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Abstract 

After a general discussion of non-harmonic electromagnetic processes 

from the viewpoint of temporal Fourier (or Laplace) analysis and synthesis, a class 

of problems is considered for which the transient solution may be recovered in 

simple form. Included in this category are pulsed point, line and plane wave sources 

in free space, and in the presence of a) a dielectric half-space, b) a perfectly 

absorbing or perfectly conducting wedge or half plane, and c) a unidirectionally 

conducting infinite and semi-infinite screen. Explicit expressions for the transient 

response, found by a systematic application of the n odal procedures discussed in 

earlier chapters in this sequence, are interpreted in physical terms. Attention is 

then given to a second class of problems wherein an electric charge moves uniformly 

along a straight trajectory in various environments. The associated radiation is 

now of the Cerenkov type, and formulas for the fields as well as the radiated power 

are given. 
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CHAPTER VII 

RADIATION FROM SOURCE DISTRIBUTIONS WITH 

NON-HARMONIC TIME DEPENDENCE 

A. General Remarks 

As noted in Chapter I, the modal viewpoint may be applied consistently to 

the study of time and space dependent fields through the use of an appropriate represent* 

tion. The time dependence, which enters into the Maxwell field equations via the deriv¬ 

ative operator 0/9t), may be eliminated by a representation in terms of eigenfunctions 

exp(jut), and the resulting reduced equations are descriptive of the time-harmonic field. 

Chapters V and VI have been concerned with the detailed study of boundary value prob - 

lems arising from excitation by time-harmonic (steady-state) source configurations in 

various environments. While this suffices for many practical situations wherein the 

source function is either continuously sinusoidal or pulsed, with the pulse width much 

greater than a sinusoidal period, occasions arise when these conditions are not satis¬ 

fied and when a transient analysis is essential. From a theoretical viewpoint, an 

understanding of transient processes provides further insight into the mechanism of 

propagation and diffraction since it is then possible to track the progress of an electro¬ 

magnetic disturbance in time and space. 

As shown by the analysis in Chapter I, the transient response to a source 

with non-harmonic temporal variation may be synthesized by a continuous superposition 

of modal, time-harmonic fields. The relevant modal index is the frequency variable w, 

and the resulting Fourier integral operates on the solutions accounting for the spatial 

aspects of the problem. Since the latter may also involve single or double integrations 

(see Chapters V and VI), the expressions for the space-time dependent field are gen¬ 

erally quite involved. As in the time-harmonic case where asymptotic methods have 

been found useful to produce simple formulas for the radiation field (i. e., the field at 

large distances or at short wavelengths), it is desirable now to look for approximations 

valid in certain time intervals. As shown in the discussion below, there exists an 

intimate relation between the time-harmonic field at high frequencies and the transient 

field near the time of arrival of the first response. Thus, many of the asymptotic 

results obtained in Chapters V and VI may be easily transcribed to furnish the field 

behavior in the vicinity of an impinging wave front under transient conditions. 
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It will altio be shown that certain time-harmonic solutions may be inverted 

exactly in simple form , there1 v furnishing elementary results for pulse propagation 

and diffraction problems valid it all observation times. The physical implications 

of these solutions provide further understanding of propagation and diffraction processes 

under rather general conditions. 

1. Modal analysis and synthesis in time 

By the procedure described in Chapter I, one represents a temporal source 

function in terms of its time-harmonic constituents, evaluates the harmonic steady- 

state response, and finally obtains the transient field behavior as a modal superposition 

of the steady-state solutions. In mathematical terms, one takes the Fourier transform 

of the time-dependent, inhomogeneous Maxwell field equations, solves the resulting 

steady-state equations, and recovers the temporal response by applying the inverse 

Fourier transform. Let f(£. t) denote a real space-time dependent function, and 
A 

f(r,cj) its Fourier spectrum; then f and f are related via the Fourier transform pair 

f(r, oj) = / f(r, t) e”^wtdt , (la) 
-00 

00 
f(£, t) = / f(£, u) eJwtdu , (lb) 

-00 

00 

provided that J|f|dt exists (see also Eq. (95)). If the electric and magnetic current 
-oo 

A 4|k 

source distributions ^ and £m(£»U. respectively, are stationary in space and 

have a prescribed time dependence, they can be represented in the separable form 

£(£,0 = J(£)i(t) , Im(£,t) = Jm(£)h(t) , (2) 

and their transforms are 

j_(£, w) = J(£) g(w) , jm(£, u) = Jm(£)h(<*>) . (3) 

In this instance, the space-time dependent electromagnetic fields are given in terms 

of the solutions E(r) s E(£, w) and H(£) « H(£, u>) of the steady-state Maxwell field 
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equations (2.1) by 

E(£, t) = / ^EJ{r, u) g(w) + EM(£, u) h(w)]e^Wtdw , (4a) 
- 00 J 

oo 
ñ(£,t) = -J-- / ÍH (£,0)) g(w) + HM(£, w) h(u)) ] e^Qtdu) , (4b) 

where E (H ) and EM are the electric (magnetic) fields due to the electric 

and magnetic current excitations, respectively. In utilizing the steady-state solutions 

E(£, w) and w) i*1 (da, b), one should attend to the fact that io ranges from -oo to 

+w. Hence, a steady-state solution obtained for an assumed dependence expf+jwt), 

u>0, can be employed only in the interval 0<u<oo; in the interval -°o<w<0, one 

must utilize the solution appropriate to exp(-ju>t), co> 0. These remarks are of special 

significance for radiation problems in unbounded regions where the form of the time- 

harmonic fields satisfying a radiation condition is linked intimately to the assumed 

time dependence exp(+jwt) or exp(-jwt) (for an alternative formulation involving posi¬ 

tive frequencies only, see Eq. (95) ). 

An important special class of source distributions is characterized by 

functions which vanish prior to some given time reference, say t = 0. If the electro¬ 

magnetic fields are likewise assumed to be zero when t < 0, the integral in (la) de¬ 

fining all relevant Fourier transforms extends from only t = 0 to t = oo. In th s 

instance, it is frequently more convenient to employ instead of the Fourier integral 

representation the Laplace transform 

oo 
^(£* s) = /?(£, t) e"8tdt (5a) 

o 

since one then extends substantially the range of representable functions. The parame¬ 

ter s in (5a) is chosen so that (Re s)>so, where so> 0 is the lowest value of 

(Re s) to assure the absolute convergence of the integral. The existence of the integral 

representation for 7(£, s) implies that of the inverse transformation 

s +j« 

^1' *> - TTf f %’ s) e"td8 • (5b) 
»o-j* 

A 

with f 2 0 for t< 0. Since from Eq. (5a), T is an analytic function of s when 

Re s>so, the validity of the last statement (causality) can be verified by completing 

the integration path with a semicircle at infinity in the right half of the s-plane and 
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invoking the Cauchy integral formula. Upon comparing Eqs. (la) and (5a), one notes 

that 

Hr., s) = *(£.-ja) . (Re a)> ao • (5c) 

i. e., the Laplace transform T can be inferred from the steady-state solution f ap¬ 

propriate to a time dependence exp(jwt), uj> 0 by analytic continuation of the real 

frequency variable u into the complex domain u> = -js , (Re s)>8o. For source 

distributions satisfying Eqs. (2), the field response can be represented as in Eqs. (4a, b), 

with the above-noted change of variable to s and use of the integration contour in 

Eq. (5b). 

Since the Laplace inversion in Eq. (5b) cannot generally be carried out in 

closed form (an exception occurs for the class of problems discussed below), it is 

useful to call attention to an asymptotic equivalence between the time-harmonic solution 

at high frequency (s-») and the transient solution near the time of arrival to>0 

the first response at a given observation point £. Writing ?(£, t) for a typical field 

component, one has 

oo -st « . 
IÍ£, s) = /f(£, t) e“8tdt = e ° f f(£,|+t )e”s^d£ 

t o ° o 

(6a) 

since f * 0 for t<t . The principal contribution to the integral for large s arises 
° A 

from the vicinity of the origin £ = 0 (see also Chapter IV). If f behaves near t = tc 

according to 

.a 
f(£. t) • I (d0+djÇ + d2C +...) + d'6(!) , Re a> -1 , £ = t-t^ 

(6b) 

where the d^ and d' depend on £ only, then the behavior of T for large s is ob¬ 

tained upon substitution into Eq. (6a), interchange of the orders of integration and 

summation, and use of the definition of the gamma function (see Eq. (4.47) ), 

st oo d 
7(r, s) e ° - d' + ^ a-i^n+I r(a+n+l) , s-*« . (6c) 

n=0 s 

Thus, the leading coefficients in the expansion for f are given by 
T st 
T(r, s) e ° - d' 

d = lim o „ s -*°0 

lim 
s 

Q+l 

r(Q+i) 

St 
(r(r, s)e ° - d') sQ+^ 8t*< 

r(a+2) a+1 

(6d) 
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etc. Conversely, the response immediately after the arrival of a given field con¬ 

stituent (for example, the direct, reflected, or diffracted field) determines the time- 

harmonic behavior of the corresponding constituent in the high-frequency limit. With 

s - ju and a = 0, the series (6c) yields a high-frequency asymptotic expansion of 

the steady-state field, the first term of which represents the geometric-optical ap¬ 

proximation (see Chapter V, Appendix C). The amplitude of the geometric-optical 

field and of the impulsive constituent of the transient response are therefore both 

specified by d'(£). Since f 5 0 for the d. coefficients in the series (6b) (if 

a = 0 and d' = 0) describe the regularity properties of f at £ = 0. Thus, if 

^o* ’ ' ^ N = ^ an<* its derivatives up to order N are continuous at £ = 0 and the 

resulting asymptotic behavior as w-oo is 0(w’N_1). The high-frequency dependence 

is therefore indicative of the discontinuities in the function f or its derivatives at 

the time ot arrival of the first response.1 

For observation times long after the arrival of the first response, £ » 1, 

an evaluation of the inverse Laplace transform in Eq. (5b) may be attempted by de¬ 

forming the integration contour about the singularities of 7(r, s) in the half plane 

Re s<0. In view of the presence of the exponential exp(s£), only those singularities 

with small (Re s) are significant and may form the basis for an effective approximation 

of the time dependent function f(r, t). 

As in the case of time-harmonic problems, the transient field response to 

non-harmonic source distributions in plane stratified regions can be evaluated through 

the use of auxiliary potential functions. In particular, Eqs. (2. 18) involving the E and 

H mode Hertzian potentials FI (£, t) and 0 <£, t), respectively, apply also in this case 

provided that (jw) is replaced by the differential operator (9/at). It is to be noted that 

for media with dielectric losses, characterized in the steady-state by a complex dielec¬ 

tric constant e = cr -ja/u, C = conductivity, jut is replaced by the operator 

[tr(9/9t) + a] . Similar remarks apply to materials having magnetic losses. Unless 

mentioned otherwise, the media are henceforth assumed to be lossless, and c is 
r 

taken to be frequency independent. 

It is sometimes more convenient to deal not with the source current 
A, A 

densities £ and j_m, but rather with the dipole moment densities £ and m defined 

as 

= -^£(£,1) , = -^-m(£,t) . (7) 
H --»-—_—_____— ---.— ___ 

Fractional values of a, resulting in fractional powers of £ in Eq. (6b) and s in 
Eq. (6c), are required to describe diffracted fields (see Sec. D). 

