
other sort of factors, not considered by the accepted approximations

of the functions 1(y) and t(y).

5.2, Condition of Stabllity of the Viscous Underlayer

During streamlining of an impenetrable plate by an isothermal flow
with %& = 0, the condition of stability of the viscous underlayer can

be written in the form

Re, = .:'" = Tafo = const. ( 5.16 )

In the two-layered diagram of a turbulent boundary layer Mo = 1.6

and Re, = 134 [- ? - original illegible], During gradient flow the
condition of stablility 1s changed due to a change of the configuration

of the velocity profile in the viscous underlayer, The character of
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this change can be clarified by proceeding from the following consid-
erations,

Let us assume that formula (5.14) approximately describes the
velocity profile in the cross section of breakaway and at finite Re
numbers, Such an assumption is more valid the larger the Re number,
Furthermore, 1t is also confirmed by the experimental data (see
Fig. 26).

In the viscous underlayer the velocity distribution is determined
by formula (2.21), which at c. = O takes the form

f

l IR rm 2 e
o= = 2 f‘P( 3o -Re S (5.17)

xp

Intersection of profiles (5.14) and (5.17) at the values of the

critical parameters from (5.13) will give the values ofe1 op 8nd ®, oy
to a first approximation,
We have 2.84
S S Tk
“w= (5.18)
. Hence,
Rey = o & qo("":. )” Rei* = LA RE ‘5;"|:'M = 28.

In addition the sum of the exponents for Re** in formulas (5.18)
is rounded off to 1 with accuracy up to 0.1, which is fully permissible,
taking into account the approximate character of these dependencies,
Thus, the Reynolds number for the viscous underlayer essentially

decreases with an increase of divergence,
Obviously, such a decrease of stability of the viscous underlayer
is connected with a corresponding distortion of the velocity profile

with an increase of the pressure gradient, In some measure this cir-
cumstance is taken into account in the Reynolds number, constructed
from the veloclity derivative on the external boundary of the viscous

underlayer:



Rey= (% 2y . (5.19)
At (dp/dx) = O Re; is identically equal to Re, or nZ,. Assuming,
as in all the preceding calculations, the quantity Mo = 11.6, we
find that at £ = 0 Rei = 134,

At the point of breeskaway
O\ LR
Re,= = fo (o) RE o (5.20)

Introducing here the value of the critical parameters from (5.13)
and (5.18) and rounding off to two the exponent for Re"” number in
the cube of the quantity &1 ops We find that

0.0 - 2,34
0.16

Thus, i‘i actually is stabler than Rei.

k‘.z = 57.

The condition
Re,=const (5.21)

is identical to the Stseblevskiy condition introduced earlier

(YT, oo =

5.3. Approximation of the Relation Between the Form
Parameters H and ©

Above was shown the method of calculation of the values of the
form parameters at the point of breakaway. The value of the form
parameters at (dp/dx) = O is calculated from the experimental univer-
sal velocity profile o(7).

According to the degree of the population of the velocity pro-
file that occurs with an increase of the form parameter f, the magni-
tude of the exponent n decreases. Assuming that at f=® n—o
from (3.13), we find that in this case H =1,

Thus, we have the conditions:
{f::flp; H:‘-H.':
[=0; H=H,; ’ (5.23)
f= o H=1.
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In addition 2 > H > 1, 1.e., changes minutely in the segment
from fcr tor =",
All these conditions are well satisfied by the simple inter-

polation formula:

H-1 Loy — |
= == 7' (5.24)

where £ = (f/f__).

To the logarithmic velocity profile corresponds the value

Hom1 -—t 20 2
o he)
Consequently,
H= H(f; Re"). (5.26)

In Fig. 27 is given a comparison of calculations by formula (5.24)
with the experimental data of I. Nikuradze, plotted in the coordinates

(H; £}, where H = (H/H,.).

"

Qr

Q¢ -2 92 02 @ aqe o8 10f
Fig. 27. Dependence of the pa-~
rameter H on the parameter f:
1) by formula (5.24); 2) cal-
culation for a laminar boundary
layer; points from the experi-
ments of Nikuradze.

We can see the satlsfactory agreement of calculation with experi-

ment.
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5.4. Law of Res’stance for an Isothermal Boundary layer
on &n lmpenetrable durface at
d X 0

Firom equations (2.6) and (5.4) it follows that the velocity pro-
Z1le in the turbulent nucleus of an isothermal boundary layer on an

impenetrable curved surface is determined by the equation:

t
_ . ) N A o
"—"l‘I‘S""—l ‘/ V=g @) - Tl dE (5.27)

where, as before, Y = (cf/cfo)ne**'

Distribution of velocities in the viscous underlayer 1is described
by equation (2.21).
The condition of stability we will write by means of the quantity

Rel -
Taking into account equation (2.19) for the case T = const and

Ji = 0, we have

s & A o }
v 24 yoe f ‘? =— Re,

2 S (Rc“ s )n (5.28)

t L0
At the point of breakaway ¥ = O and from (5.28), (5.19) follows,
The system of equations (5.27), (2.21), and (5.28) determines
the quantity ¥, if the function %(6); P(E); @ (E); hei(?) and cfo(ne**)

are known.
Actually, by assuming in (5.27) w = 1 and correspondingly the

upper limit of the right integral is also equal to 1, we have the

system of equations:

1. —5-—— 'l'—;Lw.(E) -—‘..—l'ivu(c) d3;
se i | 3 ! . .
= w = (‘ ? b e .f(?) ' (5.29)
(v L s (‘f, Re**)' = Re,.

When the indicated functions are known, then the system of equa-

tions (5.29) is solved in a first approximation, if we introduce in
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value 5**/5, defined via the quantity H from the formulas (3.13), and
the quantity H, in turn, is determined by approximation (5.24),
Further, by introducing in equation (5.27) the thus found values
of Y¥; 61; and w,, we will calculate the quantity G*ﬁ/ﬁ in a second
approximation and again solve the system of equations (5.29). As a
result in the second approximation are calculated not only ¥Y; &1; and

w,, but also 5*’/6 and H.

1
The authors together with N. N. Kirillova and G. P. Zykin solved

the system of equations (5.28) in a first approximation. In addition
the quantity 1/0 was determined by formula (5.10) at » = O.4; the
functions 9,(£€) and ¢1(€) — by formulas (5.5); the quantity Ceg — DY
formula (3.7); the quantity H — by formula (5.24); the quantity H. .
was taken equal to 1.87.

Thus, in the semiempirical theroy of a turbulent boundary layer
developed here, as a primary experimental fact 1s taken a definite
universal velocity profile ¢(n), and not some gpecial hypothesis on
the length of the path of mixing.?!

The full system of equations of the examined first approximation

takes the form:

=1 —2.5}—‘—- ’ ,"r"—‘z"—.+ %’If I/—L—dt;
' JTE N T el (5.30)

= e e (YLt i Sl 8):

'In the majority of works ! = ny (Prandtl formula) or 1 =
N n[(dwx/dy)/(dewx/dyz)] (Karman formula) is assumed. "Constants of
turbulence" % and nyo &re determined from the same experimental velo-

city profile. Experiment shows that these dependences are sufficientl,
accurate only in a narrow prewall region. Usually T = Teall = const

is assumed, i.e., a condition valid also in direct proximity to the
wall,

The hypcothesis on the conservation of the function 1(y), naturally,
is also necessary in these theoriles.
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v_g ... e f8] = — B0

: (?-""‘)
‘/—-—55+25m (— eV 3 )
: v _ _HH+)Y ,
o H-1 '
H~1=(H,-- 1)(—“":-_8_%.);; (5.30)

I/I
Hy—-1= ; 2
0.2—]/ -

The critical parameters are determined preliminarily from this

system of equations at ¥ = 0 and T = 1.

Calculations were carried out on the electronic computer of the

Calculating Center of the Siberian Section of the Academy of Sciences
of the USSR. The results are given in Table 5.1 and in Figs. 28, 29,

and 30,

Table 5.1, Values of the Parameters of an
Isothermal Boundary layer at the Point of
Breakaway from a First Approximation

ok 2.0 g B (L 5.10 (D UL 5.10° 1.1@

“0r

0.133\ 0,077 | 0,044 | 0,034 | 0,0294 | 0,0183

Io.om] 0,00625 | 0.00215°| 0,00135 | 0,00046 | 0,00020

5tor

yoe

-—) 016]016 |oa6 o6 |06 [o.16

Ve | |
—for o.o|o| 0,010 |0,010 |o0,0100 |0,0010 |o0.0010
- 7 167 |90 |100 (128 |14
Mor 7|17 {187 |18 |87 |87

As can be seen, the thickness of the viscous underlayer increases
in the region of diffusion flow, and the velocity on the external
boundary of the viscous underlayer decreases. Besldes the larger the

Re number, then the relatively stronger are these changes.
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The relative change of the coefficient of friction in the dif-
fusion region is very significant and depends both on the form param-

eter and Reynolds number, 1.e,,
‘r=‘f(7; Re**). (5.31
In addition, the greater the value of Ro**, the more rapidly the

coefficlent of friction decreases with the growth of the parameter [

Calculations were performed for two conditions of stability:

‘/ﬁi = Nyo = 11.6 and Viei = 11.6 - 4,0f, The latter is a linear

interpolation between the value of the quantity (l-‘/ -l-) s
4 yY=n0n

determined experimentally for the case T = O, and the value of this
quantity at T = 1, calculated from the limiting velocity profile.

Calculations by both conditions of stability practically coincide,
i.e., possible inaccuracy in approximation of the function Rei(?) is
immaterial for calculation of the parameters of a turbulent boundary
layer.

