
MEMORANDUM -

RM-4793-PR
DzczuslR 1965

R LATIONAL DATA FILE: A TOOL F
.14 MECHANIZED INFERENCE EXECUTION
N AND DATA RETRIEVAL

Roger Levien and M. E. Maron

Best Available Copy

WIPARMI FUR:

UNITED STATES AIR FORCE PROJECT RAND

rnW8
SANTA MONICA * CALIfO2NIA

MEMORANDUM

RM-4793-PR
DECEMBER 1985

RELATIONAL DATA FILE: A TOOL FOR
MECHANIZED INFERENCE EXECUTION

AND DATA RETRIEVAL

Roger Levien and M. E. Maron

his research is sponsored by the United States Air Force under Project RAND-Con.
act No. AF 49(638)-1700 -nonitored by the Directorate of Operational Requirements
id Development Plans, Deputy Chief of Staff. Research and Development, Hq USAF.
jews or conclusions contained, in this Memorandum should not be interpreted as
'presenting the official opinion or policy of the Un'ted States Air Force.

[STRIBUTION STATEMENT
istribution of this document is unlimited.

0
1100 -AIN St SANIA ON"ICA *CALITOINIA 900

Approved for retwus by the dlen~sS for
Federal Wcentific and Technlal Iformeltof

~-iii-

PREFACE.

This Memorandum describes the background and status

of a current RAND project dealing with automatic data

storage and retrieval. The research emphasizes the devel-

opment and testing of logical techniques for data retrieval

and inference-making. These techniques are being imple-

mented in the form of computer routires, and tested on a

large corpus of factual information concerning the field

of cybernetics.

This Memorandum provides an overall view of the system

under development and describes the major design choices.

Subsequent Memoranda will detail the components of the

system.

The research reported here should be of interest to

Air Force organizations concerned with storage, retrieval,

and inference-making from large bodies of data. Among the

potential areas of application ark, command and control,

research management, technical information dissemination,

and advanced development planning.

I -_ - - i

SUMMARY

This 5emorandum describes the background and status

of a current RAND project dealing with automatic data

storage and retrieval. The research emphasizes the de-

velopment Ind testing of logical techniques for data

retrieval :nd inference-making. These techniques are

being impl~mented in the form of computer routines, and

tested on large corpus of factual information concern-

ing the field of cybernetics.

Sections III through VI present the theoretical base

for the proposed system. A major decision in designing

a data retrieval system of this sort concerns the nature

of the language that will be used. Unlike some question-

answering systems, information is not stored in ordinary

(natural) language. Section III discusses the reasons

for this decision, examining some of the logical and

linguistic aspects of the overall problem, and explaining

the selection of an artificial language, an interpreted

relational calculus, for use as the information language.

Section IV introduces and summarizes the theory of

relations. The theory of relations is that part of modern

logic that deals with relations, their properties, and the

relationships that hold among them. The section includes

a discussioh of how relations can be represented and how

some operations on given relations can be computed so as

to derive new relations.

Section V describes some typical data retrieval re-

quests and how they can be executed once incoming data have

been mapped into the artificial information language. It

-vi-

also mentions some of the statistical operations, such

as correlations and trend analyses, that can be executed.

Section VI details the key problems of inference:

the different kinds of inference that can be made, what

role they play in a data retrieval system, and what prob-

lems must be solved in order to mechanize inference-making.

A.key feature of the system is the ability of the user to

frame an inference schema and instruct the machine to

execute it. This technique allows the man and the machine

to collaborate in deriving a conclusion required to answer

a given request for information.

Sections VII through IX describe techniques for

practical realization of the data file. A major problem

area is at the input end of the system, where data must be

acquired, organized, and preprocessed before it can enter

the computer. Section VII outlines resolutions of those

problems of data sources, acquisition, extraction, etc.

Input aides extract data from source documents and enter

them onto forms according to precise rules. The computer

then translates from forms to relational language sentences.

This section discusses the motivation and structure of the

input forms.

Section VIII deals with the output problems. The

sources and types of output requests that the file will

be expected to satisfy are described first. Then the

problem .of communicating those requests to the file and

the procedures for processing them are discussed.

Section IX treats some of the storage and processing

problems; eg., how data will be structured in memory, the

organization of dictionaries and thesauri, And the steps

in the programming process.

-Vii-

Sections X through XII consider the data file as a

whole, examining its principal features, application, pos-

sible extension, and relation to other data retrieval

research.

Section X reviews the question of literature searching

and shows how the data retrieval system embodies features

that permit very effective literature searching. It sum-

marizes the hypothesis that context data of the type this

system is designed to handle offer a promising approach to

more effective literature searching.

Section XI presents some of the next steps that will

be undertaken to extend the capability of the system.

The final section summarizes and evaluates the work

and contrasts it to other activities in this field.

{ I

-ix-

ACKNOWLEDGMENTS

The early ideas and plans behind the research described

in this Memorandum were generated by the two authors, but

the study has been enlarged and enhanced by others who havie

since joined us. The notions developed here have ramifica-

tions in several directions and we have been fortunate to

have competent colleagues who are participating in what is

now a joint effort. We are deeply indebted to Don Cohen

and Gerald Levitt for their excellent execution of the

enormous programming tasks. The logical and linguistic

problems at the core of the research are complex, and we

have been fortunate to have the constant and competent col-

laboration of J L. Kuhns. Finally, we are grateful for the

diligence of Wade Holland and his able assistants in handling

the severe input problems.

-xi-

CONTENTS

PREFACE ...

SUMMARY .. v

ACKNOWLEDGMENTS ix

Section'
I. INTRODUCTION I

Initial Remarks I
An Experimental Corpus 1
Literature Searching Versus Data

Retrieval 2
Some Other Distinctions 3
Direction and Status 4

II. THE NOTION OF AN EXPERIMENTAL CORPUS 6
Motivation
The Question of Criteria................ .
The Subject of Cybernetics 7
Some Further Remarks 8

III. LOGICAL AND LINGUISTIC PROBLEMS 10
Some Initial Distinctions 10
The Choice of an Information Language 10
Natural Language as the Information

Language 11
An Artificial Information Language 12

IV. THE LOGIC OF RELATIONS 16
Representations of Relations.............. 17
Derived Relations 20

V. INFORMATION PROCESSING FOR DATA RETRIEVAL .. 21
Verification 21
List Values of One Variable 22
List Values of Two Variables 23
Data Manipulations 24
Logical Processing 24

VI. INFERENCE MAKING FOR DATA RETRIEVAL 26
The Problem of Implicit Data 26
Strict Inferences 27
Plausible Inferences 29

! /
S/ -xii-

VII. INPUT PROCEDURES 33

The Problem *. 33

Types of Data 33

Sources of Data 34
Collection Procedures 34

Extraction from Data Sources35

Representation of Extracted Data 35
Data Input Forms 36'
Bibliographic Data Form 37

Entry of Data 39
Form Manipulation Prograniming System ... 40
Translation into Information Language .. 41

VIII. OUTPUT PROCEDURES 43

The Problem 43

Kinds of Requests 43
Kinds of Use 4................*660.0 43
Types of Requests...................... 44

Communicating Requests ... 45

Procedural Language 46

Query Language 48

Processing Requests...................... 48

IX. STORACE AND PROCESSING PROCEDURES 52

The Problem 52

Storage 52
Relational Data 52

Other File Data . 54
Processing 57

Input 57

Output , . ., . . . 58

X. LITERATURE SEARCHING 62
The Problem2 ...
Literature Searching using Bibliographic

Data 62
Description 62

Applicstion of Data File 63
Literature Searching using Subject Data .. 63
Description o...... 63

Application of the Data File 64

Storing a Thesaurus 64

Subject Index Assignment............... 65
Literature Searching using Context Data .. 68
Description 68

-xiii-

Application of the Data File 69

Context Hypothesis 70

Data Retrieval and Literature Searching 71

XI. EXTENSIONS AND APPLICATIONS 72
The Problem 72

Input Refinements 72

Natural Input Language 72
On-Line Data Entry 73
File Feedback 73

Storage and Processing Refinements 73
Adaptiv'e Storage 74

On-Line Processing 74

Output Refinements 75
Improved Man-Machine Interaction 75
Mechanized Inference Making 76

Potential Application of the-File 78

XII. SUMMARY AND EVALUATION 80
Objectives 80
Principal Features 80
Linguistic Features 80

Logical Features 81
Output Features 83
Input Features 83
Experimental Corpus 84

Comparison with Alternative Approaches ... 85
Manual and Semi-Manual 85
Simple Computer Files 86
Question-Answering Systems 87

REFERENCES 89

-1-

I. INTRODUCTION

INITIAL REMARKS

The purpose of this Memorandum is to describe the

status and direction of a current RAND project dealing with

the problems of automatic information processing and data

retrieval. The work clusters around the problems involved

in storing factual information in a computer in the form

of basic sentences, and logically operating on those

sentences as needed in order to respond appropriately to

a request for information. In a most general way,.this

type of computer application deals with automatic language

data processing. It concerns the mechanization of those

logical techniques required to operate on language so as

to derive and retrieve answers to questions. Within the

general field of automatic language data processing, one

could characterize this work under the heading of auto-

matic data retrieval or automatic question answering.

However, the objectives go beyond the simple retrieval of

data and direct questioning, and include automatic liter-

ature searching as well. Furthermore, in order to mechanize

those processes required for deeper data retrieval and more

complex literature searching, this work extends into the

field of automatic inference-making.

AN EXPERIMENTAL CORPUS

Logical techniques for data retrieval and inference-

making cannot be evaluated in isolation. Any realistic

determination of their effectiveness would demand that the

techniques be evaluated by putting them into practice, by

-2-

empirically testing an actual corpus of data. The subject

matter selected for the exFerimental corpus was the context

of cybernetic research. Naturally, key sources of informa-

tion about the context of cybernetics are professional

books and journal articles. These materials gtve informa-

tion about who is doing what, and which papers are about

what subareas of cybernetics. Thus, the system contains

data at two different logical levels: a) about people,

places, committees, etc.; b) about information--e.g., that

paper P was indexed under category C. This distinction is

necessary to further clarify where this work fits in the

general field of automatic language data processing.

LITERATURE SEARCHING VERSUS DATA RETRIEVAL

Mechanized literature searching is the problem of

automatically answering the following kind of question:

What publications (books, papers, reportskjdocurents, etc.)

discuss the subject of logic machines? M1 hanized data

retrieval, on the other hand, is the probl]m of automatically

answering questions of the following kind I How many keys

were there on the original logical piano of Jevons? In the

case of literature searching, the appropriate response by

a mechanized system is a collection of relevant items or

reference to such a collection. (Relevance i& the key

concept in any theory of literature searching.) In the case

of data retrieval, an appropriate response is the answer to

a given question.

Literature searching does not directly answer a question;

rather, it provides the answers to a secondary question by

putting the requester in touch with data which, in turn, will

-3-

I

satisfv his information need. Data retrieval, on the other

hand, answers questions more directly. In the present

system, which deals with two levels of information, the

data retrieval function includes literature searching

(Sec. X discusses the details of this interrelationship).

SOME OTHER DISTINCTIONS

A major point of departure in the design of this

system concerns the nature of the language used to store

the factual data: Instead of using natural (i.e., ordinary)

language, this system uses a formalized language based on

the calculus of relations. All elementary facts are de-

scribed in this language in terms of the relationship be-

tween two entities. More complex sentences are reducible,

according to strict rules, to basic relational sentences.

This language permits precise selection and recall to

interrogation because its grammatical form causes no

vagueness or ambiguity. In data retrieval systems em-

ploying natural language, data (i.e., sentences whose

"contents" allege to answer a given question) are selected

by matching words in the sentences with words derived from

the request. In the present system, the basic selection

takes place by matching sentences, i.e., by matching words

plus syntactic structure. The use of a formal language,

and not ordinary language, marks one of the key distinc-

tions between this data retrieval system and some others.

Simmons has surveyed a variety of question-answering
systems and the reader is referred to that survey for a
comprehensive overview of systems related to the one pre-
sented here [1].

-4-

A major problem in the design of any automatic data

retrieval system concerns inference; i.e., how to derive

and make explicit unexpressed data needed to answer a

given question. The precise formal language facilitates

generating routines to aid in the automatic derivation

of implied conclusions. Thus, this system aims beyond

simple data retrieval toward inference-making techniques;

this key feature is another point of departure separating

this system from some other data retrieval systems.

DIRECTION AND STATUS

The primary problems are of a logical and linguistic

nature, dealing with the structure of the basic information

language and the nature of inference. The linguistic prob-

lem appears at both "ends" of the system; i.e., at the

user end where a request is formulated, and at the input

eA where the data is "translated" from its primary sources

to its representation in this system. These problems, of

course, are logical as well as linguistic, since they

intersect with those growing out of the structure of the

formal information language. Clearly, a key logical prob-

lem surrounds the entire notion of mechanizing aspects of

inference-making.

