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The study of turbulence in the surface layer of the atmosphere is of pri-

mary practical importance in estimating the wind resistance of structures, the

diffusion of atmospheric pollution, the propagation of radio waves, the evapor-

ation of moisture from the surface of the earth and reservoirs, the transforma-

tion of air masses, etc. At the same time the surface layer of the atmosphere

provides an excellent laboratory for studying the general properties of turbu-

lence, and particularly so since in the surface layer it is possible to study

not only the dynamical factors that influence turbulence (and determined primar-

ily by the Reynolds number) but also the influence of the stratification of the

medium (characterized by the Richardson number). In addition the surface layer

. is readily accessible for direct observations.

This review considers the currently available theoret~ical and empirical

Sknowledge concerning the wind velocity anc temperature fields in the surface

• layer of the atmosphere. Attention is concentrated on those characteristics

that can be measured directly.
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1. CHAIR.TERIZA1ION OF MhE SURFACE LAYER

The surface. layer will denote that lower layer of the atmosphere -- having

a thickness of a few tens of meters -- in which the effect of the Coriolis force

can be neglected. We shall assume that the follonwing two conditions are satis-

fied in this layer:

1) the terrain is flat and the extensi.ve surface sufficiently uniform

so that the fields of wind velocity and temperature are statistically uniform

horizontally

2) no marked weather changes occur and during a time interval such

that the normal diurnal change of weather conditions can be neglected, thc fields

of wind velocity and temperature are statistically stationary. Under these con-

ditions the statistical properties of the meteorological fields are independent

of the horizontal position of the point of measurement and of the time, and can

depend only on the height Z of measurement.

2. PRACTICAL LIMITANION5 OF MEASUREMPENTS

Existing measuring devices make it possible to record directly the changes

with time of the components of the wind and the temperaturB at fixed positions

in space. The measurements are subject primarily to a time-averageing over an

interval that is determined by the inertia of the device (in the best of

existing devices ^'%,J 10-2 sec), and to averaging over a cylindrical region

of space having a length % r the direction of the wind ( -swind ve-

locity)'and a cross section determined by the dimension e0 of the seuising ele-

, ment (in devices of the Institute of Atmospheric Physics 2cv.)

In the surface layer of the atmosphere, the microscale of turbulence

.X y• E" (.rhere• = rate of turbulent energy dissipation, V/ -co-

efficient of viscosity) has a value of the order oL" 1 cm, the corresponding
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period of fluctuations at a fixed point in space TL= is of the order

1-2 sec and the angular frequency = is of order 10 radian.Ilertz.

The parameters of existing measuring devices are still inadequate for measuring.

thie structure of atmos3pheric turbulence in the region of the microscale.

3. THE STrNT1,ITY OF MEAN VALOTES

Using data from measurements, the mean values of the fields of wind veloci-

ty and temperatare may be determined for an averaging interval r . If the

period T is small then it is found that the mean values are unstable -.- they

change appreciably under the influence of those components of turbulence having

characteristic times that are not small compared with T . But if

where is the external horizontal scale of turbulence, then the mean-values

will be stable, since those components of the turbulence having scales that are

large compared with Lo will ver-y rarely have large amplitudes.

Observation shows that to obtain stable mean values of wind velocity and tem-

perature it is suffiCient to base the averagLng on a time interval of the order

10 min. To obtain stable mean values of characteristics of the small scale com-

ponernts of the turbulence the interval of averaging may be much less, although

it must be borne in mind that such characteristics may also depend on some param-

eters of the large-scale motion (of which, in particular, E is regarded).

Thus, for example, for verification of the "two-thirds law"

(M, C

=the distance between points M and Al`) it is sufficient to average

using a time interval "1' =30 secs, although the value of C so determined will

change in repeated measurements, as well as the mean velocity (S
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4. STRUCTURAL CHARACTERISTICS

Those characteristics of tne structure of the field3 of wind velocity and

temperatu" Ht ;ht can be measured directly are conveniently divided into four

groups:

1. Average profiles of wind velocity and temperature 4, ( Z. ) and

T(Z)

2. Probability distributions of the fluctuations W and

at a fixed point of space, and primarily the second moments of these distributions

_ -0)

ik A P /

-friction velocity, = =average value of the vertical component of the

turbulent heat flux, C =specific heat at constant pressure, =density). In

particular, of immediate interest are the correlation coefficients

- - /,

The remaining second moments ( 40," J -VLrr -- ) are zero.