5.5. 8olution of Equation of Momentum for an Isothermal
“Boundary layer on an Impenetrable Surface

It is convenient to write the momentum equation in the form:

Re*” S o .« Uy
dd“ ~fpRe. (1 - H, H)f:ReL‘l,—:’-- ' (5.32)

Here Re'" = (wy8**/v) 1s the flow value of the Reynolds

number, constructed according to
the thickness of the momentum loss;

L= (WoLl/v) is the Reynolds number, constructed
according to the local value of the
velocity L and the characteristic

linear dimension of a streamlined
surface L;

= (x/L) 1s the relative distance from the
inlet edge;

£ s H are the values of the form param-

I
cr CI' eters f and H at the point of
breakaway of the boundary layer;
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T = (£/f.,.)3 H= (H/Hcr) are relative values of the form
parameters;

Yf is relative change of coefficient
of friction under the influence of
a pressure gradient.
H and Yf are complex functions of T and Ro**. Therefore, an exact
solution of the momentum equation can be obtained only by numerical

methods for a given velocity distribution outside the boundafy layer,

The solution 1s radically simplified by linearization of equation

(5.31).
We will represent this equation in the form:
2 dRe** -
ke,  —ax T G,
where .
Ffy=%,—(\ + Ha B\ T,,. (5.34)
At T = 0 we have: : N
¥ =1 F(f) - 1;
at T = 1 we have: . -
¥,=0; H=1; F(f)=1 - HG) M.
Linear interpolation gives the formula:
ch=1-- QU+ HN [T (5.35)

Calculations by the approximate formula (5.35) coincide very
closely with calculations by the exact formula (5.34%) upon substitution
of the values of H and ?; which are determined by formula (5.2}) and
the graph in Fig. 28, at |fcr| ~ 0,01,

Introducing in (5.33) the value of F(T) from formula (5.35) and

¢po from formula (3.14), we obtain the equation:
dRe Re**  dw, _ L Re,
o T+ H.) — = 3 e (5.36)

Integrating this equation, we find that:
-~ x‘\v
Re*t = ws " [——' ;" BRe,Sm'{ dX +
(5.37)
7y
+ (Re*s wo)k, “']f? .
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where

*
¥

g, =14H, .=+ +m(l+Hy) w = T":-; Re, = Sl
W91 1s the velocity of the current incident on the leading edge of the
streamlined body; X1 1s a dimensionless coordinate of the beginning
of the turbulent boundary layer.
By equation (5.37) the Re’" is distributed along the contour
of the body, covered by the turbulent boundary layer. 1In addition,
the flow velocity outside the boundary layer wo(X) should be given.

The local value of the form parameter is determined by formula

R aw,
,-- Re,w,. dx ’ (5.38)

For given values of f and Re** the value of Yf 1s given by the
graph in Fig. 28, and by formula
¢ =¥, (5.39)
the local value of coefficient of friction is calculated.
The values of the coefficlents B and m durlng solution of the
momentum equation are selected for a given interval of values of

Re** numbers in accordance with Table 3.1.

The quantity c., in formula (5.39) can be calculated by formula
(3.8).

For not very large values of the form parameter ?, it is possible

to put H= 1.3 and ¥ = 1 in the momentum equation. 1In this case

X
Re** = ;™ [———-—' ;"' 8 Re..j' et P X
& (5.40)
1
Ry M| T
For Re** numbers < 104 it is possible to assume m = 0.25 and

B = 0,0258. Then

3

. X 134
Re** = ws "’[0,0161 Re l w*d X - (Re** wﬁ")'z""']“. (5.41)
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In the works of Gruschwitz, Dengot, and Tetervin it is shown
that the form parameter H may be a good criterion for determination
of the point of breakaway of the turbulent boundary layer. Besides,
as was noted above, the critical value of the form parameter H, found
experimentally by Gruschwitz, practically coincides with those cal-
culated by us. In the opinion of the above researchers, distribution
of the form parameter H along the contour of a streamlined body
deper.ds not only on the local value of the Re** number, but also on
the distributive law of pressure, i.e., on function wO[H]. In this
connection empirical relations of the type,

aee dH

L dx H(f, Re**),

are introduced.

The degree of reliability of these relations 1is vague, inasmuch
as the corresponding experimental data are not published in sufficient
volume,

The presence of some sort of influence of the character of the
function wo(H) on the local parameters of the boundary layer does not
contradict the general conslderations about similarity and, within
the framework of our theqry, should be taken into consideration by
introduction of the corresponding correction in the approximation of
the tangential stress profile.

Regarding the quantities f Hcr’ and ¥ (f; Re**), the influence

cr’?
on them of the indicated factor has not yet been observed.

5.6. TLaw of Heat Transfer in the Diffusion Region
of a Quasiisothermal Boundary
layer on an Impenetrable
wall

The presence of a pressure gradient essentially disturbs the
similarity between the processes of friction and heat transfer in the

boundary layer. In addition the process of heat transfer possesses
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a significant degree of conservation which is revealed already upon
comparison of the distributive laws of the tangential stresses and
heat flux along the cross section of the boundary layer.

By formulas (2.35) and (2.74%) for an impenetrable surface (b = 0):

IRV (5:42
Within the 1limits of the given approximation the distribution of
the heat flux, in general, does not depend on the pressure gradient,
whereas the distribution of tangential pressures changes substantially
with a change of the quantity (dp/dx).
In Fig. 31 is shown the distribution of tanrgential stresses and
heat flux along the cross section of the boundary layer at the point

of breakaway, calculated by formulas

(5.42). 1In the wall region the path of

the curves q(&) and (2-:/po O) (¢) 1s quite
different.

=] S——

”+___ Let us carry out a calculation of

the intensity of heat transfer at the

/

point of breakaway at Pr =~ 1 and 5, < b,
0 Q2 Qae Qs qe 0¢
Fig. 31. Distribution of In thls case lt
tangential stresses 1) and
heat flux 2) at the point for quasiisothermal conditions will take
of breakaway of the boun-

~ | and equation (2.64)

dari layer by formulas the form
2) .
“ee~[ ! \§ Om ol
q&~{; )os L2 (5.43)
or, taking into account (5.10),
St=0,163 2= . 9 (5.44)

L 13
Taking the velocity distribution from formula (5.14), we have

J4r e (5.45)
$10,0685 —~——— = 0.0295 §—1=% .

) 43
i‘—‘ - (-4
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Here

D, 2L = St Pr Ret* —2—%,.

Joe

Disregarding the quantity [(5‘/61_‘)&1]0'“3 as compared to 1 and assuming

Pr = 1, we obtain the value:

0,0295 &’

St~
’ b 40,005 (___'__ 1.5 ggee (5.46)
3

‘.‘
Putting in (5.46) the value of (6*i/6) = 0.16 and €, from formula

(5.18), we have

S, =~ 0,06 :
."-0.17" +0,71 R‘”)“" (5 . u’? )

Assuming 8t = 0.0129 Re**-0.25’ we find that in the corsldered

conditions
_&'_ ~ 3'5 r
s, Re* " 10,7 Reve™? (5.48)

By formula (5.48), in the region of Re' = numbers = (3-10)-103
the ratio Btcr/lto 1s equal, on the average to 1.

With growth of the Re number the critical value of the 8t number
becomes less than 8t.

Thus, a theoretical appraisal shows that for the practically
most frequently met values of Re**, the law of heat transfer almost
does not change with a change of the pressure gradient. This
important conclusion is well confirmed by the experimental data shown
in Figs. 32, 33, and 34. It 1is distinctly clear that upon a signifi-
cant decrease of the coefficient of friction and an abrupt deformation
of the velocity profile with an increase of the diffusion nature of
the flow, the values of the criterion 8t and the temperature profile
almost do not change.

Nonetheless, the theory shows that at Re — ® the value of B8t,
:7though slowly, approaches zero. This tendency also is revealed

in experiments.
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Fig. 32. Influence of
the pressure gradient
on heat transfer accor-
ding to the experiments
of A. I. Leont'ev, A. N.
Oblivin, #nd P. N.
Romanenko.
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Fig. 33. Distribution

of temperatures in the

boundary layer for dif-

ferent values of the

form parameter: O —
QL2500

f Re = -0.0740;

@ —f Re 9-25 _ _0.0550;
©—f Re "0 _ _0.0282;
®—¢£ Re""0-2 _ 0.0049;
®~—1f Re 925 _ 0. 012i.

= -0.0550; @ — £ Re

_
J

4 a2 Qs ® 4 v

£

Fig. ?4. Distribution

of velocities in the

boundary layer with the

same values of the form

parameter as in Fig. 33.

Solid lines on both fig-

ures correspond to dis-

tributions at (dp/dx) =
- 0: ®@—2f Re 02 _

= -0.00906; ® — £ Re’ "0-D_
025 _

**O.mm _
*%0, 25 _

= 0.0049; @ — £ Re

= -0.07T40; ©O - ¢ Re™ 025 _

= 0,0112,



5.7. Solution of the Encrgy Equation for a Quasiisothermal
Boundary lLayer on an Impenetrable Surface

The equation of the energy of a boundary layer (1.26) during
constancy of the physical propertlies of the flow and an impenetrable

wall can be written in the “orm

dRe; . Re; ar o + Na y
aXx " ar ax =St-Re w5 (5.49)
Here X = (x/L) 1s the relative length;

ReL = (wOL/v) 1s the Reynolds number, calculated from the local
value cf the velocity w5 and from the character-

istic linear dimension of the body — L;
8t = (a/cyw,) is the local vriue of the Stanton number;
Nu = (ax/r) is the local value of the Nusselt number,

Due to the conservation character of the law of heat transfer
relative to the pressure gradient, in the majority of practical cal-
culations (at Re** < 104), it is possible to assume the value of the
8t number equal to its magnitude at (dp/dx) = O. Consequently, for
quasiisothermal flow formula (3.35) can be used. Putting this value
of 8t in (5.49), we obtain a linear equation relative to the quantity

ReI*1+m. Carrying out the calculation, we find that

X

v ' I’Lm A5 d t-m~ 1

Re! :: - [ s BRe,| AT "dX
X,

(5.50)

4 (Reram)? "]-‘7'7.

where Re, = (woqL/v) 1is the Reynolds number, calculated on the velocity
of the approaching stream L and the charac-

teristic length of the body L;

W = (Wo/Wgq) 18 Ehe ielative velocity outside the boundary
ayer.

Putting the value of le:*, determined from formula (5.50), in
formula (3.35), we find the local value of the Stanton number and

correspondingly the heat transfer coefficient. In addition, the
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functions wy(x) and AT(x) should be given beforehand.

5.8. Influence of Nonisothermalness on the Parameters of
reakawaxigftheBoundarxfaxer Trom
an Impenetrable Surface

The velocity distribution in the region of the breakaway of a

nonisothermal layer on an impenetrable wall 1s determined by equation

3
N A
f‘/—i—u-»u-:a.s V ( ;“:—‘j).,.fv 2‘;‘“- (5.51)

e '

The solution of the right integral is expressed by formula (5.8).
From here we obtain, that in the limiting case, when

Re =, % 0, w, 0, 30,
]

. . } -—?;—d.. ?
(-4, = . (5.52)

1
,,w-f;e.,
) 2% ¢

(1]

At p = p, we obtain formula (5.9) for the limiting case (v = 0).
Thus, the relationship of the limiting critical values of the

form parameter for nonisothermal and isothermal flows is determined

The value of this integral for a constant coefficlent of non-

by integral

similarity of the temperature and velocity filelds was calculated in
Chapter III. For gradient flow in the general case € = e(&). Thus,
during isothermal flow at the point of breakaway the velocity profile
is determined approximately by formula (5.14). At the same time in
the region of R.** numbers, at least up to 104, the law of heat trane-
fer almost does not change with a change of the form parameter, 1i.e.,

n, ~n.y ~(/7). For these conditions from formula (2.57):
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a=¢.E°’”. (5.54)
where € is the value of the coefficient of nonsimilarity of the
temperature and velocity fields at (dp/dx) = O,

But at Re = @ Btcr-* O, 1.e., the processes of friction and heat
transfer in the diffusion region become similar. Therefore, inasmuch
as integral (5.53) expresses the relationship of the limiting critical
values of the form parameter, 1its solution coincides with formula
(3.48).