MMP 



PIB MRI-12 5 7-6 5 6 

For example, the radiation from a longitudinally directed electric or magnetic current 

element having a dipole moment 

£<1*^ = i06(I"-,^t) ’ m(_r, t) = £ oMr-r’) qm(t) , (7a) 

respectively, can be determined via Eqs. (2.80) as 

f(r,t) = i-(VxVxz o) G'(£, £';t) - (Vx zq)-^-Gn(r, r';t) , (8a) 

H(r,t) = (Vx zJ-gLc'U.^t) + -l(VxVx zo)(5"(£,£';t) , (8b) 

A A 

where G* and G” are the temporal functions corresponding to the spectrum functions 

G'(r, r';u>) q(u) and G*(r, r’jujq (w), respectively. G' and G" are the scalar Green's 
— m ♦ 

functions defined in Eqs. (2.82) and (2.83), respectively. Retention of the current 

densities leads to a somewhat more complicated formulation requiring via Eq. (3) the 

inversion of a spectrum function G'g/w, etc. 

It has been shown in Chapters V and VI that the time-harmonic high- 

frequency field may be interpreted in terms of rays which define the trajectories of 

energy flow. The ray picture is even more relevant in the transient case where the 

propagation of the disturbance (described by a family of wave fronts), and the associated 

flow of energy (along the rays, the orthogonal trajectories to the family of wave fronts 

in isotropic regions), may be tracked in time and space. The electromagnetic fields 

and (or) some of their derivatives are discontinuous across a wave front, and the deter¬ 

mination of the progress of the front is equivalent to the study of the field singularities 

in time and space. ^ From a transient analysis in the presence of boundaries or ob¬ 

stacles (see problems in the remainder of this Chapter), it becomes clear how the 

incident wave front, after reaching the boundary, is reflected, refracted or diffracted, 

and how the propagation of the reflected, refracted or diffracted wave fronts may be 

characterized in terms of rays. 

In view of the remarks following Eqs. (6), there exists an intimate relation 

between the time-harmonic, high-frequency field and the transient solution in the im¬ 

mediate vicinity of the time of arrival of the first response. In this manner, the use 

of rays and of the associated phase fronts carries over naturally into the interpretation 

c and in these equations have been treated as (frequency-independent) constants. 

In the asymptotic calculations in Chapters V and VI, the distance D from the source 
has often been introduced as the large parameter. Since the distance always occurs in 
the dimensionless combination kD, the results apply as well when k is large and D 
is moderate. This latter interpretation is relevant for the present discussi« i. 
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of steady-state phenomena at high frequencies.1 

This sequence has been reversed in the present volume where, in keeping 

with the modal viewpoint, the time-harmonic case has been considered first. Since 

the ray interpretation of time-harmonic high-frequency fields has been emphasized in 

connection with various problems in Chapters V and VI, the interpretation of the cor¬ 

responding transient solutions in this Chapter is carried out only briefly, with reference 

to the earlier steady-state results. 

In view of the preceding remarks, it should not be difficult for the reader 

to relate the previously derived ray solutions to the present discussion of transient 

fields. While it should be clear that the high-frequency asymptotic results for the 

time-harmonic field may be easily transcribed to yield the transient field near the 

time of arrival of the first response, the discussion below is confined to a necessarily 

more restricted class of problems for which one may construct simple transient solu¬ 

tions valid at all observation times. These results show the variation of the response 

characteristics as time elapses after the passing of the initial wave front. 

2*_Inversion of certain problems in elementary form 

While the temporal response function f must in general be recovered from 

its Laplace transform 7 by performing the integration in Eq. (5b), this procedure can 

be circumvented in certain cases if one is able to cast the transform solution into a 

representation as in Eq. (5a), from which the temporal function is obtained by inspection. 

More generally, one seeks to represent the transform solution in the form 

T(r, s) = a(s) g(s) h(r, s) (9) 

¢0 

h(£. s) = (e S1A(r, T)dr , (qa) 
o 

where g(s) is the transform of the prescribed source function g(t) (g s 0 for t< 0) 

a(s) is a polynomial in s, and A is a function of r and the real integration variable 

T, but not of s. Comparison of Eqs. (5a) and (9a) shows that A(r, t) is the time func¬ 

tion having a spectrum h(r, s), i. e., 

h( r, s) - A( r, t) 

Since the operation a(d/dt) in the time domain implies multiplication by a(s) 

transform domain, one has 

(10a) 

in the 

a(s) W(s)-• a(d/dt) w(t) (10b) 
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while, from the convolution theorem, 

t 
(10c) 

t>0 (ID 

u( a) w(s) - f u(q) w(t-a) da = Ju(t-a) w(a) da 
0 0 

Hence, Eq. (9) can be inverted by inspection to yield 

t t 
f(r,t) = a(-j3jj) /g(a) A(r, t-a) da = a (-^-) / g(t-a) A(r, a) da 

o o 

It has been assumed above that the system is quiescent when t< 0 so that there is no 

contribution from initial value terms at t = 0. If a(d/dt)g(t) = 6(t-t'), i. e., the source 

function (or its derivatives(s) if the function "a" is not a constant) is impulsive, the 

solution is given directly by A(jr, t-t'). 

It is to be expected that only a limited class of problems yields transforms 

which can be expressed as in Eq. (9), in view of the special representation for h re¬ 

quired in Eq. (9a). Included in this category are those time-harmonic solutions which 
2 are expressible in terms of the integral representation 

L(y.«M») = /e‘jkYcos(w-^u(w)dw (eJUlt dependence) (12a) 

or 

My,®,«) = /eikvcos<w-®)u(w)dw (e 1Ut dependence) (12b) 

where the contours of integration P and P are those in Figs. 5.5(b) and 5.6(b), 

respectively. The parameters y and » are assumed to be positive, with cp restricted 

to the range 0<cd<tt/2, and the function u(w) is independent of k = w/c, where 

c = (fie) ^ is the speed of light in the medium. As observed in Chapters V and VI, 

a number of time-harmonic diffraction problems can be expressed in this form. Upon 

letting «-‘-js in Eq. (12a), one may write 

jOO 
Ely,«...) = / .-»(V/O cos w 

- IOC 
u(w + cd) dw (13) 

where it has been assumed that the function u(w) has no singularities in the strip 

0< I Re w I < it /2 (if such singularities are present, their effect may lead to additional 

contributions to E), and the positive parameter s is large enough to assure con¬ 

vergence of the integral. Since exp[-s(v/c) cos(w-cp)] decays in the strip cos(wr-<*j) > 0, 

the contour of integration can be shifted to achieve the representation (13) (see Fig. 5. 4). 
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The auccessive changes of variable ß= -jw and r = (Y/c)coSh ß lead to the formula¬ 
tion 

E(y,c», ») = j/c-T-ËH) dT 

C V1-2 ■ 

where 

>>(t) = u[to + j co.h'1^)] t „[*. j co.h-'f—)] 

Eq. (14a) is evidently in the form (9a), with 

(Ha) 

(14b) 

f T< -X- 
C 

(15) 

» T > JL 
c 

If V(w) = ju(w) is real for real values of w, then v(w*) = v*(w) (from the Schwartz 

reflection principle) and b(r) ran be written as 

jb(r) = 2 Re < ju <T + j cosh ^ ( CT 

Y 
>1! 

(15a) 

Several applications of this result are given in the following sections. (The preceding 

considerations also apply to the exp(-iwt) formulation in Eq. (12b) provided that j--i.) 

It should be emphasized that the formulation in Eq. (14a) is useful even 

when u(w) is dependent on s. Although one cannot then perform the Laplace inversion 

in closed form, an expansion of u(w;s) in series of powers of (l/s) or s permits 

the simple derivation of asymptotic results in the time domain applicable immediately 

and long after the arrival of the first response, respectively. 
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B. Pulsed Sources in Free Space 

1. Line source 

Consider an infinite line source along the z-axis of a cylindrical coordinate 

system, characterized by the impulsive electric dipole moment distribution 

£(r, t) = £06(£)q(t) ; q(t) = 0 , t<0 . (16) 

A A A 
Since m ^0, and hence G" = 0 , the evaluation of G' only is required for the 

determination of the electromagnetic fields from Eo«. (8). From Eqs. (5. 57), one 

has for an assumed exp(jut) time dependence: 

G'(£, £';<*>) = --¿-H(o2)(kp) , k = = -^>0 , (17) 

which has the contour integral representation (see Eq. (5. 60) ), 

G'(£, £* :w) = -/ e’jkp cos wdw . (18) 

P 

Comparison with Eq. (12a) shows that u(w) = -j/4Tr so that from Eq. (15) 

A(t) = 

-P - 

T < —£- 
C 

T > 
C 

(19) 

2it 

The desired temporal function G' in Eq. (8), requiring the inversion of the spectrum 

function õ* (£•£';s) q(8) » is then written down directly from Eqs. (11) and (19): 

t 

~Tn / ^(t”Q) 

p/c 

1 
da 

G'(£.£';t) 

Ja2 . 
t>-£- 

c 
(20a) 

t<JE- 
c 

(20b) 

The electromagnetic fields can now be calculated by inserting G' from Eq. (20) into 

Eqs. (8). 

For this two-dimensional problem, £ s £. (d/dz) = 0. Hence, Ê = etc. 
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It is of interest to examine the special case of an impulsive moment dis 

tribution q(t) = 6(t-t'), t'>0. In this case Eqs, (20) yield 

0' = 

t> t'+ 
c (21a) 

0 * t<V +-½ • (21b) 

a result which could also have been written down directly from Eq. (19). Thus, the 

impulse at t = t' creates a cylindrically symmetrical disturbance spreading outward 

from the source with velocity c and reaching an observation point p at a time 

t = t' + p/c. Although the action of the source is confined to the instant t = t', a 

response of decreasing intensity persists at p after the passing of the initial wave 

front (Fig. 1(a) ). (The reader may wish to construct the solution 

G'» (2ir V2p/c ) ^t-t'-p/c) when (t-t1) * p/c directly from the asymptotic 

formula (5.37) and Eqs. (6) ). 

e source b) point source or plane wave 

Fig. 1 - Impulsive line source, point source and plane 
wave response observed at a distance p, r, 
and X, respectively. 
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2. Point source 

A dipole in an infinite lossless medium is assumed to be characterized by 

the vector moment 

£(£. t) = £06(£)q(t) q(t) = o t< o (22) 

The steady-state free-space Green's function is given in this case by 

Œ-jkr 
G'{r, r';u)) = 

whence 

G'(r,r';s) = 

4it r 

-sr/c 

k = u> (e+jwt ¿gpendencgj (23a) 

Re s > 0 (23b) 

Since Eq.(23b) exhibits directly the form of Eq. (9a), with 

A(£,t) = (1/4tt r) 6(r-r/c), one obtains from Eq. (11) the temporal function corresponding 

to C'q : 

5 (‘ * t) 

G'(r, r';t) = 

0 

t> 

t< 

(24a) 

(24b) 

In this instance, the (scalar) disturbance is spherically symmetric about 

the source, propagates outward with velocity c and has at r a functional dependence 

on time identical with that at the source. In particular, when q(t) = 6(t-t'), the 

result in Eq, (24a) yields the three-dimensional free-space Green's function for the 

operator (V^ - 9^/c^9t^) (Fig. 1(b)). 

