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ANNOTATION 

This book constitutes the first attempt in the 
world literature to systematically consider the 
extensive range of questions from different regions 
of physics^ physical chemistry and astrophysics with 
which contemporary gas- and hydrodynamics deals.  In 
it there are expounded fundamentals of gas dynamics 
and theory of shock waves, transport theory of radia- 
tion.  Thexü are studied thermodynamic and optical 
properties of substances at high temperatures and 
pressures, kinetics of dissociation, ionization and 
other non-equilibrium processes, phenomena connected 
with radiation of light and radiant heat transfer in 
shock waves and during explosions, problems of prop- 
agation of shock waves in solid bodies, etc. To the 
authors of the monograph there belong a large number 
of original works in the considered region of science, 
which have been reflected in this book. 

The book will serve as a valuable practical aid 
for wide groups of physicists, mechanicians and engi- 
neers studying applied physics and new technology. 
It will be useful to students and post graduates in 
the corresponding specialties, and also to all phys- 
icists and mechanicians wishing to become acquainted 
with contemporary state of science of shock waves. 
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PREFACE 

Problems of contemporary technology have demanded from science 

penetration Into the region of "high parameters" of state of a 

substance: high concentrations of energy, high temperatures and 

pressures, high velocities. In practice such conditions are realized 

In strong shock waves, during explosions, during very fast supersonic 

motions of bodies in the atmosphere, in powerful electrical discharges, 

etc. 

At high temperatures in gasses there occur various physical and 

physicoohemlcal processes: excitation of molecular vibrations, disso- 

ciation, chemical reactions, ionlzation, radiation of light. These 

processes affect thermodynamic properties of gases, and during 

sufficiently fast motions and sufficiently fast changes of state of 

a substance, motion is influenced by kinetics of these processes. 

An especially important rol'j at very high temperatures is played by 

processes connected with emission and absorption of radiation and 

radiant heat transfer. Above-mentioned processes frequently present 

interest not only from the point of view of their energy influence on 

motion of gas: they cause change of composition of gas, of its 

electrical properties, lead to luminescence of gas and appearance of 



many optical effects, etc. A considerable part of this book Is 

dedicated to the study of all those problems—to all that composes 

the content of the newly appearing branch of science, "physical gas 

dynamics." 

Great scientific and practical Interest Is presented by study 

of strong shock waves In solid bodies. Recent achievements which 

have made It possible with the help of shock waves to compress solid 

bodies up to millions of atmospheres have opened new ways of Investi- 

gation of state of solid matter at super-high pressures. To these 

questions there also Is given considerable attention In this book. 
many 

In the described area there are closely Interconnected /branches 

of science: gas dynamics, theory of shock waves, thermodynamics and 

statistical physics, molecular physics, physical and chemical kinetics, 

physical chemistry, spectroscopy, theory of radiation, elements of 

astrophysics, solid state physics, and others. Many of the physical 

phenomena and processes considered here have different character and 

In no way are connected with each other, A result of such hetero- 

geneity of the material was the absence of continuity In contents of 

the book. Certain chapters have an Independent character, pertain 

to absolutely different regions of physics or mechanics, and not all 

chapters are related to each other. Therefore, for the reader 

Interested only In one or more particular topics. It Is sufficient 

to become acquainted only with the corresponding chapters. 

In examining the most diverse questions, even those of a 

mathematical character, we tried first of all to explain physical 

essence of phenomena with the help of simple mathematical means, 

while widely using estimates and semiqualitative analysis. At the 

same time, we tried to help those physicists, mechanicians, and 



engineers who work in the corresponding regions of applied physics 

and technology, and to give to them practical means for independent 

analysis of complicated and diverse physical phenomena. 

With this goal, consideration of majority of phenomena is 

carried through to numerical results; formulas for calculation and 

estimates of different quantities are written in form which is 

convenient for practical work; there are presented many useful 

experimental data and information of reference type, etc. 

This book has a theoretical character, and description of 

experimental installations and methods is reduced to a minimum. 

However, the account of results of experiment and comparison of them 

with results of theoretical calculations and estimates has been given 

proper attention. 

Periodic literature on "physical gas dynamics" is huge. However, 

as far as we know, neither in Soviet nor in foreign literature have 

there yet been made attempts to systematize, generalize, and expound 

from a single point of view in one book the material pertaining to 

this new region of science. Apparently, this book constitutes the 

first attempt in this direction. 

The book was written during 1960-1961, which determines the 

basic level of the literature used. However, in sections concerning 

areas whose ideas are being developed at an especially fast rate, 

there later have been introduced short supplements and references to 

the latest literature. This pertains basically to Chapters V, VI, 

VII. 

Variety of phenomena and extensiveness of material forced us to 

be limited to consideration of not nearly all questions which have a 

relation to the studied region. We do not consider the mathematical 
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side of hydrodynamics, of such a problem as supersonic flow around 

bodiesj we almost do not touch upon electromagnetic phenomena; 

absolutely do not concern ourselves with questions of thermonuclear 

fusion, behavior of plasma in magnetic field, all that pertains to 

magnetohydrodynamics and magnetogasdynamics, problems of combustion 

and detonation and so forth. On all these topics there already are 

a great number of books. 

Selection of material of this book to a certain extent is 

subjective. An important place is allotted to consideration of 

phenomena which the authors investigated in their own works. Thus, 

on original works are almost completely based Chapters VTII and IX; 

to a great extent also VII, X, XII, and partially Chapter XI. Chapter 

I constitutes the result of basic revision of an early book of one 

of the authors:  "Theory of Shock Waves and Introduction to Gas 

Dynamics", which was published in 1946 in Publishing House of Academy 

of Sciences of USSR. 

We would like to express special thanks to A. S. Kompaneyets, 

who is responsible for development of a number of questions discussed 

in this book, for many useful discussions and remarks made during 

reading of the manuscript. We are thankful to L. B. Al'tshuler and 

S. B. Kormer, on whose works to a considerable degree is based Chapter 

XI of the book, for remarks made during reading of the manuscript of 

this chapter. We are thankful also to M. A. Yel'yashevich, who 

attentively read the manuscript and made valuable remarks. 
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CHAPTiüR       I 

ELEMENTS OF GAS DYNAMICS AND CLASSICAL THEORY OF SHOCK WAVES 

1. Continuous Flow of an Invlscid and 
Non-Thermally-Conducting Gas 

§ 1. Equations of Gas Dynamics 

For high compression of liquids (and solid bodies) there are 

needed pressures of hundreds of thousands of atmospheres and above. 

Therefore, under usual conditions a liquid can be considered as an 

Incompressible medium. Velocities of flow of liquid during small 

changes of density are much less than speed of sound, which is the 

scale of velocity characterizing a continious medium. During small 

changes of density and motions which are slow as compared to speed 

of sound, gas also can be considered to be Incompressible, and its 

motion can be described with the help of hydrodynamics of an incom- 

pressible fluid. However, large changes of density and velocity of 

flow comparable with speed of sound in gasses, in distinction from 

liquids, are attained comparatively easily: at pressure drops of 

order of magnitude of the actual pressure, i.e., at Ap ~ 1 atm, if 

initial pressure of gas is atmospheric. Unde • such conditions it is 

necessary to consider compressibility of the substance. Equations 

of gas dynamics thus differ from equations of hydrodynamics of an 

_i  



incompressible fluid In that In them there Is considered possibility 

of large changes of density of the substance. 

State of moving gas with known thermodynamlc properties Is 

determined by specifying speed, density, and pressure as functions 

of coordinates and time. For finding these functions there serves 

the system of equations of gas dynamics, which Is composed. In 

differential form, of the general laws of conservation of mass, 

momentum and energy of a substance. 

Let us write these equations without derivation, which can be 

found, for Instance, In book of L. D, Landau and Ye. M. Llfshits [1]. 

We will disregard action of body forces (gravity), and also viscosity 

and thermal conduction of substance.* Let us designate by ö/dt 

partial derivative with respect to time referred to a given point of 

space, the local derivative, and by d/dt the particle derivative, 

which characterizes change in time of some quantity, connected with 

a given moving particle of substance. If u is velocity vector of 

particle with components u , u. , u or u., where 1 «= 1, 2, J,  then 

5-H-+(«V)- (1.1) 

First equation is continuity equation; it indicates conservation 

of mass of the substance, i.e., to the fact that change of density 

p in given element of volume occurs due to inflow (or outflow) of 

substance into this element: 

Jf+dlTQ«i-0. (1.2) 

♦Equations of gas dynamics taking into account viscosity and 
thermal conduction will be considered below, in § 20. 



With help of definition (l.l), continuity equation can be written 

In the form 

jJ-fQdiyM-O. (1.3) 

In the particular case of an incompressible liquid, when 

p = const, continuity equation is simplified: 

divM-0. (1.4) 

Second equation expresses Newton's law and does not differ from 

equation of motion of an incompressible liquid (p is pressure): 

«5? VP (1.5) 

or, in the form of Euler's equation, 

|?+<«V)«=--{vP- (1.6) 

As it is easy to verify by means of direct calculation, equation 

of motion together with continuity equation is equivalent to law of 

conservation of momentum, written in a form analogous to equation 

(1.2), 

^^--äif' (1.7) 

where II., is tensor of momentum flux density 

ITu-cttjUjk+pÄ,». (1.8) 

Equation (1.7) expresses the fact that change of 1-th component 

of momentum at given point of space is connected with outflow (Inflow) 

of momentum together with mass (first term in (1.8)) and work of 

forces of pressure (second term).* 

Third equation is essentially new as compared to hydrodynamics 

of an incompressible liquid and Is equivalent to first law of 

^ra' *In the right side of formula (1.7) there is produced summation 
over the twice met Index k(k = 1, 2, j); 5., = 1 when 1 ■ k and 5.. » 
« 0 when 1 ^ k. lk 1K 
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thermodynamics — the law of conservation of energy. It Is possible 

to read It thus: change of specific Internal energy e of a given 

particle of substance occurs due to work of compression, which Is 

produced on It by Its surrounding medium, and also due to energy 

release from outside sources: 

Here V = i/p Is specific volume, and Q Is energy release per second 

per gram of substance from external sources (Q can also be negative 

If there are nonmechanlcal losses of energy, for Instance due to 

radiation). 

With help of continuity equation and equation of motion, the 

energy equation also can be reduced to a form similar to (1.2), (1.7)J 

£(«e+x)=-Me,'(e+T)+H+o(>-      (1-10) 

Physical meaning of this equation is that change of total energy 

of unit of volume at given point of space occurs due to outflow 

(inflow) of energy during motion of the substance, work of forces of 

pressure and energy release from external sources. 

Equations continuity, motion and energy form a system of the 

five equations (equation of motion Is a vector equation and equivalent 

to three coordinate equations) in five unknown functions of coordinates 

and time: p, u , u , u , p. External sources of energy Q are 

considered to be given, and internal energy e can be expressed in 

terms of density and pressure. Inasmuch as thermodynamic properties 

of substance are assumed to be known: e = e (p, p). 

If energy, as this frequently happens, is Known not as a function 

of pressure and density, but as a function of temperature T and density 

or temperature and pressure, then to this system we should add the 
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equation of state of substance p = f (T,   p).    Equation of state of 

ideal gas has the form 

pV=ATt   P = AQT, ^iai) 

where A is gas constant calculated for 1 gram.* 

Energy equation (1.9) has general significance and is valid even 

when substance is not in thermodynamic equilibrium. In that particular 

case, which is most important in practice, when substance is in 

thermodynamic equilibrium, it is possible to write it in different 

form with help of the second law of thermodynamics 

TdS = di + pdV, (1.12) 

where S is specific entropy. In absence of external sources of heat, 

third equation of gas dynamics is equivalent to equation of constancy 

of entropy of a particle, i.e., to condition of adiabaticity of motion 

ST"0- (I-«) 

In an ideal gas with constant heat capacity, entropy is especially 

simply expressed in terms of pressure and density (specific volume) 

.y-cv In pFT+const, (1.14) 

where 7 is adiabatic index, equal to specific heat ratio at constant 

pressure and constant volume 7 = cr)/
cv = 1 + A/Cy. In this case 

adiabatic equation (1.13) (or energy equation) can be directly written 

in form of differential equation relating pressure and density 

(pressure and volume). 

To this system of differential equations of gas dynamics there 

are added corresponding initial and boundary conditions. 

"~° *A = R/ii, where R is universal gas constant, and p. is molecular 
weight. 



§ 2. Lagrange Coordinates 

Equations in which gas-dynamic quantities are considered as 

functions of spatial coordinates and time are called equations in 

Euler form or equations in Euler coordinates. 

In the case of one-dimensional motions, i.e., plane, cylindrical 

and spherically symmetric, we frequently use other, Lagrange 

coordinates. In distinction from an Euler coordinate, a Lagrange 

coordinate is connected not with a fixed point of space, but with a 

definite particle of substance. Gas-dynamic quantities expressed as 

functions of Lagrange coordinates characterize changes of density, 

pressure and velocity of every particle of substance with flow of 

time. Lagrange coordinates are especially convenient in examining 

internal processes occurring in a substance which do not go beyond 

the bounds of a given particle: let us say a chemical reaction, the 

flow of which with passage of time depends on change of temperature 

and density of the particle. Introduction of Lagrange coordinates 

in a number of cases permits us to more briefly and easily find 

exact solutions of equations of gas dynamics, or makes numerical 

integration of the latter more convenient. 

Time derivative in Lagrange coordinates is equivalent simply to 

particle derivative d/dt. Particle can be characterized by mass of 

substance, which distinguishes it from some other fixed particle, or 

by its coordinate at Initial moment of time. 

Introduction of Lagrange coordinates is especially simple in the 

plane case, when motion depends only on one Cartesian coordinate x. 

Let us designate current Euler coordinate of considered particle by 

x, and coordinate of some fixed particle by x. (as the fixed particle 

there may be, for instance, selected a particle near a solid wall or 
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near boundary between gas and vacuum, if such exist in the problem). 

Then the mass of a column of unit cross section between considered 

particle and fixed particle is equal to 
X 

m=J«dir (1.16) 

and increment of mass upon transition from the particle to a 

neighboring one is 

dm~Qdx. (1.17) 

Quantity m can be selected as a Lagrange coordinate. 

If at initial moment, as this frequently happens, gas is at rest, 

and its density is constant, p (x, 0) = pQ,  then as Lagrange coordinate 

it is convenient to take initial coordinate of particle measured from 

point x.j we will designate it by a. Then 
* 

ams\-Q-dx,   da = — dx. (±  ±P) 
J8o       Co K-i---1-) 

Equations of plane motion of gas in Lagrange coordinates acquire 

simple form. Equation of continuity, written with respect to specific 

volume V = 1/p and unique x-th component of velocity u is 
9V    du     or J^.*! 
^■"5Si   v, ^ d»' (1.19) 

Here, as and in subsequent equations, time derivative is particle 

derivative d/dt, but it is better to write it in the form of partial 

derivative ö/öt, in order to stress that it is taken at m and a = 

= const, i.e., for a given particle with definite Lagrange coordinate 

m or a. Equation of motion in Lagrange coordinates has the form 

*-■-'£   °r £--".£• (1-20) 

Regarding, however, equation of energy written in form (1.9) or in 

form of condition of adlabaticity (1,15) (In the absence of external 

sources of heat and dissipative processes — viscosity and thermal 
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conduction), they retain their form; it is necessary only to replace 

designation d/dt by d/öt. In an ideal gas with constant heat capacity, 

condition of adiabaticity (1.13) gives 

/»^-/^(m)!, (1.21) 

where function f depends only on entropy of given particle m. In 

so-called isentropic motion, when entropies of all particles are 

7 
identical and do not change in time, f = const, where equation pV » 

= const is valid in Lagrange as well as in Euler coordinates. 

It is essential that in the plane case, Euler coordinate x in 

explicit form is not contained in equation. After Lagrange equations 

are solved and there is found function V(m, t), it is possible to 

go over to dependence of gas-dynamic quantities on Euler coordinate 

with help of quadrature, by integrating equation (1.17), 
m 

dx~V(m, t)dm,   ar(m, 0"» \ ^"("».O^-K^CO-     (1.22) 
o 

In cylindrical and spherical cases, equations of gas dynamics 

in Lagrange coordinates are somewhat more complicated than in the 

plane case, since now in the equations there is contained in explicit 

form the Euler coordinate, and in the system of equations there is 

included an additional equation relating Lagrange and Euler coordi- 

nates. For instance, in spherical case, Lagrange coordinate can be 

defined as mass included inside spherical volume near center of 

symmetry: 
r 

m-m^Aju^dr,   dm~Anr*Qdr. '±23) 

If at initial moment, density of gas is constant, it is possible 

to take as Lagrange coordinate initial radius r0 of the "particle." 

considered as an elementary spherical shell: 

1Z 
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Equation of continuity in spherical Lagrange coordinates is 

W" d j, -i    i av    i a  . (i.2^) 

Equation of motion 

äT--41^^  or är~-f0%£- (1.26) 

Energy equation or adiabatic equation remain the same as in 

the plane case. 

As an additional equation, in the system there is included 

differential (or integral) relationship (1.2^) or (1.24), which 

relates m and r or r0 and r. 

Equations for cylindrical case are formed fully analogously to 

the spherical case. 

It is necessary to -.ote that in two-dimensional and three- 

dimensional flows, transition to Lagrange coordinates, as a rule, is 

not advantageous, since equations are then greatly complicated. 

§ 3. Sound Waves 

Speed of sound is included in equations of gas dynamics as the 

speed of propagation of small perturbations. In the limiting case, 

when change of density and pressure Ap and Ap during motion of sub- 

stance are very small as compared to mean values of density and 

pressure p0 and p0, and velocities are small as compared to speed of 

sound c, equations of gas dynamics are transformed into equations of 

acoustics and describe propagation of sound waves. 

Let us write density and pressure in the form p = p0 + Ap, p = 

= p0 + Ap and consider quantities Ap, Ap, and also velocity u as 

small quantities. Disregarding quantities of second order of smallness, 

we will transform Euler equations of continuity and motion for tl^ 

« 
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plane case. Equation of continuity gives 

9Ao du 
-W'-^Si' (1.27) 

Equation of motion acquires the form 

In the last transformation it is taken into account that motion in 

sound wave is adiabatic. Therefore, small change of pressure is 

associated with small change of density through the adiabatic 

derivative: Ap = (öp/öp)sAp. This derivative constitutes, as we 

will now see, the square of the speed of sound 

and corresponds to unperturbed state of substance. 

Differentiating the first of the written equations with respect 

to time, and the second with respect to coordinate, we will eliminate 
2 

mixed derivative ö n/ht  öx. Let us obtain wave equation for change 

of density 

%?-*%!■ (1.30) 

The same equation is satisfied by the magnitude of change of pressure 
2 

Ap, which is proportional to Ap = c Ap, and also by velocity u and 

all other parameters of the substance, for instance, temperature.* 

Wave equation of type (l.jJO) admits two groups of solutions: 

A(}«AQ(I—cf), Ap«A/>(* —c/), u«u(x—«0       (i.3l) 

and 

AC-AQ(X+C0, Ap-A^(x+e0. u-u(x+e0        (1.32) 

(by c we mean the positive root <r = +VidP^Q)s)- 

*In order to obtain wave equation for velocity, we will differ- 
entiate equation (1.30) with respect to time and use equations (1,27), 
(1.28):       PAO  .^Aff    a e*u »_ d3»u 

2    2    2 2    ? whence  o u/öt = c b u/dx + f(t). Noticing that before the wave in 
unperturbed substance u = 0, we will find that f(t) = 0. 
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First group describes perturbation propagating In the direction 

of positive x axis, and the second describes perturbation propagating 

In the opposite direction. In the first case, for Instance, given 

value of density corresponds to a definite value of the argument 

x ~ ct, i.e., with flow of time it goes in the direction of positive 

x with velocity c. Thus, c is velocity of propagation of sound waves. 

Noticing that du (x =pct)/dx = T {i/c)du {xT ct)/dt,       and taking into 

account the fact that in undisturbed gas before the wave u = 0, Ap = 0 

(see footnote), we will find with help of equation (1.2?) the relation 

between mass velocity of gas u and changes of density or pressure: 

«=±JLAQ=±^. Ac-c'Ae-iCoCU. (1 ^j 

Upper sign pertains to wave travelling in the direction of 

positive x, and the lower pertains to wave travelling in the direction 

of negative x. 

In both cases mass velocity is in the direction of propagation 

of the wave where the substance is compressed, and in the opposite 

direction, where it is rarefied. 

General solution of wave equations for Ap and u is composed of 

two particular solutions, which correspond to waves travelling in 

positive and negative directions of the x axis. According to (1.31)) 

(1.32), (1.33)* solutions for density and velocity can be written in 

the following form: 

A«-?/t(x-cf)+5/a(* + c0. (1.34) 

«*-/i(«-c0-/,(*+e0. (1.35) 

where i. and f2 are arbitrary functions of their arguments which are 

determined by initial distributions of density and velocity: 
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For instance. If at initial moment there is a rectangular 

perturbation of density, and gas everywhere is motionless, then to 

the right and to the left there begin to travel rectangular pertur- 

bations, as shown in Pig, 1.1, 

If at initial moment, distributions of density and velocity have 

the form depicted in Fig, 1.2, where u = •£- Ap, so that f0 » 0, then 
P0 d 

rectangular pulses will travel only in one direction» (Such a 

perturbation can be created by a piston which at initial moment starts 

to be thrust into gas at rest with constant velocity u, and after a 

certain time is "instantaneously" stopped. If length of rectangular 

pu]se is equal to L, then, obviously, time of action of piston 

^ = L/c), 

Special importance for acoustics is presented by monochromatic 

sound waves, in which all quantities are periodic functions of time 

of the type 

or, in complex form, 

v = CD/ST is frequency of sound, and \  « c/v is wave length. Any 

perturbation can be expanded in a Fourier integral, i.e., can be 

represented in the form of a set of monochromatic waves with different 

frequencies. 

Sounds perceived by human ear have frequency v from 20 to 

20,000 cps (oscillations per second) and wave lengths corresponding to 

speed of sound in atmospheric air c = 350 m/sec,^ from 15 m to 1,5 cm, 

~  *Adiabatic index of air under normal conditions 

(since for S « const p ~ p^), 
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For an idea of the numerical values 

of different quantities in a sound wave, 

we will indicate that for the strongest 

sound, which is 1CK times more intense* 

than the fortissimo of an orchestra, 

amplitude of change of air density in 

wave is 0.k%  of normal density; 

amplitude of change of pressure is 

0.56^ of atmospheric; amplitude of 

velocity is 0.4^ of velocity of sound, 

i.e., 1,3 m/sec. Amplitude of dis- 

placement of particles of air is of the 

order of Ax « n/Zrv  = (u/c) (X/27r) « 

« 6»10"4 X (Ax « O.O36 cm for v = 500 

cps). 

Let us find energy connected with 

small a perturbation which is propagated 

through a gas at rest. Increase of 

specific internal energy of perturbed 

substance with accuracy up to terms of the second order of smallness 

with respect to Ap (or Ap, or u) is: 

Fig. 1.1. Prop- 
agation of rectan- 
gular pulse of 
density and pressure 
along one coordinate 
in linear acoustics. 

Fig. 1.2. 

*-**<%V*+K%\w- 
*As will be shown below, energy or intensity of sound is propor- 

tional to square of amplitude of changes of pressure or density. 
Loudness of sound is measured in decibels, in logarithmic scale. As 
zero is taken average threshold of sensitivity of the human ear. 
Increase of loudness by n decibels signifies increase of energy of 

sound by 10 '  times. Increase of loudness from rustle of leaves 
or whisper (~10 db) to orchestra fortissimo (~80 db) corresponds to 

increase of energy of sound by 10' times. 

kPr  
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Flg. 1.3. Distribution 
of density In a wave 
packet. 

By virtue of adlabatlclty of motion, 

derivatives are taken at constant 

entropy. It Is possible to calculate 

them with help of thermodynamlc 

relationship: de= TdS—pdV=Xp/Qs) dq. 

We will obtain 

8-e.=gAC + ^(AC)«-|(Ae)«. 

Increase of Internal energy In 1 cm with the same accuracy Is equal 

to 

Qt - QoBo = (Oo + AQ) (8 - Bo) + SQ AQ = ($,,+ ^ ^9 + ^ (W = Mö + 2^ (AC)*» 

where w = e + p/p Is specific enthalpy. 

Density of Internal energy connected with the perturbation. In 

the first approximation Is proportional to Ap. Density of kinetic 

2       2 
energy pu /2 » p0u /2 Is a quantity of the second order of smallness. 

From relationship (1.33)J which holds for a plane travelling wave. 

It Is clear that the term of the second order In Internal energy 

density and the kinetic energy are exactly equal to each other, so 

that total energy density of perturbation Is 

fi-«%AQ+^(AQ)•+?!f- = a^Ac + CoU,. (1.36) 

Term of first order of smallness In energy Is connected with 

change of volume of all of the gas which occurred as a result of the 

perturbation. If perturbation was created in such a way that volume 

of gas on the whole was not changed, then energy of perturbation of 

all of the gas is a quantity of the second order with respect to Ap, 

since during integration over volume, the term proportional to Ap 

vanishes. 
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Such, for instance, is the situation In a wave packet which 

propagates through gas occupying an Infinite space, where at Infinity 

the gas Is not perturbed (Fig, 1.3), Changes of density In regions 

of compression, with accuracy up to terms of the second order are 

compensated by changes in regions of rarefaction. 

Thus, energy of sound is a quantity of the second order of 

smallness which is proportional to square of amplitude:* 

^fc»*- (1.37) 

If perturbation was created in such a way that volume of gas 

was changed, then in energy of perturbation there remains a term 

which is proportional to first power of Ap, However, this main 

fraction of energy, which is proportional to Ap, may be "returned by 

the gas," if source of perturbation returns to its own initial 

position. Energy then remaining in the perturbed gas will constitute 

only a quantity of the second order of smallness. Let us explain 

this situation in a simple example. 

'A 

2 
«■* 

•/» <-0 

a €d± 

K 
td*L 

tr* 
-•» 

.0 h-fe-tift,-^ ' 

Fig, 1,4. Propagation of 
impulse of compression 
from piston which was thrust 
into gas. 

Let us assume that at the 

initial moment, into the gas at 

rest there began to be thrust a 

piston with constant velocity u 

(much smaller than speed of sound 

u « c). At time t^, the piston 

"instantaneously" stops. Through 

the gas will travel a pulse of 

♦Expression (1.37) should be averaged over time or space: 

«^^(I-IQ-AJ-O, while 3~(55),-(Ä»,>0). 
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compression of length (c » u) t. « ct., whose energy Is equal to work 

expended by the external force which pushed the piston In, put. = 

= (p0 + Ap) ut. « PQ
11
"^ (this case was considered above and Is 

illustrated by Pig. 1.4). Energy In first approximation Is propor- 

tional to "amplitude" of wave u, Ap, Ap and time of compression (I.e., 

length of the perturbation). Let us now give the gas the possibility 

to return the piston to its place in such a way that at time t , 

velocity of piston u "instantaneously" changes to the opposite, 

(—u), and at the time tp = 2t., the piston, which has returned to 

the initial position, "instantaneously" stops. Perturbation will now 

have the form depicted in Pig. 1,5, where there are shown states at 

moments t = 0, t., tp and t > tp. It is easy to verify by direct 

calculation that in the second period, from t. to tp, the gas per- 

formed on the piston work which in first approximation is exactly 

equal to work which was accomplished by piston on the gas in the 

first period from zero to t.. Lengths of positive and negative 

regions of the pulse in first approximation are also identical and 

are equal to ct^ -  c(t2 - t^). Thus, if we sum the energies in com- 

pressed and rarefied regions of the pulse, then terms of first order 

will cancel out. If we carry out all calculations taking into account 

terms of following order,* then in the energy there will remain term 

of the second order, where perturbation energy density will be 

expressed by general formula (1.37). 

*In particular, lengths of pulses of compression and rarefaction 
will differ by the amount aut. (for tp - t1 = t^). 
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Pig, 1.5, Propagation 
of pulses of compression 
and rarefaction from a 
piston which was first 
thrust into gas, and then 
returned to its original 
place, 

§ h.    Spherical Sound Waves 

In absence of absorption (i.e., without taking into account 

viscosity and thermal conduction; see § 22), amplitude and density 

of energy of plane waves do not decrease with flow of time. For 

instance, pulses depicted in Pig. 1.4 and 1,5 depart to "infinity," 

without changing their shape and amplitude. 

In spherical wave this is n. longer so. By linearizing equation 

of continuity in the spherically symmetric case, we will obtain 

gAg 
dt ' 

Linearized equation of motion does not differ from (1.28): 

du 
dt Qo *■ 

Hence, as in the plane case, we will obtain wave equation for Ap, 

solution of which, which describes the wave going out from the center, 

is 

A*-'-^. (1.38) 
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If we consider short pulses, of length much less than r, then 

It is possible to say that shape of pulse given by function f(r - ct) 

does not change, and amplitude of wave decreases proportionally to 

1/r. This is fully natural. Let us assume that from the center there 

proceeds a pulse of finite width Ar, With propagation of the pulse. 

the mass of substance involved in motion, which is equal approximately 

2 2 
to pn4Trr Ar, increases proportionally to r . Acoustical energy of unit 

a« *rf'{r-ct)      f(r~ct)1 
fioL   r       r»  J ' 

of volume is proportional to (Ap) . Inasmuch as it is conserved, 

2 2 
then (Ap) r = const, i.e., amplitude should decrease as Ap ~ 1/r. 

Spherical wave differs from a plane wave in yet one more respect. 

Let us substitute solution (1.38) in equation of motion: 

du 
W 

and integrate obtained expression over time. We will obtain solution 

for velocity: 

which differs from formula for plane case (1.53) by the presence in 

it of an additional term. In the plane wave in region of perturbation, 

the substance can be orly compressed, as this occurs in the case 

depicted in Pig, 1.4, In a spherical wave this is impossible: behind 

the region of compression there necessarily follows a region of 

rarefaction. 

Indeed, behind the region of perturbation, Ap and u become zero. 

In the plane case, in virtue of proportionality u ~ Ap, this condition 

is satisfied automatically. Independently of shape of pulse. In 

spherical wave, for this it is necessary that behind region of per- 

turbation cp (r - ct) =0, i.e., that integral over entire region of 

perturbation is equal to zero 

f(r-cl)-5/(üdg-5'-Acrfr-0. 

jt. ^  ....,,,,,.W..,...,„A^.J^^^^ 



Hence it Is clear that Ap in spherical wave changes sign, i.e., 

behind region of compression there follows a region of rarefaction. 

Additional quantity of substance contained in wave is equal to 

Ap.l|irr dr. But Ap ~ 1/r; therefore additional mass in compressional 

wave increases as wave goes out from the center. The quantity of 

compressed substances increasing in process of propagations causes 

the appearance of a wave of lowered density following behind the wave 

of raised density. 

Change of pressure in spherical wave is proportional to change 

of density, as in the plane wave . Velocity, as can be seen from 

formula (1.39)> is not proportional to Ap or Ap. In particular, 

velocity and change of density change sign at various points, so that 

in a wave propagating from the center, profiles of density and speed 

have the form depicted in Fig. 1.6. 

§ 5. Characteristics 

In § 3 it was shown that if at 

initial moment. t0 at some point x0 of 

motionless gas whose density and pressure 

everywhere are identical, we create 

Fig. 1.6. Distribution  arbitrary small perturbations of velocity 
of density and velocity 
in spherical sound wave, and pressure (or density*), then from 

this point in both directions with speed 

of sound there travel two waves carrying 

the perturbations. In the wave propa- 

gating in the direction of positive x. 

*In virtue of isentropic character of flow, changes of density 
and pressure are not independent, but always are related to each 
other by the thermodynamic relationship Ap «= c Ap. 
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to the right, small changes of all quantities are related with each 

other by the relationships: 

In wave, propagating to the left: 

Arbitrary perturbations Au and Ap, which appear at initial moment, 

can always be broken-up into two components: Au = A.u + A-u, Ap = 

= A.p + App, which obey these relationships, so that, in general, 

initial perturbation is propagated in different directions in the 

form of two waves. 

If Initial perturbations Au, Ap are not arbitrary, but already 

are related to each other by one of the relationships, then the 

perturbation travels in one of the directions (this corresponds to 

vanishing of one of the functions f. or f2). 

If gas is not at rest, but moves as a whole with constant 

velocity u, then the picture does not change, with only the exception 

that now the waves are carried by the flow^ so that velocities of 

their propagation relative to a motionless observer become equal to 

u + c (to the right) and u - c ("to the left"**). This can easily 

be verified if we go over in equations of gas dynamics to a new 

system of coordinates moving together with the gas at velocity u. 

Let us assume now that in arbitrary plane isentropic flow of 

gas, described by functions u(x, t), p(x, t) (or p(x, t), see first 

footnote on page 23), at the time t0 at point x- there appeared 

~~ *We write here Au instead of u for the purpose of consistency of 
designations. 

**We enclose the word "to the left" in quotes: if u > c, then the 
wave also travels to the right, but, of course, slower than the first. 
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arbitrary small perturbations of velocity and pressure. Considering 

small region near point xQ  and small intervals of time (small 

neighborhood of point x0, t^ on  x, t plane), it is possible in first 

approximation to disregard changes of unperturbed functions u(x, t), 

p(x, t), and consequently, p(x, t) and c(x, t) in this neighborhood, 

and to consider them to be constant and equal to values at point x0, 

tß. The entire above described picture of propagation of perturbations 

can be transferred to this case. If perturbations Au(x0, t^ 

Ap(x0, t0) are arbitrary, then they also are broken up into two 

components, one of which will start to propagate to the right with 

velocity un + c., and the other "to the left" with velocity u0 - c0, 

whereby un and cn here one should understand local values of these 

quantities at point XQ, t . 

Inasmuch as u and c change from 

point to point, then for a long period 

of time, paths of propagation of 

perturbations on x, t-plane, which are 

described by equations dx/dt = u + c and 

dx/dt » u - c will be curved. These 

lines on x, t-plane along which small 

perturbations propagate are called characteristics. During plane 

isentropic flow of gas, as we can see, there exist two families of 

characteristics, which are described by equations 

d* dx 

and are called respectively C - and C_-characteristics. 

Through every point on the x, t-plane it is possible to draw 

two characteristics, which belong to C - and C_-families.  In 

general, characteristics are curvilinear, as is shown in Fig, 1.7. 

Pig. 1.7. Network 
of two families of 
characteristics in 
the isentropic case. 
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In region of constant flow, where u, p, c, p are constant In space 

and time, characteristics of both families are straight lines. 

If flow Is not Isentroplc, but only adlabatlc. I.e., if entropies 

of different particles of gas do not change In time, but differ from 

each other, there are possible perturbations of entropy. In virtue 

of adlabatlc character of motion, dS/dt = 0, I.e., any perturbation 

of entropy not accompanied by perturbations of other quantities 

(p, p, u) remains localized In the particle and moves together with 

the particle along the flow line. Flow lines, consequently. In case 

of non-isentropic flow also are characteristics. They are described 

by equation dx/dt = u and are called C0-characteristics. 

In non-isentroplc flow, through 

every point x, t there pass three 

characteristics, and the x, t-plane is 

covered with a network of three families 

of characteristics C , C_, C0 (Fig. 1.8). 

Till now we have spoken about 

characteristics as lines on the x, t- 

plane along which small perturbations 

propagate. However, this does not exhaust the significance of 

characteristics. 

Equations of gas dynamics can be transformed to such a form that 

they contain derivatives of gas-dynamic quantities only along 

characteristics. As will be shown in the following section, in 

isentroplc flow, along characteristics there move not only small 

perturbations, but also definite combinations of gas-dynamic quantities. 

Fig. 1.8. Network 
of three families 
of characteristics 
in the non-isentropic 
case. 
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As it is known, a function of two variables f(x, t) can be 

differentiated with respect to time along a definite curve x = (p(t) 

on the x, t-plane. Time derivative of function f(x, t) along 

arbitrary curve x = <p(t) is determined by slope of tangent to curve 

at given point dx/dt = qp' and is equal to 

K<U J*     dt^dxdt      dt^dx*' 

We are already acquainted with two particular cases of differentiation 

along a curve: these are the partial derivative with respect to time 

ö/öt (along curve x = const, 9» = 0) and particle derivative 

d/dt -  ö/cH •(- u ö/öx (along path of motion of particle or along flow 

line: dx/dt = cp1 = u). 

Let us transform equations of plane adiabatic motion to a form 

such that they contain derivatives of gas-dynamic quantities only 

along characteristics. For this we will eliminate from equation of 

continuity 
dA du £+c£-o dt dx 

the derivative of density, replacing it by derivative of pressure. 