This result will also apply for finite Re numbers. Actually,
even for moderate values of Re , from formula (5.54) the quantity
e > 0.5¢, already at € = 0.1; at € = 0.5 ¢ = 0.8250; at € = 1 € = €ge
At the same time the same quantity e, as was shown in Chapter III,
weakly affects the considered integral.

From the above it follows that:

a) during moderate flow velocities of a gas

(=

l

(=,

b) during significant flow velocitles of a gas?
3

(1), _

(?:firrjz; (5+5%)

=~ arc sin 247 - 1) + 4y —
( 3 f) A ‘/‘ (< N+ ‘*) + (“)'
¥ 7 epo , ' ' ' (5.56)
— arc sin Ay ]’ .
) 4 NGt +Had) + (A

Teking into account the value of n__, obtailned in (5.14), we find

(o} o
that the limiting velocity fleld at the point of breakaway 1s deter-

mined by equation

y |/$ d«.,zs“-“bf“‘/:i;—'—dm. (5.57)

1The formulas (5.55) and (5.56) were obtained previously by
L. E. Kalikhman, but not as limiting.
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For subsonic flows, when w* ~ 1,

P [ »-ﬁ(uﬂl_-;—--n)!'-“l". (5.58)
For flows with high velocities, when W’ is noticeably larger
than unity, |
.z -;-(-;;z:_—ﬂ- sin {[arc sin 22 -E" < A
— arc sin 4; ]E"‘"+arc sin AE"' \}-— 2(:."1 5 (5.59)
where

E=) 4" - +8H)+(@a4y
In Fig. 35 1s shown the influence of the temperature factor on

the limiting velocity profile at the point of breakaway of a boundary

layer of gas during subsonic flow. In the
:+ same place is given a graph*for the adiabatic
Y supersonic flow of gas at ¥ = 6 which corres-
@ ponds to M =5 at r =1 and XM = 5.3 at r = 0.9.
4 @ a ar ar “e The temperature factor comparatively

Fig. 35. Influence
of heat transfer on weakly deforms the velocity profile at the

the limiting velo-
city profile at the point of breakaway of a boundary layer of gas

point of breakaway:
*

1) W‘ =1, ¥y = 0.25;

2) W* =1, ¥y = 1.0; In Figs. %6, 37, and 38 are given the

3) W’ =1, ¥ =2.0; values of the limiting critical parameters

"r)#f '691"6-

from an impenetrable wall.

* %
£ops H,p3 (6/6 )cr in dependence on the
temperature factor ¥ at subsonic flows (11/* ~ 1),
The quantity Hcr almost linearly changes with the growth of the
temperature factory. Cooling the surface (¥ < 1) increases the sta-

bility of diffusion flow.

During heating of a streamlined surface (¥ > 1) the stabillty
of diffusion flow decreases. In Fig. 39 is shown the change of the
quantity of the critical value of the form parameter fcr during

supersonic streamlining of a body.
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Fig. 37. Dependence of

mow on ¥ during subsonic

flow of a gas: a)
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heating of the wall.
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subsonic flow of a gas.
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As can be seen, during high flow velocities the region of
existence of a stable turbulent boundary layer at (dp/dx) > O is
extremely limited.

£
@ N .
= a7 ]
4] [ i ”rh
-7 | LI
: N P |
1 - :
T ST e
A T T T il ] “
RS e SNz
v : : ol ?(<4-4ﬁ ]
Nares 5 - 27
av=-8 P ] V. \dy-4
'ﬂ — $ @ I
[ ] w 0
= S ,’ucoamvuanmr
Fig. 39. Dependence of f_. Fig. 40. Dependence of Hop
* %
on ¥ and Ay, on #* and A&y,

In Fig. 40 is given a graph for the value of H,, during super-

sonic flow of a gas.?!

5.9. Solution of Equations of Ener and Momentum for a
Nonisothermal Boundar Igyer on an
~ Impenetrable surface ring
SUbsonIb Flow of a Gas

The integral energy equation for the region of finite valuee of

Ie:* numbers, in which one may assume that the 8t number 1little depends

on the form parameter f, will take the form

d"‘;i  Re** daT _ .
dX L AT * ax —Rel_ qrs‘m (5.60)
where
v [ 2 i 61)
= . ) 2t :
V os-s2e-n/ g+, ] |

is the correction for nonisothermalness taking into account the

finiteness of the Re number,

1A more conservative parameter (f°H)cr which is explained by mutual
compensation in the change of fcr and Hcr
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Formula (5.61) is obtained from formula (3.58) at V' w1,

The limiting value of the function !t during subsonic flow of a
gas 1s determined by formulae (3.55), which coincides with the corres-
ponding limiting formula (3.47) for the ratio of the coefficients of
friction,

In practice 1n calculations it 1s possible to be limited by the
limiting formulas for Yt or to introduce this function, referred to
the mean value of Cro for a given streamlining. Then !t ~ ¥(y), 1.e.,
it can be considered independent of Ro**. The solution of equation
(5.60) under these conditions has the same form as equation (5.50),

AT1+m. The value

but under the integral sign stands the product !tﬁb
of the local Stanton number is determined for the obtained value of

* %
the Ret nui.ber by formula
St=",8¢, (5.62)

where 8t, is determined by formula (3.35).
During linear interpolation of the function F(?) its value during

nonisothermal flow will be determined by formula:

il W, — 1. Y
Fifi =Wy = 1t Hyg) (5.63)
For the coefficient of friction we will obtain the expression
"’ = ".' .r,"’". (5 064 )

where Yf is the correction for the influence of the pressure gradient
during isothermal flow.

As was explained in Chapter III, the function Yt for the coef-
ficient of friction differs from the analogous function for the
coefficient of heat transfer by the form of calculation of the coef-
ficlent of nonsimilarity of.the velocity and temperature fields e. Tt
was also shown there, that for the most frequently met ratios 0.5 <

< (5*f/6:*) < 2, in practical calculations the influence of the coef-

ficlent € on ¥, can be ignored and € = 1 can be assumed.
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Solution of the momentum equation takes the form

Rc“:-exp(— l-:- )[ g Re.,S'l’, w, X

(5.65)
; _1_

X exp(/)dX + cy]' =

where )

J= H) 22
fa+hg . (5.66)

Here Hcr is a function of the temperature factor ¥.
During a constant wall temperature, the integral (5.65) 1is
simplified and can be written in the form

Revs = 5[z m.é‘ woT e dX g (5.67)

g

+ ._Rc"-;'&)_"f “']' .

where
r=| ;‘H".

In that case, when 1t 1s necessary to determine the distribution of

the wall temperature at a given law of feed (discharge) of heat

qwall(x)’ the energy equation 1s written in the form

- d(ATRe*) = Qer (X) (5.68)
C dx , BComy ..
Hence '
) Gards
‘“ = _"—.___ cree ;". E
R Y 'f'NA T Re.‘. (5.69)

Taking into account formulas (5.62) and (3.35), we find that at

Rl:*x = 0 the local difference of temperatures of the wall and the
i |

flow

.\7‘:[ 2al (XJL“).] . (5.70)
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Putting in (5.70) B = 0.0258, m = 0.25, and Yt from the 1limiting
formula (3.55), we have

B4

Yarm 2 » 0.2% TN ,
.\T:[l9,4 0 ¢ :s” ':t‘- (\ Qer dx) ) (5.71)
wer Rew,  \ A
Here, as before,
— rﬂ - u Wy i .|l|L
? fl— rn . vo = v, [ R‘Q .

5.10. Resolution of the Equations of Ener and Momentum
During Supersonic Flow of Gas

At w* > 1 the energy equation preserves the form of equation

(5.60), if we assume:

AT = 7.:1 - r";
Re. — =" .
bo (5.72)
Reu . Pn'..L
. - e ’

where Koo is the viscosity of the gas at the temperature of stegnation
outside the boundary layer.
The integral of this equation has the form:

X
1 +m S -~
Re. =37 B'r,—«.’r”’?'f--,\ i) X
. , (5.73)
AT "dX - (Re’AT "]' .,

XUl -- tl‘)' :

Here

Re.. =- ®ma( L L) . 2
(- y - Y ) —_— — 5= ———— W
4 "o Yan W l 2 5ot .

The function Yt is calculated from the respective rormulas of
Chapter III for supersonic flow. The limiting value of ¥ at € ~ 1
is determined by formule (3.58).

The Stanton number will be determined by the formule

. _BY, R
St= 2’:’";‘ ( p..';c? ) '
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whéfe the value of R.:' is found from equation (5.73).
Taking into account the compressibility, the integral of the

momentum equation will take the form

s __ __J 3
Re** - exp,( I1 = )I )
1 . (5.74)
XU\l - U) e\p(l)d,\ i- ¢]
where Ret — m@¥
)
At Twall = const
X
Re.‘ S U- .[ 'I)m BR’m \. ‘..l ( !‘“"'—' 3 >’
: = o . N )
o . (5.75)
=0T e g x  Rere Uk, 'll e
where
2= 1+ H,,.
The value of the form parameter 1s determined by formula
= Ae L Lo
S dx -’ .76
v T (5.76)

The critical value of the form parameter 1s determined from the
graphs of Fig. 39.
The drag coefficient is calculated by formula

€=V, ¥, (), (5.77)

where Cro is referred to the value of Ro**, determined by equation
(5.74) or (5.75).

In practice, equation (5.75) can be used and in the case of not
very strong cﬁanges of the wall temperature along the length of the
‘contour. Connected with this is the fact that errors in the deter- -
mination of the value of RO" weakly aftect the value of Ceg due to

the small value of the exponent m in the law of resistance for a
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turbulent boundary layer.