3. Plane wave 

If the incident field is in the form of a plane wave propagating along the 

x-direction, the steady-state behavior for the exp(jut) variation is expressed in terms 

of the potential function G = exp(-jkx). Since the k-dependence in this expression is 

the same as in Eq. (2 3a), it is concluded that if the field at some particular location, 

say X = 0, is described by the time function q(t), the temporal response is unchanged 

at another observation coordinate and is given by q(t- ) . In particular, the propaga¬ 

tion of an impulsive plane wave is characterized by the potential function (see Fig. 1(b) ), 

G(x,t) = 6 (t - ) (25) 
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£l ...P^»ed Sources in the Presence of a Dielectric Half-Space 

This class of problems reveals how the previously determined transient 

fields in an unbounded medium are modified when a plane interface is present which 

separates two semi-infinite regions with different dielectric properties. It is found 

that the boundary gives rise to a reflected fxeld whose amplitude is weighted by an 

appropriate measure of the plane wave reflection coefficient. Refracted and diffracted 

fields are also present but are described in a more complic .ted form which is not 

pursued here. To permit the recovery of explicit formulas for the response to line 

source and dipole excitation, the dielectrics are assumed to be independent of fre¬ 

quency. The line source calculation is straightforward and leads to a simple result, 

but considerable difficulty arises in the dipole case when neither the source point nor 

the observation point is located on the interface. Nevertheless, it is possible to 

derive a compact expression even for the latter configuration, as shown below. 

1. Line source 

The configuration of an infinite line source of electric current located at 

£' = (y', z!) in the presence of a semi-infinite dielectric medium has been sche¬ 

matized in Fig. 5.16. We shall assume a dipole mement distribution as in Eq. (16), 

¿¡(r.t) = xo6(£-£') q(t) , £. = (0, z') , 2.<0 . (26) 

As noted there, the fields radiated by this source distribution are independent of x, 

with the electric field having only a single component Ê^r, t) which can be inferred 

from the scalar Green's function G'[cf. Eq. (8a)] as 

Êxlr,t) = - J-V2<5'(£.£';t) 

Similarly, for the magnetic field, 

(9/3x) 2 0 (27a) 

H(r,t) = (Vx xo)-^.G'(£>£';t) 
(27b) 

In this section, the symbol £ rather than £ (cf. Sec. 5.C. 3) will be employed to 

denote the location of the point (y, z). Note that the coordinate designation has been 

changed from that in Sec. B l to facilitate the direct use of the steady-state Green's 

function derived in Sec. 5.0.3. 
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In medium I of Fig. 5.16(*<0), the steady-state Green'a function G'(£i£';<*>) 

given in Eq. (6. 112a), comprises two terms: the free-space Green's function G, for an 
*1 

infinite medium with constants c ^, pj, and a secondary part G# . The free-space 

Green's function has been evaluated in Eqs. (20), with p interpreted as the distance 

I£-£' J from the source location. A suitable modal representation for G^ is piven in 

Eq. (5.115) which is repeated for convenience: 

G8(£,£';u) = /e 

P 

• jkjR cos(w-cp) 

w 

F(w)dw , (28) 

here k. = u/cj = , (y-y') = R since, | z + z'| = R cos ¢, and 

r(w) cos w 

cos w 

c - sin w 

. 2 
e - sin w 

M1 = pt2 = M • (28a) 

4 
If c is assumed to be real and independent of frequency , Eq. (28) is 

of the form (12a) and can therefore be inverted via Eq. (15). To assure that F(w) 

has no singularities in the interval 0< |Re w| <ir/2, c is restricted to be larger than 

unity. Thus, 

0 t T < 

A(t) = 

1 

2’/7- 

Re T £cc + j cosh f 

(29a) 

(29b) 

s 
This assumption is valid if the frequency spectrum of the source is negligible in the 

vicinity of the atomic resonant frequencies of the medium. 
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and, from Eq. (11): 

1 f * 
— J q(t-a) 

R/cj 

Re F CP + j co*h I K J 

P 
da R 

(30a) 
R 

c, 

G'(£.£':t) = 

0 t< . (30b) 

For an impulsive moment distribution q(t) * 6(t-t'), 

, Re r[flp + j co,h'1 (-^^1 )| 

t'>0, Eqs, (30) redúcelo 

J 
t>t' + (31a) 

(t-t1)^ - 

G.(£-£';t) 

0 , t<t' + JL . (31b) 
ci 

Hence, the field due to an impulsive source located at (0, z'), z'<0, 

observed at the observation point (y, z), z< 0, comprises the direct wave as in 

Eq. (20), plus a reflected contribution which has an amplitude given by Re T and 

which appears to emanate from the image point (0, -z') (located in a medium with 

wave velocity Cj). This result assumes that both the source and observation point 

are situated in the optically thinner medium ic^cj. If c2 , an additional contri¬ 

bution may arise from the branch point singularity at wb = sin*1/7 which now lies 

in the range 0<wb<tr/2 (see Fig. 2; the branch point contribution yields a diffracted 

wave front which corresponds to the lateral wave sketched in Fig. 5.13'). Complica¬ 

tions occur when the media are dissipative or dispersive, i. e., for complex dielectric 

constants e(s) = t * + a/a , c = conductivity, or for cr = cr(w), inwhichcase T(w) 

is also a function of s . For observation points lying in medium 2 the evaluation 

(even for the lossless, non-dispersive case) is more difficult since the exponent of 

the resulting integrand (cf. Eq. (5.113) ) does not have the simple form exhibited in 

Eq. (12a). (See Problem 2). 
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Fig. 2 - Wave fronts when source is on interface. Points in 
vertically shaded region are reached first by dif¬ 
fracted wave, along a ray path corresponding to 
that of lateral wave in Fig. 5.13'. 

2. Point source 

Consider the longitudinal dipole source in Eq. (22) located at the point 

r' = (0,0tz'), z^O, in front of a semi-infinite dielectric region z>0 (see 

Fig. 5.13). The electromagnetic fields in this case are inferred via Eqs. (8) from 
A 

the scalai Green's function G' which, for z< 0, is separable into a free-space and 

a reflected part. The free-space solution is given in Eqs. (25), with r representing 

the distance from the source point to the observation point. A cylindrical waveguide 

representation for the steady-state reflected wave contribution is given in Eq. (5.87). 

Because of the occurrence of the Hankel function in the integrand of this latter equation, 

it is not possible to apply Eqs. (12) - (15) directly, and the recovery of the transient 

response is considerably more involved than for the line source problem. It is never¬ 

theless instructive to perform the analysis since the result for impulsive excitation 

may be manipulated into an explicit form requiring the integration of the reflection 
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coefficient. The integration proceeds between finite limits, and while it does not 

seem possible to reduce the integral further, numerical methods may be resorted 

to for specific evaluation. 

■j 
It seems best to employ a procedure3 which utilizes the rectangular 

waveguide representation (see Eqs. (5.18) and (5.83), for an exp(jwt) dependence): 

oo 

G' (r, r' s ’ — ;oj) = ..I d£ 
8ir - -00 

00 

/dTl 
-00 

.-JÊx-.my-jKjZ 
riKy k2) 

where Z = |z+z'| and 

(32) 

rtKj, íf2) *2*1' *1*2 

*2*1+ * 1*2 
Im Kj 2<0 (32a) 

Next let (*}-* -js, s>0, and introduce the change of scale £ » q's, t) = ß's, which 

renders F independent of s and also allows the factor s to appear explicitly in the 

exponential: 

Gg(r, r';s) 

where 

Sir 

oc s(-ja'x-jß'y-y'Z) 

8 f f e 
.00 -00 

r(Y¡, Y2) da' dß' (33) 

y¡ 2 = I —y— + a'2 + ß'‘ 

V Cl. 2 

Re y! , > 0 
Vl2 (33a) 

Cylindrical coordinates (p,<J)) in the x-y plane are now introduced via a change of 

variable which makes the direction of the vector (x^1 + £oß') identical to that of the 

radius vector p = p(x cos 4> + y sin <i>) “ (x x + v vl* 
— —0 ■*- 0 — 0 i-o7 

o' = a cos <t> - ß sin <}> 

Thus, 

q'x + ß'y = ap , 

so that Eq. (33) can be written as^ 

00 « sf-jap-VjZ) 

ß' = a sin 4> + ß cos 4> (34) 

a'2 + ß'2 = o2 + ß2 da'dß' = dadß , (34a) 

G's(r,r';s) = - ¡«tf 
8 it -00 -00 >1 

FiVj, V2)da (35) 
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where 

The integral over a can be vast into the iorm (13). First, apply the 

transformation 

a = sinh y , (36) 

so that Yj = cosh y . Upon also utilizing spherical coordinates (r, 9) via p = r sin 0, 

Z = r cos 0, O<0<it/2, one obtains 

-«(jap + YlZ) -sí*, coshlv+jei 

1= I ----riy., v2) do = J e r<Y .Y,)dv . (37) 
-00 '1 1 ^ -00 1 ¿ 

With y = -jw, 

j® -sr^, cos(w-e) 
I = -j J e F (w)dw 

-jOO 

or, equivalently, 

J® -sr4>jCOS w 
I = -j J e r(w+0)dvv . (38b) 

-j® 

The transition from (38a) to (38b) is permitted if F has no singularities in the strip 

0< I Re w I < tt/2. If i.e., r. 2>Ej, the branch point singularities lie on 

the lines Re w = ±ir/Z. The pole singularities wp of T are located at 
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co« wp i« real when c> 1, and must be chosen negative since 

y - «in w > 0 when the radicand is positive. Hence, the poles also li< 

outside the range |Rew|<7r/2, and Eq. (38b) is valid for 0<6<7r/2 when c > 1. 
Thus, from Eq. (14), 

T~T~T 
Re F 0 + j cosh ' (t) dr t> 1 (40) 

! = 2 J — 

with ^ defined in Eq. (35a). 

The desired formulation in Eq. (9a) is achieved after substituting Eq. (40) 

into (35) and interchanging the orders of integration.^ The r-integration extends from 

the curve t = £^(1/^)2 + ß2 to r = «, while -o0<p<oe. if the ß-integration is 

performed first, one has [(t/?)2 - l/cf] < | ß|, while (?/Cl)<T<oe. Thus, 

oo 
£';») = -—-y /e STA(T)dr 

4tt o 
where 

(41) 

A(t) 

4- 

/ 
-4> 

Re T 6 + j cosh ' (*r) 

and 4/ = 

^r2 - (f^)2 

[(r/r)2 - i/cj2]1^2 , 

dß 

4>f = (1/c2) +ß2. 

T < • 

T> 

A final change of variable 

(41a) 

(41b) 

ß = (4-) 
' r ' 

1 

C1 J 

1/2 

sin a (42) 
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transforms Eq. (41b) into 

A(t) 

tt/2 

4 /r. r 
r o 

6 + j cosh" da 
I 2 / .2 2 

^ T (r/Cj) cos a 

Hence, the temporal Green's function G' is obtained from Eq. (11) as 

t 

—~~7 f A(a)da 
^ f'/c, " 

t> 

G;(r,r';t) = 

t< 

which, for excitation by a unit step function q(t) = 1 when t>0, q(t) = 
A . 3 4 

reduces in view of dq/dt = 6(t) to ’ 

(43) 

. (44a) 

, (44b) 

0 when t < 0, 

<5;(r,r';t) = 
4ir 

A(t) t> 

(45) 

t< 

This expression for the potential function and the associated fields is 

considerably more complicated than that in Eq. (31) pertaining to the line source 

excitation. When the source and observation points are both situated on the interface, 
5 

the result can be expressed in terms of elementary functions. This reduction is 

left as an exercise for the reader. 
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D. Pulsed Sources in the Presence of a Wedge 

The problems in this section illustrate how the transient field is 

influenced by the presence of edge singul rities on the surface of a scatterer. 

