THE STRUCTURE OF THE FIELDS OF WIND-VELOCITY AND TEMPERATURE

:': =
g
W
B
£
‘l

:

{

i

i

?

H

’ TRANSLATION NO. 1044

IN THE SURFACE LAYER OF THE ATMOSPHERE

cade /

CLEAR?F;"@??"‘-'“’
FOR FED™ - oo L

3

Ve

UNITED STATES ARMY
BIOLOGICAL LABORATORIES
Fort Detrick, Frederick, Maryland

#':’"w»mm,m-«-; e

N . . e o o e eerem st b resind i e
PSR T AR NPRAYESe  be w e BT S bt N . S e b — S




i e = e b e © e e e A NP XN Y I X gt

e bt s omi et b 8 i e RTR—

THE STRUCTURE.OF THE FIELDS OF WIND-VELOCLITY AND TEMPERATURE IN THE
, ‘ SURFACE LAYER OF THE ATMOSPHERE

[ Following is the translation of an article by A, S.
Monin, published in the Russian-language periodical
Akad, Nauk SSSR Inst, Fisiki Atmosfery Trudv #4: 5-20,
1962, Translation performed by Sp/6 Charles T, Oster-
tag Jr. Technical editing by K. L, Calder, ] -

The study of turbulence iﬂ the. surface layer of tﬁevatmosphere is of pri-
mary practical importance in estimating the wind resi;tance of'structures,_the
diffusion of atmospﬁeric pollufion, the propagation 6f fadio‘waves, the evapor-
ation of moisture from the surface of the earth and reservoirs, the transforma-
tion of air masses, etc. At the same time thé surface layer of the atmosphere
provides an excelleat laboratory for studying the general properties of turbu-
lence, and particularly so since in the surface layer it is possible to study
not only the dynamical factors that influence turbulence (and determined primar-
ily by the Reynolds number) but also the influence of the‘sﬁratificatioﬁ of the
medium (characterized by the Richardson number). in édditibn the surface layer
is readily accessible for direct observations..

| This review considers the currently available theoretical and empirical
knowledge cbncerning the wind velocity anc¢ temperature fields in the surface
layer of the atmosphere. Attention is concentrated on those characteristics

that can be measured directly,
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1, CHARALTERTZATIOV OF THE SURFAC R
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The surface 1avur will denote that 1owur 1aynr of the atmosphere -- naving
a thlckness oi a few teno of metero -- in which the effect oi the COIlOllS force
can be neglected. Ve shall assume that the following two cond1tlons are satise
fied in this layer:
- 1) the terrain is fiat énd the extensive surface sufficiently uniform
so that the fields of wind velocity and temperaturerare statistically uniform
horizontally

2) no marked weather changes occur and during a time interval such

that the normal diurnal change of weather conditioas can be neglected, the fields

-of wind velocity and temperature are statistically stationary. Under these con-

ditions the statistical properties of the meteorological fields are independent
of the horizontal position of the point of measurement and of the time, and can

depend only on the height ZZ of measurement,

2, PRACTICAL LIMITATIONS OF MEASUREMENTS

P i S W > - Gt - —— ———

FExisting measuring devices make it possible to record directly the changes
with time of the components of the wind and the temperatur: at fixed positions
in space., The measurements are subject primarily to a time-averageing over an

interval 1. that is determined by the inertia of the device (in the best of

°
existing devices KT;/SJ 1074 sec), ahd to averaging over a cylindrical region
of space having a length W '7;. the direction of the wind ( @ =wind ve-
locity) and a cross section determined by the dimension 450 Vof the seusing ele-
ment (in devices of the Institute of Atmospheric Physicé'eo ~  2c1,)
In the surface layer of the atmosphere, the microscale of turbulence
A: y% E"“1L (:there € = rate of turbulent energy dissipation, )/ =co-

efficient of viscosity) has a value of the order of 1 cm, the corresponding
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period of fluctua tions at a fixed point in space ’rl\ )y/u is of the order

<2
107" sec and the angular frequpncv w/\ 2 7!'/’7’)‘ ~ is of order 103 radian,llertz,
The pa.rame‘cem of ex15't1n5 measuring devices are srt111‘ 1nadequate for measur;ng .

the structure of atmospheric turbulence in the region of the microscale,

3. T STA3TLITY OF MEAY VALUTS

Using data from measurements, the meun values of the fields of wind veloci-
ty and temperature may be deteimined for an averaging interval T . 1 thé
period 7’ is small then it is found that the mean values are unstable -- they
change appraciably under the influence of those compouents ‘of turbulence having
characteristic times that are not small compared with T . But if T Lo/i
where L o 1is the exterx'lal horizontal scale of turbulence, then the mea:ii‘i»railues
will be stable, since those componenfs of the turbulence having scales that are
large compared with Lo will very rarely have large amplitudes,

Observation shows that to obtain stable mean values of wind velocity and tém—
perature it is sufficient to base the averaging on a time interval of the order
10 min. To obtain stable mean values of characteristics of the small scale com-
ponerits of the turbulence the interval of averaging may be much less, although
it must be borne in mind that such characteristics may also depend on some param-
eters of the large-scale motioa (of which, in particular, € is regarded),

Thus, for example, for verificatior of the "two-thirds law"

[ (M), ()] = C*er)™

(T‘ =the distance between points M and M/) it is sufficient to average

using a time interval T" =30 secs, although the value of ¢ so determined will

S

change in repeated measurements, as well as the mean velocity U .
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4. STRUCTURAL CHARACTERISTICS