5.11, Solution of the Equations of Ener and Momentum
Tor Axisymmetric Flow of a Gas

For an axisymmetric boundary layer the equation of energy and

momentum can be written in the form:

dRe, vy 1 dAT !

av o Re AT 4X R '.:x ’ -Re. St. (5.78)
dRe: Ret- AR .
ax RN = Re.F\f)- . (5.79)

where R 1s the current radius,

The law of heat transfer remains practically the same, as for a
flat boundary 1.yer,

The integral of equation (5.78) differs from the integral of the
energy equation of a flat boundary layer only by the fact that the
product RAT enters into it instead of the value of AT,

The integral of equation (5.79) at T, = const has the same
form as formula (5.75), but instead of the value of U™ in 1t one should
put the product RUx. During subsonic flow in formula (5.67) the
quantity Wg is replaced by ng.

During flow of a gas in a cylindrical nozzle (internal problem)
the integral of the energy equation 1s convenlently written in the

form

w = [ (T

(5.80)
- . tomfj Dy '™ lo-
,\51,.” .(T) dX] :

Besides, it is assumed that the turbulent layer starts from the inlet

section of the nozzle.
Equation (5.80) is obtalned from the basic solution of the energy
equation, if we bear in mind that during flow of a gas 1in a nozzle,

with a good degree of accuracy, it 1s possible to assume
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va-ov" T = () (T (5.81)

: 2

‘eby in this case (£,,/8) = (D,,/D),

‘e 1 1s the cross-sectional area. In these formulas Dcr is the
ieter of the critical cross section of the nozzle.

The value of the local Nusselt number will be determined by

ula
Ns,= L pps P =V ¥ 2 iyoen, o .
4= 3 Pr'" Re., V', Re; (.“’ ‘.t+l)'. (T : (5.82)
‘e
Ns, = .‘:". :

characteristic linear dimension L should be one and the same in
M1 and Re numbers.

The quantity W* during flow of a gas in a nozzle 1s a single-
1ed function of the dimensionless cross-sectional area of the noz-
that essentially simplifies calculation of the function ¥, (X) and

sulation of the thermal boundary layer.

b

”“~ H q -

20000

4000 i 4 5 L. 2 g -'-'_'E
2000 ry
0 G/ G2 Q2 Q¢ G5 G# Q7 Q8 G9 W E—L-m.: |

L
Mg. 41, Comparison of calculations of heat transfer in a super-

jonic nozzle by formula (5.82) with the experimental data of
\. I. Leont'ev.

In Fig. 41 is given a comparison of the calculations of heat

1sfer in a supersonic nozzle by the proposed method with the results
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of an e;pgrimental investigation. It is possible to ascertain a very

good agreement of theory and experiment.

5.12, 8Solution of the Equations of Ener and Momentum Duri
Subsonic Flow of a (as on & Permeable QIIgﬁfIx

Curved Surface

The laws obtained in Chapter IV of friction and heat exchange
for a permeable plate can be used for solution of the equations of
nomentum and energy during streamlining by a subsonic, nonisothermal,
turbulent boundary layer of a permeable slightly curved surface,

The energy equation for the considered case is written in the

Torm - "
St T =Reswr e, (5.83)
here the function ¥ is determined by formula (4.30), i.e.,
n'=.1',(|-—',—:i_'—" (5.84)

there ¥, is chosen from formula (3.47).
In the general case, the quantities Yt, bt’ and bt,cr are func-
ions of the coordinate X. Then the integral of equation (5.83) has

he form

07 = S (e ke [ 1 - 2 + 0]

.  (5.85)
- ]IT-
XAT "*dX - (Rev AT ™
or the given functions wy(x), AT(x), and b, (x) the value of I.:* is
alculated from equation (5.85) as a function of the coordinate X.
Distribution of the feed of the cooling gas along the length of

he circuit is calculated by formule

h_ — _»

P2y - f'g s'..'. (50%)

The local Stanton number is determined by formula

$1=1,(1 --é;-’)'sa. (5.87)
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! The local heat flux
G = Epbe 100 A TSI, (5.88)

From the known consumption of the cooling gas its initial temper-

ature is determined: \

-y - S
fimTo - —o (5.89)

During evaporation and sublimation the surface temperature
usually is given. The quantity of gas (vapor) discharged from this
surface is subject to determination.

In the considered case

9o =r & (5.90)
where r is the latent heat of vaporization.
Hence
o L
v =K - (5.91)

where K = (n/cpiATH is the criterion of phase transition.
On the other hand, the value of ¥ is determined by expression

(5.84), Combining formulas (5.84) and (5.91), we find that
b=b. o m e | R N =1 - 1). (5.92)

Introducing the value of ¥ from (5.91) and b, from (5.92) in equation

(5.83), we f£ind

R‘t —"‘—" —%.WBQOOI[b' . 2"
(‘ ' T“?T;“’ - |)]£-..u“ “gx + (5.93)

we T
- !R’l A T)!\, .]

From the found value of l.:' the value of lto is determined;
the value of b, from formula (5.92); and from formula (5.86) the
flow rate of the cooling gas.
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For relatively small intensities of evaporation or sublimation
(which 1s usually the case) it is possible to be limited during cal-
culation of R.:* to the first approximation, i.e., to conduct a cal=-
culation of this quantity by formula (5.40) taking into account the
nonisothermalness of the flow from Section 5.6.

We will consider the case, when the pafameters are given of the
external flow, the wall temperature, and the initial temperature of
the cooling gas, passing into the boundary layer through a porous
surface, It is necessary to determine the needed distribution of
the cooling gas along the circuit of the warmed surface. In this

case

—p AT
Y= l..-T?—. (5.9“)

where ATi = Twall - T1 and T1 is the temperature of the gas at the
entrance to a porous surface.

The value of b, will be determined by formula (5.92) upon replace-
ment in it of the value of the criterion K by the ratio (ATL/AT). The
value of Ro:* will be determined by formula (5.93) upon the same
replacement of K by (ATI/AT). Further calculations are also con-
ducted just as in the preceding problem.

For an axisymmetric boundary layer, solution of the energy equa-
tion has the same form as in the case of a flat boundary layer, but
instead of AT the product RAT enters, where R is the radius of the
streamlined body. The whole remaining course of calculation does not
change.

The momentum equation for a flat boundary layer on a permeable

wall of small curvature has the form

4 M’ Re** o,
- e =2 (| - H)-:
ax @, "F 4 V+H)

= Re, (¥ + b —}- Re** =,

(5.95)
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where
- e S B
'—"('-7:)- (5.96)
We have the dependences ¥, (x), b(x), b,,.(x). Assuming H = H, =
X0,
”o_"-u( KX CRO,.I‘;:":""["'.-(I—-‘—:—)’+b])(
. X
(5.97)

s

XX ¢ Reoo st )i o]
For an axisymmetric boundary layer the solution remains the

same, but instead of the quantity wo 3 the product R 3 appears.
The local value of the coefficient of friction will be determined

by formula
=V, (l -f;_)'c,.. (5.98)
When the distribution of the flow rate of injected gas Ji(x)
along the contour of a streamlined body is known, the problem is
solved by the method of successlve approximations. The first, and
fully sufficient approximation for the determination of Ra 18
calculated by the formulas for an impenetrable wall of small curvature.
The methods presented allow calculation of heat transfer and
friction on a porous surface of the frontal part of bodies (flame

regulators, the frontal parts of a sphere and a transversely stream-

lined cylinder, the head part of axisymmetric bodies).
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CHAPTER VI
FLOW IN A PIPE

Definitions of Cyrillic Items in Order of Appearance

CT = wall = wall

T = t = Thermal, Turbulent

6.1, Distribution of Velocities, Friction, and Heat
Transfer buring Quasiisothermall'EfEEIIIged Flow

During flow 1in a pipe a flow stabilization section and a section
with stabllized flow are distinguished, Stabilized flow approaches
after merging of the boundary layers, which arise in the inlet section
of the pipe, and for isothermal conditions 1s characterized by con-
stancy of all the flow parameters, In the inlet section (stabiliza-
tion section) the flow parameters are changed in connection with the
bulld-up of the boundary layer on the wall of the pipe. A diagram
of the flow in the inlet section of the pipe 1s depicted in Fig. 42.

During stabilized isothermal, tur-

bulent flow the velocity distribution in

) a smooth pipe is well described by formula
Fig. 42, Diagram of the

build-up of the boundary (3.1). This is explained by the fact that
layer in the inlet sec-

tion of a cylindrical flow in a pipe 1is nozzle flow with com-

pipe.
paratively small values of the form para-

meter, The pressure drop in a pipe is determined by formula
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- . _, AR
== (6.1)

where { i1s the drag coefficient;
D is the internal diameter of the pipe;
w is the average consumption flow velocity;

Pa 18 the density of the flowing medium, referred to the average
0
consumption temperature of the stream,

During isothermal flow p = p, = const,
From the condition of equilibrium (Fig. 43) it follows that

(lbstssssgyecsds - dp as e ]
__..r"' P ek L (6.2)
" : £ i.e.’
—t—p

o T
0 ' ) :g""TR-:.""s. 6

'77777 (]
Fig. 43. Diagram
of the action of ' The average consumption velocity .
forces on an ele-
mentary cylinder - 2 £
of fluid in a pipe. *=m j"’""“- (6.4)

Putting in (6.4) the velocity profile (3.1) and assuming p =
= const, we find that

©= U (175 - 25m-LaRe), (6.5)

where =
-m:gV%.