The mechanized data retrieval and inference system

uses a conventional digital computer. Therefore, the

problems do not concern engineering--only the software or

programming routines. Since we are evaluating techniques

in terms of how they actually work, we have started to

collect and organize a sizable corpus of data on the con-

text of cybernetics. A rather substantial data base has

-5-

been already extracted and keypunched, and although the

programming aspects are sizable, the implementation of a

a fully programmed system is-well under way. Preliminary

print-outs listingany selected aspect of the input data

can already be conducted. The logical rules required to

analyze requests and transform them into search instruc-

tions have been partially completed.

IL

-6-

II. THE NOTION OF AN EXPERIMENTAL CORPUS

MOTIVATION

If information retrieval (literature searching, data

retrieval, etc.) is to become more a science than a collec-

tion of techniques, work in this field must be experimental

as well as theoretical. Ideas and theories must be tested to

determine whether they can survive. Furthermore, experi-

mental testing of competing theories must be conducted in

order to compare and rate them. Just as the theoretical

physicist must test his hypotheses against the observations

obtained by his experimental colleagues, so also must

workers in information retrieval test their ideas against

the results of application in an information system.

For these reasons, among others, we decided to search

out, collect, organize, and use an actual corpus of data

upon which to test our ideas concerning data retrieval and

inference-making. The experience of working with an actual

corpus has another advantage which should not be over-

looked: entailed problems which might not otherwise have

been recognized and attacked are uncovered and solved.

THE QUESTION OF CRITERIA

By what considerations should one be guided in search-

ing for a suitable body of data to serve as the experimental

corpus? A very practical consideration suggests that, since

a fair amount of time and effort must go into collecting and

organizing the proposed data bank, the information in ques-

tion should have some value independent of its function

as a purely experimental corpus. Thus the data should be

-7-

neither synthetic (i.e., artificially constructed), nor

vacuous. Furthermore, although the corpus should be

manageable from a logical and linguistic point of view,

also it should provide a good sampling of the kinds of

..problems one might expect in a real-world situation. T e

data must be accessible so that one may reasonably amass

a critical size; it must involve enough basic sentences

to give significance to the tests. For all of these

reasons, the experimental corpus was of the kind charac

terized above, on the context of esearch on cybernetic5.

THE SUBJECT OF CYBERNETICS

What is cybernetics? In 1948 the late Professor

Norbert Wiener published his now famous book, Cybernetics:

Or Control and Communication in the Animal and the Mach.- .

In the book, he explains that he needed a term to denote

the broad subject of information processing in complex

systems and that is what "cybernetics" means. Cybernetics

is the broad study of information'processing, communication,

and control. It includes all those theoretical notions,!

techniques, procedures, devices, and machines that relate

to information processing, communication, and control, as

well as the application of information, communication, and

control theories and techniques to the synthesis of arti-

ficial machines, to the analysis of natural nervous systems,

and even to society itself (which can be viewed as a complex

information and control system).

Cybernetics is a complex and growing subject, and even

the experts do not agree on its exact nature, scope, andi

status. However, for the present purposes, cybernetics is

-8-

interpreted in its broadest sense (as do the Soviets) as

the collection of studies and techniques that cluster

around information, communication, and control. These

include: information theory and applications; mathe-

matical logic and its applications to computers and auto-

mata theory; computer design, organization, components,

and applications; artificial intelligence; information-

processing aspects of biology, psychology, and physiology;

control theory and applications; mathematical economics

and operations research.

SOME FURTHER REMARKS

It is important to make explicit and sharpen the

distinction between data on cybernetics and data about the

context of research in the field of cybernetics. This

distinction can be clarified by considering the analogy

between the work of a physicist and the work of a sociol-

ogist of physics. The former studies particles and waves

and tries to find and test hypotheses about the behavior

of such physical entities. The sociologist of physics, on

the other hand, does not look at physics as such but at

the physicists and at what they do. He is interested in

how they communicate with one another, that they write

and review papers, give presentations, win honors and

professional recognition, experiment on linear accelerators,

belong to special organizations, have an inclination toward

music, etc. Similarly, the laws, methods, results of

cybernetics are not important here; the primar5 interest

is the context within which such work is carried on:

people who do work on cybernetics, the computers they use,

the institutes with which they are affiliated, the journals

-9-

they publish in, the descriptive categories under which

their papers are indexed, and so on. The context of

cybernetics research and not the content is the subject

of the experimental corpus. Thus, the system is designed

to respond to inquiries of the following sorts:

o Who is the author of Information Theory in Biology?

o Where is Professor F. G. George located?

o What papers (on cybernetics) haNe been jointly -.
authored by a logician and a neurophysiologist?.

o Where is research on pattern recognition going on?

o Which papers have cited MacKay's. paper which was
presented at the 1959 Teddington Conference?

o.I

Ai

9i

',I}

-10-

III. LOGICAL AND LINGUISTIC PROBLEMS

SOME INITIAL DISTINCTIONS

The problem in its simplest form is to describe

certain facts (e.g., that a certain person is a member of

the editorial board of a professional journal that pub-

lishes papers primarily in the field of cybernetics) and

then store the corresponding information in a computer so

that it can be processed in various ways. It is important

at the very outset to be clear about the set of facts

(situations, events) which are to be described and how the

corresponding descriptions are to be worded. The facts

are those non-linguistic entities having to do with people,

publications, institutes, etc. The language, on the other

hand, consists of those linguistic entities (such as words,

sentences, etc.) and their rules that we use to describe

the facts. Following Uspenskii, this language is called

the information language; it should not be confused with
either the programming-language or the so-called "machine

language."

THE CHOICE OF AN INFORMATION LANGUAGE

Many of the critical logical and computer problems

concerning how the stored information is to be processed

hinge on the stiucture of the information language selected.

Therefore, we must examine those criteria of adequacy that

Our discussion of an information language and of its
role in the design of an automatic information processing
system has been influenced by the paper of V. A. Uspenskii

an information language must satisfy in order that our

choice is well guided.

Clearly, the information language must be rich enough

to allow us to describe all relevant aspects of the facts.

It must contain the'right kinds of both logical and con-

tent-bearing words, and its grammatical rules must be

flexible enough to permit the construction of sentences

of sufficient'generality for adequate description of the

facts. Its rules must be precise and the terms of its

vocabulary sufficiently well explicated so as to avoid

ambiguity. Finally, because current computers cannot

comprehend language as do humans, the information language

must be formalized; the desired processing must be de-

scribable in terms of its logical syntax. If one can

spell out the desired form of information processing in

sufficient detail and in a precise and unambiguous way,

then that procedure can be embodied in the form of a com-

puter routine and executed automatically. Furthermore,

a formal description of the language is demanded not only

for precise retrieval, but, more importantly, for the

inference-making which is to be incorporated in the system

(as will be described in more detail subsequently).

NATURAL LANGUAGE AS THE INFORMATION LANGUAGE

Ordinary (natural) language has much richness, flexi-

bility, and versatility; however, it suffers from its lack

of precision. That is, ordinary language has no explicit

formation rules that enable one to characterize precisely

sentences in terms of their syntax. And, of course,

ordinary language has no explicit transformation rules.

/

-12-

Sentences in ordinary language can be ambiguous; meaning

depends on context. Conventional computers must be in-

structed on how to process data in terms of a syntactical

description of the linguistic entities in question. Can

natural language be formalized? Uspenskii [2] suggests

that, in principle, it can, but that for all practical

purposes its complexity makes the prospect of formaliza-

tion essentially hopeless. This leaves as the alternative

the use of an artificial language as the information

language.

AN ARTIFICIAL INFORMATION LANGUAGE

First of all, what is meant by an "artificial in-

formation language?" There must be precise rules that

prescribe how sentences of the language may be formed in

order to be grammatically correct. There must be trans-

formation rules and truth rules. The terms of its vocabu-

lary must be precise and there must be rules that describe

which terms are synonymous, etc. As Uspenskii [2] cor-

rectly points out, one must be guided in the construction

of an artificial information language by first making an

analysis of those facts (situations, events) which are to

be described by the language in question. Let us now look

more closely at the "universe" which we propose to describe--

at the class of things and their relationships with which

we are concerned.

We are interested in the people who are active in the

field of cybernetics and the institutes, universities, or

laboratories with which they are affiliated and the loca-

tions of those institutes. We are interested in the papers

-13-

which they publish in professional journals and which

they present at professional society meetings, conferences,

and symposia. We are interested in the specific cyber-

netic subject categories under which their papers are in-

dexed and the computing machines which are used to help

them with their research. And so on. Given classes of

people, papers, institutes, Journals, meetings, cities,

subject categories, etc., the basic data can be described

in terms of the relationships between members of these

classes.

Some symbolism and notation aids discussion of the

information language created to describe these classes and

their relationships. Upper case letters of the alphabet

denote classes and lower case letters with subscripts

denote individual members of the class. The following is

a list of classes:

A - People,
B - Professional papers,
C - Books,-
D - Organizations (universities, institutes, etc.),
E - Computing machines,
F - Professional, honorary, or government

societies,'committees, or councils,
G - Professional journals,
H - Subject index tags (within the general field

of cybernetics),
J - Professional meetings, conferences, symposia,
K - Geographical locations (cities, etc.),
L - Professional awards, prizes, honors, etc.

The upper case letter "R" denotes relationships. A

partial list of relationships follows:

R -AUTHOR OF

R - AFFILIATED WITH

i I! I II I Ii4

-14-

R7 - HAS PROGRAMMED

R14 - ON THE EDITORIAL BOARD OF

R18 - PRESENTED PAPER AT

R - LOCATED AT- ------- -- -2 2
R25 - CITED IN

R27 - INDEXED UNDER

R34 - PUBLISHED IN

Since we wish to use knowledge of Jthese relationships

to make inferences, it is natural to select a relational

formal language as the information language. We refer to

this as the "Relational Information Language." This

artificial information language is an interpreted rela-

tional calculus whose atomic sentences are of the follow-

ing form:

a21 Rl4g6

which might state "A. B. Smith (a1) THE EDITORIAL

BOARD OF (RI4) Cybernetics (g6)."

Relevant information will be mapped into the Relational

Information Language by humans (but with computer assistance,

as described in Sec. VII). And, of course, other data will

be associated with the basic (atomic) relational sentences

(e.g., source of information, dates, etc.).

Does the Relational Information Language have the

richness required so that logically complex expressions of

ordinary language can have an equivalent counterpart in the

artificial information language? If the subjects were on

cybernetics instead of information about work being done

on cybernetics, it would be quite difficult to construct a

-15-

sufficiently rich information language. But given the

more limited objective, vLiz., to store and process informa-

tion about people, places, papers, machines, institutes,

meetings, etc., and their relationships (as listed above),

the prospect of success is rather high.

The information language is an interpreted relational

calculus. The calculus of relations is that chapter of

modern logic which deals with relationships and rules for

deriving new relationships from other given relationships.

New relations may be obtained by definition and by deriva-

tion. There will be logically strict derivations of new

relationships and, of most value, plausible derivations

when the relationships between relationships are a function

of their content and not merely their form. The following

three sections detail these ideas.

-16-

IV. THE LOGIC OF RELATIONS

The theory of relations is that chapter of modern

.logic which deals with relations, their properties, and with

the relationships that hold among relations. Since this

Memorandum uses its notions and techniques and applies

them to work on data retrieval and inference-making, this

section outlines sone of its key concepts.--

In everyday life, as well as in mathematics, one is

confronted with a variety of relations. Things are located

in space, giving rise to spatial relations; events are

related temporally; there are causal relations, kinship

relations, ordering relations, etc.

Relations can-be classified according to the number of

things that they relate. For example, the relation TEACHER

OF holds between pairs of individuals and is called a dyadic,

binary, or two-place relation. The statement "x GAVE y

TO z" involves a relationship among three things; it is

called a triadic relation. An example of a four-place

(or tetradic) relation is "x WAS TEACHER OF y DURING SE4INAR

ON z AT UNIVERSITY u." One can,--of course, get relations ------ ..

of any numberof places.

We shall be concerned primarily with two-place rela-

tions and it is conventional to symbolize such instances

of relations in either of the following two ways:

R(xi ,Yj)

X i R Yj

/-17-

We say that xi is a predecessor of yj with respect to the

relation R. And yj is a successor of xi relative to the

relation R. The clas. of predecessors is called the domain a

of R. The class of successors is called the range or

converse domain of R. The union of the domain and the

range is called the field of R.

Every relation has a sense or direction; i.e., it

holds from the predecessor to the successor. Now, when a

relation R holds from xi to y., some relation also holds

from yj to xi . This latter relation is called the converse

of the former relation and it is denoted as R. Thus, R

holds between yj and xi if and only if R holds between x,

and yj. For example, consider the following binary re-

lations and their converse relations:

AUTHOR OF AUTHORED BY
TEACHER OF STUDENT OF
CITED CITED BY.