Those characteristics of tne structure of the fields of wind velocity and

~ temperatu' s rhat can be measured directly are conveniently divided into four

groups: -

1. Average profiles of wind velocity and temperature . ( Z ) and

T (z)
/ ’ r——
2. Probability distributions of the fluctuations ‘L:U"J&" and /[

at a fixed point of space, and primarily the second moments of these distribucions

/f;- 1 s ;--' 4 I 4
Wo=op; vizaa”;

T vl s 57 4 Lo

(’Uf* =friction velocity, ?_ =average value of the vertical component of the

? n ————————
@ Gy 2

- (,) |

turbulent heat flux, C =specific heat at constant pressure, P =density), In

P

particular, of immediate interest are the correlation coefficients

- — o
£’ L ‘0"“_ . OZJ. éd'" 77 C’Z," O’r \
Tu-w'- - VT v f.r(..r‘fs 7’1" - “C;"
v, ¢
A FP

C———

. / / / L /
The remaining second mcments {( W L™ R LT U wr s 7" ) are zero,
J

Also of known interest are the third moments

/73 /3

N . ‘ / . .
o 75 “"(C(-'a**vl-f-w-/’) -

.~

The first two of these charactevize the asymetry of the probability distribu-
/ ’ . Cigo s
tions of o~ and T while the third expresces the vertical difrusion of

turbulent energy,

4
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The‘quantities (1), (2) and (3) are statistically stable providing an aver-

aging is used that is based on a sufficiently long interval of time (of order 10

min). In this same sense it is possible to determine the moments of connection
/

/
between values ¢ and T , at various instants of time and at various points

§
]
of space and, in particular, the time correlation functions ' _ g
ul (x,t+¥) uf (x,6) =byj(1,2)
WG (e T)T(,t) =bir(r2) -(4)
: Tv,(x-) t'* 7’) 'T,(X, t) = b‘rr (’)", 2) ,

of which (1) are the values for "= .

n

3. Probability distributions for the local characteristicé of the tur-
bulent fields i.e,, space and time differences of the wind velocity and tempera-

ture,

Sru; = Uy (xt, )= «; (%,¢)
S+T > T (xemt) - T (x,6)
Syup = (x, b47) = & (x,¢)

Sq"r = T (x, t+')’)- T (=, ¢t)

...(5)

and primarily the second moments of these distributions which are the space and

time structural functions

(8ru)(8rg) = Di5 (v2) 5 (8 T)= Dyr(52) /) ?

Gr)Gran) = Dy (52) 5 (8,12 dpr(r2)

The spatial structural function (6‘1' “'L) ( o"* T) of the wind velocity and

5
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temrerature fields is equal to zero under the hypothesis of local isotropy and
incompressibility, Likewise vith the hypothesis of "frozen t:urbuience" (see be-
low) the correspoﬁding temporal structural function is also zero,

Also of known interest are the third moments of the distributions for space

differences

(&r‘ Uy )3 = D(g( (+ 2); ¢ Uy )(&»-T)a = Dzrr ("3 1) -(7)

which enter into the dynamical ecjuations for the structural functione of locally

isotropic turbulence, and the dimensionless quantities related to them

- =% - -%
5= Dure Ve 5 F= g Uop Prr - (%)

where the index .e denotes the direction parallel to the vector 7~ , so that
A d is the component of the wind along the direction of the vector = .,
4, Probability distributions of the spectral components of the flelds

of wind velocity and temperature L] (&U) and T(d’ w) , corresponding tc
specified intervals of the frequency <f & 1n the time spectra (in particular,
the semi-infinite d‘\ w 3( w, ao) ), and primarily the second moments of the
spectral components corresponding to very small 6‘0 , the: is, time spectral

functions,

SJ* (w, z>=2:9w [U-j (&o)u{ (Sw) +'LuJ (Jo)l,z (JO)J

3jr<w, 1)-:2-,5;[‘“3 (S.) Tw) + “"J ({“)Tf(&a)] n(y)

N 1 =3
grf\""}/i ﬁ’wé?wl 7 (‘g!yj




S‘.;jt((u,'z)f .'"7"_— [Cos WY L{,*(’L’Z)f b&] (731) + L Sin w’]’bk(‘ra"}' b*J('I;Z)]JT
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where the plus sign indicates that the given spectral component is taken out of
phase in the frequency & by an amount 1“77'/ Zc
The spectral functions (9) are connected with the time correlation functions

(4) bv relations of the form

b\,*(’r z) Zj[cas w¥Re S5k (w:z)- Sinw¥Lm S,,/g (w,z)_.),é,,
O | . "('0)

o ia

SRR

0

The spectral functions may be determined either by the formulas {9) on the basis
of direct measurements of the spectral components of the fluctuations of wind
velocity and temperature, or by use of the second formulae (10) based on measured

time correlation functions, 1In particular, from the first of formulae (10) we

o)

2{ & 5.0 (02)do
000

wT'= 2\ Re Spr(v2)dw

2

obtain

Thus the quantity -2 Re Sbur(‘”)z)" - “’(Qw)w(d'w)/d"w is the spec-

a
tral density of the shear stress .‘U'“ , and 2 Re 5“”_ (w,z)aw(xp)‘r@‘w)l/é‘w
is the spectral density of the turbulent heat flux ?’ /C’ P o