From here the law of resistance follows:

- _ -—
' . . — 0.85 in ‘R‘ol : )—0.9. (6.6)

In the region 5-105 < .D < 1-105 the Blasius formula gives good results

(= 038

ol (6.7)
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| where
Reo= 22,

The velocity distribution to the n = 1/7 power corresponds to

formula (6.7).
The form parameter £ can be calculated by formula (2.36),

-V G ¥ g
In the region of stabilized flow, when the boundary layers merged,
43
6 = Ry, According to formula (6.2) — gﬁ- Mall

Hence during i1sothermal stablilized flow in a pipe

f= ¢ (6.9)
At n = 1/7
7= 0,0308
a - (6.10)
i.e., at Bej > 10%
f<0.003; (6.11)
At Rej > 10°
[<0,002. (6.12)

The law of heat transfer in the region of stabilized flow of a gas in
a pipe is described by formula,

Nsp = 0,023 Pr** Re;;'. (6.43)
where
Nap = ’f 0
Correspondingly
0,0
8t = ——t— .14
popv (6.14)

-115-



6.2, Nonisothermal, Stabilized Flow of a Ges

Stabilized flow in a pipe of constant cross section can exist
only at M < 1,

Imgmuch as in this case the boundary layers are merged, then
condition Re = idem is equivalent to the condition Re** = idem, There-
fore, the limiting formula (3,47) for given case takes the form

. Ly 0 “\?
: ( o /R \y ¢+t (6.15)
In Fig. 44 is given a comparison of calculations by formula

(6.145) with experimental data, The limiting formula in this case

also correctly depicts the real character of the investigated relation,

io". 1 ‘r
Y,
.... \
w0
| °a ol 9
2 & ¥ %e 8 4
" .
Qe

' of 7 BT 20 24 v
Fig. 44, 1Influence of temperature factor
on friction and heat transfer during
stabilized flow of gas in a pipe: 1 - cal-
culation by formula (6.15), ® — Jordan,

O - Greber, ® — Il'in, A — Ivashchenko,

o — NASA (averaged by series), Experiments
on the resistance of friction: O - Il'in,

If we consider the finiteness of Re the numbers, then we should
use formula (3.58), which at ¥ ~ 1 takes the form

= 2 0'
[V =02 -0V o + 1 ] (6.16)

For stabilized flow in a pipe this formula should be written
w
with consideration of the ratio .;&, inasmuch as in the theory of a

-116-



‘boundary layer the coefficient of friction is referred to the maximum
velocity: during flow in pipes this coefficient pertains to the average
consumption velocity. Proceeding from these considerations we can

write that for stabilized conditions

L 3 2 =
[V V-4t -a G +1 ]‘ (6.17)

where A=-2.

At values of the temperature factor

W *

& —! ¥ > 1 the velocity profiles become less

“ populated and the value of h less than during
s ' isothermal flow. At ¥ < 1 the velocity

s0° 0 150 20° 250" 1o'm
Fig. 45 Dependence of profiles are more populated and the value

h = =% on Re. during of h is larger than during isothermal flow,
W D

m
isothermal flow of a In Fig. 45 1s shown the dependence of

gas in a pipe. h on R'D during isothermal flow in smooth
pipes.
In practice at ¥ > 1 1t 1s possible to use the limiting formula

(6.15), and at ¥ < 1 by formula (6.17), assuming h ~ 0,9,

6.3. Calculation of Heat Transfer and Friction
in the Inlet Section of a Cylindrical Pipe

In the inlet section of the pipe a boundary layer 1s developed
Just as during external streamlining of a body as long as the opposite
points of the external boundary of the layer do not touch,

The over-all flow rate of a gas along the whole pipe is constant,
and the flow velocity in the undisturbed nucleus of flow changes due
to the build-up of the boundary layer. Taking into account this

circumstance all the equations of a turbulent boundary layer derived

above can be used,
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We will assume that upon entry into the pipe, the velocity dis-
tribution is uniform, and a turbulent boundary layer immediately
arises, The latter condition 1s always fulfilled because of the
turbulence causing action of the finite thickness of the leading edge.

We will be limited by the case, when the pipe is warmed, starting
from the leading edge. The build-up of dynamic and thermal boundary
layers occurs simultaneously along the whole length of the inlet
section of the pipe, Correspondingly, the parameters of the gas in
the undisturbed nucleus of the flow also change,

The equation of continuity of the flow will be written in the

form

' R,
”‘..|R:= 2! P”dR=c°nst, (6.18)
where Po1 and Wy @are the density of the gas and flow velocity in the
inlet section of the pipe.
For a cylindrical pipe according to formula (1.39)

4
e={{1 - 221 - L
‘—J(‘ h'b)(l. R.)d’° (6.19)
Taking into account this expression of the thickness of displace-
ment, it is possible to bring the equation of continuity (6.18) to

the form

.,'“,Mz,,o.-,(u-a—;}). (6.20)

N

where Po and W, are the density and flow velocity outside the boundary
layer in the cross section x,

The density of the gas Po is realted to the density pgyo for the
parameters of stagnation (poo; Tg) and the dimensionless velocity U
by known the ekﬁ}easion

_&-_-_-(1-0!):', (6.21)

b )
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which has already been used in Chapter V during derivation of formula

(5.73).
Combining equations (6.20) and (6.21), we f£ind that
]
e v [ V-8 \a-i
2--;:-:'— DL (.'-.(”' ) '. (6.22)

where

U.".'/-Tr,ﬂ—-“”-'-'“'/ W (6023)

Introducing the parameter H, we obtain the value
’ ) 1

Reve == [u( - U=t~ v, - o)), (6.24)
where, as before
Re** = L Ll wdRe,, - MoV O
Fe

I
1)

The momentum equations will take the form
1

dRe* Re*t dw, U -t 8 T
ax = ax (1+H)=Ui1 - UY) X'TR“‘( o Re* ) (6.25)
where
X
X = D

We will be limited by flows for not very large values of the M
number, Then supersonic flow of a gas in a cylindrical pipe, which
1s always diffusion flow, flows at values of the form parameter f,
not close to the critical value, In this case the function Y can be
equated to the function Yt, i.2., will depend only on the parameters
¥* and ¥. On these parameters also depends the quantity H,

As L, E, Kallikhman showed, the quantity

$
" — l — Wy d
=1~ o) (6.26)
depends on the parameters of nonisothermalness significantly weaker

than the quantity H.

Between the quantities H and H' there exlists the dependence
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H=_'_(u:-: b — Ay R )
r Re*?

T 3 (6.27)

where
L
A T - ) —2_ gy
H=—g J (1-#) —2—dy. (6.28)
Upon solution of equation (6.25) it is possible in practice to assume

aa"
”Iﬂl'

l-[; Rt = Hy during isothermal flow, i.e., 1.3,

Then

=" [U’+'3(‘ ——"—';,:—'—-)] (6.29)

Rc..[(l = U')+ v -(v-- u’)':' u.]u - U

4[v-+|.3(|~—r‘-'—£—r"—)] o (6.30)

The momentum equation will be rewritten thus:

dRe** » . - p
> =X [1-;-1.3(1- (T "'))] L
ay\ Uil —- ) T ax

; U (1 — 0%~ Re,, (6.31)

R¢0t —

B ../
= 2 ‘l( p...lc"

‘Putting in this equation Ro“ from equation (6.30), we obtain

gt oy ('—U")" ‘[m )+

A

- - o - U’)"—:‘ ~ 2

! »
+20u, (1 - U] = [0 = Ut -

—0 vy, (1 - v -zu} B
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'uu U0, - Y u-u'r-...
3N -Ta-T)+0U '

s To = Tor i )
..[l l.3(l 7 )]d(l_

=28Y (e u(1- =" ax. (6.32)

For a given law of change of the wall temperature and known
velocities and stagnation parameters at the inlet in the channel,
equation {(6.32) allows us to determine the law of the velocity change
in the undisturbed nucleus of the flow along the length of the pipe
X.

From equation (6.30) the change of along the length of the
pipe 1s calculated and by formula (5.77) the local values of the
coefficlents of friction are determined.

The values of the Nusselt number are determined by formula

N-:-—.‘;!_Pg‘*‘ Re. (6.33)

It 18 necessary to note that the presented method of calculation
can be applied only if impactless entrance of a gas into a cylindrical
pipe takes place, For the region of subsonic gas velocities 1t is

possible to consider U2 << 1. In this case we have T wall ™ const

[+ "“’("1‘%-"—)] 1w l p.u_ e

[}*'3(' e )] e
= () (- “’“)l

(6.34)
where



S . A

Assuming m = 0,25, B = 0,0258, and taking the limiting value of
the function '!'t for subsonic flow, we obtain

[u +139—4 + |][4 (@ - 1% g

| ) 2
M TG, .w*;.

— 2 arctg X
(oo - IV T (- .
s ¥ 2 (1) ] Al
'-‘.o = lP '.
2038
O :.‘-41 - (6.35)
where
R‘. s —!?;D—.
P
-l In Fig. 46 1s shown the depen-
: . dence of the parameter x-bﬁg'ﬁ on
’ ~
: 1 wo and ¥y, calculated by equation
o =¥ (6.35).
W} ~——- e
@ol—4-— £ - I = Using this graph, we can deter=-
» _« JICK (P, S
R mine the velocity change in the nue
o A% TNFETATE L
A [ T[] _ cleus of flow along the length of the
W ¢ @ W 4 1S 18 W 20w,
Fig. 46. Dependence of the .pipe for given parameters of the gas
parameter x.~DO 25 on "0 at the pipe inlet and for a given
1
and ¥ by ﬁquation (6. g )3 wall temperature,
1) ¥ = 0,43 2) ¥ = 0,6; from
3{ v = °°f’ 2 v = 18: For subsonic velocities
20 ¥ = 1.4; ¥ =1.9; tion (6.30) we have
7) v = 2.2; 8 ¥ 2.6; Squatic g8 20)
9 w - 300; 1 #’ u.o.
Rev= Re(® 1) (6.36)

$.2¢

The local coefficlients of friction are determined form the law of

resistance:

= 0.0518 ;
1 ('/'T + ')..‘.‘m . ( 037)
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The local coefficients of heat transfer are calculated by formula

(6.33).

Using equation (6.35) from equation (5.40), generalized for

nonisothermal flow, we obtain the value

o - 1)
su

Re; = ‘(2+ 13¢) -

».[4(::.-1) — 3 2 arctg

s ‘a—l)"'-ﬂ?(&--l)‘.-&l

1,28 + 1, 8%

G-
o 3 (& ™
1—(o -

e

G-y 7@ -P"

I

(6.38)

Thus, during flow of a gas (Pr ~ 1) in the initial section of

the pipe we have

X°R.]')O‘25 and ¥ by formula (6.39):

1
1) ¥ = 0.4; 2) y = 0,63 3) ¥ = 0.8;
gw-1.035)¢=1.4:6§w=18;
7)¢-22;8)¢=2.6;9 ¥ = 3.0;
10)#]- .Oo

=123%-

¢ {(2 1,25 + 1.62¢ [ T
— =2+ 1,39) - —= 4(w, - 11"~
| Jad (‘-l)"’ . .
N WP Y | S N NN ) iy
Yz (- v2(e-0)" +
-~ 'Y}
Ve RN A A | - 6.39
. -& - () |
?; = In Fig. 47, 18 shown the
Re
l il " —-E-;- on X-RQD:'ZS and y. As
20 ] 7 i“: Re _
z N can be seen from the graph,
s —
i &
1 g S during subsonic gas velocities
—— - in the initial section of a
"nL'_u 20 30 40 50 €0 20 K0 W Q0 AP cylindrical pipe, simultaneous
z
5 o build-up of thermal and dynamic
-Fig. 47. Dependence of 63* on

layers y <1 and A8, ~ B8
Taking into account this cir-
cumstance it is possible to

propose a convenient method of



generalization of the experimental data on heat transfer i.. the initial
section of a cylindrical pipe,?
From equation (5.39) it follows that

. ['q,.a
R‘, —r “':"-r—-. (6.“0)
Further we have the relation:®

r ¢ D .
8 e (6.41)

_I___ h |
Reo= Uit —UW""" . Qe (6.42)
‘,"“L=.|_,U:,::_:.. (6.43)

Thus, by measuring the distribution of the static pressures, the wall
temperatures, and the heat flux along the length of the pipe by these
equations, it 1s possible to construct the experimental dependence
of 8%t on h:' .

