

MAssACHUSETTS INTITETE OF TECHNOLOGY EANOOLALABORATORY

GRADIENT MATRICES AND MATRIX CALCULATIONS

M. ATHANS

Consultant

F. C. SCHWEPPE

Group 22

TECHNICAL NOTE 1965-53

17 NOVEMBER 1965

Abstract

The purpose of this report is to define a useful shorthand notation for dealing with matrix functions and to use these results in order to compute the gradient matrices of several scialar functions of matrices.

Accepted for the Air Force
Stanley J. Wisniewski
Lt Colonel, USAF
Chief, Lincoln Laboratory Office

TABLE OF CONTENTS

1. INTROIDUCTION 1
2. NOTATION 1
3. SPACES 4
4. SOME USEFUL DECOMPOSITIONS OF A MATRIX 5
5. FORMULAE INVOLVING THE UNIT MATRICES $E_{-i j}$ 7
6. INNER PRODUCTS AND THE TRACE FUNCTION 9
7. DIFFERENTIALS AND GKADIENT MATRICES 13
8. GRADIENT MATRICES OF TRACE FUNCTIONS 17
9. GRADIENT MATRICES OF DETERMINANT FUNCTIONS 24
10. PARTITIONED MATRICES 30
TABLE OF GRADIENTS 32
REFERENCES 34

1. INTRODUCTION

The purpose of this report is to present a shorthand notation for matrix manipulation and formulae of differentiation for matrix quantities. The shorthand and formulac are especially useful whenever one deals with the analysis and control of dynamical systems which are described by matrix differential equations. There are wher areas of application int the contici of matrix diffurential equations provided the motivation for this study. References [1] through [6] deal with the analysis and control of dynamical systems which are described by matrix differential equations.

Much of the material presented in this report is available elsewhere in different forms; it is summarized herein for the sake of convenience. Two references were used extensively for the mathematical background; these are Bodewig (Reference [7]) and Bellman, (Reference [8]).

The organization of the report is as follows: In Secticn 2 we present the definitions of the unit vectors ${\underset{e}{e}}_{i}$ and of the unit matrices $\underline{E}_{i j}$. In Section 3 we indicate the use of the matrices $E_{i j}$ as basis in the space of $n \times n$ mat.ices. In Section 4 we present several relations which can be used to decompose a given matrix into its column and row vectors. Section 5 deals with operations involving the unit vectors e_{i} and the unit matrices $E_{i j}$. In Section 6 we show how the trace function can be used to represent the scalar product of two matrices. In Section 7 we define the differentials of a vector and of a matrix and we also define the motion of a gradient matrix. Section 8 contains a variety of formulae for the gradient matrix of trace functions. Section 9 contains relations for the gradient matrix of determinant functions. Section 10 contains relations involving partitioned matrices. A table summarizing the gradient formulae of Sections 8 and 9 is also provided.

2. NOTATION

Throughout this report column vectors will be denoted by underlined letters and matrices by underlined capital letters. The prime (') will denote transposition.

A column vector \underline{v} with components $v_{1}, v_{2}, \ldots, v_{n}$ is

$$
\underline{v}=\left[\begin{array}{c}
v_{1} \tag{2.1}\\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right]
$$

In particular, the unit vectors $\underline{e}_{1}, e_{2}, \ldots, e_{n}$ are defined as follows:

$$
\underline{e}_{1}=\left[\begin{array}{c}
1 \tag{2,2}\\
0 \\
0 \\
\cdot \\
0
\end{array}\right] \quad, \quad \underline{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\cdot \\
\cdot \\
0
\end{array}\right], \ldots, \underline{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0 \\
1
\end{array}\right]
$$

An $n \times m$ matrix \underline{A} with elements $a_{i j}(i=1,2, \ldots, n ; j=1,2, \ldots, m)$ is denoted by

$$
\underline{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \tag{2.3}\\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
$$

If $m=n$, then \underline{A} is square. If $\underline{A}=\underline{A}^{\prime}$ then \underline{A} is symmetric.
The unit matrices $E_{i j}$ are square matrices such that all their elements are zero, except the one located at the $\mathrm{i}-\mathrm{th}$ row and j -th column which is unity. For example,

$$
\underline{E}_{12}=\left[\begin{array}{lllll}
0 & 1 & 0 & \ldots & 0 \tag{2.4}\\
0 & 0 & 0 & \cdots & 0 \\
\cdot & \cdot & . & & \\
\cdot & \cdot & \cdot & & \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

$$
\begin{equation*}
E_{i j}=c_{i} e_{j}^{\prime} \tag{2.5}
\end{equation*}
$$

The identity matrix \underline{I},

$$
\underline{I}=\left[\begin{array}{llll}
1 & n & \ldots & 0 \tag{2,6}\\
0 & 1 & \ldots & 0 \\
. & \cdot & \cdots & \cdot \\
. & & \ldots & \cdot \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

can thus be written

$$
\begin{equation*}
\underline{I}=\sum_{i=1}^{n} E_{i i}=\sum_{i=1}^{n} e_{i} e_{i}^{\prime} \tag{2.7}
\end{equation*}
$$

The one vector e is defined by

$$
\underline{e}=\left[\begin{array}{c}
1 \tag{2.8}\\
1 \\
\cdot \\
\cdot \\
1
\end{array}\right]=\sum_{i=1}^{n} e_{i}
$$

The one matrix $\underset{\underset{E}{E}}{ }$ is defined by

$$
\underline{E}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{2,9}\\
1 & 1 & \cdots & 1 \\
\cdot & \cdot & \cdot & \cdot \\
1 & 1 & \cdots & 1
\end{array}\right]=\underline{e} \underline{e}^{\prime}
$$

The trace of an $n \times n$ matrix $\underset{A}{A}$ is defined by

$$
\begin{equation*}
\operatorname{tr}[\underline{A}]=\sum_{i=1}^{n} a_{i i} \tag{2,10}
\end{equation*}
$$

The trace has the very useful properties

$$
\begin{align*}
& \operatorname{tr}[\underline{A}+\underline{B}]=\operatorname{tr}[\underline{A}]+\operatorname{tr}[\underline{B}] \tag{2.11}\\
& \operatorname{tr}[\underline{A} \underline{B}]=\operatorname{tr}[\underline{B} \underline{A}] . \tag{2.12}
\end{align*}
$$

The determinant of an $n \times n$ matrix A will be denoted by
$\operatorname{det}[\underline{A}]$.
3. SPACES

We shall denote by
R_{n} : the set of all real column vectors v with n components $v_{1}, v_{2}, \ldots, v_{n}$
$M_{n n}$: the set of all real $n \times n$ matrices .

Both R_{n} and $M_{m i n}$ are linear vector spaces.
The unit vectors $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}$ (see Eq. (2. 2)) belong to R_{n} and, furthermore,
form a basis in R_{n}. Thus, every $\underline{v} \in R_{n}$ catn be represemen be

$$
\begin{equation*}
\underline{v}=\sum_{i=1}^{n} v_{i} \stackrel{c}{i}^{n} \tag{3,1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta=\sum_{i=1}^{n} \sum_{j=1}^{n}{ }_{i j} i_{-i j} \tag{3.2}
\end{equation*}
$$

The dimension of R_{n} is n and tio dimension of $M_{m,}$ is n^{2}.
Note that the cranspose A^{\prime} of A combe written as

$$
\begin{equation*}
\underline{A}^{\prime}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j i} E_{i j} \tag{3.3}
\end{equation*}
$$

4. SOML: USETUL DECOMPOSITIONS OF A MATRIX

In this section we shall develop certain fomblete relang a abtrix, ite element:and its row and column vectors.