5, FROZEN-IN TURBULENCR
As pointed out by G, I, Taylur, the variations in time of the hydrodynamic

characteristics at a given point 2C can Le approximately explained dy regarding
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them il‘res‘ulting from a pure translatory motion of a field of turbuleat eddies
across the point with the speed of the mean wind and along straight line x

vhich passes through ¢  parallel to the direction of the mean wind, This im-

plies that for a sénsing system that is moving with the velocity of the mean wind

the distribution of hydrodynamic chaucteristics along the line s( does not

change with time, i.e.,, is "frozen"., Actually, of course, the field of turbulence

is not "frozen" ind its configurdtion changes with the passage of time, However,

if the energy of the turbulent mution i3 much less than the energy ‘é‘ (9 @ 2 of !
the mean motion, then the error from using the hypothesis of "frozen turbulence"

to describe the structure of turbulence on sufficiently small scales will not be

, great,
§ The hypothesis of "frozen turbulence’ makes it possible to identify thé sinus-
oidal component of the distribution of any hydrodynamic characteristic along the
straight line ;f that has a vave length £ (and vave number -éa AT /[ ),
with the sinusoidal component of the temporal variations of thic characteristic at
the point ¢ heving the period 1""{ /&T (and angular freque.cy &2 fﬁ/& -i ‘ ).
From this it is apparent that the periods “» and frequencies ¢) of the fluc-
tuations in time of the hydrodynamic property at a fixed point of space are not
representative magnitudes of the turbulence, since they depend on the wind veloc-
ity &: . Hence when comparing the time correlation or structural (or op&ctul)
functions obtained with various (& , the comparisons should not be made at
fixed 7° (or w ) but rather for a fimd w7 (or w/z ).

#hean using the hypothesis of "frozen turbulence", the spa:e éoruinﬂon fuvc-
\ tion B (1",'1) corcesponding to a vector -y~ parsllel to the mean wind and

the time correlation fumction l(?; 2) are connected by the relation
. b(2)=eB(ar 2) - (1)

; An analogous relation ic trus for structural functiona. Further, suppose that
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S (‘k‘z) is the one-dimensioual spatial spectral density corresponding to t-
line ;{ (that is the Fourier transform of the function B ( ‘Y} 2) ) ard that
S (u, z) is the temporal spectral function. Then when using the hypothesis

of "frozen turbulence" we have

3(w,1)=—-'£g(~g ,vz)‘ | -(12)

6. SPECTRUM OF TURBULENCE
The spectrum of wave-numbers for the motion of a fluid (or in the case of

the temporal spectrum, of values W /E ) can be somewhat arbitrarily divided

into four regions:
1. the range of small wave-numbers, corrssponding to the macrocompca- i
ent or the averaged fields of wind velocity and temperature, *
2, the range of macrostructural elements of the turbulence that coan- ‘
tain almost all )f the energy of the turbulence,
. the so-cslled inertial range {n which the turbulent woticn is
deterzined by the doliutm infiuence of inerties forces,
4, the dissipation range, that is, the range of large wvave tambers in
vhich o:curs alwost all of the dissipation of turbulent energy dus to the action
of wmoleculai forces,
The 3rd and 4th regions together form an equilidrium range of the
spectrum in which, according to the theory of loally isotropic turbulemce, the
forces of  nertia and of viscosity are fouﬁl in equilibrium,

o Bwet v ae

Cenerally spesking, the relative importance of the differeat charactaristics

§ %‘«'WM e

of the turbulence Jdepends upon the weather conditions, To a considevable degree

o
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the weathereconditiohsAare'determined by the wind velocity and the vertical tem-

T ekl R,
]
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-p&rature *radxent \which characterizes the degree of stabzli cy associated with
AtLe thetmal stratxfxcation of the atmosphere) It is known that with a stroag
_wxnd~and en-ugstable—stratifie&tion; the tu:buLence is much more marked than with
a 1ight~w;pdiand>Steblestratification{ However, such e.qualitativekspeeification
’ pfitheiﬂependcncyrbf Eufbuleece on weaehet cbn&ifioﬁs is, _ef'edhrse quite inade-
qeate and we ne edxto eatablluh a quantltatlve dependency ‘on weather condltions ‘

for all -the - structural characterlstlcs of the fields of wind velocxty and teuper-
‘ature thae are Lleeed in Sectlcn 4, . | E
) Tha cha;acteristicS'of turbuleuce de;eed,on the ﬁeather_conditioqs through
severai Yexternal perametcfé“. Generally speanlng, the cheice of these parameters
turns.oue to be differentrforrdifferent regions of the spectrum cf‘tufbulence.
N % Ihere are two thnecries ofsﬁmilarityforetmdspheticturbulence thée indicate.
how the “externalrparameters" are to 5e selected and how the characteristics of
the terbuleﬁce depend on .these parameters, One of these is A, N, Kolmbgprov's
theory of similarity for locally isotropic turbulence, which applies to the equilib-
Vrium fange of the spectrum, The second is the theory of similarity for the turbu-
lent regime in the surface laye* of the atmosphere, as developed ir the works of
A. ii.Obukhov and A. S, anln, this theory is appllcable to the entire turbulence
spectrum except the dissipation range, Both of these theorles of similarity are
applicable to the inertial renge.
The collection of experimental data relating to the structure of ehe fields
of wind velocity and temperature shoule aim at determining those universal charac-
E ; teristics of the structure, the existence of which is indicated by the theories of

similarity.