This effect is demonstrated in its simplest form by a perfectly absorbing wedge 

which, in the high-frequency time-harmonic analysis, gives rise to a diffraction 

field only, without a reflected contribution (see Sec. 6D). Since the exact integral 

formulas for the time-harmonic case have (or are readily cast into) the form given 

in Eqs. (12), the transient solution is obtained and interpreted with ease. After the 

incident wave front strikes the edge, a diffracted wave front emerges radially from 

the edge. It is found that diffraction weakens the field singularities across the wave 

front (see for example Eq. (59) ); i. e., the singularities are less strong across the 

diffracted front than across the incident front. This behavior may be understood if 

it is recalled that in the time-harmonic high-frequency limit, diffraction effects 

diminish more rapidly with k than those represented by the geometric-optical (in 

particular, the incident) field. Consequently, Eq. (6b) predicts a less violent 

behavior for the diffraction field. Analogous conclusions are valid for the perfectly 

conducting wedge which generates reflected fields, in addition. 

The excitation of a "perfectly absorbing" and a perfectly conducting 

wedge by various time-harmonic sources has been considered in Sec. 6. D. For 

simplicity, we consider only longitudinally directed sources whence the evaluation 

of the electromagnetic fields is reduced via E^s. (8) to that of determining the scalar 

Green's functions ó' and <5" . However, from the remarks in Sec. A, these con¬ 

siderations can also be applied to arbitrarily directed sources which then require the 

determination of the functions S‘(r, t) and S"{r, t) in Sec. 2.9. 

1. Absorbing wedge 

a. Line source excitation 

A line source of electric or magnetic current is situated at £* = (pf, <j>') 

in the presence of a wedge, as shown in Fig. 6. 5.* If the wedge faces are "perfectly 

absorbing" in the sense discussed in Sec. 6. Dl, G' and G" are identical and equal 

to the infinite angular space Green's function G^ . Suitable for our purpose is the 

representation (6. 34) of the steady-state Green’s function (exp(-iut) 

dependence): 

$ 
Fig. 5 of Chapter VI. 
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c«<£'£'!"> = -j- I) ni'’ - I♦-'I'' I) 

-100 u ' 

1 
■W p1 + 2pp' cos w ) A(<i>, 4,»; w)dw (46) 

where 

A(4>, 4>';w) = 
IT - I 4»-$' I - w TT + I 4>-4>' I + W 

(47) 

and r\(x) * 1 or 0 when x>0 or x<0, respectively. Upon letting k-is/c, where 

8 is positive and c is the speed of light in the exterior medium, and recalling that 

H(1)(iz) = -i-e"1VTr^K (z) v'* tri 

one obtains 

l£-£ 
Coo(£'£';,> = ■¿-Ko 8“E-)ri(ir - |4,-4>'|) +T(£,£';s) 

(48) 

(49) 

with 

w)dw T(£, £^8) = —iy J K (-Z- J p2 + p'2 + 2 pp' cos W JA(4>, <!>'; 
4tr -1« V J 

The inversion of the first term on the right-hand side of Eq. (49) is given in Eq. (20). 

To transform the second term into a representation as in Eq. (9a), introduce 

K (x) 
o' ' 

® -Xt 
-j== 

1 i/TT 

dt 

to obtain 

i® 
T(£, ^¡s) = —/ dw A(4>, 4>';w) / 

x > 0 

00 -ST 
e 

(51) 

dr 
4tr -i°o f 

c 4 -nr 
T ■ T 

c 

(52) 
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where 

f * f(ß) s V P2 + P’2 + 2PP' cosh ß >0 , ß = -iw . (52a) 

The desired formulation results upon interchanging the orders of integration which, in 

Eq. (52), cover the range f(ß)<cr<oo and -oo< ß< oo. if the ß-integration is performed 

first, one has -^(r)< ß< ^(r), >J/(t) = cosh’1[(c2T2 - p2 - p'2)/2pp'] , while 

f(0)<CT<oo. Thus 
00 

T<£,£';s) = /e"ST A(t) dr (53) 
o 

where 

cr< (p + p') (54a) 

A(t) 

4^( t) 

Ij. / A(4,. ;iß) dB 

4« -Mr) I 2 f2(p) 

V’ '~T- 

C T > (p + p') 

If the temporal variation of the line source is given by q(t) , with q(t) 

one obtains from Eqs. (11), (20), (51) and (54), 

(54b) 

= 0 when t< 0, 

^oo<£'£':t> = * II) »1 ft ,£"f ' 1 / . q(t-Q) 
c / |£.t J77 

da .*.-...f" 

+ q - -Í£l£j_J j q(t-a) A(a) da 

( P4p* ) 

where 

(55) 

cosh 
A(a) --L- J Re A(<(>,.(>';iß) dß 

2ir o JJ7I f2(ß) 
T~ 

(55a) 

2 2 2 ,2 
= _c_q -p -p;_. 

¿PP1 (55b) 
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The first term on the right-hand side of Eq. (55) represents the response 

in the absence of the wedge and exists only outside the shadow region of Fig. 6. 5. 

The second term represents a cylindrically spreading diffracted pulse which exists 

in the entire region exterior to the wedge and reaches the observation point P(p, 4>) 

at time t = (p+p')/c, i. e., after a time interval required to travel both the distance 

p* from the source point to the edge and the distance p from the edge to the observa¬ 

tion point. In view of the "absorbing" wedge faces there is no reflected pulse contri¬ 

bution. The incident and diffracted wave fronts are sketched in Fig. 3. 

Fig. 3 - Diffraction of cylindrical pulse by a wedge 
(omit reflected front for perfectly absorbing case) 
The incident front is centered at the source, the 
reflected front at the source image with respect 
to the horizontal wedge face, and the diffracted 
front is centered at the edge. 
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b. Plane wave excitation 

If the source point p' moves to infinity along the direction <J>' , one 

employs instead of Eq. (46) the appi opriate plane wave formulation (see Eq. 6. 37) 
wherein one replaces 

T Vp2+ P’2 + 2pp' cos a j by eikp cos a 

Hence, one has instead of Eq. (49), 

s £-cos(4>-«i>') 
^(£,4.';s) = e n(^ - |4»-4>'|) + r(£, <t.';s) 

-1« 

which is directly in the form (13). Thus, from Eqs. (14), 

oo 

Coo<£' ^ = = " I 1 ) /e 8T6(t + £-cosi^-^'jjdt--L f dr e“flT 
° C p/c 

and for a source variation q(t) when t>0, 

f 

Re A(<t>, ^jiß) 

(56) 

(56a) 

(57) 

£^(£,4^1)= 5(1+-^-008(4)-4)^)^(^-14)-4)^)--^^--2.) / q(t-Q)B£_Âiàî_iliiËL da 

where p = cosh (a c/p). 

For an impulsive excitation 5(0 = Mt-t'), Eq. (58) becomes 

(t-t ■)2 - (i) (59) 

which is simpler than the corresponding line source result since no integration as in 

Eq. (55a) is required. This result again highlights the cylindrical wave character of 

the diffracted wave propagating outward from the edge, as shown in Fig, 4 for t' = 0 
(see also Fig. 6. 6). 
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Fig. 4 - Diffraction of plane wave pulse by perfectly absorbing wedge 
(no diffracted pulse when t< 0) 

c. Point source excitation 

For point source excitation at r' = (p\ 4>\ z'), the steady-state Green's 

function G (r, r'; u) is given as in Eq. (46), provided one replaces (cf. Eq. 6.42) 

i „(1) (, / ¿ x ? I ) , elk^ _ rr--J— ; ” IT 
To \ Vp + P + ^pp cos a / .y t C = «y P + P + 2pp' cos a + (z-z*) 

The resulting expression for ^(£, r'js) is similar to Eq. (56) except that p cos a is 

replaced by Ç and a factor {l/4TrÇ) is added. Proceeding as in Eq. (13), with r = (Ç/c), 

one may derive an integral formulation similar in form to that in Eq. (14), and one finds 

for the time function corresponding to the impulse excitation q(t) = 6(t-t'): 

Goo(I’ £,;t) 

Ir-r'l 

4it I r-r' I 

^(Tr-I 4.-4.-1) + £- fi-e Alt’, /t_t, . JL) 
^ pp. sinh p 1 —) (60) 
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where ß = cosh [(c2(t-t')2 - p2 - p'2 - (z-z')2 )/2 ppt] and ^ = [(p+p')2 + (z.z*)2 J 

In tms instance, the diffracted wave front reaches the observation point along a ray 

path which strikes the edge and is reflected therefrom along f2 at the incidence 

angle. The diffracted -ays, perpendicular to the wave front, lie on a cone as shown 
in Fig. 6. 9. 

1/2 

2. Perfectly conducting wedge and half plane 

If the wedge is perfectly conducting, the vanishing of the tangential 

component of the electric field at the wedge surface is assured through use of the 

E mode Green's function G' and the H mode Green's function G", both of which 

can be constructed as a superposition of an infinite set of "perfectly absorbing" wedge 

solutions G^. Details concerning this image representation of the time-harmonic 

Green's functions G'(r, r';u>) and G"(£, r';w) have been given in Sec. 6. D3. Inspec¬ 

tion of these solutions reveals that the Green's functions for the perfectly conducting 

wedge differ from those for the perfectly absorbing wedge only through the presence 

of additional geometrically reflected contributions and through the appearance of a 

different function in the irtegrand of the integral representation for the diffracted 

field. Consequently, the recovery of the transient response for the perfectly con¬ 

ducting wedge is carried out at once in terms of the solutions obtained in the pre¬ 

ceding section. For simplicity, it will be assumed that the exterior wedge angle ® 

is greater than it; for t5<ir, the functional form of the solution is unaltered save for 

the inclusion of additional geometrically reflected wave contributions which may arise 

as a result of multiple reflections between the wedge faces. 

a. Line source excitation 

The time-harmonic Green's functions G' and G", given in Eqs. (6.94), 

are (for an exp(-iut) time dependence): 

= j-Ho*[kR(4>-<)>')] ti[tt-U-«J»'|] 

TTh(o [kRi^')] 4" 

»o’ [kR(2œ-4>-«Î>')] Tl[Tr - (2cp *■ <t>-4>')J 

1 ^00 
"1^ / Ho [kRiw-Tr>] [b(4>. *';w)T B(4>, -<}>';w)]dw, çn>TT 

G'(£, £';w) 

Gn(£, £';w) 

(61) 
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where 

R(a) = (p^ + p'^ - 2pp' cos a)1/2 (61a) 

and 

ain — (w-tt ) 

i 2--- 
^ COB ~(w-Tr) - COS — 

CD CP 

(61b) 

The first three terms on the right-hand side of Eq. (61) represent the incident field 

and the fields reflected from the wedge faces at 4> = 0 and <}> = cp , respectively; if 

0)<ir, the solution includes additional reflected wave (image) contributions but is 

otherwise unchanged. Comparison of Eqs. (61) and (46) reveals their identical form 

if A in the integrand of Eq. (46) is replaced by £b(4>, 4>';w) + B(<t>, -4>';w)j. The 

transient solution corresponding to a temporal source function f(t) when t> 0 is 

therefore given via Eq. (55) by 

0,<£'£':t>| c 
<;■<£. £\.>r^T’ R(<t-V)/c 

f(t-a)dQ 

V (ac) -R (<))-«))') 

■+ T?11 [" - (4>+<l>')] - 
R(W) 

[ 
f(t-a)da 

— c 4,-^)1 Jt-ili2®^!! / -Liliana 
^ L J L c Jrîzq-^-^ï/c j 

(ac)2- R2(2a-^-4)1) 

+ T1 t - l£í£Ü 
C (p+p')/c 

V 

f f (t-a)^D(<i>. 4>';a) + 0(4).-<t>';a) j da (62) 

where 

0(4).^10) = --V / 
2tt o 

2 2 2 ,2 
M = c ° -.P..^£. 

cosh ^M 
dp 

l -2 '2' 

Re B(4>, 4>';i3) 

'(aci^-rtP) 

(62a) 

(62b) 
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One verifies from Eq. (61b) that 

jr_(c°8 ^ cosh Re 4>';iß) » 

2 2 
cos j ain _u irß TT \ TT 

QP 
, = 

(63) 

ÇP ......—...«.....—.. 