$$
\underline{a}_{i *}=\left[\begin{array}{c}
a_{i 1} \tag{4.1}\\
a_{i 2} \\
\cdot \\
\cdot \\
\cdot \\
a_{i n}
\end{array}\right] \quad ; \quad \underline{a}_{* j}=\left[\begin{array}{c}
a 1 \\
{ }_{1 j} \\
a^{2 j} \\
\cdot \\
\cdot \\
a_{n j}
\end{array}\right]
$$

and, so,

We shall now indicate how one cun write the elements $a_{i j}$ and the row and column vectors of a matrix A in terms of \underline{A} and in terms of the unit vectors \underline{e}_{i} (see Eq. (2.2))

$$
\begin{align*}
& a_{i j}=e_{i}^{f} A_{j}=\underline{e}_{j}^{\prime} A^{\prime} e_{i} \tag{4,3}\\
& A_{i}^{*}=A^{\prime} \underline{e}_{1} \quad \text { (the transpose of the } i \text {-th row of } A \text {) } \tag{4.4}\\
& a_{i}^{\prime}=e_{i}^{\prime} A \quad \text { (the } i-t h \text { row vector of } A \text {) } \tag{4.5}\\
& a_{*_{j}}=A e_{j} \quad \text { (the } j-t h \text { column vector of } A \text {). } \tag{4.6}
\end{align*}
$$

The element ${ }^{i}{ }_{i j}$ can also be generated as follows:

$$
\begin{equation*}
{ }_{i j}=-y_{i j}^{\prime} a^{i}{ }_{j} \tag{4.7}
\end{equation*}
$$

(81

$$
\begin{equation*}
a_{i j}=\underline{c}_{j}^{\prime} a_{i}{ }^{*} \tag{4.8}
\end{equation*}
$$

Next we shall indicate the relation of the row and column vectors of A to the ciements of A. From Eqs. (4.3), (4.4), (4.5), and (4.6) we deduce that

$$
\begin{align*}
& a_{i^{*}}=\sum_{j=1}^{n} a_{i j} e_{j} \tag{4.9}\\
& a_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} e_{j}^{\prime} \tag{4.10}\\
& \underline{a}_{* j}=\sum_{i=1}^{n} a_{i j}-e_{i} \tag{4.11}
\end{align*}
$$

The mat"ix A can be generated is follows: from Eqs. (2.5) and (3.2) we have

$$
\begin{equation*}
A=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} e_{i} e_{j}^{\prime}=\sum_{i=1}^{n} \sum_{j=1}^{n} e_{i j} a_{i j} e_{j}^{r} \tag{4,12}
\end{equation*}
$$

From Eqs. (4. 12), (4.9), (4. 10) and (4.11) we obtain

$$
\begin{equation*}
\underline{A}=\sum_{i=1}^{n}{\underset{i}{i}}_{i}^{a_{i}^{\prime}} \tag{4,1:3}
\end{equation*}
$$

and
5. FORMULAE INVOLVING TIE UNIT MATRICESE $E_{i j}$

First of all if we define the Kronecker deka $\delta_{i j}$

$$
\delta_{i j}=\left\{\begin{array}{lll}
+1 & \text { if } & i=j \tag{5,i}\\
0 & \text { if } & i \neq j
\end{array}\right.
$$

then we have the relation

$$
\begin{equation*}
{\underset{i}{e}}_{i}^{e_{j}}=\frac{e^{\prime}}{-e_{i}}=\delta_{i j} . \tag{5.2}
\end{equation*}
$$

The following two relutions relate operations between unit matrices and unit vectors (see E_{f}. $(2,5)$)

$$
\begin{align*}
& \underline{E}_{i j} e_{k}=e_{i} e_{j}^{\prime} e_{k}=\delta_{j k} e_{i} \tag{5.3}\\
& \underline{e}_{k}^{\prime} E_{i j}=e_{k}^{\prime} e_{i} \underline{e}_{j}^{\prime}=\delta_{k i} e_{j}^{\prime} . \tag{5.4}
\end{align*}
$$

The following relations relate unit matrices

$$
\begin{equation*}
\underline{E}_{i j} E_{k m}=e_{-i} \underline{e}_{j}^{\prime} e_{-k} e_{m}^{\prime}=\delta_{j k} e_{i} e_{m}^{\prime}=\delta_{j k} E_{i r n} \tag{5.5}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& E_{i j} E_{i j}=E_{i j}^{2}=\delta_{j i} E_{i j}=\delta_{i j} E_{i j} \tag{5.6}\\
& E_{i j} E_{j k}=\delta_{j j} E_{i k}=E_{i k} \tag{5,7}\\
& E_{i j} E_{j i}=E_{i i} \tag{5,8}\\
& \underline{E}_{i i}^{\alpha}=E_{i i} \quad ; \quad \alpha=1,2, \ldots \tag{5.9}\\
& E_{i j} E_{i k}=E_{k m}=E_{i k} \frac{E}{k m}=E_{i m} . \tag{5.10}
\end{align*}
$$

Equation (5. 10) generalizes to

$$
\begin{equation*}
\underline{E}_{i_{1}} i_{2} \underline{E}_{i_{2}} \dot{E}_{3} E_{i_{3} i_{4}} \cdots E_{\beta-1} i_{\beta}=\underline{E}_{i_{1}} i_{\beta} \tag{5.11}
\end{equation*}
$$

We shall next consider the matrix $\underline{E}_{\mathrm{ij}}$ A. From E . f . (3.2), (4.10), and (5.5) we establish that

$$
\begin{align*}
& E_{i j}=\underline{E}_{i j} \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} a_{\alpha \beta} \underline{E}_{\alpha^{\prime} \beta}=\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} a_{\alpha \beta} E_{i j} E_{\alpha \beta} \\
& =\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} a_{\alpha \beta} \delta_{j \alpha} \underline{E}_{i \beta}=\sum_{\beta=1}^{n} a_{j \beta} E_{i \beta}=\sum_{\beta=1}^{n} a_{j \beta} e_{i} e_{\beta}^{\prime} \tag{5.12}
\end{align*}
$$

which reduces to (in vicw of Eq. (4. 10))

$$
\begin{equation*}
\underline{E}_{i j} A=\underline{e}_{i} \underline{a}_{j}^{\prime} \tag{5.1:3}
\end{equation*}
$$

Similarly we can establish that

$$
\begin{equation*}
\Delta \underline{E}_{i j}=\ddot{u}_{i} \underline{e}_{j}^{\prime} \tag{5.14}
\end{equation*}
$$

and that

$$
\begin{equation*}
\underline{E}_{i j}-{\underset{E}{E}}^{k m}=a_{j k} \underline{E}_{i m} \tag{5.15}
\end{equation*}
$$

6. INNER YRODUCTS AND THE TRACE FUNCTION

Suppose that \underline{v} and \underline{w} arc n-vectors (elements of R_{n}); tien the common :calar product

$$
\begin{equation*}
(\underline{v}, \underline{w})=\underline{v}^{\prime} \underline{w}=\underline{w}^{\prime} \underline{v}=\sum_{i=1}^{n} v_{i} w_{i} \tag{6,1}
\end{equation*}
$$

is an inner product.
In an amalogous manner we define an inner product between two matrices. Let us supposco that A and \underline{B}, with elements $a_{i j}$ and $b_{i j}$ respectively, are elements of $M_{n n}$. It can be shown that the mapping

$$
\begin{equation*}
(\underline{,} \underline{B})=\operatorname{tr}\left[\underline{A} \underline{B}^{\prime}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j} \tag{6,2}
\end{equation*}
$$

has all the properties of an inner product because

$$
\begin{align*}
& \operatorname{tr}\left[\underline{A} \underline{B}^{\prime}\right]=\operatorname{tr}\left[\underline{B} \underline{A}^{\prime}\right] \tag{6.3}\\
& \operatorname{tr}\left[\underline{A} \underline{B}^{\prime}\right]=\operatorname{rtr}\left[\underline{A} \underline{B}^{\prime}\right] \quad(r: \text { real scalar }) \mathrm{r} \tag{6.4}\\
& \operatorname{tr}\left[(\underline{A}+\underline{B}) \underline{C}^{\prime}\right]=\operatorname{tr}\left[\underline{A}^{\prime} \underline{C}^{\prime}\right]+\operatorname{tr}\left[\underline{B} \underline{C}^{\prime}\right] . \tag{6.5}
\end{align*}
$$

