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LOW FREQUENCY INSTABILITY OF THE NOMINAL REGIME

OF A LIQUID ROCKET ENGINE

K. S. Kolesnikov

To analyze slow processes, the characteristic time of which is in-

commensurable for a longer period of time during the propagation of pressure

wave over the chamber, the working model of the liquid rocket engine

chamber (ZHRD) is characterized by the fact that all fuel particles after

injection into the. chamber within a certain time, necessary for dispersion,

heating, evaporation, mixing, chemical reactions, transforms into final

combustion products. This time, identical in the given model for all fuel

particles, is called conversion time (lagging of combustion). In a simpler

variant of the model the conversion time does not depend upon the pressureV|
in the combustion chamber.

Several mechanisms of unstable combustion in the chamber were

introduced. One of the first mechanisms was shown by Karman (1,2). It is

based on the fact, that the rate of fuel injection into the chamber with
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respect to the pressure drop on the sprayers has a lagging of the relaxation

time order of the fuel feeding line, and the combustion follows the rate of

injection with a delay, equal to the conversion time. The oscillatory semi-

period is approximately eqial to the time of conversion and time of the relixa-

tion system.

Another mechanism of origination of low frequency oscillations, which

does not depend upon the fuel injection process into the chamber and is

called therefore intra-chamber instability, was introduced in report (3). It

is based on the fact, that the combustion lagging time in the oscillatory

condition also appears to be an oscillatory value. The rate of combustion

reaches maximum at maximum rate of reducing lagging time and minimum

at maximum rate of increase in lagging time. If these oscillations coincide

in phase with pressure oscillations in the chamber, then favorable conditions

for self excitation are created.

In monography (4) is given a detailed analysis of simultaneous action of

both excitation mechanisms.

Analysis of working stability of the engine installation with consideration

of liquid of compressibility of the liquid in the pipeline for the simple mono-

component system shows, that the critical lagging tizre depends upon the

length of the pipe, whereby with the increase in frequency of wave oscillations

the liquid in the tube decreases within a critical lagging time (5). The best

conditions for self-excitation are created in the case, when the oscillations

frequency in the pipe is close to one of the natural oscillation frequency
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in the pipe is close to one of the natural oscillation frequency of the gases

in the chamber. Such oscillations are being called high frequency oscillations.

For the case of purely longitudinal oscillations of gases the mechanism of

high frequency instability at constant rate of fuel injection into the chamber,

was discussed in monography (4).

Stability of liquid rocket engine work depends upon other properties

of the body of the flying apparatus, on which the engine is mounted.

Through an elastic body is formed a power full additional feedback between

combustion chamber and fuel lines. This problem was investigated on the

example of a monocomponent system with incompressible fuel in operation

(6).

In practice can be found cases, when the natural frequencies of wave

processes in fuel feeding lines have the very same order or are below the

oscillation frequency, determinable by transformation time. They acquire

a special importance, if the characteristic frequencies of elastic oscillations

of the body of the flying machine or stand, on which the chamber is placed,

are close to frequencies of wave processes in the lines. This report is devoted

to the examination of such processes.

In the report is given a further broadening of the concept low frequency

instability of ZHRD. The closed system can be unstable, even if the lagging

combustion time in the chamber equals zero. The frequency, distinguishing

this type of instability, is determined by the time of propagation of elastic

wave in the line and in the body and can change in broad limits. The lagging
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time in the chamber changes the phase ratios and can serve as an additional

cause of exciting oscillations.

The dynamic scheme consists of individual links, united on the basis of

boundary conditions. Determination of link parameters represents, generally

speaking, an independent and highly complex problem. The closed system

is presented by a block diagram and appears to be poly-contour. The trans-

mission functions of fuel lines were obtained in such a form, that their

conjugation with the body would be full. Solution was made in linear installa-

tion, properties of transmission functions of individual links and of the entire

system are analyzed with the aid of frequency method of the theory of automatic

control.

1. We are utilizing the assumption that for low frequency oscillations

(a) gas pressure P3 at each moment of time is practically identical over the

entire chamber, (b) time of conversion ^ has identical values for all fuel

particles, (c) stream of gases through the nozzle is quasi-stationary; in

report (3) was obtained a linearized equation of the balance of gas mass in the

chamber

d3

+ 11 - 2A) TO) + (1/2 + H + 2A) * (z - tO)

.Pao IL -- w= • I• m~ -.

2 r-+. 0 , TO (1.o

0m2, m- rate of injection into the chamber of oxidizer and fuel mass; P3

0 o
m2 , ml° - pressure in the chamber and rates of injecting the mass of
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oxidizer and fuel in imperturbed condition; 4 - chamber relaxation time;

V - index of interaction between the -ombustion process and oscillations

in the combustion chamber.