Also of known interest are the third. moments

The first two of these characterize the asymetry of the probability dist:ribu-

tiors of •r and T" while the third expresses the vertical diffusion of

turbulent energy.
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The quantities (1), (2) and (3) are statistically stable providing an aver-

aging is used that is based on a sufficiently long interval of time (of order 10

min). In this same sense it is possible to determine the moments of connection

between values M4 and T , at various instants of time and at various points

of space and, in particular, the time correlation functions

of which (1) are the values for 1O. 0

3. Probability distributions for the local characteristics of the tur-

bulent fields i.e., space and time differences of the wind velocity and tempera-

ture,

ys T xA y- T (7.() -)

•r = (x,, +*) Cx(, 0)

and primarily the second moments of these distributions which are the space and

time structural functions

('•.T.&L)(4.bL4"j) = Dt; (v.2);" (&.r'r)• t,. r('.& ) 4)
i Y, zh (Syd veoitTn

The spatial structural function T) of the wind velocity and
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tem",erature fields is equal to zero under the hypothesis of local isotropy and

incompressibility. Likewise with the hypothesis of "frozen turbulence" (see be-

low) the corresponding temporal structural function is also zero.

Also of known interest are the third moments of the distributions for space

differences

which enter into the dynamical equations for the structural functions of locally

isotropic turbulence, and the dimensionless quantities related to them

where the index e denotes the direction parallel to the vector -r , so that

(44• is the component of the wind along the direction of the vector I-

4. Probability distributions of the spectral components of the fLelds

of wind velocity and temperature "L. (4w) and 7"(7d) , corresponding to

specified intervals of the frequency qS', in the time spectra (in particular,

the semi-infinite ýf (W. 0 ), and primarily the second mwnts of the

spectral components corresponding to very small , thae is, time spectral

functions.

I+

N )7-

(S~
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where the plus sign indicates that the given spectral component is taken out of

phase in the frequency CO by an amount * 7/2

The spectral functions (9) are connected with the time correlation fimctions

(4) by relations of the form

0

The spectral functions may be determined either by the formulas (9) on the basis

of direct measurements of the spectral components of the fluctuations of wind

velocity and temperature, or by use of the second formulae (10) based on measured

time correlation functions. In particular, from the first of formulae (10) we

obtain

zfe JwTQr ,/~I

T~hua the quantIity 5 o is te SPec-

tral density of the shear stress and ? (?e Sv r (We 2)~(~Tj )
is the spectral density of the turbulent heat flux • / P/rr

)5. FROZEN-IN TRUE

As pointed out by G. 1. Taylor, th. variations in tim of the hydrodynamic

characteristics at a given point c Can be approximately exp/lained .$y regarding
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them as resulting from a pure translatory motion of a field of turbulent eddies

across the point with the speed of the mean wind and alon& straight line

which passes through - parallel to the direction of the mean wind. This im-

l p aies that for a sensing system that is moving with the velocity of the mean wind

the distribution of hydrodynamic characteristics along the line ; does not

change with time, i.e., is "frozen". Actually, of Course, the field of turbulence

is not "frozen" tnd its configuration changes with the passage of time. However,

if the energy of the turbulent mution ia such less than the energy • of

the mean motion, then the error from using the hypothesis of "frozen turbulence"

to describe the structure of turbulence on sufficiently small scales will, not be

great.

The hypothesis of "frozen turbulence'" makes it possible to identify the sinus.

oidal component of the distribution of any hydrodynamic characteristic along the

straight line-1 that his a wave length . (and wave numberk.,ZT/t ),

with the sinusoidal component of the temporal variations of thic characteristic at

the point X hi-ving the period T*'w /X (and angular freque.Acy 4) r! *

From this it is apparent that the periods "7 and frequencies Aj of the fluc-

tuations in time of the hydrodynamic property at a fixed point of space are not

representative magnitudes of the turbulence, since they depend on the wind veloc-

ity R o ence when cmparing the timt correlation or structural (or spectral)

funttions obtained with various S * the comparisons should not be made at

fixed 7 (or w ) but rather for a fixed 14 1 (or W/A ; .