We shall present below some interesting properties of the trace. Since

$$
\begin{equation*}
\operatorname{tr}[\underline{A}]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}} \tag{6.6}
\end{equation*}
$$

and since (see Eq. (4.3))

$$
\begin{equation*}
a_{i i}=e_{-i}^{\prime} \cdot e_{-i} \tag{6.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{tr}[\underline{A}]=\sum_{i=1}^{n} \underline{e}_{i}^{\prime} \frac{A}{e_{i}} \tag{6.8}
\end{equation*}
$$

From Eqs. (6.8), (4.5), and (4.6) we also nbtain

$$
\begin{align*}
& \operatorname{tr}[\underline{A}]=\sum_{i=1}^{n} \underline{e}_{i}^{\prime} \underline{a}_{i} \tag{6.9}\\
& \operatorname{tr}[\underline{A}]=\sum_{i=1}^{n} \underline{a}_{i}^{\prime} * \frac{e}{i}_{i} . \tag{6,10}
\end{align*}
$$

Now we shall consider tr[A B] . From Eq. (6.8) we have

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B}]=\sum_{i=1}^{n} \underline{e}_{i}^{\prime}-\frac{B}{B} \underline{e}_{i} \tag{6.11}
\end{equation*}
$$

We can also express the $\operatorname{tr}[\underline{A} \underline{B}]$ in terms of the column and row vectors of \underline{A} and B. From Eqs. (6.11), (4.5) and (4.6) we have

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B}]=\oint_{i=1}^{n} \underline{a}_{i^{*}} \underline{h}_{*_{i}} \tag{6,12}
\end{equation*}
$$

Since (see Eq. (2.12))

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B}]=\operatorname{tr}[\underline{B} \underline{A}] \tag{6.1:3}
\end{equation*}
$$

we obtain similarly

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B}]=\sum_{i=1}^{n} \underline{b}_{i}^{\prime} * \underline{a}_{* i} \tag{6.14}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B}]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i k} b_{k i} \tag{6.15}
\end{equation*}
$$

Similarly we deduce that:

$$
\begin{align*}
& \operatorname{tr}\left[\underline{A} \underline{B}^{\prime}\right]=\sum_{i=1}^{n} \underline{a}_{i^{\prime}}{ }^{n} \underline{b}_{i^{*}} \tag{6.16}\\
& \operatorname{tr}\left[\underline{A} \underline{B}^{\prime}\right]=\sum_{\underline{a}^{\prime}{\underset{ }{*}}^{n} \underline{b}_{*_{i}}}^{n} \tag{6.17}
\end{align*}
$$

Another very interesting formula is the following. Let \underline{v} and \underline{w} be two column vectors; then $\underline{v} \underline{w}^{\prime}$ and $\underline{w} \underline{v}^{\prime}$ are $n \times n$ matrices. Hence, by Eq. (6.8),

$$
\begin{equation*}
\operatorname{tr}\left[\underline{v} \underline{w}^{\prime}\right]=\sum_{i=1}^{n} \underline{e}_{i}^{\prime} \underline{v}^{w^{\prime}} \underline{e}_{i} \tag{6.18}
\end{equation*}
$$

But

$$
\left.\begin{array}{l}
\underline{e}^{\prime} \underline{v}=v_{i} \\
\underline{w}^{\prime} e_{i}=w_{i} \tag{6.19}
\end{array}\right\}
$$

and, so,

$$
\begin{equation*}
\operatorname{tr}\left[\underline{v} \underline{w}^{\prime}\right]=\sum_{i=1}^{n} v_{i} w_{i}=\underline{w}^{\prime} \underline{v} \tag{6.20}
\end{equation*}
$$

Since

$$
\begin{align*}
& \operatorname{tr}\left[\underline{v} \underline{w}^{\prime}\right]=\underline{w}^{\prime} \underline{v} \tag{6.21}\\
& \operatorname{tr}\left[\underline{w} \underline{v}^{\prime}\right]=\underline{v}^{\prime} \underline{w} \tag{6.22}
\end{align*}
$$

and, so,

$$
\begin{equation*}
\operatorname{tr}\left[\underline{v} \underline{w}^{\prime}\right]=\operatorname{tr}\left[\underline{w} \underline{v}^{\prime}\right] \tag{6.23}
\end{equation*}
$$

Next we consider $\operatorname{tr}[\underline{A} \underline{B} \underline{C}]$. From Eq. $(6,8)$ we have

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{C}]=\sum_{i=1}^{n} e_{i}^{\prime} \underline{A} \underline{C} \underline{C}_{i} \tag{6.24}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{tr}[A \underline{B}]=\sum_{i=1}^{n} a_{i}^{\prime} \underline{B}_{\underline{c}}^{*_{i}} \tag{6.25}
\end{equation*}
$$

Since

$$
\begin{equation*}
\underline{B}=\sum_{j=1}^{n} \underset{j}{e} \underline{b}_{j}^{\prime}{ }^{*} \tag{6,26}
\end{equation*}
$$

we can also deduce that

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B} \underline{C}]=\sum_{i=1}^{n} \sum_{j=1}^{n} \underline{a}_{i}^{\prime} * \underline{c}_{j} \underline{b}_{j}^{\prime} * \underline{c}_{* i} \tag{6.27}
\end{equation*}
$$

Additional relationships can be derived using the equations

$$
\begin{equation*}
\operatorname{tr}[\underline{A} \underline{B} \underline{C}]=\operatorname{tr}[\underline{\mathrm{B}} \underline{\mathrm{C}} \underline{\mathrm{~A}}]=\operatorname{tr}[\underline{\mathrm{C}} \underline{\mathrm{~A}} \underline{\mathrm{~B}}] . \tag{6.28}
\end{equation*}
$$

\% DIFFERENTIALS AND(RADIENT MATRICES

The relations which we have established will be used to develop compact notations for differentiation of matrix quantities.

Let x be a column vector with components $x_{1}, x_{2}, \ldots, x_{n}$. Then the differential dx of \underline{x} is simply

$$
\underline{d x}=\left[\begin{array}{c}
\mathrm{dx}_{1} \tag{7,1}\\
\mathrm{~d} x_{2} \\
\cdot \\
\cdot \\
\cdot \\
d x_{n}
\end{array}\right]
$$

Now let $f(\cdot)$ be a scalar real valued function so that

$$
f(\underline{x}) \triangleq f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

The gradient vector of $f(\cdot)$ with respect to x is defined as

$$
\frac{\partial f(\underline{x})}{\partial \underline{x}}=\left[\begin{array}{c}
\frac{\partial f(\underline{x})}{\partial x_{1}} \tag{7.2}\\
\cdot \\
\cdot \\
\frac{\partial f(\underline{x})}{i:_{n}}
\end{array}\right]
$$

For example, suppose that $n=2$, and that

$$
f(\underline{x})=f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+x_{1} x_{2}+\frac{1}{2} x_{2}^{2} .
$$

Then

$$
\frac{\partial \mathrm{f}(\underline{x})}{\partial \underline{\mathrm{x}}}=\left[\begin{array}{c}
6 \mathrm{x}_{1}+x_{2} \\
x_{1}+x_{2}
\end{array}\right] .
$$