___v2 TT ß 2 ir . 2 tr - 2 tf ir d» it 
cosh + cos —_ . 8in — - 2 cos coscosh — 

cp T X CP CP CC 

f(ß) is defined in Eq. (52a). The physical interpretation of this result is as sketched 

in Fig. 3. 

While it does not seem possible to evaluate D in closed form whtn ¢, 

is arbitrary, the integral can be reduced for the special case of a half-plane cp = 2tt.6' 7 
in which instance, 

cos 
Re L(4>, <|>';iß) = --- , cp = 2ir 

'■jj' cosh.^ 

cosh ß + cos 4> 

Introduction of the successive changes of variable 

2 cosh ß = 1 + v‘ 

and 

V = b sin y 

reduces Eq. (62a) to 

cosh -jp- dß = J2 dv 

b = I J£2)í : 

D( 6, <h' ;a) = 
cos 

tr/2 

/ 
2tt o 

which can be evaluated to yield 

c os -»jr- 

2 2 
1 + cos + b sin y 

EK*, 4>';q) 

rpp7 

c 
-ET 

1 

(64) 

(65a) 

(65b) 

(66) 

2 cos -Ip- 4tt Y"(ca)2 - F2(4,) 

sgn cos -jjr 

(67) 

where sgn x =+1, ^x^O. and R(4<) is defined in Eq. (61a). Hence, for an impulsive 

source distribution f(t) =6(t-f), t'> 0 . one obtains for the half-plane Green's 
functions, 
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C'(£.£';t) 

G"(£, £';t) 
-1 i] »ï [r - -5î^>] 

JlcÔ2 - R2(*-*>) 

C 

+ TT ^ 

c 
’ Tn1' 

tr - (<j>+<|>')j r) - JMiííLLj 

-/(cf)2 - (¢+4)1) 

ft* . í£í£lil Egn(ir - j 4)-4>' |) _ sgn(ir - 4> - 4>') 

L c J 
-ll (ct)^ - R¿(4.-4>,) V(ctA) - R (4>+4>') - 

(68) 

ék 
with t s t - t' . In view of the symmetry of the half-plane configuration, it has been 

assumed without loss of generality that 4>'<Tr . The various geometric-optical 

regions entering into Eq. (68) are illustrated in Figs. 3 and 6.11. The simple result 

in Eq. (68) demonstrates again that diffraction weakens the singularity which exists 

across the incident wave front; the diffracted field is in fact finite, except along the 

geometric-optical boundary lines. (The reader may find it instructive to deduce the 

field behavior near the wave fronts from the time-harmonic asymptotic solution in 

Eq. (6.103) in conjunction with Eqs. (6) ). 

b. Plane wave or point source excitation 

The preceding considerations also lead directly to the transient solutions 

for plane wave or point source excitation. For an impulsive source distribution 

?(t) = ôít-t1), one has for a plane wave incident on a wedge with exterior angle (p>ir, 

<5'(£, £';t) 

G"(£,£';t) 
= + "c- cos(4>"4>,)J *1 [v - I 1] + ô£t + -£-co8(<t> + 4>,)]îi [tt - (4) + 4)1^ 

+ ó[t + -£-cos(2qp - 4>-4>,)J 

T) (t - -2-) 

- —— C [Re B(4>, 4>';i0) + Re B(4>, -«^'¡iß)] 

V(ctA)2 -p2 

where ß = cosh’^ct/p). 

(69) 

Similarly, for an impulsive point source, one obtains an expression 

analogous to Eq. (60b) provided that A(4>, 4>';iß) i» replaced by [b(4>, 4>';iß) + B(4>,-4>';iß)J , 

and that additional reflected wave contributions are included. 
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Ü:—I*1118811 Line Source in the Presence of a Unidirectionally Conducting Infinite and 

Semi-Infinite Screen 

As noted in Sec. 5.1( radiation and diffraction problems involving a 

unidirectionally conducting screen are of special interest since such structures may 

support surface waves which propagate undamped along, and decay exponentially on 

either side away from, the surface. These remarks apply to time-harmonic excitation, 

and it is of interest to explore what role is played by these wave constituents under 

transient conditions. Two excitation mechanisms have been considered in the time- 

harmonic study: a) excitation by a confined source, and b) excitation by an edge 

discontinuity (half plane problem). While their amplitudes depend on the mechanism 

involved, the surface waves in either case have identical characteristics. This be¬ 

havior is altered drastically under transient conditions, and the exciUtion mechanism 

is found to be of major importance in determining the nature of the surface waves. 

Moreover, the presence of transient surface waves manifests itself in quite a different 

manner than that of their time-harmonic counterpart. 

These aspects, and other» pertaining to the reflected, transmitted and 

diffracted fields may be explored in detail from the transient solutions for a unidirec- 

lionally conducting infinite and semi-infinite screen. The results are obtained almost 

immediately since the time-harmonic representation integrals already have the form 
given in Eq. (12). 2 

1. Infinite screen 

The electromagnetic properties of a unidirectionally conducting screen 

have been described in Sec. 5.1, and solutions have been obtained for the excitation 

of this structure by a time-harmonic phased line source and a dipole of electric cur¬ 

rent oriented arbitrarily in a plane parallel to the surface. While the transient solu¬ 

tion is derived only for the case of a line current of constant strength (i. e., £=0 in 

Sec. 5.13), the procedure here may be applied as well to the evaluation of the spherical 

impulse response (point source excitation). If the line source is located at y = 0, 

z ~ z'< 0, and the screen occupies the z = 0 plane with the direction of conductivity 

inclined at the angle a with the x-axis, then the secondary electromagnetic fields 

may be derived from the scalar function (see Eq. (5. 317) or (5. 300a) with r\ = k sin w 
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a normalization factor has been included to make (Go + Gj) proportional to Ex) 

e-jk R cos(w• 0) 
J -2-TT- dw , £ = (y, z) , (70) p esc o - sin w 

where y = R sin 0, |z| + |z'| = RcosG, O<0< *r/2 , and the suppressed time 

dependence is exp(jwt). The integration path is indented into the region |Re w| <tt/2 

to avoid the poles at sin = +csc a . While the simple boundary condition in Eq. (^. 271) 

is frequently independent, its physical realizability by a grid of thin, tightly packed 

wires becomes increasingly difficult when u is very large. Since the spectrum of an 

impulsive source contains all frequencies, the impulse response in the presence of a 

physically constructed surface is not adequately described by the analysis below wherein 

the idealized, non-dispersive surface condition is taken to apply over the entire interval 

0<u<*>. However, if the impulse solution is utilized subsequently to synthesize the 

fields of a transient source with a confined frequency spectrum, the results will retain 

their approximate validity. 

The integral representation in Eq. (70) is in the form in Eq. (12a) so 

that the response to a cylindrical pulse 6(t) is recovered at once from Eq. (15): 

Gjff, £' ;u) 
cot 
ïrr 

G^.f'-.t) 

2 
COS Q 

2 IT ■ 

Re 1 
7T 1 - sin a sin 6 + j cosh ^ (~^~) 

t - 

t< 4 . (71a) 

t>4 . (71b) 

Thus, the transient solution contains no explicit evidence of the surface waves which 

play such an important role in the time-harmonic problem. The surface waves do, 

however, influence the transient response as shown by the investigation below. Before 

proceeding further, we exhibit the explicit form of the numerator term in Eq. (71b), 

Re 
2 2 2 

esc a - cos 9 -f cos 29(ct/R) 2 
esc a 

2 
^csc^a - cos^0 + cos 20(ct/R)^j + (sin^ 20)(ct/R)^ £(ct/R)^ - ij 

(71c) 
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whence the detailed space-time behavior of the secondary field is not excessively 

complicated. To this contribution must be added the incident field. 

0 
* l< -- 

Go(£.£';t) = 

(72a) 

One observes from Eq. (71b) that the first secondary arrival is at t = R/c, the time 

required for the pulse to travel via a geometric-optical path from the source to the 

screen and from the screen to the observation point. For t * R/c, the numerator in 

Eq. (71b) introduces little distortion so that the initial reflected field is essentially 

that of a simple line source at R = 0, modified by the angle-dependent reflection 

factor -cot a^csc a - sin 0J . It is noted, incidentally, that the secondary potential 

Gj reduces to 0 when a =*/2 and to -Go(£,|';t) when a = 0, where £> is the 

coordinate of the point R = 0. This behavior describes correctly the limitir.g cases 

where the screen is, respectively, perfectly transparent and perfect]; refleciing. 

It is worthwhile to consider two special cases for which substantial 

simplification occurs in Eq. (71c): 6=0 (observation point, in the plane perpendicular 

to the screen and containing the source), and 8 = n/2 (source and observation point. 
on the screen). In the first instance, for t> R/c, 

àl<£.£'ît) 6=0 , (73) 

so that the reflected potential has a monotonie time behavior which is not unlike that 

for a perfect conductor but is accentuated by the presence of the unidirectional con¬ 

ductivity on the screen. The situation is quite different in the second case where one 

may conveniently combine the incident and secondary contributions (since | p-p' | = R = y) 

When » = ir/2, the pole singularities of the integrand in Eq. (70) lie on the vertical 
integration path in Eq. (13) through the point w = w-ir/2. No additional contribution 
as in (A2) need be considered, however, since u(ir/2-w) is in this case an even 
function of w. 
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* 1 V* - (y/c) V 
Gip,^ ;t) = - » Ö = -y » . (^4) 

t4’ - <C8C^a)(y/c)2 

with G = 0 for t< y/c. The first response at y occurs again at t = y/c, after a 

time interval required by a signal traveling at the speed of light to cover the distance 

between the source and observation points. (Note that G = (Go + Gj) has no dis- 

continuity across the impinging wave front; this behavior is a consequence of the k"3^2 

dependence in the time-harmonic high-frequency solution). A sharp increase is ob¬ 

served at a later time t = (y/c)csc a, corresponding to the signal velocity v = c sin a 
associated with the previously discussed surface waves in the time-harmonic problem 

(see Sec. 5.12). Thus, the existence of surface waves on the unidirectionally con¬ 

ducting screen gives rise to a peak in the response function which (for 6 = -y-) occurs 

precisely after the time required for these waves to arrive at the observation point 

(on this non-dispersive surface, all surface waves travel with the same speed). The 

height of the peak is infinite when the source and observation points both lie on the 

surface but diminishes for other arrangements (0 f ir/2). A typical plot of the ex¬ 

pression in Eq. (71c) is shown in Fig. 5, for a = 45° and for various values of 0 and 

(ct/R). One observes clearly the peaked response at (ct/R) = esc a (dat-hed line) as 

the observation angle 0 -*tr/2. 