Mbaen using the hypothesis of "frosen turbulence". the spa.;* correlation fuVc-

tion • corcesponding to a vector -r parallel to the man wind and

the time correlation function L(' i) are consected by the relation

An analogous relation is trut for structural functionu. Further, suppose that
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S -a) is the one-dimensional spatial spectral density corresponding t& t

line "Oe (that is the Fourier transform of the function 13 (vt 2) ) Lad that

S (W, Z) is the temporal spectral function. Then when using the hypothesis

of "frozen turbulence" we have

6. SPNCTRU OF TURBULENC

The spectrum of wave-numbers for the motion of a fluid (or in the case of

the temporal spectrum, of values W/I ) can be somewhat arbitrarily divided

into four regions:

1. the range of mall wave-umbers, corresponding to the macrocamp.

ent or the averaged fields of wind velocity and teoeroture.

2. the ranse of uacrostructural elements of the turbulence that coan-

tain almost all if the energy of the turbulence.

the so-cplled inertial range in which the turbulent otion is

determined by the dominating influence of inertia forces.

4. the dissipation rngel, that is* the reap of large n m w blem in

which ovcurs almost all of the diosspation of turbulent eusxw am t tde action

of uolecular forces.

The 3rd and 4th regions together form a equilibrim rue of the

spectrum in which, according to the theory of locally isotropie twbuleme, tbh

forces of knertia and of viscosity ae found in equilibrivu,

Generally speaking, the relative impotrtanc of the diff•at SeNAetristics

of the turbulence depends upon th weather condiions, To a gmwidsweble deGree
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the weather conditions are determined by the wind velocity and the vertical tern-

- perature akadient (which characterizes the-degree of stabiliLy associated with

tLe thermal-stratification of the atmosphere)- It-is known that with a strong

wind and an unstable stratification, the turbulence is much more marked than with

a light wind and stable stratification. However, such a qualitative specification

of the dependency of turbulence on weather conditions is, of- course, quite inade-

quate and we need to establish a quantitative dependency on woather conditions

* for all tha structural characteristics of the fields of wind velocity and teciper-

ature that are listed in Section 4.

The characteristics of turbulence depend on the weather conditions through

several "external parameters". Generally speaking, the choice of these parameters

turns out to be different for different regions of the spectrum cf turbulence.

There are two theories of similarity for atmospheric turbulence that indicate

how the "external parameters" are to be selected and how the characteristics of

the turbulence depend on these parameters. One of these is A. N. Kolmogorov's

theory of similarity for locally isotropic turbulence, which applies to the equilib-

rium range of the spectrum, The second is the theory of similarity for the turbu-

lent regime in the surface layer of the atmosphere, as developed in the works of

A. a.LObukhov and A. S. Monin; this theory is applicable to the entire turbulence

spectrum except the dissipation range. Both of these theories of similarity are

applicable to the inertial, range.

The collection of experimental data relating to the structure of the fields

of wind velocity and temperature should aim at determining those universal charac-

teristics of the structure, 'he existence of which is indicated by the theories of

similarity.

8. THEORY OF SIMILARITY FOR THE SURFACE LAYER OF THE ATMOSPHERE

This theory stems from the fact that, except in the dissipation range, the
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turbulent regime in all portions of the spectrum is completely determined by the

three dimensional parameters

where Vf =friction velocity, • vertical turbulent heat flux, Cp, specific

heat at constant pressure.,e air density, = gravitational acceleration,.

standard mean temperature of the surface layer.

The dynamical equatiors (that is the equations of motion, heat transfer and

continuity) for any individual realization of the turbulent regime in the surface

layer of the atmosphere (where the Coriolis force can be neglected and the only-

changes of density considered are those related to changes of temperature but not

pressure) contain only the parameter 3 /7 . , the coefficient- of molecular

viscosity and heat conduction (which drop out if only those motic-s are consiidered

that have scales outside of the dissipation range), and maybe those parameters

that characterize the radiative heat transfer (which we shall disregard for rea-

sans given below). Under these circumstances the averaged dynamical equations

(which are analogous to the Reynolds equations) take the form £/&r' = constant,

e-. "7 = constant. Thus the individual and averaged equations only contain

the three parameters of (13).