REPRESENTATIONS OF RELATIONS

Relations can be represented in a variety of ways.

These alternatives allow elaboration on some key notions

in the theory of relations and are relevant to the comput-

ing aspects of the data retrieval problem.

First, notice that just as mathematical functions can

be represented by tables of values, so can relations such

as HUSBAND OF be represented by the set of all pairs of

husbands and wives. Such a list is called the extension

of the relation. Alternatively, a directed graph or arrow

diagram is a mode of representing relations. This is a

configuration of arrows and nodes in which the nodes

-18-

represent individuals of the field and the arrow connecting

nodes represents the holding of the relation for that pair.

A relation has a sense or direction (viz., from predecessor

to successor), here represented by the arrow. Again, the

domain element is the node at the tail of the arrow and

the range element is the node at the head end of the arrow.

As an illustration, consider the following example dealing

with the relation AUTHOR OF. Assume that there are four

individuals (authors), Jones, Smith, Robinson, and Martins,

denoted as a1 , a2, a3, and a4 , respectively. Assume further

that there are papers denoted as bl, b 2, and b Jones is

an author of b and of b Smith is an author of b and

Robinson is an author of b Finally, Martins is the

author of b We can symbolize this information and repre-

sent it as the following list of instantiations of R:

a I R bI1

a1 R b2
a R b

2 .
-2 R b

3 b2

a4 R b 3

In terms of an arrow diagram, it appears in the following

way:

-19-

a b__ _ _ _ _ _ _

a 2

822

8 3

a4 -b 3

A third way to represent relations is in terms of

Boolean matrices of ones and zeros. Enter a 1 in the ith

row of the j column if and only if the relation holdsth th

between the i member of the field and the j th member of

the field; otherwise, enter a 0. The Boolean matrix that

corresponds to the arrow diagram above is as follows:

81 82 a b, b b2 3 4 2 3

a1 0 0 0 0 1 1 0

a2 0 0 0 0 0 1 0

a3 0 0 0 0 0 1 0

a 0 0 0 0 0 0 1
4

b 0 0 0 0 0 0 0

b 0 0 0 0 0 0 02 - -- - - -t.

b 0 0 0 0 0 0 0
3I

-20-

DERIVED RELATIONS

Just as new relations can be derived from ones that

are already defined, as for example in terms of their con-

verse, so also new relations may be generated by combining

other relations. Consider as an example the case where x

is the brother of u and u is the wife of y. Of course,

given the above, a relation holds directly between x and y;

namely, the relation of brother-in-law. Now the relation

that holds between any x and y, if there is a u such that

"xRu" and "uSy", is called the relative product of R and S.

The relative product of R and S is denoted as "R/S." Thus

the relative product of BROTHER OF and SPOUSE OF is the re-

lation BROTHER-IN-LAW. Following logical notation, write

R2 as an abbreviation for R/R, R3 for R 2/R, etc. These

relations are called the (second, third, etc.) powers of R.

The operation of relative product is quite valuable

in the calculus of relations. We can indicate one aspect

of its usefulness by the example described earlier.

R denotes the relation AUTHOR OF and R denotes its

converse AUTHORED BY. We now take the relative product

of R and its converse, i.e., R/R, which represents the new

relation CO-AUTHOR WITH, where each a is considered to be

co-author with himself. If we represent the relationships

between authors and papers in terms of a Boolean matrix,

multiplication of the R matrix and the R matrix generates

the new matrix R/R CO-AUTHORED WITH.

-21-

-J

V. INFORMATION PROCESSING FOR DATA RETRIEVAL

Section III descri-ed the role of the information

language in the design, organization, and operation of a

data retrieval system. Section IV described-the logical

structure of the calculus of relations, which provides the

form of our information language. This section assumes

that input data has been acquired, and processed (both

manually and by machine) to the point where it has been

completely and correctly mapped into the Relational In-

formation Language. (Section VII gives some of the rele-

vant details of this "translation.") The purpose here is

to describe, from a logical point of view, the types of

operations that can be executed and how the processes are

effected given an information language based on the calculus

of relations.

VERIFICATION

One type of request is to ask for some sort of verifica-

tion, as when a user wants to now whether a given sentence

is -true. --For example, he want to know whether A. B. Smith

is on the editorial board of Cybernetics; he expresses this

request in the form of the relational sentence "a21R14 g4R

(By means of dictionary, thesaurus, etc., the translation

is made from "A. B. Smith" to "a2 1," "Cybernetics" to

and "on the editorial board of" to "R ,") If this data'14"

has entered the system at the input end, then a "copy" of

that sentence ("a 2 1 R1 4 g4 ") is stored somewhere in the

computer memory. Thus the computer routine needed to

answer the request entails a search that attempts to match

-22-

the request sentence with those data sentences previously

stored.

Notice that the exact nature of the routine hinges on

the way in which relational sentences are represented with-

in the computer. That is, if relations are represented

as pairs, listed according to the relations in question,

then a simple search of the corresponding list will locate

its desired sentence. If, on the other hand, relations

were represented in terms of Boolean matrices, then the

search routine would simply go to the R14 matrix and

checks to see whether or not there is a 1 at the 21st row

and the 4th column. If so, this means, of course, that

"a21 R14 g4 " is true. But, from a logical point of view,

the routine required to decide whether or not a given

sentence is true simply amounts to a search of the stored

data.

LIST VALUES OF ONE VARIABLE

Another type of request is the case where a user asks

for the name of a predecessor or a successor for a rela-

tion, or for the relation itself. For example, a user

wants to know who is on the editorial board of Cybernetics.

Assume that this request takes the form of "x R14 g4 "

The retrieval routine responds to this type of request by

searching to find all x's that are in the relation R to
14

g4 " Instead of searching for a match of the entire rela-

tional triplet as for verification, this case demands a

match only in part and a readout of the other part. Other

-23-

examples of this type of request are "a21 RI4 y" and
"a2 1 Ri g4 ; i.e., for what journals is A. B. Smith on

the editorial board and what relations hold between A. B.

Smith and Cybernetics? In each of these cases, one and

only one variable in the relational triplet expresses the

request.

In all three cases, the computer routine attempts to

match those parts of the input query which are fixed (con-

stant). And, of course, if the relations were represented

in terms of matrices instead of lists of sentences, the

search would be comparable to looking in a column (or a

row) to see whether or not any entries had been made in

a given matrix.

LIST VALUES OF TWO VARIABLES

The next most general retrieval request contains two

variables in the relational triplet. For example, a user

asks to find out about all the relations that hold for a

given individual. Denote this as "a26 R, y"; i.e., read

out all the sentences where a26 is the domain element (or

the range element). Another example might be denoted as

aR a; vi5a 2z., tell me all the pairs of individuals for

whom the relationship TEACHER OF holds. The computer would

search and print out'the corresponding list of ordered pairs

that satisfy the relation R5 (teacher of).

All the above groups of retrieval routines are trivial

once both the input data and the user's request have been

mapped into sentences of the Relational Information Language.

Incorporation of more selective retrieval can be made

by introducing truth functional connectives as part of the

, q I J I I I I I I I I I I i i i .

S/.

-24-
4

"grammar" of a request. In this way a user could, for

example, interrogate the system and request a listing of

all individuals who have either relationship R5 or R. and

also RI9 to some other given item. Such request sentences

can become rather complex, containing many variables and

logical connectives.

DATA MANIPULATIONS

With data precisely identified and available for re-

call, a natural step is to make counts of retrieved data

to obtain statistical information about work being con-

ducted on cybernetics. For example, the computer could be

programmed to execute simple routines to answer the follow-

ing kinds of questions:

How many a27 R b ?
17j1

(How many papers did A. B. Smith author?)

How many b6 R50 b.?

(In how many papers was the paper b6 cited?)

LOGICAL PROCESSTNG

A next step in the processing of data from a file of

this sort would be toward checking, detecting, and calling

attention to redundant information. In a sense, the

opposite of redundancy is inconsistency; the system should

be programmed to detect and call attention to inconsistencies

-25-

contained in the explicit data. For example, if one

sentence says that A. B. Smith is the managing editor of

Cybernetics and another says that J. K. Jones is the

managing editor of Cybernetics, are these necessarily in-

consistent? It depends. Do these refer to the same time?

Are there two journals with the same name? Can a journal

simultaneously have two distinct managing editors? Dif-

ferent kinds of information are necessary to answer these

questions which, in turn, must be processed to decide

questions of inconsistency. In principle, we will be able

to handle these situations, but as yet no such consistency

routines have been written.

I

-26-

VI. INFERENCE MAKING FOR DATA RETRIEVAL

THE PROBLEM OF IMPLICIT DATA

Assme that the following information has entered the

system and is now stored in memory: "A. B. Smith is the

author of 'On Cybernetics'," and "'On Cybernetics' is

indexed under pattern recognition techniques." These two

sentences can be symbolized in information language as

follows:

a21R1b50

boR2h (2)50 27 17

where RI = AUTHOR OF and R = INDEXED UNDER.

If the above two sentences are true, then A. B. Smith'

has published on the subject of pattern recognition. This

fact can be denoted as

a 21R46h17' (3)

where R - PUBLISHED ON. The system explicitly stores
46

the information represented by sentences (1) and (2).

Sentence (3), on the other hand, is only implicit in the

data stoe. Thus, although logically contained in (1) and

(2), it can be made explicit only through some process of

logical derivation.

The reason for making this distinction between informa-

tion that is explicit and information that is only implicit[is to point out the important role of logical derivation in

-27-

any question-answering (or data retrieval) system. Consider,

for example, the user who wants to know whether A. B. Smith

has published on the subject of pattern recognition (viz.,
1

is "a R h " true?). If the routine for answering this-21"'46"17...
query merely searches the contents of memory in an attempt

to match the request sentence against those already stored,

clearly the system cannot provide the correct response.

In order to respond appropriately, the system must incor-

porate routines and procedures to make explicit the required

information.

To repeat: We will be accepting and storing large

amounts of data extracted from publications in the field

of cybernetics. Those data will be formulated as sentences

in the Relational Information Language. Clearly, numerous

sentences that are not contained in memory at a given time

must be true, given the truth of the ones that are con-

tained in the file. The ideal data-retrieval system, when

unable to answer a query by any of the stored explicit

input sentences, will seek out an answer implicit in the

stored data. In a logical sense, the system should employ

the technique of inference or logical derivation. How,

then, can inference be mechanized?

STRICT INFERENCES

Logic is the study of inferences of two kinds: strict

or deductive inferences; and plausible, probabilistic, or

inductive inferences. Consider first the problem of

mechanical (and other) procedures employed to derive strict

inferences.

I!

-28-

Of course, certain logical languages have procedures

for mechanically generating all strict (logical) conse-

quences of a given set of initial premises. However, un-

less certain complex rules are constructed which enable

..only the-important or relevant conclusions to be de-

rived, these procedures Will continue to produce all

implied conclusions--most of which will be trivial and un-

interesting. However, in the case of the Relational

Information Language, no such general mechanical decision

procedures exist. In the face of this "impasse," one

alternative is to select in advance and program accordingly

certain inference schemata that can be used as needed. In

order to explain this notion of inference schemata which

are pre-selected, consider the following example: Let a

relation R be transitive, i.e., the following is logically

true:

For all a, b, and c, if a b and bRc, then aRc. (4)

This can be symbolized as

(a)(b)(c) [(aRb)(bRc) n (aRc)]

This inference scheme represents a strict inference, be-

cause the conclusion (aRc) is logically implied by the

premises (aRb), (bRc). Assume now that a user interrogates

the system and asks whether "aRc" is true and that the

sentence is not explicitly stored. If the system had the

information that R is transitive, then it could form the

inference schema (4), search its memory for the antecedent

-29-

sentences (aRb) and (bRc); and, if it found them, it could

print out that the request sentence "aRc" is also true.

Two points are important: First, by knowing the logical

properties of some of the relations contained in the informa-

tion language, the system can be programmed to construct

certain inference schemata (like*(4) above). These sche-

mata could then be used regularly to make explicit at

the input end data which otherwise would be implicit. This

means that the system selectively derives strict conclusions

from incoming data and stores these conclusions explicitly

in memory, ready for subsequent interrogation. Second, the

user himself could form such inference schemata as needed in

each individual case, in order to have the machine derive a

conclusion in response to his request. That is, if a sen-

tence he desires (such as a55R c16) is not stored explicitly,

he can instruct the system to execute an inference schema

-which he offers it in order to see whether the desired con-

clusion can be logically derived from stored data (i.e.,
"a R bi" and "b R - (The next section elaborates on

the role of the user in constructing inference schemata.)

PLAUSIBLE INFERENCES

A "plausible" inference is the transition from premises

which are true to a conclusion which is only plausible.