The preceding discussion suggests that the conventional surface wave in 

a time-harmonic field turned on suddenly at t = 0 is not established at a point y on 

the surface until after a time t * (y/c)csc a. This conjecture is verified from an 

examination of the transient solution corresponding to a time function 

g(t) = 0 . t<0 

g(t) = ejut . t>0 

which is obtained from Eqs. (74) and (11) for t>y/c as 

(75) 

( e 
jw(t-£) 

y/c 

- (y/c)2 
72-2 / / ;z £ - CSC a(y/c) 

d£ G 
1 

Tür 
(76) 
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or after changing variables to £ = coah”*(£ c/y), 

1 ju, r° sinh2;.-^“8^ 
nr' / ,2 2 

cosh ^ - CSC Q 

dC cosh E, ct 

y 
(77) 

Again, d = 0 when t<y/c. For observation times t<(y/c)csc a, one may expand 

the denominator in the integrand in a series of powers of (cosh ^ sin a) and each 

multiplicative factor of cosh Ç in the integrand may be replaced by the derivative 

operator -(jkl'^d/dy). Thus, the integral in Eq. (76) may be written as a series 

involving repeated spatial derivatives of 

j°e-jkyco.htd; 

which expression occurs in the response to a line source in free space. The series 

converges rapidly if (cosh E, sin a)« 1 and the resulting field shows little evidence 

of the presence of a surface wave. However, for (cosh E,08ina)>l, one may write 

the integral in Eq. (77) as » 
’o * 00 
f = .f - / . ™ 

o ° S© 

with the first contribution on the right-hand side representing the steady-state solu¬ 

tion in Eq. (70) (for 0 = it/2) and the second denoting a correction term. The steady- 

state response exhibits clearly the surface wave term (see Eq. (5. 307) ), and the cor¬ 

rection integral 

2 + ^ 

+ l ? :,.u r 
d; (79) I 

oo . .2, -jky cosh E, 
f sinh ; e ^ 7 
j 1 ... 1 . 1 -- ... 21....* 2Ü .. 

cosh ^ - esc a 

r 1 d‘ 
~T / 00 

k k dy / f -jky cosh E, 
-T-T~ ' “ 
cosh E, - esc a t, 

o o 

is small when (cosh £o sin a)»l. Thus, the surface wave appears within a time 

interval centered about cosh L = esc a, as anticipated. 

The integral is taken as the Cauchy principal value with respect to the pole at 

i = cosh"1csc a. With an extension of the range of integration from ^=-00 to £=00 
and the change of variable Ç = (w -tt/2), it is not difficult to effect a reduction to Eq.(70). 
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2. Half plane 

The transient response of a unidirectionally conducting half plane may 

also be investigated readily. If the screen occupies the region y> 0. z = 0, and the 

line source is located at y = a. z = 0, . as in Fig. 5. the fields may be calculated as 

before from a potential function G which now has the form (cf. Eq. (5. 358) ): 

G(£.£';(*>) = Goe(£-£';w) + Cd(p,£';w) . « (y\ z') = (a. 0) 

where G^,^;«) is the potential function for the infinite screen in the preceding 
section, 

s - -f ^o){kR) + 
, 2 
j COt Q / 

P 

e-jkR cos(w-e) 
-2-7~2—dw 
esc a - sin w 

(80a) 

with R and 6 denoting, respectively, the distance from the source to the observation 

point P and the angle between R and the positive z-axis. Gd(£,£';w) expresses the 

perturbation introduced by the terminated screen, 

Gd^£’ 
i esc a ¡ cot a e p 

4ir r—.I J 
4 1 + esc Q p 

V1 - sin w e 
-JKKjCOSlW-öj) 

2 . 2 esc a - sm w 
•dw (80b) 

where Rj and Oj are the polar coordinates of the observation point measured from 

the edge of the screen at y = z = 0 (see Fig. 6). 

Fig. 6 - Line source and half plane 
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The impulse response of the infinite screen is obtained from the Laplace 

inversion of Eq. (80a) and has been discussed in the preceding section. The diffraction 

field in Eq. (80b). apart from the factor exp(-jka esc a), is also in the form shown in 

Eq. (12a) so that its inversion can be carried out directly. If the time function cor¬ 

responding to the integral in Eq. (80b) is to be denoted by F(t), then the time function 

corresponding to the integral multiplied by exp(-jka esc a) is Fft-t'), where 

t* = (a/c)csc a. From these considerations and the discussion in Section A, one ob¬ 

tains for the transient diffraction field, 

0 + t' (81a) 

Gd(£,£St) = 

Re- 

2 
cot a 

/> 

sin 
(-5 - 9i) 

-j cosh"* .^ 

T j 
-Z 

esc a - sin [Vi 
it y2( 1 + esc a) Vtt-t')2 - (R/c)' 

t> — + t' 
c 

(81b) 

where it has been recognized that V 1 - sin w = >/T sin£(-jjr - w)/2j . Since 

t' = (a/c)csc a is the time required for the surface wave field to travel from the source 

point on the screen to the edge, and (Rj/c) is the time of travel of a space wave from the 

edge to the observation point, one observes that the diffraction field for this source loca¬ 

tion is excited by the incident surface wave which is then radiated into space. 

The region of validity of Eq. (81b) is confined to observation angles 

|0.|<it/2. When |0j = tt/2, the pole singularities in the integrand of Eq. (80b) lie 

on the integration path in Eq. (13), and the considerations in the Appendix are ap¬ 

propriate. Since 

u(w) 
•[T sin [(-J- - w)/2 J 

2 ~Z 
esc a - sin w 

(82) 
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one has 

u(-J- + w) 
-JÏ sin w 

7" -2_ 

esc a coo w 
u(--f +^) 

yr, w cos 
-2-j— 
esc a - cos w 

(83) 

so that ufGj + w) is an odd function of w when Gj = ir/2, but an even function when 

91 = -it/2. As the observation point approaches the screen, the diffracted contribution 

from Eq. (81b) tends to zero when Gj-tt/2 with c(t-t') ^R^sc a, but. becomes infinite 

when Gj-Tr/2 wun c(t-t') = RjCsc a, thereby exhibiting a delta function dependence. 

The entire diffraction field is therefore contained in the delta function response in 

Eq. (A2) of Appendix A, with Wj = cosh ^sc a (note: the integration path is indented 

into the left half of the w-plane to avoid the poles): 

cd(£.£’;t) 
2 

cos a 
sin a) 6(t a 4- y 

c esc a) (84) 

Thus, on the screen, one observes an impulse which arrives at the observation point 

precisely after the time interval required by the surface waves to travel from the source 

to the edge and from the edge to the observation point. Unlike the cylindrical diffraction 

field in space which persist .ifter the arrival of the first response, the diffraction field 

on the screen maintains the impulsive behavior of the excitation. 

When 0, = -tt/2, the observation point lies on the portion of the z = 0 

plane which is not occupied by the screen. Since u(-(tt/2) + w) is an even function of 

w, th. lise in Eq. (A2) is absent and Gd is given by the limiting form of Eq. (81b), 

c 

Cd(£,£«;t) 
(85a) 

2 
COt Q 

2n V (1 + esc a) 

^•JïF7 ™!- -IM 
t>lxl + f . 

(85b) 

1/2 
where t’ = (a/c)csca and the formula cosh(x/2) = [ (1 + cosh x)/2] has been used. 

To this wave must be added the infinite-plane field contribution from Eq. (74), 
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goo<£' £,;t^ 

2 

7 (86) 

While both <5d and have a singularity at ct = ( |y| + a) cbc q, the time required for 

the surface wave to travel from the source to the observation point along the infinite 

screen, one may easily verify that the singularity cancels in the sum ((5 d + G^). This 

is in accord with the physical requirement since no surface waves can exist in the region 

v< 0. 

It is of interest to explore further the different character of the surface 

waves radiated directly by the line source on the screen (as in Eqs. (74) and (86) ) 

and the surface waves excited by the edge discontinuity (as in Eq. (84) ). In the former 
A 

case, the response is peaked about the time interval t required by a field traveling 

at the surface wave speed to cover the distance between the source and observation 

points; the increase in field strength at a given point y occurs gradually as t-*t 

(Fig. 7(a) ). In Eq. (84), on the other hand, the response has the same impulsive 

dependence as the excitation (Fig. 7 (b) ). This behavior may be explained after an 

examination of the steady-state surface wave fields which are exhibited explicitly by 

extracting the contributions G„„ and G , from the residues at QOS <3 S 

a) due to line source b) due to edge 

Fig. 7 - Transient surface wave fields on the screen 



PIB MR I-IZ 57-65 41 

• 1 
wp = "/Z + jcosh" caca in Eqs. (80a, b): 

Gooa = ’4 cos a ek[-jl>r-al C8C Q ' M cot q] ÜJ 
c (87a) 

ds cos n./7ac Q - 1 ek [”jiy +a) esc a - \z \ cot al 
v esc a + 1 J (87b) 

While these results differ in the k-dependent phase terms involving |y-a| and (y+a), 

respectively, and also by the real amplitude coefficient (esc a - IJ^fcsc a + l)”1/2 # the 

significant difference between the two expressions is in the presence of the phase factor 
-j= exp(-jir/2) in Eq. (87a). 

To find the real, time-dependent surface wave fields Gs excited by an impulsive 

source distribution 6(t), it is convenient to employ the inverse Fourier transform (see 

also Eq. (95) ) 

1 00 
r- f C e 
■n -io 8 

j Wt du> = jL fCse jwtdu> + da, (88) 

which is most useful in the second form wherein the integration extends only over posi¬ 

tive frequencies. One easily obtains the results, 

OOg 
cos a 
sr- 

|y-a| 
esc a - t 

( lyca| CSC a - t) + (ill cota) 

(89a) 

ds 
cos a 
~KT 

csc a - 1 
esc a + 1 

M cot a 

(89b) 
(JL±ic.CQ_,) +(JilcolQj 

which do not behave identically as 2-O. The line-source excited contribution varies on 
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the screen according to 

- co* a 
00* 

4ir I 
r-a 

CSC o 

while the diffracted contribution vanishes unless ct = 

may be formulated in terms of the delta function, 

= 0 

(y +a)csc a. 

, (90a) 

This limiting behavior 

=a. = y-üfzíM* - ^r-• I*' '° ■ <*»» 

and yields the same expression as in Eq. (84). Thus, the phase factor -j in Eq. (87a) 

serves to smear out the response to the impulsive excitation, whereas its form is re¬ 

tained for Eq. (87b). 
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F.- Radiation from Sourcea in Unform Rectilinear Motion (Cerenkov-type effects) 

1. General remark» 

The examples in the preceding Section have been concerned with 

transient processes caused by sources which are fixed in space and possess a non¬ 

harmonic variation with time. Transient field, may also be excited when the location 

of the source changes with time, even though the source strength itself is non-varying. 

The simplest class of problems in this category, involving uniform motion of an 

electric charge along a straight-line path, is examined in this Section. It is found 

that radiation occurs only when the charge speed exceeds the propagation speed of 

electromagnetic wave, in the surrounding medium, and that the electromagnetic fields 

then trail behind the charge in a cone centered on the particle trajectory. The results 

are of interest for studies of the interaction of high-speed charged particles with 

material media of various types (dielectrics, plasmas, etc. ), and bear on such physical 

applications as the absorption of protons in "swimming pool" atomic reactorr or the 

excitation of low-frequency noise in the earth’s exosphere by streams of charges 
emanating from the sun. 