Strictly speaking, even in the case under consideration of a horizontally ho-

mogeneous stationary surface layer of the atmosphere, the t-urbulent heac flux

is not necessarily constant with height, but only the sum i , where

g is the radiative heat flux. If the radiative flux • I changes appreciably

with height then the theory of similarity as stated should be modified. However',

it may be shown that • apparently changes appreciably only in the very thin
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layer near the surface of the earth (of thickness 1-2 meters) where as will be

shown below, the influence of thermal stratification on the turbulent regime is

still not detectable.

From the .parameters of (13) it is possible to define in a unique manner (to

withia numerical multiplkers) a scale of length L , velocity V , and tem-

perature Ty : 

a t

K -•Zt ••'• rP
TO CrP

Bere 1 is the numerical constant of von Karman, and is introduced for the con--

venience of the subsequent calculations.

The dimensionless characteristics of the structure of the fields of wind vel-

ocity and temperature as determined by means of the scales of (14), will be univer-

sal functions of the dimensionless height Here a negative

value of Z> signifies unstable stratification ( i> , while a positive

means stable stratification ( 4 0 ).

9. SIMILARITY OF AVERAGED PROFILES

When using the similarity theory of Section 8 to describe the averaged pro-

files Z (z) anJ F (Z) , it is customary to introduce an additional

hypothesis concerning the proportionality of the exchange coefficients for heat

and momentum, namely

z -
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The hypothesis OC censt is equivalent to the assumption of similarity fo- 9'

the profilas of wind veiocity and temperature

This h'as been checked directly against the observational data of A. V. PcrCp-n:i

(unpublished work) and is confirmed, at least when the departures from neutral

stratification are not large. Rowver, additional coniirmation is desirable sl-c,

Swinbank (19551 presents data showing some dependence of oý on the Richardscn

number.

In accordance with the theory of similarity above (with o4. const), the

wind and temperature profiles in the surface layer have the form

S L- ._

where is a universal function that is determired to within an additive:

constant, and is the so-called roughness length for the earth's surface.

In these fornulae the height 7 should be adjusted to allow for a "zcro-pia.

displacemenT" (which is essential in the case of high vegetation). The funar::".

S(•) is connected with the Aichardson number Ri by the relation

L?. -____

which shows, in particular, that Ri and 4 are equivalent local parameters
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of the thermal stability.

If the stratification is very close to neutral is small), then the

vind profile should be described by the known logarithmic law. With strong sta-

bility ( >• / ) large scale turbulence cannot exist (since it would consume

too much energy in working against the Arebjimedean forces) while for small scale

turbulence and heights which are not too small the nrese'ncc of the earth's sur-

face is unimportant so that Ri ---> const, and hence from (18) the function

should be asymptotically linear. Values of / (sLrong instability) are

obtained for a fixed . as L-* - or with ?.- ; hence the as-

ymptotic behaviour for 5 < / may be obtained by considering the limiting

self-generated regime of free convection ("L. -) ). In summary, it may be

shown that the function 3 ( must possess the following asymptotic proper-

ties:

*: ()---cg ,for in a staL
ble stratification) .. 9)

S( )"-~- •-- (', K!/-for <-/ (i.e.Z> /L/ in an un-
stable stratification)

Here the arbitrary constant tern in the function (.') has beea chosen so that(§)-/- ,, ýjý- C_ I -.--.- 0)If
The univcrsal functior f ( ) was constructed empiricallv by A. M. Obukhov

and A. S. Monin (19053), and later by A. V. Pe-epelkina and A. S. Gurvich (see p 81

of present collrUction) while in the investigations of A. S.. Gurvich the wind and

temperature prcfil!;, and the parameters 1T an i measured independently.

4 The observationr cstzi!-A~ the cxistencr' of the uriversal funictionf
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and confirm the asymptotic properties (19). Data from Priestly (1955) show thai t

with unstable stratification the limiting regime of (19) is actually rea-hed at

small heights of a few meters.