Again, in the case of strict inference, if the premises are

true the conclusion must be true, because logically the

conclusion is completely contained in those premises. In

the case of a plausible inference, on the other hand, if

the premises are true the conclusion need not be true;

• k

-30-

i.e., the premises only partially contain the conclusion.

The truth of the premises of a plausible argument confers

a degree of partial truth on the conclusion.

A schematic example will clarify the logical status

and use of plausible inferences. Consider the following

expression:

If (aR1S) and (aR71c) and (bR19 d) and (dR66e),

then it is plausible that (eR55c). (5)

The person who asserts (5) believes that given the truth

of the sentences in its antecedent (i.e., the so-called

premises), the consequent of (5) (the conclusion) will

probably also be true. The conclusion need not be true;

in fact it could be false for a given instance of a, b,.c,

d, and e. When an individual asserts a statement like (4),

he has formalized an empirical generalization which may

lead to false conclusions as well as to true ones.

In such schemata, the degree of plausibility is, of

course, relative to the individual who asserts it. Con-

sider how such schemata could be used with our data re-

trieval system to derive plausible data that are not other-

wise explicitly available. A user approaches the system

to inquire whether it is true that "e R5 C." That

sentence is not explicitly stored and consequently the

computer cannot respond affirmatively. The user now

realizes that if the sentences constituting the antecedent

to (5) are true (i.e., if they are stored explicitly),

then the conclusion is plausible. He constructs the

-31- 7

specific inference schema corresponding to (5) and the

machine executes it to see whether or not its premises

are true. That is, the machine searches its store to find

an a, b, and d such that

(aRlb) and (aR7 1 cs) and (bR19 d) and (dR 6 6 e1 5)

is true. If so, the user now knows something about the

probable truth of "e R c " which he did not know before.
15 5515

Thus, by allowing the user to construct plausible

inference schemata, and programming the system to execute

them upon command, it is possible to derive plausible'con-

clusions, i.e., conclusions whose truth is only partially

relative to the truth of the stored data.

Notice also how this may be generalized. Instead of

asking whether "e R c 55C is true, the user may ask: For

which e does R hold with c ? The machine now simply
555

looks for sets of a, b, c5, d, and e for which the rela-

tions expressed in the antecedent hold.

Two additional problems are: first, how to interpret

the notion of degree of plausiblity; and then, given-any

interpretation, how to estimate the degree of plausibility.

For the present purposes, a subjective interpretation to

the concept of degree of plausibility is sufficient; it

reflects the strength of psychological belief on the part

of the user, or the kinds of odds he would want if he were

to bet on its truth. Since the individual who constructs

the inference schema will be the one to use the resulting

information, it is not necessary to provide an interpreta-

tion that is objective, i.e., binding on all users of the

-32-

system. A different user might use the same inference

schema and assign a different degree of plausibility to

it. Since ve are suggesting a completely subjective in-

terpretation for the concept of plausibility, its degree
(amount, value, etc.) can be estimated intuitively by the

user himself.

Finally, notice that for many kinds of plausible

inferences, the degree of plausibility is a function of

the time intervals during which the events described in

the premises occurred., Consequently, those temporal data

also should be included as part of the premises proper.

Since we are capturing temporal data in relation form,

this is no problem in principle; at worst it is a further

complication that the user must deal with in constructing

a plausible inference and in estimating the degree of

plausibility to be associated with it.

-33-

VII. INPUT PROCEDURES

THE PROBLEM

The previous sections concerned the theoretical founda-

tions for a practical data retrieval system. This section

begins consideration of procedures and techniques.

The first problem encountered in practice is that of

providing data to the data file--the input problem. To

solve it, procedures must be eveloped for gathering data

sources, for extracting data, nd for entering it in'to the

file.

Types of Data

The types of data included in the cybernetics data

file may be characterized in two ways: by content and by

form.

The Content of the Data. The content of the data file

includes both foreground and background information. The

foreground includes assertion about the context of cyber-

netics research; sentences about the relations among!

persons, organizations, publications, research areas,

positions, and so on. Yet many analyses of such foregronnd

data will demand the use of background information about

subjects not contained within the context of cybernetics

research. For example, geographic information about the

location of cities in states and states in regions wuld

.probably be required in order to establish what organiza-

tions in the eastern United States are supporting research

on pattern recognition.

S.-

-34-

The Form of the Data. The data in the file assume

three forms: relational sentences, derivation rules, and

thesaurus entries. The basic datum is a primitive sentence

in the Relational Information Language; that is, an asser-

tion of the form aRb, "entity a is in relation R to entity

b." In a number of cases, however, an abbreviation in file

volume can be achieved by storing instead a set of rules

that will allow the derivation of a specific sentence when

it is required. These are the built-in inference schemata

explained in Sec. VI. Data appearing in the file as entries

in a thesaurus are assertions of the semantic equivalence

of two or more expressions: for example, the assertion that

"MIT" and "Massachusetts Institutr f Technology" are dif-

ferent names for the same object.

Sources of Data

As Sec. II explained, t~ie major sources of data on

the context of cybernetics research are publications, both

scientific and general. In addition, information comes

from personal knowledge.

Collection Procedures

Two properties of the collection procedures deserve

mention. First, the procedures are source responsive.

Data are collected and extracted as they become available

in a particular source and not as they are needed to re-

spond to a particular query. Second, the sources are ex-

ploited in separate passes, each pass searching for a

different type of data.

-35- -

For example, a scientific or technical publication

is exploited in three passes. During the first pass,

bibliographic data concerning the subject publication

are collected. During the second pass, data about the

publications cited by the subject publication are extracted.

In the third pass, the text of the publication is scanned

for data about the context of cybernetics research, such

as statements that note the author's indebtedness to others,

that tell where the research was conducted and Its present

status, that identify the research sponsors, and so on.

EXTRACTION FROM DATA SOURCES

Since data appear in the sources in diverse forms

and at low density, complete input mechanization is in-

feasible at present. Humans must identify the appropriate

data and present them to the machine in a precise, standard

form. Two questions arise: First, what should the precise,

standard form be? Second, how can data so expressed be

translated into the information language for storage?

Representation of Extracted Data

There are three alternatives for representation of

extracted data: the input personnel could extract data

from the sources and represent it directly in sentences

of the Relational Information Language; they could repre-

sent the data in English language sentences; or they could

employ a special notation developed for the input process.

Data entry in the Relational Information Language

would eliminate zhe need for subsequent computer transla-

tion; however, considerable human effort would be necessary

-36-

to identify, record, and check the large number of sen-

tences needed to record even basic data; the probability

of mistakes and omissions would be high; and changes in

the information language would necessitate re-extraction of

the data from original sources. Data entry in the English

language would be convenient for human input aides, but

inconvenient for the computer. Translation into the Re-

lational Information Language would require routines whose

design would be a considerable research project.

Therefore, a special notation has been developed for

entry of data into the Relational Data File. The.input

aides express the data in this notation and the computer

translates from the notation to the information language.

Changes in the information language demand only a change

in the translation program and a new computer translation

of the input data--the input data do not have to be col-

lected anew.

Data Input Forms

The notation that has been adopted has five major

properties.

1) The input aides enter all data onto forms.

2) A specific form is designed for each class of
data encountered at the input. Forms to collect
bibliographic, organizational, and citation data
are among those needed for the cybernetics corpus.
The specific design of such forms must be done
anew for each new subject corpus, although many
forms will serve several corpora.

3) All classes of forms for all corpora are struc-
turally similar, so that a single set of input
programs can be written to handle input forms of

-37-

any class. Thus, the basic programming has to
be done only once; and the design of new forms
and application to new subject corpora does not
require any change in programs. The form designer
has only to provide the input program with the
values of certain parameters for each specific
class of forms.

4) Each separate item of information on each form is
explicitly named, variable in length, and atomic.
That is, the name of each primitive datum enters
the computer along with the piece of information;
the entire entry is bounded by parentheses so that
it can be of any length; and the string of symbols
that constitutes the entry is always treated as a
whole, never broken into constituent words or
phrases. Consequently, design of forms is simpli-
fied, since fixed-length areas do not have to be
established for certain kinds of data, and new
entries can be inserted without redesigning the
entire form. And similarly, the programming of
operations for handling forms is simplified, since
all the data are explicit in the input and not
implicit in the location of an item on a card or
tape.

5) Within a form, all the primitive data related to
a specific aspect of the subject item are grouped
together. For example, the bibliographic data
form groups its primitive data items into six
broad categories concerning the subject publica-
tion. A bibliographic data form is filled out
for each publication; it contains information
relevant to as many of the six broad categories
as are present in. the particular source.

Bibliographic Data Form

Each bibliographic data form is composed of a set of

data units called vectors which may be any one of six i
vector types, one for each aspect of the data. The six

types and the aspects of the data that each is intended to

capture are as follows:

" ' ' l l l i I I II I I I I I I I 21

-38- /

o SOURCE--the input aide's actual source of the data
entered on the remainder of the form (e.g., an
abstract or the item itself);

o PUBLICATION--the immediate publication context of
the subject-item (e.g., the journal in which an
article appears);

o ITEM--the subject of the form (e.g., an article,
book, or collection);

o PERSONNEL--the individuals associated with the
subject item (e.g., authors, editors, translators);

o PRESENTATION EVENT--any event or meeting at which
the subject item was presented (e.g., conferences,
seminars, classes);

o ORGANIZATION--the organizations associated with.
the subject item (e.g., sponsors, group authors,
contractors).

For convenience, the vector types have been given literal

names: A = Source, B = Publication, C = Item, D = Personnel,

E = Presentation Event, and F = Organization. A form may

contain more than one vectcr of a particular type; a vector

is filled out for each separate entity of a type. For

example, if a publication has three authors, three personnel-

type vectors will be entered on the form referring to that

publication. Each vector is given a name formed from the

name of its type and an index. The three personnel vectors,

for instance, would be called Dl, D2, and D3. A form need

not contain vectors of every type, but a bibliographic

data form must contain a Source, a Publication, and an

Item vector.

Each vector consists of a set of primitive data units

called components. Each component-has the form

(nn...n = xx...x)

-39-

where "nn...n" is the name of the component (e.g., ?ublica-

tion Date) and "xx...x" is a string of characters, the

datum (e.g.,.August 1965). For brevity, the components of

the bibliographic data form vectors have been given numeri- £

cal names, for the most part. For example, each personnel

vector has a component, called "I", that identifies the

role of the person it concerns with respect to the pub-

lished item, and a component, called "2", that gives the

name of the person. Thus, a form concerning a publication

of which Norbert Wiener is the author would conta.n a

personnel vector whose first two components have the form

(1-Author) (2-Norbert Wiener)

Vectors may have any number of components, but entries are

made on the form only in those components for which in-

formation is specifically at hand. For example, personnel-

type vectors include a component for the residence location

of the person, but it is not entered unless that information

is explicitly present in the source. The vectors in the

bibliographic data form average about 20 components, each

intended to accept a specific kind of data.

ENTRY OF DATA

The production of data forms is only the first step in

the input process. The data must subsequently be extracted

from the forms and translated into the Relational Informa-

tion Language for storage in the file. This subsection will

discuss the steps in executing that translation. But first,

we describe a programming system for manipulation of the

-40-

data forms that is the basic tool for carrying out the

translation, as well as a valuable auxiliary to the input

process.

.. .. Form Manipulation Programming System

The purpose of the Form Manipulation Programming S stem

is to enable i) the selection of input forms from the c m-

plete file on the basis of their jroperties, and b) the

performance of specified operatiohs on the selected for s.

For example, the system would be able to select all bibhio-

graphic forms that have the "2" component in a personnel-

type vector equal to "Norbert Wiener" and that also have

any event-type Vector. Such forms would concern published

items with which Wiener was associated in some respect

(author, editor, reviewer, etc.) and that had been pre-

sented at some meeting.

Having selected a set of forms according to some

criterion, the system will be able to execute on each form
I

operations such as: printing thel entire form; printing

selected vectors or components of the form; sorting the

component values before printing; deleting or correcting

the form; and constructing a sentence in the Relational

Information Language from components in the form. The

last operation, of course, is the basis for the data

translation procedures.

Besides its use in translation, the Form Manipulation

Programming System is a valuable tool for the input aides.

It can be used, for example, to obtain lists of all names

appearing in the input--a first step toward producing a

thesaurus of equivalent names. It can be used also to

-41-

verify the completeness of data collection from a specific

journal or of an individual's publications. It can be used

to produce bibliographies without having to employ the main

data file. These uses show that the Form Manipulation

Programming System, which works on any data forms having

the vector-component structure, is by itself a small-scale,

but flexible, data retrieval system.

Translation Into Information Languaze

Once a data form has been filled in by an input aide,

it is keypunched and given to the computer. It is then

operated upon by routines written for the Form Manipulation

Programming System to produce sets of relational sentences.

This is the process of translation. How is the translation

routine produced?

A new translation routine is prepared for each class

of data forms. That is, there is one for bibliographic

data forms, another for biographic-data forms, still another

for organization data forms, and so on. The translation

routine is prepared at about the same time as the form, for

translation requirements can affect the type of data col-

lected and the format used.