Inasmuch as density is thermodynamically related to pressure and 

entropy p « p(p, S), and dS/dt = 0, we have 

* " \JPJB dt + \dS Jp dt " e* dt ' 

By substituting this expression into the continuity equation and 

multiplying the equation by c/p, we will find 

• + c£-0. 

We will add this equation with the equation of motion 

9 

qe dt '*' Qe 9x 

We obtain 

[y+(»+')£]+4-[^+(-+^]-o. 
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By subtracting one equation from the other, we will find 

analogously 

[*+(-^]-^+(-c)gJ-0. 

The first of these equations contains derivatives only along 

C.-characterlstics, and the second — only along (^-characteristics. 

Noticing that adiabatic equation dS/dt = 0 can be considered as an 

equation along C0-characteristics, we will write equations of gas 

dynamics in the form 

du+±dp~0   along C,:g=u+c. (1-40) 

rfo—Lrf^O along C.:g = u-c, (1.41) 

AS-O along C0:^=u. (1.42) 

In Lagrange coordinates, equations of characteristics take the 

form 

^4-* c-4~-c; c*-'%=0- 
Equations along characteristics do not differ from equations (1.40) 

to (1.42). 

In spherically symmetric flow, equations of characteristics in 

Euler coordinates are the same as in the plane case (only coordinate 

x must be replaced by radius r). Equations along characteristics 

C+ contain additional terms depending on the functions themselves, 

and not on their derivatives 

du±±dp~i:*dt along C*:^»,,-L c. 

In a number of cases, equations of gas dynamics written in character- 

istic form are more convenient for numerical integration than usual 

equations. 

2S 
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§ 6, Plane Isentroplc Plow, Riemann Invariants 

In isentroplc flow, entropy, which Is constant In space and time. 

In general drops out of equations. All flow Is described by two 

functions: by velocity u(x, t) and by some one of the thermodynamlc 

variables: p(x, t), p(x, t) or c(x, t). The latter are uniquely 

related with each other at every point by purely thermodynamlc 

relationships:  p = p(p), c = c(p) or p = p(p), c = c(p)j c2 = dp/dp. 

Differential expressions du + dp/pc and du - dp/pc now constitute 

total differentials of quantities 

which are called Rlemann invariants.* With the help of thermodynamlc 

relationships, integral quant .■Mes I dp/pc = I c dp/p in principle 

can be expressed in terms 01 one of the thermodynamlc variables, let 

us say, the speed of sound c. For in'stan^^, in an ideal gas with 

constant heat capac Lty 

(1.43) 

p"» const Q*,   s* ■■■* Y const Q*-> 

and 

^-±Y4i«. (i.44) 

Riemann Invariants are determined with accuracy up to the 

arbitrary constant, which in those cases when it is convenient can be 

completely omitted, as this is done in formula (1,44). 

»During non-isentropic flow, p and c depend on two variable0 

p and S, and the expressions du ± dp/pc no longer are total 
differentials. Combinations (1.43) in this case do not have a 
definite meaning. 
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Equations (1,40), (1,41) Indicate that In Isentroplc flow, 

Rlemann Invariants are constant along characteristics 

^«0, /^»const along £.'■-#-u+e'' 

(t/. = 0, /, = const along C.:—=11 —c. 

(1.45) 

This situation can be considered as generalization of relationships 

which are accurate for the case of propagation of acoustic waves 

through a gas with constant velocity, density and pressure. The 

latter are obtained from general equations as a first approximation. 

If we assume that u = u0 + Au, p = PQ + Ap, then in first approxi- 

mation 

Equations of characteristics in first approximation are written 

in the form 

-J-—ii»±eoi   X"8 («o ± Co)' +const. 

Thus, along path x = (UQ + c0)t + const there is kept the quantity 

Au + AP/P0CQ, from which it is clear that it can be represented in 

the form of a function of the constant in equation x » (u0 + CQ)t + 

+ const: 

Along path x = (u0 - c0)t + const there is kept the quantity 

A«-^-~2/l[x-(u,-Co)<]. 

Changes of velocity and pressure are represented in the form of 

superposition of two waves f. and f-, which travel in opposite 

directions: Au - f1 - fg, Ap - P0c0(f1 + f2), where in each of them 

quantities are related to each other by relationships already known 

to us: 
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Rlemann Invariants J and J_ can be considered as new functions 

describing motion of gas in exchange for old variables: velocity of 

gas u and one of thermodynamic quantities, for instance, speed of 

sound c. They are uniquely related to variables u and c by equations 

(1.43). By solving these equations for u and c, it is possible to 

return from functions J,, J to functions u and c. For instance, +  - 

for an ideal gas with constant heat capacity, by formulas (1.44) 

Considering invariants as functions of independent variables 

x and t, equations of characteristics can be written in the form 

C+: g = F+ (/+, /.); C: g = /•_ (/+, /.), (i, 47) 

where F and F_ are known functions, whose form is determined only 

by thermodynamic properties of the substance. 

In an ideal gas with constant heat capacity 

#• =2±ir 4.3111/. f „h^r   :y±lj 

As can be seen from equations (1.45)^ characteristics have the 

property to transfer constant values of one of the invariants. 

Inasmuch as along a definite C -characteristic J = const, change of 

slope of characteristic is determined by change of only one quantity 

— the invariant J_. In exactly the same way, along the ^-character- 

istic J_ is constant, and change of slope during transition from one 

point of the x, t-plane to another Is determined by change of invariant 

Equations written in characteristic form make the casual, 

relationship of phenomena in gas dynamics very graphic. Let us 

consider any plane; isentroplc flow of gas in an infinite space. Let 

us assume that at initial moment t = 0 there are given distributions 

of gas-dynamic quantities over coordinate x: u(x, 0); c(x, 0), or. 
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which Is equivalent, there are given distributions of invariants 

J+ (x, 0); J_ (x, 0). On the plane of x, t (Pig, 1.9) there exists 

a network of G+- and C_-characteristics, which go out from different 

points of the x-axis.# Values of gas-dynamic quantities at any point 

D(x, t) (at coordinate point x at the moment of time t) are determined 

only by values of quantities at initial points A(x1, 0) and B(x2, 0): 

/♦ («, t) - /+ (x,. 0); /. (x, t) - /. (x„ 0). 

For instance, for an ideal gas with 

constant heat capacity, by solving 

these equations for u and c, it is 

possible -o write physical variables 

at point D in explicit form: 

ytfaj}*   B(xt,0) 

Fig.  1.9.    x— t- 
dlagram, illustrating 
region of dependence. 

(1.48) 
2^2   2 

where u,, c. are values at point A(xi, 0), and u«, c2 are values at 

point B(x2, 0). 

It is impossible, of course, to say that state of gas at point 

D depends on assignment of initial conditions only at two Initial 

points A and B, since the actual position of point D, as the place 

where C.- and (^-characteristics, going out from points A and B 

Intersect, depends on path of these characteristics. These paths 

are determined by assignment of initial conditions on all of segment 

AB of axis x. For instance, slope of C,-characteristic AD at 

intermediate point N (see Pig, 1,9) is determined not only by in- 

variant J+ (A), but also by value of invariant J_ (M), which is 

transferred to N from intermediate point M of segment AB, 

#It is possible to construct this network after there is found 
the solution of the problem. 
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AB * 
Pig. 1.10. x— t- 
diagram illustrating 
region of influence. 

But state of gas at D is completely determined by assignment of 

initial conditions on segment AB of axis x, and absolutely does not 

dep-nd on initial values of quantities outside of this segment. If, 

let „j Say, we somewhat change initial values at point Q, then this 

in no way will affect state of gas at D, simply because perturbation 

due to this change will not succeed in reaching coordinate point x 

by the moment t. It will arrive at this coordinate point later (at 

point P along ^-characteristic QP). 

Analogously, initial state of gas 

on segment AB of axis x affects state 

of gas at subsequent moments of time 

only at chose points which are located 

inside region bounded by ^-character- 

istic AP and ^-characteristic BQ 

(Pig. 1.10). It does not affect state 

at M, since "signals" from initial conditions on segment AB will not 

succeed in reaching coordinate point xM by moment tM. 

We will stress that the presented 

considerations about causal relationship 

of phenomena are valid only under the 

condition that characteristics o^ one 

family do not intersect with each other. 

Por instance, if ^-characteristic from 

Q (see Pig. 1.9) went along dotted path QE, then state of gas at Q 

would influence state at D. But in region of continuous flow, 

characteristics belonging to one family indeed never intersect. 

Intersection would lead to non-single-valuedness of gas-dynamic 

quantities. Indeed, at point of intersection of two C,-character- 

istics x, t, invariants J, would have two different values, 

vj3 

A(K,0) B(*,0) x 

Pig. 1.11. Straightening 
of characteristics on 
small sections. 
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corresponding to each of the two characterleitlcs. Meanwhile, to 

every point of plane x, t there belongs only one value each of J. and 

J_, which are related with the unique values of velocity of gas and 

speed of sound at this point. As we will see below, intersection of 

characteristics of one family leads to disturbance of continuity of 

flow and appearance of discontinuities of gas-dynamic quantities, 

i.e., shock waves. 

It is possible to draw lines of characteristics on all of plane 

x, t only if we know solution of gas-dynamic problem. If solution 

is unknown, then it is impossible to indicate exactly the position of 

point D in Pig. 1.9 at which characteristics going out from A and B 

intersect. 

However, it is possible approximately to find place of intern- 

section by replacing true curvilinear paths AD and BD by straight 

lines whose slopes correspond to initial values of u.c.; UpC« at 

points A and B (or J (A), J_ (B)) (Pig. i.ll). Selecting points A 

and B sufficiently close to each other in such a manner that error 

due to replacement of true paths of characteristics by straight 

lines 1» small, we find position of point of intersection from 

equation« 

Values of u and c at place of intersection are determined by formulas 

(1.48). Such an operation, in essence, constitutes the simplest 

scheme of numerical integration of equations (1.45). Covering plane 

x, t by a network of triangles analogous to ADB, it is possible 

successively, step by step, to advance solution of equations forward 

in time, proceeding from Initial conditions u(x, 0), c(x, 0) or 

J+ (** 0),  J_ (x, 0). 
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§ 7. Plane Isentroplc Flow of Gas in a Bounded Space 

Let us consider some plane Isentroplc flow of gas In a bounded 

space. Let us assume that the gas occupies space between two plane 

surfaces — pistons, which move according to given laws x. = f.   (t), 

X2 ~ ^2 ^'  where at initial moment t = 0 coordinates of pistons are 

equal to x10 and x20. At initial moment there are given distributions 

of velocity u and thermodynamic variable c over coordinate x on 

segment x±0  < x < x20: u(x, 0), c(x, 0) or, which is equivalent, 

there are given distributions of invariants J (x, 0), J_ (x, 0). 

Let us draw on plane x, t a network of characteristics and lines 

of pistons (Pig, 1.12). Points of type P, through which there pass 

C - and ^-characteristics going out from points lying inside segment 

0.0p of axis x do not at all differ from points during motion of gas 

in unbounded space. Just as there,to these points there are trans- 

ferred Initial values of Invariants J and J_. 

**-&M 
We will consider a point lying on 

line of piston, for definiteness, point 

D of the left piston. 

To point D from the "past"'there 

is transferred only one invariant J ; 

it is transferred along the C -char- 

acteriscic coming from point A of 

initial segment O.CU so that J_(D) = 

= J_(A). Second invariant J is not 

brought to D, since C -characteristic does not arrive at D (from the 

"past"). C -characteristic only goes out from D (into the "future"), 

taking with it the value of invariant J+ "formed" at this point. 

Pig. 1.12.  Scheme of 
characteristics for plane 
isentroplc flow of gas 
between two pistons. 
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State of gas at point D Is determined by value of Introduced Invariant 

J_ and a second quantity — velocity u, which In virtue of boundary 

condition coincides with known velocity of piston at point D: u1(D). 

This pair of quantities J_(D) = J_(A) and u = u^D) replaces now the 

pair of quantities J , J_, which arrive at points of gas, which do 

not touch the pistons. Second invariant J. is composed in D of 

quantities J_(D) and u^D): J+(D) = Su^D) - J_(D), and is transferred 

by the C -characteristic. For Instance, to point E arrives C -char- 

acteristic going out from point B of initial segment of x~axls and 

carrying invariant J_(B): J_(E) = J_(B). C -characteristic arrives 

from line of piston, from D, and brings invariant J , which is equal 

to J+(D): J+(E) = J+(D). 

State of gas at E depends on initial conditions on segment O.B 

of axis x and velocities of left piston on segment O^D of line of 

piston. 

Thus, during flow in bounded space, state of gas at any point 

may depend not only on initial conditions, but also on boundary 

conditions. 

In general, the state at arbitrary point of plane x, t is 

determined by assignment of values of u and c or J^, J_ on segment of 

arbitrary curve cut off by C - and (^-characteristics passsing 

through the considered point. For Instance, state at Q is determined 

by state on segment MN of curve S (see Pig, 1,12). 

Analogously to the preceding, onto the right piston from the 

"past" along C -characteristics are transferred invariants J , and 

C -characteristics themselves start from points of line of piston and 

carry into the "future" invariants J_, which are composed of the 

introduced invariants J and values of velocity of piston u«, with 
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which velocities of layer of gas adjacent to piston coincide. 

Pressure on piston is uniquely determined by the one introduced 

invariant and velocity of piston. Let us consider for example point 

D on left piston.   Let us assume that gas is ideal with constant 

heat capacity. Let us designate by u., c. initial velocity of gas 

and speed of sound at point A, and by u,,^ velocity of piston at point 

D, We have for speeds of gas and sound at D 

whence 

2 2 

eo-^A+teo-«*)1!*" 
or in terms of the invariant 

Pressure on piston pD is related with speed of sound c^ purely 

thermodynamically, pD = const C-^/^"**
- '. 

Presented considerations permit us to give graphic physical 

meaning to Riemann invariants. 

Let us take the following experiment: Let us introduce at a 

definite moment t at point x a flat plate parallel to surface of 

piston. Let us assume that on one, the left side of the plate there 

is a pressure indicator, which reacts to pressure of gas on the left 

of the plate. 

By moment t at x from the left onto the indicator there arrives 

invariant J = u -t- j dp/pc = u + w(p), where u and p are velocity and 

pressure of gas unperturbed by the plate (w(p) is function of pressure, 

depending only on thermodynamic properties of gas and its entropy), 

At the j±me  t, gas is decelerated near plate and stops, inasmuch as 

the plate is at rest. New pressure on the left of the plate corre- 

sponding to the stopped gas (u = 0) we will designate by p^. Then 
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J+ » u + w(p) » w(p1).   Indicator will register pressure of 

repulsion —p.. Inasmuch as function w Is known, scale of Indicator 

can be calibrated in such a manner that reading of indicator directly 

gives magnitude of invariant J+. Analogously, pressure indicator 

placed on right side of plate measures invariant J_ arriving from 

the right. 

If we place a very thin plate perpendicular to surfaces of 

pistons, parallel to velocity of flow, in such a manner that gas 

freely flows around the plate without changing velocity, the indicator 

will register pressure of unperturbed flow p. Since it is calibrated 

to directly give magnitude of w(p), the indicator will measure 

combination of Invariant 

»(p)-4(/+-/-). 

§ 8, Simple Waves 

Prom formula (1.46) for Riemann invariants, which pertains to 

case of propagation of small perturbations, acoustic waves, through 

gas it is clear that if wave propagates only in one direction, then 

one of invariants is constant in space and time. Thus, if wave 

travels to the right and Au (x, t) » Ap (x, t)/p0c0 » f> [x — (u0 + 

+ c0) t], then invariant J_ is constant: 

/_ ■» Ai*——^+const ■■ const, 
to» 

If, however, the wave travels to the left, then Invariant J. is 

constant. 

We will show that possibility of existence of waves travelling 

in one direction is not limited by the assumption of smallness of 

amplitude, where in the general case of a travelling wave there 

remains constant one of the Riemann invariants. First of all we will 

indicate how it is possible to realize in practice constancy of one 
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of the Invariants, for instance J . If gas occupies an Infinite 

space, then for this it is sufficient to assign initial distributions 

u(x, 0), c(x, 0) in such a way that at initial moment we had 

J_ (x, 0) = const. Inasmuch as this constant value of J is trans- 

ferred along (^-characteristics going out from all points of axis x, 

then at subsequent moments of time invariant J will remain constant: 

J  (x, t) = const. 

Let us assume that gas occupies a half-space bounded on the 

left by piston moving according to the law x> = ^.(t). If at Initial 

moment J_ (x, 0) = const in all of the region occupied by gas, 

x > X,.Q'(X,|0 is initial coordinate of piston), then at subsequent 

moments J also will remain constant in the whole space bounded by 

the piston x > x. = ^, (t). Actually, left piston, as was shown in 

preceding paragraph, "excites" only C,-characteristics; C -character- 

istics arrive at line of piston from "past", and on this "finish 

their existence", so that piston sends into the "future" only 

J -invariants, but not J . 

Values of J_-invariants in all that part of plane x, t which 

corresponds to gas (this part is bounded by line of piston x,. = 

= ^, (t)) are determined by initial values of J_ on axis x, i.e., 

are constant. 

Conversely, if gas occupies half-space bounded en the right by 

piston (line of piston x2 = ip^  (t), x20 -in  (0))* an<i ^ initial 

moment J (x, 0) = const for x < Xp0, then in the whole physical 

part of plane x, t, x < x? = Vo (t), invariant J is constant. 

Thus, we will return to problem at hand and v.lll assume for 

definiteness that J_ (x, t) = const. 
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From equation of characteristics written in form (1.47)^ it 

follows thus that G -characteristics constitute a family of straight 

lines (F = const, since J. «= const along the characteristic, and 

J_ - const in general). Integrating equation for C,-characteristics, 

we will write 

(1.49) 

where cp (J ) is constant of integration, which it is possible to 

consider as function of that value of J. which is transferred along 

the characteristic. It is determined by initial and boundary con- 

ditions of the problem. For instance, if given characteristic emerges 

from initial segment of axis x, then 9 is coordinate of that point 

of axis x from which there emerges the characteristic and on which 

there is assigned value of J standing as the argument in 9, 

Formula (1.49)* Jointly with condition imposed on one of the 

unknown functions, 

J (x, t)"const, (1.50) 

constitutes general solution of equations of gas dynamics for the 

considered case. It determines in implicit form the other unknown 

function J. (x, t).. (We recall that function F. is known, inasmuch 

as there are known the thermodynamic properties of the substance). 

Solution (1.49)* (i.50) can be written in the form of formulas 

for usual gas-dynamic variables: velocity of gas and speed of sound. 

From equation (1.50^ 

it follows that speed of sound or any otner thermodynamic variable, 

let us say pressure, are functions of velocity n which do not contain 

in explicit form independent variables x and t: c = c(u), p = p(u). 
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Equation (1.49) is equivalent to equation 

x=l«+c(»)l' + «p(«). (1.51) 

where constant of integration cp is expressed as a function of u. 

This equation determines in implicit form u in dependence upon x and 

t. 

Prom formula (1.51) it is clear that given values of u and c(u) 

are transferred through the gas along axis x with constant velocity 

u + c(u). In other words, the solution constitutes a wave travelling 

to the right: 

u = f{x-lu + ciu)]t],c = g{x-lu + e{u)]t}, 

where form of functions f and g is determined by initial and boundary 

conditions of the problem. 

However, in distinction from travelling wave of small amplitude, 

different values of velocity of gas and thermodynamic variables are 

transferred with different velocities, so that initial profiles 

u(x, 0), c(x, 0) are distorted with flow of time. This is a result 

of the nonlinearity of equations of gas dynamics. 

The obtained solution in the form of a travelling wave is called 

a simple wave. 

In an analogous way there can be obtained a simple wave travelling 

in the other direction. In it invariant J is constant, and ^-char- 

acteristics are straight lines. General solution in this case has 

the form 

or 

A «const, x —/*_(/+, I.)t + <ft{J.) 

/+-1*-fj^=const,  ««{tt-c(u)I < + <!(,(«<), 

«-/i{*+(e(B)-ttIf}, e~gt[x+le(u)-u\t]. 
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Let us note that solution for simple wave Is particular solution 

of equations of one-dimensional isentropic flow. There can be found 

also the general solution of these equations for arbitrary flow (see 

[1]). Singular solution is not contained directly in the general 

solution, 

§ 9. Distortion of Profiles in Travelling Wave of Finite 
Amplitude, Certain Properties of Simple Waves 

We will use obtained solution for a simple wave and will clarify 

what occurs with a wave of acoustic type if we do not limit ourselves 

to first approximation, as this was done in § 5* but start from the 

exact equations of gas dynamics. We will not give here an analytic 

solution, but will clarify qualitative character of phenomena with 

the help of graphic construction. Gas will be considered to be ideal 

with constant heat capacity. 

Let us assume that initial profiles of velocity and speed of 

sound u(x, 0), c(x, 0) have form depicted in Pig, 1.13, where these 

functions are related in such a way that J_ (x, 0) = const (we 

consider a wave travelling to the right). By formula (1,44) we have 

c = —h^  u + c0, where constant value of invariant J_ is selected 

in accordance with the condition that in unperturbed gas u = 0, 

c = c0. Inasmuch as p ^ c /^'  ', p ^ c Vl'V"" )   (for c = c0, p = p0, 

p = p ), profiles of pressure and density in qualitative sense are 

fully analogous to profile of speed of sound. 

Being constant at initial moment. Invariant J_ (x, t) is constant 

also at all subsequent moments of time, so that motion constitutes a 

simple wave travelling to the right. Characteristics of C,-family 

are straight lines dx/dt = u + c = (7 -i- 1) u/2 + cQ,    They are 
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depicted in Flg. 1.13. Prom points A0, B0 and D0, where u = 0, they 

emerge parallel to each other: dx/dt = c0 (and parallel to C -char- 

acteristics going out from points of axis x which correspond to 

unperturbed region of gas). In order not to complicate Fir:. I.13, 

we will draw, furthermore, only two more C -characteristics,- from 

points E0 and P0, which correspond to minima and maxima of Initial 

distributions u(x, 0) and c(x, 0). 

Let us construct profiles of u(xj) 

\     \ \ \ 

u. S5 ^ te % 
1 • 1 * § 1 ! I ' • ! I ! • • 

It,    * 

Fig. 1,13. Propagation 
of travelling wave to 
the right. Construction 
allowing us to determine 
distortion of profiles 
In wave. Above — profiles 
of velocity and speed of 
sound at initial moment. 
Below — distorted profiles 
at time t 1* In the middle 

— scher.e of C,-character- 
istics. + 

u and c at moment t.: u(x, t,), 

c(x, t>). Inasmuch as along 

C+-characteristics there are trans- 

ferred constant values of u and c, 

magnitudes of u and c at points 

A^, E^, etc., are equal to corre- 

sponding magnitudes at points An, 

E0, etc. 

By performing the construction 

as shown in Fig. 1.13, we will find 

profiles of u and c at time t,. 
1 

We see that "head" (D) and "tall" 

(A) of the wave, which touch 

regions of constant flow, where 

u = 0, and c = c0, were displaced 

along axis x by segments equal to 

CQ^ (they were propagated along 

characteristics DQD1> 
A
O
A
I 

on 

plane x, t). Heights of maxima 

and minima of u and c were not 
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changed, but relative positions of maxima and minima became different: 

profiles were distorted. 

In acoustic theory, wh re equations of gas dynamics are lin- 

earized, such distortion does not occur: profiles shift in the form 

of a "frozen" picture. Distortion of profiles is result of nonlin- 

earity of equations of gas dynamics. Physical cause of distortion 

is that wave crests travel relatively faster due to high speed of 

their propagation through substance (high speed of sound), as well 

as due to faster drift forward together with the substance (high 

speed of gas). Conversely, wave troughs travel relatively slower, 

since both speeds in them are less. 

With flow of time profiles are distorted more and more strongly, 

as is shown in Pig. 1.14. If we formally continue the analytic 

solution to sufficiently long times, then there will occur 

"overlapping" of the wave, as shown in Fig. 1,1W. This, the last, 

picture is physically senseless, since in it the solution is not 

single-valued. For instance, at point x = x1 in the same moment of 

time there are three values of velocity u: u = 0, u. and u2. 

Appearance of such ambiguity is mathematically connected with inter- 

section of characteristics of one family (C ), the tendency to which 

it is possible to perceive in Pig, 1.13, In fact, "overlapping" 

certainly does not occur, and when front and rear parts of profiles 

become very steep, there are formed discontinuities — shock waves, 

as shown in Pig. 1.14e (about this we will be concerned below). 

Thus, solution in the form of simple wave in this case is valid 

only for a limited time, up to moment of formation of discontinuities. 

Solution never loses validity only in that case when wave everywhere 

has character of a wave of rarefaction, i.e., does not contain 

sections where velocity of gas, pressure, and density decrease in 
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direction of propagation of wave. Such sections (AE and PD) in 

Pig. 1,15 constitute compressional waves. 

x-Ctt 

■Z^Cttj x-cti 

■I-C^t 

Pig. 1,14. Diagram 
illustrating build-up 
of steepness and 
"overlapping" of wave 
of finite amplitude in 
nonlinear theory. There 
are shown profiles of 
velocity in consecutive 
moments of time. In order 
to combine waves at dif- 
ferent moments of time, 
along the axis of abscissas 
is plotted the combination 
x-c0t. Profile d) corre- 

sponds to the physically 
unreal state. In fact, at 
time t, the profile has the 

form e) with discontinuities« 

Simple rarefaction wave will 

be considered in the following 

section. 

Let us note one important 

property of the simple wave which 

is illustrated by the considered 

example. Head of simple wave 

always is propagated along the 

characteristic (in our example 

along characteristic DJ),).    On 

the leading edge of the simple 

wave, at point L), the actual 

quantities u and c are continuous, 

but their derivatives with respect 

to coordinate x undergo a dis- 

continuity (this one may see from 

Fig. 1.13* where profiles of u and 

c undergo a break). Such a 

singularity, in which quantities 

are continuous but their derivatives 

are discontinuous is called weak. Weak singularity can be imagined 

as a small perturbation with respect to continuous variation of 

gas-dynamic quantities. This is shown in Pig. 1.15* in which there 

are depicted two profiles, one smoothed, and the other with dis- 

continuity of derivative. The shaded section can be considered as a 

small perturbation. 
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But we know that small perturbations are propagated through a 

substance with speed of sound. Therefore, weak singularities always 

are propagated along the characteristics. 

If isentropic flow borders with 

region of constant flow, then this 

flow necessarily is a simple wave, and, 

conversely, with region of constant 

flow there can border only a simple 

wave. Actually, in region of constant 

Pig. 1.15. Con- 
cerning the question 
of a weak singularity. 

flow C.- and ^-characteristics 

constitute families of parallel lines, and invariants J (x, t) and 

J_ (x, t) are constant. As boundary of contact of region of some 

isentropic flow I with region of constant flow II (Pig. 1.16) serves 

one of characteristics, let us say, the C -characteristic. Then 

G_-characteristic8 continuing from region II into region I transfer 

constant value of J_, so that in region I J_ (x, t) = const. Conse- 

quently, this region is a simple wave travelling to the right. In 

Pig. I.i6 there are drawn characteristics for case of a pulse with 

length of one "wave length", which was considered above as an example. 
it 

Pig. 1.16. Diagram of two 
families of characteristics 
for the wave depicted in 
Pig. 1.13. 
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§ 10. Rarefaction Wave 

Let us consider motion of gas under action of a withdrawing 

piston. Let us assume that In the beginning a motionless gas with 

constant density, pressure, and speed of sound p0, p0, c0 occupies 

half-space x > 0, on the left bounded by motionless piston. Initial 

coordinate of which Is x = 0. At the time t = 0, piston starts to 

move to the left, gradually being accelerated from zero speed to a 

certain constant speed, which we will designate by -U. Law of motion 

of piston Is x = X(t). When speed of piston becomes constant, line 

X(t) becomes a straight line X(t) = -Ut + const. 

As was shown In the preceding section, motion of gas for t > 0 

constitutes a simple wave travelling to the right. Head of wave. 

I.e., Initial perturbation from piston, propagates to the right with 

speed of sound along C -characteristic 0A; x = c0t (Pig. 1.17). Let 

us draw on this figure curve of motion of piston X(t) and character- 

istics of C.- and C -families. In region I between axis x and +     — 

C -characteristic 0A, gas is undisturbed: characteristics in this 

region are straight lines with slopes (dx/dt), = C0J (dx/dt)_ = -CQ. 

After intersecting straight line 0A, C_-characteristlcs continue up 

to line of piston and on it end their existence. For clarity of 

reasoning, we will consider gas to be ideal with constant heat 

capacity; however, we will stress that in a qualitative sense the 

entire picture of motion remains valid also for gas with different 

thermodynamic properties. J^-invariant is constant in the entire 

physical part of plane x, t and is equal -'>. 

Hence, 
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Pig. 1.17. x, t-diagram with 
diagram of characteristics for 
rarefaction wave appearing under 
action of piston which is with- 
drawn from gas, first accelerated, 
and then with constant speed. 

On boundary with piston, 

velocity of gas coincides with 

velocity of piston w(t), which 

is negative. Therefore, speed 

of sound, and also pressure 

and density of gas at the 

piston are less than initial, 

and the faster the piston 

travels, the lower they are. 

^-characteristics, which are 

straight lines, emerge from line of piston with slopes 

(g)t-»+..c.+l+iu-c.-I+l|„|. 

Inasmuch as piston only is accelerated, but not decelerated, 

C+-characteristics starting on line of piston only diverge, but 

nowhere converge, as is shown in Pig, 1.17. ^-characteristics going 

out from that section of line of piston on which speed of piston is 

already constant have Identical slopes (dx/dt)+ » Co — ^-U    and go in 

parallel with each other. Let us assume that, for instance, speed 

of piston becomes strictly constant and equal to w = -U (U > 0), 

starting from moment ^ (point B on line of piston). In region III 

on plane x, t, which is contained between line of piston and C.-char- 

acteristlc BD, all gas-dynamic quantities are constant: u » -U, 

c » c~, - 
7-1 

0 ^— u - ci*)»    Indeed, in this region J_ « const in virtue 

""     »For validity of these formulas it is necessary that c4 be a 

positive quantity, which puts a limitation on final velocity of 

piston: U < [2/(7 - 1)] c0. The case when U > 
considered in § 11, ■^-r±  co wil1 be 
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of general constancy, and J+ = const Inasmuch as velocities of gas 

on line of piston, from which there emerge all C+-' haracteristics. 

are identical: 

J+ = u+frrc = ^c« + 2« = ;—r'o-2tf. 

In region II, which is contained between C -characteristics OA and BD 
+ 

and section OB of line of piston, gas-dynamic quantities depend on x 

and t in accordance with solution for simple wave. C -characteristics 

going out from section OB of line of piston at all later moments of 

time carry smaller and smaller values of velocities of sound and gas 

(greater and greater velocities of gas in absolute value). Therefore, 

disoribution of'u and c over the gas at some definite moment of time 

t»< t1, which corresponds to horizontal line t = const = t« on plane 

x, t, has the form depicted in Fig. I.l8a. 

In virtue of direct dependence of p, p and c, distributions of 

density and pressure in a qualitative sense are similar to distribution 

of speed of sound. 

a)" 

^ 

»e 

b) 

c, 
EZ 

♦tf 

■</ 
-r« 

Pig. 1.18. Profiles of 
speed of sound and 
velocity in rarefaction 
wave appearing under 
action of piston (see 
Pig. 1.17): a) up to 
moment when speed of 
piston became constant^ 
t« < t.; b) after moment 

when speed of piston 
became «constant, tn > t^. 

Distributions of gas-dynamic 

quantities at later moment t" > t. 

(straight line t = const = t" on plane 

x, t) are shown in Pig. 1.18b. In this 

case to the piston is adjoined region 

of constant flow u = -U, 0=0.. Coor- 

dinate of point dividing regions of 

constant and variable flows III and 

II corresponds to point E of character- 

istic BD: Xg. 

By assigning a specific law of 

motion to the piston, we can find 
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solution of problem in analytic form. Let us assume, for example, 

that speed of piston with flow of tlmo changes smoothly according to 

the law: 
i 

w--e/(i-« '), t>o 

and tends to constant -U asymptotically as t -♦• oo. Line of motion of 

piston Is described by equation 
t _i 

X(ty~{wdt~ -.Uxfc-ii-e'1}]. 

It asymptotically passes Into straight line X = —U{t — x). 

For finding the unknown solution we will subject the general 

solution (1.51) to boundary condition: u = w (t) when x = X (t). 

This condition determines arbitrary function cp (u): 

if{w)~X(t)-lw+eiw)]t, 
where 

e(w)-e0+^~w  and w=w(t). 

Substituting here X (t) and expressing time in terms of w with 

help of law of motion of piston t = -x in ( 1 + —-), we will find 

form of function <p: 

9.(w)« -aa +1 (co + £H » + £/) In (l+-jp ) . 

Distributions of velocity over coordinate at different moments 

of time are given by implicit function: 

which holds in the interval X (0 < * < cof- 

Let us assume again that velocity of piston becomes strictly 

constant at definite moment t.. Let us take the constant value of 
1 

final velocity of the piston -U and assume that initial accelerations 

of piston become greater and greater and constant velocity is attained 

more and more rapidly (t. -»• 0). Section OB of line of piston, where 

speed of piston Is variable, becomes smaller and smaller (see Fig. 
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1.17). Points B and 0, from which C -characteristics BD and 0A, 

between which Is contained the region of variable flow II, go out, 

thus come closer together. In the limit t,  = 0, when points B and 0 

coincide, which corresponds to Instantaneous attainment by piston of 

constant velocity w = -U, both characteristics BD and 0A emerge from 

one point: from the origin of coordinates x = 0, t = 0 on plane 

x, t. All ^-characteristics filling the region of variable flow II 

also emerge from origin 0 in the form of a fan. Thus, in the limiting 

case, when piston at time t = 0 starts to move with constant speed 

w = -U, the picture on plane x, t acquires the form depicted in Fig. 

1.19. 

All characteristic lines: line 

of "head" of rarefaction wave 0A, line 

of "tail" of wave 0D, behind which 

parameters of gas take constant finite 

values, and line of piston emerge from 

"center" 0. Prom the same "center" 
Pig. 1.19. x, t-diagram 
with diagram of character- there emerge all C -characteristics 
istics for centered rare- 
faction wave. located between G -characteristics 0A 

and 0D. 

Such a wave is called a centered simple wave. Inasmuch as all 

C -characteristics in centered simple wave, i.e., in region of variable 

flow II, emerge from point x = 0, t = 0, function cp (u) in solution 

(1,51); which is at the same time the equation of these character- 

istics, becomes zero. Solution for centered wave has the form 

««[o+c(u)l/. (1.52) 

Formally this solution can be obtained by means of passage to 

the limit T -* 0 in the example, considered above. Function cp is 

proportional to T, so that as T -► 0 cp (u) -* 0. 
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Let us write In explicit form the solution for centered rare- 

faction wave for case of ideal gas with constant heat capacity. 

Relation of thermodynamic variables with velocity of gas u is given 

by the already known formula following from condition of constancy 

of invariant J_: 

c-c*-£=i|tt|, u<0. (1#53) 

Inasmuch as p = po (c/Co)vt c* ^ YPA? *,!'l«J(cA?o)Y~^ 

(1.54) 

In order to obtain dependence of these quantities on x and t, 

it Is necessary to substitute here |u|, which Is found from solution 

of (1.52) and (1.53): 

1>!-4T0-7> (1-56) 

Velocity of gas in centered rare- 

faction wave depends on coordinate x 

by a linear law. Head of wave, where 

Fig. 1.20. Profiles 
of density and velocity 
In centered rarefaction 
wave. 

u = 0, moves along line x » cQ^i  tall 

of wave, where u = w = -U, moves along 

line x = (c1 - U)t = (c0 - ^-i U) t. 

Profiles of density and velocity 

are shown In Pig. 1.20. 

§ 11. Centered Rarefaction Wave as an 
Example of Self-Similar Motion of Gas 

One-dlmenslonal plane motion of gas considered in preceding 

section, which appears during withdrawal of piston with constant 

velocity, possesses one characteristic peculiarity. All gas-dynamic 

quantities describing motion, u (x, t), c (x, t), p (x, t), p (x, t). 
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depend not separately on coordinate and time, but only In combination 

x/t. For region II, where quantities are variable, this may be seen 

directly from formulas (1.53) — (1.56). Regions of constant flow I 

and III, however, are bounded In plane x, t by straight lines x/t = 

= c0 = const (region I) and x/t = w = const, x/t = w + c = const 

(region III), which are described by equations containing x and t 

only In combination x/t.  In other words, with flow of time, dis- 

tributions of all quantities over coordinate x, which are depicted in 

Pig, 1.20, only are extended in space, without changing their shape. 