Coefficient A takes into consideration the effect of temperature oscilla-

tions. He characterizes the selected fuel components and suspends their

consumptions in imperturbed state upon the ratios r and upon the pressure

in the combustion chamber. For ordinary di-component engines the coefficient

A - has a very low positive value.

To analyze the low frequency instability of the closed system it is

interesting in first approximation to examine a more simple model of the

combustion chamber, in which the conversion time does not depend upon

pressure (v = 0), and the temperature of the gas in the chamber is constantly

independent upon the oscillation pressure and the ratios of fuel components

(A= 0)
ds-- H) It, ( - .+ ( + 1) Is (s -- ro) (1.3)

This model is analogous to the model of a monocomponent engine, but, if

the properties of fuel feeding lines of oxidizer and fuel will be different then it

should be expected, that the dicomponent system will always be more complex

and monocomponent.

Dimensionless variations e'l, tP 2' should be determined from

equations of fuel and oxidizer line dynamics.

FTD-TT-65-1772/1+2+4 5



"Dynamic properties of the combustion chamber will be expressed

through complex transmission numbers. Since the variation of fuel

injection into the chamber is assumed to be taking place by the harmonic

law, then with consideration of the lagging arguments z - and z--e,2,

- 1 we have (7)

I( ((z = t W •-- QO)
IL 0 (-- T* -- 1) = Pliet(:-V'-1)

Here .Q - frequency of oscillations. Solution of equation (1. 1)

is sought in form

P (z) = Beisz, a3 (z - =

Then the complex transition numbers, determining the ratios of

output coordinates to the input, will be found from expression

K 15, I ./l) = P / I d, / d K[13, NJ =d,/d

d= (is + 1 - v)'e-, di = 2/-H2A - Ae1- (1.4)
d2= 1/2 + 11 + 2A + Ae-"

Hodographs of vectors K (p, ,4 1), K ( ^2) , 1'2), on the

complex plane Z = U + iV in interval 0 . a .•coD represent coagulating

spiral to the beginning of coordinates. The smaller '"*, the more

compressed becomes the spiral and a smaller phase lag V originates

for one and the same values s. These are typical aperiodic links of

first order with lagging.

Vector hodograph graphs K (/, for H = 0.214 are shown

in Fig. 1 and 2. Curves 1 and 2 were formed at A = V = 0, curve 1

corresponds to' 0. 5, curve 2 - for 1.5. In Fig. 2 is shown

the effect of coefficient A. Graphs here are depicted for 2- * = 0.5
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and 1' = 0, whereby curve 3 - for A = 0, curve 4 - for A = 0.05, curve

5 - forA= 0.l. If, it is assumed, for example, A= 0, V = 0.2 then

the graph pr-ctdally coincid-3es with curve 3

For small values s the coefficient V almost exerts no effect neither

in the modulus nor on the argument of the complex transmission number,

and increase in coefficient A leads to a rise in modulus and practically

changes not the argument.

2. Pressure variation in the combustion chamber causes an

acceleration variation of the flying apparatus or, if ZHRD is mounted

on a nonrigid stand - change in deformed state of the stand and

connected with it fuel lines. In both instances the movement of the body

and connected with it fuel lines leads to a change in pressure before the

sprayers of the combustion chamber.

We will examine a perturbed movement of the body. Under

imperturbed (nominal) condition of the system we will comprehend such

a state, when the supply of fuel into the combustion chamber and the

thrust of the engine appears to be constant, and the flying apparatus

executes a rectilinear flight. Since the mass of the flying apparatus as

result of fuel consumption at the time of tenths of periods of the investigated

oscillations does practically not change, then for investigation of equations

of motion we will "freeze" the equation coefficients, i.e., levels of

filling up the fuel tanks, mass of flying apparatus, frequencies and forms

of natural elastic oscillations of the body within a small section of time

will be considered unchanged.
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Fig. 1. Fig. 2.

Displacement variation of any given transverse section of the body

in direction of its longitudinal axis will be presented in form of a sum

co

q (x, t) --qe (t) + ) I. (X) q, (t) (2.1)
n=i

Here qc (t) - displacement variation of center of mass of the flying

apparatus, fn(x) - form of n-normal tone of longitduinal oscillations of the

body, qn(t) - displacement of relative center of mass at oscillations of n-tone

of this section of the body, for which fn(x) = 1.