The formulae (17) and (19) for the profiles of wind velocity and temperature

contain a number of numerical constants: '13 /3, C' . , ) 1 and C.?

All of these constants may be obtained by means of gradient measurements. Thus,

I•�" 6 't , the value of • is apparently a little less than unity, and

the values of and are close to unity. By approximating the wind

profiles in an interval of positive and negative Ri vai:ies by the function

S'=(~>~ ('0j / S rr•• 5 ,A. M. Obukhov and A. S. Monin obtained /3 6,1.

However a number of authors using the formula ,have

obtained a value for ( that is two to three times greater. Possibly this dif-

ference is explained by the fact that the two calculations of . are essentially

different. We also note that, in general, the values of ( Liz

will be different for conditions of stable 0 - 0 ) and unstable ( g - - '

stratification. The value of for unstabie stratification is not too sig'.

cant as, according to Priestly, in this case the transition from the purely log-

arithmic law {({) •oJ I •/ to the limiting law of free conv-ction

W e1 el occurs very rapidly (in a very thin layer).

10. DETERMINATION OF - AND

In the theory of similarity for the surface layer of the atmosphere, the d&:-

pendence of the turbulent regime on the weather conditions is expressed through LiX

"external parameters" U and * These parameters occur in the formulae

(14) and (17) for the profiles of wind velocity and temperature. The reversc p.lq-o

lem can also be solved, namely the determination of V and based on mra,--

urements of the profiles of wind velocity and temperature. If the roughness letm:

z is known, then it is sufficient to measure the wind velocity at one height
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SZ H , and the difference of temperatures at two heights, for e'ýawrple,

H -and 41 Let

i

~~i~JHS) T g -T('ýy:(H / j3 bo

Then, according to the theory of similarity

The functions / , / -F , may either be constructed empirically from inde-

pendent simultaneous measurements of the values cL) -T 2T- or

theoretically with the help of interpolation formulae for the universal function

(• ) satisfying the condition.; (19). The latter method has been used by

A. B. Kasanski and A. S. Monin who have published nomograms for the functions (20)

in both stable and unstable stratification. The following properties of the func-

tions (20) may be noted. For near-neutral stratification (small /11 ) we have

With increasing > (stable stratification) the values of F a an d

decrease, while for increasing absolute value of 0 K O (unstable stratification)

the values of and /• increase, and ) f decreases.

S1r3
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To determine the turbulent heat flux under conditions of unstable stratifica-

tion and for 713/ not too small, it is possible to use the limiting relation for

free convection, according to which

-ii

where is a constant. If H is expressed in meters, ST in degrees, and

in cal/cm2 min, then A has a value of about 0.2.

The romograms of the functions (20) are the most convenient means in prac-

tice for determining the parameters "1.) 7 and L (in cases when 26 is

known). However, since the theoretical basis of the nomograms depends on the use

of these or other interpolation formulae, it is desirable to have some means for

experimental verification of the nomograms through direct measurements of the quan-

tities - and

One method of measuring these quantities is using the fluctuation method based

on the formulae (13). In this we encounter two difficulties (a) the response param-

eters of the measuring devices must permit the recording, without any distortion

of the fluctuations, of all those frequencies (both low and high) that contribute

significantly to. and an. (b) the processing of the fluctuations meas-

urements, that is, the computation of mean products w-14,1 and 4,-'--' should

be sufficiently rapid. In overcoming (a) it is first of all desirable to have in-

formation on the spectra of the turbulent shearing stress and heat flux (see end

of Section 4). For (b) it is desirable to use linear data devices (such as acous-

tic sensors) and equipment for obtaining the mean products automatically.

Another method of direct measurement for the shearing stress is the dynamometric

method first used by Sheppard, and later by Rider, and in an improved form by

A. S. Gurvich. Finally the turbulent heat flux may be determined from the equation

17
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of thermal equilibrium of the earth's surface, providing that all the remaining

coponents of the thermal balance are measured (we note, however, that this ne-

cessitates direct measurements of the rate of evaporation, which is a more diffi-

cult problem than measuring the turbulent heat flux).