c 8. THEORY OF SIMITARITY FOR THE SURFACE LAYER OF THE ATMOSPHERE

This theory stems from the fact that, except in the dissipation range, the

10
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turbulent regime in all portions of the spectrum is completely determined by the

three dimensional parameters-

v Cww)® s gl 5 3fn

wvhere ‘zj’*: friction velocity, 1. = ver:;ical turbulént'heat flgﬁc,f CVP - specifié

heat at constant pressqre,(}a air density, 3 = gravvi?:a‘trir.onal_ acceleration, 7;=

standard mean temperature of the surface layer.
The dynamical equatiors (that is the equations of motion, heat transfer and
continuity) icr any’individual realization of the turbqlént regime in the surface
layer of ‘the atmospherz (where the Coviolis force can be negle'ctgd and the only-
changes of density consiflered are those related to t:hanges‘ of té-petature but not
pressure) conﬁéin only the parameter ¢ /7'0 5 the coefficignte of molecuiar
viscosity and heat conduction (which drop out if onlj tﬁdse moticus are eomnsidered
that have scales outside of the dissipation range), and maybe those parameters
that characterize the radiative heat tramsfer (vﬁich we shall disreéatd for rea-

sons given below). Under these circumstances the averaged dynamic_él equations

(which are analogous to the Reynolds equations) take the form lg’w' = constant,

wr (T/ = constant. Thus the individual and averaged equatioms only contain
the three parameters of (13). A |

Strictly sveaking, even in the case under consideration of a horizentaliy ho-
mogenecus stationary surface layer of the atmosphere, the turbuleat hear flux
is not necessarily constant with height, but only the sum ?‘f ? / , where
(i, { is the radiative heat; flux, If the radiative flux 1 l ;hanges gppreciably
with height then the theory of similarity as stated should be modified. However,

it may be shown that l; ; apparently changes appreciably eniy in the very thin

11
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layer near the surface of the earth (of thi;kness 1-2 meters) where as will be
shown belgw_, the influence of thermal stratification on the turbulent regiwme is
still not detectable,

From the parameters of (13) it is possible to define in a unique manner (to
withia mmietica‘;‘nmltipliers) a scale of length L , velocity V , and tem-

peratucs T—i(—- :

| ' 3 -7 |

L= Y Vewe 5 T o= (W)
+ ® Ve Gf

C .

K1

_r.
Bere K is the mumerical coﬂstapt of iron Karman, and is introduced for the con-
vgnience of the subsequent calculations,

"The dimensionless characteristics of the structure of the fields of wind vei-
ot;ityAand temperature as determined by means of the scales of (14), will be univer-
sal functions of the dimensionless height § = Z/ L . Here a negative
value of § signifies unstable s‘tratification ( t}, > 0 ) while a positive

g means stable stratificationm ( ?“ 0 ).

9. SIMILARITY OF AVERAGED PROFILES

When using the simiiarity theory of Section 8 to describe the averaged pro-
files & (—1) anl T (z) , it is customary to introduce an additional
hypothesis conceraing the proportionality of the exchange coefficients for heat

and momentum, nanmely

4 ___,_Li..?_; I ~ KT»F da z[/_ + .
/JC Cr.il'_.;- s Uy zl'z,, 4z A consT ()

12




The hvpothesis (j[ = const is equivalent to the assumption of similarity fer

the profiles of wind veiocity and temperature

T(z)-T(2)- = [ilm)-al z)]

%4

This :ias been checked dircctly against the observational data of A, V. Percpet -i-

(unpublished werk) and is confirmed, at least when the departures from neutral

stratification are not large. However, additiomal coniirmation is desirable sinc.

Swinbank (1955) presents data showing some dependcuce of ol on the Richardsca

number.

In accordance with the theory of similarity above (with o = comst), the

wind and temperature profiles in the surface layer have the form

a0 BIE(F)-f(2)]
To-Ter HHE-1 ()]

where j‘(?;‘} is a universzl function that is detcrmired tc within an additive

constant, and :Zo' is the so-called roughness length for the earth's surfac:.
In these fornulae the height Z  should be adjuéted to allow for a 'zero-pla.

displacement"” (which ic essential in the case of high Vecetatlon) The funct:

Tf \,él) is connected with the Richardson number Ri by the relation

—————p p—
— - -

t?-'—iiéfﬁé{-l /._
R IO R L$05)

which shows, in particular, that Ri and ‘5 are cquivalent local paramcters
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of the thermal stability,

| If the stratification is very close to necutral ( /7// is small), then the
wind profile should be described by the known logarithmic law. With strong sta-
bility ( é >> / | ) large scale turbulence cannof exist (since it would consume
too much energy in working against the Archimedean forces) while for small scale
turbulence and heights which are not too small the. oresence of the earth's sur-

face is unimpoi'tant so that Ri -->» const, and hence from {18) the function f(é)

should be asymptotically linear. Values of é<< / (strong instability) are

obtained for a fixed Z as ;_") - ¢ or with ‘g‘,‘;—;‘ C 5 hence the as-
ymptotic behaviour for §<< / znay'be'obt:ained by considering the limiting

self-generated regime of free convection (’U; = ) ). In summary, it may be

shown that the fuaction f ( é) must possess the following asymptotic proper-

ties:

-~

§(§>:‘J é’oj/g;’ii"'-f;g for l'§/</ Gue. 7< /L/ ")

§(§)/" (/g + ( for 55}/ (i.e. = 3> | _ in a sta-

ble scratification) ___(}q)

)C (5)» €y C.; /‘Sf'/—é for é«'—/ (i.e.23 )L/  inanun-

stable stratification)

~

Here the arbi txarj constant term in the function :F(é ) has beea chosen so that
5(5) /C' IIJ/ > C ( :.7—”0)

The unlvcrsal functior 5: (é) was constructed empivically by A, M. Obukhov
and A, S. Monin (1953, and later by A, V. Pevepelkina and A. S. Gurvich (see p 81
of present coilsction) while in the investigations of A, S. Gurvich the wind and
>»*

temperature profiles and the parameters U, ani Cf/, wove measured independently,

The observations establich the cxistence of the uriversal function J:(é)

14
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and confirm the asymptotic properties (19). Data from Priestly (1955) show that
with unstable stratification the limiting regime of (19) is actually rea-hed at
small hzights cf a few meters.