Now let X be an $n \times n$ matrix with elements $x_{i j}(i, j=1,2, \ldots, n)$. The differential $d X$ of X is an $n \times n$ matrix such that

$$
\mathrm{dX}=\left[\begin{array}{cccc}
\mathrm{dx}_{11} & \mathrm{dx}_{12} & \cdots & \mathrm{dx}_{1 \mathrm{n}} \tag{7.3}\\
\mathrm{dx}_{21} & \mathrm{dx}_{22} & \cdots & \mathrm{dx}_{2 \mathrm{n}} \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right] .
$$

Note that the usual rules prevail:

$$
\begin{align*}
d(a X) & =a d \underline{X} \quad(a: s c a l a r) \tag{7.4}\\
d(\underline{X}+\underline{Y}) & =d \underline{X}+d \underline{Y} \tag{7.5}\\
d(\underline{X} \underline{Y}) & =(d \underline{X}) \underline{Y}+\underline{X}(d \underline{Y}) . \tag{7,6}
\end{align*}
$$

From (7.6) we can obtain the useful formula developed below. Suppose that

$$
\begin{equation*}
X=\underline{Y}^{-1} \tag{7.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\underline{X} \underline{Y}=\underline{I} \quad \text { (the identity matrix) } \tag{7.8}
\end{equation*}
$$

and, so,

$$
\begin{equation*}
(\mathrm{d} \underline{X}) \underline{Y}+\underline{X}(\mathrm{~d} \underline{Y})=\mathrm{d} \underline{\mathrm{I}}=\underline{0} . \tag{7.9}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mathrm{d} \underline{X}=-\underline{X}(\mathrm{~d} \underline{Y}) \underline{Y}^{-1} \tag{7.10}
\end{equation*}
$$

and that

$$
\begin{equation*}
d\left(\underline{Y}^{-1}\right)=-\underline{Y}^{-1}(d \underline{Y}) \underline{Y}^{-1} . \tag{7.11}
\end{equation*}
$$

Next we consider the concept of the gradient matrix. Let \underline{X} be an $n \times n$ matrix with elements $x_{i j}$. Let $f(\cdot)$ be a scalar, real-valued function of the $x_{i j}$, i. e.

$$
\begin{equation*}
f(\underline{X})=f\left(x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}, \ldots\right) \tag{7.12}
\end{equation*}
$$

We can compute the partial derivatives

$$
\begin{equation*}
\frac{\partial f(X)}{\partial x_{i j}} \quad ; \quad i, j=1,2, \ldots, n \tag{7.1:3}
\end{equation*}
$$

We define an $n \times n$ matrix $\frac{\partial f(\underline{X})}{\partial \underline{X}}$, called the gradient matrix of $f(X)$ with respect to \underline{X}, as the matrix whose ij -th element is given by (7.13). We can use Eq. (4.12) to precisely define the gradient matrix as follows:

$$
\begin{equation*}
\frac{\partial f(\underline{X})}{\partial \underline{X}}=\sum_{i j} e_{i} \frac{\partial f(\underline{X})}{\partial x_{i j}} \underline{e}_{j}^{\prime} \tag{7.14}
\end{equation*}
$$

or, from Eq. (3.2), to write

$$
\begin{equation*}
\frac{\partial f(\underline{X})}{\partial X}=\sum_{i j} \frac{\partial f(\underline{X})}{\partial x_{i j}} E_{i j} \tag{7.15}
\end{equation*}
$$

For example, suppose that \underline{X} is a 2×2 matrix and that

$$
f(\underline{X})=x_{11}^{2} x_{21}+x_{21}^{3}-x_{11} x_{22} x_{12}+5 x_{21}
$$

Then

$$
\frac{\partial f(\underline{X})}{\partial \underline{X}}=\left[\begin{array}{ll}
2 x_{11} x_{21}-x_{22} x_{12} & -x_{11} x_{22} \\
x_{11}^{2}+3 x_{21}^{2}+5 & -x_{11} x_{12}
\end{array}\right] .
$$

Suppose that the elements $x_{i j}$ of \underline{X} represent independent variables, that is

$$
\frac{\partial x_{\alpha \beta}}{\partial x_{i j}}= \begin{cases}1 & \text { if } \quad \alpha=\mathrm{i}, \quad \beta=\mathrm{j} \tag{7.10}\\ 0 & \text { otherwise }\end{cases}
$$

A useful formula is as follows:

$$
\begin{equation*}
\frac{d}{d x_{i j}} \underline{x}=\frac{d \underline{X}}{d x_{i j}}-\underline{E}_{i j} \tag{7.17}
\end{equation*}
$$

If $\underline{x}=\underline{x}^{\prime}$, i.e. if \underline{x} in symmetric: then $x_{i j}=x_{j i}$ for all imal J. Clearly the differential dX is symmetric and

$$
\begin{gather*}
d_{X}=\|^{\prime} \underline{\prime} \tag{7,18}\\
(\mathrm{d} \underline{X})^{\prime}=\underline{d X}^{X} . \tag{19}
\end{gather*}
$$

8. GRADIENT MATRICES OF ITRACE FUNCTIONS

In this section we shall derive formalat which are useful when one is interested in obtaing the gradient matrix of the trase of a matrix which depondi umo the matrix \underline{x}. Throughout the section, we shall assume that \underline{x} is an 11×1 matrix with elemente $x_{i j}$ such that

$$
\frac{\partial x_{\alpha \beta}}{\partial x_{i j}}=\left\{\begin{array}{lll}
1 & \text { if } \quad \alpha=i, & \beta=\mathrm{j} \tag{i,1}\\
0 & \text { utherwise. }
\end{array}\right.
$$

first, we shall compute

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \ln [\underline{x}] \tag{8.2}
\end{equation*}
$$

Since the differential and the trace are linear operators we have

$$
\begin{equation*}
\operatorname{du}(\underline{X})=\ln \mid \underline{X}] \tag{6..i}
\end{equation*}
$$

Hence, in view of (7.17)

$$
\begin{equation*}
\frac{d}{d x_{i j}} \operatorname{tr}[\underline{X}]=\operatorname{tr}\left[\frac{d \underline{x}}{d x_{1 j}}\right]=\|\left|\underline{E}_{i j}\right| \tag{4.4}
\end{equation*}
$$

From (7. 15) and (8.4) we have

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{X}]=\sum_{i j} \operatorname{tr}\left[\underline{E}_{i j}\right] E_{i j} \tag{85}
\end{equation*}
$$

But

$$
\begin{equation*}
\operatorname{Tr}\left[{\underset{-}{i j}}_{\underline{\underline{E}}}\right]=\delta_{i j} . \tag{8,6}
\end{equation*}
$$

It foilows from (8.3) and (8.6) that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{X}]=\underset{i j}{\sim} \delta_{i j} E_{i j}=\underset{i}{E} E_{i i} \tag{8.7}
\end{equation*}
$$

In viek of (2.7) we conclude that

$$
\begin{equation*}
\frac{a}{\partial \underline{x}} \operatorname{tr}[\underline{X}]=\underline{J} \tag{8.8}
\end{equation*}
$$

Next we shati compute the matrix

$$
\begin{equation*}
\frac{\partial}{\partial X} \operatorname{rr}[A X] \tag{8.9}
\end{equation*}
$$

Proceeding as above we have:

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i j}} \operatorname{ti}[\underline{A} \underline{X}]=\operatorname{cr}\left[\frac{d x}{d x_{i j}}\right] \\
& \left.=\operatorname{tr}\left[\underline{\Delta} \stackrel{E}{i j}_{i j}\right] \quad \text { (by }(7.17)\right) .
\end{aligned}
$$