If in the experiments measurements of the static pressures are
not carried out, then, by taking into account the condition b;' ~
~ b“, it 1s possible to calculate the Stanton number for subsonic

velocities by the formula

St= %-D -.
(Rey + 5,2% Re") gy, T (6.44)

In Fig. 48 are shown the results of treatment, by the proposed
method, of the experiments of B. S. Petukhov, V. L. Lelt'echuk, B. V.

Dedyakin, V. N, Fedorov, A, I. Leoont'ev, I. A, Kozhinov, and S, I.
Kosterin, All these data are reduced to the conditions ¢ = 1 by the
1limiting formula (3.55). As can be seen, the average line, drawn

through all the experimental points, 1is described by formula

1Method was developed jointly with V, K, Fedorov,

3/4
2puring derivation of formula (6.42) it is assumed thatnE — (TT—) /
0 0
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PAT T (6.45)

which coincides with the relation

St~ —ph— (6.46)

where c,, 18 calculated by formula (3.8) upon substitution in it of

2 ‘]'“' T T

e ¥ 1 °°°o° ' A o

%o [ |

45- i \é T =

2 N L1y

2e 80 20 20 .2 34 KT} 20 €0 .2 40 pre**

Fig. 48. Results of treatment of the experimental data on
heat transfer in the initial section of a cylindrical pipe:

1 - turbulent conditions 8t = = O‘O;: s 2 — laminar

conditions 8¢t = —0'2173—3 @® — experiments of B, V.,
o Pr

Dedyakin and V, L. lLel'chuk; & — experiments of B, S.
Petukhov; O — experiments of I. A. Kozhinov, S, I. Kosterin,
Leont'ev, and V, N, Fedorov,

It is necessary to emphasize that these experimental data, pre-
sented by thelir authors in the usual d. -ensionless number treatment,
diverge noticeably.

The obtalned result distinctly confirms the generality of the

laws of heat transfer and friction in a turbulent boundary layer for
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the internal and exterior tasks of aerodynamics,

In Fig. 49 are shown the results of treatment, by the proposed
method, of the experimental data on heat transfer for pipes, nozzles,
plates, and nose cones, These experiments embrace & wide range of
changes of the numbers M and & . In spite of a significiant variance
of the points, all of them are grouped around a line, corresponding

to formula (6.46),

L S S —
- , HEEER

. 1
1 - |

l. I-r
By
3 | 1
| ] T

1 | o
4ot , %\.J ' ,T

20 26 a0 30 32 34 36 38 0 42 4eqn”

Fig. 49. Results of generalization of experimental data on con-
vective heat transfer in a turbulent boundary layer of compressible

gas; 1 — turbulent conditions; 2 — laminar conditions; B80S -

V. K, Fedorov, (pipe), 8t = ;‘6’%‘5: ® — Pappas (plates); g —

Fisher and Norris (V-2 rocket); < — Eber (cone-cylinder); © —
0,22
Petukhov (plate); O — Fedorov (pipe M < 1); 8t = ——-175.‘ 0-
o
Bradfield conel; ® — Leont'ev (nozzle); A& — Petukhov (pipe);

?I S\)reahn kov (pipe); + — Fallis (plate); @ — Lel'chuk, Dedyakin
pipe).

The equation of a thermal boundary layer can be written in:

dPe® d iy
oK Pe** . Py (n(l —3)] = $¢-Pep, (6.47)
where
Pevs = TN pgy.. 2L,
& a,
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or taking into account equations (6.20), (6.22)

Tt (- )=

= 81y ¥y (Poo, +-8.2 - Pere),

where

nA=A..:L,

For the case ¥y = const

b _ B(Pep +3.2¢.0,
a@ - N oS

¥, (6.48)

For subsonic velocities of a gas (and m = 0,25) after integration we

obtain
e N . -
B ( = )’n' E2y Y Taap*™
P %+
sl in L “"?'. su ) ( .N
Ll I Cay 521- ) ( 5.4 )
N Pep, - - Po*® )
+ 2arc (g Pe ‘::¢ 3 .
—a) " (6.49)

From equation (6.49) we obtain a change of the parameter Jo'
along the length of a pipe for given parameters of a gas at the inle’.
of a pipe and for a given wall temperature,

Local values of the Nusselt number and heat flux are determined

(o)

Ns = 0.-:’%~“ﬁ ‘P‘”o i 502‘.! * P“.-‘. (6 Q 50)

by equations,
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and
2

2
B —;-—} ST (0 Y
q‘.= (' ;..:J:.”OJ'D P (6051)

X Pep, +52% - Pe**).

For the case of a given constant thermal load along the length

of a pipe from equation (6.47) we obtain

Pe - . Ne, X .
where
- e D
Ns, - Jtn,

In the range of a change of ¥ from O to 3,0 the function wt can
be expanded in a series and can be bounded by the first term, i.e.,

assume (3.49):

Then

3‘ — B - B ~.|._

= e [
huﬂ.ﬂ “ 3 ,.’”'u,‘ "D(l E .') (6 . )3)

From equations (6.20) and (6.22) it follows that

Pep = Pey, +527% - Pex+, (6.54)

As a result we have a system of three equations (6.52), (6.53),
and (6.54) with three unknowns ¥, e’ and Pe.
For determination of the change of !b*' along the length of the
pipe, from equations (6.52), (6.53), and (6.54) we have
X = 3,36 Nui* [No, Pess*™ B2 _ 0,0286 Pao, — 0,149 Pess
~V 00088 Pep + 0.109Pe e, pe>e PPNV - 119 e, P PP, (6.55)
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Knowing local the values of !b*', from equation (6.52) we de-

termine the local values of the wall temperature:

$=1+—mX.

The proposed method of calculation can be also be extended to
the case of an arbitrary law of supply or removal of heat along the
length of the channel. Only in this case instead of equation (6.52)

we should use equation (6.47). Further considerations remain the

same,

6.4, Heat Transfer to a Vapor During Critical Pressures

The theory of the limiting laws of friction and heat transfer
can be applied also to flows of gases, not obeying the Clapeyron-
Mendeleev equation of state. The problem 1s solved most simply for
the bounded temperature integrals in that case, when there is possible
a linear approximation of the dependence of the gas density on the
temperature (or enthalpy).

In this case for a uniform medium

araiet LRI (6.56)
where, as in Chapter 1V,
"

The limiting law of heat transfer at cp =~ const for subsonic

flow is expressed by formula

=( 2 ')’. (6.57)

s
St Y h+d

For an ideal gas
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In more complicated cases, for instance during a significant
change of the heat capacity, it is possible to obtain if not exact
quantitative, then in any case correct qualitative results,

Let us consider in this plan the character of the changes of the
coefficient of heat transfer during flow of a vapor in the region of

near critical (in a thermodynamic sense) parameters,
" koal/m2.g-degrees

© e , . ]

dob— : ! /, Nnl?

St

0o

—

v

JOO I 320 J30 340 350 360 320 380 390 400 °C
Fig. 50. Change of coefficient of heat trans-

fer during flow of water and steam in the
region of critical parameters from the experi-
ments of A, A, Armand et al,: 1 — P = 240 atm;
2 =P =20 atm; q = 1.7 * 102 kcal/m2 « hr;
Yyw = 650 kg/m2 . sec,

In Fig. 50 are shown the results of the experiments of A. A.
Armand on the determination of the coefficlents of heat transfer
during flow of steam having supercritical parameters in a cyllndrical
pipe. As can be seen, during passage through the critical temperature
there 1s observed a sharply expressed maximum of the coefflclent of
heat transfer, Such a course of the curve a(T) is analogous to the

course of the dependence cp(T) in the region of critical paramrters.

In Fig. 51 is shown a comparison of the results of the experiments
of 2. L. Miropolskiy, M. A. Styrikovich, and M., E., Shitsman with
calculations by formula (6.13). No unambiguous relation between the
formula and the experimental data on the.graph is observed. An ana-

logous result was also obtalned in the above-mentioned work of
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Fig. 51. Comparison of experiments of Z. L.
Miropolskiy, M. A. Styrikovich, and M. E.
Shitsman with Formula (6.13).
A. A. Armand, At the same time, according to the experiments of
V. E. Doroshchuk and V, L., Lel'chuk, at ¥y ~ 1 formula (6.13) is also
valid in the region of supercritical parameters (Fig. 52). Conse=-
quently, deviation of the experiments with

calculations by formula (6.19) are connected

with the nonisothermalness of the stream.

During simultaneous change of the

quantities cp and p the intensity of tur-

bulent heat transfer will be determined by

448 0 505 "‘;”;’ the relation
Fig. 52. Heat transfer
for critical parameters q::ol"' . _d
and quasi-isothermal T dy dy ' (6.58)
conditions from the ex-
%giégggﬁikOan.vE'L where 1 1is the specific enthalpy.
Lel'chuk. The limiting relative law of heat trans-

fer is derived from equation (6.58) by the already known method:

(Vo) 6.5
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But in distinction from equation (2,69) in the given equation

(Y Sod
-0 '
St = Ser .
ENW, (ler — 1) (6.60)

In the region of near critical parameters the specific volume
of the vapor 1s almost a linear function of the enthalpy, 1l.e., for
definite intervals of Al formula (6.47) can be applied, if in it we
introduce the value of & from (6.60), Then the integral (6.59) is
expressed by formula (6.57), if we compare the heat flux Qa11c e

have

(6.61)

R "
St - fern ( )'

a IR
Multiplying and dividing the left part of formula (6.61) hy At,
we find that it 1s applicable to the ratio of the coefficlents of
heat transfer,
In Figs. 53 and 54 are given the results of the treatment of the
experimental data on heat transfer to vapors of water, carbon dloxide,
and oxygen in the region of near critical parameters., The logarithmic

straight line. drawn on this graph, is calculated by the formula

Nm, = 0,023 Pri' Re;" (—-—..':“—)2 : (6.62)

Physical properties, entering into the criterions lno, !ro and
Re are referred to the average stream temperature by the best content.
It i1s possible to ascertain that the introduction of a correction

by formula (6.61), to a significant degree, approaches the experimental
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data with the formula for quasi-isothermal conditions. Thus, also
in this case the influence of the nonisothermalness basically is ex-
pressed via a change of the vapor density along the cross section of
the turbulent stream.