The formulae (17) and (19) fo;c the profiles of wind velocity and temperaturc,
contain a number of numerical constants: K,d, /’3) C‘,) C:; )- C, and €4
All of these constants may be obtained bSr means of gradient measurements. Thus,
I(:l‘:— 4, vd , the value‘of 0( . 1is apparentliy a }.i‘ttle less than unity, and
the values of (l. and CJ are close to unity, By approximatingthe wind
profiles in an interval of positive and negative Ri vaines by the functien

7 F 2 .
§(€) = (Oj /5({,1. pg » A. M. Obukhov and A. 5, Monin obtained ﬁ = 0.6,

& Kz ds
However, a number of authors using the formula ﬁ W 2;}-: Z ét o > have

obtzined a value for ﬁ that is two to three times greater. Possibly this dif-
ference is explained by the fact that the two calculaticns of. ﬁ are essentially
different, We al te that, i 1, the val £3 ER d«z)
1frerent, e also note a in genera e values o > —_— 7 -

» I 8 ? P4 v o, §=0
will be different for conditions of stable ( § = + O ) and unstable ( § = =00 0
stratification. The value of 13 for unstabie stratification is not too signiii-
cant as, according to Priestly, in this case the transition from the purely log-

arithmic law ‘}(&) "‘,\:,&3 ,gl to the limiting law of free convection

f(g)fvcl— CQ , §/‘ % occurs very rapidly (ir a very thin layer).

10, DETERMINATION OF Yx AND 9-
[ ]

In the theory of similaricy for the surface layer of the atmosphere, the de-
pendence of the turbulent regime on the weather conditions is expressed through tiwc
"external parameters" VUV, and ﬂ, . These parameters occur in the formulae

(14) and (17) for the profiles of wind velocity and temperature, The reverse prob-

-
No g -

lem can also be solved, namely the determination of ‘U; and '—”’ based on 1
urements of the profiles of wind velocity and temperature, If the roughness length
4 is known, then it is sufficient to measure the wind velocity at cne height

¢
15
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Z= H , and the difference of temperatures at two heights, for evample,

Z<QH and 2 ’H/él . Let

¢ (H))ST= F(QH)-—;:(H/‘)))’ B::(_j_’_{ .SS.I = 20
: o . o« P20 K

Then, according to the theory of similarity

i

LN A AIE-SACE D IS

)3 Gef
[ L wdT |

—

The functions Fl R F:;/ /'3‘ , may eitﬁer be constructed empirically from inde-
pendent simultaneous measurements of the values W) «:ST,“U} and "r , OT
theoretically with the help of interpolation formulae for the universal function
:F (§) satisfyingr the condition:s (19). .The latter method has been used by

A. B. Kasanski and A, S. Mcnin who have published nomograms fof the functions (20)
in both stable and unstable stratification. The following properties of the func-

tions (20) may be noted, For near-neutral stratification (small /(3( ) we have
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With increasing B‘? O (stable stratification) the values of F/ 5 F;_ and f’—;
decrease, while for increasing absolute value of B <. (O (unstable stratification)

r g . I'.
the values of /- and [~ increase, and / decreases,
/ 3 ’ Fa /




To determine the turbulent heat flux under conditions of unstable stratifica-
tion and for IB/ not too small, it is possible to use the limiting relation for

~ free conveétion, according to which

7,~=HH‘1L/§T/.% - ()

where /f ‘is a constant, If H is expresvsed in meters, ST in degre.es:, and
?, in cal/cmz‘min, thep )4 has a value of about 0.2, o

The romograms of the functions (20) are the most convenient means in prac-
tice for determining the parameters 'U;‘ ) ?a and L (in cases when 2, - is
known), However, since the theoretical basis of the nomograms depends .on the use
of these or other interpolation foﬁnulae, it is desirable to have some means for
experimental verificatioﬁ of the ncmograms through direct measurements of the quan-
tities Vg and 7, .

One method of measuring these quantities is using thev fluctﬁation method based
“on the formulae (13). In this we encounter two difficulties (a) the response param-
eters of the measuring devices must permit the recording, without any distortion
of the fluctuations, of ali those frequencies (bo'tr:h low and high) that contribute
significantly to ’U;_ and ?/ . (b) the processing of the fluctuatiohs meas-
urements, that is, the computation of mean products ¢, " and" w~’7—" should
be sufficiently rapid, In overcoming (a) it is first of all desirable to have in-
formation on the spectra 6f the turbulent shearing stress and heat flux (see end
of Section 4), For (b) it is desirable to use linear data devices (such as acous-
tic sensors) and equipment for obtaining the mean products automatically,

Another method of direct measurement for the shearing stress is the dynamometric

method first used by Sheppard, and later by Rider, and in an improved form by

A. S, Gurvich, Finally the turbulent heat flux may be determined from the equation
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of thermal equilibrium of the earth's surface, providing that all 'tbe\ remaining

Accmponenté of the thermal balance are measured (we rote, however, that‘tbis ne-

rcessxtates direct measurements of the rate of evaporation, which 1s a more diffi-

cult problem than measuring the turbulent heat flux)