But

$$
\begin{align*}
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{\Delta} \underline{X} \left\lvert\,=\ddot{\because} \frac{G}{i j} \frac{a}{\partial x_{i j}} \operatorname{tr}[\underline{\Lambda} \underline{X}] \underline{e}_{j}^{\prime}\right.\right. \tag{7.14y}\\
& =\sum_{i j} \underbrace{}_{i} \operatorname{tr}\left|\triangle \underline{E}_{i j}\right| \underline{E}_{j}^{\prime} \tag{8,10}
\end{align*}
$$

$$
\begin{align*}
& =\underset{i j k}{\sum} E_{i k} \Delta \underline{E}_{i j} \underline{L i}_{k j} \tag{2.5}\\
& =\underset{i j k}{\sum \sum} E_{i k}-\delta_{j k} E_{i j} \tag{5.5}\\
& =\sum_{i j} E_{i j} A \underline{E}_{i j} \\
& =\sum_{\mathrm{ij}} \mathrm{a}_{\mathrm{ji}}{\underset{\mathrm{E}}{\mathrm{ij}}} \tag{5,15}\\
& =\underline{R^{\prime}} \text {. } \tag{3.3}
\end{align*}
$$

Thus, we have shown that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{ra}[\underline{X} \underline{X}]=\underline{A}^{\prime} \tag{8.10}
\end{equation*}
$$

In a completely andogons manare we tind the following

$$
\begin{align*}
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}|\underline{A} \underline{X}|=A^{\prime} \tag{8,11}\\
& \frac{\partial}{\partial \underline{X}}\left[\underline{A} X^{\prime}\right]=A \tag{4.12}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} \underline{X} \underline{B}]=\underline{A}^{\prime} \underline{B}^{\prime} \tag{8.13}\\
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X}^{\prime} \underline{B}\right]=\underline{B} \underline{A} \tag{8.14}\\
& \frac{\partial}{\partial \underline{X}} \underline{X}^{\prime} \operatorname{tr}[\underline{A} \underline{X}]=\underline{A} \tag{8.15}\\
& \frac{\partial}{\partial \underline{X^{\prime}}}, \operatorname{tr}\left[\underline{A} \underline{X}^{\prime}\right]=\underline{A}^{\prime} \tag{8.16}\\
& \frac{\partial}{\partial \underline{X}^{\prime}} \operatorname{tr}[\underline{A} \underline{X} \underline{B}]=\underline{B} \underline{A} \tag{8.17}\\
& \frac{\partial}{\partial \underline{X}^{\prime}} \operatorname{tr}\left[\underline{A} \underline{X}^{\prime} \underline{B}\right]=\underline{A}^{\prime} \underline{B}^{\prime} \tag{8.18}
\end{align*}
$$

A usctul lemama (which was proved in the derivation of Eq. (8.10)) is the following: Lemma 8. 1

If $\frac{\partial}{\partial x_{i j}} \operatorname{tr}[\underline{A} \underline{X}]=\operatorname{tr}\left[\underline{A} \underline{E}_{i j}\right]$, then $\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} X]=A^{\prime}$.

Next we iurn our attention to the derivation of gradient matrices of trace functions involving quadratic forms of the mutrix X.

Consider

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[\underline{x}^{2}\right] \tag{8.19}
\end{equation*}
$$

Since

$$
\begin{align*}
& d \operatorname{rr}\left[\underline{X}^{2}\right]=\operatorname{tr}\left[\underline{X}^{2}\right]=\operatorname{tr}[\underline{X} d \underline{X}+(d \underline{X}) \underline{X}] \\
& \quad=\operatorname{tr}[\underline{X} d \underline{X}]+\operatorname{tr}[(d \underline{X}) \underline{X}] \\
& \quad=\operatorname{tr}[\underline{X} d \underline{X}]+\operatorname{tr}[\underline{X} d \underline{X}]=2 \operatorname{tr}[\underline{X} d \underline{X}] \tag{8.20}
\end{align*}
$$

we conclude that

$$
\begin{equation*}
\frac{0}{\partial x_{i j}} \operatorname{rr}\left[\underline{X}^{2} \left\lvert\,=2 \operatorname{tr}\left[\underline{X} \frac{d X}{d x_{i j}}\right]=2 \operatorname{tr}\left[\underline{X}_{\underline{E}} \underline{i j}\right] .\right.\right. \tag{8.21}
\end{equation*}
$$

It follow's from Lemma 8.1 that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \times\left[\underline{x}^{\prime}\right]=2 X^{\prime} \tag{822}
\end{equation*}
$$

In a similar fashion one can prove that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{lr}\left[\underset{X}{X^{\prime}}\right]=2 \underline{X} \tag{8.23}
\end{equation*}
$$

Next we considice

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} X \underline{B} \underline{X}] \tag{8.24}
\end{equation*}
$$

Since

$$
\begin{align*}
& d \operatorname{tr}[\underline{X} \underline{B} \underline{X}]=\operatorname{tr}[(1(\underline{A} \underline{X} \underline{B} \underline{X})] \\
& =\operatorname{rn}[\underline{1}(\underline{X}) \underline{B} \underline{X}]+\operatorname{rn} \underline{X} \underline{X} \underline{B}(d X)] \\
& =\operatorname{tr}\lceil\underline{B} \underline{X} \underline{A}(d \underline{X})]+\operatorname{tr}[\underline{A} \underline{X} \underline{B}(d \underline{X})] \\
& =\operatorname{tr} \mid(\underline{X} \underline{A}+\underline{A} \underline{X} \underline{B})(d X)] \tag{3,25}
\end{align*}
$$

We conclude that

$$
\begin{equation*}
\frac{\partial}{\partial X} \operatorname{tr}\left[\underline{\Lambda} \underline{X} \underline{B} \underline{X} \underline{X}=\underline{A}^{\prime} \underline{X}^{\prime} \underline{B^{\prime}}+\underline{B}^{\prime} \underline{X}^{\prime} \underline{\Lambda}^{\prime}\right. \tag{8.20}
\end{equation*}
$$

Next we consider

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X} \underline{B} \underline{X}^{\prime}\right] \tag{8.27}
\end{equation*}
$$

Since

$$
\begin{align*}
& d \operatorname{tr}\left[\underline{A} \underline{X} \underline{B} \underline{X}^{\prime}\right]=\operatorname{tr}\left[\underline{A}(d \underline{X}) \underline{B} \underline{X}^{\prime}\right]+\operatorname{tr}\left[\underline{A} \underline{X} \underline{B}\left(d \underline{X}^{\prime}\right)\right] \\
& =\operatorname{tr}\left[\underline{B} \underline{X}^{\prime} \underline{A}(d \underline{X})\right]+\operatorname{tr}\left[(d \underline{X})^{\prime} \underline{A} \underline{X} \underline{B}\right] \\
& =\operatorname{tr}\left[\underline{B} \underline{X}^{\prime} \underline{A}(d \underline{X})\right]+\operatorname{tr}\left[\underline{B}^{\prime} \underline{X}^{\prime} \underline{A}^{\prime}(d \underline{X})\right] \\
& =\operatorname{tr}\left[\left(\underline{B} \underline{X}^{\prime} \underline{A}+\underline{B}^{\prime} \underline{X}^{\prime} \underline{A}^{\prime}\right)(d \underline{X})\right] \tag{8.28}
\end{align*}
$$

(because $\left(\mathrm{d}^{\prime}\right)=(\mathrm{d} \underline{X})^{\prime}$ and because $\operatorname{tr}[\underline{Y}]=\operatorname{tr}\left[\underline{Y}^{\prime}\right]$ for all \underline{Y}), it follows that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X} \underline{B} \underline{X}^{\prime}\right]=\underline{A}^{\prime} \underline{X} \underline{B}^{\prime}+\underline{A} \underline{X} \underline{B} \tag{8.29}
\end{equation*}
$$

The following two equations involve higher powers of \underline{X} and they are easy to derive

$$
\begin{gather*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{X}^{n}\right]=n\left(\underline{X}^{\prime}\right)^{n-1}=n\left(\underline{X}^{n-1}\right)^{\prime} \tag{8.30}\\
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X}^{n}\right]=\left(\underline{A} \underline{X}^{n-1}+\underline{X}_{\underline{A}} \underline{X}^{n-2}+\underline{X}^{2} \underline{A}^{n-3}+\cdots+\underline{X}^{n-2} \underline{A}_{\underline{X}}+\underline{X}^{n-1} \underline{A}^{\prime}\right. \tag{8.31}
\end{gather*}
$$