I.e., they remain similar to themselves.  If we depict distributions 

of u, c, p, p, plotting along the axis of abscissas not x, but the 

ratio x/t (or one of the dimensionless quantities x/cnt, x/wt), then 

we will obtain a "frozen" picture, which is constant in time.  Such 

motion, in which profiles of gas-dynamic quantities with flow of time 

remain similar to themselves, changing only due to change of scales 

of quantities (in this case of scale of length c^t or wt), is called 

self-similar. In § 25 we met with a more complicated example of 

self-similar motion, in which not only scales of length change, but 

also scales of gas-dynamic quantities themselves, where self-similar 

variable i  has the more general form ^ = xt , where a = const. The 

above considered centered rarefaction wave constitutes simplest case 

of self-similar motion, in which a = -1, I* = x/t, and scales of 

gas-dynamic quantities remain constant: with flow of time their 

profiles u (x, t), c (x, t) self-similarly are extended only along 

the axis of abscissas, but are not changed along the axis of ordinates 

(scales of u, c, p, p remain constant). 

Physical cause of self-similar character of centered rarefaction 

wave can be explained by using dimension considerations. 
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If we disregard dlssipatlve processes of viscosity and thermal 

conduction, then equations of gas dynamics. Just as formulas, 

describing thermodynamlc properties of a substance, do not contain 

any characteristic lengths and times. The only scales of length and 

time for a gas are the mean free path and mean free time of molecules, 

with which there are connected the coefficients of viscosity and 

thermal conductivity. However these scales can characterize only 

mlcroprocesses occurring at distances and during times corresponding 

to mean free path and time of molecules, but not macroscopic motions. 

Matter possesses the dimensional parameter speed of sound, which is 

contained along with velocity of substance in description of gas- 

dynamic flows. Thus, if Initial and boundary conditions of problem 

do not contain characteristic lengths and times, motion can depend on 

coordinate and time taken only in combination, x/t, which has the 

dimension of velocity. 

Such is the considered problem about rarefaction wave appearing 

under action of piston withdrawn from gas with constant velocity w. 

Initial and boundary conditions introduce only scales of velocity: 

c0 and w (and, of course, scales of density pQ and pressure p0, but 

not scales of length or time)*. 

*If velocity of piston is not constant, but depends on time, then 
immediately there appear scales of time or length. Thus the problem 
about rarefaction wave ceases to be self-similar: mathematically this 
follows from formula (1.51): if cp (u) ^ 0, then u depends on x and t 
separately. However, if velocity of piston with flow of time becomes 
constant, as in the example considered in the preceding section, then 
true solution asymptotically tends to self-similar. For t » T (t/T -*■ 
-* w)  function cp (u) ~ T in the solution can  be omitted. Physically 
this corresponds to a case in which for t » T parameter T becomes 
small as compared to characteristic time of problem t, and its role 
becomes less and less Important. For greater detail about asymptotic 
tendency of true solutions to self-similar solutions (see Chapters 
X and XII). 
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Self-similar motions have large importance for gas dynamics. 

Inasmuch as in this case, gas-dynamic quantities do not depend on 

coordinates and time separately, but depend only on definite combina- 

tions of them, this decreases by one the number of independent 

variables in the system of equations. In particular, during one- 

dimensional motions, instead of two variables x and t (or r and t in 

case of spherical or cylindrical symmetry) there appears one inde- 

pendent variable (^ = x/t in our problem). Flow is described not by 

partial differential equations, but by ordinary differential equations, 

which to a huge degree simplifies problem from the mathematical point 

of view. 

In view of fundamental importance of self-similar flow which 

constitutes a centered simple wave, we once again will find solution 

of problem about the piston, starting from general equations of gas 

dynamics and using the presented considerations about decrease of 

number of independent variables. We transform Euler equations of 

gas dynamics to new independent variable i  = x/t.  If f (x, t) is a 

certain function of x and t depending only on a combination of these 

quantities | = x/t, then by means of direct calculation we will obtain 

at    idf 

5F~" <• ii~     t d\ • 

dt    at'rudx~  t   di' 

Let us transform equations of continuity, motion and adiabatic 

equation, written for the plane case, with help of these formulas: 

do du   /   e\ ^0    . **'» 

g-0-*(u-6)f-0. 
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As we should have expected, actual quantities x and t were 

eliminated from the equations. Written equations admit first of all 

the trivial solution u = const, p = const, p = const, S » const, 

which corresponds to motion of homogeneous gas as a whole. For 

obtaining non-trlvlal solution we will eliminate from first pair of 

equations du/d^, and note that third equation gives S = const,* I.e., 

that self-similar motion Is Isentroplc. 

Replacing In the second of equations (1.57) the derivative of 

pressure by the derivative of density, dp/d^ = (dp/dp) (dp/dfj = 

= c dp/d| (Inasmuch as motion Is Isentroplc dp/dp = (öp/äp)- = c ), 

we will obtain 

Ku-|)«-c«lg = 0. 
whence * 

«-5-±c, 5 = | = uT«:. (1.58) 

Substituting this relationship in equations (1.57)* we will find 

or 

Jco (1.59) 

We have arrived, thus, to solution of problem about centered 

rarefaction wave which was already found in preceding section. For 

wave travelling to the right, we should take lower sign in formulas 

(1.58), (1.59)* and for wave travelling to the left — the upper sign. 

As before, the whole picture of flow can be constructed with 

help of solutions (I.58), (1.59) and trivial solutions u = const, 

c = const, which also satisfy self-similar equations. Thus it is 

~  *The assumption about the fact that not dS/d| = 0, but u - (• = 0 
contradicts the first of equations (1.57). 
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necessary to combine these solutions In such a manner that there Is 

satisfied boundary condition u = w at the piston. 

We will dwell on certain peculiarities of rarefaction wave. 

Character of solution indicates that for its validity it is not at 

all necessary that the gas extend from the piston to infinitly x -* oo. 

Until head of rarefaction wave, which travels through unperturbed gas 

to the right with the speed of sound c0, reaches the boundary of gas, 

x = x. > 0, i.e., up to the moment t. = x./c0, presence of boundary 

in no way affects the motion.* Therefore, the obtained solution 

always describes initial stage of motion of gas during withdrawal 

of piston, even if the gas occupies a bounded region. 

We will see what happens to a 

definite particle of gas whose initial 

coordinate was, let us say, x0. Up to 

, the moment t = t0 = x0/c0, until head 

of rarefaction wave approaches it, 

particle is at rest. Then it starts 

to move to the left, with acceleration, 

and thus is expanded. When density in 

it falls to a final value p,, and 

velocity becomes equal to velocity of 

piston w, further acceleration and expansion will be ceased, and 

particle will start to move with constant velocity w. Paths of 

several particles on plane x, t are depicted in Fig. 1.21. Equations 

Fig. 1.21. Paths of 
particles on x, t- 
diagram for centered 
rarefaction wave; 0A 
is head of wave, 0D 
is tall of wave. 

of these lines in region of rarefaction II are easy to obtain by 

7 
integrating equation for flow line  ■..-■ = u =    . (c0 - -r-) with 

x o initial condition x = x~ for t - t~ = —~, 
 0        0  c0 

*E,eVas remember the reasoning in § 6 about the region of 
Influence. 
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Let us now see what occurs if we go over to motions with greater 

and greater absolute velocities of piston |w|. From formulas 

(1.55) — (1'56) It Is clear that the greater |w| is, the lower the 

speed of sound, density, pressure, and temperature (T~yT)      of the 

gas In the final state (c. = c (w), p,, = p (w) etc.) are. Finally, 

at a certain velocity of the piston |w| =    . c0, final values of 

c.i* PA»  P* become zero. If piston Is withdrawn still faster, then 

formally solutions (1.53) — (1.56) become senseless, since for 

H > Mm 
c±>  P±>  Pi are negative. 

Actually this means that for |w| > |w| , between piston and left 

boundary of gas there will be formed a region of vacuum. Flow 

proceeds as If piston at Initial moment t = 0 were completely 

"removed", and the gas flows Into a vacuum. Thus gas Is' expanded 

to zero density, pressure, and temperature (speed of sound), and Its 

boundary moves to the left with velocity 

tt> 2 .  ,..,     2 
=ie«' M«"«»—,-*>. (i.6o) r- 

Proflles of velocity and density during non-steady outflow 

Into vacuum are depicted In Fig. 1.22. For Instance, for air at 

usual temperatures 7 = 7/5 and |u|   = 5cn. This magnitude Is 

almost twice as large as velocity of steady outflow Into vacuum from 

2 2 
a large reservoir, when Bernoulli equation h + u /2 = h0 = CQA^ " 

1) 

is valid, and u^^ = j/III^ ^ 2,2 c0    
for ^ = 1-k  (here by h we 

designated specific enthalpy h -= e = p/p). During steady outflow, 
p 

particle obtains kinetic energy of u -^/Z  per gram only due to Its 

Initial heat content tu. During non-steady outflow Into vacuum, 

kinetic energy Is larger than Its Initial heat content h0 (by more 

than k  times at 7 = 1.4). 

r- 8 
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Additional kinetic energy is obtained due to heat removal from 

neighboring particles: total energy, which is equal to sum of kinetic 

and internal energies in region contained in rarefaction wave, is nat- 

urally conserved and is equal to initial inertial energy of this reglo* 

Analogously to plane case, it is 

possible to consider spherically or 

cylindrically symmetric rarefaction 

waves, which are formed if "spherical" 

or "cylindrical" pistons at initial 

moment t = 0 start to be withdrawn 

from the gas occupying space r > r. 

Pig. 1.22. Profiles 
of density and velocity 
during plane non-steady 
outflow of gas into a 
vacuum. L0 

or r < r0. Thus there also will be 

formed a rarefaction wave whose head travels through the undisturbed 

gas with speed of sound cQ.    However, in these cases there do not 

exist regions of constant flow between piston and tail of rarefaction 

wave. Let us notz  that spherical and cylindrical rarefaction wave, 

in distinction from plane wave, are not self-similar: in the problem 

there is a characteristic scale of length - the initial radius of the 

piston TQ. 

§ 12.  On the Impossibility of Existence of Centered 
Compressional Wave 

It would seem that solution of problem about piston moving with 

constant speed would be applicable to an equal degree independently 

of whether piston is withdrawn from gas or is thrust into gas, or 

whether it produces rarefaction or compression. Both motions are 

self-similar, i.e., solution for them can be constructed from trivial 

solutions corresponding to regions of constant flow, and nontrivial 

solutions corresponding to a simple centered wave. Let us try 
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formally to construct a continuous solution for a self-similar 

compresslonal wave which forms If at Initial moment piston starts to 

he thrust Into gas with constant speed w > 0 (gas Is on the right 

of the piston).  "Head" of wave travels through gas with speed of 

sound c0 along line x = c0t on plane x, t. To the piston Is adjacent 

the region of constant flow, where u = w, and c = c., where both 

these regions of constant flow (I and III, according to terminology- 

used In the preceding sections) are divided by region of simple 

centered wave II, where J^ = u - c = const = - It 

I 
J 

umw 

7 _ 1. - ™D. - - ,-r_-T v.0. 

follows from this that "^ - c0 + ^ | - w, so that "tall" of wave 

travels along line x = (w + c^ t = Q  | ^ w + c0) t. Distribution 

of velocity over coordinate x In region II Is described by solution 

analogous to (I.56): 

It is obtained that "tail" of wave 

is propagated faster than "head": 

7 + 1 ■i--?3— w + c0 > c0, and profiles of 

velocity and density have form depicted 

in Fig. 1.22. 

This picture is physically 

meaninglessi solution is not single- 

valued in region II. But the obtained 

solution is the only continuous solution 

which follows from equations of gas 

dynamics. Consequently, in this case 

/' 
^ 

Fig. 1.23. Profiles of 
velocity and density, 
corresponding to contin- 
uous solution for self- 
similar (centered) compres- 
slonal wave, A — head of 
wave, D - tall of wave. 
Solution is not single- 
valued and is physically 
meaningless. 

a continuous .solution does not exist. 

This difficulty historically was one of the starting points for 

construction of discontinuous solutions of equations of gas dynamics, 

i.e., for construction of theory of shock waves. 

GO 
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e) 

Pig. 1.24. Gradual 
build-up of steepness 
of profile of velocity 
In compresslonal wave 
which propagates under 
action of accelerated 
piston, d) corresponds 
to physically meaning- 
less continuous solution 
with "overlapping" of 
wave; e) shows actual 
profile with discontin- 
uity after moment of 
"overlapping." 

Let us note that if piston starts 

to be thrust into gas not with constant 

velocity, but gradually, being accel- 

erated from state of rest, then there 

can be found continuous solution for 

a simple (but no longer centered) 

compresslonal wave, which describes 

initial stage of motion. The situation 

in this case is fully analogous to that 

which exist', in sound wave with ampli- 

tude which is not small (see § 7). 

Characteristics of C -family (if piston 

is on the left of the gas) approach 

each other and tend to Intersect, 

steepness of profile of compresslonal 

wave increases with flow of time (as shown in Pig. 1.24), and at a 

certain moment there occurs "overlapping"; there appears non-single- 

valuedness of solution analogous to that described in § 7 and in this 

paragraph. In fact this means that there will be formed a discontin- 

uity — a shock wave. 

2. Shock Waves 

§ IJ. Introduction of Concept of Shock Wave into Gas Dynamics 

Let us consider a gas at rest with constant density and pressure 

p-, pn bounded on the left by a plane piston and assume that at 

initial moment the piston starts tc compress gas with constant veloc- 

ity, which we will now designate by u. 

As was shown in the preceding paragraph, an attempt to find 

continuous solution for this problem leads to a physically meaningless 
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result. Inasmuch as problem is self-similar (does not contain any 

characteristic scales of length and time), the only solutions 

satisfying equations of gas dynamics are the trivial solution, in 

which all quantities u, p, p are constant, and a solution of the type 

of a centered simple wave. Thus, there remains only one possibility 

to construct a solution satisfying boundary conditions of the problem 

in an unperturbed gas u = 0, p = p0, p = P0j in region of gas adjacent 

to piston, speed of gas is equa.1 to speed of piston; this is to dis- 

card the physically meaningless rt-ajion II and to directly Join regions 

of constant flow I and III, assuming that at point of Joining, gas- 

dynamic quantities undergo a discontinuity, as shown In Fig. 1.25. 

In general, laws of conservation 

of mass, momentum and energy, which 

are assumed on the basis of equations 

of dynamics of Inviscld and non- 

thermally-conducting gas, do not 

stipulate necessary continuity of gas- 

dynamic quantities. These laws were 

formulated earlier in the form of 

differential equations simply because 

from the very beginning there was 

assumed continuity of flow. But these 

laws can be applied also to regions in 

which gas-dynamic quantities experience 

a discontinuity. From the mathematical point of view, it is possible 

to consider discontinuity as the limiting case of very large gradients 

of gas-dynamic quantities, when thickness of layer In which there 

occurs finite change of these magnitudes tends to zero. Inasmuch as 

I-* 
V» 

ut Dt 

t>0  | 
u*Q 

Fig. 1.25. Profiles 
of density and veloc- 
ity In shock wave. 
Wave appears under 
action of piston, which 
at Initial moment starts 
to be thrust into gas 
with constant velocity. 
On upper figure appears 
the Initial state. 
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in dynamics of inviscid and non-thermally-conducting gas, i.e., under 

the condition that we disregard molecular structure of the substance, 

there are no characteristic lengths, and possibilities of existence 

of as many thin transition layers as desired are not limited.  In 

the limit they reduce to a discontinuity. These discontinuities 

constitute shock waves. 

Let us find the unknown quantities: density and pressure of 

gas in compressed region p., p., and also velocity of propagation of 

shock through undisturbed substance D, by proceeding from general laws 

of conservation of mass, momentum, and energy, whose validity we will 

net Rubjsct to doubt. Parameters of undisturbed gas p0, p0 and 

velocity of piston u, which coincides with speed of gas, will be 

considered to be known. By moment t, in a column with section of 

2 
1 cm , the motion involves a mass of gas equal to p0Dt. This mass 

occupies volume (D - u) t, i.e., density of compressed gas p. 

satisfies the condition: 

Ci(Z)-u)f«CoZ)/. 

Mass p^Dt acquires momentum p0Dt.u, which by Newton's law is 

equal to the impulse of forces of pressure. The resultant force 

acting on compressed gas is equal to difference between pressures 

on the side of the piston and on the side of the undisturbed substance, 

i.e.. 

Finally, the increase of sum of internal and kinetic energies 

of compressed gas is equal to work of external force pushing the 

piston p.ut: 

80 Z)f ^e, - eo -1- y) = piut. 

Cancelling out time t in these equalities, we will obtain a system of 

three algebraic equations for determination of three unknown quantities 
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p., p1, D In terms of known quantities u, p0, p0 (thermodynamlc 

relation e (p, p), of course. Is assumed to be known). 

Let us transform these equations in such a way that In the right 

sides of equalities there are only quantities pertaining to region 

before the shock, and In the left sides., parameters of gas behind the 

shock. For this let us note that if D is speed of propagation of 

shock through the motionless gas, then u0 = -D is the speed with 

which undisturbed gas flows into the shock, and D - u is speed of 

propagation of the shock relative to gas moving after it, i.e., 

u. = - (D - u) is the speed with which gas flows out of the shock. 

Introducing these designations into the equations, we will write law 

of conservation of mass: 

Law of conservation of momentum with help of (1.6l) acquires the form 

Law of conservation of energy with help of equations (l,6l) and 

(1.62) will be transformed to the form 

•«+g+T = e»+g+f (1.63) 

By introducing specific enthalpy w = e + p/p, we can rewrite it 

differently: 

««i+T-®«+T» (1.64) 

The obtained equations constitute relaticnships between gas- 

dynamic quantities on surface of the discontinuity, into which gas 

flows in the direction normal to the actual surface, written in the 

most general form. 

It is noteworthy that they do not contain any assumptions about 

properties of substance and are expressions only of general laws of 

conservation of mass, momentum, and energy. 
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Equations (1.61) — (1,63) can be derived directly, by considering 

the shock In the system of coordinates In which it is at rest. 

Inasmuch as the shock is infinitely thin, inside it there does not 

occur accumulation of mass, momentum, and energy. Consequently, 

fluxes of these quantities on the side of the undisturbed gas are 

equal to fluxes on the other side of the shock. If Into the shock, 

normal to the surface, there flows gas with density p0 and speed 

u0, then flux of mass is PQU-; it is equal to the mass flowing out 
2 

through 1 cm in 1 sec on the other side of the shock, i.e., P^11*. 
p 

Thus, we obtain equation (1.6l). Mass PQU- flowing through 1 cm in 

1 sec has momentum p0u,*u0. Increase of momentum during transition 
2     2 

through the shock P^. - p0u0 is equal to impulse of forces of 

pr ssure for 1 sec p0 - p. or, which is the same, fluxes of momentum 

p + pu on both sides of the shock are equal to each other (the fact 
2 

that quantity p + pu is momentum flux density during plane motion is 

clear from formulas (1.7), (1.8)). Thus there is obtained equation 

(1.62). 

Increase of total (internal and kinetic) energy of gas flowing 

in 1 sec through 1 cm of surface of shock Q0U0 [Yd+^-f eo + y)], Is 

equal to work of forces of pressure accomplished in 1 sec from 
2 

calculation on 1 cm of surface. This work is equal to PQUQ - P^u^. 

In order to explain the origin of this last quantity, we will Imagine 

a pipe through which gas flows from the right to the left through 

the shock, which is somewhere in between (Fig. 1.26). On the right 

and on the left in the pipe there are placed pistons, which move 

with speeds u0 and u, in such a way that surface of discontinuity is 

at rest. Right piston, to which there is applied pressure p0, drives 
2 

the gas through the pipe, accomplishing work VQ^-Q  in 1 sec on ^ cm • 
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Fig. 1.26. Experiment 
explaining derivation 
of expression for work. 

On the left piston gas accomplishes work 

p.u. (piston "accomplishes" on the gas 

negative work - P^). Thus, the total 

work accomplished on the gas is equal 

to P0UQ - Pi
ui' Equating it to the 

increase of energy of gas, we will obtain equation (1.6?). It is 

possible to Interpret it differently: total fluxes of energy on 
2 

both sides of the shock pu (e + ^75- + -£-), the expression for which 

follows from energy equation written in form (1.10), are equal to 

each other. 

Formally relationships (1.61) — (I.63), which indicate equality 

of fluxes of mass, momentum, and energy through surface of the dis- 

continuity, can also be obtained from differential equations (1.2), 

(1.7), (1.10), which are an expression of the same laws. Let us 

write these equations for the plane case: 

(1.65) 

We will at first formally consider the shock as some thin layer 

with large gradients of all qumtltles and will Integrate equations 

over this layer from x» to x.. For instance, 

«•      «• 

Now we will carry out passage to the limit, letting thickness of layer 

xl ~ x0 aPProach zero. Integrals in left sides, which are proportional 

to x^ - x0 -* 0, vanish (which corresponds to absence of accumulation 

of mass, momentum, and energy in the shock). Integrals in right 

sides give difference of fluxes of corresponding quantities on both 
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sides of the shock, i.e., we arrive at equations (1.61) - (1.6:5). 

It Is necessary to stress the formal character of the last 

derivation of relationships on the shock wave (1.6l) - (I.65). It 

Indicates only that expressions for fluxes of mass, momentum, and 

energy standing under divergence signs in differential equations are 

absolutely general, independently of whether the flow is continuous 

or not. If we consider the shock not as a mathematical surface, but 

as a thin layer of finite thickness, where gas-dynamic quantities 

change very sharply, but continuously, then it is Impossible to apply 

to this layer equations (I.65), in which there are not considered 

viscosity and thermal conduction. Below we will see that entropies 

of gas on both sides of the shock are different, while in differential 

equations (I.65) there is imposed the condition of constancy of 

entropy (adiabatic character of motion). Let us note the external 

similarity of the energy relationship on the shock wave (1.64) with 

Bernoulli integral for steady flow 

o»-)--^« const, 

which is valid along the flow line. 

§ 14. Shock Adiabat 

Equations (l.6l) — (1,63), which relate parameters of gas on 

both sides of the shock, constitute a system of three algebraic 

equations in six quantities: u0, P0, p0, u., p., p. (thermodynamic 

properties of substance, i.e., functions e (p, p) or w (p, p) are 

assumed to be known). Knowing thermodynamic parameters of gas before 

the shock p0, p- and taking one of the quantities which characterize 

amplitude of shock wave, for instance, pressure after the front of 

the wave p^ or speed of "piston" creating the wave |u| = u0 - u., it 

is possible to calculate all remaining unknown quantities. Let us 
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write out certain general relationships which follow from laws of 

conservation (1.6l) — (1.63). Let us introduce in place of densities 

specific volumes V0 = I/PQ* V^ = 1/P^. From equation (l.6l) we will 

obtain 

^ -' (i.66) 

By eliminating from first two equations (1.6l) — (1.62) at first one, 

and then the other velocity, we will find 

»l-KfiEfi- (1.68) 

If shock wave is created in gas at rest by motion of piston, for 

the velocity of compressed gas relative to undisturbed gas, which is 

equal to velocity of the "piston", we will obtain formula 

H-Uo-u.-V^-fl.Hro-K,). (1.69) 

We will note a useful formula for difference of kinetic energies 

of gas on both sides of the shock in system of coordinates in which 

shock is at rest: 

iK-ul)~r(Pi-Po)(Vo+vt). (1#70) 

By substituting expressions for squares of velocities (I.67), (1.68) 

in energy equation (1,63), we will obtain relationship relating 

pressure and specific volume on both sides of the shock: 

ei(/'iVt)-e.(poF,)=4(p,+A)(Fo-F1). (1.71) 

Replacing specific internal energies by specific enthalpies 

according to the formula w = e + pV, we will rewrite this formula 

in different form: 

Wi-W^iPi-MiVt + Vt). (1.72) 
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By analogy with the relationship relating initial and final pressures 

and volumes during adiabatic compression of a substance, expressions 

(1.71) or (1.72) have the name shock adiabat or Hugoniot adlabat. 

Shock adiabat is represented by function 

Pi = H(Vu po, Fo), (1.75) 

which in a number of specific cases, when thermodynamic relations 

e = e (p, V) are expressed by simple formulas, may be found in explicit 

form. 

Shock adiabat has an essential difference from the usual adiabat 

(Poisson adiabat in ideal gas with constant heat capacity). Whereas 

the latter is a one-parameter family of curves p = P (V, S), where 

as the parameter there serves only the value of entropy S, Hugoniot 

adiabat depends on two parameters: pressure and volume in initial 

state P0V0. In order to exhaust all curves p = P (V., S), it is 

sufficient to go through a one-dimensional series of values of entropy 

S.  In order to exhaust all curves p = H (V, PoVo^ it ls necessary 

to construct an "infinity squared" of curves corresponding to all 

possible p0 and V-, 

§ 15. Shock Waves in Ideal Gas with Constant Heat Capacity 

Especially simple form is acquired by formulas for shock wave 

in case of an ideal gas with constant heat capacity. In this example 

it is conveneient to clarify all basic laws of change of quantities 

in a shock wave. Let us substitute in equations of shock adiabat 

(I.71) or (1.72) the relationships 

9~cvT~^~pV;   w^CpT^^jpV. (1.74) 
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This gives us the possibility to find in explicit form the equation 

of shock adiabet: 

ft (Y-H)K,-(Y-1)IV 

For ratio of volumes we will obtain formula: 

Fi. (v-i)i»i4-(Y+l)ft 
?• (Y+l)M-(V--i)A' 

Ratio of temperatures is equal to 

(1.75) 

(1.76) 

(1.77) 

With help of (1.76), velocities by the formulas (I.67) and (1.68), 

can be represented in terms of pressures and initial volume: 

ttJ = §l("«-i)Po + (Y+l)/'il. (1.78) 

U>"ss2l(Y-l)A,+(Y+l)/'.l * {1''^) 

We will clarify in the example of an ideal gas with constant 

heat capacity certain principles for shock waves. Shock adiabat is 

a curve on the p, V-plane which passes through point of initial state 

This curve is depicted in Pig. 

1.27. In principle, formula (1.75) can 

also be --^tended to pressures lower than 

initial P^ < PQ« AS
 
we will see below 

In § 17, this part of curve corresponds 

to physically unrealizable states. 

Therefore, It is drawn in Pig. 1.27 in 

the form of a dotted line. Prom 

formula (i.76), it Is clear that in 

case of shock wave of very high amplitude, when pressure after front 

is much larger than initial pressure, density of gas during increase 

of amplitude is increased not without limit, but tends to a definite 

Pig. 1.27. Shock 
adiabat. 
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value. This limiting compression in shock wave depends only on 

adiabatic index and is equal to 

e,-K,-v^i« (1.Ö0) 

For a monatomlc gas with 7 = 5/5, limiting compression is equal 

to 4. For a diatomic gas, on the assumption that vibrations are not 

excited, 7 = 7/5, and limiting compression is equal to 6; if it is 

considered that vibrations are excited, 7 = 9/7 and compression 

equals 8.  In reality, at high pressures and temperatures, heat 

capacity and adiabatic index in gases no longer are constants, since 

in the gas there occur dissociation of molecules and ionization of 

atoms. Shock adiabat, with consideration of these processes, will be 

considered In Chapter III. However, even in this case magnitude of 

compression always remains bounded and does not exceed 11-13. Com- 

pression of gas in shock wave at given large pressure ratio is stronger, 

the higher the heat capacity and the smaller the adiabatic index are. 

Inasmuch as at high pressures p., density increases very slowly 

with increase of pressure, temperature of compressed gas increases 

proportionally to pressure (see formula (1.77) for V. « const). In 

the limit of a strong wave, when P^/PQ » 1 and V./V- « (7 - l)/(7 + 1), 

Velocities in the limit as V±/VQ ~* ^ increase proportionally to 

the square root of pressure. As can be seen from formulas (I.67) and 

(1.68), at ip1  » p0, 

«.-/i^?. ».-/^/-.n. (1-82) 

Very Important results can be obtained by comparing velocities of gas 

on both sides of shock with corresponding speeds of sound. In ideal 

gas with constant heat capacity, 
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We will form ratios of velocities of gas relative to the shock to 

speeds of sound: 

Uy     2^   • (1.83) 

/«.X»  <V-1)+(Y+1)|» 
(?) 2^ a- (1.8^) 

In the limiting case of a shock wave of small amplitude, when 

pressures on both sides of shock are close to one another, p. « p0, 

(p. - Po)/Po ^ 1*  according to the formula (1.76), compression of 

gas is also small: V. « V0J speeds of sound are also close to one 

another c. « CQ. Prom formulas (1.83) and (1.84), it is clear that 

in this case u0 » c0 « c^ « u.. But u0 is velocity of propagation 

of shock through undisturbed gas. Thus, weak shock wave travels 

through gas with speed very close to speed of sound, i.e., practically 

does not differ from an acoustic compressional wave. This is not 

surprising, since for a snail difference of p. from p0, we are 

dealing with a small perturbation. 

Further, from formulas (1.8?) and (1,84), it is clear that in a 

shock wave in which there occurs compression of gas (V. < V0, p. > PQ)* 

gas flows into shock with supersonic velocity u. > c-, and flows out 

of it with subsonic velocity u. < c. (the fact that V. < VQ, p. > p0 

at p. > p0 follows from general formulas (I.67), (1.68)). It is 

possible to say this differently: a shock wave propagates through 

undisturbed gas with supersonic velocity, and through compressed gas 

located behind it, it propagates with subsonic velocity. The greater 

the amplitude of a shock wave, i.e., the greater the ratio p1/p0i the 

higher the speed of the wave front u0 is as compared to speed of 

sound in undisturbed gas c0. Ratio u./c. in limit of a strong wave 

pl ^ p0 tends 't0 £ c0118*8^* Ui/ci-*■ V{y — 1)72Y < 1. 
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We will consider what occurs with entropy of gas during com- 

pression of It by a shock wave. Entropy of Ideal gas with constant 

heat capacity with accuracy up to the constant is equal to S = 

= cv in pv
7. Difference between entropies on each side of shock wave 

front with help of formula (1.76) can be represented In the form 

^1 p*vx \p. (Y+1)ji+(Y„1) 
*• Ft •■ 

(1.85) 

In limiting case of a weak wave (p. « p«), expression In braces 

Is close to unity, and S1 « SQ.    During growth of amplitude of the 

wave. I.e., with Increase of ratio PVP^ starting from unity, 

expression In braces, as It Is easy to verify, monotonlcally Increases, 

approaching Infinity as P^PQ -^00. Thus, entropy of gas experiencing 

shock compression increases — more strongly the higher the amplitude 

of the shock wave. Growth of entropy indicates that in shock wave 

there occur irreversible, disslpatlve processes, which are connected 

with existence of viscosity and thermal conduction of the substance, 

A theory in which these processes are not considered naturally cannot 

describe the actual mechanism of shock compression,* it cannot describe 

the structure of that thin, but In reality finite layer, in which 

there occurs transition of gas from initial state to final state. 

Therefore, in the theory in which viscosity and thermal conduction 

are not taken into account, a shock is a mathematical surface with 

zero thickness. As was noted above, in such a theory there is no 

characteristic length which could serve as a scale for thickness of 

the shock. With consideration of molecular structure of the gas, 

i.e., processes of viscosity and thermal conduction, such a scale 

appears. This is the mean free path of molecules, to which coeffi- 

cients of viscosity an;' thermal conduction are proportional, and 
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which. In reality, serves as a measure of the actual width of the 

shock. 

It Is most significant, however that the actual magnitude of 

Increase of entropy during shock compression absolutely does not 

depend on mechanism of dissipation, but Is determined exclusively by 

laws of conservation of mass, momentum, and energy. On the mechanism 

of dissipation depends only width of the shock, i.e., the rate with 

which irreversible heating of the gas experiencing shock compression 

occurs. Thus, a glass of hot water must cool to a fully definite 

room temperature, absolutely Independently of the mechanism of heat 

exchange with its environment, which determines only rate of cooling. 

On the mechanism of dissipation there depend values of gradients 

of gas-dynamic quantities in the transition layer, but not the jumps 

of these quantities between final and initial states, which are de- 

termined only by laws of conservation. For instance, if Ap = p, - p0 

is the pressure Jump in a shock wave, and Ax is width of transition 

layer, then during change of coefficients of viscosity and thermal 

conduction Ax and dp/dx ^ Ap/Ax change, but product Ax -s*—- » Ap 

remains constant. In the limit as coefficients of viscosity and 

thermal conductivity tend to zero. Ax -*■ 0, and dp/dx ~ -rrr ► co, 

gradients become infinite, which corresponds to a shock wave. 

Differential equations of gas dynamics, without taking into 

account viscosity and thermal conduction, only admit the possibility 

of existence of shocks, but cannot describe contluously the transition 

from initial to final state, since in equations there automatically 

is imposed the condition of adiabatlcity of the process, dS/dt = 0, 

which is equivalent to the equation of energy. Differential equations 

contain four conservation laws: of mass, momentum, energy, and 
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entropy, while In a shock wave there are satisfied only ü "ee of 

them: all besides the law of conservation of entropy. 

To the problem of thickness of front of shock wave, which can be 

solved only with consifi^ration of the molecular structure of the 

substance, i.e., with "microscopic" consideration of process' of shock 

compression, we will return below, in § 23. Now we will continue a 

"macroscopic" description of phenomenon of shock compression using 

only the laws of conservation of mass, momentum, and energy. 

§ 16. Geometric Interpretation of Characteristics 
of Shock Compression 

For best understanding of different features of the theor"- of a 

shock wave and properties of the shock adiabat, the graphic construc- 

tions in the p, V diagram are very useful. Let us draw on plane of 

p, V through point A of the initial state of the substance p0, V0 

a shock adiabat HH (Pig. 1,28). We will consider that character of 

this curve is analogous to shock adiabat of ideal gas with constant 

heat capacity, i.e., that the curve everywhere is convex downwards: 

2   2 
second derivative d p/dV at every point is positive. For the 

purpose of clarity we will illustrate certain ideas by concrete 

calculations in the example of an ideal gas with constant heat 

capacity; however, it is possible to show that these ideas are 

general and are valid for substances with different thermodynamlc 

properties. The only condition which is imposed on these properties 

is the condition that shock adiabat at all points be convex downwards, 

Let us assume that the substance after shock compression passes into 

state B (p1, V^ from state A (p0> YQ).      B(p1, V^) is depicted by 

point B lying on shock adiabat. 
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By formula (I.67), the velocity of propagation of shock wave 

through undisturbed substance Is given by expression 

Graphically this velocity Is determined by slope of straight line 

AB, which Is drawn from Initial ?tate to final state (^ - p0)/ (V0 - 

-V^.) Is equal to tangent of angle of slope of the straight line). 

Prom Pig. 1,28 it Is clear that the higher the final pressure Is 

(the stronger the shock wave Is), the greater the slope of the straight 

line and the higher the velocity of the wave are» (Por Illustration, 

In Pig. 1.28 there are drawn two straight lines, AB and AC). 

Let us see what determines initial slope of shock adiabat at 

point A. Let us calculate derivative dp./dV. with help of formula 

(1.75) for an ideal gas with constant heat capacity: 

^L-     <Y-l)ft     ftf(Y+l)K.-(Y-l)y1l(Y-fl) 
5^  (Y+I^HY-DF,   ((Y-|.I)F1-(Y-I)»'0I« 

P,- 

Fig. 1.28. p, V-diagram. 
HH) Hugoniot adiabat; PP^ 
Poisson adiabat; KK) 
Tangent to both adrlabatG 
at point of Initial state 
A (V0, Po). 

Taking derivative at point A, i.e., 

setting V1 = VQ, we will obtain 

(dp1/d?1)0 = - 7p0A0- But this 

quantity is nothing else but slope of 

Poisson adiabat p ~ V"7 passing through 

point A:  (öp/äv) = - 7PA' Thus, at 

point A the shock adiabat touches 

Poisson adiabat which passes through 

this point. Usual adiabat P, which 

corresponds to initial entropy of gas 

S0 = S (PQVQ), also is drawn in Fig. 

1.28. Contact of adiabats at initial point is illustrated also by 

general formula (I.67) for velocity of shock wave. In the limit of 

a weak wave, when (p - P0)/p0 -* 0» shock wave does not differ from 
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a sound wave, change of entropy tends to zero, and velocity of wave 

coincides with speed of sound: 

In general, slope of straight line AB is always greater than slope 

of tangent to adlabat at point A, so that we always have D = u0 > c0. 