11, SIMILARITY ‘or FLUCTUATTONS

On the basis of similarity theory (Sectlon 8) it can be shown that the prob-k

-ability distribution for the dimensionless fluctuations Af’ ‘U“/ Ve 4"'/41"

and T'/ 7;_ - is a universal function of the strat \.flcation parameter g Z/L
(or of the Richardson number), The most important characteristics of this distri-
bution are its second moments as given by (1). The dependence of these on the

stratification parameter § may be described by the functions

SHO) TR B f (65 T4 -6

T

Also of interest are the coefficients of anisotropy and the correlation co-

efficients

_/ - \-/
£ b G Y
/

Some deductions can be made concerning the dependence of the dimensionless quanti-
r

b

ties (23), (24) on the stability parameter ) , in cases of strong stability
(g>> ) ) and strong instability ( g«"'/ ). Thus in strong stability the
fluctuations acquire a local character, so that their properties cease to depend
on the distance &2 from the earth's surface, and hence 2 should not appear

in the formulae derived from considerations of similarity., With strong instability
the quantity 1);‘_ should not occur in the formulae, From these considerations it

follows that with strong stability ( §>> ] ) all the quantities appearing in

18
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formulae (23), (24) should be independent of 5 and should tend to constant &
values; with an increase of instability ( §<< -/ ) the functions )C, ,7£

and f"} should increase asymptotically like / g [ #' , the function ‘;'L/ asymp-

A
totically tend to zero like lgl 3 and the functions (24) approach constant

- values,

Data from measurements byr Swinbank and-A. V. Perepelkina and comprehensive
data from A. S. Gurvich and L R. Zvang, support these prédic':tions.v They show
that in a neutral stratification h,/v' X 3 d."”/z/‘ X0 7 /lT¥[ &~
(strlctly speaking in this case /* =0 and 0’7. should be very small), With
an increase in instability the values Uy / Vi and O U increase, and
‘O‘T/IT;J apnarently decreases, With an increase of stability fa./‘lf;}. and
5'(;;-/ U,‘x_ appéfently decrease, and ‘J;'// T;‘/ also decreases (and much more
rapidly than for an increase of instability)., The quantity ‘rar/ 0, increases
slowly in uns.t.able stratification, The correlation coefficient ’r(oh" in neu-
tral stratification is somewh,‘at less than AO.S, and with an increase of insta-
bility its absolute value is slightly decreased; on the other hand the absolute
value of the correlation coefficient 7Yyry~ in near-neutral stratification is

) less than 0,5 and apparently approaches 0.5 as the stratification departs from
neutral,

The third moments (3) should have the form

f‘.’_'-’-i - ﬁ. (5)J v ar ) ﬁ(ﬁ) Tk J: (5) -(33)

In a stable stratification (§>> / ) these quantities should tend to constant
values, and with increase of instability ( §<< \/ Ythe functions ;- g and

:P" should increase asymptotically like [§[ and f-; decrease asymptot-
ically like '§ /-’ . Apparently, the functions FS and ;—7 should be pos-

:-7 3 —
itive, The coefficients of asymmetry W 3 0;, and T/3 0“7‘3 should tend to a

v
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i ’ '
‘{ constant value, both for incrcase of stability and increase of instability, Accord-
ing to the date of Deacon and A, S, Gurvich, with an increase of instability the
‘ ‘ R 3 ‘
coefficient of asymmetry w‘"/ 4 increases,
g The fact that the correlation coefficients Tt-cw' p “:,,vr and the coefficient
' , — > ‘
of asymmetry - 3/0'”, all vary with § indicates that the probability dis-

oA

lbution for the dimensionless fluctuations &2, , UV » W'/ a TV
tribution for the dimensionless fluctuations % ) ) » 80 T'*
depends on the stratification parameter g , but not solely because of the de-
pendence on FS of the standard deviations of (23). In other words, the proba-
. p) / /
bility distribution for the quantities “—/JZ,’ ) V/d"p- J W'%"'w. and T/c“r
is not a universal function but varies with § . Apparently joint distributions
for /0_“' and 7}7/4-_”_ are universal (Déacon showed that their third and fourth
moments are the same as in the Gaussian distribution). However, joint distribu-
/- /
tions for w'/d'u_, and T/d"T . probably vary with § .
The dependency on the external parameters of the time correlation functions

of formulae (4) has the form
e t) s piy (X, §)

(e, e+ 1)T (1,8 = w To Pir (B, §) -9

T+ 1) T ()= 7o grr (B2, §)

where Ptu ;P ¢7T" and ﬁrf are certain universal functions of f-a 7'/2
and . The appearance in formulae (26) of the velocity 73 , which itself
depends on the same external parameters, is not inconsistent with the theory of

! similarity and permits the use as representative magnitudes, of the lengths "

; along a straight line z parallel to the direction of the wind (see formula (11)),
instead of the intervals of time 7’ which are not themselves representative for

20
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the turbulence,

Analogous conclusions are obtained from the similarity theory of Section 8,
for the space and time differences of wind velocity and temperature of (5), Thus
the probability distribution for the dinensionless space differences J"r L / V;e
and @1-7—/] ;;/ is a function of ‘t‘/z and § , and the distribution for
the dimensionless time differences 6“)'"‘-1 /’V,", and s‘r T/lTx, is a

function of 8= &7 /Z and é » In particular, for the structural functions

of (6), we obtain

FraXarag) =3 Dii(3:5), TP = To D (255)

...(27)
@ Gy ) =V dii (B 8); (470 72 477 (22,6

where D and d are certain universal functions of the two arguunta (in contrast to
the dimensional values of (6), although we have used the same symbols),