The translation routine consists of a set of commands

for the Form Manipulation Programming System that are pre-

cise descriptions of such rules as the following: If the

first component of the first personnel vector (vector Dl)

is "author," then establish a sentence

Dl'2 AUTHOR OF Cl'2

I

., ! I I I I I I I l l l l I I~ IL

-42-

where Dl'2, the second component of the first D-vector, is

the name of an author, and Cl'2, the second component of

the first item vector (vector Cl) is the title of the

publication.

The Form Manipulation Programming System executes the

translation routine on each data form, producing a set of

sentences in the information language for insertion in the

file. If the information language changes or the data in a

form is analyzed differently, a modified translation routine

is prepared; but once that is done, the computer easily re-

translates old data forms into revised data sentences.

, 43-

VIII. OUTPUT PROCEDURES

THE PROBLEM

Section VII considered the problems of entering data

in the file. This section considers the opposite problem,

retrieving data from the file in response to the requests

of the user--the output proble..

We begin with the kinds of output requests that the

file should satisfy. Then we discuss the process of com-

municating those requests to the file, and describe the

means of processing them.'

KINDS OF REQUESTS

The output procedures for a data retrieval system must

be evaluated relative to the needs of the prospective users.

Therefore, we shall indicate briefly the kinds of use and

the types of requests that the file is intended to serve.

Kinds of Use

We anticipate two main uses of the file: a) to con-

tinue and deepen research on its subject matter; b) to

satisfy a current interest in some question falling within

its domain. The requirements for these two uses are'so

different that it is necessary to provide two, almost

distinct, kinds of output procedures.

Uses of the first kind, for example, are likely to

require an extremely wide range of intricate searches, and

the system designer probably cannot anticipate many of

them. At the same time, a researcher should devote time

fr--

-44-

and effort to learning how best to employ the file. Con-

sequently, the requirements of this kind of use can best

be met by providing a repertoire of basic retrieval opera-

tions from which the user can construct procedures for

his research problems.

Uses of the second kind, however, require direct

replies to simple questions, many of which the system de-

signer can anticipate. It is infeasIble to expect re-

searchers to devote much time or effort to learning how

best to employ the file for such ends. Consequently, the

necessary requirements can most satisfactorily be served

by building into the file the capacity to analyze and

answer questions directly.

Types of Requests

The file should be able to satisfy two types of

requests:

o Execute a procedure,

o Answer a question.

Procedures. Some of the kinds of procedures that the

file must be able to execute have been identified in Secs.

V and VI:

1) It should be able to carry out the elementary
retrievals, mentioned in Sec. V, that either
test for the presence of a given sentence in
the file or, if it is a sentence with variables,
identify the values of the variables for which
instances of the sentence are present;

2) It should have the capacity to execute procedures
that when applied to retrieved data can produce
counts, compute correlations, indicate trends, etc.;

-45-

3) It should be able to execute strict and plausible
inference schemes of the kinds mentioned in Sec. VI.

Questions. An important distinction among questions

may be made on the basis of what kinds of prvcedures must

be executed in order to find their answers.

1) The answer to a question may be explicitly con-
tained in the data file. In such a case, answering,
it requires only the execution of one of the ele-
mentary retrieval procedures.

2) The answer to a question may be available only
after some preliminary processing of the available
data. For example, such processing might include
execution of counting or comparison procedures.

3) The answer to a question may not be explicitly
contained in the data file, although it is im-
plicit (in the sense mentioned in Sec. VI) in what
is there. Consequently, obtaining its answer would
require the execution of an inference scheme.

Many questions, of course, will fall into several of

these classes; e.g., their answers might be partly explicit

and partly implicit in the data file.

The feasibility of automatically obtaining an answer

to a question depends largely on the classes to which it

belongs: It is greatest if its answers are all explicitly

in the file; least if its answers are mostly implicit (in

which case automatic derivation of an inference scheme

would be required).

COMMUNICATING REQUESTS

The two classes of use--continuing and current--impose

different requirements for communication with the file.

During continuing and deep research, the greatest im-

portance attaches to specifying precisely and concisely

__ _

-46-

the sometimes intricate procedures that must be executed.

To do this, a language is necessary whose basic statements

describe the operations and decisions to be performed:

the Procedural Language.

During current use, it is most important to be able to

state a question as easily and simply as possible. For

this, a language is necessary whose basic statements are

as close as possible to English language sentences: the

Query Language.

Procedural Language

The Procedural Language has a vocabulary that consists

of the following commands and decisions.

Extraction. These commands specify operations that

take a relational request sentence with variables (e.g.,

x SUBORDINATE TO y, which has variables x and y), search

the file for sentences identical with the request sentence

except that the variables P-e replaced by constants (e.g.,

Jones SUBORDINATE TO Smith), and retricve the constants as

values of the variables (e.g., x is Jones and y is Smith).

Often the values of only certain variables will be of

interest, so the command statement should identify these.

For example, the command

EXTRACT (x) FOR (x SUBORDINATE TO y)

would result in the retrieval of the values of x alone.

Manipulation. Commands of this kind specify the basic

manipulations of the values obtained by the extraction

command: e.g., the arithmetic commands required to specify

-47-

counts, correlations, and trend analyses; commands that

specify ordering of the values, formation of the union

or intersection of sets of values, determination of the

first, last, or ith member of an ordered set, etc.

Insertion. These commands specify processes that are

the reverse of extraction. Given a relational sentence

with variables (e.g., x SUBORDINATE TO y) and a set of

values of the variables (e.g., x is Jones and y is Smith),

they form sentences by replacing the variables with the

specified values (e.g., Jones SUBORDINATE TO Smith). The

primary role of the insertion operation is in the execution

of an inference scheme; it is used to form the consequent

statement, employing values for which the antecedent is

satisfied.

Decisions. Commands of this kind, specifying possible

branches in the retrieval procedure, have the form:

IF e, ThEN GO TO a,

where is a testable cc dition and a is the name of another

command in the procedur The command states that if con-

dition a is satisfied (e.g., if a particular sentence is

in the file), then the next command to be executed is a;

otherwise, the next command in order will be executed.

Input-Output. These commands specify the operations

needed to establish a convenient interface between user and

machine. Output especially is important; it is desirable

to provide a flexible complement of print, plot, and dis-

play operations to assist the user to the fullest possible

extent.

II
I I

This then is the basic structure of the Procedural

Language that will be used in continuing and deep researches

Its building blocks can be combined to form simple procedure

for retrieving a few pieces of explicit data or the intricat,

processes needed to execute complex inference schemes. More

over, the language is independent of the subject of the file

its commands and routines apply to any Relational Data File.

Query Language

The vocabulary of the Query Language is a subset of

English and a grammar that permits simple English sentence

forms.

It is developed evolutionarily. Vocabulary and accept-

able grammatical forms are added as procedures for inter-

preting them are provided. At each step the user may have

difficulty determining whether the question he wishes to

ask will be interpreted correctly. To avoid error, there-

fore, the file feeds its interpretation of the specified

query back to the user before seeking the answer.

PROCESSING REQUESTS

Regardless of the form in which a request enters the

data file--procedure or question--it must be translated into

a program in machine language that will perform .the appro-

priate searches and manipulations and print out the desired

results. Evidently, the translation process will be far

simpler when the request is already a precisely defined

procedure than when it is a freely phrased question.

it

Procedures. The Procedural Language must be accom-

panied by a compiler that translates a procedure into a

program in computer language.

When a procedure request enters the file, therefore, it

is compiled and executed directly. No further logical or

linguistic processing is necessary.

Questions. This situation is entirely different. In

this case, the preprocessor must accept questions phrased

in an English-like language and produce procedures described

in the Procedural Language. It is necessary, in other words,

to treat explicitly the problems of accepting natural lan-

guage input and of determining the procedure that will pro-

vide an appropriate answer to the question.

The first role of the question-accepting preprocessor

is to translate as much as possible of the question from

English to the Relational Information Language. For example,

the question "Who wrote 'The Theory of Cybernetic Systems'?"

should be transformed into a sentence like:

(Who x) (x AUTHOR OF The Theory of Cybernetic Systems).

The iecon rol- fhe preprcc'-sr is tc specify the

retrieval procedure that will provide an appropriate answer

to the question. For example, the transformed sentence

(Who x) (x AUTHOR OF The Theory of Cybernetic Systems)

must'give rise to a procedure such as:

1) EXTRACT (x) (x AUTHOR OF The Theory of Cybernetic
Systems);

2) PRINT (x).

* -50-

Somewhat greater difficulties arise when the question

posed requires some manipulations of the extracted data for

its resolution. For example, the question "How many papers

has John Jones written?" must first be translated into

(How many x) ((x BELONGS TO CLASS papers) AND
(John Jones AUTHOR OF x)),

and that must, in turn, give rise to a procedure such as:

1) EXTRACT (x) ((A .3ELONGS TO CLASS papers) AND
(John Jones AUTHOR OF x));

2) SET y TO COUNT OF (x);

3) PRINT .

At the same time, a class of answers remains that seems

to be inaccessible to an automatic question-answering system:

those only empirically implicit in the data stored in the

file. In order to obtain such answers, a plausible inference

must be employed. Construction of such inference

schemes depends frequently on the use of background data and

processes of reasoning that cannot, at present, be dupliL-LL.

in a computer. Consequently, access to certain kinds of im-

plicit data can be gained only by requesting the execution

of a procedure that embodies the user's inference scheme

and not by requesting the answer to a question.

Of the two means of access to the file that have been

described, Procedural Language and Query Language, the former

is the basic one for two reasons: first, because it provides

the only access to an important class of implicit data;

I

-51-

second, because it is the language in which the question-

accepting preprocessor must communicate with the file.

Thus, although the foregoing discussion has paid equal

attention to the Procedural and the Query Languages, the

file development will devote primary attention to the

Procedural Language. The Query Language will be developed

as it appears useful and feasible,'but th file will be

usable in its full power with the Procedu al Language alone.

-52-

IX. STORAGE AND PROCESSING PROCEDURES

THE PROBLEM

Sections VII and VIII described the interrelations

between the Relational Data File and its two classes of

users: those who enter dataand those who extract it.

This section examines the internal organization of the

file: the structure of stored data and the programs that

operate on those data.

STOR-ArE

While the basic content of the Relational Data File

is a collection of binary relational sentences, in order

to interact conveniently with its users and keep the size

of the file within practical bounds it must also contain a

number of other kinds of data. This subsection describes

each of the kinds of data that will appear in the file and

indicates the form in which they will be stored.

Relational Data

A file may hold data about a relation R in one of two

j forms: extension or intension.

Forms of Relation Storage. A relation is stored in

extension as a set of sentences of the form, aRb, where

each sentence denotes an instance of the relation. The

LOCATED IN relation would be stored in extension, for

example, as a number of sentences like:

-53-

Los Angeles LOCATED IN California
California LOCATED IN United States
Los Angeles LOCATED IN United States

and so on.

A relation is stcred in intension, however,-by spec-

ifying a procedure through which sentences of the form aRb

may be derived. For example, the EMPLOYED IN relation

between persons and geographical locations could be stored

in intensional form through use of the following strict

inference:

If (x EMPLOYED AT z) and (z LOCATED IN y),
then (x EMPLOYED IN y)

where x is a person, y is a geographical location, and z is

an organization. The inference implicitl" specifies a pro-

cedure for verifying whether (Jones EUVLOYED IN London) is

true with respect to the contents of the file, which is to

be seaiched for a pair of sentences of the form:

(Jones EMPLOYED AT z)
(z LOCATED IN London).

If such a pair with the same z in each exists, the sentence

is verified; otherwise, it is not.

Thus, a relation may appear in the file in one of two

ways: in extension, as an explicit set of relational sen-

tences; in intension, as a procedure through which sentences

of the relation may be derived. The file contains two

/

-54-

separate stores: an extensional store of relational

sentences and an intensional store of derivation rules.

Extensional Store. Each sentence in the extensional

file is an entry in a binary relation, so it must contain,

at least three components, one for each of the two argu-

ments of the relation and one for the name of the rela-

tion. In addition, a number of other items of information

should be associated with each primitive sentence: the

source of the data described by the sentence, the dates

on which the relationship denoted by the sentence is

known to have held, the date that the sentence entered the

file, the number of times it has been used, and so on. Yet,

reserving components in each primitive sentence to represent

each of those information items would unnecessarily clog the

store and complicate data processing. So instead, each

sentence is assigned a name, say Si, and the file holds all

source, date, and usage information through relational

sentences in which "Si" is one of the arguments. Each

primitive sentence in the file consists of four components:

the names of the sentence, its domain element, relation,

nnd range element.

Intensional Store. The intensional store can be

organized in much the same way as the extensional store.

It may be viewed as expressing relations among the relations

in the information language.