Equation (8.31) can also be written as

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[\underline{A} \underline{x}^{n}\right]=\left(\sum_{i=0}^{n-1} \underline{x}^{i} \underline{A}^{n-1-i}\right)^{\prime} \tag{8,32}
\end{equation*}
$$

The two formulac above provide us with the capability of solving for the gradient marices of trace functions of polynomials in \underline{X}. A particular function of interest is the exponemial matrix function e^{X} which is commonly defined by the infinite series

$$
\begin{equation*}
x^{x}=\underline{I}+\underline{x}+\frac{1}{2!} \cdot 2^{2}+\frac{1}{3!} x^{3}+\cdots=\sum^{\infty} \frac{1}{i!} \underline{x}^{i} \tag{8.3.3}
\end{equation*}
$$

We proceed to evaluate

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[e^{\frac{x}{x}}\right] \tag{8.34}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{tr}\left[e^{x}\right]=\operatorname{tr}\left[\sum_{i=0}^{\infty} \frac{1}{i!} \underline{x}^{i}\right]=\sum_{i=0}^{\infty} \frac{1}{i!} \operatorname{tr}\left[\underline{x}^{i}\right] \tag{8.35}
\end{equation*}
$$

we com use Liq.(3.30) to find that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[e^{x}\right]=e^{\underline{x}} \tag{8.36}
\end{equation*}
$$

We shall next compute

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[\underline{x}^{-1}\right] \tag{8.37}
\end{equation*}
$$

First recall the relation (see Eq. (7.11))

$$
\begin{equation*}
d \underline{x}^{-1}=-\underline{X}^{-1}(d \underline{X}) \underline{x}^{-1} \tag{8.38}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
d \operatorname{tr}\left[\underline{X}^{-1}\right]=\operatorname{tr}\left[d \underline{X}^{-1}\right]=-\operatorname{tr}\left[\underline{X}^{-1}(d \underline{X}) \underline{X}^{-1}\right] \tag{8.39}
\end{equation*}
$$

and, so.

$$
\begin{align*}
\frac{\partial}{\partial x_{i j}} \operatorname{tr}\left[\underline{X}^{-1}\right] & =-\operatorname{tr}\left[\underline{X}^{-1} \frac{d X}{d x_{i j}} \underline{x}^{-1}\right] \\
& =-\operatorname{tr}\left[\underline{X}^{-1} \underline{E}_{i j} \underline{X}^{-1}\right] \\
& =-\operatorname{tr}\left[\underline{X}^{-2} \underline{E}_{i j}\right] \tag{8.40}
\end{align*}
$$

From Eq. (8.40) and Lemma 8. 1 we conclude that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[\underline{X}^{-1}\right]=-\left(\underline{X}^{-2}\right)^{\prime} \tag{8.41}
\end{equation*}
$$

In a similar fashion we can show that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X}^{-1} \underline{B}\right]=-\left(\underline{X}^{-1} \underline{B} \underline{A} \underline{X}^{-1}\right)^{\prime} \tag{8.42}
\end{equation*}
$$

9. GRADIENT MATRICES OF DETERMINANT FUNCTIONS

The trace $\operatorname{tr}[\underline{X}]$ and the determinant det $[\underline{X}]$ of a matrix \underline{X} are the two most usced scalar functions of a matrix. In the previous section we developed relations for the gradient matrix of trace functions. In this section we shall develop similar relations for the gradient matrix of determinant functions.

Before commencing the computations it is necessary to state some of the properties of the determinant function. Let X be an $n \times n$ matrix. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of \underline{X}; for simplicity we shall assume that these eigenvalues are distinct. It is always true that the trace of X equals to the sum of the eigenvalues while the determinant of \underline{X} is the product of the cigenvalues; in other words,

$$
\begin{align*}
& \operatorname{tr} \mid \underline{X}]=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} \tag{9.1}\\
& \operatorname{det}|\underline{X}|=\lambda_{1} \lambda_{2}, \ldots \lambda_{n} . \tag{9.2}
\end{align*}
$$

The detcrminant has the following properties:

$$
\begin{align*}
& \operatorname{det}[\underline{X} \underline{Y}]=\operatorname{det}[\underline{X}] \operatorname{det}[\underline{Y}] \tag{9.3}\\
& \operatorname{det}[\underline{X}+\underline{Y} \mid \neq \operatorname{det}[\underline{X}]+\operatorname{det}[\underline{Y}] \tag{9.4}\\
& \operatorname{det}[\underline{I}]=1 \tag{9,5}\\
& \operatorname{det}\left[\underline{X}^{-1}\right]=1 / \operatorname{det}[\underline{X}] \tag{9.0}\\
& \operatorname{det}\left[\underline{X}^{n}\right]=(\operatorname{det} \underline{X})^{n} \tag{9.7}\\
& \operatorname{det}[\underline{X}]=\operatorname{det}\left[\underline{X}^{\prime}\right] \tag{9.8}
\end{align*}
$$

$$
(9,5)
$$

In this section we shall use $\underline{\Delta}$ to denote the diagonal matrix, whose diagonal is formed by the eigenvalues of X. i.c.

$$
\underline{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \tag{9.9}\\
0 & \lambda_{2} & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Cluarly

$$
\begin{align*}
& \operatorname{n}[\underline{\Lambda}]=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} \tag{9.10}\\
& \operatorname{det}[\underline{\Lambda}]=\lambda_{1} \lambda_{2} \ldots \lambda_{n} \tag{9.11}
\end{align*}
$$

and, so,

$$
\begin{align*}
\operatorname{tr}[\underline{X}] & =\operatorname{tr}[\underline{\Lambda}] \tag{9,12}\\
\operatorname{det}[\underline{X}] & =\operatorname{det}[\underline{\Lambda}] \tag{9.13}
\end{align*}
$$

Using the differential operator we have

$$
\begin{align*}
d(\operatorname{tr}[\underline{X}]) & =d(\operatorname{tr}[\underline{\Lambda}]) \tag{9.14}\\
d(\operatorname{det}[\underline{X}]) & =d(\operatorname{det}[\underline{\Lambda}]) \tag{9.15}
\end{align*}
$$

Now we compute the differential of $\operatorname{det}[\underline{X}]$ (provided \underline{X} is nonsingular)

$$
\begin{align*}
& d(\operatorname{det}[\underline{X}])=d\left(\lambda_{1} \lambda_{2} \ldots \lambda_{n}\right) \\
& =\left(d \lambda_{1}\right) \lambda_{2} \lambda_{3} \ldots \lambda_{n}+\lambda_{1}\left(d \lambda_{2}\right) \lambda_{3} \ldots \lambda_{n} \\
& +\cdots+\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}\left(d \lambda_{n}\right) \\
& =(\operatorname{det}[\underline{\Lambda}])\left[\frac{d \lambda_{1}}{\lambda_{1}}+\frac{d \lambda_{2}}{\lambda_{2}}+\cdots+\frac{d \lambda_{n}}{\lambda_{n}}\right] \tag{9,16}
\end{align*}
$$

We note that we can identify

$$
\sum_{i=1}^{n} \frac{d \lambda_{i}}{\lambda_{i}}=\operatorname{tr}\left[\Lambda^{-1} d \Lambda\right] \quad \text { andi, so }
$$

in view of (9.1:3) we have

$$
\begin{equation*}
d(\operatorname{det}[\underline{X}])=(\operatorname{det}[\underline{X}]) \operatorname{tr}\left[\underline{\Lambda}^{-1} d \underline{\Lambda}\right] \tag{4.17}
\end{equation*}
$$