Initial slope of shock adiabat is determined by speed of sound 

in initial state. This will be strictly proven for general case of 

an arbitrary substance in § 18. By direct calculation by the formulas 

for an ideal gas with constant heat capacity, we can make certain 

that at point A there coincide not only the first, but also the 

second derivatives of Hugoniot and Poisson adiabats, i.e., at point 

A there occurs contact of the second order. This statement also is 

general (see § 18). 

Hugoniot adlabat everywhere passes above the usual adiabat 

drawn from the initial point, as shown in Pig. 1.28. During shock 

compression from volume V0 to volume V, < V0, entropy is increased, 

and during adiabatic compression it remains constant. But, for 

identical volume, pressure is higher, the greater the entropy. 

Increa.'.j of specific internal 

energy during shock compression from 

state A to state B, e. - E~, as can be 

seen from expression (1.71) for the 

shock adiabat, is numerically equal to 

area of trapezoid MABN, which is covered 

in Pig. 1.29 by horizontal shading. 

If gas is compressed adiabatically 

from state A to the very same volume V. 

(to stage Q), then for this it is 

r 1 \B i ? 

Q ^ 

K - 
* ̂  

>* ̂  A 

"»       . 

Fig. 1.29. Geometric 
interpretation of in- 
crease of energy in 
shock wave. H) shock 
adiabat; P) Poisson 
adiabat. 
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necessary to accomplish work which Is numerically equal to area of 

figure MAQN, which Is bounded above by usual adlabat P and shaded 

vertically. This area gives Increase of Internal energy of gas 

s'— t, s —Vprfy (Integration Is conducted at S = SQ). In order to 

bring gas to final state B, It Is necessary to heat It further at 

constant volume V,., thereby giving to it a quantity of heat numerically 

equal to difference between the areas shaded horizontally and verti- 

cally, i.e., equal to the area of figure ABQ. This area determines 

increase of entropy of gas during shock compression. It is equal to 

e, — s'= \ 2" AS = T (St—S9),  where T is a certain average temperature on 

segment of straight line QB (at V = V. = const). 

In system of coordinates in which initial gas is at rest, after 

compression it obtains kinetic energy (per gram) equal, according to 

general formula (1.69),to 

This energy is numerically equal to area of triangle ABC In Pig. 1.29* 

which completes trapezoid MABN, whose area corresponds to e^ - e0, 

to form rectangle MCBN. 

Area of this rectangle p. (VQ - V.) is total energy given by 

"piston" to 1 gram of gas initially at rest. In a strong shock wave, 

when p. » p0, it is equally divided between increases of internal 

and kinetic energy: area MABN « area ABC: 

We will analyze on p, V-diagram the relationship between veloc- 

ities of gas and sound in final state (Pig. 1.50). We will draw 

through point B on adlabat H., which corresponds to initial state A, 

a new adlabat H«, for which point B is initial. Prom the symmetry 

of equation of adlabat relative to "0" and "1", it follows that If 
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p »• 

Pi Ä H (V-L, p0, VQ), then P0 = H (VQ, p^^, V^. In other words, 

adlabat Hg, if formally continued in the direction of pressures 

smaller than initial, intersects adiabat HA at point A. The relative 

location of adiabats HA and Hg is Just as shown in Pig. 1.30, which 

can be easily checked in the example of an ideal gas with constant 

heat capacity.* Velocity of propagation of wave relative to compressed 

gas is determined by formula (1.68) 

Square of speed of sound in compressed gas at point B is equal to 

eissa     yi\dv)B% 

First quantity is proportional to 

tangent of angle of inclination of 

straight line BA, and the second 

quantity is proportional to tangent 

of angle of inclination of tangent line 

of shock adiabat Hg at point B (shock 

adiabat H_ and Poisson adiabat which 

passes through B are tangent to one 

another). Relative location of straight 

line BA and adiabat HB corresponds to 

the case in which u. < c.. 

At the end of § 12 It was noted that. In distinction from 

Poisson adiabat, Hugoniot adiabat depends on two parameters. Because 
m     *The fact that adiabat Hg passes to the left of H. at pressures 

higher than pB can be explained in the following way: If point B 

corresponds to compression of gas from state A by a very strong shock 
wave, then adiabat H.at p > pB goes almost vertically, corresponding 

to limiting compression to a volume equal to [7 - l)/(7 + 1)] V.. 

At the same time, by passing a second shock wave through the gas from 
state B, we can compress it to the volume 

l(Y-tV(lf+«)l ^-KY-IWY+DP FA. 

Pig. 1.30. p, V-diagram 
clarifying relationship 
between velocities of gas 
and sound in shock wave. 
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of this. It is impossible by means of compression of gas by several 

shock waves, proceeding from given initial state, to arrive at the 

very same final state as by means of compression by one wave. 

Thus, for instance, if we pass a strong shock wave through a 

monatomic gas, the gas will be compressed by four times, but if we 

pass two strong waves through, one after the other, leaving final 

pressure unchanged, we will obtain compression by 16 times. 

At the same time, by breaking up the adiabatic process into as 

many stages as desired, we will arrive at the same density, if final 

pressure is given. 

This situation is illustrated by p, V-dlagram of Fig. 1.^1, 

where there are depicted Polsson adiabat and several Hugonlot adiabats, 

which correspond to compression of gas by successive shock waves. 

§ 17. Impossibility of Existence of 
Rarefaction Shock Wave in Substance 

with Normal Properties 

In § 13 there were written 

formulas for calculation of dif- 

ferent quantities connected with a 

shock wave for the case of an ideal 

gas with constant heat capacity. 

Prom these formulas it directly 

followed that in a shock wave in 

which there occurs compression of 

substance, there are satisfied the 

following inequalities: 

Pig. 1.51. Concerning the 
question of single and 
multiple shock arA  adiabatic 
compressions of gas to iden- 
tical pressure p^. HA, Hg, 

H- are shock adiabats for 

which points A, B, C are 
initial. P is Polsson 
adiabat. 

Pi>P». «i>C«, Vi < K,, «o > c0, (1.86) 
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Simultaneously with compression of substmce and Increase of 

Its pressure, entropy Increases; wave propagates through undisturbed 

gas with supersonic speed, but through compressed gas behind It with 

subsonic speed. This set of conditions Is schematically depicted In 

Pig. 1.32a. We will now extend expressions (1.75) for shock adlabat 

to pressures lower than Initial, and assume that there exist shocks 

In which there occurs not compression, but rarefaction of the gas: 

Vl ^ ^0* pl ^ p0* Laws 0?  conservation of mass, momentum, and energy, 

with the help of which there were obtained formulas relating velocity, 

density, and pressure on both sides  of the shock. In no way limit the 

possibility of existence of such shocks. Prom formulas (1.85) — (1.84) 

It Is clear that In this case u0 < c0, a u. > c,. Pormula (1.85) for 

Jump of entropy in the shock indicates that entropy of gas thus 

decreases (expression in braces is less than unity at p. < p0). 

////■?> 

a) 
u,<e, tf.x:. 

/*P*St 

b)   ffr>g/ 

/>»P»S, 

ut<et 
//M 

Fig. 1.32. Schematic 
representations of 
compressive shock waves 
(a) and rarefaction 
shock waves (b). Gas 
flows into shock from 
the rieht to the left. 

We arrive, thus, to the regime of 

a rarefaction shock wave, in which there 

simultaneously are satisfied the follow- 

ing inequalities: 

Pi < A. •♦ < *0' ^» > yo. «0 < Co. 1*1 > Ci, 
S(<S* (1.87) 

and which schematically is depicted in 

Fig. 1.32b. 

Geometric interpretation of these 

inequalities, which is similar to the 

one presented In § 16, is represented in Pig. 1.33. Slope of straight 

line AB is less than slope of tangent to shock adlabat HA at point of 

initial state A (u0 < c0) and greater than slope of tangent to second 

shock adlabat H-, which is drawn through point of final state 
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B (^ > c1). 

Polsson adlabat P, which passes through point A In the region 

p. < P/v drifts higher than shock adiabat H.. This explains decrease 

of entropy during shock rarefaction. During adiabatic rarefaction 

to the same volume V., pressure p' is higher than final p.. In order 

to come from Q to B, it is necessary to cool gas at constant volume, 

i.e., to decrease its entropy. 

But, by the second law of thermodynamics, entropy of a substance 

cannot decrease due to only internal processes, without heat removal 

to the outside. From this follows the impossibility of propagation 

of a rarefaction wave in the form of a shock and of the two conditions 

whose existence is allowed by the laws of conservation of mass, 

momentum, and energy, the requirement of growth of entropy selects 

only one — the compressive shock wave. This statement has an 

absolutely general character and is known under the name of Cemplen 

theorem. In the following section it will be shown that in waves of 

weak intensity, under the condition of positivity of second derivative 

(ö2p/äv2)c,> 0, the sets of inequalities (1.86) or (l.P?) are satisfied 
O 

simultaneously, absolutely independently of specific thermodynamic 

properties of the substance. This theorem can also be proven for 

waves which are not of small amplitude and for an arbitrary substance. 

The only condition which is imposed on properties of substance is the 

condition that shock adiabat at all points is convex downwards: 

(d p/öV )„ > 0, Just as this occurs for an ideal gas with constant 

heat capacity. Overwhelming majority of real substances possess 

namely such properties, so that the statement about Impossibility of 

existence of rarefaction shock waves has a very general character 

(below we will discuss certain exceptions). 
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P   M.' H, 

Pig. 1.33. Concerning 
geometric interpretation 
of inequalities in a 
"rarefaction shock wave." 
H. Is shock adiabat; P is 

Poisson adiabat passing 
through point A of initial 
state; 1L Is shock adiabat 

drawn from point of final 
state B. 

Impossibility of existence of 

rarefaction shock wave can be explained 

in the following way:  Such a wave 

would propagate through undisturbed 

gas with subsonic speed u0 < c0. This 

means that if at some moment of time 

there appeared a state similar to the 

one depicted in Fig. 1.32b, then the 

perturbation from Jump of density and 

pressure would travel to the right with 

speed of sound c0> outstripping the 

"shock wave"; after a certain time^the 

rarefaction would involve the gas before 

the "shock" and the shock would simply be diffused. In other words, 

the rarefaction shock wave is mechanically unstable. Conversely, 

compressive shock wave propagates through undisturbed gas with super- 

sonic speed u0 > c0; state behind this wave front in no way can 

influence state of gas before wave, and the shock remains stable. 

Relative to the compressed gas, compressive shock wave propagates 

with subsonic speed u,. < c,; therefore, gas-dynamic conditions behind 

shock front affects amplitude of wave. 

If, let us say, we heat or compress gas behind the shock front, 

then the shock wave will be strengthened; and conversely, if behind 

the shock front there occurs cooling or rarefaction of the gas, then 

perturbations carrying the rarefaction overtake the shock wave and 

weaken it. 

In a rarefaction shock wave, the situation would be the opposite: 

Inasmuch as it would propagate through rarefied gas with supersonic 
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speed. It would not be subject to the Influence of any processes 

occurring behind it — it would be "uncontrolled." 

It is very significant that the condition of mechanical 

stability of a shock wave coincides with the thermodynamic condition 

of increase of entropy. Mechanical stability can exist only if wave 

propagates through undisturbed substance with supersonic speed; 

otherwise, perturbation caused by the shock wave would penetrate into 

the initial gas with speed of sound, and would outstrip the shock 

wave, thereby diffusing the sharp front of the wave. At the same 

time, with the condition of increase of entropy there coincides a 

condition which allows us to imagine the causal relationship of 

phenomena. Namely, during increase of entropy, compressive shock 

wave propagates through the gas which has undergone transformation 

with subsonic speed, i.e., external factors such, for instance, as 

the piston thrust in^o the gas, can cause appearance of shock wave 

and subsequently Influence its propagation. 

Thus, in a substance with normal thermodynamic properties, when 

(o p/öV ) > 0, compressive shock waves, which correspond to increase 
5 

of entropy, turn out to be mechanically stable and subject to the 

influence of external factors. Appearance of rarefaction shock wave 

is Impossible from thermodynamic point of view, as well as from the 

point of view of stability: a once appearing steep rarefaction front 

would diffuse with flow of time. 

Let us give it. the conclusion of this section a table illustrating 

possibility of realization of different regimes: 
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Compressional wave Rarefaction wave 

Shock Possible; entropy- 
Increases; mechan- 
ical stability; 

Impossible; entropy 
decreases; mechan- 
ical Instability 

Smooth dis- 
tribution 

[mposslble; unllmltedpos 
build-up of steep- 
ness of front, 
which becomes 
"overlapping" 

slble; distribu- 
tions become with 
flow of time 
smoother and 
smoother 

§ 18, Shock Waves of Weak Intensity 

Let us consider a shock wave of weak Intensity, In which Jumps 

of all gas-dynamic parameters can be considered as small quantities. 

We will not for now make any assumptions about thermodynamic properties 

of the substance; we start only with laws of conservation. 

Considering internal energy as a function of entropy and specific 

volume, we will write increment of energy in shock wave in the form 

of an expansion in small increments of independent variables near 

point of initial statet 

+T(IF*)«
(K
«-
W 

All derivatives in this expansion are taken at point of initial 

state VQSQ, AS we now will see, increment of entropy in wave S, - SQ 

is a quantity of third order of smallness, if we consider increment 

V. - Vn as a small quantity of first order. Therefore, if we are 

limited to expansion of internal energy up to quantities of third 

order, we can omit terms which are proportional to (S^ - S0) (V1 - V0), 

(S1 - S0)'", etc. According to thermodynamic identity de = T dS - p dV, 
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Therefore^ 

»t~**-T9{Sl~So)-Po(yt-Vo)- 

We will substitute this expression In equation of Hugonlot 

adlabat (1.71) and expand In Its right side pressure p , Inasmuch 

as left side of equality can be expanded up to quantities of third 

order, in expansion of pressure it Is sufficient to be limited to 

terms of the second order with respect to difference V. - V-, and to 

omit the term containing increment of entropy, since it will give in 

the right side a term proportional to (S. - S-J (V. - V0), which is 

a quantity of higher order of smallness than (V, - V0)^: 

After cancelling out in equation of Hugonlot adiabat with the 

substituted expansions, we will obtain the relation of Increment of 

entropy to increment volume: 

T,(St-S.)-^(*£)B(V.-Vt): (1-38) 

If we start with equation of Hugonlot adiabat written in form 

(1.72), where in place of internal energy there stands enthalpy, we 

will obtain in an analogous way 

r.to-*)-B(|£)>-ft)*. (1.89) 

It is easy to verify the identity of both formulas by substituting 

expansion (p1 - p0) « (^p/^V) (V. - V0) into formula (1-^9) and 

noticing that 

Formulai (1.88) and (I.89) show that Increment of entropy In 

shock wave of weak intensity is a quantity of third order of cmallness 
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with respect to increments p. - p0 or V0 - V., which characterize 

amplitude of wave. 

Prom formulas (1.88) and (I.89) it is clear that sign of 

increment of entropy in shock wave is determined by signs of second 

derivatives (c* p/äv2)s or (önr/äp ) . If adiabatic compressibility 

of substance - (^V/öp) decreases with increase of pressure, i.e., 

(ö^V/äp ) > 0 and (ö p/öV~)g > 0, the usual adiabat on plane of p, 

V is depicted by a curve which is convex downwards (as in an ideal 

gas with constant heat capacity). In this case entropy increases 

(S. > S.) in compressive shock wave, when p. > p0, V. < V0, and 

decreases in rarefaction shock wave. If, however, (ö V/öp )_ < 0, 
o 

2   2 
(ö p/öV )„ < 0, the situation is reversed: entropy increases in the 

rarefaction, shock wave, when. p. < p., V. > V0, and decreases in the 

compressive shock wave. Inasmuch as for the overwhelming majority of 

real substances (ö^T/öp )„ > 0, then from condition of impossibility 

of decrease of entropy there follows the Impossibility of existence of 

rarefaction shock waves. This theorem has already been formulated 

above and demonstrated in the concrete example of an ideal gas with 

constant heat capacity. 

Let us write the expansion of pressure p « p (S, V) near initial 

point S0. V- up to terms of third order with respect to V. - V0 and 

of first order with respect to S^ - S0: 

We will describe by this expansion Initial sections of the shock 

adiabat and usual adiabat which are drawn through point S0, VQ. 

Terms of first and second orders of smallness with respect to ^1 - V0 

for both adlabats coincide, i.e., shock and usual adiabate have at 
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Initial point common tangents and common centers of curvature (there 

exists contact of the second order). Terms of third order of swallness 

differ for the adiabats. Third term in the right side of the expansion 

for both adiabats is common. The last term — the fourth — for usual 

adiabat vanishes, since S, - SQ = 0 (S = const), and for the shock 

adiabat, according to (1,88), it is equal to 

For  all normal substances, pressure with increase of entropy at 

constant volume (during heating at constant volume) is increased, 

2   2 
i.e., (öp/<3S) > 0; (ö p/öv )s also is positive. Consequently, for 

vl ^ V0' the las't term  is negative, and for V. < V- it is positive: 

for V. > V0 the shock adiabat passes below the usual one, and for 

Vl ^ V0 ^ Passes «toove the usual one. Thus, at the initial point 

for both adiabats there occurs contact of the second order with 

intersection. 

Relative location of shock adiabat H and usual adiabat P is 

shown in Fig, 1,34. For clarity let us note that segment CD is a 

quantity of first order of smallness with respect to Vü - V*, DE is 

of second order, and EF is of third order. 

Let us return to geometric interpretation of increase of entropy 

in shock wave (Fig, 1,35).    As was shv>wn in § 16, quantity 7 AS is 

depicted by area of figure AFBCEA, Let us break it by a straight 

line AC into two parts: segment ACEA and triangle ABC. Area of 

triangle ABC is equal to half of product of base BC and height 

V0 ~ V.. Line segment BC during small changes of all quantities, i.e., 

in a wave of weak Intensity, is equal to (■ j£ ) AS, i.e., to 

?¥-&rMtjQi)r(»W1)A* 
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where PseKm is area of segment ACEA. Hence 

^-f^-KSX^-^- 
For small changes of volume a -»■ 0 and T AS -•■ F   , I.e., correction 

for area of triangle is small. And, indeed, it is of higher order 

of smallness than area of the segment-, which has order of T AS. 

Forming expression for area of segment 
v. 

Vx 

and substituting expansions for weak waves, we will arrive, as we 

should have expected, at formula (1.88). 

Fig. 1.3k.    Relative location     Fig. 1.35. Geometric 
of shock H and usual P adiabats.   interpretation of incre- 
LK is tangent to adiabats at      ment of entropy in shock 
point of Initial state A. In     wave, 
shock wave of weak intensify, 
line segment CD is a quantity 
of first order of smallness; 
DE is of second and EF is of 
third order of smallness. 

Thus, from the geometric construction it is clear that sign of 

AS depends on sign of area of segment, i.e., on whether secant AC 

passes above or below usual adiabat, or, which is the same, whether 

adiabat Is convex downwards or upwards. 

Let us compare velocities u0, U. with speeds of sound c0, C^. 

As we know, ratio u0/c0 is determined by ratio of slopes of straight 
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line AB (see Pig. 1.28) and tangent to Polsson adlabat at point A. 

Ratio u./c. is determined by ratio of slopes of straight line AB and 

tangent to Poisson adiabat drawn through B, Let us write expressions 

for slopes of all three straight lines? 

^<w\+KmX(v*-y*) - straisht llne AB^ 
('IP') "CIT) "~ 'tansent to adiabat at point A; 

(JQ8 «g^+Q^^-F,) - tangent to adiabat at point B. 

The last formula follows from that fact that adiabat S. = const 

up to terms of third order with respect to V. - V0 is parallel to 

adiabat S0 = const. Noticing that 

C^)8.<
0'(^}8.>

0'^-^<0' 
we see that straight line AB is steeper than tangent at point A, but 

not as steep as tangent at point B, whence u0 > c0, u> < c.. This 

one may directly see from Pig, 1.30, 

The Inherent relation between conditions of Increase of entropy 

and the condition of mechanical stability of a shock u0 > c0 is most 

important. Botn conditions directly ensue from that fact that the 

adiabats with decrease of volume, starting from A, become steeper 

and steeper. 

Thus, from consideration of shock waves of weak intensity in 

substance with arbitrary thermodynamic properties, we have obtained 

all those results from laws of conservation which were demonstrated 

above in the particular example of an ideal gas with constant heat 

capacity. The only condition which was required by us was positivity 

of second derivative (ö p/öV ) . 
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§ 19. Shock Waves In Substance with Anomalous 
Thermodynamlc Properties 

Let us now Imagine a substance with anomalous thermodynamlc 

properties, such that second derivative (d p/öv )s at least In a 

certain part of the adlabat Is negative. Usual adlabat of such a 

substance In corresponding region of pressures and volumes is convex 

upwards, as shown In Pig. 1,36. 

From consideration of preceding paragraph it follows that during 

small changes of pressure, the Hugonlrfc adlabat almost coincides with 

Polsson adlabat (with accuracy up to small terms of third order with 

respect to V^^ - V0 or p^^ - p0). 

In this case, area of figure APBMNA, 

which is bounded above by Polsson adlabat. 

Is larger than area of trapezold AEBMNA, 

which Is bounded above by secant AEB, i.e., 

entropy in compresslve shock wave decreases 

(this may be seen from formula (1.88)). 

At the same time, due to the fact that 

slope of secant is less than slope of 

tangent at point A, speed of propagation 

of shock wave through undisturbed gas is 

less than speed of sound, but Inasmuch as 

slope of secant AEB Is larger than slope 

of tangent at point B, speed behind shock 

MM ¥ 
Fig. 1.36. Polsson 
adlabat of substance 
with anomalous prop- 
erties and geometric 
Interpretation of 
relationships for 
shock waves of com- 
pression and rare- 
faction. 

Is supersonic. 

Conversely, in rarefaction shock wave entropy Increases (see 

formula (1,88)), As can be seen from comparison of slopes of secant 

AC and tangents at points A and C, speed before sho^x Is supersonic, 

and behind shock Is subsonic, 
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Thus, even in a substance with anomalous properties, condition 

of increase of entropy coincides with condition of mechanical 

stability u0 > c0 and condition which allows causal relationship 

between external factors and propagation of wave: u. < c.. In an 

anomalous substance compressive shock waves are impossible, but shock 

waves of rarefaction are possible. Compression caused by motion of 

piston in sucv a substance will propagate in the form of a wave, 

which gradually expands like rarefaction waves in a usual gas. Shock 

in general will not appear and motion will be adiabatic. Rarefaction 

wave will propagate in the form of a steep front, which will not 

expand with flow of time, and thickness of which will be determined 

by values of viscosity and thermal conductivity. 

Under usual conditions, all substances — gaseous, solid, and 

liquid — possess normal properties: their adiabatic compressibility 

decreases with increase of pressure. 

Anomalous behavior of a substance 

may be expected near the liquidr-gas 

critical point. Actually, still long 

before the critical point is reached, 

isotherms of gas have an inflection (at 

the critical point, the inflection 

becomes horizontal). For a substance 

with sufficiently high molecular heat 

capacity, for which adiabatic index is 

close to unity, adiabats and isotherms 

little dii'far, and it is possible tc 

expect that outside of the region of 

two-phase states adiabats also will 

ty b i A is a h *r 
Pig. 1.37. Adiabat with 
anomalous convexity In 
Vender W&als gas with 
heat capacity Cy - hO 

cal/deg«mole. Shaded 
region of two-phase 
systems. Curve II bounds 
region of states with 
anomalous convexity of 
adiabats. Under curve II 

(öVöV2)««). 
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curve II is locus of points of inflection of adiabats (ö p/öV )„ = 0. 

It separates region in which (ö p/äv )„ < 0. In Fig. 1.57 there is 

have an inflection, i.e., will have a region with anomalous sign of 

second derivative, as this is shown in Fig. 1.37* taken from book 

of Ya. B. Zel'dovich [2]. 

Curvs I on this figure bounds region of two-phase system, and 

's 

drawn also one adiabat possessing anomaly.  Curves are calculated 

with help of model equation of state of Vander Waals for case of heat 

capacity c = 40 cal/deg«mole. 

The connection between sign of increase of entropy and inequal- 

ities concerning speeds of gas and sound, which correspond to 

obligatory coincidence of condition of growth of entropy with con- 

dition of mechanical stability, can be disturbed only in the case 

when in the considered interval of change of pressure there are 

2   2 
realized both signs of ö p/oV , so that Poisson adiabat has more than 

two points of intersection with the secant. Thus there can appear 

complicated regimes with simultaneous existence of both shocks and 

diffuse waves adjacent to them. 

One more case of anomalous behavior of a substance will be 

considered in Chapter XI; anomalies in this case are connected with 

polymorphous transformations (phase transitions) of solid bodies at 

those high pressures which are attained in shock waves. In the same 

place there will be considered also the indicated complicated regimes, 

3. Viscosity and Thermal Conduction in Gas Dynamics 

§ 20. Equations of One-Dinensional Motion of Gas 

Dlssipative processes — viscosity (internal friction) and 

thermal conduction - are connected with existence of molecular 
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structure of substance. They create additional, non-hydrodynamlc 

transfer of momentum and energy and lead to non-adiabatic character 

of motion and to thermodynamlcally Irreversible transformation of 

mechanical energy Into heat. Viscosity and thermal conduction appear 

only In the presence of large gradients of hydrodynamlc quantities, 

which occur, for Instance, In boundary layer during flow around 

bodies or Inside the shock front. In this book viscosity and thermal 

conduction will Interest us basically from the point of view of their 

Influence on Internal structure of shock fronts In gases. During the 

study of this structure, flow can be considered to depend on one 

coordinate x (plane), since thickness of front of shock wave always 

Is considerably less than radius of curvature of Its surface. There- 

fore, we will not dwell on derivation of general equation of motion 

of a viscous liquid (gas), which can be found, for Instance, In book 

of L. D. Landau and E, M. Llfshits [1]* but will explain only how 

there can be obtained equation for one-dimensional, plane case. 

We will write equation of conser- 

vation of momentum for an invlscld gas 

(1.7) In the plane case, when all 

quantities depend only on one coordinate 

x, and velocity has only one x-th 

component of u Flg. 1.38. Diagram 
explaining derivation 
of formula for molec- 
ular transfer of 
momentum. 

y(«tt)--%.ir«-/'+öu-. 

We v;lll take Into account now the 

fact that gas consists of molecules colliding with each other. Let 

us Imagine an element of unit cross section perpendicular to axis x. 

This element from both sides Is pierced by molecules flying In 

definite directions after they have experienced tnelr last collisions. 
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Molecules emerge after last collision from layers of thickness of the 

order of mean free path of molecules I,  which border the element on' 

both sides (Fig. 1.38). If n is number of molecules in 1 cm-5, and 

v is their average thermal velocity, then in 1 sec the element is 

intersected from the left to the right by on the order of nv molecules, 

Each of them transfers through the element hydrodynamic momentum mu, 

where m is mass of a molecule, i.e., flux density of hydrodynamic 

momentum from the left to the right in order of magnitude is equal 

to nv • mu. Analogously, flux of hydrodynamic momentum from the 

right to the left is equal approximately to nvm (u + Au), where Au 

is increment of hydrodynamic velocity during transition from left 

layer to right: Au « x£- I. Flux density of x-th component of 

momentum in x-direction connected with molecular transfer is equal 

to difference between fluxes from the left to the right and from the 

right to the left, i.e., - nvml "srr-. This quantity corresponds to 

additional transfer of momentum due to internal friction; it must be 
2 

added to momentum flux density II  = p + pu , 

More rigorous treatment, based on study of three-dimensional 

motion, shows that into the written expression there should be 

introduced a numerical coefficient of the order of unity. Namely, 

equation of conservation of momentum, taking into account viscosity, 

in the plane case has the form 

£(««*)--^p. n„-p+c«wfa'.i.T,£f    (1>90) 

where rj is coefficient of viscosity, which for gases (in the absence 

of relaxation processes; see below) in order of magnitude is equal to 



Quantity a' constitutes the xx-component of tensor of viscous 

stresses. Appearance of it in formula for flux of momentum is 

equivalent to appearance of additional "pressure", which is due to 

forces of internal friction. Prom equation (1,90), with help of 

continuity equation, it is easy to go over to equation of motion 

eär"^-*'). (1.91) 

Off' ^ ■T-— is force of internal friction calculated for 1 cur of gas. 

In the presence of dissipative processes, additional terms also 

appear in energy equation. With additional, "viscous" pressure there 

is connected additional energy flow. To the expression of energy 

current density, which stands under the sign of divergence in formula 

(1,10), it is necessary to add the quantity - cr'u, which is analogous 

to pu. Furthermore, into this expression there should be introduced 

flow of energy which is transferred by mechanism of thermal conduction: 

/--**. (1.92) 

where x is coefficient of thermal conductivity. Expression (1.92) 

is easy to obtain by the same means by which there was found viscous 

flux of momentum. Thus it turns out that in gases, the coefficient 

of thermal conductivity in orde..- of magnitude is equal to x ^ pc vl, 

Taking into account both dissipative terms, energy equation 

(1.10), written for the plane case, acquires the form 

a(«8+^)"^[KB+T) + pu-0'u + /]*     (1.93) 

3y transforming this equation with help of continuity equation, 

equation of motion and thermodynamic identify T dS - de + p dV, we 

will obtain equation for rate of change of entropy of a particle of 

the substance: 



First term in the right side of this equation constitutes 

mechanical energy dissipated in 1 cnr in 1 sec due to viscosity. It 

is always positive, since T] > 0 and (öu/äx) > 0; consequently, forces 

of internal friction lead to local increase of entropy of substance. 

Second term corresponds to heating or cooling of substance due to 

thermal conduction. It can be positive, as well as negative, since 

thermal conduction leads to transfer of heat from hotter regions into 

cooler ones. However, entropy of all of the substance on the whole 

due to thermal conduction only increases. Of this we can be convinced 

if we divide equation (1.94) by T and integrate over the entire 

volume. Change of entropy of substance occupying volume bounded by 

surfaces x. and x2 due to thermal conduction is equal to 

1 TäK^^T^ x + )fi^) dx- 
«1 «1 

If substance is thermally insulated on boundaries x, and Xp, 

then fluxes of heat on boundaries disappear and there remains only 

second term in the right side, which is always positive (x > 0). 

Equations of gas dynamics, written taking into account viscosity 

and thermal conduction, permit us to determine under what conditions 

the role of these dissipative processes can become important. 

Let us compare inertial forces in equation of motion with 

viscosity forces. If U is scale of velocity, and d are characteristic 

dimensions of region involved in motion, then scale of time is of the 

order of d/U, and inertial term p du/dt is of the order of pU /d. 

Viscosity term in equation ^TJ^ä")   is ^ "tlie order of W/^ 

and the ratio of it to the inertial term is of the order of 
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Reciprocal of this ratio has the name Reynolds number (v »= IJ/Q ~/y--w/c 

is kinematic viscosity, c -^ v is speed of sound). In an analogous 

way, by comparing heat transfer by means of thermal conduction with 

mechanical transfer of energy, we will find that their ratio is of 

the order of 

Pii~QcpUd~Ud~ d  U ' 

where Pe is Peclet number, which is close in gases to Reynolds number, 

since coefficient of molecular thermal diffusivity x = n/pc is close 
P 

to coefficient of kinematic viscosity v.  (For instance, in air under 

normal conditions v « X « 0.15 cm /sec). 

Thus, viscosity and thermal conduction can be disregarded at 

Re « Pe » 1. If we consider motion with velocities less than or 

equal to speed of sound, dimensions of system for this have to be 

much larger than mean free path of molecules d/l » 1, This condition, 

as we will see, is not satisfied, in particular, in region of shock 

wave front, thickness of which is comparable with mean free path of 

molecules. Therefore, inside shock wave front, dissipative processes 

turn out to be essential. Namely they lead to increase of entropy 

in the shock wave, 

§ 21. Remarks about Second Viscosity 

During writing of equations of gas dynamics and use of thermo- 

dynamic relation between pressure and other thermodynamic character- 

istics of substances, it was tacitly assumed that pressure p, which 

determines forces in the moving gas, does not differ from static 

pressure p t t measured in gas at rest under the same conditions 

(i.e., with the same composition of gas, density of gas, internal 

energy, temperature). Pressure is a scalar quantity which does not 
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depend on selection of system of coordinates, on directions of 

velocity, and gradient of velocity. Requirement of scalar character 

of pressure, of its Invarlance with respect to transformations of 

coordinates, allows an assumption which Is more general than the 

assumption about dependence only on thermodynamlc state of the 

substance. Pressure, In general, can depend on a scalar — the 

divergence of velocity. For small gradients. If we limit ourselves 

to first terms of the expansion, as In the derivation of viscous 

forces, we can write the general expression 

P^Per + ldivu, (1.95) 

where coefficient 4 characterizes dependence of forces acting In 

the substance on the scalar dlv u. Coefficient | Is called second 

viscosity. In distinction from It, coefficient n, the first viscos- 

ity, characterizes forces depending on directions of velocity and Its 

gradient. Coefficient of first viscosity In gas Is connected with 

translatlonal thermal motion of molecules. If time of establishment 

of static pressure Is of the order of mean free time of molecules l/c, 

i  has the same order as T], in the plane case, both terms with first 

and second viscosity thus are Joined together. In certain cases, 

however, £ has anomalously large value. According to continuity 

equation dlv u = - - -?£, i.e., coefficient | characterizes dependence 

of pressure on rate' of change of density. 

In the presence of internal, slowly excited degrees of freedom 

in a substance (for instance, vibrations in molecules) and fast 

changes of state of substance, pressure does not have time to ''follow" 

change of density, and differs from a tnermodynamically equilibrium 

quantity. Influence of this effect can be described with help of 

coefficient of second viscosity (see [1]), where the more difficult 
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it is to excite internal degrees of freedom, the greater the 

"mismatching" of changes of pressure and changes of density and 

internal state of substance, and the greater the second viscosity. 

In very fast processes, when this "mismatching" (deviation from 

thermodynamic equilibrium) is especially great, linear dependence 

(1,95) may be Insufficient, and into the equations of gas dynamics 

it is necessary to introduce in explicit form a description of relax- 

ation processes — kinetics of excitation of internal degrees of 

freedom. We will meet with this phenomenon in Chapters VI, VII, VIII 

during consideration of relaxation processes, their influence on 

structure of fronts of shock waves and absorption of ultrasound, 

§ 22, Remarks about Sound Absorption 

As an example of the Influence of viscosity and thermal con- 

duction on hydrodynamic motion, we will consider process of prop- 

agation of sound waves, taking into account these phenomena. 

Presence of viscosity and thermal conduction leads to dissipation 

of energy of sound waves, to irreversible transformation of it into 

heat, i,e,, to absorption of sound and decrease of its intensity. 

Formally the coefficient of sound absorption can be obtained If we 

seek the solution of one-dimensional linearized equations of gas 

dynamics, taking into account viscosity and thermal conduction, in 

the form of a plane harmonic wave of type exp [1 (kx - oDt)], where 

k Is wave vector. Thus for k there is obtained a complex value, the 

real part of which gives wave length, and the imaginary part of which 

gives coefficient of absorption» k = k. + lk?j exp [1 (kx - cut)] = 

= e~ 2xe ^ 1 ~ ', Coefficient of absorption can be estimated also 

from physical considerations. According to formula (1.9^)* energy 

dissipated In 1 cnr in 1 sec is composed of two parts, which correspond 
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to viscosity and thermal conduction. In a sound wave with wave 

2  2 2 
length Xj  these quantities are of the order of T]U /X and KAT/X . 

Here u i the amplitude of velocity, and AT is amplitude of change 

of temperature in wave (the lattei is proportional to u). Energy of 

3     2 
sound in 1 cm is p0u , Fraction of energy which is absorbed in 

1 sec consists of two terns. The term connected with viscosity is of 

the order of (n«2/X2)/e0u
2~ TJ/QOA,2 ~ ticoVc^o- But in 1 sec sound traverses 

distance c, so that coefficient of absorption per unit of length is 

2 "5 
of the order of 71 ~ TJCO /c Pö*    Coefficient of absorption per unit 

of length which is connected with thermal conduction is of the order 

of Y2~—^- (in case of gases this is easy to understand if we con- 

sider that H/C » t]  in virtue of approximate equality of kinematic 

viscosity v = T)/p and thermal diffusivity x = n/pc   :  in gases 

7, « 7p). These expressions are valid for small sound absorption, 

when decrease of amplitude at distances of the order of the wave 

length is small, i.e., 7X « l (7 = 7 + y0).    In gases this con- 

dition means that 
,  IIü)«X  v X   I   v       I  ^ i 

i.e., expression for coefficient of absorption is valid for wave 

lengths considerably larger than mean free path of molecules, which 

actually always is the case. 