A point charge of strength n is assumed to move with constant speed v 

parallel to the x-axis of a rectangular coordinate system. The current density J(r, t) 
associated with this moving charge is 

J(r. t) = xoqv ô(x-vt) ó(y-y') SU-z1) ; (91) 

its Fourier spectrum function J(£, w) is obtained from Eq. (la) as 

= 20<>e’j<k/i,X6(£-£') . £= <y. z> . P = . * == 

wh.r. c ia the speed of light in vacuum. Thus, the associated time-harmonic sour«2* 

distribution J(r,<4 is a line current with a linearly varying phase, and the radiation 

from the moving point charge in the presence of various environment, can be obtained 

via the inverse Fourier transformation (lb) from the time-ha,monic line source solution, 
in Chapters V, VI, VIII or IX. 
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While application of the inverse Fourier transformation is essential for 

the determination of the real, time dependent electromagnetic fields E(£, t) and H{£, t), 

it can be avoided for the evaluation of the radiated energy. The Poynting vector 

P(£, t) = Ê<£, t) X H(£, t) (93) 

represents the flow of electromagnetic field energy per unit area per unit time so that 

the total energy flow vector W(£) per unit area is given by 

oo 
W(£) = / P(£,t)dt . (94) 

-'oo 

* * 
We now substitute for E and H their Fourier integral representation (lb), written 

$ A 
conveniently in terms of the complex conjugate function f (£, w) (since f(r, t) is real, 

one notes from Eq. (la) that f(£, -w) = f (£, w) ): 

i 00 i 00 
f(£, t) = f f(£, w) du + f f*(£, u) du . (95) 

o o 

Thus, upon assuming the interchangeability of the t and u integrations, 

00 oo 
4ir WÏ£) = f du f du* 

o o 
E(£, u) X H(£, u') fe^w+w ^ldt + 

- 00 

+ eVu)xH(£, u') /e’^^^^dt + E(£, u) X H (£, u') f e^“”10 ^ 
-Ò0 _00 

dt 

+ E^fr, u) X H*(r, u’) f dt 
-oo 

(96) 

00 
and, since f e-Jatdt = 2it 6(a) , 

-oo 

00 

W(£) = — Re / ^(£^) du P(r,u) = E(r, u) X H (r, u) (97) 

* 
The equality of Eqs. (94) and (97) is known as Parseval's Formula. 8 
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Hence, 

ÏYJl) = Re P(r, u) du (98) 

represents the total energy flow per unit area in the frequency interval between w and 
(u + du). 

The total energy in the frequency range from u to (u + du) flowing 
through a plane z = constant is given by 

W 

where S is the cross-section 

sentations (see Eqs. (2.5) ) 

Et(rfu) = £ V|(z,u)e'(£) + £ V"(z, u) e "(e) 

Ja) V /Wu(r).zodS 
s 

area transverse to z. Upon substituting the modal 

(99) 

repre- 

(100a) 

Ht<r,w)xa„ = £ I¡U,u) e!(£) + ^ lj(a, w) er(£) 
(100b) 

into Eq. (99), inverting the orders of summation and integration, and 

normality properties (2. 8b) of the vector mode functions, one finds 
recalling the ortho- 

W (z) = 
u Re V-U. u) I ! (z.u) + £ VJ(z.w) lí^lz.u) 

(101) 

Thus, Wu i, given as a superposition of the individual mode power, and involves only 

the modal amplitudes V. and !.. Finally, the tota, energy W flowing through a 
plane z = constant is given by 

W(z) = /w(r)-zodS 
(102) 

2. Infinite dielectric medium 

a. Circular waveguide representation 

Suppose that the point charge moves in an infinite medium characterised 

by a real dielectric constant c, and permeability Because of the manifest sym¬ 

metry of the electromagnetic field, about the particle trajectory, i, is simplest to 
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employ a circular waveguide representation of the free-space region. The time- 

harmonic fields radiated by the line source in Eq. (92) are then inferred from the 

scalar Green's function (Eq. 5. 65b) 

G<r,U>= . , = r=|£.|.|, t - , 

(10 3) 

to yield via Eqs. (5. 66) (R and 4> are the radial and angular coordinates in a plant 

transverse to the particle trajectory) 

= "v7^ë GO*, u>) , (104a) 
o 

2 
Ex(r, u) = j o)G(r, oo) , (104b) 

c e c o 

g 
= ~ 9 ^(£, u) . (104c) 

The time dependence appropriate to these equations is exp(jut), w > 0. One notes 

from Eq. (103) that the parameter y determines whether the particle does, or does 

not, radiate electromagnetic energy. When e > l/ß , where ß=(v/c)<l, y is real 

and the Hankel function represents an outwardly propagating, i. e., radiating wave. 

The energy in this wa/e flows as in Fig. 5.10 along rays which make an angle 

4* = cos (a/k/7), a = k/ß, with the direction of motion of the charge. The energy 

flow direction is therefore constant for those frequency ranges for which c is es¬ 

sentially frequency independent. Since the propagation velocity of a plane wave in the 

medium is given by v = (c//T), the range y> 0 implies v>v so that the particle 

speed is greater than the propagation speed of a plane wave in the medium. Hence, 

the particle can excite those plane waves whose phaoe velocities along its direction of 

travel are equal to v; the propagation direction of these waves is then defined by the 

previously mentioned angle ^ • 
2 

When e<(l/ß ), y= -j|y| i8 imaginary and, from Eqs. (48) and (103), 

G(r,w) = e'j(k/P)xKo(kR[ y|) , k = -£-> 0 , (105) 

so that there is no radiation. In this instance v<v, and the particle cannot interact 
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with propagating waves in the medium. (Thus, no radiation occurs in vacuum where 
e = 1 and v = ßc< c ). 

The time dependent Green's function 0(r. t) is obtained from Eqs. (103) 

and (105) upon application of the inverse Fourier transform. For y real, the change 

of variable u = u exp(jtr) in the second integral in (95), and use of the relation 

Hq (xue ) = - H^o^(xw), yields an expression for G(£, t) which can be evaluated via 

the formula9 (see also Eqs. (17) and (19) ): 

/ H<2)(au)ejuvdu = 
-oc-jo 

0 

so that for frequency independent c , 

G(r, t) 

0 

v< a , (106a) 

v> a , (106b) 

t - c JiX , (107a) 

..J ■ «p- . t - > JiX . (107b) 

Eqs. (107) show that the electromagnetic fields trail behind the moving charge inside 

a cone making an angle 0 with the x-axis as shown in Fig. 8 : since the speed of the 

particle is greater than that of a wave propagating in the medium, the electromagnetic 

disturbance cannot run ahead of the particle. The cone is defined by the equation 

(vt-x) = Ryß so that 

cot Ô = yß = -/eß2 -1 . (log) 

In a coordinate system fixed to the moving charge, the electromagnetic fields are zero 

when 6> 0 and are derivable from Eq. (107b) when 0< 8 . The normal direction to 

the conical wave front is given by the previously defined angle ^=(ir/2) -8s cos"1(l/ß^£). 

If y is imaginary, the formula 

/ KJa!u|)ejUVdu = -^— 
-oc 0 r2—2 

Vv + a 

(109) 
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2/ 2 
Fig. 8 - Particle moving in an infinite medium with e>c /v 

yields the following result for c = constant and for all values of t, 

1 I . i 
G(r,t) = 

4tt 
■IÏ- - e (HO) 

The associated electromagnetic fields are quasi-static and reduce to the electrostatic 
A 

fields when v = 0, as noted from Eqs. (111). The magnetic field is given via 

Eqs. (104) and (110) by 

»*<!■ *> = Sr 

[Ji ♦ *2r 
-6 E J 

2 
ß E < 1 0 = 

(111a) 

while the electric field components E_ and È are from Eqs. (104a, b), 
n X 

ER(I’ ^ = T'rir “<j) 1 HJr.t) = Tr^ 

Vl-P2t .R2] 
L i-p't J 

W 
(lllb) 
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êx(r. t) 
2 

--F 
o 

A 
9G 

“5T = 
—a 
4tt e _e 

(x-vt) 

[Sr*'1] 
W (lllc) 

Eq.. (Ill) can also be derived by applying a Lorentz tranaformation to the electrostatic 

particle field. While for v = 0, Êx/Er = x/R, the effect of the motion is to shrink 

this ratio to (x-vt)/R so that the field intensity seen by a stationary observer is no 

longer symmetrical about the charge. 

The energy flow through a cylindrical surface surrounding the particle 

trajectory is readily evaluated from Eqs. (104) and (105). The total radial energy 

flow per unit area, in the frequency interval from « to (w + du), is given from Eq. (98) 
by 

- “ Re [Ex^ ^ ^1’“)] (112) 

where use has been made of the Wronskian Jq(x) N^x) - Nq(x) J^x) = 2/wx. Thus 

as noted previously, no radiation takes place when Eß2<l. For cß2>l, the total 

radial energy flow per unit length (in x) in the frequency range between W and 

(oü+dw) is from Eq. (112b) 

Ww = 2*RWu(R) = 
4tt c c 

o 
4-7?-) (113) 

whence one has for the total radiated energy per unit length, 

2 
W 

« 2 Û /wudU = - i z /4 ‘ \ 
o 4tTCoC ° ' CP 

dco 

where Û is the limiting frequency for which t(w)ß2 = 1, i. e., t02<l for 

(1H) 

u>u . 
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(If t is assumed frequency independent, W becomes infinite; the dielectric constant 

°f all physical media is frequency dependent and approaches that of vacuum as the 

frequency increases without limit; it therefore exhibits the cutoff frequency w). These 

results were first derived by Frank and Tamm12 in order to explain observed radia 

tion from fast charged particles in media with large refractive index. 

b. Rectangular waveguide representation 

Alternatively, the free-space region may be regarded as a rectangular 

waveguide whose axis extends along the z-coordinate, with the steady-state source 

distribution in Eq. (92) constituting a transverse electric current which excites both 

E and H modes relative to the z-direction ( ee Sec. 5.B2). (While the rectangular 

waveguide description is unnecessarily complicated for the free-space configuration, 

it is directly pertinent to the discussion of stratified media in Sec. 2). Instead of 

employing the potential formulation in Eqs. (5. 62) and (5. 63), it will be more con¬ 

venient for subsequent application of Eq. (101) to deal with the modal voltages and 

currents. The steady-siate modal network problem is sketched in Fig. (6.9c) whence 

for z> z\ 

V.(z,u) = - -2 

Z.(w) Uu) -jK.M(z-z') 
1 1_e 1 = Z.(w) I.(z, co) , (115) 

where i. , Z. , K. are the current generator strength, modal characteristic impedance 

and propagation constant, respectively, and the dependence on u has been indicated 

explicitly. The vector mode functions are (Eqs. (2. 12) ) 

V ,*;(£) .. . 'Vi'i’ 
e-(p) = * k. 

ti 

er(p) z X 
— o k" 

Kti 

(116) 

Since all field quantities excited by the current distribution (92) will have an 

x-dependence given by exp(-jkx/ß), one may define the scalar mode functions ¢. 

and as 

i » \ _ i e-j9ye-j(k/P)x 
*i{£) = 4,i(£) ‘ 

-0C<T) <00 (116a) 

whence, 

■ .-.. 

kti = kti = ^ <k/P)2 + 11 
(116b) 



PIBMRI-12 57-65 51 

Upon substituting Eqs. (92) and (116) into Eq. (2.11b), one finds, with 

y' = 0 (see also Eqs. (5. 294) ) 

i*. = -jKVP) i? = 
2tt k". 

ti 

(H7a) 

while from Eqs. (2.14), 

K\ 
Z\ 

i 
o 

Z? = i 

u>U 
K\ = ,2 , ,2 

k t - k!. 
ti 

(117b) 

To calculate W (z) from Eq. (101), we note first that 
to „ _ 

V! IÎ* + V* IC* 
ii ii 

Z! I i! I 
i1 i' zr i!1 

i1 i 
—r s 

2, 2 2 
,¾ k..ï ,. 
’'“'o'*; 

(118) 

where y 1® defined in Eq. (103). This expression is real only when k\ is real so 

that the integration over q in Eq. (101) extends only over the interval | n I 

W (z) = 
GO 

8tt 

2, 2 2 
q k y 

tot e 
o 

ky 

/ 
-ky 

in 

V7 

2. 2 2 
-¾ k ï 
SlTGOt C 

o 

(119) 

This result represents the energy radiated through a plane at z> z'. By symmetry, 

an equal amount is radiated through a plane at z< z' so that the total radiated energy 

(per unit length in x, in the frequency interval between go and dGo) is given by 

2Ww(z), which is identical with the result in Eq. (113). 