We shall now prove the following lemma:
 then

$$
\begin{equation*}
\operatorname{tr} \mid \underline{S}^{-1}\left(1 \leq 1-\operatorname{r} \mid \underline{X}^{-1} d \underline{X}\right] \tag{4.18}
\end{equation*}
$$

Proof: \underline{x} and $\underline{\Delta}$ are related by the similarity transformation

$$
\underline{\Lambda} \cdot \underline{p}^{-1} \times \underline{p}
$$

Thus

$$
\begin{equation*}
\underline{N}^{-1}=\underline{p}^{-1} \underline{x}^{-1} \underline{p} \tag{9.20}
\end{equation*}
$$

From Eq. (4. 19) we have

$$
\begin{equation*}
\underline{P} \underline{x} \underline{\Gamma} \tag{4.21}
\end{equation*}
$$

and. so.

$$
\begin{equation*}
(d \underline{P}) \underline{\Lambda}+\underline{P}(d \underline{I})=(d \underline{X}) \underline{p}+\underline{X}(d \underline{P}) . \tag{9,22}
\end{equation*}
$$

In follows that

$$
\begin{equation*}
d \underline{\Delta}=\underline{p}^{-1}(\mathrm{~d} \underline{X}) \underline{\underline{P}}+\underline{\mathrm{P}}^{-1} \underline{x}(\mathrm{~d} \underline{P})-\underline{P}^{-1}(\underline{\underline{P}}) \underline{\Lambda} \tag{9.2:3}
\end{equation*}
$$

From Eqs. (9, 12), (9.20) and (9, 23) we ohtain

$$
\begin{aligned}
& \underline{\Lambda}^{-1}\left(\underline{\Lambda} \underline{p}^{-1} \underline{x}^{-1} \underline{p} \underline{p}^{-1}(d \underline{x}) \underline{p}^{p}+\underline{p}^{-1} \underline{x}^{-1} \underline{p}^{-1} \underline{x}(\mathrm{~d} \underline{p})\right. \\
& -\underline{p}^{-1} \underline{x}^{-1} \underline{p}^{-1}(\underline{P}) \underline{p}^{-1} \underline{x} \underline{p} \\
& =\underline{P}^{-1} \underline{X}^{-1}(\mathrm{~d} \underline{X}) \underline{P}^{P}+\underline{\mathrm{P}}^{-1}(\mathrm{~d} \underline{P})-\underline{\mathrm{P}}^{-1} \underline{X}^{-1}(\mathrm{~d} \underline{P}) \underline{\mathrm{P}}^{-1} \underline{X} \underline{P} .
\end{aligned}
$$

Forming the trice of both sides and using the properties (2. 11) and (2. 12) we find

$$
\begin{equation*}
\operatorname{tr}\left[\underline{\Lambda}^{-1} \mathrm{~d} \underline{\Lambda}|=\operatorname{tr}| \underline{X}^{-1} \mathrm{~d} \underline{X}\right] \tag{9.25}
\end{equation*}
$$

(1.E.1).

Using lich. (9.18) and (9.19) we arrive at ${ }^{\dagger}$

$$
\begin{equation*}
d(d e t[\underline{X}])=(\operatorname{det}[\underline{X}]) \operatorname{tr}\left[\underline{X}^{-1} d \underline{X}\right] \tag{9.20}
\end{equation*}
$$

We can now compute the gradient matrix of det $[\underline{X}]$, i. e. the matrix

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} d u t[\underline{x}] \tag{9.27}
\end{equation*}
$$

Irom (0.20) we have

$$
\begin{align*}
& \frac{\partial}{\partial x_{i j}} \operatorname{det}[\underline{X}]=(\operatorname{det}[\underline{x}]) \operatorname{tr}\left[\underline{x}^{-1} \frac{d \underline{X}}{d x_{i j}}\right] \\
& \quad=\operatorname{det}[\underline{X}] \operatorname{tr}\left[\underline{x}^{-1} \underline{E}_{i j}\right] \tag{4.28}
\end{align*}
$$

and, so, lemma 8.1 ylelds

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \operatorname{det}[\underline{X}]=(\operatorname{det}[\underline{X}])\left(\underline{X}^{-1}\right)^{\prime} \tag{4.29}
\end{equation*}
$$

If we write E.q. (9, 20) in the more suggestive form

$$
\begin{equation*}
\frac{d(\operatorname{dec}[\underline{X}])}{\operatorname{det}[\underline{X}]}=\operatorname{tr}\left[\underline{x}^{-1}(\underline{X}]\right. \tag{9.31}
\end{equation*}
$$

we colll serethat

$$
\begin{equation*}
d(\log \operatorname{den} \mid \underline{X}])=1 r\left|\underline{x}^{-1} d \underline{X}\right| \tag{9,3i}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{\partial}{\partial \underline{x}} \log \operatorname{sen}|\underline{x}|=\left(\underline{x}^{-1}\right)^{\prime} \tag{9.32}
\end{equation*}
$$

(a most usictul retation). Using the properyy (y, 3) of the determinant funcion it isi casy lo prove ihat

$$
\begin{equation*}
\left.\frac{d}{\partial X} d e t|\underline{A} \underline{X} \underline{B}|=(\operatorname{det} \mid \underline{X} \underline{X} \underline{B}]\right)\left(X^{-1}\right)^{\prime} \tag{11,3:3}
\end{equation*}
$$

Also, it is cidiy to show (in vicw of (4,8)) that

$$
\begin{equation*}
\frac{a}{i x} \operatorname{del}\left|x^{\prime}\right|=\frac{i}{a x} \operatorname{det}|\underline{x}| \tag{9.34}
\end{equation*}
$$

from the obvions relation

$$
\begin{equation*}
\left.\left.\left.d\left(\operatorname{dec} \mid \underline{X}^{n}\right]=\operatorname{dater} \mid \underline{X}\right]\right)^{n}=n(\operatorname{det} \mid X]\right)^{n-1} d(\operatorname{det} X) \tag{4.35}
\end{equation*}
$$

We conclude that bo. (4.20) yiclati

$$
\begin{equation*}
d\left(d e l \mid X^{n} j=n(d h \mid X]\right)^{n} \operatorname{lr}\left|X^{-1} d X\right| \tag{4.30}
\end{equation*}
$$

and:o

$$
\begin{equation*}
\frac{\partial}{\partial X} \text { del }\left|\underline{x}^{n}\right|=n(\operatorname{der}|\underline{X}|)^{n}\left(\underline{X}^{-1}\right)^{\prime} \tag{4,37}
\end{equation*}
$$

10. FARTITIONED MATRICES

It in often necessary to work with partitioned matrices. The following formuiae are very useful.

Consider the $n \times n$ matrix \underline{X} partitioned as follows:

$$
\underline{x}=\left[\begin{array}{l:c}
\underline{x}_{11} & \underline{x}_{12} \tag{10.1}\\
\hdashline & \underline{x}_{21}
\end{array}: \frac{x_{22}}{\underline{x}_{21}}\left[\begin{array}{l}
\\
\hdashline-2 \\
\underline{x}^{2}
\end{array}\right]\right.
$$

where

$$
\begin{aligned}
& x_{11} \text { is } n_{1} \times n_{1} \text { matrix } \\
& \underline{x}_{12} \text { is } n_{1} \times n_{2} \text { natrix } \\
& \underline{x}_{21} \text { is } n_{2} \times n_{1} \text { matrix } \\
& \underline{x}_{22} \text { is } n_{2} \times n_{2} \text { matrix } \\
& n_{1}+n_{2}=n .
\end{aligned}
$$