In a substance with delayed excitation of internal degrees of 

freedom (with large second viscosity) there appear additional, 

anomalously large absorption, and also dispersion of sound (dependency 

of speed of sound on frequency). This problem will be considered in 

Chapter VIII, 



§ 23. Structure and Width of Front of Shock 
Wa\e of Weak Intensity- 

Let us consider what are the Internal structure and thickness 

of that thin layer In a shock wave In which there occurs transition 

of gas from Initial state to final state and which Is called the 

front of the shock wave. In this layer there occur sharp compression 

of substance, change of Its pressure, velocity and, as calculations 

showed, based only on application of laws of conservation of mass, 

momentum, and energy, there occurs Increase of untropy. The latter 

Indicates that In transition layer there occurs dissipation of 

mechanical energy. Irreversible transformation of It Into heat. 

Therefore, In order to understand how shock compression occurs. It 

Is necessary to take Into consideration dissipative processes — vis- 

cosity and thermal conduction. 

Let us consider plane one-dimensional flow of a viscous and 

heat-conducting gas in system of coordinates in which front of shock 

wave is at rest. Width of front is very small as compared to 

characteristic scales of length for all cf the gas-dynamic process 

on the whole, for instance, as compared to distance from front of 

shock wave to piston pushing the gas and creating the wave. 

Even if piston moves with variable speed and amplitude of .shock 

wave changes in time, for that small time At in which front passes 

over distance of the order of its own width Ax, amplitude of wave 

remains practically constant. Therefore, for the period of a certain 

time, which is small as compared to total time scale of gas-dynamic 

process, but large in comparison with At, the whole pattern of 

distribution of gas-dynamic quantities in the wave front propagates 

through the gas in "frozen" form as a whole. In other words, in a 
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system of coordinates in which the front is at rest, flow of gas can 

at every given moment be considered to be steady. 

Let us write equations of continuity, momentum, and entropy, 

taking into account viscosity and thermal conduction for the plane 

steady cas^. Inasmuch as process is steady-state, partial derivative 

with respect to time ä/öt can be omitted, and partial derivative with 

respect to coordinate h/bx  can be replaced by total derivative d/dx: 

^(C») = 0. d* 
d_ 

dx 
„dS     4 fiu\* .   d f   dT\ 

k     du\     n 

(1.96) 

With help of second law of thermodynamics T dS = dw - V dp and 

equations of continuity and momentum, entropy equation can be written 

in form of energy equations: 

•^ T f     ,  tt,>\  *   du dT-\     „ __ [„„(0,+ ^--.„--x-J .o.        (1#97) 

We will subject solution of these 

equations to boundary conditions, 

according to which gradients of all /• 
^ 

"/' 

»i 

quantities before the front, at x -oo. 

0 * 
Fig. 1.39• Diagram 
illustrating formulation 
of problem abor* structure 
of front of shoes wave. 

and after the front, at x » +ao  vanish, 

and the actual quantities take their 

initial and final values, to which we 

as before will assign indices "0" and 

"1" (Fig. i.39). 

First integrals of system of equations of maas, momentum and 

energy are obtained immediately: 

Qu-Co««. (1.98) 

p+Qu'-jij-f-i^+w*;. 
/  , i»«N  4   du dT /  . ul\ 

(1.99) 

(1.100) 
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Constants of Integration here are expressed in terms of initial 

values of quantities p, p,  T, u and are considered as functions of 

current coordinate x,* 

Prom equation (1,99) it is clear that due to presence of 

viscosity, i.e., term containing du/dx, distribution of quantities 

over x in wave front should be continuous (otherwise gradient du/dx 

would go to infinity, which is incompatible with finiteness of the 

quantities themselves). 

For the purpose of best understanding of roles of each of the 

processes, viscosity and thermal conduction, we will first consider 

two particular cases of structure of front; 1) when there is no 

viscosity and there exists one thermal conduction; 2) when there 

exists one only viscosity, but there is no thermal conduction. We 

will here not look for exact solutions of equations (this problem 

will be considered in Chapter VII, which is specially dedicated to 

study of structure of shock wave fronts). Let us limit ourselves 

only to clarifying qualitative picture of phenomenon and estimates 

of width of front, 

1) Thermal conduction exists, but there is no viscosity T; = 0. 

This case is remarkable due to the fact that equation of momentum 

(1.99) acquires the form 

P+Q^-AJ + CQUJ, 

which is analogous to that form which connects final and initial 

values of quantities. However now this equation describes all 

intemediate states in wave front. With help of continuity equation 

♦At x = +oo du/dx = 0, dT/dx » 0, p « p., p » p., u -•« u^, and 

we arrive at laws of conservation of mass, momentum, and energy on 
the shock (1,61), (1,62), (1,64), 
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(1.98), we will obtain 

P = Pb + Co»j(l-j^)- 
(1.101) 

Thus, the point describing state of gas inside shock wave front 

travels on p, V-plane from initial point A to final point B along 

straight line AB, about which we already have said much during 

investigation of shock adlabat. 

We will draw through points of 

initial and final states on p, V-plane 

Poisson adiabats (Pig. 1.40; Hugonlot 

adlabat is not shown on it). If we 

plot on the plane a whole series of 

Poisson adiabats with various values 

of entropy, then we will see that one 

of them is tangent to straight line 

AB at a certain point M, as shown in 

Pig. 1.40. At this point entropy along 

straight line AB is maximum 

(S0 < S1 < SM). From equations (1.98) 

and (1.101) it follows that velocity 

Fig. 1.40. p, V-diagram 
pertaining to problem 
about structure of shock 
wave front without taking 
into account viscosity. 
State in wave changes 
along straight line AB. 
Segments A., A , A, are 

of first, second and 
third orders of smallness 
with respect to amplitude 
of wave. of gas u at point of tangency M is exactly 

equal to local speed of sound (u » c at point M; we recall that at 

point A u0 > c0, and at point B u, < c.). 

Let us find magnitude of maximum of entropy S   from condition 

of tangency of Poisson adlabat with S = Smax and straight line AB. 

2 
As we will now set-, quantity S   - S0 is proportional to (V^ - V0) 

or (p1 - PQ) ; therefore, equations of family of adiabats p (V, S) 

and straight line we will write In the form of expansion near point 

A, omitting terms of third order of smallness (in such an approximation 
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adlabats S0 and S. coincidej see § 18). Equation of adlabat has the 

forms 

Equation of straight line! 

Condition of tangency is expressed by equality Cg^VjHov ~ ("Sv^tr 

which gives equation for determination of volume VM at point of tan- 

gency M, 

Calculation shows that point M is found exactly in the middle 

between points A and Bt V
M "" vo " ~2" ^1 ~ V0^*  Substituting this 

expression into equation of straight line, we will find pressure at 

point M, and substituting then the found value of pressure pM and 

volume Vw into equation of adiabat and solving it for entropy, we 

will obtain entropy at point Mt 

Thus, maximum change of entropy inside front of shock wave 

during consideration of only thermal conduction is a magnitude of 

the second order of smallness with respect to amplitude V0 - V^ or 

pl " p0' ^n dis"tinc^on from total Jump of entropy S. - S0, which is 

of the third order of smallness with respect to amplitude, This is 

clear from geometric considerations» the greatest distance of 

straight line AB from Poisson adiabat S « S0 on p, V-plane is 

proportional to (V. - V0) or (p. - p.) , Thus, the difference 

between pressures at point M and on adiabat S. (or SB) at the very 

sane volume VM is equal to 

/»-(^-^(K,,)-^^^ x(FM-F.)(Fl-Kl,)-4(^)gA(Ft-K,)« (1.102) 
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Fig. 1.41. Distri- 
butions of temperature 
and entropy in weak 
shock wave front without 
taking into account vis- 
cosity. Ax — effective 
width of front. 

(difference of pressures between points on adiabats S-. and F...  at 
Ö      A 

identical volume VM is a magnitude of third order of smallness). 

Presence of maximum of entropy 

inside the front indicates that profile 

of temperature T (x) at point where 

entropy is maximum has an inflection, 

so that distributions of temperature 

and entropy in a weak shock wave with 

only thermal conduction are depicted by 

curves shown in Fig. 1.41. This follows 

from entropy equation (1.97), which in 

absence of viscosity takes the form 

v  äx      dx* dx      K dx* 
(in a weak wave the temperature changes little, so that coefficient of 

thermal conductivity can be considered to be constant). Existence of 

maximum of entropy is connected with the fact that thermal conduction 

transfers heat from region with higher temperature to region with lower 

temperature. Therefore, the gas flowing in a wave at first is heated 

due to thermal conduction (with increase of entropy), and then is cooled 

(with decrease of entropy). In the end, as compared to Initial value, 

entropy of course increases. This is illustrated by Fig, 1,41« advance 

along axis x with velocity u (x) corresponds to following the change 

of state of a given particle of gas with time. 

Let us now estimate width of wave front. For this we will 

divide equation (1,103) by T and will integrate it over x from initial 

state A (x - -oo), where dT/dx - 0, to some point x in the wave (thus 

we will use the fact that pu - p0u- '0-0 - const)s 

(1.104) 
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We will apply this equation to point of final state B (x = +00), 

where dT/dx =0, 

Thus the first term in hrackets vanishes and 

,(^-^o) = xjX. mm®t-m^'*\~~dT. 

We will determine effective width of shock wave front Ax, in the 

presence only of thermal conduction, by equality 

rt-ro I dT 
Ax   I dx  max ' 

the geometric meaning of which is clear from Pig. 1,41. 

Considering for estimate of the integral that dT/dx ~ (T. - T0)Ax, 

we will find 

Expressing temperature Jump in terms of pressure Jump, we will 

obtain: 

Tl~r,= (^)s(/,|-/,0, = ^('|-'o)' 

where c is heat capacity at constant pressure; using formula (I.89) 

for Jump of entropy, and considering approximate equalities for gases 

jajg~ r? 1 *—QoCp^o, and also the fact that u0 » c0, we will obtain from 

(1,104) an estimate of width of front» 

^~'7F^- (1.105) 

Width of front is inversely proportional to amplitude of wave, where 

as its scale there serves mean free path of molecules I, 

Prom equation (1.104) it is also possible to estimate magnitude 

of maximum increase of entropy. At point of maximum of entropy 

dS/dx = 0, gradient dT/dx is maximum. Thus, the main role in braces 

(1.104) is played by first term, which is proportional to AT/Ax ~ 
2 2 "'i 

~ Ap/Ax ~ (Ap) , while second term is proportional to (AT) /Ax ~ (Ap)-3, 

Hence it is clear that S^^ - S0 ~ (Ap)
2, while S1 - S0 ^ (Ap)

5, 
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Considering Internal structure of shock wave front, and taking 

Into account only thermal conduction. It Is possible to say only that 

temperature In wave changes continuously. Other quantities — density, 

velocity, pressure — In general can undergo a discontinuity. And 

Indeed, consideration of structure of shock waves without taking Into 

account viscosity shows that at sufficiently large amplitude"it Is 

Impossible to construct a continuous distribution for all quantities 

in the wave. This difficulty was noted by Rayleigh (detail about 

this see in § 3* Chapter VII).  It Indicates the fundamental role 

of viscosity in realization of irreversible shock compression of 

substance in a wave. 

Let us consider now the second particular case. 

2) Viscosity exists, but there is no thermal conduction: M = 0. 

Then it is necessary to retain the general equation of momentum 

(1.99). On p, V-plane the point describing state in wave travels 

the path from point A to point B no longer along straight line AB, 

but along a certain curve, which is depicted in Pig. 1,42 by a dotted 

line. 

From the entropy equation without the thermal conduction term 

it follows that entropy in wave monotonically Increases from initial 

value S„ = S. to final value S, » S^,, so that dotted line is wholly 
U    A 1    li 

contained between Poisson adiabats 30 and S^ (see Fig. 1.42). 

Inasmuch as adiabats are convex downwards ((c) p/äV )s > 0, 

dotted line lies wholly below straight line AB).* 

"^ »Really, vertical distance between adiabats S1 and S0 is propor- 

tional to S* - s0 ~ (PH - PQ^' w
hlle vertical distance between points 

A and B is p1 - p0. Therefore, section of straight line AN on which 

dotted line in principle could pass above straight line is a quantity 
which is small as compared to the main part of straight line NA. 
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Pig. 1.42. p, V-diagram 
pertaining to problem 
about structure of shock 
wave front without taking 
into account thermal con- 
duction. State in wave 
changes along dotted 
curve AB, 

Equation of curve along which 

there occurs transition from point A 

to point B is 

Inasmuch as curve lies wholly 

below the straight line, at all points 

inside wave du/dx < 0, If x-axis is 

directed in the direction of motion of 

gas, then u > 0, i,e,, gas in wave only 

is retarded, and consequently is 

monotonically compressed. Thus, consideration of structure of shock 

wave front, taking into account viscosity, leads to the case in which 

for (ö p/öV )s > 0 there is possible only compression of gas in shock 

wave. Profiles of velocity and density in wave have the form depicted 

in Pig. l.O. 

ft We will determine effective width 

of front Ax by equality /• 

"• 

•tf 

—*i 
^üH du rfr max. 

(1.108) 

As * 

Pig. 1.43. Profiles 
of density and veloc- 
ity in shock wave 
frontt Ax is effective 
width of wave. 

analogously to the preceding. Geometric 

meaning of it is clear. 

Maximum absolute value of gradient 

du/dx ■max is determined according to 

(1,107) by maximum vertical deviation 

*Ax is called sometimes Prandtl width of front. 

... liO 
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of straight line AB from dotted line. I.e., from Polsson adlabats 

S0 or Sl* T]lis deviation, as we already know, corresponds to middle 

of segment AB and is given by formula (1.102). Thus, 

Substituting this expression for | du/dx |   In (1.108), and 

noticing that T] = p0v - p0Zv - p0zc0 (v Is kinematic viscosity), and 

also that 

we will arrive at formula (1,105) for width of front: 

't—'i Pt—Po 

Width of front can be estimated also with help of entropy 

equation (1,106) analogously to the way this was done in the first 

case: 

Substituting here expression (I.89) for Jump of entropy and 

making simple transformations, we will arrive at former formula for 

Ax. 

During construction of continuous solution with only viscosity, 

no difficulties similar to those which appear during consideration 

of only thermal conduction appear. This circumstance, as already was 

noted, has a deep physical basis and testifies to the fundamental 

role of viscosity in realization of shock compression. Namely, 

viscosity is the mechanism due to which there occurs irreversible 

transformation of part of kinetic energy of flow incident on shock 

into heat, i.e., transformation of energy of directed motion of 



molecules of gas into energy of random motion due to scattering of 

their momentum. 

Thermal conduction in this sense plays an indirect role, since 

it leads only to transfer of energy of random motion of molecules 

from one place to another, but does not influence the directed motion 

directly. 

If we consider shock waves of not too great amplitude in an 

ordinary gas, in which transport coefficients — kinematic viscosity v 

and thermal diffusivity x — are approximately identical and are deter- 

mined by the same mean free path of molecules l{v  « X ~ ic), then we 

as before will obtain formula (1,105) for width of front. This is 

easy to check by considering general entropy equation (1,98), taking 

into account viscosity as well as thermal conduction. 

Formula (1,105) shows that for a pressure Jump in the wave of 

the order of magnitude of the actual pressure before the front, width 

of front is of the order of the mean free path of molecules. With 

further increase of amplitude of wave, if we use the same formula, 

width becomes less than mean free path. This result, of course, 

does not have physical meaning. If gas-dynamic quantities strongly 

change at distances of the order of mean free path of molecules, then 

hydrodynamic consideration of viscosity and thermal conduction, at 

basis of which lies the assumption about smallness of gradients, 

loses validity. 

Width of an arbitrarily strong shock wave of course cannot 

become less than mean free path of molecules, which is indicated by 

consideration, based on use of kinetic equation for gas (see Chapter 

VII). 

* 
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Under certain conditions there Is possible considerable broadening 

of front of strong shock waves to distances equal to many lengths of 

mean free path, and separation of it Into regions of smooth and sharp 

change of quantities Is possible. In particular, this occurs In a 

gas with delayed excitation of certain degrees of freedom of molecules 

or during the course of reversible chemical reaction in the wave. 

These problems, just as a whole series of others appearing during 

more detailed study of internal structure of shock wave fronts, will 

be considered in detail in Chapter VII, 

I. Certain Problems 

§ 24. Propagation of an Arbitrary Shock 

Gas-dynamic quantities on each side of a shock wave front are 

not independent. They are related by definite relationships which 

express laws of conservation of mass, momentum, and energy. Tivus a 

shock, a compressive shock wave in substances with normal thermo- 

dynamlc properties, propagates through the substance as a stable 

formation, without spreading out. 

Meanwhile there is possible a formulation of the problem in which 

at the initial moment in the gas there exists a discontinuity surface, 

on both sides of which gas-dynamic quantities in no way are related 

with each other — are absolutely arbltary. Such shocks are called 

arbitrary shocks. 

Let us give several practical examples which show how arbitrary 

shocks arise. Let us imagine a pipe divided by a thin partition 

(barrier). Pipe is filled with gas, where densities and pressures 

and, in general, types of gas on right side of partition and on left 

side are different. Let us assume that at a certain moment the 
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partition Is rapidly removed, V« this instant in the place where the 

partition was the two regions come into contact — two gases at rest 

with absolutely arbitrarily given densities and pressures. If pres- 

sures in each gas are different, then after removal of the partition 

the gases under action of the pressure drop will be set in motion. 

Second example. Let us assume that through a pipe filled with gas, 

from both ends there are sent shock waves with arbitrarily given 

amplitudes. At the time of collision of both waves somewhere in the 

middle of the pipe, there appears a surface dividing the gases with 

arbitrary pressures, velocities, and temperatures (possible differences 

in densities in this example are somewhat limited; we will say that 

if both waves are very strong, then densities in them are identical 

and eqv.al to limiting density). After collision of waves, motion of 

gas will be changed in some way. Third example. We have approached 

the theory of shock waves considering the motion of a gas under 

action of a piston starting to be thrust into the gas with constant 

velocity. In this case the shock wave will be formed directly at 

the piston, at the initial moment and will propagate through the gas 

with constant velocity. In reality, of course, the piston, which has 

finite mass, cannot instantly acquire terminal velocity, but gathers 

it, gradually being accelerated under the action of force applied to 

it. Thus the shock wave will not be formed at once, and will be 

formed far from the piston. 

It is possible to replace smooth law of change of velocity of 

piston in time U (t) by some step curve, by dividing time into very 

small intervals and assuming that in every such interval of time the 

velocity of piston is constant, and upon the expiration of this 

interval changes with a jump by a small amount. Then the curve of 
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motion of the piston on x, t-plane will be depicted by a broken curve 

consisting of small line segments. In every small time interval, 

during the period of which velocity of piston is constant, piston 

sends forward a perturbation - a wave of compression, i.e., a weak 

shock wave. This wave travels through the gas with velocity slightly 

exceeding the speed of sound, whereas the preceding weak shock wave, 

which was caused by the preceding jump of velocity of piston, prop- 

agates relative to gas moving behind it with a velocity slightly less 

than speed of sound, as is shown in Fig, 1,44. Therefore, every 

successive shock wave catches up with the preceding wave, and the 

compressions carried by them are superimposed. If we draw on the 

x, t-plane characteristics going out from curve of motion of piston, 

then they will intersect (Pig. 1,45). It turns out that it is 

possible to assign a law of acceleration to the piston such that all 

of these weak shock waves overtake one another at one moment and at 

one point. Then all of the numerous little pulses of compression are 

accumulated into one large Jump, (All characteristics intersect at 

one point). 

State of gas in this shock changes from undisturbed to final 

almost adiabatically. Indeed, if all of the compression of initial 

gas to pressure p is divided into n stages, n weak shock waves with 

Jump of pressure Ap = (p - Pr)/n, then in each of them the Increase 

of entropy AS is proportional to (Ap)^ *- /n , and total increase of 
2 

entropy with cumulation of n waves is proportional to nAS ~ 1/n -♦ 0 

as n -♦ oo. Thus, states of gas on each side of shock appearing as a 

result of cumulation are related by Poisson adiabat. Meanwhile, in 

the shock wave, states on both sides of the shock are related with 

each other not by Poisson adiabat, but by Hugoniot adiabat. 
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Consequently, quantities on both sides of shock do not satisfy laws 

of conservation and the shock Is arbitrary. 

n. 
Fig. 1.44. Profile of 
pressure In system of 
two small compresslve 
shocks following one 
after the other. Wave 
A travels through gas 
located In front of It 
with velocity higher 
than speed of sound c' 
In this gas. Wave B 
travels through gas 
located behind It with 
subsonic velocity, lets 
than c'. Therefore, shock 
A finally overtakes shock 
B. 

Pig. 1.45. Inter- 
section of character- 
istics during com- 
pression of gas by 
accelerating piston. 
II is line of piston. 

By generalizing cases represented 

by the given examples, we will formulate 

idealized problem about finding motion 

of gas in which there appeared an 

arbitrary shock. Let us assume that at initial moment t = 0 in plane 

x = 0 all quantities undergo a dlscontinultyi pressure, density, 

velocity, temperature. On both sides of the shock all these quantities 

are constant. Types of gases en both sides also can differ. The 

larger the distance from discontinuity surface, on which parameters 

of gas can still be considered to be constant, the longer in time the 

solution to which we will arrive will be accurate (this problem was 

for the first time solved by N, Ye. Köchin [?]). 

Inasmuch as in the conditions of the problem there are not 

contained characteristic lengths and times, we look for motion 

depending only on the ratio x/t. In § 11 it was shown that self- 

similar plane flow of gas can be described by solutions of only two 

typesi there are possible centered simple rarefaction waves and 
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motion in which all gas-dynamic quantities are constant. Furthermore, 

there can occur discontinuities — shock waves. 

Thus, the unknown motion should be constructed from three 

elements: rarefaction waves, regions of constant flow, and shock 

waves. The set of possible motions is limited by the fact that in 

one direction there cannot move more than one wave (it makes no 

difference which kind — rarefaction or shock). 

Shock wave propagates through undisturbed gas with supersonic 

speed, but through compressed gas in it — with subsonic speed. 

Rarefaction wave travels through gas with speed of sound. If, for 

instance, through gas to the right there travels a shock wave, then 

rarefaction wave following after it in the same direction, and all 

the more so a shock wave, will necessarily overtake it in a certain 

time. But in virtue of self-similarity, both waves emerge from one 

point x = 0 at the same moment t = 0. Therefore, one wave as it were 

already has overtaken the other at the very initial moment, and both 

of them propagate in the form of one. In exactly the same way, it is 

impossible for a second wave to follow behind the rarefaction wave. 

Shock wave would overtake rarefaction wave, and second rarefaction 

wave would move behind the first at a fixed distance, which in virtue 

of self-similarity is equal to zero, so that difference between both 

waves disappears. 

Thus, the unknown solution can be constructed only in the form 

of some combination of two waves, shock waves and rarefaction waves, 

which propagate in opposite directions from initial shock and are 

separated by regions of constant flow. There are in general two of 

these regions. They are differentiated by a plane dividing those 

gases which at the inltal moment were located on each side of the 
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arbitrary shock. Inasmuch as in hydrodynamics of an Ideal fluid, 

diffusion of molecules is not taken Into account, interpenetration 

of gases into each other is lacking, and boundary between them will 

be retained, in some way moving in space together with the gases. 

The case when gases are of one type obviously does not represent a 

fundamental difference (we will imagine that molecules of gas on one 

side of initial shock are "colored"). This plane boundary between 

the two gases, which can be called the contact boundary or contact 

discontinuity possesses specific properties. Obviously, pressures 

and velocities of gases on both sides of contact discontinuity 

coincide with each other. Otherwise near it there would appear 

motion and regions of gas on both sides would cease to be regions of 

constant flow. Densities, temperatures, and entropies of gases on each 

side of contact discontinuity can remain arbitrary, in accordance 

with the arbitrariness in initial values. Difference between these 

quantities during equality of pressures and velocities in no way can 

set gases in relative motion (of course, under the assumption of 

absence of diffusion and thermal conduction, to the influence of which 

we will return somewhat later). 

Contact discontinuity is at rest relative to gases and does not 

send perturbations which could Influence waves (shock and rarefaction) 

travelling in both directions from it. 

We will enumerate possible motions of gas after appearance of 

arbitrary shock: so to speak, cases of disintegration of shock, which 

constitute different combinations of rarefaction and shock waves. 

There can be presented three typical cases: 1) in both directions 

from shock there are propagated shock waves; 2) in one direction 

travels a shock wave, but in the other — a rarefaction wave; and 



3) in both directions there travel rarefaction waves. 

Let us examine these cases more specifically. For this. It Is 

convenient to use p, V-dlagram (Fig, 1.46), First of all we will fix 

on the diagram Initial states of gases. Point A presents gas on the 

left of the shock, point B — on the right. Let us assume for 

deflnlteness that pressure at point A(P ) Is less than P. , Let us 

draw upwards from these points Ergonlot adiahats describing compres- 

sion of gases In shock waves, and downwards — Polsson adlabats, along 

which there occurs expansion of gases In rarefaction waves. After 

disintegration of shock, pressures In both gases In regions subjected 

to Influence of waves are equalized. 

1, Let us assume that this 

new pressure p0 Is higher than 

Initial p and p, , 

In this (first) case both to 

the right and to the left from 

arbitrary shock (or from contact 

surface) there travel compresslve 

Shockwaves (Fig. 1,47a), Gases 

after them are In states a0 and b0 

with Identical pressures p0 and 

velocities. Gas In state a0 moves 

Pt 

ß 

r % 

p, 

• 
«r 

\ 

i , 

p. 
Pi >•-. »--—" 

\ 

\ A 

4' 

Fig, 1,46, p, V-dlagram 
Illustrating different 
cases of disintegration 
of arbitrary shock. Points 
A and B describe Initial 
states of gases A and B. 
H.A and HgB are shock 

adlabats, AP., BPB are 

Polsson adlabats of gases 
A and B, 

relative to Initial gas In state 

A to the left and gas bQ moves 

relative to gas B to the right. Inasmuch as gases a,, and bQ move 

with Identical velocity. It Is necessary that gases A and B at 

Initial moment move toward each other. Two shock waves are formed 

during collision of the two gases moving toward each other with 

119 
C 

■■tflrftTiii^ihiililliii^^ .«^».^ iHW r.i r r^.kw^infltTmrtffri^ii^ :^^^~*Z3T?. ii^iM.f«iirM^M^^aa^^---^:A:a^t''JWH^aaa 



great velocity (we recall the second example). The less the velocity 

of collision, the lower the obtained pressure p0 in the shock waves. 

2. At some low velocity of collision, there appears a new 

regime, in which pressure p. is still higher than pressure p , but 

less than p , In this (second) case, through gas A after disintegra- 

tion of shock there propagates a shock wave, and through gas B — a 

rarefaction wave (Fig. 1,47b). In particular, such a regime is 

realized when initial velocities of both gases, A and B, are identical 

and are equal to zero, i.e., when at initial moment in gases at rest 

there is a discontinuity of pressure, as in the example with the 

partition. Substance starts to move in the direction of pressure 

drop. This case has important practical applications. On this 

principle is based the mechanism of a shock tube, in which there are 

obtained in the laboratory strong shock waves, which heat the investi- 

gated gas A to high temperature. Shock tube is divided by a thin 

partition (diaphragm). On one side of the diaphragm in the tube 

there is contained investigated gas A at low pressure; on the other, 

into the so-called high pressure chamber there is pumped the working 

gas B, After burst of the diaphragm, gas B is expanded in the 

direction of the low pressure chamber, sending into gas A a strong 

shock wave. The appearing regime, which is depicted in Fig, l.ijTb, 

will be more specifically considered in Chapter IV during the study 

of operation of shock tube. By appropriate selection of gases A and B 

and pressure drop, it is attempted to obtain as strong a shock wave as 

possible and heating of investigated gas to very high temperatures. 

One of methods of obtaining still higher temperatures is realization 

of first regime — collision of two shock waves. A particular case 

of the first regime is reflection of shock wave from end of shock 
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a) 
A 
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tube, which is also used for achievement in laboratory of high 

temperatures. Reflection of shock wave from hard wall indeed 

constitutes a particular case of collision of two gas flows. If two 

absolutely identical flows collide with one another, then after the 
i 

collision the contact discontinuity is at rest, i.e., the situation    { 

is the same as if instead of a contact discontinuity there were a 

motionless hard wall. Problems of collision of shock waves and       j 
\ 

reflection of them from a wall also will be considered in Chapter IV. 

3. If after disintegration pressure i 

P2 is less than pa and p, , we will 

obtain two rarefaction waves travelling 

to the right and to the left through 

both gases. This regime, which is 

depicted in Pig, 1,47c, is realized 

if at initial moment gases A and B 

move in opposite direction from shock 

with sufficiently high speed. 

If relative velocity with which 

at initial moment gases A and B move 
Fig, 1,47. Profiles 
of pressure in different  away from each other is very great, 
cases of disintegration 
of a shock. Large arrows namely, larger than sum of maximum 
with letters A and B 
indicate initial veloc-   velocities of flow of gases A and B 
ities of gases A and B 
before disintegration of „      2 
shock. Little arrows    J A a  ,   b   „, « 

into a vacuum,   _^ + Tf*  where 

^) 
—•'4            i 

c) 

d) 

show direction of prop- Ä    . 
agation of waves through "**     ^ 
mass of gas (direction of c and c. are initial speeds of sound 
propagation in space can   ft    D 

be in certain cases and 7 and 7. are adiabatic indices of 
different), a     ° 

gases A and B (see § 11. formula 

(1,60)), then between gases there will 

be formed a vacuum, p - 0. This regime, 
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which it is possible to consider as limit of the third case, is 

depicted in Pig. 1.47d. 

During concrete calculations connected with disintegrations of 

arbitrary shocks, along with p, V-diagrams, very convenient are the 

so-called p, u-diagrams, on which along axes are plotted pressures p 

and velocities of gases u in laboratory system of coordinates. Shock 

adiabat of gas PH(V) can be represented in the form of a dependence 

of pressure behind wave front on Jump of velocity of gas, i.e., on 

velocity of compressed gas relative to undisturbed gas. Likewise, in 

rarefaction wave pressure is uniquely connected with velocity by the 

condition of constancy of the Riemann Invariant (see § § 10, 11), 

Convenience of p, u-diagrams in problem about disintegration of shock 

is connected with the fact that in final state pressures and velocities 

of both gases are identical, i.e., final states are depicted by the 

same point on the p, u-diagrams. 

p,. u-diagrams for cases of disintegration depicted in Fig. 1.47a-d 

are shown in Fig, l,48a-d respectively. 

After clarifying character of motions appearing during disinte- 

gration of an arbitrary shock, it is possible to check the initial 

assumption about the fact that motion depends only on the combination 

x/t. During examining of rarefaction wave in § 11, this assumption 

was supported by the fact that with passage of time, width of rare- 

faction wave, which is scale of length in the problem without con- 

sideration of dissipatlve processes. Increases as x «^ ct. Role of 

viscosity and thermal conduction, which is proportional to l/x, with 

passage of time decreases, and in macroscopic flows, when x » I, is 

insignificantly small. Consequently the only constant scale of 

dimension of length in gas — mean free path of molecules — disappears. 
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During flows with shock waves, viscosity and thermal conduction, 

which introduce into the equation scale of length I,  in reality act 

only in thin layer of wave front, width of which is of the order of 

l.    Small also is the width of the contact shock. Broadening of it 

occurs due to processes of diffusion of molecules and thermal con- 

duction. Both processes lead to width of shock of the order of 

Ax~yJt~yDi,  where D is coefficient of diffusion, which is close to 

coefficient of thermal diffusivity D ~ x ~ Zc. Distance passed over 

by shock and rarefaction waves during the time t is of the order of 

x ~ ct, so that ..A* ~ j/fo  Thus, ratio of dimensions of region in 

which dissipative forces act to dimensions of the whole region involved 

in motion for a shock wave is of the order of l/x, and for contact 

shock ~V7/*- Both quantities are small in macroscopic flow with 

x » I. Let us return to the third example given in beginning of 

this section, and see what regime appears during disintegration of 

shock which is formed as a result of cumulation of compresslonal 

waves sent by the accelerated piston. At the moment of Joining of 

separate waves, on one side of the shock we will have undisturbed 

gas A, and on the other — gas in sta^e B, which is subjected to 

practically adiabatic compression. It is possible to show that veloc- 

ity which gas acquires during successive compression by a large number 

of shock waves is less than velocity acquired during single shock 

compression to the same pressure. It follows from this that the 

shock disintegrates as in case 2), Through the compressed gas to 

the piston will go a rarefaction wave, and through undisturbed gas 

— a shock wave. Pressure p will be lower than pressure created on 

piston pb. However, due to increase of entropy in shock wave, this 

lower pressure corresponds to higher temperature, so that gas in shock 

^; n 
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wave will be heated comparably to the almost adlabatlc heating due 

to cumulation of weak waves. In Fig, 1,49 there are represented 

distributions of p and T after disintegration of shock formed as a 

result of cumulation of waves during compression of air by a piston, 

whose speed gradually reached k*kh  c0 - 1500 m/sec, so that pressure 

on piston reached p, «= 50pa ■ 50 atm. Coordinate and time on figure 

are measured from point and moment of cumulation. 

re 

.Fig. 1,48. p, u- 
diagram for different 
cases of disintegration 
of shock which are de- 
picted in Fig. 1,47, 
Curves H are shock 
adiabats in variables 
pf uj curves S are 
Poisson adiabats in 
variables p, uj S.W. 
designates shock wave; 
R,W, designates rare- 
faction wave. 

50Ü 
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1" 1 

p             I    1 

'    V   L 
T 

A 
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50 

Fig. 1.49. Propagation of 
a shock which appears after 
collision of a set of consec- 
utive compressional waves. 
Temperature in the appearing 
shock wave is considerably 
higher than maximum temperature 
attained during superposition 
of small compressional waves, 
but pressures are lower, since 
toward the compressional waves 
there travels a rarefaction 
wave. Profile of pressure is 
shown by solid line, profile 
of temperature — by dotted 
line. 

The considered case presents 

considerable interest for theory of 

occurrence of detonation, since the 

obtained result explains how a flame 

acting on a gas like piston can by 

gradual compression cause appearance 

jt. r» 
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of a shock wave at a large distance from the flame (piston). By 

gradually compressing gas to fairly high temperature (6300 C on the 

figure). It Is possible to realize sharp heating to 1450° C at a 

considerable distance at the moment of cumulation, to realize "remote 

Ignition." Apparently, such Is the mechanism of appearance of 

detonation In gases In a number of cases, 

§ 25. Strong Explosion In a Homogeneous Atmosphere 

Idealized problem about a strong explosion In homogeneous 

atmosphere constitutes typical ixample of class of motions of gas 

called self-similar, when gas-dynamic quantities change with flow of 

time In such a way that distributions of them over coordinate remain 

always similar to themselves. 

Self-similar problem about strong explosion was formulated and 

solved by L. I, Sedov. With a clever method, by means of use of 

integral of energy, L. I, Sedov succeeded in finding exact analytic 

solution of equations of self-similar motion [4, 5]. The problem 

was considered also by K, P, Stanyukovich (in dissertation; see 

[15]) and Taylor [6], who formulated and Investigated the equations, 

but did not obtain their analytic solution. 

We will dwell on formulation and results of solution of this 

problem, since they will be needed by us subsequently, in Chapters 

VIII and IX, during the study of certain physicochemical and optical 

phenomena accompanying strong explosion in air. 

Let us assume that in gas of density p0, which we will consider 

to be ideal, with constant heat capacity, in a small volume during 

short interval of time there is released high energy E, From place 

of energy release through the gas there propagates a shock wave. We 
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will consider that stage of the process when the shock wave departs 

to distances which are very large as compared to dimensions of region 

where energy release occurred, and when motion Involves a mass of 

gas which Is large as compared to mass of products of the explosion. 

Thus energy release can with great accuracy he considered as occurring 

at a point, and Instantaneously, 

At the same time we will consider that this stage of the process 

Is not too late, so that the shock wave departs from Its source not 

too far, and Its amplitude Is still so high that It Is possible to 

disregard Initial pressure of gas p as compared to pressure In shock 

wave. This Is equivalent to the possibility of disregarding initial 

internal energy of gas involved in motion as compared to energy of 

explosion E, and of disregarding initial speed of sound c0 in 

comparison with velocities of gas and wave front. 