The problem of determining natural frequencies Q n and natural

functions fn(x) for an elastic body represents an individual complex problem

and it is not evaluated here. We will consider them as unknown, whereby

the beginning of the reading will be selected so, as to fulfill the ratio

N

Sm MIn (X) dz + 2m j,,= 0 (k = 1, 2, ... , N) (2.2)
0 k=i

in which 1, m (x) = length and mass of unit of body length mk - concentration
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of mass, Such masses in first approximation can be considered the mass

of the engine, fuel pumps, fuel in tanks, etc., whereby with the walls

of the body, as a rule, they are elastically connected.

Oscillations in fuel lines practically cannot cause longitudinal

body oscillations and that is why the latter takes place only under the

effect of engine thrust variationp.

We will designate by m the mass of the flying apparatus, &- frequency

of natural elastic longitudinal oscillations of the body, k°-proportionality

coefficient between pressure variation in the combustionchamber and thrust

force variation of the engine; we are assuming, that the direction of the

thrust force vector coincides with the direction of longitduinal axis of the

body. Then with consideration (2.1) and (2.2) the linearized per turbation

of motion equation of the center of mass of the flying apparatus and

elastic body oscillations with respect to the center of mass will be presented

in form

d'q° (1) .kp d2q, (t) ._k °,,,_

d2dt + 0290) (2.3).

Here mn - given body mass, fnv-value of natural function in that

.. , tion, in which the pressure in the combustion chamber is transformed into

thrust foi f the engine. Fordeterminability this section will be combined

with the spraying head of the chamber.
N

mn x ~(X) dX + 2JM k vd,0 
-

We will introduce cdimensionless displacements and time

qe qn-ao

FTD-TT-65-1772/1+2+4 9



where 4o - given rate of sound in elastic body.

Taking into attention, that A(z) = •,xp isz, sz= ,,. , solution

of equation (2.3) will be presented in form

Tic (a) = V , ' (d) = 7 nRet

Ratios of coordinates c , n to variation,4 are expressed by

transition numbers
K [no, I- K Ic., - (2W4)

The dimensionless natural frequency Wn and amplification coefficients

k*, kn are determined by formulas

( k* kpl =(2.5)

When the frequency is changed within limits 0 I. WC÷+D the vector

hodographs K ( it c'A K (tn n,'/) on the complex surface Z = U + iV

will be direct (straight) lines, coinciding with actual axis.

As result of energy diffusion in the material and body connections

natural oscillations of the latter always dampen, and therefore an infinitely

great value of vector K (• In' A) at W = In have no physical sezise. When

it is necessary to determine oscillations at resonance, in practical calculat'ons

into elastic oscillations equations are introduced resistance forces, propor-.

tional to the first degree of velocity.

The transition number K (?n, /) in this case will be complex

K [tj,, 5] = knID n, Dn ='o),_ (-o + 2ULo (2.6)

where £ n - damping doefficient of natural oscillations.

Stability analysis of the system is simplified, if forced oscillations

of the body are not broken down into series by the natural functions fn(x),
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but are presented in the form of

q (x,1) _- (z) (4., (0)) = •= /(4. ,,),c O (2.7)

where f ( W, W) - form of forced oscillations of the body. For the calculated

scheme of a heterogeneous rod with gradual change in mass and rigidity along

the length even in the presence of elasticity suspended concentrated masses

of functions f (t, L without consideration of dissipation of energy, the energies

have a substantial value and appear to be relatively simple. During their determin-

ation no principal difficulties do originate, and therefore for such calculated

schemes forced body oscillations can instead of (2. 1) be presented in form of

(2.7). With consideration of energy dissipation the functions f (9(0) will be

complex.

3. For analysis we will adopt main lines, in which the feeding of com-

ponents from the tank into the combustion chamber is done by pumps. Such

systems appear to be mostly spread for engines of greater thrust, and as a

special case these can be main lines, over which the feeding of components

is realized with compressed gas. Liquid components in the feeding line are

not absolutely rigid, and possess a certain elasticity, which may exert a

greater effect in the oscillatory processes in the main line.

Fuel line schemes for oxidizer and fuel have an identical structure.

Each scheme consists of three in series connected physical links: pipe

for feeding the component from the tank to the pump, pump and pipe between

pump and sprayers (8). The first pipe in many instances is homogeneous and

straight. The second pipe usually has a complex construction. It includes

a valve capacity of engine head, and for the cooling component - an additional

FTD-TT-65-1972/i+2+4 11
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system of branched out pipes and interjacket slotted tract. There are no

properly geometrical forms here, allowing to make an accurate solution of the

problem about combined oscillations of elastic capacity with liquid. But,

as result of elasticity of fuel lines their volume changes during pressure

oscillations, and therefore the variation of fuel injection into the combustion

chamber does not coincide with consumption variation through the pump. Quanti-

tative differences depend upon the volume of the pipeline and upon the ratio

of oscillation frequencies.