With strong instability ( g« = / )the dependence on 5 of the functions
@q‘ ) Dt.j and l ‘j becomes one of proportionality to 1 §/'V’ , the func-
tion ﬁ ‘:T tends to a limit which i{s independent of g , and the tunctions

< -d

Brr , Prr and 7 become proportional to }§/ 4 . { S«—[ ,
the dimensionless coefficients § and} P of formulae (8) are independent of .
With strong stability ( g > | ) all the functions of the two argurments that
appear in (26), (27), become dependent only on the product of the arguments, that
»u. on Y‘/L (or ET,/L ); this is also true for the coefficients 8 and F,

12, SDOLARITY OF TOM SPRCTRA
Analogous to the formulae (26), (27), the theory of similarity of Section 8,

leads to the folloving formulae for the time spectral functioms of (9):
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Sih(w2)= Vu? 7h (22,

“°
- SJT (wz)= )T*,z o
L 0 3) (J!)
S( , ):; T-Q 4  w=
TR e (215)

~"

where O J* 0' JT’ and 0—1-7- are universal functions of the two variables,

The wind velocu.y ‘Iz is introduced into these formulae ir accord with the equa-
tion (12) that results from the hypothesis of "frozem turbulence", By using this
hypot'h'esis‘we'cjan, interpret’ w/ & as a wave-number, and the functions 0:}1(9 _,0:['7‘
ax@d 0'th as diﬁnensionlesa, spa-ce-spectral functions m one dimenion, At the
same time the introduction of E into the formulae (28) does not mean that
the;_hypothesis of "frozen turbulence' is accepted, and nothing restricts the gen-
erzlity of these formulae from the viewpoint of the theory of similarity of Sec-
tion 8, since the quantity H:/I?f; is itself a universal function of g (and
of §6=2/L ). |

From Sectidn 4 and the formulae (28) it follows that the contributions from

a ‘
the spectral interval 3 w (near frequency ¢ ) to the values of V,(, and

C‘, are, respectively,

~3 duw oz)s w (B r(80)  Sw.z T [uz
— fle Su.ar[)z)‘b' 3—( = %,(;‘§)

2 vl z -~ (>4).
— 3w )
=== Ke SwT{ w,2)" - ur(é'w)T(é’Aw) _bwz 1 fwz
KT, L é;(f’é)
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where T / ard f 5 @re certain universal dimensionless functions, PFrom {(2%)
it is also evideat that the abscissa (frequency) of cach characteristic point of
the spectral fum:tl.on (ravimm, point of :.nflec..ion, etc.) will depend on the ex-

ternai parameters through the law &' = “ CF ( g)

Using the ai‘gum‘ants oi the previous Section it can be shown thzt, in condi-

tions of strong instability ( €'<< */7 ), the dependence of the dimens"ionless.
funtions G}Jt )' d:(T and "’r‘r on Vth’e stability parameter g should be
as follows:- 0:({( mc..eases proportionally to }gi /3,. ‘ro is indépendent
- of § , and frr decreases as / §/ % . For conditions of *.Azt_rqng sta-

bility ( §>> J ) each of these functions assumes the form™
01 &, _§ d/ : ~(3¢)

F:The abscissae W= k ¢ (%)of the cha?acterlstlc points of t:he spectra do
not _depend on g . for conditions of strong mstablllt'y,_whlle for strong sta-
bility they take on the form 4 = const. .'—Z/L , that is, they increase with in-
crease of stability (Since L then decreases).

‘We will consider in more detail the spectrum of the temperature field under

| | "ol -3
conditions Qf strong instability. Assuming 0—7—7. (w, §)"‘ /f/ /BS&T‘[’ ((3') ,

we obtain
- 96
G , - ‘
_( ),--L (__.J_) ZVB(/, (_uzz) )
Ww,2 T 7 7 {3/
In the event that the mean wind & = O , the characteristic quantity having
&=
the dimensions of velocity will be ?— .5»—- )3. Substituting this value in
i (31) in place of 4 , we obtain ‘
!
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5  ¥/(3 ( KRy
rr(u2) c.p To) %‘r[ Gp L) 0 ° -(39)

From this it is apparent that the maximum of the spectrum corresponds to a fre-

-3,
quency wVv Z 3 that decreases with increasing height.

The measurements of 5w‘a, and STT' obtained by A. S. Gurvich and L. R,
Zvang, show that the predictions concerning spectrgl similarity under various
meteorological conditions and expressed by formulae (28); are in satisfactory
agreement with the obsefvétional data. These measurements were made in the range
of dimensionless frequencies 0.01 & Z 4. 100 (i = angular frequency meas-

T
ured in radeHertz)., Figure 19 of A. S. Gurvich's work (see p 129) shows the de-

pendence of the dimensionless spectral function d;rur on the stability parameter
.§ . The graph shows that with increase of 5‘ ‘at fixed as the functioﬁ
o;r“r (2;) g ) decreases, and the maximum of this function shifts to the sidg
of high frequencies,
According to the data of A.VS. Gurvich, with a neutral stratification the max-
imum a;far' occurs with ‘divéi T x 0.01-0.02,'and has a value of about 10 (the
2w

wave-length of the turbulent heterogeneities £ = “a & 50-100 m , corres-

ponding to such a frequency of the maximum occurs at the height 2 = (p . ).