Motion of gas is determined by two dimensional parameters: 

energy of explosion E and initial density PQ. From these parameters 

it is Impossible to compose scales with dimensions of length or time. 

Consequently, motion will be self-similar, i.e., will depend only on 

a definite combination of coordinate r (distance from center of 

explosion) and time t. In distinction from self-similar motion 

considered in § 11, in this problem there is no characteristic 

velocity. Initial speed of sound c0 cannot characterize the process: 

in that same approximation in which Initial pressure p0 is assumed 

equal to zero, speed of sound c0 Is also equal to zero.* Therefore, 

♦This condition actually determines bounds of applicability of 
solution of the problem. After presenting definite requirements for 
accuracy of the solution, we compare obtained pressures in wave front 
p1 and velocity of propagation of wave D with real values of p0c0 and 

find the moment when the approximation of p^ » p0 becomes too course,' 

It la necessary to note that in fact the condition of validity of dis- 
regarding of initial pressure is soaewhat more rigid, namely: 
Vi »  [(7 + i)/(7 - 1)] P0. This one nay see from formula (1,76): 

under this condition compression in shock wave Is equal to limiting 
value (7 + l)/(7- 1)..        ^ 
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self-similar variable is not the quantity r/t, as in self-similar 

rarefaction wave (see § 11), 

The only dimensional combination containing length and time in 

this case is E/p0t [E/p0] « [cm
5sec~2]. Therefore, as self-similar 

variable serves the dimensionless quantity: 
i 

^ssr{,'Wj • (1.109) 

To front of shock wave there corresponds a definite value of 

independent variable ^j law of motion of front of wave R(t) is 

described by formula 

«-Hi)1'1- (i.iio) 

Velocity of propagation of shock wave is equal to: 

^'rf/^s «-S05 UoJ  "sHcj« • 
Parameters of front are expressed in terms of velocity of front, 

with help of limiting formulas for strong shock wavet 

(h-fcji-l. Pi-^D;    ^yTi0' f1'111) 

Density on front remains constant and equal to its limiting 

value. Pressure decreases with flow of time according to the law 

*~(hfl«~fi.(|-)Srf~£- {1-112) 

It is easy to understand the physical meaning of laws of prop- 

agation of a strong blast wave. By moment t the wave attains radius 

R, and encompasses volume of gas MTTR /5 and mass M « p0»47rR /3, 

Pressure is proportional to average energy of unit of volume, i.e., 

p ~ E/R , Velocities of front and gas are proportional to 

D ~u~ Vm^VEltoR*.    By integrating equation dR/dt - D, we will find 

dependence of radius of front on time, R ^ (E/p0)
1/3t2/5 (with accuracy 

up to numerical coefficient ?0), 
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Formula (1.112) demonstrates law of similarity for transition 

from certain energies of explosion to others. Pressure on front has 

given value at distances proportional to E '^,  or at moments of time, 

1/3 
proportional to E ' . 

Distributions of pressure, density, and velocity of gas over 

the radius are determined by dependence on one dimensionless variable 

^, which can be represented in the form (• = lrr/R. Shape of distri- 

butions, in virtue of self-similarity, does not change with flow of 

time; scales of quantities p, p, u depend on time in exactly the 

same way as values of these quantities on shock wave front. In other 

words, solution can be represented in the form 

p=/MO?(i). a »MO «(I). c=CiC(5). 

where p^t), u.(t), p^ are pressure, velocity, and density on shock 

wave front, which depend on time by known laws described by formulas 

(1,111) and (1.112), and p(£), u(£), p(^) are new, dimensionless 

functions. 

Substituting these expressions In equations of gas dynamics 

written for spherically-symmetric case, and going from differentiation 

with respect to r and t to differentiation with respect to 4 with 

help of relationship (1,109), just as this was done in § 11, we will 

obtain system of three ordinary first order differential equations 

in three unknown functions p, u, p*. Solution of this system should 

satisfy conditions on wave front» for ? « 40* p «■ u » p - 1, 

We will not expound here procedure of solution or write out 

final formulas, which can be found in books of L, I, Sedov [5] and 

L. D, Landau and E, M, Lifshlto [1], Let us note only that dimension- 

less parameter contained in solution ^0 is determined from condition 

of conservation of energy» 

£-{4iifVr(t + ^). (1.113) 
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If we substitute in It the found solution. It depends. Just as the 

entire solution, on adlabatlc Index 7. 

In real sir adlabatlc Index Is not constant; It depends on 

temperature and density due to processes of dissociation and ionlzation 

occurring at high temperature (see Chapter III). However, it is 

almost always possible to select a certain effective value of the 

index, considering it to be constant, in order to describe a real 

process by solution of idealized problem about strong explosion. 

For air it is possible to take values of 7 equal approximately to 

1.2-1.3. 

In Fig. 1.50 there are depicted distributions of ratios v/v*> 

p/p., Vuv T/Ti over relative coordinate r/R for 7 = 1.23; parameter 

^0 thus is equal to £0 = 0,930. 

It is characteristic that during strong explosion, density of 

gas extraordinarily sharply falls from front of shock wave to center. 

Practically entire mass of gas, which earlier uniformly filled sphere 

of radius R, now is gathered In a thin layer near surface of front. 

Pressure near front decreases with distance from front to center by 

two to three times, but then almost in the entire sphere remains 

constant. Temperature Increases from front to center, at first less 

sharply, while pressure decreases, and «hen. In region of constant 

pressure, very rapidly. Temperature Increase in center is connected 

with the fact that near the center there are particles which were 

heated by very strong shook wave and possess high entropy. During 

adlabatlc expansion to identical pressure, temperature is higher, 

the higher the entropy of the particles. I.e., the nearer to the 

center they are. Sharp decrease of density during approach to center 

is connected with temperature Increase (pressure is constant). 



Using condition of constancy of pressure over radius In region not 

too close to front, there can be found asymptotic distribution of gas- 

dynamic quantities as r-♦• 0, Prom equation of motion with p(r) = 

const, 'S?: " 0> ^ follows that "37 + u "J^ 

l 
■ / 

\ s* 
«/»Jl rV 

\ T/T, \ 
i 

\ 
#fi \ as 

/ 

/ 

i 

V 
\&s 

< I* 4 18 i r/* 

0, i.e., u - r/t. 

In order to find asymptotic 

law for density, let us turn to 

Legrange coordinate (see § 2), We 

will characterize given particle of 

gas by its initial radius r0 (by 

"particle" we mean an elementary 

spherical shell with volume 4irrQdr0). 

At the moment of passage of the shock 

wave front, pressure in it is pro- 

Pig. 1,50. Profiles 
of pressure, density, 
velocity, and temper- 
ature for strong point 
explosion in gas with 
7 - 1.23. 

portlonal to p. ~ R -3 -3 

Starting from this moment, particle 

r0 is expanded adiabatically, so 

that at time t its density is equal 

tot 

But at given moment t, pressures in all particles located in "cavity" 

near the center are identical and are proportional to p (t) ~ t~ '-^ 

Therefore, asymptotic law for density in Lagrange coordinates is 

p ~ r^/yt"^'-*, Let us turn to Euler coordinate with help of defl- 

nitlon (i.24)i pr dr - p0r0dr0. Substituting here function for density 

and integrating, we will obtain dependence of Euler radius of given 

particle on time» r ^ r0^
7" "7t Z'57.   Eliminating from this 

expression r0 with help of function p(r0t), we will obtain the 

sought asymptotic laws 
^rr^f"«?^ for r -»• 0, 
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Asymptotic law for temperature! 

-     «  «tf-Y) 
T~l£.'K.r  FT^cv-D for r -♦• 0. 

9 

§ 26. Approximate Consideration of a Strong Explosion 

Basic laws of process of strong explosion can be established with 

help of simple method of approximation proposed by G. G, Chemyy [7], 

Let us assume that all of the mass of gas encompassed by blast 

wave is gathered in a thin layer at the surface of the front, density 

in which is constant and equal to density on front p. = ^-~-4 pn. 

Thickness of layer Ar is determined from condition of conservation of 

masst 

For instance, at 7 = 1,3  Ar/R = 0,0455. 

Inasmuch as the layer is very thin, velocity in it almost does 

not change and coincides with velocity of gas on the front u.. Let 

us assume approximately that density in layer is infinitely great, 

and thickness accordingly is infinitesimal; mass is finite and is 

equal to mass M which was initially located in sphere of radius Rt 
■5 

M « p04TrR-y3, Let us designate pressure on inner side of layer by p , 

Let us assume that it composes fraction a of pressure on wave front 

pc - 0^, 

We wilj write second law of Newton for mass M: 

-J- Jlfat = inlPpc=AnR'api. 
mi 

■z. 
Mass M « inrR-po/J itself depends on time, so that with respect to time 

is differentiated not velocity, but momeiitum Mu^, On the mass from 

2 2 
within acts force 4TR p , since p is the force acting on 1 cm of 

surface) force acting from without is equal to zero, since initial 

pressure of gas is disregarded. Expressing u. and p. in terms of 
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velocity of front D - dR/dt by the formulas (1,111), we will obtain 

Noticing that 

l-^Ä«Z)-aZ)«Ä«. 

JL   JL i* _ n d 
dt"* dR* dt ~ U dR 

and Integrating the equation, we will find 

where a is constant of integration. For determination of quantities 

a and a we use law of conservation of energy. Kinetic energy of gas 
p 

is equal to E, «■ Mu./2, Internal energy is concentrated in "cavity" 

bounded by our infinitely thin layer, pressure in which is equal to 

pressure p (actually this means that not strictly all of the mass is 

contained in the layer, but in the "cavity" there is also a small 

1  ii-irR 
quantity of substance). Internal energy is equal to EL, =»  71 3— ^c 

Thus, 

Again expressing p » ap, and u. in terms of D and substituting 

D, we will obtain 

'-T*•,[Ä+T5w]«s-,,-,• 
Inasmuch as energy of explosion E is a constant, exponent of variable 

R should become zero. This gives a - 1/2, The obtained equation 

determines constant a, 
t 1 

n  r3 (v-MY+onygy 
Ä     L4n      (3Y-1)     J   VCo/ " 

From formula D ~ R""^'
1

"
0
^ with a = 1/2 and formulas  (1,111)  there 

follow the laws already known to usi 

» is 
D~R~i,    Pi~Ii*,   UJ-ä"

5
,   R~t*. 
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With help of expression for a we will find proportionality 

factor in law R ~ t '-*% 

We will compare obtained approximate solution with exact solution. 

In approximate solution pressure in center is equal to half of pressure 

on front, independently of adiabaxic index. In exact solution - 

pc = 0.35p1 for 7 = l,4j pc » 0.41p1 for 7 » 1.2. Numerical 

coefficients ^0 in law of propagation of shock wave (1.108) in 

approximate solution are equal tor (* = 1,014 for 7 » 1.4 and ^n « 0,89 

for 7 »= 1,2. In exact solution for the same values of 7^ ^0 « 1,053 

and 0,89 respectively. 

As we see, approximate solution gives fairly good results, 

§ 27. Remarks About Point Explosion, Taking into 
Account Counterpressure 

In the later stage of propagation of a blast wave, when pressure 

in shock wave front becomes comparable with initial pressure of gas 

(more exactly, when p becomes on the order of [(7 + l)/(7 - 1)] p0; 

see footnote on page i2b), self-similar solution of problem about 

strong explosion loses validity. 

Process in this stage no longer is self-similar, since in the 

problem there are characteristic scales of length and time, which it 

is possible to compose from quantity of total energy of explosion E 

and initial parameters of gas. As scale of length serves radius of 

sphere whose initial energy is comparable with energy of explosion 

1» ■ (E/PQ)  • As scale of time serves time in which sound passes 

over this distance t^  « ZQ/CQ, where c0 - (TPr/Pn)  • T^8» for 

-3   3 
Instance, during explosion in air of normal density (p0 ■ i.25»10 ^g/cm, 

21 
p0 - 1 atm, c- ■ 330 m/sec) for energy E - 10  erg, corresponding 
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approximately to energy released during explosion of 20,000 tons of 

trotyl, scales are equal to r0 « 1 km, ^Q * -^ sec* 

Solution of problem about propagation of shock wave of point 

explosion, taking into account counterpressure, was obtained in a number 

of works [8-10] by means of numerical integration of partial differ- 

ential equations of gas dynamics. All results of calculations, 

detailed tables, and graphs of distributions of gas-dynamic quantities 

at various moments of time can be found in these works, and also in 

fourth edition of book of L, I. Sedov [5]. 

We will be limited here only to certain remarks concerning 

qualitative character of the process. 

With flow of time, amplitude of shock wave becomes less and less; 

pressure on front asymptotically approaches initial pressure of gas — 

atmospheric. Accordingly there decrease compression of gas in wave 

front and speed of wave propagation, which asymptotically approaches 

speed of sound c0. Law of propagation R -^ t Z-5 gradually becomes 

law R = c-t. When pressure in central region of blast wave becomes 

close to atmospheric, expansion of gas in this region is ceased and 

gas stops. Region of motion of gas is carried forward, nearer to 

shock wave front, which gradually becomes spherical wave of the same 

type as acoustic wave. Behind region of compression in such a wave 

there follows region of rarefaction, after which air arrives at its 

final state. Final state of layers far from center, through which 

shock wave has passed, since it is weak, little differs from initial 

state. Distributions of pressure, speed and density over radius at 

some later moment t have form depicted in Fig, 1,51, If we follow 

the change of pressure in time at a definite distance from center of 

explosion, then there will be obtained the picture shown in Pig, 1,52. 
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At the time t^, when to the given place approaches shock wave front, 

pressure Increases by a Jvmp, then decreases; It drops to a magnitude 

lower than atmospheric pressure (positive and negative phases of 

pressure), and then returns to its initial magnitude. 

As was already said, final 

state of gas at large distances 

from center of explosion almost 

does not differ from initial state. 

At small distances, gas in final 

state turns out to be strongly 

rarefied and highly heated. This 

is connected with the fact that 

through particles located near the 

center, the shock wave has passed 

while very strong, and entropy of 

these particles is much higher than 

initial. 

Asymptotic distributions of 

final density and temperature over 

radius near center can be found from 

condition of adiabatic expansion to 

atmospheric pressure of particles 

heated in strong shock wave front. 

Repeating calculations made at the end of § 25# but now without 

dependence of p on t, and considering p^ = p0 = const, we will find 

the very same distributions over radius as r -•• 0, as in the problem 

about a strong explosion p ^ r5'^  ''  T «^ r"-5/^  '. 

Pig, 1,51. Profiles 
of pressure, density 
and velocity at later 
stage of explosion, 
when shock wave becomes 
weak. 

Pt 

t, t 

Pig, 1,52, Dependence 
of pressure on time at 
fixed point at large 
distance from center 
of explosion. 
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Final distributions p(r) and T(r) are shown in Pig. 1,53, In 

heated region there is concentrated quite a considerable fraction of 

energy of explosion, on the order of several tens of percent (it 

depends on 7), This is the energy which went into irreversible heating 

of gas, which is connected with irreversibility of process of shock 

compression. Remaining energy passes forward together with shock wave 

and is dissipated in space. What happens to energy "sticking" in 

region of center will be discussed in Chapter IX (air In this region 

cools due to light emission). 

U 
r 

Pig. 1.53, Pinal distri- 
butions of density and 
temperature (t-+co) 
during strong explosion 
(under the assumption of 
adiabatic character of 
the process). 

Later stage of propagation of 

blast wave has been studied theoret- 

ically and experimentally by many 

authors. Limiting laws of propa- 

gation of wave at large distances 

were found by L, D, Landau [11], 

Empirical formula of M, A, Sadovskiy 

[12] for pressure on front in 

dependence on distance from center 

of explosion has great practical 

4/3 
value. Let us note that law of 

similarity p1 ■= f (E'L':?/R) is valid also in later stage of propagation 

of shock wave, when p. — P0 < p.. 

§ 28, Strong Explosion in Non-Homogeneous Atmosphere 

Above there was considered problem about strong explosion in 

infinite homogeneous medium. As is known, atmosphere of Earth is not 

homogeneous) air density decreases with altitude, and, in a certain 

approximation, dependence of density PQ on altitude h is described by 

iC6 
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barometric formula p0 = P00e~ ' , where p00 Is density at sea level, 

and A is so-called altitude of standard atmosphere, which at the 

surface of Earth is equal approximately to 8,5 km,* 

Let us see how shock wave of strong point explosion propagates 

in non-homogeneous atmosphere. We obviously will be Interested in 

that stage in which wave has departed from point of explosion to 

distances comparable with scale of heterogeneity A; only then does 

there appear the influence of heterogeneity. Shock wave, as before, 

we assume to be strong (pressure behind front is much higher than 

pressure before the front). 

Gas-dynamic process now no longer is self-similar (there is a 

scale of length A), and, moreover, motion is not one-dimensional, but 

two-dimensional. In cylindrical coordinates with vertical axis passed 

through point of explosion, motion depends on coordinate z and radius 

r. Complete solution of gas-dynamic problem can be found only by 

means of numerical integration of equations of gas dynamics. However, 

it is possible to obtain an idea of the character of propagation of 

shock wave and shape of its surface on the basis of simple consider- 

ations, which was done by A, C, Kompaneyets in work [13]**. 

Let us assume that, as for an explosion in a homogeneous medium, 

pressure is equalized almost over the entire volume encompassed by 

the blast wave, and on the front is constant along surface of front 

and proportional to mean pressure, i.e,, to the ratio of energy of 

explosion to the entire volume Six 

Pi-(Y~1H4- (1.114) 

*In reality terrestrial atmosphere is not strictly exponential, 
since temperature of air changes with altitude. Scale A, which Is 

determined as A » —(d In p/dh) , changes in Interval from 6 to 15 km 
at altitudes below 150 km. Above 150 km, scale A becomes still larger, 

♦♦See also [14]. 



Here X(7) is numerical coefficient, which for estimate can be 

taken, for Instance, from solution of problem about explosion In a 

homogeneous melii-w» Let us assume that equation of surface of shock 

wave front In cylindrical coordinates Is f(z, r, t) = 0. By differ- 

entiating this equation, we will obtain 

dr dt 

or 

91 iLn =fw*= V 

where D^ and D are vector components of velocity of front D, Normal 

component of velocity of front Is expressed by known fomula 

*>.—r#/iv/|. 

But, according to condition on front of strong shock wave, 

where p. is density before front at given point of surface. 

2t/3 

Pig. 1.54. Cross 
section of surfaces 
of shock wave front 
for strong explosion 
at a great altitude 
along the vertical 
plane passing through 
point of explosion. 
There are shown con- 
secutive moments of 
time. On segment A, 
density of atmosphere 
changes by e times. 

t,....,,,.,^—,.,, ■ .-^^,.--...,.~--.!..m.^^^^.^.w^^ 

Prom the last two expressions we havei 

(^)}—£/iw   (i.ii5) 
We substitute here pressure p. Tjy formula 

(1,114) and express volume Ü in the form 

of integral fl ■ j dfl with help of equation 

of surface of front bounding volume ft. 

Thus equation f(z, c,  t) will be 

considered to be solved for radius r ■ 

« r(z, t). Atmosphere will be considered 

strictly exponential. Such an operation 

leads to partial differential equation 

for the sought function r » r(z, t). 

which is solved in work [13]. 
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Evolution of surface of shock wave front Is seen from Pig. 1.54, 

borrowed from work [13], on which there are depicted cross sections of 

wave along vertical plane passing through point of explosion (through 

axis z). In Pig, 1.54 there are shown sections In consecutive moments 

of time. Wave which In the beginning Is spherical gradually takes 

egg-shaped form, and then, after a finite time T, goes upwards to 

Infinity, as If "breaking through" the atmosphere. This characteristic 

time t Is equal to   
•  o^/ 32«A»g« 
T=PK 31Ä(Y»-1)' 

where ß Is numerical constant equal approximately to ß « 1,4, and 

p* Is density of atmospheric air at altitude of explosion. By moment 

t ■' T the wave goes downwards to a distance of 1.358 A, and along 

horizontal to a distance of 2.04 A. Wave goes upwards to an Infinite 

distance In a finite time, since during upward motion through more and 

more rarefied air, shock wave Is accelerated to Infinite velocity. 

During motion downwards. In the direction of dense air, wave Is 

decelerated the fastest of all. At the time t =■ T, the volume of air 

enveloped by the shock wave becomes Infinite; pressure by formula 

(1.114) becomes zero, and solution loses validity. Obtained solution 

Is applicable only under the condition that shock wave Is strong, when 

Po     PoQ     PoR* *   ' 

where R Is characteristic dimension of region enveloped by shock wave, 

and p. Is atmospheric pressure. 

Heterogeneity of atmosphere has an effect only when wave goes to 

distances comparable with scale A, i.e., to distances on the order of 

10 km. Thus the above described evolution of surface of front will 

occur only during explosions of great power at a great altitude, where 

density and pressure are low. 
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For Instance, at altitude h - 100 km, p0 is on the order of 

10  atm « 1 bar, and P^/PQ > i00 ^ distance of R «« 10 km only for 

20 
explosions with energy E > 10  erg. 

For explosion with not excessively great power at low altitude, 

shock wave attenuates at distances much less than A, and process of 

strong explosion proceeds practically in a homogeneous atmosphere, 

§ 29. Adlabatic Dispersion of a Gas Sphere into a Vacuum 

Let us become acquainted with another gas-dynamic problem with 

which it will be necessary for us to deal in the future (in Chapter 

VIII): the problem about dispersion of gas into a vacuum. 

Let us imagine a gas sphere occupying at the Initial moment a 

spherical volume of radius RQ, Let us assume that, for definiteness, 

at initial moment gas is at rest and fills volume uniformly with 

density p0 (total mass of gas is M » p047rR^/3). Initial pressure of 

gas also is considered to be constant and equal to p0, so that total 

l    '47rRo 
energy of gas is E » ' ■ 'j •£ p0 —5— (gas is assumed to be ideal with 

constant heat capacity). At time t « 0 there is removed the partition 

restraining the gas, and the latter starts to be expanded into the 

vacuum without restrcint. 

After removal of partition there occurs disintegration of shock 

and through gas to center there propagates a rarefaction wave. Front 

layers of gas are expanded into vacuum with maximum velocity of outflow 

2 
u^  - ■ _ £ CQ. When rarefaction wave reaches center, the motion 

- dispersion — involves all of the substance. In process of adlabatic 

dispersion, due to work of expansion accomplished by gas, substance 

accelerates, and its initial internal energy E gradually becomes 

kinetic energy of radial motion. It is possible to show (see [15]) 
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that during isentroplc dispersion (and our problem Is isentropic, 

since at the initial moment, in virtue of constancy of pressure and 

density over radius, entropies of all particles are Identical, pertur- 

bations from internal regions of sphere do not reach the front boundary, 
p 

so that it moves with constant speed U^a„ = ■ ■ ■_■ v c . Law of motion 
p 

of boundary of gas sphere is R « — ■_ -r  c-t + RQ. It is not possible 

to find exact analytic solution of problem at hand, since problem is 

not self-similar, and it is necessary to solve system of partial 

differential equations, which it is possible to do analytically only 

in very rare cases. The fact that problem is not self-similar is 

easy to verify by noticing that there is a characteristic scale of 

length — initial radius of sphere RQ. 

However, this problem possesses the property that with flow of 

time, motion asymptotically becomes self-similar. Really, in the 

stage of large expansion at R » R0, role of initial parameter of 

length becomes less and less important, since scale of length R0 

becomes very small as compared to characteristic scale of flow — the 

actual radius of the sphere R. Motion of gas with flow of time as it 

were "forgets" about initial radius RQ. Nevertheless, motion does 

not completely "forget" about Initial conditions, and in this there 

appears essential non-self-similarity established in the considered 

process. 

Let us consider asymptotic behavior of solution as t -♦ ^. 

Force acting per unit of mass of gas thus tends to zero. Indeed, 

this force S" "Sr in order of magnitude is equal to — p/pR, where p 

and p are certain average pressure and density over mass at time t. 

But average pressure p proportionally to ratio of thermal energy of 

all of the gas to Its volume p ~ ^Yierv/^    and ln any ca8e ls less 
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than E/lR , Average density p *- l/R-^j therefore force tends to zero 

In any case not slower than 1/R, In fact, force decreases as R -♦ oo 

faster than 1/R, since thermal part of energy decreases during adlabatlc 

expansion: E+K»  ^ Me ^ ME- ~ p^- ~ R--9^" ■'. Hence p ~ 

~ Etherm/R ^ R"
57, decreases as R""57+ = R"1"^^"1). Equation 

of motion In the limit as t -► co, R -* CD acquires asymptotic form» 

du      du  ,      du i dp 1     n 

I.e., speeds of all particles tend to constant values, where u « r/t. 

As t ->■ oo dispersion acquires Inertlal character. 

This follows directly from condition of conservation of total 

energy of gas E, Total energy Is composed of thermal and kinetic 

energies, but thermal part of energy during expansion asymptotically 

tends to zero; consequently, kinetic energy tends to E, and average 

speed of gas mass asymptotically tends to constant limiting value 

u^ = YZElW,   which is in a definite mmerlcal ratio with speed of 

"boundary: 

8   ■£VT*-£ivw=m.-/^-/£i^ •max "= „_jC« 

(for Instance, in monatomic gas 7 - 5/3 and U,..^ " 2.9x0. By sub- 

stituting asymptotic solution for velocity u » r/t in continuity 

equation, we are convinced that it is satisfied by the following 

density function: 

•——a—t IT 

where f is an absolutely arbitrary function of r/t. Inasmuch as 

radius of boundary of sphere is equal to R - u^ t, this formula can 

be rewritten In the form 

B-fW) 
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Asymptotic distribution of density over radius does not change 

with flow of time; it only is stretched in conformity with increase of 

R, while remaining similar to Itself, self-similar. Actually, if in 

the gas there do not act any forces, and every particle flies with 

constant speed by inertia, then no redistribution of mass occurs, and 

profile of density remains constant. 

However, internal non-self-similarity of problem is evident in 

the fact that this asymptotic distribution of density cannot be found 

from equations of asymptotic motion, which permit any distribution. 

Distribution of density is formed in the early stage, when in 

the gas there act forces of pressure. By the time when gas is strongly 

expanded, it is, as it were, "frozen." Distribution of density depends 

on initial conditions and can be found only on the basis of complete 

solution of the problem. 

As already has been noted, exact solution of problem with initial 

conditions pn(r) = const, Po(r) = const, u = 0 is impossible to find 

in analytic form. Approximate solution is possible to construct, if 

we proceed from consideration of the analogous two-dimensional problem 

about dispersion into vacuum of a gas layer of finite mass with constant 

initial distributions, which can be solved. This approximate solution 

Is given in book of K, P, Stanyukovlch [15]; it has the form» 

where solution Is valid only for integral values a - 0, 1, 2, 5,.,,, 

which correspond to following series -  values of adiabatlc index: 

Constant A can be determined from condition of conservation of 

mass If we Integrate density function over entire volume of sphere. 

Corresponding formula is given In [15]. 
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§ JO» Self-Similar Regimes of Dispersion of Sphere into a Vacuum 

There exists a class of solutions of problem about dispersion 

of gas sphere into a vacuum in which distribution of all gas-dynamic 

quantities are strictly self-similar, i.e., from the very beginning 

depend on radius r in the form of ratio of r to radius of boundary of 

sphere R and do not contain any other dependence on r. To these 

solutions lead not any initial distributions of quantities over radius, 

but only those which satisfy a definite relationship. 

This class of solutions Is characterized by linear distribution 

of velocity over radius (such solutions were investigated by L, I, 

Sedov [5])i 

u = rf(l) = Ä^, 
Ä (1.116) 

where function of time P(t) is expressed in terms of speed of 
* 

boundary of sphere R ■ dR/dt, By substituting this formula in 

equation of motion, we will obtain relationship 

|L-_Cr(/+f). (l>il7) 

which must be satisfied by distributions of p and p over radius during 

the entire process, including at the initial moment of time. Only 

under this condition will the solution belong to the considered class. 

Let us conöider two concrete examples of such solutions. 

1. Let density p be constant over all of volume and not depend 

on radius j^ 

(1.118) 

It is easy to verify that assignment of functions of density and 

speed In form (1.118), (1.116) automatically satisfies continuity 

equation for arbitrary dependence R(t).  Substituting (1,118) in 
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(1.117) and Integrating, we will obtain parabolic distribution of 

pressure over radius 

P=Po(0 (l-.gr). (1.119) 

which should be assigned from the very beginning so that condition 

(1.117) is satisfied. As we see, the problem is not isentropic, since 

densities for all particles are identical, and pressures are different. 

Substitution of p and p into entropy equation gives relation between 

unknown functionst pressure in center P0(t) and radius of sphere 

R(t): 

where A is a constant depending on initial entropy in center of sphere. 

Substituting, finally, (1.118), (1.119), (1.120) into equation of 

motion (1,117), we will obtain second order differential equation for 

law of motion of boundary of sphere R(t),  Solving it with initial 

condition t = 0, R = RQ, R - R-, we will find complete solution of 

the problem. In particular, we may assume that at initial moment the 

gas is at rest 1 RQ = 0. 

If we are interested in asymptotic behavior as t -»• oo, it is 

Immediately possible to set R = const « u., where u. is limiting 

velocity of boundary of sphere (solution of differential equation, 

naturally, gives R -* const as t -► 00), Quantity u. can with the help 

of radial distributions of p and u be calculated from condition of 

conservation of energy, considering that as t -•• 00 all energy becomes 

kinetic. We obtain thus: 

"«-/r/^-/!«-. (1.121) 

where vu as before is defined as square root of average of square of 

velocity over mass u^ - ^ü*— y~2E/M. 
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2, Let us assume that mtroples of all particles are identical 

(Isentropic motion), i.e., S(r, t) = const, p/p ■ A » const (A is 

entropy constant). Substitution of %- * Ap^ in relationship (1.117) 

leads to following profiles of pressure and density: 

p-M\{i-^y'\ (1.125) 

which naturally have to be assigned from the very beginning. 

Density in center p can be determined by integrating density 

over volume and equating integral to massx this gives, as usual, 

B ~ M/R , with numerical proportionality factor depending on 7. 

Relation (1.117) leads after substitution of (1.122), (1,123)  to 

second order equation for R(t),  Limiting value of speed of boundary 

u, can be obtained from condition of conservation of energy: 

if we substitute in integral p by formula (1.122) and u » u.r/R, 

This gives relation between u. and u = Y2E/M, where proper*- 

tionality factor also depends on 7, Both coefficients are expressed 

by definite integrals, which are calculated with the help of gamma- 

functions. 

Let us give numerical results. For 7 » 5/5 Pc "  J5»4"p* u. « 

- I.64 u^; for 7 « 4/3 Pc - 6.6p, ^ - 1.92 u^, where p" - M/(4TrR-5/3) 

la average density over volume. In the limit as t -+00 R « u.t,* 

""" »In work [17J there are reported certain results of numerical 
solution of equations of gas dynamics for problem about isentropic 
dispersion of sphere into vacuum under uniform Initial conditions (at 
t ■ 0 gas in sphere is at rest, its density and pressure are constant 
over radius), unfortunately, in the work there Is not given asymptotic 
profile of density, but there is given graph of pA(t). It is clear 

that with passage of time the dependence tends to p ~ 1/t , where 

coefficient in this limiting law turns out to be altogether 1.22 times 
as great as in the self-similar solution described here. 
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Let us note work of V. S. Imshennlk [16], In which there Is con- 

sidered problem about isothermal dispersion of gas into a vacuum. 
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CHAPTER  II 

THERMAL RADIATION AND RADIANT HEAT EXCHANGE IN A MEDIUM 

§ 1.  Introduction and Basic Ideas 

Up to recent times high temperatures of the order of tens and 

hundreds of thousands or millions of degrees interested mainly 

astrophysicists.  Theory of radiation transfer and radiant heat ex- 

change was created and developed as a necessary element for under- 

standing of processes occurring in stars, and explanation of observed 

luminosity of stars.  To a considerable degree this theory is also 

transferrable to other high-temperature objects, with which physics 

and technology of today must deal.  In this chapter we will become 

acquainted with fundamentals of theories of thermal radiation, radiant 

transfer of energy, theory of luminosity of heated bodies, and will 

formulate equations describing hydrodynamic motion of substance under 

conditions of intense radiation.  In the account of these topics we 

will be oriented toward "terrestrial" applications, while dwelling on 

certain aspects which are not so important for astrophysics, or which 

do not even appear in this area.* 

*It is possible to become acquainted in more detail with problems 
of theory of radiation transfer and its applications to astrophysics 
in books of V. A. Ambartsumyan and others [1], Unsold [2], E. R. 
Mustel' [5]. 
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We will recall basic concepts and definitions of the theory of 

thermal radiation. Radiation is characterized by frequency of oscil- 

lations of electromagnetic fieldv or wave length X related with 

frequency through velocity of light X  =» c/v. Subsequently, we will 

always deal with media in which index of refraction is very close to 

unity, so that by c we will mean velocity of light in a vacuum, equal 

10 
to c = 5*10  cm/sec. From quantum point of view, radiation is con- 

sidered as a collection of particles, photons or light quanta, whose 

energy is connected with frequency of equivalent field by means of 

Planck's constant h » 6.62*10"  '   erg«sec. Usually energy of a quantum 

hv* is measured in electron volts. One electron volt is the energy 

which is acquired by an electron during passage through a potential 

— 12 
difference of 1 voltj 1 electron volt (1 ev) is equal to 1,6»10   erg. 

Frequently in electron volts is measured temperature. Temperature T 

—12 of 1 electron volt corresponds to energy of kT - 1,6«10   erg, where 

-16 k = 1,38'10   erg/degree — the Boltzmann constant: 

••"i.e. io-"-iieoo1 

i.e., temperature of 1 ev is equal to 11 600° K, 

In electromagnetic scale of frequencies (wave lengths) or, so 

to speak, in spectrum of radiation, usually there are distinguished 

several very unclearly defined ranges, which have definite names: 

radio wave, infrared, visible, ultraviolet, x-radiation, 7-quanta. 

This division was made historically and does not have any strict physi- 

cal foundation. Certain frequencies intermediate between intervals 

are even difficult to refer to one or the other heading. An exception 

*In Quantum theory it is accepted to use instead of frequency v 
"circular" frequency CD ■ 2irv and, accordingly, Planck"s constant h » 
■ h/27r. In this book we will use quantities v and h, as this is 
accepted in theory of radiation transfer and astrophysics. 
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is only the more or less definite, visible part of the spectrum: 

X ~ 7500-4000A, hv ~ 1.7-3.13 ev. In theory of thermal radiation it 

is proven that in state of thermodynamic equilibrium of radiation with 

substance, maximum of energy of spectrum with respect to frequency 

t-rlongs to frequency v, which is related with temperature by the 

formula hv = 2.82 kT, It is possible to say that frequency v is most 

characteristic for a body with temperature T => hv/2.82 k; therefore, 

comparison of frequency and temperature ranges immediately gives an 

idea of to what temperatures a given region of the spectrum correspons. 

Visible radiation is characteristic for bodies with temperatures of 

the order of 70000-130000 K. 

Electromagnetic field or light quanta possess not only energy, 

but also momentum. Momentum of quantum hv in absolute value is equal 

to hv/c. Direction of motion of quantum coincides with vector of 

energy flow of field — Poynting vector. 

Field of radiation filling space is described by distribution of 

intensity of radiation over frequencies in space and along directions 

of transfer of radiant energy. If we speak about radiation as a col- 

lection of particles — light quanta — then field can be characterized 

by distribution function of quanta, which is fully analogous to dis- 

tribution function of any other particles. Let us assume that 

^(v, r, fl, t) dv dr dfl is number of light quanta in spectral range 

from v to v + dv, which are located at time t in element of volume 

dr» near point r and have direction of motion in elementary solid angle 

dfl near unit vector 0. Function f is called distribution function. 

Every quantum possesses energy hv and moves with velocity c; there- 

fore, the quantity 

^Linear dimensions of elementary volume dr are assumed to be much 
larger than wave length X. 
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/, (r, 0. t)dvdQ** Ave/ (v, r, 0, t) rfv du] 

Is quantity of radiant energy In spectral range dv  flowing In 1 sec 
p 

through an element of 1 cm , which Is placed at point r perpendicular 

to directions of propagation of energy, which lie In elementary solid 

angle dfl near vector 0. I Is called spectral Intensity of radiation. 

Assigning functions I or f completely determines field of radiation. 