Other File Data

Besides the primary file of relational data, a number

of other forms of information must be included in the data

-55-

store: A code dictionary to perform the translations be-

tween external dnd internal names; a thesaurus to identify

the several different names for a single individual; and

a natural language dictionary for interpretation of natural

language queries.

Code Dictionary. Data appear in sources in forms in-

convenient for computer storage. Names are not as compact

as possible, wasting valuable storage space; and they vary

in length, complicating storage allocation, file search,

and data transmission. These difficulties may be overcome

by mapping external data representations into compact,

fixed-length internal codes. For example, a single 36-bit

computer word may contain the coded name of any of 236 - 69

billion different objects, and clearly the needs of all

feasible data banks could be served by assigning a single

36-bit code to each entity. Thus, with effective coding,

the basic relational sentence can be stored in a handful

of computer words. Without coding, an article title alone

might occupy 10 or 15 computer words.

To carry out the translation between external and

internal coded represenLaLions, a coding routine and code

dictionary is needed. The code dictionary; which has to

be consulted during each entry to and exit from the file,

occupies part of the basic data file.

Thesaurus. In the data sources, many items may be

called by several different names. For example, in dif-

ferent contexts the same person may be referred to as

"J. V. Jones," "John Jones," "J. Vincent Jones," or "John

Vincent Jones." Each eatum entered in the file uses the

name as it appears in the specific source. But when the

I

-56-

data file rece Lves a request for information about J V.

Jones, all the data concerning him, no matter under which

form of his n e they were entered, should be retrieved.

The vehicle fo achieving this identification is a thesaurus

* a dictionary t at identifies the synonymous forms of each

data name. Th a, a request for information about J. V.

.. Jones first go:s to the thesaurus, where it is expanded

to include the other forms of Jones' name.

Besides iclentifying the several forms of aames of

the entities tk at enter relationships, the thesaurus can be

used to recognize the various names for relationships them-

selves. For example, all the phrases "author of," "writer

of," "wrote the publication," "author of the publication,"

"authored," and so on, may be used to denote the relation-

ship AUTHOR OF between persons and publications. If the.

thesaurus is used to identify all these phrases, the user

has greater freedom in phrasing his requests.

Natural Language Dictionary. The translation of simple

natural language requests to procedures for retrieving their

.answers demands some analysis requiring a natural language

dictionary. Th nature and form of the information in the

dictionary depends, of course, on details of the translation

prccess. However, it must perform functions such as identi-

fying which works are question words, names of objects,

names of relations, and auxiliary words; determining the

part of speech of specific words; and noting the tense of

verbs.

I _ _

-57- ..

PROCESSING

The descriptions in Secs. VII and VIII emphasized the

processes of input and output as they might appear to the

external observer. This subsection briefly discusses these

internal-processing steps as they appear to the syste

programmer.

Input

The primary input to the file is data forms. The task

of the input programs is to transform the information on

these forms into relational sentences for storage. There

are actually four steps in the procets'

Forms to Expanded f4I!q~I -t'he input ,%Jes employ a

number of conventions in vrder to avoid xepetitive typing.

Before relations may be extracted from the fo *, these

conventicns must be interpreted and tOh tepeaiod Lnforma-

tion inserted in the appropriate places. The result is

called the expanded form. Its formation is the first

step of the input process.

Expanded Forms to Relational Sentences. The next step

employs a routine, provided by the designers of the input

data form and specified in the Form Manipulation Programming

System, to extract relational sentences from the data form.

Relational Sentences to Coded Relational Sentences.

As noted in the section on storage, data are coded before

being entered in the file. The coding program must scan

each sentence, find the code for each entry, and, if a new

code has to be assigned, update the code dictionary appro-

priately.

-58-

Coded Relational Sentences to Data File. The final

step in the input process inserts the extracted and coded
relational sentences at the appropriate locations in the

_--extensional relation file. This routine-also includes-

housekeeping functions that check for duplicated sentences,

construct appropriate cross-indexes, reorder file structures,

etc.

Other Input Data. The steps outlined above must be
followed to enter extensional data sentences. Routines

must also be provided to enter new intensional sentences,

thesaurus entries, and natural language dictionary entries.
The details of those routines must await further specifica-

tion of the structures of these data files.

Output

The fundamental request to the file is a procedure
expressed in Procedural Language. The t sk of the principal

output programs is to accept such a requ st and produce the
appropriate output data. The process hai two steps.

Procedure to' Retrieval Program. The procedure, ex-
pressed in a form convenient for the user, is translated

into a form convenient for the computer. The commands are

translated into computer instructions and the relational
sentences are coded (through the code dictionary) to con-

form to the internal data format.

Retrieval Program to Retrieved Data. The computer pro-
gram is executed and the retrieved data is made available

to the user. The steps required to execute the EXTRACT
command described in Sec. VIII illustrate this step.

-59-

For concreteness, consider the command:

EXTRACT (x): (J. V. Jones WROTE x)

(The variable and the relational sentence would be in in-

ternal code, but for clarity we shall leave them in their

external form.)

The first step is to "normalize" the relational sen-

tence through use of the thesaurus. Entity names are re-

placed by all their synonymous forms; relation names are

replaced by their preferred form. The command then would

appear as follows:

EXTRACT (x): (. V. Jones AUTHOR OF x)
OR (John Jones AUTHOR OF x)
OR (John V. Jones AUTHOR OF x)
OR (. Vincent Jones AUTHOR OF x)

etc.

The second step is to search the extensional data file

for sentences satisfying one or another of the request sen-

tences and as they are found to add the appropriate values

of x to a list.

If the values of x were to be used in a subsequent

search of the file, the thesaurus would be used to find

all of their synonyms. For example, if

AND (x PUBLISHED IN Proceedings IEEE)

-60-

were part of the request sentences, the list of x's would

be expanded to include all alternative forms of the titles.

Then for each x in the list, a search would be made to see

if (x PUBLISHED IN Proceedings IEEE) appeared in the file.

If it did, that value of x would remain on the list; if it

did not, the value would be removed.

When the list of x's is complete, a check of the

thesaurus is made to remove all but one of the synonyms for

each object. However, all appropriate answers to the re-

quest may not appear in the extensior'l file. In that case,

the intensional file is consulted to determine means of

evaluating the AUTHOR OF relation.

For example, separate relations may be stored in the

file for PRIMARY AUTHOR OF and SECONDARY AUTHOR OF. In

that case, a derivation procedure based on the following

strict inference would appear in the intensional file:

(w AUTHOR OF x) IF ((w PRIMARY AUTHOR OF x)
OR (w SECONDARY AUTHOR OF x))

In this procedure, the file would be searched for sentences

of the form:

(J. V. Jones PRIMARY AUTHOR OF x)
(J. V. Jones SECONDARY AUTHOR OF x)

and so on. The values of x obtained would be added to the

list of x's found in the extensional file.

Natural Language Questions. Simple questions, phrased

in English, must undergo an additional processing step in

order to be translated into a procedure, phrased in Procedural

/

' -61-

Language, for execution by the file. The additional step

is performed by a self-contained preprocessor that, however,

employs the natural language dictionary contained in the

file.

The preprocessor must identify the words in the ques-

tion that name relations and entities, are logical con-

nectives, specify unknowns, and indicate the type of ques-

tion concerned. It then must modify the sentence until it

has only well-formed relational sentences and question

words. Finally, it uses the question words and relational

sentence to identify the appropriate retrieval procedure.

eA

I

-62-

X. LITERATURE SEARCHING

THE PROBLEM

For two reasons, the Relational Data File may be

applied to the problem of literature searching.

First, the data file lends itself directly to litera-

ture searches based on conventional bibliographic or subject

indexes. Second, and more important, the flexibility and

breadth of the data file enable information about the entire

context in which research in a given discipline is conducted

to be stored. The data file, therefore, lends itself to

searches that employ a wide variety of clues about the

persons, organizations, and journals concerned with a given

subject, It is believed that by employing such clues the

process of machine-assisted literature searching can be

made more effective and convenient.

This section first shows how a Relational Data File

can be applied to literature searching employing the usual

bibliographic and subject data, and then demonstrates how

far more complex searches employing context data may be

executed with the file's help.

LITERATURE SEARCHING USING BIBLIOGRAPHIC DATA

Description

The most direct means of reference to a publication is

through one or more elements in its bibliographic descrip-

tion. In a literature search, the user may know the author's

name or the title and date of a publication, and wish to

-63-

know enough of the remaining bibliographic facts to enable

him to find the publication.
.1

Application of Data File

A data retrieval system is adaptable to such a task.

The informa ion language must include relations such as

AUTHOR OF, BLISHED IN, and TITLE OF and the file must in-

clude a set of sentences expressing the relationships be-

tween authors and their papers, between papers and their

journals of publication, and so on. Data about the context

of cybernetics research naturally include such sentences;

thus the experimental corpus for the present system may

easily be turned to bibliographic retrievals.

For example, a researcher interested in the papers of

Norbert Wiener would be able to find them through the. file

by means of 'a request of the form:

EXTRACT (x) ((Norbert Wiener AUTHOR OF x) AND
(x BELONGS TO CLASS papers))

The file would produce a list of all the publications "x"

appearing in'both such sentences.

LITERATURE SEARCHING USING SUBJECT DATA

Description

Often a researcher knows nothing about the documents

he seeks except their subject. He may wish, for example,

to find documents most relevant to pattern recognition.

Since it is infeasible to identify all subjects at the

-64-

time of each request, documents are generally indexed when

they enter the collection. The problems arising from such

an approach are well known, but difficult to avoid: the

assignment of subject indexes is laborious, requires the

kind of knowledge indexers do not usually have, demands a

similarity of view and vocabulary between the indexers and

the requesters, and can become quickly outdated by advances

in science or technology.

Application of the Data File

In order to use a data retrieval system as a subject-

indexed literature-searching system, both bibliographic

and subject information about the desired publications must

be added to the file. To characterize a publication's

subject, a single relation in the information language might

be sufficient: SUBJECT INDEXED UNDER. Then, for each

publication, one or more additional sentences of the form

"fx SUBJECT INDEXED UNDER y" would be inserted in the file.

A request for all publications relevant to pattern recog-

nition might take the form:

EXTRACT (x) (x SUBJECT INDEXED UNDER
pattern recognition)

The response would be a list of all publications whose name

"o" appeared in a sentence of that form.

Storing a Thesaurus

One problem in subject indexing arises from the

hierarchical nature of subject areas. Pattern recognition

-65-

is a subdiscipline of artificial intelligence, which is a

subdiscipline of cybernetics. The interrelations among

subjects are so complex that it is difficult, if not im-

possible, to identify at every level:all to which a docu-

ment may be relevant. Consequently, an attempt is sometimes

made to identify the most specifically relevant subjects.

To serve general requests, it is necessary to provide some

means of explicating general subjects. This may be done

by a thesaurus stored within the literature searching system.

The thesaurus may also be used to reduce the mismatch be-

tween index terms and request terms by identifying synonyms,

and to expand the area of search into closely related areas

by means of "see also" entries.

A thesaurus may easily be included in a Relational Data

File. The information language must contain relations such

as SUBDISCIPLINE OF, IDENTICAL TO, and RELEVANT TO among

subject areas; also, a subject specialist must enter into

the file sentences such as "Pattern R4cognition SUBDISCI-

PLINE OF Artificial Intelligence," "Sitching Theory

IDENTICAL TO Theory of Switching," and "Switching Theory

RELATED TO Automata Theory"; and finaily, that the data

file be provided with inference schemes such as "If (2i

SUBJECT INDEXED UNDER Y) and (SUBDISCIPLINE OF y), then

(_ SUBJECT INDEXED UNDER z)."

Subject Index Assignment

Because the assignment of index terms to a publication

is a difficult and time-consuming task, an efficient com-

puter-based literature-searching system should provide

easier and faster means. While the Relational Data File

I

-66-

can accept index terms produced by any source, it also

has unique capabilities for automatically indexing publica-

tions. This section will discuss the possible outside

sources of index assignments, and some possibilities for

automatic assignment within the file.

Outside Sources of Indexes. There are three principal

external sources of index statements.

o At the time that bibliographic information is being
prepared for entry into the file, the input aides
could manually assign index terms to the publication.

o Any technique for automatically assigning, index
terms could be employed at the input to the data
file. A number of such techniques employing key-
word or frequently occurring words in titles,
abstracts, or text have been suggested. The only
changes needed to employ existing or future tech-
niques would be those necessary to produce the
output in the form of relational sentences.

o Extensive use could be made of indexing that is
done independently of the input procedures and
under different auspices. For example, review

fand abstract journals provide subject indexes;
subject-indexed bibliographies frequently appear
in the technical press; journals frequently divide
their contents into subject-area departments; and
libraries assign classification numbers to books.

Sources of Indexes within the File. As an example of

the techniques that can be used within a data retrieval

system to assign indexes to publications automatically,

let us consider one employing information about citations.