3. Two dielectric media separated by a plane interface 

Next we consider the problem of radiation from a point charge in 

constant, straight motion parallel to an interface between two semi-infinite dielectrics 

characterized by the parameters and ^’^o’ re8Pectively. The particle 

trajectory is taken to coincide with the line (y, z) = (0, z') as shown in Fig. 9. For 

practical applications, medium 1 is usually taken as vacuum (Cj = £o); radiation may 

be produced in the denser medium 2 if (£2/eo)ß2>l, in which instance the evanescent 

waves incident from medium 1 are converted into propagating waves in medium 2. 

In the analysis below, and are kept arbitrary. 
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X 

Fig. 9 - Particle moving parallel to a plane interface between two media 

The associated steady-state problem, wherein the line current distribution 

(92) flows along the particle trajectory in Fig. 9 , has been solved in a rectangular 

waveguide representation in Sec. 5.C3, utilizing the potential functions S' and S". 

For the calculation of the radiated energy, it is more convenient, however, to deal 

with the modal voltages and currents. The equivalent modal network problem is 

shown in Fig. 5.15(b), and its solutionis obtained from Eqs. (5.83) or (2.42) and 

(2.25) as: 

Zili- 
V.(z) = - -7 ! [e‘j 

I z-z' 
+ r.(0)e 

Z+Z 

"] 
i r -JkJz-z'I ^ t +jKu(z+.:')l 

L(z) = - j^sgn(z-z')e -r.(0)e J 

z^. 0 , (120a) 

z < 0 , (120b) 

■jKi2z *JKi2z 
V.(z) = V.(0)e ^ . IjU) = VU,e ’ Z-° ’ (120C) 

where sgn x = +1, 0 . Upon defining the relative dielectric constants 

o 
(121) 
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one may utilize directly the definitions for Z. and k. given in Eq. (117b), with e 

replaced by and in the regions z< 0 and z>0, respectively. The modal 

current generator strengths are the sarre as in Eq. (117a), while the reflection coef¬ 

ficients are determined from Eq. (2. 31) as 

Z._ - Z., 
r (0) = V--I-7 • ^122) 

i2 + /jil 

This completes the solution of the modal network problem. 

To calculate the energy flow into region 2, it is convenient to employ 

Eq. (120c). Since 

Vi(0) 
Z. .z.,1. JK-iZ' il i2 i J il 

e 
Zil + iZ 

one finds that for imaginary . 

yo) (12 3) 

p. = vi i'.v + vr i'.'* = o 
i il il 

while for (positive) real . 

Kj2 

Itt k 2 
ti 

2 
Kil £ 2 

r.2. , .2 
ß (e2Kil + c 

2 

(*il+*i2> 

(124) 

K.j real , (125a) 

-2 
q ^oK.2e 

“il2 

2tt k 
T 
ti 

imaginary . 

(125b) 

2 
Eq. (125b) applies when c2>(l/0 )>ej, and this case alone is considered further. 

Upon substituting for Kü 2 from Eqs. (117) and (116b), one finds after some manipula¬ 

tion that the expression inside the square brackets in Eq. (125b) may be written in the 

form j ak^.(ri2 + f) ^b(T)2 + g)] j, where a, b, f, g are quantities independent of q, 

so that one obtains the following result for the real power carried in a combined E-H 
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mode field characterized by the index r| : 

$ 

2 
q uu 

2Trk (¢2-^) 

rl 
n2^r 

2 
h +P 

(126) 

where 

k2e2(l-t1P2) 

P (£ 1 ^ E 
S 

P (t I + 12^ (126a) 

Eq. (101) then yields the total enerpy flowing into the region z> 0 in a small frequency 

interval centered about w , it being recalled that the r,-integration extends only over 
, 13 those values which render Kj 2 rea': 

W 
w / p_ di - 

^ 4 ^ 

z-jt! \ 

2tt (f 2 - t P 

1/2 

i 2—r 
r+ g 

<16 
(127) 

where r|2 = k[E2 " (^/P2)] and the change oi variable q = q has been intro¬ 

duced, with 

f = (127a) 

The integral in Eq. (127) can be evaluated when the exponential term may 

be replaced by unity. This happens when the charge trajectory lies in the interface 

(z1 = 0), or less stringently, when the parameters in question are such as to make 
.. 2 -l/2 

2k I z' « !, k= w/c. The change of variable £ = £(£ -1) leads to 

W 
q2Mtzv) 7 

<■? 

_ C(Uf) 
2 TT 

2">2-‘l) -00 (l + i2) ^1+8) + 8 

(128) 

which may be evaluated in terms of the residues at the poles in the upper or lower 

halves of the complex Ç-plane. The details are left as an exercise for the reader. 
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4. Anisotropic dielectric 

a. Uniaxial anisotropy 

The radiation characteristics of a moving charge may be altered dras¬ 

tically when the surrounding medium is anisotropic. The simplest situation arises 

when the anisotropy is uniaxial; a plasma subjected to a strong steady external magnetic 

field Hq may be described in this manner, and the associated tensor permittivity is 

given in Eq. (8. 25). If the charge moves parallel to the magnetic field (this is the only 

feasible trajectory when Hq» 1), the radiation due to the equivalent electric current 

distribution in Eq. (92) may be derived from a scalar Green's function which is similar 

to the one in Eq. (103). The details are given in Eqs. (8. 46) - (8. 49), and one finds that 

(129) 

(129a) 

The normalized dielectric tensor descriptive of a lossless plasma has the form 
2 

£ --= R0Ro +io£o£ • . = , (129b) 
U 

with Rq denoting a unit vector along the radial coordinate R transverse to the 

particle trajectory x. Evidently, no radiation takes place when e>0 since the argu¬ 

ment of the Hankel function is then imaginary. For e < 0, however, Eq. (129a) is 

written as (Eq, (8.49) ): 

G = -f «■j(k/P)X H(‘' |k^|t I- ij r\ , t<0 , (130) 

and this expression, together with Eq. (129), may be employed for the calculation of the 

radial energy density associated with the frequency w(Eq. (112) ), 

2 
q to ji / i \ W 

w“(- = ITT (? ' V = ^ ' (B1) 
W^, the total radial energy flow at frequency w, is related to Ww(£) as indicated. 
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The total energy radiated per unit length along the trajectory is obtained 
14 

by integrating over that range of frequencies for which e is negative: 

w 2 J. 
W = J^W^dw = -1 - lj » P = * (132) 

This result implies somewhat surprisingly that slower moving particles radiate more 

strongly than those in rapid motion, a behavior quite different from that encountered in 

isotropic dielectrics. 

b. Use of the refractive index diagram 

The condition ßn> 1, where n=/T is the refractive index, is easily 

applied to the determination of the parameter range wherein radiation emanates from 

a charge in uniform rectilinear motion in a homogeneous isotropic dielectric, and the 

corresponding direction of energy transport relative to the source trajectory is spe¬ 

cified by the angle 4j = cos'V/ß11)* H the medium is dispersive, then n = n(u) and 

different spectral components of the radiation emerge at dnierent angles; however, 

n is constant at a given frequency. The latter feature does not apply in an anisotropic 

dielectric wherein the refractive index n(e, ¢) is a function of the direction of propaga¬ 

tion of a monochromatic plane wave. If the medium is a plasma subjected to an external 

static magnetic field, strongly dispersive characteristics in frequency are present as 

well, and the refractive index surfaces may take on shapes such as those shown in 

Fig. 9. 3(a). In view of the complexity of the mathematical formulas for n(0, <J>) in an 

anisotropic plasma, it is useful to mention a graphical procedure which may lend a 

good deal of insight into certain aspects of the Cerenkov radiation problem. * 

We proceed from the recognition that at sufficiently great distances from 

the source, the radiation behaves locally like a plane wave. In view of Eq. (92), each 

spectral component of the source (at frequency w) has a phase dependence exp[-j(k/ß)x], 

k = u/c, and this variation must likewise characterize the plane waves which carry 

energy into the radiation field. Since the refractive index surface defines the loci of 

the endpoints of the (real) phase propagation vector kn = xq£ +X011 + -oK which 

describes a plane wave with variation exp(-jnk* r), one observes that radiation at w 

will take place only if the plane £ = (k/ß) intersects the surface. Some further 

information may also be deduced from the refractive index plot: the direction of 

energy transport (ray direction) in a plane wave with wave vector kn is normal to 

the surface at the point of contact of kn (see Sec. 5, Appendix I, Chapter I) so that 
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the surface normals on the section Ç = (k/ß) determine the direction of the "Cerenkov 

ray" along which energy is carried outward from the source by a particular plane wave 

constituent. 

The case of an isotropic medium for which the refractive index surface is 

the sphere n = constant serves as a simplest illustration. The ray S and the wave 

vector k are now parallel, and the construction in Fig.10 shows that radiation is 

possible (i. e., the plane 4 = (k/ß) intersects the sphere) when n>(l/ß) but not when 

n<(l/ß). Moreover, the ray vectors S are inclined at the angle ^ = cos’\l/ßn) with 

the source trajectory along the x-axis. In the uniaxially anisotropic plasma described 

by Eq. (129b), the refractive index surface is an ellipse when c>0 and a hyperbola 

when c<0 (see Fig. 8.3, with ko, k, z, p replaced by k, 4 . x. R, respectively). 

Since the ellipse is confined to | £ | < k, it is not intersected by the plane £ = (k/ß), 

and no radiation occurs. The hyperbola, on the other hand, is intersected and gives 

rise to a ray whose direction may be read directly from the graph in Fig. 8. 3. 

These considerations remain valid when the particle trajectory is 

inclined with respect to the gyrotropic axis, with radiation occurring as before when 

the refractive index surface is intersected by the plane £ = k/ß; the direction of the 

ray (or rays, if multiple intersections exist) is specified by the normal to the surface 

on the £ = (k/ß) contour, it being recalled that the sense of the normal is such that 

k* S> 0 (see Appendix I, Chapter I). (An example is shown in Fig. 9.10, where the 

x and y axes should be interchanged to conform to the present coordinate designation. ) 
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Appendix A 

The effect of pole singularities on the integration path 

If u{w + ¢) in Eq, (13) has pole singularities on the imaginary axis in the 

w-plane, the inversion procedure must be modified. Of pertinence to the problems 

discussed in the text is the case where u(w + œ) has simple poles at w = +jwj, w^ 

positive real, with the integration path indented around the poles into the half plane 

Re w< 0. One obtains then instead of Eq. (14a), 

»■jco.h-1 (^ )]^ « ufro+jcOBh” -)l + uf 
E(y,cd;s) = jP / e',T—1---K 1 [ 

^ ft - (f f 

-s(y/c) cosh Wj ( i 
- irje j (w + jwj) J^u(cd + V/) - u(ct - w)j I , (Al) 

where P denotes the principal value of the integral with respect to the pole singularities, 

and the second term comprises the half residues arising from the semi-circular path 

segments around the poles. The inverse Laplace transform of the integral in Eq. (Al) 

yields the same result as in Eq. (15), while the residue contributions yield an additional 
oo 

delta function (note: e = fe 8T6(T-^)dT, 4>>0): 
o 

L(Y,cp;t) 

res 

. (A2) 

If the integration path in Eq. (13) avoids the poles through an indentation 

into the half plane Re w> 0, the result in (A2) must be multiplied by (-1). 

One observes that the residue contribution vanishes when u(cp+w) is an 

even function of w. 
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