To solve the hydrodynamic problem the fuel line, connecting pump with

chamber, will be replaced by a model in form of direct constant section pipe.

The sprayer head and internal walls of the combustion chamber are accepted as

rigidi in first approximation. Then the pressure variation in the combustion

chamber causes no changes in volume of the pipeline. This volume will change

only on account of elasticity of outer walls. Actually the internal walls of the

chamber and the sprayer head possess a certain pliability and if the latter is

measureabl3 with the pliancy of outer walls or with a pliancy of liquid, then

it should be considered.

The calculated scheme for fuel main lines of oxidizer and fuel, consists

in such a way, of two direct uniform pipes, between which is built in a fuel

pump. At the pipe ends can be placed compensators (bellows), having a

negligibly small rigidity in axial direction (Fig. 3). In the calculated scheme

the sylphon is used as a volume, pressure variation in any given point of

the volume of which is identical, and the variation of the volume is proportional

to pressure variation and to the change in distance between the end sections.
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Fig. 3.

Structurally the fuel lines are connected with the body: the forward

end of the first pipe is connected with the body of the tank, the rear end

of the second pipe with the sprayer head of the combustion chamber, the pump

is suspended from the body on a frame or is fastened in the combustion chamber(8).
I.

The fuel lines execute forced oscillations the law of which is determined by the

movement of the corresponding body sections. The presence of sylphons allows

the pipes and the pump to execute oscillations with various amplitudes.

We will designate the value of natural functions: fnl - for tanks bottom

flange, fnw - pump, fnv-Sprayer head. Since on the bottom of the tank

and engine frame possess a certain elasticity, the values of functions fnl'

fnw, fnv' do not coincide with values of functions for corresponding body

bulkheads. This difference is the greater, the closer the natural frequency of

oscillations of the body and partial oscillation frequencies of tank bottom with

the fuel, engine, pump are. Functional values fnl, fnw, fnv can be changed

in certain limits by structural measures, and consequently they can be referred

to the number of variating parameters of the system.

The hydrodynamic problem for fuel lines lies in the fact, to determine

variation of fuel injection into the chamber in dependence upon small longitudinal

body oscillations and pressure variations in the combustion chamber.

FTD-TT-65-1772/l+2+4 13



We will assume, that the fuel components represent an ideal Jliquid,

the imperturbed stream in the pipes in homogeneous - rate vo, pressure pc

and densityJ. is constant; elasticity of pipes will be considered through

the given rate of sound.

Since the equivalent pipes are assumed to be rigid, and the friction

between their walls and liquid is not taken into account, then the small pipe

movements in axial direction does not lead to a change in rate of flow.

The effect of sprayer head movements on the liquid flow, pump, tank bottom,

and also the change of sylphon volumes will be pertained to the perturbed boundary

conditions of the flow. With consideration of the above adopted assumptions

about the quasistationary nonperturbed movement the hydrodynamic problem

can be solved so as if the pipes would be stationary.

To the obtained calculation scheme we will adopt a solving method, explained

in report (13). We will introduce analogous designations. We will designate

the dimensional variation values of pressure and speed inthe J-pipe by Pxj,

coordinate of transverse section of stream in j-tube - xj, time - t, we will

adopt the following ratios between dirmen'Aonal and dimensionless values

Vj Pj Sj=Q Laoj= !j tj 5
ao ' p oj- aj2 ,aoj j '

where d, oj - speed of sound in imperturbed stream, lj - length of J-pipe. For

pipe of pump j = 1, after the pump j = 2.

We shall discuss the boundary conditions. If the pressure of gases over

the liquid mirror in the tank at body oscillations remains unchanged, then pressure

FTD-TT-65-1772/1+2+4 14
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perturbation at the output from the tank into the pipe originates only as

result of tank bottom oscillations. Neglecting wave formation on the free

surface in the tank, we can write

,j2; r
px =rjoh,h YIj-2 [q0 (1) +. Y, Xn (t)]M

ti=1

Here 0f 1 h1 - density and height of liquid column in the tank;

xn-a certain coefficient Oepending upon the ratio of diameters of tank and

pipe, forms of the bottom and output conditions of the liquid from the tank

into the pipe. We will rr-fer this variation tof 0 1 CL.012 - to parameters of

imperturbed stream in thr pipe in front of the pump. We will obtain

P ( 6)2 (NCTIC + I VnT)), P _(3 .1)ao•' = a v N e (

n=1

Velocity variations at the ends of the pipes are determined from condi-

tions of flow inseparabil.ty in the main lines. They depend upon the pro-

perties of the sylphon and places of their arrangement.