13, SIMILARITY THEORY FOR THE INERTIAL RANGE OF THE SPECTRUM

According to the theory of similarity for locally isotropic turbulence, as
developed by A, N, Kolmogorov, the statistical characteristics of the velocity
field associated with the equilibrium range of the spectrum of turbulence are
uniquely determined By the two (dimensional) parameters € and YV ina
temperature-homogeneous medium., A, M, Obukhov pointed out that the statistical

properties of the turbulence will depend not only on the velocity field but also
24

- -w—

P
| IR




on the tempera.ure field, and in the equilibrium range of the spectrum may there-

fore additionally lepend on the parameter N’ ?x ( VT ‘)9. , that characterizes

the rate of equalization of temperature heterogenzities under the influence of

molecular thermal conductivity, and on the cozfficient of thermal conductivity X
I « A. M., Obukhov also pointed out that in the case of a temperature-heter-
oéenebus medium it is necessary to add to the above paraméters, a pérameter 3 / 7;
which characterizes the influence of Archimedean forces on fluid elmknts having
a densityr different from that of the surrounding medium,

Inclusion of the parameters 7/ and x will be importanF only at the
high frequency end of the equilibrium range, in the range of dissipation. By
restricting attention to the inertial interval of the §pectrum we may dispense
with 7/ and x . Thus the regime of turbulent motion ha\_zing scales in the
inertial range of the spectrum will depend on three external parameters E

A/ , and 3/72 .

The parameter j / I has a standard value, while the values of & and

b

)\/ will vary, depending on the weather conditions, These values are charac-
teristics of the large-scale turbulent motions, and their dependence on the weather
conditions in the surface layer of the atmosphere may be determined by using the

similarity theory of Section 8, We obtain

€= rde(8); VBT g, (3) o

where ¢€ and (ﬁ)/ are definite universal functions. By using the equation

of turbulent energy balance, and that for the balance of temperature heterogeneities

T'/2 in the surface layer of the atmosphere, these functions can be expressed

n .
with certain simplifications, in terms of the universal function j" (é) that
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describes the profiles of wind and temperature:

$e(8)=§518)-55 $u(8)=4 kS5 (8) ()

~ In the case of a temperature-homogeneous medium, the parameter j / T, can
be diéregatdedr; since it is impossible to comstruct any leagth scale from the
parameters é and N s, the turbulent regime in the inertial raige is then
universal. For a @:empérature—heterogeneous medium the situation turns out to be
more complex. A§ A. M, Obukhov pointed out, from the parémeters & > /V and

S /73 it is possible tc construct the scale of length

R Tk SO ONES

)

which is the characteristic scale of the turbulent motion whose statistical proper-
ties depend éssentially on the degree of thermal. heterogeneity of the medium. For
the inertial range the calculation of the scale L * (and hence the parameter
S/‘]: is essential unless this scale is very large.

If the stratification of tﬁe atmosphere is near to neutral, that is ] FD }4/
and ¥/(§>9\$ ]/g , then L*/Z A kp{ _34 /g }wg/ais large and the calcula-
tion of 3/7" for the inertial range is not essential, For a strong instability
L*/b(Bu( /C > , and, generally speaking, it is necessary tgo calculate
3/7‘ for the inertial range. For a strong stability LX”" K(o(c )~4(C’,—/)5/"Z

and since \g >> / , that is [ K 2, we have L*« 2Z , so that calculation of

3/‘)’5 is necessary.

14, STRUCTURAL AND SPECTRAL FUNCTIONS IN THE INERTIAL RANGE

In the inertial range the spatial structural functions (6) depend only on the
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parameters ~’::) }\/ and 3/7‘0 » in add?tion to the argument Y~  (that is they
do not depend on 2 directly but only through the parameters &  and /v )-

. By using dimensional considerations to constiruct expressions for these functions

we obtain

(S?w;‘)a:(ér a/ji‘:“ (1\> ( %9{ %(g) 5\{4 . ?
G =NEE(2)-k(E )%, (f)¢;f’(§) & o)

where é\ JJ and @T—T are universal functioms. For sufficiently small

’Y'/L* these functions are close to their values at the origin, so that the struc-
tural functions of (36) become proportional to Y e (the "two t_hir_ds law'").

When using the hypothesis of "frozen—turbulence"r the time structural functions
are obtained from the spatial ones by replacing ¥ by (¢ ’)’ ~« If we do not
resort to this hypothesis then from considerations» of the theory of locally isotrop-
ic tﬁrbulence it follows only that in the inertial range, 6’-7-'”7(6 7) &
S’}’T/(/Vr)& are 1sotrop1c random functions of W, /(6 (’P) é , that also
depend on the parameter 3) /A*. Here LL, is the value of the velocity
of the fluid at the point relative to which the time differences of (5) are calcu-
lated, For the calculation of the time structural functions in the surface layer

of the atmosphere 't can be assumed approximately that ¢, 2t 73 Then

-~ 3 .
((f;ij = ‘ad>“ aa’ “ ) )

- €
BT L ()

)
N~
x

|
|
|
§
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By means of these formuiae and using the relations (10), we also obtain the form

i  of the time spectral functions:

(9

It is possible to write the last of these formulae in the form

_‘ =" 2 w’ l (39
S’TT(&)):N&,QDC(G Z* C()J €L, {(/)

B S

If the mean wind vanishes and L* is very large, we obtain ng"/ /Ytd‘a‘ .
if we disregard the scale L* and make use of the hypothesis of frozen

turbulence, then the depe_ndence of the spectral functions (38) on (/ 1leads to

a proportionality with (0‘5/3 . At the present time there is no data indicat-

ing that the spectral functions in the inertial range depart from this law, How-

ever, in Section 13 it was noted that real situations are possible in which it is

necessary to allow for Lx- , and formulae (36) - (39) will then be useful for the

treatment of data relating to the structural functions and spectra.
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