11. SIMILARITY OF FLUCTUATIONS

On the basis of similarity theory (Section 8) it can be shown that the prob--

ability distribution for the dimensionless fluctuations ) M

and is a universal function of the stratification parameter Z/L

(or of the Richardson number). The most important characteristics of this distri-

bution are its second moments as given by (1). The dependence of these on the

stratification parameter g may be described by the functions

Also of interest are the coefficients of anisotropy and the correlation co-

efficients

OV. _ o- = Is

Some deductions can be made concerning the dependence of the dimensionless quanti-

ties (23), (24) on the stability parameter j , in cases of strong stability

('~> I) and strong instability ( .Thus in strong stability the

fluctuations acquire a local character, so that their properties cease to depend

on the distance Z from the earth's surface, and hence Z should not appear

in the formulae derived from considerations of similarity. With strong instability

the quantity V7 should not occur in the formulae. From these considerations it

follows that with strong stability (4 >; > ) all the quantities appearing in
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formulae (23), (24) should be independent of and should tend to constant

values; with an increase of instability ( • < -I ) the functions J, ,Yi
* and should increase asymptotically like / k /*, the function asymp-

totically tend to zero like and the functions (24) approach constant

values.

Data from measurements by Swinbank and A. V. Perepelkina and comprehensive

data from A. S. Gurvich and L. R. Zvang, support these predictions. They show

that in a neutral stratification ),/ ed 3, 0 , O7, '/IT l Z /
(strictly speaking in this case 7 £5O and GrT. should be very small). With

an increase in instability the values O/-v;, and 07v-/sý increase, and

r,,/lj apparently decreases. With an increase of stability < A and

C-v/ V-. apparently decrease, and cr/ also decreases (and much more.

rapidly than for an increase of instability). The quantity d-/Oi increases

slowly in unstable stratification. The correlation coefficient 'rý,W- in neu-

tral stratification is somewhat less than -0.5, and with an increase of insta-.

bility its absolute value is slightly decreased; on the other hand the absolute

value of the correlation coefficient -y'ar- in near-neutral stratification is

) less than 0.5 and apparently approaches 0.5 as the stratification departs from

neutral.

The third moments (3) should have the form

3 T

In a stable stratification (•>g / ) these quantities should tend to constant

values, and with increase of instability ( • «<' )the functions and

should increase asymptotically like / ./and £7 decrease asymptot-

ically like . Apparently, the functions and should be pos-

itive. The coefficients of asymmetry /,,r. and should tend to a
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constant value, both for incrcase of stability and increase of instability. Accord-

ing to the date of Deacon and A. S. 'Gurvich, with an increase of instability the

coefficient of asymmetry increases.

The fact that the correlation coefficients T. % T and the coefficient

of asymumetry C•" all vary with indicates that the probability dis-

tribution for the dimensionless fluctuations U. VIZ- 4r Xl/L and7

depends on the stratification parameter but not solely because of the de-

pendence on of the standard deviations of (23). In other words, the proba-

bility distribution for the quantities RL/ j4 1Pdr Vld~r and -T/C-r

is not a universal function but varies with Apparently Joint distributions

for and are universal (Deacon showed that their third and fourth

moments are the same as in the Gaussian distribution). However, joint distribu-

tions for and T probably vary with

The dependency on the external parameters of the time correlation functions

of formulae (4) has the form

where and ? are certain universal functions of L

and . The appearance in formulae (26) of the velocity S. , which itself

depends on the same external parameters, is not inconsistent with the theory of

similarity and permits the use as representative magnitudes, of the lengths £4 r
A along a straight line parallel to the direction of the wind (see foruala (11)),

instead of the intervals of time 07' which are not themselves representative for
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thu turbulence.

Analogous conclusions are obtained from the similarity theory of Section 8,

for the space and time differences of wind velocity and temperature of (5). Thus

the probability distribution for the di.ensionless space differences 6er /
I. j

and u rI/l o• / is a function of .1/ :z and ,. and the distribution for

the dimensionless time differences &T"l I-4 and rx is a

function of and *In particular, for the structural functions

of (6), we obtain

where D and d are certain universal, functions of th two argimets (in contrast to

the dimensional values of (6), although we have used the sme symbols).