The technique might work as follows: During input,

as each publication is being scanned for bibliographic data,

it is also checked for citations. For each publication "x'

that is cited in document "d". a relational sentence of

the form "N CITED BY d" is entered in the file. (The file

-67-

is also assumed to include subject index information.)

Now, the following inference may be made: If a publication

I'd" refers to a publication ", and '1" has previously

been assigned the subject index "s", then publication "d"

is also relevant to subject "s". This is not a strict

inference, of course, but one might assign a moderate

degree of plausibility to it; and even such a simple ap-

proach could be useful in some cases. Thus, the inference

schema "If (CITED BY d) and (SUBJECT INDEXED UNDER s)

then (d SUBJECT INDEXED UNDER s)" could be used to assign

subject indexes automatically.

But in a data file containing research-context informa-

tion, it is not necessary to stop with simple inferences.

The above example can be improved by bringing more of the

contextual information in the file to bear: e.g., one

might decide that the hypothesis that a citing paper is

relevant to the same subjects as the papers it cites would

be more valid if a simple check were made to insure that the

subject is one in which the author of the citing paper is

known to be interested. A file on the context of research

in a given scientific field would naturally contain sen-

tences of the form "a PROFESSIONALLY INTERESTED IN s"

where "a" is the name of an individual and "s" is the name

of a subject. Thus, the antecedent of the citation inference

could be expanded by addition of the phrase "and (a AUTHOR
OF d) and (a PROFESSIONALLY INTERESTED IN s)."

Another check could be based on the recognized practice

of professional journals to publish only articles on certain

specified subjects. The inference scheme could be expanded

to include a phrase insuring that the index terms assigned

/

-68-

are only those known to lie within the jcurnal's area of

interest. Many other improvements of this kind could be

made. The value of the Relational Data File is that it

enables inference schemes to be altered and elaborated

easily and it contains the wide store of data essential

for the construction of sophisticated inferences. Conse-

quently, the file can serve as a valuable tool in the de-

sign and testing of automatic subject-indexing techniques.

LITERATURE SEARCHING USING CONTEXT DATA

The value of a data retrieval system for literature

searching is that the research can proceed in a myriad of

ways adaptable to the searcher's individual demands and

knowledge. He is limited neither to bibliographic nor to

subject clues, but may work within the entire context of

research, and go beyond the traditional approaches to

literature searching.

Description

Manual literature searches frequently employ clues

other than the bibliographic or subject characterizations.

A scientist's search, for example, will employ many kinds

of information about the 'people, organizations, journals,

and locations associated with studies of a specific subject

area; i.e., almost the full range of information about what

we have called "the context of research." Moreover, his

search will continually adapt and evolve in response to the

information received in progress.

Context-guided, adaptive searches can be extremely

effective when done manually, but their quality depends

-69-

upon the quantity of available information and time. Con-

sequently, computer assistance can improve their average

quality. At the same time, their mechanization could lead

to a comparable improvement in the quality of computer-

assisted literature searches.

Application of the Data File

In order to use a data retrieval system as a litera-

ture-searching system employing context clues, it is neces-

sary to include, in addition to bibliographic and subject

information, a wide variety of data concerning the relevant

people, organizations, journals, and locations. Relations

such as CONDUCTS RESEARCH ON, SPONSORS RESEARCH ON, STUDENT

OF, AFFILIATED WITH, LOCATED IN would be included in the

information language. As mentioned in Sec. III, this

kind of data is being collected for the corpus on the con-

text of cybernetics research. So the Relational Data File

is well-adapted to literature searching using context data.

Take, for example, the situation in which the searcher

would like to use clues about persons or organizations

concerned with, say, pattern recognition, to lead him to

relevant publications. He need not only rely upon his own

awareness of such persons and places, he can employ the

file as follows:

EXTRACT (y) (Lx CONDUCTS RESEARCH ON pattern
recognition) AND (x AUTHOR OF y)) OR

((SPONSORS RESEARCH ON pattern
recognition) AND (z SPONSORS
PUBLICATION OF))

where x is a person, I is a publication, and z is an

organization.

-70-
f

Or, suppose the searcher has heard that an electronic

conference held in Boston had some especially good papers

on pattern recognition. He could employ the file to find

them as follows:

EXTRACT (z) (x HELD IN Boston) AND
(x CONCERNED SUBJECT OF Electronicss
(x SPONSORED UBLICATION OF y) AND

(PUBLISHED N y) AND
(z SUBJECT INXED UNDER pattern
recognition)

where x is the conference, is the proceedings of the con-

ference, and z is a paper in the proceedings.

The intricacy with which context-based searches can

be made in the Relational Data File is delimited only by
the available input data and the abily of the user to

construct complex inference schemes.

Context Hypothesis

Until the Relational Data File becomes operational,

there is little evidence on the effectiveness of computer-

assisted, context-based literature searches. The asser-

tion that use of context data will improve literature

searches is a hypothesis--the context-hypothesis. However,

some informal arguments justify it.

The context-hypothesis appears to be reasonable because:

o Scientists seem to conduct their own manual searches
according to a wide variety of context clues;

o Manual contextual searches can undoubtedly be im-
proved in thoroughness and complexity through
machine assistance;

-71-

o Context searches employ both bibliographic and
subject data, thus they contain as special cases
both of those kinds of searches;

o The flexibility inherent in keeping a file of
data relevant to the entire context of research
and in providing the ability to perform a wide
range of searches can only improve literature
searches.

Data Retrieval and Literature Searching

Before leaving the subject of literature searching,

two points should be emphasized:

First, because of the flexibility inherent in the

Relational Information Language and the ease of defining

procedures to work on relational data, the Relational Data

File may be employed to test a wide variety of possible

literature-searching schemes.

Second, literature searching is only a specific

application of the Relational Data File, a natural by-

product of our choice of experimental corpus. The file,

however, may be used to store and retrieve data about sub-

jects totally unrelated to literature searching. (Section

XI mentions some possibilities.)

:4

-72-

XI. EXTENSIONS AND APPLICATIONS

THE PROBLEM

The preceding sections have described the implementa-

tion of the Relational Data File. The design choices have

been made with the objective of quickly achieving a useful

file, avoiding difficult problems not intimately related

to the process of data retrieval. However, once an initial

Relational Data File is achieved, it will probably be both

desirable and feasible to add refinements. This section

discusses some of these. In addition, a number of potential

applications of the file to corpora other than the context

of cybernetics research will be described.

INPUT REFINEMENTS

The data input process can be improved by allowing

input in natural language, by introducing the means for

direct, on-line entry of data, and by establishing feed-

back from the file about correspondences between new and

previously stored data.

Natural input Language

Use of a natural input language for at least a portion

of the data base should pose few problems beyond those that

have to be resolved at output. The translation of natural

language queries into acceptable procedures involves as a

subtask the translation of the simple natural language

statements into the Relational Information Language.

-73-

On-Line Data Entry

The attractive prospect of a natural language input

ability is that of enabling a user with an on-line console

to make direct entries to the file. Once such consoles

are available, access to the file will be convenient to a

great number of individuals possessing much information

that they can file without having to learn special pro-

cedures. An on-line console would have further value:

even if entry were made on forms by input aides, the direct

connection would enable them to execute their task more

quickly, effectively, and accurately.

File Feedback

The direct interaction between input user and file

through an on-line console could be used to detect and

correct imperfections in data during the input process.

Among the imperfections for which this might be useful

are ambiguities (e.g., two or more individuals may have

the same name), incomplete information (e.g., a book's

date of publication may have been left out), and repetitive

or inconsistent information (e.g., two birth dates may be

associated with the same person).

STORAGE AND PROCESSING REFINEMENTS

The Relational Data File will store vast quantities

of data. Current technology gives no hope of keeping any

but the immediate requirements in the internal computer

store. Much data will be kept on auxiliary random-access

devices (e.g., discs). Still other data will have to

-74-

reside on auxiliary sequential-access devices (e.g., tapes).

Consequently, obtaining a specific item of information can

take a long time unless great care is spent in designing

store access procedures and structure. One way to expedite

access is to make the whole data structure adapt to the

demands of the user.

Adaptive Storage

The techniques of adaptation could include a transfer

of data items from one form of bulk storage to another, a

rearrangement of sentences in the file, and a modification

of the form in which a relation is stored. Two forms of

relation storage were described in Sec. IX: extensional

and intensional storage. The choice between those forms

for a given relation will depend in part on the frequency

with which the relation is used, the number of entries in

the relation, and the access speed and volume of the

several storage media.

On-Line Processing

Another set of desirable refinements to storage and

data-processing procedures are those associated with the

introduction of on-line, time-shared access to the file.

There are problems associated with 1) executing the re-

quired operations in real-time, and 2) servicing multiple

simultaneous users. The real-time requirements should be

satisfied through flexible and adaptive store organization

and efficient search strategies. The multiple-user re-

quirements should yield to the buffering and store-sharing

techniques currently being developed for computational

applications.

-75-/

OUTPUT REFINEMENTS

An eventual objective for a computer data file might

be the following output process: without special instruc- a

tion the user approaches and communicates with the file

directly in English. The file responds with output at

the user's pace. In addition to providing answers to

di ect queries or executing complicated retrievals, the

file provides assistance in posing requests, generates

and carries out many inferences without. external help, and

stores and reports the relevant experience of previous

users. Once an initial file is achieved, work can begin

on extending its capabilities. One line of research could

be concerned with improving the man-machine interaction at

output; another with mechanizing more of the inference-

making tasks.

Improved Man-Machine Interaction

Once an on-line console and an English-like request

language make access to the file convenient, it becomes

desirable to provide assistance to the inexpert user

through feedback from the computer. For example: The

user indicates that he is interested in studying organiza-

tions concerned with pattern recognition research. The

file responds by listing all the relations between organ-

izations and subject areas that appear in the file. The

user phrases his request in terms of the relation that

seems most appropriate. Should his request call for a

very large reply, the file indicates its size and verifies

that the user desires it. If he does not, the file suggests

-76-

the form of an additional requirement to narrow the field

of appropriate responses.

Mechanized Inference Making

Still more assistance could be provided the user in

the field of inference making. A simple form of help could

be based on storage of inference schemes constructed by

previous users. Should the user enter a request for which

a sto-ed inference scheme would be relevant, the file would

display it to him and, should the user desire, execute it.

But the file could also be provided with the capacity to

generate some inference schemes on its own.

The mrzhine construction of arbitrary plausible infer-

ence schemes poses a difficult, if not impossible, problem.

Usually such inferences are constructed on the basis of a

wide vailiety of empirical knowledge that a specialized

data file would not be expected to contain. There may,

however, be techniques that can be used to construct a

number of types of strict inference schemes, and, possibly,

some plausible ones.

Strict Inferences. A number of strict inference schemes,

for example, follow from the basic properties of relations.

If a relation R is known to be transitive, then an inference

scheme of the form

IF (aRb) AND (bRc), THEN (aRc)

is justified. If each stored relation is characterized in

terms of the properties of transitivity, reflexivity,

-77-

symmetry, and so on, design of routines which generate

certain strict inference schemata becomes possible.

Plausible Inferences. One way the file could c n-

struct plausible inference schemes is by generalizin

schemes presented by users. For example, if a user ad

employed the following:

IF (x AUTHORED PAPERy) r...i
AND (SUBJECT INDEXED UNDER pattern recognition)
THEN (x CONDUCTS RESE RCH ON pattern recognition)

where x is a person and y is a paper, the file could gen-

eralize it by substituting a variable z r ing overt

set of subject areas, for the constant "pattern recognition";

or by replacing the variable y, ranging over the set of

papers, with Z' ranging over the set of publications; or

by replacing the relation "AUTHORED PAPER" with "ASSOCIATED

WITH PAPER," where the latter relation subsumes editorship,

sponsorship, presentation, and' so on.

Though the file itself can be used in several ways to

construct inferences, implementation of an inference-hon-

structing capacity will have to wait until experience has

been gained with an operating file. And the collection of

manually prepared, formally expressed inference schem s

from various users will not be the least of the file'

values. Examination of these actual schemes should stggest

fruitful techniques for machine inference construction, as

well as provide insight into the process of human construc-

tion.

-78-

POTENTIAL APPLICATION OF THE FILE

In order for application of the Relational Data File

to be of value, a subject must satisfy three conditions.

1) A large body of data must be stored and retrieved,

and it should probably be rapidly accumulating.
If these requirements are not satisfied, then
some simpler system is probably preferable.

2) There should be a need for extensive, unpredictable
. . manipulation of the data. One of the Relational

Data File's major advantages is the ability to
command a wide variety of extensive manipulations
of primitive data. If there were no such need or
if all the manipulations could be specified in
advance, a manual or simple computer file might
suffice.