Sylphon properties will be expressed by two independent dimensionless

characteristics. The ge, metrical characteristic A , will consider the change

in the geometry of corrugations and the area of the lateral section of the

sylphon

_0L

Here F oj-area of passing section of J-pipe, Vxj sylphon volume, xoj-

distance between sylphon fronts in cond.ftions of imperturbed regime.
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The elastic characteristic rj will take into consideration the change

in compensator volume on account of pressure

rJ "iaOi'POj / rij

The geometry of sylphon corrugations changes proportionally to the

value difference fnw-fnl and fnv-fnw. For characteristics of the sylphon,

pressures, velocities at the end of the pipes we will introduce additional

indices: 1-for entry into the pipe; 2-for exit from the pipe.

As a scale of dimensionless variation w of stream velocities through

pump, we will accept LT02' dimensionless variations of generalized speeds

of the body, we will designate by

1. dq, (t) 1 dqo(t) ao
-- -_ 0) i e-•1, Un -- (t) (3.2)

a02  dt ao2 ,an dt an a

Since as the positive body displacements q (x,t) was adopted a dis-

placement in direction, opposite the positive direction of velocity vj of

the liquid stream in the pipes, then for conjugation of coordinates q (x,t)

and v, in formulas (3. 2) are introduced "minus" signs.

Having adopted pj (, , 1.) = Pj (I ,) exp is j ? J and having deisnga

designated through v exp is 2 T' 2 r !erred to A002 the velocity variation

of liquid injection into the chamber h = a1 02/cc01 we will compile discontinuity

equations. In order to accept in a greater degree the solution results (9),

we present them in form vs, = wh + hut., + is1r21pp,.

V21 = w + uf.1 - ',i.• (3.3)
V22 = V-- + U + i'srA21 p,

where ufW2, ufw 1 , ufv - speeds, called motional characteristics of fuel
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line sections together with the body.

In the insuction part of the pump as result of cavitational phenomena

may be situated certain gas volumes (10). If, it is assumed, that the variation

values of these volumes are inversely proportional to pressure variations in

front of the pump, then the nonseparation equations of the stream in the

main lines will have the very same form, if under r 21 is understood a generalized

elastic characteristic of the sylphon together with gas volumes.

Possible schemes of sylphon arrangement in the fuel line are presented

in Fig. 3. For Fig. 3a

"uf1~,. = c + +%21 ( ,) - )•d1 I Un
?t-1 (3.4)

CO

uf 0l, = ,tc + E If,,w (1 + A,) - X12ffv] U,
n1=1

For Fig. 3, b, v CO
"fiU -= it, + E f (1+ X22) - X22f,,•i l'n (3.5)

Expressions ufkW2 for Fig. 3, b, g, uf Wl-for Fig. 3, b, v, and ufv-

for Fig. 3, O( , g, can be obtained from formulas (3.4), (3.5), if the

coefficients A 21, A 12# A 22 respectively equal zero are placedin them.

In equalities (3.3) is necessary in this case correspondingly to adopt coeffi-

cients r 21 , r 12 , r22, equal to zero.

In case the sylphon is arranged between pipe and tank (Fig. 3, b, g) stream

velocity variations at output from tank will differ from variation v 11 of the

input speed into the tank, and consequently the variation of pressure drop

P*-Pl, will be expressed by the dependence

FTD-TT-65 -1772/1+2+4 17



p* - pit It{vtft a V 1' (I It,, 0+ ) - I/nn) 1... iair1pli} (3.6)

where referred to velocity resistance coefficient at output of the liquid

from the tank.

For Fig. 3, ,and 3, v

pitý- ~v1 t (I Pot

Formulas (3.4) and (3.5) can also be adopted in case, when the movement

of the body is presented in form (2.7). It should be written in the Uc=O and

instead of infinite sums of natural functions, it is necessary to take simply

the difference of forms of perturbed oscillations

,/U = -- i A, __ I (eu, 6) (1 + X20) - I (, 6) ,211

"/wl = -- io L (•. ) (1 + X12) -- ( ,6)) ,121 (3.7)

Uftv = '(0 7 I ) (1 + X22) - I 0. )) '221

where f ( W•i, CU), f ( j )-forms of forced oscillations of tank bottom

flange, pump, sprayer head.

The scheme of the fuel line and .the boundary conditions of the problem

by means of introducing summation links uf j2' uf u i' Ufv are brought

to the structure, which like the one investigated in report (9). Here are used

results of this work without their reproduction. Formulas for complex transition

numbers . K [put, p'1, Kp 21,, w]. K fv, p;2, IKCIv, pi, K [w, p], K [w, P12]

retain their previous form, formulas for K 2,, t.441, K tv, utI., K Lit,, u/I.1 j, K [w, u/,J]

can.he obtained from expressions)( [psi' uj, K tv, ul, K [w, u], presented in (9),

by placing in them f = f W 2 = fv=1* Instead of 1 K (W, u) block here

in the scheme will be two parallel blocks with transition numbers K (SD, ufv)

FTD-TT-65-1772/l+2+4 18
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and K (O , uf w 1 ) = - 1. The latter differences appear to be the result of the

fact, that the change In sylphon geometry of the second pipe takes place in

general case simultaneously from two displacements - pump and sprayer head.