Quantity of radiant energy contained In spectral Interval dv and lo- 

cated In 1 cm of space at point r at time t, or spectral density of 

radiation. Is equal to 

^(r.<) = Av J /dQ = l \lvdQ. (2.1) 
«♦*)      («n) 

Let us Imagine a unit element with direction of normal n. Quanta 

intersect it from the left to the right and from the right to the left. 

Quantity of radiant energy in interval dv flowing in 1 sec through 

the element from the left to the right is equal to hvc / f cos 5- dO. 
2Tr 

where * is angle between direction of motion of quanta ft and normal 

nj integral is taken over right hemisphere, as the base of which 

serves the element of area (Fig. 2.1). Integral over left hemisphere 

is equal to quantity of energy flowing from the right to the left. 

Difference between unidirectional fluxes from the left to the right 

and from the right to the left gives total spectral energy flow through 

this element of area. Inasmuch as cos * has different signs in right 

and left hemispheres, spectral energy flow through element with normal 

n is equal to 

•Mr,/, II) = AVC J /cos«dO= [  /yCOsddQ, (2.2) 
(4«) (**) 

where Integral Is taken over entire solid angle. 

Flux is a vector quantity. The written expression (2,2) is a 

projection of flux vector onto direction n. The vector of spectral 
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flux Itself is equal to 

Äv-J/vOrfö. (2.3) 

where (2 is unit vector of direction of motion of quanta. 

With Isotropie distribution of radiation, when distribution 

function f and intensity I do not depend on direction 0, density of 

radiation is equal to 

C 

and there is no flux: Sv = 0 and projections onto all directions 

are also equal to zero (since in every direction there is transfered 

exactly as much energy as in the opposite direction). 

Total intensity, density, and flux of radiation are obtained from 

their spectral counterparts by integration of them over the entire 

spectrum of frequencies? 

(2.5) /=C/Vdv, U^iUydv,    Ä=C5vdv. 

Let us introduce now the idea of optical characteristics of a 

substance,* 

Amount of energy spontaneously radiated in i enr of substance in 

1 sec in the spectral interval dv is called spectral emlttance or 

radiation factor J . Usually gases radiate light in all directions 

equally, isotropically, since atoms, molecules, ets., are oriented 

and move in space in a random manner. Therefore amount of energy 

radiated in solid angle dfl in some direction is equal simply to 

J dfl - J dfl/4ir (Jv is calculated per unit solid angle). 

»Here and subsequently, when using terms "light," "light quanta," 
"optical" properties, we will not be limited, as is accepted in every- 
day useage, only to visible part of spectrum, but will carry these 
tenaa to any frequencies. 
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Sometimes emittance is referred not to unit of volume, but to 

a unit of mass. In order to obtain corresponding magnitudes, it is 

obviously necessary to divide J or J by density of substance p. 

If through substance there passes a beam of 

light, it is attenuated along its path. Attenu- 

ation occurs due to absorption of quanta, as 

well as due to their scattering, i.e,, deflec- 

tion from initial direction. Relative attenua- 

tion of parallel beam on element of path dx is 

.Fig, 2.1, Concern- P1*0?01^101"*1 to this element, i,e., 
ing the derivation .. 
of the formula for *#,--|M,4c. 
flux of radiant 
energy. Intensity of beam decreases after passage 

(2,6) 

over distance x from point x = 0 to point x by exponential law 

(2.7) 

Attenuation factor a    is composed of coefficient of absorption 

of light: total i    =  l/p, , with respect to absorption i      = 1/HV 

VHV8(1 - (III +i:b'1)'    Mean 

K * and scattering coefficient v , Reciprocals are mean free paths 

of light: total i = 1/u, , with 

and with respect to scattering i    -'■'VB'-'       ^'VR.   '   "vs- 

free paths characterize attenuation of beam of light with respect to 

the corresponding process per unit of path. Coefficients which are 

referred not to unit of path, but to unit of mass are spoken of as 

mass coefficients. Mass coefficients are equal respectively to 

h/p' ^va/p' Vs/P* 
Mean free path is the average distance which a quantum passes 

over before it is absorbed, scattered, etc. But quantum travels with 

*We now digress from processes of stimulated emission, about which 
we will be concerned below, and imply by *  the coefficient of true 
absorption. 

154 
       - — ■ ■nu«.^^--.^^...,.....^,^.^^^^,-.,» MaMätüiMa 



speed c, and therefore average time of "life" of quantum with respect 

to a given event Is equal to mean free path divided by velocity of 

light l/c. For instance, if on element of path, dx there is absorbed 

fraction dx/iva of quanta, then during the time dt there is absorbed 

fraction cdt/l. . 

Attenuation of beam of light is characterized by product of atten- 

uation factor and mean free path,  Dimenslonless quantity 

»*■• {pvdx,    dXy~\ 

is called optical thickness of layer x with respect to light of 

frequency v. Beam of light is attenuated by e times on an optical 

thickness equal to unity. In the case when scattering can be dis- 

regarded, optical thickness is 

tv=Vxvarfx,   drv = KVadx. I2«") 
0 

§ 2.  Mechanisms of Emission, Absorption and 
Scattering of Light in Gases 

Light quanta are radiated and absorbed during transitions of 

electrons in atomic systems: atoms, molecules, ions, electron-ion 

plasma, from one energy state to another. During absorption of a 

quantum there occurs excitation of the atom, molecule, etc.  So that 

emission of quantum occurs, it is necessary preliminarily to excite 

atom; atom loses excitation energy, transmitting it to the emitted 

quantum. Emittance is higher, the larger the number of excited 

atoms, i.e., the higher the temperature. 

In Fig. 2.2 there is depicted energy level diagram of simplest 

atomic system, consisting of proton and electron, which in bound state 

form an atom of hydrogen. As zero energy Is taken, as usual, the 

boundary between free and bound state of electron, so that in bound 
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State energy is negative. In bound state electron can be only at 

definite, discrete energy levels. Ground state of proton — electron 

system has energy E. » -13.5 ev, which is in absolute value to loni- 

zation potential of atom of hydrogen. In free state with positive 

energy (ionized atom of hydrogen) electron can possess any energy, 

so that energy spectrum is continuous. 

In qualitative sense, energy 

spectrum of complicated atomic systems 

does not differ from spectrum of the 

simplest system. 

All electron transitions can be, 

as this is accepted in astrophysics, 

subdivided into three groups according 

to the criterion of continuity or 

discreteness of energy spectrum of 

initial and final states of the atomic 

system: into bound-bound, bound- 

free, and free-free (all allowed 

transitions are shown in Pig. 2.2 

by arrows), 

Bound-bound transitions Include 

transitions of electrons within atoms, 

molecules and ions from one discrete 

level to another. In virtue of dis- 

creteness of energy levels of bound 

state of electrons, during such tran- 

sitions there are emitted and absorbed line spectra. In molecules, 

when simultaneously with electron transition there occurs change of 

f/ 

.Fig. 2.2. Energy level dia- 
gram of proton-electron sys- 
tem. E. = -13.5 ev is ground 

state of atom of hydrogen, 
E2, E, are levels with prin- 

cipal quantum numbers n ■ 
=2.3. E = 0 corresponds to 
boundary between 11..^ and 
continuous spectra. Arrows 
show possible types of tran- 
sitions: I) bound-bound; 
II) capture of electron by 
proton; III) lonization of 
atom; IV) free-free. 
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State of vibratlonal and rotational motions, there are obtained band 

spectra.* 

During bound-free transitions, electron as a result of absorp- 

tion of quantum obtains energy exceeding binding energy of It In the 

atom, molecule, or Ion and becomes free — there occurs photo-ionlza- 

tlon. Excess of quantum energy over binding energy Is turned into 

kinetic energy of free electron» Reverse transitions - capture of 

free electrons by ions in ionized gas(photo-recombination) — lead 

to emission of quanta. Inasmuch as free electron can possess arbi- 

trary (positive) energy, bound-free transitions given continuous 

absorption and radiation spectra. 

It is necessary to note that not any quantum may cause a photo- 

effect in an atom which is in a definite state. Energy of quantum 

should exceed binding energy of electron in this state. However, any, 

even the smallest quantum, can pull an electron from a sufficiently 

strongly excited atom, since with increase of excitation the electron 

becomes more and more weakly bound. 

In an ionized gas (plasma), a free electron traveling in electri- 

cal field of ion can emit a quantum without losing besides all of 

its kinetic energy and remain free, or absorb a quantum and obtain 

additional kinetic energy.  These free-free transitions are frequently 

called "braking"** transitions, since during emission the electron is 

decelerated In field of ion, losing part of its own energy in radia- 

tion. These processes also give a continuous spectrum of radiation 

*In molecules sometimes there occur transitions accompanied by 
change of only vibratlonal and rotational states without change of 
electronic state. Then there are emitted or absorbed quanta of very 
low energy, which lie in infrared region of spectrum. At temperatures 
of the order of several thousand degrees and  above, they play an 
insignificant role. 

**Trans.  Ed.  quotes. 
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and absorption. 

These processes can occur also during flight of an electron in 

field of a neutral atom. In distinction from field of ion, field of 

neutral atom very rapidly decreases with distance; therefore for 

process of emission or absorption of light, there is necessary close 

approach of electron to atom. Probability of "braking" process with 

participation of neutral atom is much less than with participation of 

ion. 

Coefficients of bound-bound and bound-free absorption are pro- 

portlonal to number of absorbing atoms located in 1 cnr of gas N. 

Magnitude of coefficient referred to one absorbing atom depends only 

on properties of atom, degree of its excitation, frequency of quantum, 

i.e., is a characteristic of the actual atom. This quantity >f /N =» 
p 

= a    has dimension of cm (dimension of nv    is 1/cm, dimension of N 

Is 1/cnr ) and has the name of effective absorption cross section. Its 

physical meaning is easy to understand by means of the following rea- 

soning. Let us assume that parallel beam of light of frequency v 

with cross section of 1 cm passes through absorbing gas. Absorption 

can be imagined thus as if every atom is replaced by some little opaque 

disk perpendicular to direction of beam; on hitting this "disk" the 

quantum sticks (is absorbed). 

If area of every disk is equal to a ,  and number of disks (atoms) 

per cnr is N, then total area of all disks, located in layer of gas 

2 ? 
with area of 1 cm and thickness dx, is equal to i cm Na dx. Let us 

select dx so small that disks located in layer do not overlap.  Then, 

obviously, during passage of light through such a layer there will 

"stick" a fraction of the quanta which is equal to ratio of opaque 

2 2 
area Na^ dx cm to total area 1 cm ; i.e., dl =» ~^vNav dx' Remembering 
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definition of coefficient of absorption (see formula (2.6)), we obtain 

that nv  - Nav> i.e., effective cross section a    is area of "opaque" 

(for frequency v) disk, corresponding to one absorbing atom. In 

exactly this way it is possible to speak about effective cross sec- 

tion of atom or some other particle for scattering of quanta. 

Bound-bound transitions are caused by quanta of strictly definite 

energy hv lying within extraordinarily narrow bounds. This energy 

must correspond to difference between energies of two levels in atom. 

Therefore, we speak of such absorption as selective. Effective absorp- 

tion cross sections of "isolated" atoms for these "chosen" quanta are 

extraordinarily great. For quanta of visible light they of order of 

10  cm in center of line (in middle of narrow Interval of selective 

absorption.* Such cross sections correspond to very small mean free 

IQ  -^ 
paths of quanta.  For Instance, for density N ~ 10 ^ cm ^ (order of 

density of atmospheric air), mean free path would be on the order of 

I = 1/H = 1/Na -■ 10 xu cm. 

Effective cross sections for bound-free absorption, i.e., for 

-IT     ""^  2 
photoeffect, are much less, on order of 10   - 10""w cm (i  ~ 

P IQ  -^v 
'- lO"^ - 10 cm at N ~ 10 ^ cm ^). These magnitudes pertain, of course, 

only to quanta which, in general, are able to pull electron from atom, 

i.e., energy of which is higher than binding energy of electron. 

In free-free transitions, for absorption of quantum it is neces- 

sary that electron fly at the time of absorption very close to 

♦Effective absorption cross section in center of line having natu- 
p ral width, of the order X , where X is wave length of quantum. In 

scale of wave lengths natural width of lines in visible part of spec- 

trum is on the order of 10 A » 10   cm (i angstrom (A) is equal to 
«»ft 

10" cm). Usually in gases width of lines are larger than natural, 
and cross section in center of line is accordingly less than x2. For 
greater detail see § 9 Chapter V. 
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ion — "collide" with Ion (free electron Is not able to absorb a quan- 

tum; It can only scatter it). Therefore, In this case, coefficient of 

so-called "braking" absorption is proportional to number of ions, as 
■5 

well as to number of free electrons in 1 cnr: Hhrak ~ ^^e* """^ is 

possible to speak about effective cross section of ion cr,  , = 

= HJ^QV/N, ~ N only in a conditional sense, since this cross section 

is proportional to density of free electrons. It turns out, however, 

that in case of incomplete lonization, coefficient of "braking" absorp- 

tion is proportional only to first power of density of gas, since to 

density is proportional the actual product N.N .  For quanta which 
+ e 

are the most common at a given temperature, coefficient of "braking 

absorption is approximately an order less than coefficient of bound- 

free absorption. 

In case of tatal lonization, when in gas there are present only 

nuclei and electrons (and bound-free absorption in general does not 

occur), coefficient of "braking" absorption is proportional to square 

of density of gas. 

Mainly free electrons scatter quanta* (if energy of quantum is 

great as compared to binding energy of electron In atom, then such 

an electron also can be considered as "free"). 

Quanta of no"C too high energies (much lower than self energy of 

2 
electron: m c = 500 ev, which are the only ones with which it is 

necessary to deal at ordinary temperatures, are scattered without 

change of energy. Effective scattering cross section is datermined 

8  2 by calssical radius of electron r0 and is equal to o^ = — rrv = 

= 6.65.10" ^  cm (this is so-called Thomson scattering cross section). 

*Let us note existence of effect of resonance scattering, in which 
bound electron absorbs quantum with transition into bound excited state, 
and then emits it in an arbitrary direction. Effective cross section of 
resonance scattering in center of line. Just as absorption cross sec- 
tion, is on the order of x2. 

160 



This cross section is very little; it corresponds to scattering 

mean free path z ~ 105 cm at density of electrons N ~ 1019 cm"5. 

During estimate of scattering length of large quanta, for which all 

electrons of atoms and molecules can be considered as free, by N we 

should understand the total number of electrons present in atoms.  For 

instance, in air of normal density N 1  = 2,67.10 ^ cm"5, and total 

number of electrons is 14.4 times as great.  Scattering mean free path 

is equal to 37 m. It is necessary to note that effective cross sec- 

tion of very large, megaelectron-volt quanta differs from Thomson mean 

free path. 

In incompletely ionized gas, scattering mean free path of quanta 

in continuous spectrum always is much larger than absorption mean 

>ee path.  Only in completely ionized and very strongly rarefied gas, 

when "braking" absorption, which is proportional to If", becomes small, 

is scattering important. 

Under "terrestrial" conditions light scattering practically 

always can be disregarded as compared to absorption.* Therefore, 

subsequently we will omit index "a" for quantities n , I   i  we will mean 

by them coefficient of absorption and absorption mean free path. 

Here we will complete general survey of mechanisms of interaction 

of radiation with substance.  To detailed account of these problems 

will be dedicated Chapter V. Here nowhere will there be needed by 

us specific expressions for coefficients of absorption, 

§ 5.  Equilibrium Radiation and Ideal Black Body 

Let us imagine an unbounded medium which is in a state of thermo- 

dynamic equilibrium at constant temperature T. Under steady-state 

♦Under astrophysical conditions scattering sometimes is even greater 
than absorption. 
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conditions field of radiation is also equilllDrium, Thermodynamic 

equilibrium of radiation is characterized by the fact that number of 

quanta or quantity of radiant energy emitted by substance in 1 sec 

in 1 cnr in given interval of frequencies dv and in given interval 

of directions dß is exactly equal to number of absorbed quanta or 

quantity of radiant energy absorbed by substance in the same inter- 

vals dv, dft. Field of equilibrium radiation is Isotropie, i.e., does 

not depend on direction and does not depend on specific properties of 

medium, but is a universal function of frequency and temperature. 

Spectral density function of equilibrium radiation U  was 
^ IT 

derived by Planck at the dawn of development of quantum theory. It 

can be obtained by the most natural means with help of quantum statis- 

tics, which is obeyed by a "photon gas" (see, for instance, [4]), 

Quantity of energy of equilibrium radiation of frequency v in 1 cnr, 

taken over unit interval of frequencies is equal to 

ü   ^**k*     i (2.10) 

«*T-1 

In virtue of isotropy, spectral intensity of equilibrium radiation 

is equal to 

,  ^v, 2fcv»  1  * (2.11) 

Distribution of energy of equilibrium radiation over frequencies 

which is given by Planck function (2.10) is depicted in Fig, 2.5 Max- 

imum of this distribution lies at energy of quanta hv   ■ 2.822 kT. 

With increase of temperature maximum is displaced in the direction of 

higher frequencies. In region of low frequencies hv « kT formula of 

*In astrophysical literature instead of I  there usually is used 
designation B . 
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Planck reduces to classical formula of Rayleigh-Jeansj 

Ü. bikT v«, Av < kT. 
(2.12) 

In region of large frequencies hv » kT we obtain formula of 

Wien: 
hv 

^P = ^«~". Av>*7. (2.13) 

Total density of equilibrium radiation is obtained by integration 

over frequencies from zero to oo of spectral density (2.10). Calcula- 

tion gives the known expression: 

where a = 2A /15trc = 5.67.10"^ erg/cm .sec.deg is Stefan-Boltzmann 

constant (U = 7.55-10"15 T0^erg/cm5). 

Proportionality of total density of 

equilibrium radiation to fourth power of 

temperature follows directly from second 

law of thermodynamics and the theorem 

known from classical electrodynamics 

that pressure of Isotropie field of 

radiation is equal to one third of energy 

density: p - Ur/^ Substituting this 

expression in general thermodynamic rela- 

tion T dS » de + p dV,» whereby specific energy we mean product of 

radiation density and volume e = U V, and noticing that dS is total 

differential, we will obtain U « const T . We should mention that 

relation p =» U /3 indicates that equilibrium radiation can be 

tf 
£ ** • 
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•Fig.   2.3.     Planck function 
"5     x —1 x>(e    - 1)     , where x = 

=» hvAT. 

»Here S is entropy of radiation. 
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considered from thermodynamlc point of view as ideal gas with adiabatic 

index 7 =* JA. 

Inasmuch as field of equilihriuta radiation is Isotropie, radia- 

tion flux at any point of body is equal to zero. This means that if 

we (mentally) place in the body a plane surface, then unidirectional 

radiation fluxes through surface from the right to the left and from 

the left to the right will be exactly equal to each other in absolute 

value and opposite in direction» The magnitude of unidirectional 

flux Itself, i.e., quantity of radiant energy flowing, let us say, 

from the left to the right in 1 sec through unit area will be obtained 

by putting in formula (2.2) the expression (2.11) for equilibrium 

intensity and integrating not over the entire solid angle, but only 

over a hemisphere. Unidirectional spectral flux is equal to 

(2.15) 
_   et^p  2«*v«  i 

el   Av 

Unidirectional flux integrated over spectrum is 
MM 

S9~\s*pdy—j^ar«. 
(2.16) 

Let us imagine a body with constant temperature T, in which there 
p 

is a cavity filled with equilibrium radiation. On 1 cm of surface 

of the substance in 1 sec from the cavity there falls radiation flux 

S . This flux, in general^ is partially reflected from wall of cavity, 

and partially passes inside and is absorbed by the substance (we will 

assume that it does not pass clear through the body — the body is 

not bounded). Let us designate reflectivity by R . and absorptivety 

of substance by A ; A =» 1 - R . Quantity of radiation passing from 

cavity to the inside of the body and absorbed in the substance is 
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equal to S »A^. In virtue of equilibrium, the same quantity of 

radiation J^ is emitted In 1 sec from 1 cm of surface of body In the 

direction of the cavity, i.e., J^ = Svp*Av' Absorptivity, reflectiv- 

ity, magnitude of emission from surface are characteristics of body 

and state of substance; however, the ratio: 

A_~       2nhv*       1 (2.17) 

does not depend on specific properties of body and is a universal 

function of frequency and temperature.  This statement is called the 

Kirchhoff law. 

Body, which completely absorbs all radiation Incident on it is 

called Ideal black body. For an ideal black body, by definition, 

R-, » 0, A = 1. From formula (2.17) it follows that from Its surface 

there emerges a spectral flux equal to S ; Integral over spectrum of 

flux is equal to S = aT . 

We will consider an unbounded solid medium with constant tempera- 

ture T, In which radiation is In equilibrium with substance, and 

again will divide it by an imaginary plane surface. Unidirectional 

fluxes through surface are equal to S . Quanta which Intersect sur- 

face from the left to the right are "generated" on the left of the sur- 

face, and those going from the right to the left are generated on the 

right of the surface. Let us mentally remove the substance from one 

side of the surface, let us say, from the right, assuming thus that 

temperature of substance on the left is not changed. Furthermore, we 

will assume that the medium possesses index of refraction equal to 

one. Just as the vacuum which will be formed on the right, i.e., the 

boundary does not reflect light. Then, afte-" "removal" of substance 

from the right, quanta do not arrive at all from the vacuum side, and 
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flux of quanta from the left to the right from the substance obviously 

will not be changed and will be as before equal to S . Thus, the 

plane half-space filled with substance with index of refraction equal 

to one and constant temperature T sends from the surface radiation 

flux S ; i.e., it radiates as an ideal black body with temperature T, 

§ 4. Stimulated Emission 

We will consider balance of absorption and emission of light in 

substance located in field of radiation I . Quantity of radiant 

energy in interval of frequencies dw and interval of directions dfl, 

absorbed in 1 cnr in 1 sec is equal to 

Jidydtt*? »  absorption per 1 sec per 1 cm .   (2.18) 

Quantity of energy spontaneously emitted by substance per 1 cm 

per 1 sec in the same interval dv dOj is equal to 

fidvdQ  =» spontaneous emission per 1 sec per 1 cm . 

Quantity of spontaneous emission (radiation factor J ) is 

determined only by properties of substance and its state: kind of 

atoms, temperature, on which degree of excitation of atoms depends, 

etc., and absolutely does not depend on whether there is radiation in 

space or not. This, however, does not exhaust the total quantity of 

radiation emitted by substance. 

There exists so-called stimulated or induced emission. Probability 

of stimulated emission of a quantum of given frequency and given dlrec-- 

tlon is proportional to intensity of radiation of the same frequency 

and the same direction at given point of space.  The existing quanta 

promote transitions of excited atomic systems accompanied by emission 

of the very same quanta. In quantum theory it appears that total 

emission probability of given quanta is proportional to the quantity 
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i + n, where n is number of ph       h definite direction of polari- 

zation located in the same phat      unto which the emitted quantum 

enters. This number is equal to n = L I /2hv .* Thus, total quantity 

of radiation emitted in 1 sec in i cnr in interval dv dfl, is equal to 

/,ifcdö(l+^i//)» total emission in 1 sec in 1 cm5. i2-1?) 

First term in parentheses corresponds to spontaneous emission, 

and the second — to stimulated emission. 

In state of thermodynamic equilibrium, emission and absorption 

of quanta of given frequency and direction exactly compensate one 

another, so that expressions (2.18) and (2.19) should be equated, where 

intensity of radiation I is replaced by the equilibrium quantity I 

Taking into account formula (2.11) for equilibrium intensity, we 

will find that ratio of emittance of any substance to its absorptivity 

is a universal function of frequency and temperature: 

■£--£-.?£.-£. (2.20) 

This relationship constitutes one of forms of Kirchhoff law. 

Formula (2,20) can be conveniently rewritten in the form 

Emittance in all directions is equal to 

A--W,-^,Mi--r'nr). (2-22) 

♦Phase volume corresponding to element dv dfl dr, in which there 
are located f dv dfl dr quanta, is dp dr, where dp is element of volume 
in momentum space. Inasmuch as momentum of quantum is equal to p » 

=» hvfl/c, dp =« p dp dfl = h^v dv dfl/c-5. Number of phase cells in 

element of phase space dp dr is equal to dp dr/h , and consequently, 
■»        2  2 

number of photons in one cell is equal to f dv dfl dr hrdp dr - c f/v = 

» c xyhv . Number of photons with definite direction of polarization 

is equal to half of this number, i.e., c I /2hv . 
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Kirchhoff law constitutes expression of general principle of 

detailed balance In reference to processes of emission and absorption 

of light. It permits calculation of emlttance of substance., If there 

Is known Its coefficient of absorption (and conversely). 

Existence of processes of stimulated emission. I.e., transitions 

of excited atom whose probability depends on number of "particles" 

(photons) already existing in final state of atom plus photon system 

Is characteristic for processes with participation of photons ("parti- 

cles") obeying quantum statistics of Bose. Namely, due to existence 

of such processes, distribution function of photon gas differs from 

distribution function of gas obeying classical statistics of Boltzmann, 

where number of particles with energy E is proportional to e"e^ , 

and not (ee^  - 1)"" , as for photons (e - hv). 

In order to explain this, we will consider the simplest case, when 

atom possesses two energy levels, e^ and e^ (so ^ Ei)' an^ transition 

from upper energy state to lower is accompanied by emission of quantum 

hv = e2 - e^, and transition from lower to upper is accompanied by 

absorption of quantum hv.    Probability of absorption, i.e., n ,  is 

proportional to number of atoms in lower energy state, which, according 

to the law of Boltzmann, is proportional to e     . Probability of 

spontaneous emission j is proportional to number of atoms in upper 

-EpAT 
energy state, i.e., e 

We will assume that stimulated emission does not exist. Then In 

equilibrium the number of events of spontaneous emission of quanta 

hv would be equal to number of events of absorption, i.e.. Instead of 

formulas (2,20) or (2,21), we would have equalities 
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but Jv ^ e * % ^ e * ao tllat 

^- - /Vp ■» const«~ «r B const e" 'XT. 

In other words, for intensity of equilibrium radiation, or which 

is the same, for distribution function of quanta, we would obtain law 

of Boltzmann, Just as for "usual" particles. In fact, law of Boltzmann 

is valid only for large quanta hv » kT in the Wien region. 

Only taking into account processes of stimulated emission, con- 

sideration of balance of emission and absorption of quanta leads to 

formula of Planck for distribution function of photons. In our example 

of an atom with two energy levels, we will thus obtain 

whence there follows the formula of Planck for intensity I  (for 

o^H+  2h^ N const «=« ■ ' ■ ) . 
c2 

From conducted reasoning it follows that role of stimulated 

emission as compared to spontaneous under conditions of equilibrium 

tends to zero as hv/kT-* oo, i.e,, in Wien region of spectrum. This 

we may see directly from formula (2,19), if we consider that during 

equilibrium in the limit hv/kT -»• oo, 

to 

Conversely, in Rayleigh — Jeans region of spectrum, where hv « kT, 

relative role of stimulated emission is greatJ in formula (2,19) 

so that ratio of probabilities of stimulated and spontaneous emissions 

is equal to liT/hv  » 1. 

It is necessary to note that in case when field of radiation is 
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non-equilibrium, presented considerations about comparative role of 

spontaneous and forced emissions in general are incorrect, since 

stimulated emission is proportional to actual Intensity of radiation, 

which in absence of equilibrium can be arbitrary. 

§ 5, Equation of Radiation Transfer 

We will form kinetic equation for distribution function of quanta 

of given frequency. Inasmuch as this function with accuracy up to 

the constant factor hvc coincides with intensity of radiation, it is 

possible to write equation directly for intensity. In such form, 

kinetic equation is usually called equation of radiation transfer. 

We will be interested in radiation of frequency v in unit interval 

of frequencies which propagates inside unit solid angle in definite 

direction fl. Let us consider balance of radiation in elementary 

cylinder with area of base da and height ds, which is located at 

given point of space in such a way that direction fl coincides with 

generatrix of cylinder and is perpendicular to its bases (Pig. 2.4), 

During the time dt into left base flows quantity of radiation 

I (0, r, t) da dt. From right base during the same interval of time 

dt there flows quantity of radiation (I + dl ) da dt. 

Intensity I is function of coordi- 

nates and time. Increase of intensity of 

beam of light during passage from left base 

to right base is composed of the local 

increase during the time of passage by 

Jig. 2.4. For derivation  light over path ds and of the increa8e 

of equation of radiation 
transfer. during passage from coordinate s to 

coordinate s + ds at given moment of time 
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Change of Intensity of beam occurs due to emission and absorp- 

tion of light with considered characteristics in our cylinder. 

(In accordance with remark made at the end of § 2,    light scatter- 

ing will be disregarded). Quantity of radiation emitted in cylinder 

during the time dt, according to formula (2.19)* is equal to 

h(}+ml*)dadaät' 

There is absorbed in it in the same time the quantity of radiation 

Kjly  da ds dt. By forming balance and dividing obtained expression 

by product of differentials dor ds dt, we will obtain equation 

We here replaced in left side partial derivative along direction 

hi  /ds by equivalent vector expression flVI , 

Combination in parentheses in left side constitutes simply the 

"particle" derivative of intensity with respect to time, i.e., time 

derivative of intensity of given packet of quanta (cf, with equation 

of motion in hydrodynamics (1.6)), 

We will transform right side of equation (2,24) by combining 

terms, corresponding to absorption and stimulated emission, inasmuch 

as they both are proportional to unknown function of coordinates 

and time — to Intensity of radiation. Let us moreover introduce into 

factor before I In term of stimulated emission in place of radiation 

factor J its expression in terms of coefficient of absorption (2.21), 

into which we will substitute formula (2.11) for equilibrium Inten- 

sity. Right side of equation will take form 

/.-Mi-*"")/,. [     0) 

Hence it is clear that stimulated emission can be treated as some 
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decrease of absorptlont part of quanta absorbed here also are emitted 

again with the same frequency and in the same direction, and probabil- 

ity of this "re-emission" ir equal to e v/kT. Physically such acts 

of "re-emission" in no way are apparent, and it Is possible in general 

to exclude them from consideration, if it is considered that coeffi- 

cient of absorption has somewhat smaller magnitudet 

M -W\ (2.26) 

Interaction of radiation with substance can be represented as 

if there exists only spontaneous emission and effective absorption 
t 

described by coefficient HV, corrected for stimulated emission. 

In new treatment Kirchhoff law (2.21) obtains form 

Introducing this expression into the right side of equation of 

transfer (2.24), we will write equation in following, final form: 

We Integrate equation (2.28) over all directions 0 ( over solid 

angle). Remembering definitions of density and flux of radiation 

(2.1), (2.2), we will obtain 

This equation can be considered as equation of continuity for 

radiation of given frequency. It expresses law of conservation of 

energy of radiation and is fully analogous to equation of energy in 

hydrodynamics written in "divergent" form (1.10). 

Equation of transfer of radiation (2.28) is a partial differential 

equation with respect to intensity as a function of coordinates, 

time, and direction of Iv(^/ t, fl) and describes field of non- 

equilibrium radiation. Usually thermodynamic equilibrium in the actual 
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substance is established very rapidly, so that substance can be con- 

sidered to be thermodynamically equilibrium at every point of space 

and at every moment of time. State of substance thus is characterized 

by two parameters, for instance temperature and density. Equation of 

transfer of radiation contains quantities depending on kind and state 

of substance; coefficient of absorption n^,  which depends on proper- 

ties of substance, its temperature and density, and equilibrium inten- 

sity I  which is a function only of temperature. 

Equation (2,28) describes, in particular, process of establish- 

ment of equilibrium of radiation with substance in time. 

Let us Imagine an unbounded medium with constant density which is 

initially cold, so that radiation is lacking. Let us assume that at ini- 

tial moment t = 0 substance is "instantaneously" heated to constant 

temperature T, which then is maintained constant in time. Let us see 

how intensity of radiation changes in time. Obviously, space gradients 

in this case are equal to zero, w = const, I  ■ const. Solution of 

equation (2.28) in this case has the form 

(2.30) M<Wv,(l-e-n 

i.e., intensity of radiation asymptotically tends to equilibrium, and 

relaxation time for establishment of equilibrium of radiation with 

substance is equal to t - 1/CH^ - l^/c  - lv/{± -  e"hv'lcT) c. For 

instance, at 1 ■ 1 cm at maximum of Flanck spectrum hv » 2.8 kT, t - 

-11 
- 3'10 ■L:L sec. 

§ 6. Integral Expressions for Intensity of Radiation 

We will find formal solution of equation of transfer of radiation, 

considering quantities depending only on state of substance I (T), 
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K'(T,p), as known functions of coordinates and time. Let us consider 

at first for simplicity the steady-state case, when distributions of 

temperature and density^ and also the field of radiation do not depend 

on time. We will be interested in radiation at point r of body with 

direction of propagation 0 (Pig. 2,5). Let us draw a ray through 

given point in given direction and designate coordinate along ray by 

s. Noticing that differential expression in left side of equation of 

transfer (2.28) is the total derivative of intensity of a given packet 

of quanta along ray of their propagation, we will rewrite equation in 

the form 

41. — +• X»/» Xy/yp. (2.351) 

This equation can be considered as ordinary linear equation with 

respect to intensity along the ray. Solution of it is 

Here Iv(s) is intensity I (r, fl), 

which is considered as function of coor- 

dinate s along ray. Integration over 

ray is conducted in general from "-CD, " 

in formula (2.32). 
(as shown in Fig. 2,5). By Iv0 is 

designated constant of integration. 

Let us clarify physical meaning of obtained solution. 

Radiation flowing per unit time through element of unit cross sec- 

tion at point s of the ray (per unit of solid angle) is composed of all 

quanta generated in tube of unit cross section along the ray. At point 

s1 on segment of ray ds1 there is generated a quantity of radiation 

jv ds» » H^IV_ ds', which propagates along ray ft in unit solid angle. 
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s 
Prom point s» to point s there reaches only a fraction exp [-/ H* ds"] 

s« v 

of this radiation; the rest Is absorbed along the path. Total Inten- 

sity Is composed of quanta generated on all elementary segments dsr. 

I.e., Is equal co Integral over the ray. If radiating body has finite 

dimensions, then It Is necessary to Integrate actually from boundary of 

body s0 to point s. Thus, there Is obtained first term In (2,52), 

Second term Is radiation entering body on boundary s0 from without, 

from some external, outside sources. Constant of Integration I 0 Is 
s 

Intensity of this radiation entering the body. Factor exp [-/ H' ds"] 
s« v 

takes Into account its attenuation along path from s0 to s due to 

absorption. Coefficient of absorption n* and equilibrium Intensity 

I  depend on point along ray due to dependence on temperature and 

density of substance, which in some way are distributed along the 

ray. If these functions are known, then finding of intensity at 

any point of the body reduces, as one may see from formula (2,33), 

simply to quadrature — Integration along the ray. 

We will generalize solution (2.33) to the non-steady-state case, 

when temperature and density, and consequently I , K' and unknown 

intensity I depend on time. Obviously, by moment t to point s there 

arrive from point s» quanta generated at earlier moment of time 

t "■ ■s—. In exactly the same way, on their path they are absorbed 

by substance at point s" in accordance with value of coefficient of 

s - sn absorption at the time of passage through this point t - . 

Therefore, non-steac"/-state solution of equation of transfer can be 

written in the form 

/•(•. 0 - $ W/v,),, ..j^MP [ _ J (x;^ ^i^d»'] d>'+ (2.33) 
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where actual value of boundary coordinate a0 is taken at the time 
s - s 

t , it is easy to verify by direct substitution that expres- 

sion (2,55) indeed satisfies non-steady-state equation of transfer. 

Prom formulas (2,32) or (2.33) it is clear that contribution of dis- 

tant sources in strongly absorbing medium to intensity at given point 

exponentially decreases with increase of distance. To point s there 

reach quanta generated only in the nearest neighborhood of point at 

distances not greater than several radiation mean free paths, or more 

exactly, at optical distances of not more than several units. This 

assertion becomes especially graphic if coefficient of absorption is 

constant along the ray. Then exponential factors acquire the form 

exp [ - U<fc'] =exp(-x;(Ä-Ol = exp f-i^] ; ^ * . 