V. V. Krasnoshchekov and A, I. Protopopov proposed the empirical

dependence
8 ol L Q:'W
St "( ( l.) ( (6.63)
= b
Gy =2
where =

: P

T
N

|
1
-

|
‘i:
!
RAY
=

e T L .il - '\-ﬁ‘h-

F——t-—r -
— e ar

o

a4
J 4 56 2800

e

Fig. 53. Comparison of experimental

data on convective heat transfer in
the region of critical parameters with

the limiting formule (6.62), O — ex-
periments of Z, L. Miropolskyi and
M. E. Shitsman (H,0); O — experiments

of A, A, Armand (H 0); ® — experiments
of Bringer (COQ); E]-experiments of
Dickinson (H20); X — experiments of

V. S. Protopopov (COe).
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In the region of the near critical state of the vapor the first

of these factors 1s practically equal to 1.

Fig. 54, Comparison of experi-
mental data on convective heat

transfer to oxygen in the region
of critical parameters with the
limiting formula (6.53). =-- by

formula (6.52); — experiments
of Powell,

Formula (6.63) gives quali-
tatively the same relation between
the change of the coefflicient of
heat transfer and the temperature
difference, as the limiting
formula (6.62). It 1s possible
to note 1n connection with this,
that during criterial treatment

it 1s expedient to introduce the

pwall

ratio o

Naturally, the given analysis cannot pretend to a full reflection

of the whole variety of factors, determining such a complicated pro-

cess, as heat transfer for near critical parameters of the vapor,

However, from data presented 1t is clear that at least one of the

important sides of this phenomenon is explalned by the theory of the

limiting relative laws of heat transfer in a gaseous medium,
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CONCLUSION
Definitions of Cyrillic Items 1in Order of Appearance

CT = wall = wall
7= t = Thermal, Turbulence
Kp = cr = critical
The proposed theory of the limiting relative laws of friction
and heat transfer in a turbulent boundary layer of gas is based on
two known theoretical conditions, which express the relation between
turbulent friction and the averaged motion in a flat boundary layer
in the form of equations (2.2) and (2.%).
The problem of the influence on the coefficient of friction of

the nonisothermalness, compressibility, diffusion, and pressure grad-

ient is reduced to the integral

|}
2= (L
. /'. A . _:__
) » )

R

where

¥= ('T:f—)n"'

An analogous equation“is also obtained for the relation

, {8t
“‘( st, )R"i"
This integral at Re — ® in & number of cases has a limiting ex-
pression of the form
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]
' de =1,
j‘ ‘/‘ - ) ':’ (2'30)
0

Distribution of tangential stresses along the cross section of

the boundary layer T = is approximated by a polynomial, the

Twall
coefficlents of which are calculated from the boundary conditions,
ensuing from the determination of the boundary layer.

The relation between the gas density and the velocity profile
is established via the equation of state and coefficlent of nonsimi-
larity of the stagnation temperature and velocity flelds.

Thus, problem 1s reduced to an analytic investigation of the in-
fluence of the nonlsothermalness, mass transfer, and pressure gradient
on the relative changes of the coefficients of friction and heat
transfer,

Values of the coefficients c and lto can be determined on the

fo
basis of the avallable reliable experimental data for 1sothermal
streamining of a plate.

For streamlining of an impenetrable plate by an unbounded stream
of ideal gas an exact solution of the limiting equation (2,30), ex-
pressed by formula (3.47) for subsonic and by formula (3.48) for
supersonic flows is obtained. This solution does not contain empirical
coefficients (including "constants of turbulence") and i1s not connected
with any sort of special type of semi-empirical theories of turbulence,

The weak dependency of the fatios ;i— énd on the I.** and
Rn:* numbers allowed us F? extend the lié?iing lawsoto flows with
finite values of the Reynolds numbers.

For an impenetrable plate in practice a first approximation

expressed by formula (3.58) appears to be sufficient,
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In the case of a permeable surface the influence of the Re number
on the relative laws of resistance and heat transfer is still less,
due to perturbations, introduced in the near-well region by a trans-
verse stream of substance., Qualitatively correct and quantitatively
satisfactory theoretical formulas are obtained in an approximation,

expressed by the equation (for a plate)

==
/ s
g " (T4 da)—

2
Pwall "wall

Sro Eo Yo
At ¥y = 0 this integral gives the critical value of the factor

where b = is the wall permeability factor,

It 1s shown, that for subsonic flows of a gas the exact limiting

solutions are approximated very well by formula

VoY o+l

; N 2
For values of bcr solutions are given that take into account the
influence of nonisothermalness and heterogeneity of the boundary layer,
For flows with significant positive pressure gradients it appeared
to be possible theoretically to determine the critical parameters at
the point of breakaway of the boundary layer from an impenetrable wall,
It 1s shown that breaking away is characterized by a critical value
of the form parameter f, where by the quantity fcf is a weak function
of the ln** number, Dependencles of the critical parameters of break-
away on the temperature factor and the M number are obtained.

In connection with the fact that the critical value of the form

parameter f remains practically constant, but not the form parameter
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2f

= ——, a8 was assumed previously, a new method of solution of the

€0

momentum equation is proposed. General solutions of the equations

of energy and momentum for flat and axisymmetric boundary layers on

a impenetrable wall are taking into account

compressibility, and pressure gradient.

the nonisothermalness,

For permeable walls solutions of the equations of energy and

momentum for relatively small values of the
The relative influence of nonisothermalness
friction and heat transfer in the turbulent
with a change of the density in the nucleus
minutely depends on the molar viscosity and

Thus, establishment of the fact of the

relative laws of friction and heat transfer

form parameter f are given,
and mass transfer on

flow of gas 1s connected
of the boundary layer and
thermal conductivity.
existence of the limiting

for a turbulent gas stream

allowed us to give a certaln, loglcally consecutive method of research

of the considered problem,
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APPENDIX I
SUMMARY OF BASIC CALCULATION FORMULAS

I.I. Streamlining of an Impenetrable Plate
AL

Coefficient of friction during isothermal flowl

. 2
€p= (2,5 In Re** 4+ 3,8p

(I.1)
Coefficient of heat transfer during quasi-isothermal flow!

2Pr~ 01
.s“= (2.8mae +38)? (I.2)

Limiting relative laws of resistance and heat transfer (e ~ 1 1s
assumed):

a) during subsonic flow

4

¥=— — . .
¥+ (I.3)
b) during supersonic flow
¥ = ] [.rc sin - 2* - 1) + 3‘4' -
w-1 v AP DA+ Y
 —arcsin Ay ' r
‘ VAW DGR+ 3 (A

(I.4)

1During use of the exponential approximation,
A= BR*-® ad gy - ahl

. Pr— 0.7 ‘0' »
where the coefficlents B and m are taken from Table 3.1.
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Relative laws of resistance and heat transfer taking into account

the finiteness of the B® number (e =~ 1):

a) during subsonic flow
v = i
. — 2
[V $--82(-0) o + ll

(I.5)
b) during supersonic flow
1 .
= ‘X arc sin 290 -+ 3¢ =
w-nl1-821 e ) [ Y YT T T
16.4(° — 1)) 50 + 84 r.

— arc sin 1.6
YV 4 -DE Ay + QY ( )

The relation of the average coefficlents of friction and heat
transfer at Twall = const and a turbulent layer, starting from the

leading edge of the plate,

( ‘:,.ro ')Rc, =( ::. )Rf.r =wiE (I.7)

Average coefficient of friction for an isothermal turbulent

layer, developed from the leading edge of the plate
cro=0455igRe,)~**. (1.8)

Coefficient of heat transfer for a dynamic tuirbulent boundary
layer, developed from theileading edge of the plate and the initlal
heat-insulated section with length x,

8= 0,0129 — X -y 0.0 .
P R ( x (I.9)
I, II. Streamlining of a Permeable Plate
during Subsonic Flow (1imiting laws)
Relative law of resistance
.
Y

e ),

$ +1 (IT1.1)
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e oo B ) (11'2)

Critical value of the wall permeability parameter:

a) isothermal, uniform boundary layer

d=4; (II.})

b) nonisothermal, uniform boundary layer at y < 1

b= ! in '-r' ""* ’.
" 1-y S "l (II.4)
c) nonisothermal, uniform boundary layer at ¥ > 1
_ 1 2-¢ \
by =~ (ore cos =3, (I1.5)

a graph of the function bcr(w) is given Fig. 1T7;
d) isothermal, nonuniform boundary layer at R' > Ro (v < uo), where
L 1s the molecular weight of the gas

bp=1+43 L, (I1.6)

[ )

e) isothermal, nonuniform boundary layer at R! < R, (nt > uo)

b.,zl.47+2,53—i——; (11.7)

f) nonisothermal, nonuniform boundary layer

by =025 by s by . (11.8)

where b, ., and b, ., are calculated, respectively, by formulas (II.4),

2
(I1.5), and (II.6).

The relative law of heat transfer has the same form as (II.1),

but instead of the parameter b the thermal parameter of wall
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permeabllity is introduced:

b, = ot @ 5. . (II.9)

= b .

Values of bt’ o o

I, III. Critical Parameters of Breakaway of the Boundary
Tayer from an Impenefrable Wall

Critical parameters at point of breakaway of isothermal boundary

layer:
= £y =0,010; (iII. 1)
Hy =~ 1,8T7; (III.2)
(—':; .’=0.16. (I11.3)

See also Table 5,.2.

Critical parameters during nonisothermal, subsonic flow, see
Figso 36’ 37.’ and 380

Critical value of parameters durlng supersonic flow, see Figs.

39 and 40,

5-[

Change of parameter H = g::
H.—.Hlo,sr’( Voo )'"’. (II1.4)
0.‘—‘ *N
where
- J
fi==

The relative change of the coefficient of friction under the
influence of a pressure gradient is determined from Fig. 28,
The 8t number in the range of values In** < 105 can be considered

practically independent of the pressure gradient.
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I, IV, Integrals of the Energy Equation

Subsonic stream on an impenetrable surface

) X
R’ = 'z'—p'::'?rBRc.J Y oAT' " . dX +
] . |
+(R¢'AT)'”}_'- (Iv.1)

The quantity ¥, is calculated by formula (I.3).