Transmission number for the first pipe will be expressed by other formulas,

if the sylphon is situated between pipe and tank (Fig. 3, b, g). They can be

obtained with consideration (3. 6) by the method, explained in (9). The

effect of sylphon disposition place on the dynamic properties of the line becomes

noticeable, if the coefficients rll and r21 of sylphon adaptability are consider-

able or the geometric characteristics 111 V 0 A 21 * 0.

4. The block diagram, composed of physical links is expressed in Fig. 4.

Here 1-chamber; 2-body of flying apparatus (stand); 3-fuel main line; 4-oxidizer lii.e.

Perturbation of body movement causes pressure variations in the fuel feeding

lines and, consequently, fuel injection variation into the chamber. In the

combustion chamber originates a pressure variatJon, which affects the fuel line

and the movement of the body. The system, in this way, appears to be closed

and has in addition, supplementary feedbacks.

In Fig. 5 is shown the developed block diagram, in which only one fuel line

is curnnected. The second fuel line should be connected according to Fig. 4.

The movement of the body was adopted in form (2. 1). Here is depicted only

one link for the n-tome of body oscillations. The fact is n = 1,2,3..., whereby

the links are arranged parallel, what is shown by the dotted line.

The system has three internal feedbacks; between the chamber and second

pipe- by the pressure p = L2 , / between second and first pipes - by speed

, third feedback envelopes the chamber, it appeared as result of the fact,

FTD-TT-65-1772/i+2+4 19



that the transmission function of the chamber is formulated by the rate of in-

jection of fuel mass, and the output coordinate for the pipe serves the rate

of fuel injection.

Since the dimensionless parameters of physical links are different, and

the change in boundary conditions at the ends of each pipe is determined by

displacements of two body sections, when uniting the links into a general

scheme are introduced scale coefficients and summation links. The composi-

tion of the summation links uf 21 uf Wl and ufv for Fig. 5 is determined by

formulas (3.4) and (3.5).

Fig. 4.

OW V

Fig. 5.
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depends upon velocity variation v and density variationj? 2 2 on the right

end of the second pipe. And so, for example, for oxidizer

m;. = (vo + aw,) (1 + p.p) po2Fo2, mi2
0  vo,2PoFYo

Maintaining smallness of the first order only and taking into consideration,

that P22 =Jb22 on the basis of (1.2) we will obtain

.V
112  P22-I

Pressure p2 2 can be conveniently expressed with the aid of formula (2.12)

from (9) for J=2. Taking into attention, that f02 O 02= P30, we will

have

11 = Ljv + L2, L, = (MA2-' + 414M), L L2-- p / I 0 a5  (4.

On the basis of equations (3.1) we conclude, that

L= - N,- A 'O (4.2)

Expressions for coefficients L6 1 ,L6 2 , L7n, L8 n, L9n will be found

from the compilation of equations (3. 2) and (3.4), (3. 5)

L ai = - io wa o  / a o , L G2  ý - 1( 0 f1 / 102(

L71 = L [i~ (1 + X21) - 21/11)(43
Lon = L02 [/f (1 + .12) - ;.12t•Vl

L9n - L62 If ., (U + X22) - 2tW

Part of the block diagram, corresponding to the representation of body

displacements in form of (2.7) is shown in Fig. 6. Instead of an infinitely

greater number of blocks, expressing dynamic properties of the body, here

all three blocks, which has an advantage during the analysis of the system.

Expressions ufW 2, ufW 1 and ufv are determined from equations (3.7), pressure

variation p* is calculated by formula
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"= U )o) (4.4)

`__ V7

Fig. 6.

whereby the coefficient x (W) depends uplon the frequency of oscillations and

it is referred to full displacement variation of tank bottom flange. The remaining

part of the block diagram is the same as in Fig. 5.

If the geometric characteristics of the sylphons are such, that it is possible

to adoptA 1 2 = A 21 = A2 2 = 0, then on the basis of (3.7) velocities of uf 2'

uf~ 1' uf are determined without changed part of block diagram, corresponding

to this case, is presented in Fig. 7.