Assume the necessary inverses exist: and that \underline{X}^{-1} is also partitioned as in (10. 1). Then

$$
\underline{x}^{-1}=\left[\begin{array}{l:l}
x_{11}^{-1}+x_{-11}^{-1} x_{12} \Delta^{-1} x_{21} x_{11}^{-1} & -x_{11}^{-1} x_{12} \Delta^{-1} \tag{40.2}\\
\hdashline-\underline{x}^{-1} x_{21} x_{11}^{-1} & \Delta^{-1}
\end{array}\right]
$$

where

$$
\begin{equation*}
\underline{\therefore}=\underline{x}_{22}-\underline{x}_{21} \underline{x}_{11}^{-1} \underline{x}_{12} \tag{10.3}
\end{equation*}
$$

From (10, 2), the following is obtamed.

$$
\begin{equation*}
\left(\underline{x}_{11}-\underline{x}_{12} \underline{x}_{22}^{-1} \underline{x}_{21}\right)^{-1}=\underline{x}_{11}^{-1}+\underline{x}_{11}^{-1} \underline{x}_{12}\left(\underline{x}_{22}-\underline{x}_{21} \underline{x}_{11}^{-1} \underline{x}_{12}\right)^{-1} \underline{x}_{21} \underline{x}_{11}^{-1} \tag{10,4}
\end{equation*}
$$

with the aporial case

$$
\begin{equation*}
(\underline{1}+\underline{x})^{-1}=\underline{1}-\left(\underline{1}+\underline{x}^{-1}\right)^{-1} . \tag{10.5}
\end{equation*}
$$

Oher uscrul tormulac are

$$
\begin{align*}
& \operatorname{det}[\underline{x}]=\operatorname{set}\left[\underline{x}_{11}-\underline{x}_{-12} \underline{x}_{22}^{-1} \underline{x}_{21}\right] \operatorname{det}\left[\underline{x}_{22}\right] \tag{10.0}\\
& \operatorname{tr}\left[\underline{x}^{x}\right]-\operatorname{ur}\left[\underline{x}_{11}\right]+\operatorname{tr}\left[\underline{x}_{22}\right] \tag{10.7}
\end{align*}
$$

If Y is also parritioned as in (io. 1), then

TABLE OF GRADIENTS

1. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{X}]=\underline{1}$
2. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} \underline{X}]=\underline{A}^{\prime}$
3. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X}^{\prime}\right]=\underline{A}$
4. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} \underline{X} \underline{B}]=\underline{A}^{\prime} \underline{B}^{\prime}$
5. $\quad \frac{\partial}{\partial \underline{X}} \operatorname{tr}\left(\underline{A} \underline{X}^{\prime} \underline{B}\right)=\underline{B} \underline{A}$
6. $\frac{\partial}{\partial \underline{X}}, \operatorname{cr}[\underline{X}]=A$
7. $\left.\frac{\partial}{\partial \underline{X}^{\prime}}, \operatorname{tr} \underline{X^{\prime}}\right]=\underline{A}^{\prime}$
$\therefore \quad \frac{\partial}{\partial \underline{X}}, H[\underline{A} \underline{X} \underline{B}]=\underline{B} \underline{A}$
$\cdots \quad \frac{\partial}{\partial \underline{X}^{\prime}}, \operatorname{tr}\left[\underline{A} \underline{X}^{\prime} \underline{B}\right]=\underline{A}^{\prime} \underline{B}^{\prime}$
(1). $\frac{\partial}{\partial \underline{X}} n|\underline{X} \underline{x}|=2 \underline{x}$,
8. $\left.\left.\frac{a}{\partial \underline{x}} \operatorname{tr} \right\rvert\, \underline{x} \underline{x}^{\prime}\right]=2 \underline{x}$
9. $\frac{a}{\partial \underline{X}} \operatorname{tr}\left[\underline{X}^{n}\right]=n\left(\underline{X}^{n-1}\right)^{\prime}$

TABLE OF ORADIENTS (Contin ed)
13. $\frac{\partial}{\partial \underline{x}} \operatorname{tr}\left[\underline{A} \underline{x}^{n}\right\rceil \cdot\left(\sum_{i=0}^{n-1} \underline{x}^{i} \underline{A} \underline{x}^{n-1-i}\right)^{\prime}$
14. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}[\underline{A} \underline{Y} \underline{B} \underline{X}]=\underline{A}^{\prime} \underline{X}^{\prime} \underline{B}^{\prime}+\underline{B}^{\prime} \underline{X}^{\prime} \underline{A}^{\prime}$
15. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[\underline{A} \underline{X} \underline{B} \underline{X}^{\prime}\right]=\underline{A}^{\prime} \underline{X} \underline{B^{\prime}}+\underline{A} \underline{X} \underline{B}$
10. $\frac{\partial}{\partial \underline{X}} \operatorname{tr}\left[e^{\underline{x}}\right]=c^{\underline{x}}$
17. $-\frac{\theta}{\partial \underline{X}} \operatorname{tr}\left[\underline{\mathrm{x}}^{-1}\right]=-\left(\underline{\mathrm{X}}^{-1} \underline{\mathrm{X}}^{-1}\right)^{\prime}:=-\left(\underline{\mathrm{x}}^{-2}\right)^{\prime}$
18. $\frac{0}{\partial \underline{X}}$ w $\left(\underline{A} \underline{X}^{-1} \underline{B}\right)=-\left(\underline{X}^{-1} \underline{B} \underline{A} \underline{X}^{-1}\right)^{\prime}$
19. $\left.\frac{a}{3 \underline{x}} \operatorname{det}[\underline{x}]=(\operatorname{det} \mid \underline{x}]\right)\left(\underline{x}^{-1}\right)^{\prime}$
20. $\frac{i}{\partial \underline{x}} \log \operatorname{den}|\underline{x}|=\left(\underline{x}^{-1}\right)^{\prime}$
21. $\frac{i}{\partial \underline{X}}$ N. $\lfloor\underline{\Delta} \underline{X} \underline{B}]=($ (kul $\left.\underline{A} \underline{X} \underline{B}]\right)\left(\underline{X}^{-1}\right)^{\prime}$
$22 . \quad \frac{a}{\partial \underline{x}}$ det $\left|\underline{X}^{\prime}\right|=\frac{a}{\partial X}$ det $\left.\left.\mid \underline{X}\right]=(\operatorname{det} \mid \underline{X}]\right)\left(\underline{x}^{-1}\right)^{\prime}$

3i. $\quad \frac{a}{\partial \underline{X}}$ det $\left|\underline{X}^{11}\right|=n(\text { cot }|\underline{X}|)^{n}\left(\underline{X}^{-1}\right)^{\prime}$

REFERENCES

[1] F. C. Schweppr, "Optimization oi Signals'" Group Report 1904-4, MIT Lincoln Laboratory (1904).

12] F. C.Schweppe, "On the Distance Between Gaussian Processes: The State Space Approach," JA-26.39, MIT Lincoln Laboratory, 1965.
[3] F. C. Schweppe, "Radar Frequency Modulations for Accelerating Targets Under a Bandwidth Constraint," IEEE Trans. on Military EVectronics, MIL-9, pp 25-32 (1905).
[4] M. Athans and 1.. C. Schweppe, "On the Design of Oprimal Modulation Schemes via Control Theoretic Concepts, I: Formulation," JA-26.34, MIT Lincoln Laboratory, 1905.
$[5]$ M. Athans, "Solution of the Matrix Equation $\frac{d}{d t}(t)=A(t) \quad(t)+(t) B(t)+U(t), "$ Tecimical Notc 1905-20, MIT Lincoln Labotatory, Lexington, Misis., (1905).

101 F. C. Schweppe and D. Gray, "Radar Sigmal Design Subject to Simultancous Peak and Average Power Constraints, " JA-2559, MI7 Lincoln Laboratory. wh: publislled in IEELE Truns, on lnformation Theory.
7) L.. Eodewig, Matrix Calculas, North Holland Publlshing Company and Lutericience Publishers, N. Y., (1956),
[8] K. Bellman, Introduction 10 Matrix Analysis, McGraw-Hill book Co., N. Y. (190(1).