Supersonic flow on an impenetrable plate

Re® = —— [W,,—aneo.! (—"i-)'uu = u-)"-‘f.x
xar‘*'dx+(kc,u)“']'_'=. (Iv.2)

The quantity y, is calculated by formula (I.4).
During supersonic flow

AT= fﬂ—rﬂ" (IV.B)

The local value of the Stanton number, determined from the calcu-

lated value of Il;',

=¥ )" .
'( oo ) 4 (IV.4)
During subsonic flow Koo = ub.

Subsonic flow on a permeable surface

e oL I (_l+m v, (1= b 8
R‘ .r l_'lg—' BR‘qi 'w'[ l " v

I+n}‘+"

+b]AT‘*'dx-r(Re.AT) (Iv.5)

Distribution of supply of cooling gas along the length of the

contour (coordinate X)

h .. 1, (IV.6)

h\ .cl ",
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Local value of the Stanton number

S‘—‘l l - \ S‘... IV.
(1-%%) (Iv.7)
Local heat flux

dax = gt‘,.. ny w,ATSt. (IV. 8)

Initial temperature of the cooling (injected through the wall

into the boundary layer) gas

Ty= Ty — ., (IV.9)

L

During evaporation and sublimation,

Jer = rEjy; (Iv.10)
St
%, ok (IV.11)
I
K= Y (1Iv.12)
b = tvlv——ﬁﬂ—(l/ T‘-'-'—-rl-l);. (IV.13)
-— . "‘ﬂ xbs.lp__
Rel = 5 | —gpan BR‘J e

X(V T%— Ll - l)]&u"rvn'dxr

1 .
+(Re’ A T)X; "}'" (Iv.1%4)

The quantity ¥¢ 1s calculated by formula (I.3).
In the case of gas injection and given values of Ti’ Twall’ and

Ty in formulas (IV.10) — (IV.13) instead of the criterion K is intro-

duced the ration

Ta—-T
'rﬂ _— ru )
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I.V., Integrals of the Momentum Equation

Subsonic flow on an impenetrable surface

x .
Re“=~.'.|[ "Z“ BR‘“I".F"*.‘I ",dx-r-
X

IR
+ (Re*s ')\ .]rn : (V.1)
where

1= 1+ H,.

The quantity ¥, is determined by formula (I.3). The quantity
Hop is determined from the graph of Fig. 37.
Local value of the coefficient of friction, determined from the
% *
calculated value of M@ ,

€ =W ¥yt (V.2)

where Y. 1s determined from Fig, 28.

Value of the form parameter

f= :'::” . :t“. (vV.3)

Critical value form parameter is determined from the graph of
Fig. 36.

Supersonic flow on an impenetrable plate

RO‘.‘ = U~ '[ L= BRe,, f ‘f'( S )- (1— U")T—!TX

2 o
| IS
1+ ™

U+ W g X+ (Rett Uk} -] (v.u)

The quantity ¥, is determined by formula (I.4). The quantity
H,p 1s determined from the graph of Fig. 40,

The value of the form parameter for the calculated value of n.*.

L aU
/= 2 -

. ' dx '
Reg US(1 - M)V (v.5)
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The critical value of the form parameter 1s determined from the
graph of Fig. 39.

The local value of the coefficient of friction for Re =, deter-
mined by (V.4),

c‘,= v, W’,(%)'c,.,. (V.6)

Subsonic flow on a permeable surface at small T

0 , X
s —g 2 1M Cgdt ey (b
Re** =w; { 2 BReo}\‘wo [,(l ..')-{-
]
R S
+b]dX + (Re**wd’)i; "'}+ : (V.7)
Local value of the coefficlent of friction for Re . by (V.7)

¢ =V, (I - —.-:-'—-)'c,o.

(v.8)

I.VI. Integrals of the Equations of Engrgx
and Momentum for ‘Axisymmetric Flow

During axisymmetric flow the integrals of the energy equation
have the same form as in the case of flat flow (see Section I,IV),
but instead of the quantity AT the product RAT enters, where R 1s the
radius of the surface of the body.

Correspondingly, in the integrals of the momentum equation during

o ~

subsonic flow instead of the quantily wg, the quantity R wé is intro-

duced,

Local coefficient of heat transfer in an axisymmetric nozzle

Now =~ Pr" Reg ¥, (A= (27T

(o) i

\VI.1)
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where

Rc:':[ (1 + =) B Re... (D-p.)' -"'( -1 )o.sx

A ar v D R+l
'_“ . M 2 0 T'.ﬂ
AT frare (AT
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APPENDIX II

EXAMPLES OF CALCULATIONS

A. Heat Transfer in a Supersonic Nozzle

There exists a supersonic nozzle, the geometric dimensions of
the flow=through part of which are shown in Fig. 41 and in the first
two lines of Table II.i1. The parameters of drag of alr in the
nozzle: pgy = 4.,49; T; = 5,99,6°K,

Temperature of the wall Twall = 347°K is constant along the
length of the nozzle,

Distribution of the local cvefficlents of heat transfer along
the length of the nozzle and the corresponding distribution of heat
fluxes on the wall is found:

g=0a(Tq — T,).

Parameters of air T = T;: !roo = 0,725;

" pee=3,12 < 10-* igegeo/n?y ¢, =0251 koal/kg-des

= "“ - 100 = .
th ERT, 9,81 - 20,27 « 50,6 - %60 Kesee ity

h-o.ossl keal/m*hredeg,
Hence

Re., - %V’ 427.2.9,81 - 0,251 - 509,6 = 1,9 - 10,

Take m = 0,25 and B = 0,0129, Results of further calculations
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are given in Table II.1.

B, Cooling of a Porous Plate

A plate of length 1 m 1s streamlined by a flow of air with a
temperature t, = 2000°C, and 1s cooled by cold air, passed through
the pores of the plate, flow velocity of the hot air L 50 m/sec.
It 1s necessary to determine the specific flow rates of the coolant air,
needed to maintain the temperature of the plate constant, equal to

t = 500°¢C.

wall
The initial temperature of the coolant air is t1 = 30°C (diagram

of problem is given in Fig. II.1).

By formula (II.4) we determine the critical parameter of injec-

tion

b= ——bs [ln ::% =-7.793;

¢= —f—,.’,‘,— =034;° !.=(7?.%-‘ )’ = 1,60.

By formula (IV.13) we determine the quantity b,:

b=7708- =2 . T %
4.- 1,60 (2800 — 500) “al=
X(l/ Tmen—m l)—2.44.

By formula (5.94) we determine the parameter ¥:
v=04. —0=%__ _o764.

=

Fig. II.1. Diagram for calcu-
\lation of the cooling of a
porous plate,
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Tabie II.1. Combined Table of Calculation of the Thermal Boundary Layer of a Nozzle
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By formula (V.7) we determine »

Re, = -—w#— = 1,1 - 10% v.=4§5-104—‘.-:

. IR
kgese02
o

pe = 0,0153

Re** = (1,1 - 10° - 0,0128 - 3,204 - 1,25)™ X**= 1000 X",

By formula (1.1) we determine the local values of Cpge After
substitution of the results of the preceding calculations we have

o _ 00026
2 - X

We determine the flow rate of coolant air:

h_ g _1.5-2.44.0,00%
xl.l

We calculate the local values of the coefficients of friction,

0,00342

C,:C,.'.—. x.,.z

‘Table II.2., Results of Calculation of Cooling of a Porous Plate

X (Y] 02 03 (X} A 08 ! o8 (L) 10
—t

Y wa11"wall [,ﬁf,%] 0638{0,0660/0,0828] 0,0483 | 0,0472 | 0,0488 | 0,043 | 0,0432 | 0,021 | 0,0413

6108 | 848 418 408 403 306 32| 37 | sea| sm| s

Gy +107 %2-”‘-] 2,08 23| 2,13 20 192 ( 188 18 1981 1. | 1,678

We determine the specific heat flux:

Ga=Cp TaWes(les— ) =

0.2 - 7,5 - 2,44 - 0,00226 (500 — 30)
xu

Results of the calculations are reduced in Table II.2 and are

presented in Fig. II.2,
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Fig. II.2. Results of calculation
of cooling of a porous plate.

C. Heat Transfer in the Inlet Section of the Pipe

In a cylindrical pipe of D = 0,011 m air enters, with parameters

6

at the inlet, T, = 297.5°K; G = 22.7 kg/hour, W = 1,83.10"°, The

0

temperature of the wall of the plpe 1s constant and equal to Twall =

= 372,5°K. It 1s required to determine the distribution of the
specific heat flux along the length of the pipe.

We find that
Re,, =
4.2.7
= 3000-9,8!-1,83.10~%.3,14 .0,

Pry=0,725; Pe, =

= 4,06 10%;

=Re, Pr=245. 10,

Y=1,25,
Equation (6.49), taking into account the given parameters, 1s

reduced to the form:

X= 60‘0.6!6 : Pe*'°-"‘-o,89[2.3 g X

Pe*t + 11,68 Pe "B . 67,4
P05 — 11.68 Pe & : 61,4

0035
+ 2arc tg 11:68 . R ]}

67,4 — Pe**%3

Assigning the values P& = 200, 400, 1000, 2000, 4000, by this

equation we determine the corresponding values of X,

4~




By formula (6.50) we determine the specific heat flux, Taking

into account the given parameters, equation (6.50) takes the form:

(2,95 - 108 + 6,5 Pe**)
"‘M

0o =198

Results of the calculations are reduced in Table II.3, In Fig.
II.3 are presented the results of calculations and experimental data
of B, S. Petukhov, obtalned for the indicated parameters. As can be
seen from the graph, the agreement of the analytic calculation with
the experiment on heat flows as well as by values of !b** are fully
satisfactory. On the same graph are presented the results of calcu=-
lations for streamlining of a flat plate by the formula of B, S.
Petukhov, From the graph it 1s clear that the best agreement with

experiment is given by the proposed method of calculation.,

Table II.3. Results of calculation of
Heat Transfer in the Inlet Section of

the Pipe
Pot do f kel un a0 | eom
X 1,49 | 3,74 | 10,45 22,4 | 47,8
%dh"*'ﬂﬁ%‘ 16,2 | 14,1 [ 12,6 | 12,52 13,7
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Fig. II.3. Results of calculation of
heat transfer in the inlet section of
the pipe: 1 - Qya1l according to the

method of the authors 2 — dyall accord-

ing to the method of B, S, Petukhov, 3 -
a1l by the empirical criterial formula

for stabilized heat transfer in a pipe,
4 — Pe according to the method of the
authors, O — éxperimental data of B, S,
Petukhov for Qa11’ ® - experimental

data of B, S. Petukhov for h
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