Here oscillations f' Wi, W) of the tank bottom cause only pressure

variation p* at the input into the first pipe, oscillations 19f ( Zia , O ) of

the pump change the rate of Jiquid movement at the output from first pipe and

entry into the second pipe, oscillations I f ( IV, W) of the sprayer head

change rates of motion of the liquid at the output from the second pipe.

Ratios between dimensionless oscillation frequencies for different links

will be established from equations

at)O aO, an2
a1  12

82. 8 9 $01  (4.5)

h' q = ':. ,, ' q• = -t1 .•
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Fig. 7.

The poly-contour system presented in Fig. 5, can be simplified, by re-

placing links with feedback contours with equivalent to those links without

feedback. An example of such a replacement is shown in Fig. 8. The equiva-

lent link with complex transition number K* (oi v) expresses the ratio of

pressure variation in the chamber to the fuel injection velocity variation
"K (0, it]LI

K* [r, vI - K =f,= ML- (4.6)

The vector hodograph K* (4, V ) in scale L is almost no different from

hodograph K/ 1 ,.), shown in Fig. 1, 2.

Analysis of system properties shows, that the most favorable conditions

for the origination of movement instability exists in cases, when natural

frequencies of lower body tones and.of the fuel line appear to be close. On

frequencies, close to natural frequency W n of the body, as is evident from

formulas (2.4), C n c' n , m (n + m), arid therefore in the first

approxtmaticen can be written 1c= c m =0 (m= 1,2...m+ n). The block

diagram of the system is in this case most simplest; with consideration of one

fuel line, it is presented in Fig. 9.

Complex transmission numbers K* (v, p), K* (v, p*) of equivalent links

for the fuel line can be determined by scheme Fig. 5. Complex transmission
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numbers K* (v, p), K* (v,p*) of equivalent links for the fuel line can be

determined by scheme Fig. 5. Complex transmission number K* (v, Q) is

more complex. It can be obtained either by scheme Fig. 5, by uniting actions

ufJ 2, uf 1i, ufv with cbnsideration of formulas (3.4), (3. 5), (4.3) or by

using formulas (9) having adopted on the basis of (3. 2), (3. 5)

/ w2 (1 + X2) - ý,21n1, Iw = f. (0 + )s) - ),iIRI

Iv =Uv (I + ; 22) - X22/nW

A further simplification of the system will be obtained by replacing

links with complex transmission numbers K* (f v) K (v, p) with an equiva-

lent link (Fig. 10) whereby

K* [0, v(
* [13, " t1 1- K* 10, 0' K IV, p] 4

The complex transition number K** ( v) expresses the variation ratio

of the pressure in the chamber to the variation v of fuel injection velocity with

consideration of reaction of the fuel line to this pressure. Now variation v is

caused only by pressure variation p* at fuel entry into the line and by movements

of the pump and sprayer head relative to the imperturbed stream, symbolically

designated on the velocity variation scheme u.

o - iy L |

Fig. 8. Fig. 9.
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5. Dynamic schemes, presented in Fig. 4 -10 give the possibility

for solving various problems: to investigate the effect of parameters and

their combinations on the stability of the rated regime of the system, to mark

such ratios of parameters, that the system would be stable, to select means

and stabilization methods (including the use of automatic devices to control

the fuel feed into the chamber) and formulate requirements to same( 11' 12)

to determine permissible change areas of certain parameters, taking into

consideration the values of remaining parameters; and finally to take into account

fuel injection oscillations during the study of high frequency vibrations in the

chamber.

Properties of the system depend upon a considerable number of physical

parameters, many of which are closely interconnected. For example, due to

fuel consumption at the time of the flight hl, m are reduced, .LL n increases,

values fnl, fnaj, fnv change. An increase or reduction in bottom thickness

of the fuel tank or a change in suspension rigidity of the engine leads to a

change in values • n' fnl, fn LL' fnv" Analysis of the system in general

case becomes therefore very complex. In practical cases, it simplifies somewhat

because it is necessary to deal with a concrete flying apparatus and ZHRD, the

parameters of which are known, or permit variation on larger scales.

We will mention certain general properties of the system, leaving

on side the features, connected with the change of many parameters within wide

limits. Analysis of equations

-[, V1 Y .* IV, p1A = 0
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which appear characteristic for link (4. 7) shows, that its complex roots at

certain chamber parameter ratios and fuel line ratios are situated in the right

semi-surface, and therefore link (4.7) can be unstable. This corresponds to

conclusions (5),

The feature of the dynamic system consists in the fact, that it can be

unstable, even if the combustion chamber is considered an ideal link-W=

v = A = 0. Formula (4.7) in this case will be simple
ko

K** [3, v] - K* jV, pjkoL(

We will establish an important property of the complex transmission number

K** (f, v) which for graphic purposes will be formulated for the case, when K*

(v, p) = K (v, p). We will assume, that on both ends of the pipe exist resistances,

corresponding to conditions Vf 1M1 I, 3 2 M1 .: 1 (in practical cases these

conditions are always fulfilled). The dimensionless natural frequency of liquid

stream oscillations in the pipe is the same as for a pipe open on both ends of the

pipe (13); it equals (l-M 1
2) n ti (n = 1, 2....).