With strong instability ( • c(- / )the dependence on ] of the functions

L)~~ §.j it Pre i

fi~i •i and 4l ecores one of proport oneliy to / , the func-

(N- Pr 4L r addr bT oerpotoat j

the dimensionless coefficients ( and F of forwhlav (6) aue indepandent of

With stron g stability ( • > t ) all the functions of the two arfuncts that

appear in (26), (27), become dependent only on the product of the argumnts, that

is, on r/L (or ); this is also true for the coefficients 8 an F.

* 12. O-ESLAIIT OF MD SICUA

Analogous to the formulae (26), (27), the theory of similarity of Section 8.

leads to the folloving formlule for the tim spectral functions of (9):
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where 5 J4 , 0 'j- and O"y are universal functions of the two variables.

The wind velocity LI•, is introduced into these formulae in accord with the equa-

tion (12) that results from the hypothesis of "frozen turbulence". By using this

hypothesis, we can interpret W/1 as a wave-number, and the functions C) ,'iT

i and %.- as dimensionless, space spectral functions in one dimenion. At the

same time the introduction of W- into the formulae (28) does not mean that

the hypothesis of "frozen turbulence" is accepted, and nothing restricts the gen-

erality of these formulae from the viewpoint of the theory of similarity of Sec-

tion 8, since the quantity /,/ is itself a universal function of g (and.

of AOoL)

Froa Section 4 and the formulae (28) it follows that the contributions from

the spectral interval • t (near frequency 61 ) to the values of and

are, respectively,

izO

22

- "f•* II. I



!

where and f are certain universal dimensionless functions. From (24)

it is also evideiit that the abscissa (frequency) of each characteristic point of

the spectral function (caximum, point of inflection, etc.) will depeni on the ex-

ternal parameters through the law ' -- 4 (g).

Using the argumr.nts of the previous Section it can be shown that, in condi-

tions of strong instability ( - - ), the dependence of the dimensionless.

..ufltioris u~ ,and on the stability parameter , should be

as follows: increases proportionally to ) , / j'• T is independent

of ,and df-_- decreases as // *For conditions of strong sta-

bility ( ! )> / )each of these functions asswies the form

The abscissae 4Y = k of the characteristic points of the spectra do

not depend on for conditions of strong instability, while for strong sta-

bility they take on the form A, = const. , that is, they :.ncrease with in-

crease of stability (since L then decreases).

We will consider in more detail the spectrum of the temperature field under

conditions of strong instability. Assuming

we obtain

In tihe event that the mean wind La- the characteristic quant-Ity having

the dimensions of velocity will be (4 ) . Substituting this value in

(31) in place of % , we obtain
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From this it is apparent that the maximum of the spectrum corresponds to a fre-

quency WJ-1v Z that decreases with increasing height.

The measurements of Sigr•- cfnd 3 rF- obtained by A. S. Gurvich and L. R.

Zvang, show that the predictions concerning spectral similarity under various

meteorological conditions and expressed by formulae (28), are in satisfactory

agreement with the observational data. These measurements were made in the range

of dimensionless frequencies 0.01 4 - 100 (W = angular frequency meas-

ured in radHertz). Figure 19 of A. S. Gurvich's work (see p 129) shows the de-

pendence of the dimensionless spectral function - on the stability parameter

The graph shows that with increase of at fixed the function

C•,. W ) decreases, and the maximum of this function shifts to the side

of high frequencies.

According to the data of A. S. Gurvich, with a neutral stratification the max-

imum 6•-g-•- occurs with f• / 0.01-0.02, and has a value of about J0 (the

wave-length of the turbulent heterogeneities I - ; 50-100 , , corres-

ponding to such a frequency of the maximum occurs at the height : )

13. SIMILARITY tHEORY FOR THE INERTIAL RAINGE OF THE SPECTRUM

According to the theory of similarity for locally isotropic turbulence, as

developed by A. N. Kolmogorov, the statistical characteristics of the velocity

field associated with the equilibrium range of the spectrum of turbulence are

uniquely determined by the two (dimensional) parameters C and )/ in a

temperature-homogeneous medium. A. M. Obukhov pointed out that the statistical

properties of the turbulence will depend not only on the velocity field but also
24
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on the temperature field, and in the equilibrium range of the spectrUM may there-

fore additionally epend on the parameter A(.:: (V ) 7- that characterizes

the rate of equalization of temperature heterogeneities under the influence of

molecular thermal conductivity, and on the co.fficient of thermal conductivity

A. AM. Obukhov also pointed out that in the case of a temperature-heter-

ogeneous medium it is necessary to add to the above parameters, a parameter

which characterizes the influence of Archimedean forces on fluid elements having

a density different from that of the surrounding medium.