3) The body of data to be stored must lend itself to
expression in a Relational Information Language.
The limits that this requirement imposes have not
been clearly identified. About all that can be
said at present is that expressing data about the
context in which research is conducted appears
considerably easier than expressing data about the
content. The relations among the scientists,
organizations, and publications active in cyber-
netics research lend themselves more obviously to
expression in the form of binary relational sen-
tences than do the basic ideas of cybernetics.

The experienced reader may be able to suggest promising

areas of application that satisfy the foregoing requirements

The following three areas are candidates.

o The context of research--While the context of
cybernetics research has been used as the experi-
mental corpus, the ideas and most of the informa-
tion language developed may be easily extended to
any other field of research or development. As a
matter of fact, the file could almost as easily
be adapted to keep track of the people, organiza-
tions, and activities associated with any common
enterprise (e.g., medical, legal, industrial,
criminological, etc.).

-79-

o The management of organizations and projects--Much
of the data collected in the course of managing a
large organization or project could be expressed
in a Relational Information Language. Such data
might include the responsibilities of groups and
individuals, completion times of subprojects,
results achieved, and so on. The Relational Data
File would enable the manager to find knowledge-
able individuals, to keep track of progress, and
to consider the effects of alternative policies.
Adaptation of the File to a data base of this kind
would require construction of new input forms and
a new information language.

o Research in the social sciences--A number of the
social sciences concern one aspect or another of
the relationships among people, organizations,
power groups, principles, and events. A Relational
Information Language appears to be an appropriate
way to store such data. Where the quantity of data,
intricacy of analysis, and research support warrant
it, a Relational Data File could profitably assist
research in history, sociology, anthropology,
archaeology, or political science.

-80-

XII. SUMMARY AND EVALUATION

This section summarizes objectives and principal

features of the Relational Data File and compares it with

alternative approaches to data retrieval.

OBJECTIVES

The research described in this Memorandum has two

principal objectives:

1) To develop a computer-based file for the storage
of data consisting of statements of fact and to
develop procedures for retrieval and logical
processing of and inference execution over the
file data;

2) To collect and process a corpus of data of
sufficient size and interest to permit an
effective test of the data file techniques.

While the first objective is paramount, we believe

for two reasons that it cannot be achieved except in

unison with the second: a) many important theoretical

problems become evident only through practical applica-

tions; b) many apparently satisfactory theoretical solu-

tions break down in practice.

PRINCIPAL FEATURES

One convenient way to summarize this research is to

list the principal features of the Relational Data File.

Linguistic Features

Formal Information Language. Data are stored in the

file as precise, unambiguous statements in an artificial

-81-

information language. The basic unit of information in

the file is the sentence. All more complicated types of

information are decomposed into sentences for storage in

the file.

Relational Information Language. The information

language has a simple syntax; every sentence has the form

aRb, where a and b are arbitrary entities and R is a re-

lation that holds between them.

The semantics of the information language is defined

by the choice of relations, R, that may appear in stored

sentences. "ie choice depends, of course, on the corpus.

Extensional-Representation. A relation, R, may be

explicitly stored in the deta file as a list of sentences,

aRb. It is then said to be storec' in extension.

Intensional Representation. A relation, R, may be

stored as a set of rules whose application to the exten-

sional file will derive sentences, aRb, of R. It is then

said to be stored in intension.

Logical Features

Access to Explicit Data. The file may be used dir-

ectly to answer two types of questions about data stored

explicitly in the file: a) it can verify whether or not

a request sentence, aRb, is in the store; b) it can iden-

tify the values of specified variables for which a request

sentence with variables, say xRy (x and y are variables),

is in the file. A request of the first type, for example,

would be to verify that

-82-

John Jones AUTHOR OF On Cybernetics.

A r quest of the second type, for example, would be to

ideltify the values of x (authors), in

x AUTHOR OF On Cybernetics.

Access to Implicit Data. The conjunction of stored

explicit data confers a degree of plausibility on a large

amount of data not in the file. Such data are implicit

in t~e file. The process of deriving implicit from ex-

plicit data is called inference.. The vehicle for inference

is called an inference scheme; it takes the form

If A, then C

where! A, the antecedent, is a sentence (possibly a logical

conjunction of many simple sentences) in the Relational

Information Language whosetruth may be determined by

searching the file*; and C, the consequent, is a sentence

in the Relational Information Language that is formed if

A is true. If the truth of C follows logically from the

truth ,of A, the inference is said to be strict. When the

truth of A only confers a degree of plausibility on C,

the in erence is said to be plausible.

Data implicit in the file may be obtained through

execution of a strict or plausible inference scheme over

the file contents.

4/

-83-

Manipulation of Data. Data retrieved from the file

may be manipulated by arithmetic, statistical, or symbolic

processes to obtain counts, correlations, trend analyses,

ordered lists, greatest and least members of sets, etc.

Output Features

Human Control of Retrieval Processing. For the most

part, the user performs the empirical, logical, and data

processing analysis needed to pass from a question to the

data processing routine that will retrieve the answer to

the question.

Query Language. Questions that can be answered sat-

isfactorily through elementary retrievals and simple

manipulations will be posed to the system in an English-

like Query Language.

Procedural Language. Questions whose answers demand

complex retrievals, or manipulations, or the evaluation

of inference schemes, will have to be answered through use

of a user-provided retrieval routine, written in a formal

Procedural Language, that commands the appropriate opera-

tions of the file. Thus, the process of constructing an

inference scheme remains with the human user; the computer

performs the laborious, but mechanical, searching of the

available data to identify the specific consequences of the

inference scheme.

Input Features

Structured Data Forms. Data become available for

input in many instances in fixed, recurring groupings.

4 : -84-

Biographic data about individuals, bibliographic data

about publications, organizational data about institutions,

and so on, fall into predictable categories and occur

frequently enough to warrant special treatment. Data forms

--are designed to capture each such distinct grouping for

the experimental corpus. The forms all belong to a single

* class, related in basic structure, format, notation, etc.

Form Manipulation Programming System. A Form Manipu-

lation Programming System is used to write procedures to

select stored forms from a collectlin on the basis of their

contents. Procedures can also be defined to delete or

insert data into the forms, to select data for printing,

or to construct binary relational sentences for entry into

the data file.

Experimental Corpus.

Large Quantity of Real Data The context of cyber-

netics research corpus consists data concerning a subject

of real and immediate interest. e data stored are chosen

on the basis of their relevance an understanding of the

subject, and not for reasons of convenience in developing

the file. The vast quantity of available data are more

than enough to justify the use of computers and to provide

a meaningful test of their ability.

Meaningful Testing of Logical and Linguistic Concepts.

The use of a real, diverse, and large data base enables

meaningful tests of the logical and linguistic ideas under-

lying the structure of the proposed data files. In attempt-

ing to treat a large corpus of real data formally, problems

-85- 3.

arise that might go unnoticed in a purely theoretical

investigation.

Testing of "Context Hypothesis." Since the stored data

base will concern the context in which cybernetics research

is conducted, it will enable a trial of the ideas under-

lying the "context hypothesis" for literature searching.-

COMPARISON WITH ALTERNATIVE APPROACHES

How does the Relational Data File compare with alter-

native techniques for achieving the same ends?

We can categorize the alternative techniques for stor-

ing and retrieving data into three major groups: manual

and semi-manual, simple computer files, and question-

answering systems.

Manual and Semi-Manual

The most basic data storage and retrieval routines

depend on some combination of the human mind and such simple

aids as handbooks, notes, manual card files, and basic

punched card procpsses.

In comparison, the Relational Data File offers the

following advantages.

o More data can be stored and retrieved conveniently
and compactly through the use of computer bulk-
storage devices.

o Speed and accuracy of retrieval of selected data
increases through the use of a high-speed digital
computer.

o More index keys exist for access to data, since
each relation in the file essentially defines a
new key.

-86-

o The intricacy of feasible retrieval procedures
increases through the programming of a high-speed
digital computer to do the highly repetitive, time-
consuming searching.

Each of these advantages is essentially one of quantity,

an increase in performance of a task that could, if neces-

sary, be done manually. But the quantitative changes are

large enough to become qualitative, enabling the performance

of tasks impossible with a manual file.

Simple Computer Files

Some of the deficiencies of manual and semi-manual

files can be overcome through the use of simple computer

files. Typically, such a file might contain standard,

preselected items of data arranged in groups in fixed

formats and stored on tape or discs. Each different kind

of data retrieval requires the construction of an appro-

priate program and, in most cases, the services of a

programmer.

In comparison, the computer-based Relational Data File

offers the following advantages.

o Greater ability to vary the kinds of data stored
during use without affecting already stored data
and existing retrieval routines. Such variations
would be achieved in the relational file simply
through addition of new relations to the informa-
tion language; in the simple computer file, they
would require the design of new record formats or
alteration of old ones and possible rewriting of
existing retrieval programs.

o Easier access to the file through natural language
for simple retrievals or a convenient procedure
language for complex retrievals. Moreover, the

-87-

Relational Information Language provides a more
natural vehicle for expressing inferences than the
record formats of simple computer files.

o Greater flexibility and adaptability in the kinds
of requests that the user may conveniently make
of the file. His data needs and questions do not
have to be anticipated in detail in the system
design.

o Programs that are independent of the file subject
matter. All subject-matter-specific items are
concentrated in the information language and input-
form design; in changing subjects, only those two
portions of the Relational Data File have to be
altered; the programs remain invariant. In a simple
computer file, however, programs are usually de-
pendent on record format. Consequently, a complete
new file must be designed for each change in subject
matter.

Question-Answering Systems

Development of question-answering systems has been

intended, in part, to overcome the problems of inconvenient

access and inflexibility that arise with simple computer

files. The primary objective has been to enable the user

to pose questions in natural language. Several such sys-

tems have included some mechanization of the logical

analysis needed to pass from a question to the process of

answering it by indirect evidence. The Relational Data

File can be considered a question-answering system. How-

ever, it differs from most such systems in the following

respects.

o It includes, and in fact emphasizes, the use of
plausible as well as strict inference in obtaining
the answers to questions.

-88-

o It leaves to the user the problem of deciding
which retrieval procedures and inference schemes
are appropriate. Thus, for the most part, logical
analysis is the role of the human being, while
mechanical searches and retrievals are assigned
to the computer.

o Its procedures are completely subject-independent.
They apply equally well to any data corpus ex-
pressed in a Relational Information Language.

o It replies to questions without having to antici-
pate them and store appropriate reply programs.
The user may enter his own reply program or, if
he has a simple question, phrase it in English.

o It is being developed to handle a large body of
real data used as an experimental corpus during
the file's development.

-89-

REFEREN7CES

1. Simmons, R., "Answering English Questions by Computer:
A Survey," Comm. ACM, Vol. 8, No. 1, January 1965,
pp. 53-70.

2. Uspenskii, V. A., "The Problem of Constructing a Machine'
Language for an Information Machine," in Problems of
Cybernetics II, A. A. Lyapunov (ed.), Pergamon Press,.
New York, 1961, pp. 356-371.

3. Carnap, R., Introduction to Symbolic Logic and Its
Applications, Dover Publications, Inc., New York,
1958.

4. Kochen, M., Adaptive Man-Machine Non-Arithmetic In-
formation Processing (Final Report), Air Force
Cambridge Research Laboratory, AFCRL TR 62-01,
June 1962.

5. Levien, R., and M. E.. Maron, Cybernetics and Its De-
velopment in the Soviet Union, The RAND Corporation,
RM-4156-PR, July 1964.

I -!

DOCUIfENT CONTROL DATA
IOUSNwnsw *cTm~Ty 2.. REPORT SECURITY CLASSIFCATIO(--'ry : " rr currUNCLA.SSIFIE.D

THE RAND CORPORATION fGuROF

REPORT TITLE

RELATIONAL DATA FIt!: A TOOL FOR MECHANIZED INFERENCE EXECUTION AND

DATA RETRIEVAL

4. AUTNOR(S) (L amm, first some, tW)

Levien, Roger and M. E. Maron

S. poR DATE e "TOTAL NO. OF PWES 6b. NO. OF REFS.

Nvme195102 5

.CONTRACT or GRANT O. OmNATON'$ W EORT NO.
AF 49(638)- 1700 RM-4793-PR

&VAI'INJTY/LUlTATION ' NOTICE3 91b. SPONSORING AGENCY

United States Air Force
Project RAND

10. AlkSTRACT It. KEY woRws

A description of the background and Information storage and
status of a current project on automatic retrieval
data storage and retrieval. The research Data processing
emphasizes the development and testing of Cybernetics
logical techniques for data retrieval and Computer programs
inference-making. The techniques are
being implemented in the form of computer
routines, and tested on a large body of
facts concerning the field of cybernetics.
Various sections present the theoretical
base of the proposed system, a summary of
the theory of relations, typical data re-
trieval requests, the key problems of
inference, techniques for practical reali-
zation of the data file, output problems,
storage and processing problems, the data
file as a whole, the question of litera-
ture searching, and future steps to be
taken to extend the capability of the
system.