Since the vector hodograph K (v, p) is situated in left semi-space Z = U +

iV and the modulus of the vector K (v, p) has a minimum value at sln = (1 - 12)

(2n - 1) t1( /2 (n = 1, 2 .... ) then from (5.1) can be established that the vector

hodograph K** (I v) will be situated in the right semisurface Z (Fig. ll,a);
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and the modulus of this vector reaches maximum value at sI = Sln. To that

value is equal the stream frequency in the pipe, covered frc,,n one end. In

this way, the presence of feedback in the chamber in form of a pipe, "open"

from both ends, forms the equivalent link, the natural frequency of whicn is

as if equal to pipe frequency, covered from one side. The first natural frequency

of the equivalent link (5. 1) is double lower than the first natural frequency of the

liquid stream in the pipe between tank and chamber.

J 4tV

z• I,

K ,• A /~ - ' 0 .__

Fig. 10. Fig. 11.

Analysis of the stability of a closed system presented in Fig. 10, is

convenient to make with the aid of amplitude-phase criteria (7). In Fig. 11

is shown the approximate form of amplitude-phase frequency characteristics

of system links applicable to a simpler case, when the line consists of

a homogeneous pipe K* (v, p*) = K (v, p*), K* (v, u) = K (v, u) and the

combustion chamber appears to be an ideal link. Curves b, v, g, d represent

the vector hodographs respectively

K [j,,i, f] L5, = A P%

K fI, A] LG2= Aue N

K [P, p1 = AVUeiru

K'* [., v] = A eiea
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Each individually taken link of the scheme in Fig. 10 is stable and therefore

the closed system will be unstable only in the case, when 0 s s 1 * co is the

amplitude phase characteristic of the open chain

[AP.AVP cxp i (q(P. + YVP.) d- AuAv exp i (Pu + pv)] A•' xp ip (5.2)

on the plane Z = U + iV will envelop point with (1, 10).

On the basis of formulas (2.5), (2.6), (3.1) and (3.2) from (9) it can be

concluded that moduli of complex transmission numbers Ap* Avp*, AuAvu

are proportional respectively to nxfnlfnvhl/l, nxfnv2 , where nx - coefficient

of axial overload of the flying apparatus. If fnv = 0, the chain breaks, and

the closed system does not exist.

When fnl=0 (p* = 0), the system remains closed, variation of fuel injection

into the chamber is caused by the movement of the sprayer head. As is evident

from Fig. 11, a, v, d, in the interval 0 <s co will be found sl = sl° such,

thatYu + Yvu + Yff = 0. The system will be unstable, if at s = 1
0 we

have AuAvuA 1. The best conditions for such a situation originate, when

W h / Sln.

Mostly fnl 0, fnv * 0 and the fuel injection variation into the chamber

is caused by the movement of tank bottom and spraying head. Two possibilities

do exist: fnlfnv -< 0 - solid curve and fnl fnw > 0, dotted curve in Fig. 11, b.

From the analysis of expression (5.2) and curves in Fig. II can be established,

that in case of fnlfnW > 0 the possibility of loosing stability at lower natural

frequencies increases, and at fnlfnW< 0, it decreases in comparison with the fact,

when fnI = 0. At other equal conditions the possibility of origination of instability
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increases with the increase in n x, and for fnlfnvNP0 , it is greater, the greater h!/l.

Damping of the body ( E n) and resistance in the pipeline ( M1 , Tr 2M1)

promotes stability of motion. The greater the pressure drop on the sprayers,

the more stable is the system.

Stability criteria of the system are less apparent, when the chamber cannot

be considered as an ideal link, and the fuel conducting line has a pump. They

become less reviewable for a di-component system. For many constructions of

flying apparatuses with ZHRD (especially with liquid gas generator, working on

basic components) the dynamic scheme is more complex and can include automatic

devices to control fuel feeding into the chamber (4)

By linearized equations can be obtained a conclusion only about the stability

or instability of the system. If the system is unstable and the accidently originated

oscillations will grow, then the assumption about linearity becomes incorrect. Non-

linearity in equations for combustion chamber, possibility of origination of cavita-

tional phenomena in the mainlines etc., lead to a change in dynamic properties

of the system. In the system can be established an autooscillatory regime.

Submitted: December 7, 1963
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