Inclusion of the parameters VO and will be important only at the

high frequency end of the equilibrium range, in the range of dissipation. By

restricting attention to the inertial interval of the spectrum we may dispense

with 3 and . Thus the regime of turbulent motion having scales in the

inertial range of the spectrum will depend on three external parameters l ,

, and

The parameter 'A has a standard value, while the values of - and

ii will vary, depending on the weather conditions. These values are charac-

teristics of the large-scale turbulent motions, and their dependence on the weather

conditions in the surface layer of the atmosphere may be determined by using the

similarity theory of Section 8. We obtain

"]z

__.....33)

where and are definite universal functions. By using the equation

of turbulent energy balance, and that for the balance of temperature heterogeneities

S7- in the surface layer of the atmosphere, these functions can be expressed

with certain simplifications, in terms of the universal function - (•) that
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describes the profiles of wind and temperature:

In the case of a temperature-homogeneous medium, the parameter can

be disregarded; since it is impossible to construct any length scale from the

parameters C and / , the turbulent regime in the inertial raige is then

universal. For a temperature-heterogeneous medium the situation turns out to be

more complex. As A. M. Obukhov pointed out, from the parameters E- A and

it is possible to construct the scale of length
i0

which is the characteristic scale of the turbulent motion whose statistical proper-

ties depend essentially on the degree of thermal heterogeneity of the medium. For

the inertial range the calculation of the scale L y, (and hence the parameter

ST is essential unless this scale is very large.

If the stratification of the atmosphere is near to neutral, that is I '

and :(ý )- / , then L0(/ i ) - )•/'tis large and the calcula-

tion of J for the inertial range is not essential. For a strong instability

L't.(3,1 /• , and, generally speaking, it is necessary to calculate

A6 for the inertial range. For a strong stability L " '(C,)-(c- /•

and since .4 •'> / ,that is L• Zwe have LA4 z , so that calculation of

3/7 is necessary.

14. STRUCTURAL AND SPECTRAL FUNCTIONS IN THE INERTIAL RANGE

In the inertial range the spatial structural functions (6) depend only on the
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parameters -, N and J/71 , in addition to the argument Y' (that is they

do not depend on 7- directly but only through the parameters E- and A( ).

By using dimensional considerations to construct expressions for these functions

we obtain

'N

where • and •TT are universal functions. .For sufficiently small

-r/L• these functions are close, to their values at the origin, so that the struc-

tural functions of (36) become proportional to (the "two thirds law").

When using the hypothesis of "frozen-turbulence" the time structural functions

are obtained from the spatial ones by replacing 'T by i7 •. . If we do not

resort to this hypothesis then from considerations of the theory of locally isotrop-

ic turbulence, it follows only that in the inertial range, &r. tE7 = and

SrT//v(')• are isotropic random functions of t•j /(( r)t • , that also

depend on the parameter (E7 /L •. Here .i is the value of the velocity

of the fluid at the point relative to which the time differences of (5) are calcu-

lated. For the calculation of the time structural functions in the surface layer

of the atmosphere "+ can be assumed approximately that (4/ Ut.• Then

~-3-
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By means of these formulae and using the relati3ns (10), we also obtain the form

of the time spectral functions:

It is possible to write the last of these formulae in the form

3 -O

If the mean wind vanishes and is very large, we obtain 5-rT "

If we disregard the scale and make use of the hypothesis of frozen

turbulence, thei the dependence of the spectral functions (38) on 6d leads to

a proportionality with 3 . At the present time there is no data indicat-

ing that the spectral functions in the inertial range depart from this law. How-

ever, in Section 13 it was noted that real situations are possible in which it is

necessary to allow for L. , and formulae (36) - (39) will then be useful for the

treatmen•t of data relating to the structural functions and spectra.
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