The only exception, in principle, is the case of extraordinarily 

sharp change of temperature, when increase of emittance J = n'ly 

with distance from point has a stronger effect than absorption along 

the path with increase of distance passed over. However, in practice 

this almost never happens, and main contribution to integrals (2.32), 

(2,33) is given by segment of ray near considered point with magnitude 

on the order of several (two-three) radiation mean free paths. But 

light passes over such a distance in a very small time I'/c, which, 

as a rule, is considerably less than characteristic times during which 

there occurs noticeable change of state of substance (temperature and 

density); for instance, for mean free path of l' = 3 cm time 

—  —10 
l»/c ~ 10   sec.  It is much less than characteristic times with 

which it is necessary to deal in usual hydrodynamic flows. This is 

connected with the fact that usually speed of substance is much less 

than velocity of light. 
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Hie noted circumstance is very significant. It means that 

praqtically in all cases the field of radiation at every moment of 

time can be considered as quasi-steady-state, corresponding to instan- 

taneous distrihution of sources of emission and absorption, i.e., 

distribution of temperature and density of substance. 

In equation of transfer of radiation, consequently, it is poysible 

to omit derivative of Intensity with respect to time and to consider 

time as a parameter on which temperature and density of substance 

depend, i.e., I  and x^. Subsequently we will always start with such 

a simplified equation of transfer 

OV/,-K;(/V,-/V) (2.34) 

or its solution in form (2.32). 

§ 7, Radiation of a Plane Layer 

In general, transfer of radiation and radiant heat exchange 

affect state of substance, its motion or distribution of temperature 

in steady state. This Influence is connected with the fact that when 

emitting and absorbing light, substance loses or obtains energy, is 

cooled or heated. In general, state of substance is described by 

equations of hydrodynamics, which in the presence of radiant heat 

exchange should be generalized taking into account interaction of 

radiation with substance, Inasiuuch as radiation transfer itself 

depends on state of substance, its temperature and density, then. In 

general, system of equations describing substance and radiation con- 

sists of equations of hydrodynamics generalized in the appropriate 

way and equation of radiation transfer. 

In many cases, however, "reverse" influence of radiation on 

state of substance Is small, or can be considered by any approximate 
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method. For instance, at sufficiently low temperatures radiant heat 

exchange or loss of energy of body due to radiation are insignificant. 

Thus the jtate of substance practically does not depend on radiation, 

and problems of finding radiation field and description of state of 

substance are separated. State of substance is described, for instance, 

by equations of hydrodynamics, and field of radiation can be found at 

every moment on the basis of known distributions of temperature and 

density and known coefficients of absorption. 

As a rul1, practical interest in thia case is presented by deter- 

mination of not the entire field of radiation in medium (inasmuch as 

it all the same does not affect state of medium), but finding of 

radiation going out from surface of body, i.e,, the question about 

incondescence of a heated body, about brightness of its surface, 

spectrum of radiation, flux distribution by angles, etc. 

If there are known optical properties of substance, i,e,, coef- 

ficient of absorption K,'* as function of frequency, temperature, and 

density and distributions of temperature and density in the body, then 

the answer to all these questions is contained in integral formula 

for Intensity (2.52). 

If we are interested in radiation going out from surface of body, 

it is possible, without disturbing generality, to measure coordinate 

along ray s from surface into depth of body and to extend integration 

along the ray to infinity; 

-      .J^ (2.35) 
MO)-WIT»)« o ^^^ 

*We recall that we consider here only media with index of refrac« 
tion equal to one, which are gasses. 
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If body Is bounded, then outside of Its boundaries coefficient 

of (absorption is equal to zero and corresponding segment of integra- 

tion drops out. If body is bounded, but from without from the "rear" 

side into it there penetrates & radiation flux, then by extending 

integration over the ray to infinity we thereby include in the integral 

these "outside" sources of light. 

Let us consider several simple examples having practical interest. 

Let us assume that body occupies infinite half-space x > 0 and is 

bounded by a plane surface. Temperature of body is constant; coeffi- 

cient of absorption can change arbitrarily from point to point (but 
oo 

in such a manner that optical thickness of body / H» dx is infinite), 
0 ^ 

In this case intensity of radiation at the surface of body is 

equal simply to I^CT), since 

J* -. • 

Body radiates as an ideal black body with temperature T. 

Intensity I is quantity of radiant energy passing in 1 sec in 

unit of solid angle through unit area placed perpendicularly to 

direction of motion of quanta,♦ For a black radiator it does not 

depend on angle. Quantity of radiant energy going out in 1 sec through 

i cm of surface at angle $ to normal per unit of solid angle ( we will 

call this quantity radiative '.apacity of body i ** is equal to 

For a black radiator 

■-" -= ' ■  p o 
•Dimension of I is energy/cm »seesterad»frequency - erg/cm x 

rXTrt»£ad.       v 

' '»»We should not confuse it with radiative capacity of a medium J 
■or J^ 
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Let us consider radiation of plane layer of finite thickness d 

with constant temperature T and coefficient of absorption H*. 

Intensity of radiation at the surface in direction forming an^le 

* with normal (Fig, 2,6) is equal to 

= /Vp (1 - «~ co. ♦) Ä /vp (l _ e- ooa 0), 

« 
d 

where T = / x^ dx is optical thickness of layer in direction of nor- 

mal to surface. 

From formula (2,38) it is clear that intensity of radiation of 

layer of finite thickness is always smaller than equilibrium inten- 

sity. Spectrum differs from Planck spectrum Ivn(T) by the factor 
-T /cos * vp 

1 - e       , This factor depends on frequency due to frequency 

dependence of coefficient of absorption. It tends to 1 only as 

<i -*■ w.    Most sharply is expressed the difference of intensity from 

Planck intensity in direction of normal to surface, in which segment 

of ray with sources is minimum (is equal to d). Spectrum tends to 

Planck spectrum at large angles to the normal, when * -»• r/2, 

cos * -♦ 0, In dependence upon thickness of layer d, greatest dif- 

ference of the spectrum from Planck spectrum should be observed in 

the limit of an optically thin layer, i.e., at angles such that 

H^ d/cos * « 1, 

Expanding in this case the exponential function, we will find 

with accuracy up to terms of the second order of smallnesst 

/-/ ^ </ (2-39) 

180 



**<*) 

,Pig, 2,6. Diagram for 
problem about radiation 
of plane layer» 

Intensity at the surface is propor- 

tional to 1/cos *, and emissive power of 

layer thus does not depend on angle 

<?-/,coi#-A^fforcos.«>t,.   (2.40) 

It is necessary to note that the idea 

of "optical thinness" of layer depends on 

angle: there will always be found such large 

angles * •« r/2,  cos 5- « 1,  that the layer for these directions will 

be "optically thick," so that layer c T « 1 at large angles * *> t/2 

all the same radiates as a black body. At small angles, when 

T /cos * « 1 and layer is optically thin, it emits as a volume radia- 

tor; quanta generated at any point emerge from layer practically with- 

out absorption along their paths. In the layer there is no "self- 

absorption" and every element of volume introduces an identical con- 

tribution into the radiation going out from the surface. This serves as 

the basis for the term "volume radiator," An optically thick body 

radiates "from its surface," since quanta, generated in the depth do 

not emerge from the body; they are absorbed along their path. 

In many cases there presents interest not intensity of radiation 

at given angle, but radiation flux from surface of body, i.e., quantity 
p 

of energy going out in 1 sec from 1 cm of surface of body in all 

directions, This quantity is called brightness of surface (spectral 

or integral). 

Spectral brightness of surface, obviously, is equal to 

.*•-  J   co8«/v(0)rfO, (2.41) 

over hemisphere 

where Iv(fl) is given by formula (2,35)# * is angle between direction 

of propagation of radiation and normal to surface. 
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tfe will find brightness of surface of plane layer; thus we will 

consider temperature and coefficient of absorption as variables, but 

depending only on coordinate x (see Pig, 2.6). Let us replace in 

formula (2,55) ds by dx/cos * and Introduce optical thicknessj 

(2.42) 
rft;-x;<fe, xi^tx'ydx. 

Then 

*<     «  „  . (2#4?) /.W-jA,e-^^V.|>«>0. 

Let us place this expression in (2,4l) and integrate over angles 

(an - 2* sin * d*)j 

K/t «B        ty     ,        OS 1 t^ 

5,-2« \ cos« Bin 6dt\lyPe~™& £-fc~2n[ Iypdx'y{d(cost)e'st*. 

Introducing variable w ■ 1/cos * and taking into account the 

definition of the tabulated functions — exponential integral functions. 

-j«-£ £;(«)-\«-«*5t n-l. 2..., 
(2.44) 

and also replacing equilibrium intensity by equilibrium radiation 

density by the formula I  - cU /4ir, we will obtain 

(2.45) 

(2.46) 

d 
or for layer of finite optical thickness t - / M» dx, v      0   -v 

S^'jlUi&Wdxi. 

Using known property of exponential integrals 

•» 

\Et{t)di~±t 

we will obtain for semi-infinite body of constant temperature 

1S2 
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Aa we should have expected, spectral brightness Is equal to brightness 

of Ideal black body. 

Brightness of layer of finite thickness and constant temperature 

Is euqal to 

4jrt.!^?j£1(T;)dT;-^[l-2Äl(tv)l = 5,p(l-2£l(ty)j.    (2^8) 

It Is always less than brightness of Ideal black body of the same 

rature and tends to the ] 

For optically thin layer 

temperature and tends to the latter as T -* 03. 

and 

^--J?T,-J»,-2T¥, 2tv«l. (2.50) 
«^T, 

§ 8. Effective or Luminance Temperature of Surface 
of a Nonunlformly Heated Body 

Spectral brightness of surface of a nonunlformly heated body Is 

very conveniently characterized by effective or luminance temperature 

•P af* By the latter Is understood temperature of Ideal black body 

sending from Its surface In given section of spectrum precisely the 

same radiation flux as the considered real body. 

By comparing formulas (2,46) and (2.47), we will obtain expres- 

sion determining effective temperature In the plane case: 

> (2.51) 

or, substituting Planck function for U , 

(2.52) 

Effective temperature depends on frequency. Only in case of 
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ideal black body is it identical for all frequencies and equal to tem- 

perature of substance. 

It is possible to introduce effective temperature of integrated 

radiation of body over the spectrum, according to the definition 

^-rf*. (2.53) 

wnere S is Integrated flux going out from surface of body. Obviously, 

effective temperature of integrated radiation is a certain average 

magnitude with respect to spectral effective temperatures. 

We will see what the connection is between spectrum of radiation 

of body and frequency dependence of coefficient of absorption. 

We will consider optically thick body; radius of curvature of 

surface, let us assume, will be large as compared to mean free paths 

of radiation, so that body can be considered as flat. Let us assume 

that temperature falls toward the surface, as depicted in Pig. 2,7, 

i Radiation flux of frequency v 

going out from surface is determined 

by integral over sources (2,45). Due to 

self-absorption, which is taken into 

\n "S^ 

T^ 
v. 

'^c- 
~r'v/ 

i^TV —-.»'/ 

% 
|   I \ u 

.Fig. 2,7. Concerning the 
question about radiation of 
body with temperature fall- 
ing toward the surface. 

account by fast dropping with T' of 

exponential integral, main contribution 

to integral is given by layer on the 

order of mean free path l» near surface 

(with optical thickness T ^ on the order 

of unity). In other words, quanta going out from surface of body are 

generated mainly in layer near surface with optical thickneßs on the 

order of unity (more exactly, two-three units). This shell may be 

called radiating. Quanta generated in deeper layers are practically 
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completely absorbed before getting out of body. Effective temperature, 

as follows from formula (2,52), is equal to certain average tempera- 

ture of radiating layer. 

Quanta going out from surface which have those frequencies for 

which absorption is stronger, and mean free path is less are radiated 

in layers closer to surface and less heated. Conversely, more weakly 

absorbed frequencies emerge from deeper and more heated layers. Thus, 

if temperature of substance falls toward surface ('vs this usually 

occurs), effective temperature of more strongly absorbed frequencies 

is less than for more weakly absorbed ones. This is schematically 

depicted in Pig. 2.7, on which arrows shown "place" from which quanta 

of different frequencies are radiated. "Places" are tentatively 

referred to distances from surface equal to mean frse path of quanta. 

Spectrum of radiation of nonuniformly heated body differs from 

Planck spectrum — more, the stronger the frequency and temperature 

dependence of coefficient of absorption, and the steeper the curve 

of temperature near surface at distances on the order of mean free 

paths of quanta» 

In Pig. 2,8 there is sächematically depicted spectrum of radiation 

of body with temperature falling toward surface and inverse dependence 

of coefficient of absorption on frequency, with which low frequencies 

are absorbed more strongly than high frequencies. 

On the continuous spectrum there are drawn discrete lines corre- 

sponding to bound-bound transitions in atoms or ions. Coefficients of 

absorption in lines always are very gerat — considerably larger than 

in continuous spectrum. Therefore^ effective temperature in lines 

practically exactly coincides with temperature at the actual surface 
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of the body (lines are "cut" in spectrum of radiation of body). 

For comparison, in Pig, 2.8 

the dotted line shows Planck spectrum 

corresponding to Integral effective 

temperature, which is average with 

respect to spectral temperatures. 

In virtue of the definition of 

Integral effective temperature, areas 

bounded by solid and dotted curves 

are exactly equal. 

In Chapter V we will see that 

coefficients of continuous absorp- 

tion at high temperatures are not 

smooth functions of frequency, but 

.Fig. 2.8, Schematic represen- 
tation of spectrum of radiation 
of body with temperature de- 
creasing toward its surface. 
Low frequencies are absorbed 
more strongly than high ones. 
Dotted Una shows Planck spec- 
trum corresponding to average 
effective temperature of radia- 
tion. In the spectrum there 
are cut lines of selective ab- 
sorption. Flux at centers of 
these lines is practically 
equal to Planck flux corre- 
sponding to temperature of sur- 
face of body. 

experience Jumps. Accordingly 

there appear jumps also in spectrum of radiation of body,  (This is 

not shown in Pig, 2,8, which pertains to smooth dependence of H,/ on v). 

Frequently, during optical measurements of incondescence of heated 

bodies, there is used idea of color temperature. Color temperature 

is defined as the temperature of an ideal black body which would give 

ratio of brightnesses in two different spectral sections (for Instance, 

in red and blue regions of spectrum) equal to that measured by experi- 

ment. Using definitions of effective and color temperatures, it is 

easy to write relationship between them. Let us assume that luminance 

temperatures at frequencies v*  and Vo are T. and Tp, and color tem- 

perature is T.p, Considering for simplicity that both lines, v. and 

v2, lie in Wien region of spectrum, l,e., hv^/kT^ » 1, hv^/M^ » 1« 
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we will obtain 

>.>.i.-«S-£)..iÄ')> 

whence 

**?-%-%■ (S.54) 

i  

If temperature of body it* more or less constant In radiating 

layers for the whole main spectrum near the surface, color tempera- 

ture is frequently nearer to true temperature of body than luminance 

temperatures; this circumstance is used in pyrometry, during optical 

measurements of temperature of bodies. 

Let us note that in case of a nonuniformly heated "gray" body, 

for which coefficient of absorption H' does not depend on frequency, 

H* = x,», effective temperature of different frequencies all the same 

lepends on frequency» Only for very small quanta, lying in Rayleigh- 

Jeans region of the spectrum hv/kT « 1, does frequency drop out of 

formula (2,52). In this case effective temperatures for all these 

frequencies turn out to be Identical, 

§ 9. Motion of Substance Taking into Account 
Radiant Heat Exchange 

Above it was shown how there can be found field of radiation in 

body or radiation going out from surface of body, if state of substance, 

i.e., distribution of temperat'ire and density in the medium, are 

known. Let us consider how there is formulated problem of Joint 

determination of state and motion of substance and field of radiation 

in the case when transfer of racL'atlon and interaction of radiation 

with' substance render an essential influence on state and motion of 
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the medium (gas). Thus motion of substance will always be assumed to 

be non-relativistic, i.e., it will be considered that speed is much 

less than velocity of light. 

If temperature is not too high, and density of gas is not too 

low, energy density and radiation pressure are negligible as compared 

to energy and pressure of substance. Let us compare for estimate 

density of equil .^rium radiation U =  with thermal energy of 

unit of volume of monatomic gas E » ^nkT (n is number of particles in 

1 cnr ). For instance, at n = 2.67,10 " 1 cm , which corresponds to 

number of molecules in air of normal density, both energies coincide 

at a temperature of 900 000oK. In reality, energy of radiation becomes 

comparable with energy of substance at still higher temperatures, 

since during heating, atoms are ionized, which first, leads to 

increase of number of particles in 1 cnr and, secondly, adds to the 

thermal energy the energy expended in ionization,* Thus, in real air 

of normal density, energy of radiation is comparable with internal 

energy of substance only at a temperature of about 2 700 000oK, In 

strongly rarefied gas, energy of equilibrium radiation becomes com- 

parable with energy of substance at lower temperatures (roughly speak- 

ing, temperature at which both energies are equal is proportional to 

n /^). However, in this case^ during comparison of energies it is 

necessary to use caution, since in very rarefied gas mean free path 

of radiation is great, and if dimensions of gas mass are not great 

enough, density of radiation may be much less than equilibrium den- 

sity (see below). 

Pressures of radiation and substance are approximately in the 

same ratio as energies. Indeed, radiation pressure (during isotropy 

«About thermodynamic functions of gases at high temperatures, see 
Chapter III. 
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of field of radiation) p « U/5, and pressure of substance p ■ (7 -1)E, 

jwhere at high temperatures adiabatic index 7 usually has value in 
1 

interval from 5/5 to ~l.i5 depending upon element composition of gas, 

temperature, and density. 

Thus, at not too high temperatures and not too low densities of 

substance, energy density and radiation pressure practically do not 

affect energy balance and gas-djiiamic motion of substance. The influ- 

ence of radiation on energy balance and motion of gas is different: 

losses of energy by a heated body due to radiation and, in general, 

radiant heat exchange in the medium can become considerable. These 

effects frequently play a role at much lower temperatures, when energy 

and pressure of radiation are known to be very small. 

Cause of these phenomenon consists of sharp difference in 

velocities of substance u under usual conditions and velocity of light 

c; u « c. Due to difference in velocities, energy flows of substance 

and radiation can be comparable with each other, even if energy den- 

sity of radiation is much less than energy density of substance. For 

instance, in the extreme case, when all quanta move in one direction, 

energy flow of radiation is equal to S « Uc; flux of energy of sub- 

stance is on the order of Eu, i.e., Uc can be on the order of or 

greater than Eu even at U « E due to the fact that c » u. Energy 

flows of radiation and substance frequently are comparable even in 

the more real case, when field of radiation is relatively Isotropie, 

iand the resultant radiation flux S, which is equal to difference 

between unidirectional fluxes, is considerably less than its limiting 

value Uc, which corresponds to sharply expressed anisotropy of field 

lof_ radiation. 

I As will now be shown, magnitude of losses of energy or, conversely. 
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energy release in substance due to Interaction with radiation, are 

determined by divergence of radiation flux, so that comparison of 

energy flows of radiation and substance can characterize the role of 

radiant heat exchange in a medium. 

We will find quantity of energy q lost by a unit of volume of mat- 

ter in 1 sec by radiation. It is the difference between energy emitted 

by substance and energy of radiation absorbed by substance. 

Difference between emission and absorption of radiation of fre- 

quency v  (per unit interval of frequencies) and direction SI  (per unit of 

solid angle) in 1 sec in 1 cnr stands in right side of equation of 

transfer of radiation (2,28), In order to obtain total resultant 
3 

loss of energy by substance in 1 cm in 1 sec q, it is necessary to 

integrate this quantity over all solid angle and over all spectrum, 

i.e., 

?== J<fvJrfOx;(/VJ,-/v) = cC<*vx;(ffVp-£;).       (2«55) 

First term in parentheses corresponds to spontaneous emission, 

and second — to absorption after subtracting "re-emission." 

With help of equation of continuity for radiation (2.29), in 

which according to the earlier made remark about quasi-steady-state 

character of transfer of radiation it is possible to omit time deriva- 

tive, we will find that resultant loss of energy is equal to divergence 

of integrated flux of radiation: 

?-Jdiv5v<fv=.divÄ. ^2*5t^ 

If substance emits more than it absorbs, it loses energy by 

radiation (is cooled by radiation), and q > 0; if there is absorbed 

more energy than there is emitted, substance is heated by radiation 
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and1 »Mo«« of energy" la negative, q < 0 (I.e., energy release, which 
I , 

I Is pqual to *-q. Is positive), 

■ We will form equations of gas dynamics taking Into account radiant 

heat exchange, but disregarding energy and pressure of radiation. 

First equation — equation of continuity — remains unchanged. 

Also equation of motion does not change. Inasmuch as radiation pressure 
i 
will be disregarded. Only In equation of energy should there be 

; Introduced a term of losses of er.ergy by radiation (energy density of 

radiation and work of forces of radiation pressure will be dlsre- 
1 

jgarded). Equation of energy (1,10) will be written In the form* 

^(W^-^K'+f+£)J-* (2-57) 

.or, replacing q by divergence of flux S, 

40+s?)—«'K'+f+T)+<l-        (2-58) 

Thus, to total hydrodynamlc energy flow there Is added energy flow of 

radiation. If we transform gas-dynamic equation of energy to entropy 

form (see § 1 Chapter I), we will obtain 

where 2 Is specific entropy of substance. 

Finding of field of radiation and distribution of temperature in 
i 

medium under conditions when radiant heat exchange considerably affects 

energy balance of substance is connected with large mathematical 

difficulties. Differential equation of transfer with respect to 

coordinates (2.3^)* which describes field of radiation, is formulated 

for spectral intensity of radiation propagated In definite direction. 

Inequation of energy balance (2.57) there are contained quantities q 

[oap-S,?which are Integrated over spectrum, as well as over direction». 

' ~^±t is assumed that, besides radiant heat exchange, no sources of 
lenergy^ and^alflo no other irrevereiblft processes exist. 

cj-V 
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Thus, system of equations of transfer and energy has Integrodif- 

ferential character; It contains double Integration: over spectrum 

and over angles. 

Mathematical simplifications of Integrodlfferentlal system pro- 

ceed by way of approximate description of spectral and angular distri- 

butions, in order to avoid its "integral character," Influence of 

spectral distribution on energy balance appears in connection with 

dependence of coefficient of absorption on frequency. Exclusion of 

spectral characteristics from consideration is possible only if 

coefficient of absorption n ' does not depend on frequency: K' = K*. 

In this case of "gray substance," equation of transfer (2,34) after 

Integration over frequencies is written directly for intensity inte- 
oo 

grated over the spectrum I ^ / Ivdv: 

OV/-x'(/,-/), (2,60) 

and in formula (2,55)* for losses of energy by substance, it is also 

possible to produce integration over spectrum» 

,-K'5(/,-/)dQ-««'(^,-0). (2.61) 

In general, coefficients of absorption in gasses at high tempera- 

tures very strongly depend on frequency, and the idea of "gray mate- 

rial" constitutes a considerable Idealization, It is very useful 

in the sense that it permits clarification of behavior of phenomena 

which are not connected with spectral distribution of radiation. How- 

ever, in certain Important limiting cases, which we will discuss below, 

introduction in the appropriate way of coefficient of absorption K1, 

averaged over frequencies, which allows us to exclude from considera- 

tion spectral characteristics of radiation and to go over to formulas 

(2,60), (2.61), corresponds to the essence of the matter. 
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i To the question about approximate description of angular distribu- 

tiop of field of radiation will be dedicated the following two para- 

graphs, 

§ 10, Diffusion Approximation 

Losses of energy of substance by radiation q, as can be seen 

jfrom formulas (2,55)* (2,56), in explicit form do not depend on 

:angular distribution of radiation and are determined only by quantl- 

ities integrated over directions: radiation density or flux. If it 
1 

were possible to form instead of equation of transfer for intensity 

of radiation (which depends on direction) some other equations, which 

would directly be obeyed by quantities integrated over directions, 

density, and radiation flux, then question about angular distribution 

of radiation in examining of influence of radiation on state and mo- 

tion of substance in general would not appear. One such equation 

already exists 1 this is the exact equation of continuity (2.29), 

which in quasi-steady-state case states that» 

div5;-ex;(^vp-I7v). (2.62) 

The second relationship, which relates flux and density of radia- 

tion and closes the system of equations, can be obtained only approxi- 

mately. Equation (2.62) was found by means of integration of equation 

of transfer over angles. Let us multiply now equation of transfer 

(2,34) by unit direction vector A and again integrate over angles. 

'Noticing that integral of term^'I^ which does not depend on direc- 

tion, becomes zero, and taking into account definition of flux (2,5), 

we will obtain 

Jo.QWdQ.-x^;? (2»63) 
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In Isotropie field of radiation flux S » / 01 dfl becomes zero. 

Integral In left side of equality for Intensity I not depending on 

.angle Is easy to calculate* 

Equality to zero of this expression Indicates that Isotropy of 

field of radiation is connected with constancy of density In space. 

If field of radiation Is anlsotroplcal, flux and Integral (2,63) are 

different from zero. However, In case of weak anlsotropy. In first 

approximation Integral can be, as before, represented In form (2,64), 

If we consider Intensity weakly depending on angles to be constant. 

This gives approximate relation of flux to radiation density 

where Z« = 1/% ' Is mean free path for absorption of radiation (cor- 

rected for stimulated emission). 

If we divide both sides of equality (2.65) by energy of quantum 

hv, we will obtain relation between flux of quanta of given frequency 

J and their density N , which Is usual for process of diffusion of 

particles, 

lie 
flyW„ 0V 

'v* 

Coefficient of "diffusion" of quanta D Is analogous to coeffi- 

cient of diffusion of atoms or molecules; c Is velocity of "motion" of 

quanta, I * Is their mean free path. 

*We will find l~th component of vector Integral, replacing vector 
operator flv by coordinate expression fl. d/ax. and considering sum- 
mation over the twice met Indices? 

since / Iv dO - 4TrIv - cUv; hence there follows (2.64). 
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However, between diffusion of atoms and "diffusion" of quanta 

there is an essential distinction. An atom during collision does not 

disappear, but only changes direction of its motion (in an arbitrary- 

way for the case of Isotropie scattering); mean free path included in 

coefficient of diffusion is mean free path »/ith respect to collisions, 

A quantum passing on the average over distance i ',  is absorbed by 

substance, and under conditions of thermodynamic equilibrium of sub- 

stance its energy due to collisions with atoms, electrons, etc., is 

distributed in substance in accordance with laws of statistical equi 

librium. At the place of absorption there are emitted new quanta of 

different frequencies and in arbitrary directions. Considering pro- 

cess of "diffusion" of quanta of given frequency, we distinguish 

among the newly generated quanta only quanta of the same frequency. 

The process proceeds as if the quantum flew, was absorbed, and then 

again was "generated," and after "generation*' can fly with equal 

probability in any direction, which corresponds to process of Isotropie 

scattering of atoms during collision.» 

Just as during diffusion of atoms, condition of applicability of 

diffusion approximation is smallness of density gradient of radiation. 

The latter should change little at a distance on the order of mean 

free path of radiation l'. For small gradients field of radiation is 

almost Isotropie, and this condition was assumed at basis of derivation 

of diffusion equation (2.65). Really, to a given point quanta arrive 

*If we consider transfer of radiation, taking into account scat- 
tering of quanta, then during weak anisotropy, as before, there is 
obtained diffusion relationship of type (2.65), in which there stands 
mean free path corresponding to total attenuation factor, which is 
equal to sum of coefficients of absorption and scattering. If seat- 
te-ing is anisotropic, then. Just as during diffusion of atoms, in- 
atv. id of scattering coefficient there appears transport coefficient 
Hg(l - cos 0), where cos 6 is average cosine of scattering angle. 
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mainly from region with dimensions on the order of mean free p»th. 

If radiation density in this region is almost constant, then quanta 

arrive at given point from all directions equally, which leads to 

isotropy of field of radiation in ita 

Near boundary between the medium and vacuum, density changes 

strongly at distance on the order of mean free path, and anisotropy of 

angular distribution of quanta is great — quanta chiefly fly from 

body in the direction of the vacuum, since they do not proceed from 

the vacuum. Therefore, near boundary with vacuum, diffusion approxi- 

mation can lead to noticeable errors. 

Gradients of density are small and diffusion approximation is 

accurate in case of optically thick, bodies. If x is characteristic 

scale, on which density of radiation noticeably changes (x is on the 

order of dimensions of body), then diffusion flux in order of magnitude 

is equal to 

The greater the optical thickness of the body x/z• is, the less den- 

sity of radiation changes on mean free path (this change is on the 

order of l/^U ~ -j- U ), the smaller flux S , is as compared to 

quantity U c, and the more accurate the diffusion approximation is. 

If optical thickness of body is on the order of unity, I»/x ~ 1 

and S ~ cU . In case of an optically thin body 1'/x > 1, and flux 

estimated by diffusion formula would have to become larger than cU . 

In reality this is impossible and simply indicates the inapplicability 

of diffusion formula for optically thin bodies. 

Flux Sv never can be larger than cUv. Equality 3V - cU corre- 

sponds to the case when all quanta fly s trictly in one direction. 

i.e.. it corr« ssponds to the most sharply expressed an! sotropy. Quantity 
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cUv sometimes is called kinetic flux, Äatio of flux to kinetic 

S /ell , which in the diffusion approximation is on the order of inverse 

optical thickness of body I'/x, is a mea ure of anisotropy of field of 

radiation: during complete isotropy S^/cl^ ■» 0; if all quanta fly in 

one direction S^cUv ■ 1, Ratio S /cU always is contained within 

limits 0<—~- < 1. Dependence of flux on degree of anisotropy of 

angular distribution of radiation at a given density of it is schemati- 

cally illustrated by polar diagram for intensity (Fig, 2.9). 

0 Areas of all figures are identical and 

           correspond to density of radiation, and 

_ lengths of arrows correspond to fluxes, 

f it     j Fields of radiation of various densities can 

^— also lead to the same flux. The greater 

the density for a given flux, the smaller 

is S /cU , and the more Isotropie should be 

the field of radiation. 

Equations of diffusion approximation 

(2.62), (2.65) constitute a system of two 

differential cquatione! in two unknown 

functions of coordinatest density and flux 

of radiation. To them it is necessary to 

assign boundary conditions on boundaries 

between media with different optical pro- 

perties (with different "coefficients of 

diffusion"), Frc the condition of con- 

*•-•■ 

C_-D 
Fig, 2,9. Polar dia- 
grams for distribution 
of intensity of radia- 
tion over angle for 
various degrees of an- 
isotropy. Magnitude 
of intensity at given 
angle $ is character- 
ized by length of 
radius-vector drawn 
from center. Length 
of arrow characterizes 
value of flux. Equal- 
ity of radiation den- 
sities in all cases is 
schematically described 
by equality of areas of 
all figures. 

tinulty of intensity of radiation there 

follows continuity of density and flux on boundaries. A discontinuity 

in density In diffusion approximation (2,65) would imply an infinity 
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Fig. 2.10. Polar dia- 
gram for dlötrlbutlon 
of intensity on bound- 
ary x = 0 of body with 
vacuum. Vacuum on the 
right, medium on the 
left. 

of flux, and a discontinuity in flux would indicate radiation build-up, 

i.e., a non-steady-state character (see equation (2.29)). 

Special consideration is required by case 

of boundary between medium and vacuum. Inas- 

much as quanta do not proceed from vacuum^ 

field of radiation on boundary with vacuum 

is strongly anisotropic (all quanta fly only 

in the direction toward the vacuum), and, 

strictly speaking, diffusion approximation 

here is inapplicable. Approximate condition 

on boundary can be written proceeding from 

the following consideration. Let us assume (and this for optically 

thick bodies is not very far from the truth) that radiation going out 

from surface of body in a hemisphere directed toward the vacuum is 

distributed over angles isotropically; In the other hemisphere, inten- 

sity is equal to zero: quanta do not arrive from the vacuum (corre- 

sponding polar diagram is shown in Pig. 2.10). We obtain then that 

on boundary with vacuum 

^-T*» (2.66) 

where flux is directed along outward normal to surface. Factor 1/2 

appears as average cosine of angle of directions of motion of quanta 

for their Isotropie distribution in the hemisphere.* 

r/2 
♦Really,  S    - / ftl    dfl; S    -    /    cos *I    (*)  2Tr sin * d* - 2*1 «^ " 'v     * —v 

hemisphere v 2 

ir/2 
= 7rlv, but cUv =    /    Iv dfl ■    /    2ir sin * d*Iv - 2*1^, whence there 

hemisphere    0 
follows formula (2.66), 

Formula (2.66) formally ensues from relationships of the diffu- 
sion approximation. It is easy to verify that the following expres- 
sion for intensity leads to diffusion equations (2.62), (2.65): 
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§ ii, "Forward-Backward" Approximation 

We will consider one more method of approximate consideration of 

angular clstrlLutlon of radiation, which Is sometimes applied In two- 

dimensional problems of radiation transfer. This method Is known as 

the Schwartzschl.i d approximation or "forward-backward" approximation. 

Let us combine all quanta moving In the positive direction of x-axls 

at angles * from 0 to ir/2 ("forward") Into one group, and those moving 

In opposite direction ("backward") at angles * from -^ to TT In another 

group (Pig. 2,11). We will approximately con aider angular distribu- 

tions In each of the two hemispheres as Isotropie and designate Inten- 

sities In directions "forward" and "backward" by 1^ and I2 (Index of 

frequency v  for brevity will be omitted). Density and flux of 

[FOOTNOTE C0NT»D FROM PRECEDING PAGE], 

where * Is angle between direction 0 and direction of flux Sv. Taking 
x-axls In direction of flux, we will calculate unidirectional fluxes 
in positive and negative directions of x-axls. We will obtain 

^_*L+4. *_—**+£ (2-67) 

(it is clear that Sv » Sv+ + 3V-, as it must be). Applying these 

formulas to boundary between body and vacxium (x-axls is directed toward 
the vacuum) and assuming that unidirectional flux from vacuum S  «0, 

cUv 
v" 

we will obtain Sv - Sv+ » -—-, I.e., formula (2.66). Formulas (2.6?) 

have greater force than the expression for intensity. This can easily 
be verified if we extend formula for intensity to a point at the 
boundary. 

In direction of negative x-axls, for instance, cos ir = -1 and 
cUv 

Iv ""-s— < 0* which is physically senseless. The whole fact is that 

diffusion formula for intensity is suitable only for weak anisotropy, 
when second term in parentheses is much less than unity. 
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radiation thus are equal to 
a/2 n 

U~-!-ydQ~2. ][ /1smddd + ^. jj /1smd(fd = ^(/1+/,)l (2.68) 

n/2 n 

S=^cos<HdQ=2n J 71cos#sm0rfd+2n J /2cosdsindrfd = «(/,-/,).  (2'69) 

Hence,  Incidentally,  there Is graphically represented the degree of 

anlsotropy: 

rfr"2(/,+/,) ""Q for/i^/,. 

On boundary between medium and vacuum. If x-axls Is directed 

along outward normal to surface, we have Ip = 0 and ~ =» -i, i.e., 

condition (2.66). 

In order to form equation for average "unidirectional" intensities 

I. and Ip, we will average transfer equation for plane case; 

di 
C05*^=*'(/,-/) 

(2.70) 

over one and over the other hemisphere. We will obtain thus (average 

ioslne cos * - ± ö)
: 

T^-^'^-7«);  -44;-*'(W.). 
(2.71) 

0'fC 

#-«/? 

.Fig. 2.11. Polar diagram for 
distribution of intensity of 
radiation in "forward-backward" 
approximation. In this case 
flux is directed to the left. 

This pair of equations serves 

for determination of average inten- 

sities in both hemispheres. By 

adding and substracting them, it is 

easy to go over to equations for 

density and flux (I - cU Air;: 
p ry 

£-H'(tf,- ü); •y-'-Tir- (2-72) 

The first of the equations la 

exact continuity equation (2.62), and the second one coincides with 
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approximate equation of diffusion approximation (2.65), with only the 

difference that here "coefficient of diffusion" is equal to l »cA 

Instead of I'c/?. 

By considering equations (2.71) as linear differential equations 

In functions I. and I«, it is possible to write their solution in 

Integral form: 

A = J /, exp [ - 2 (T' - T)J 2 rft'; /, = J /, exp [ - 2 (t - T')I 2'dx'. 

Here coordinate x is replaced by optical thickness by the formulas: 

. * 

rft«x'dz, t- {n'dx. 

By adding and subtracting expressions for 1^, and !„ and substi- 

tuting I =« cU /^TT, we will obtain approximate Integral formulas for 

density and flux In the "forward-backward" approximation, 

^"T S Ufg'^-^2dx+± ( Utfi~K-'')2dx, (2.73) 

In general, the diffusion approximation In case of weak aniso- 

tropy Is better founded than the "forward-backward" approximations, 

which little differs from it. However, density and flux in diffusion 

approximation are impossible to represent in Integral form without 

contradicting differential equations, as can be done in "forward- 

backward" approximation. Therefore, sometimes, when Integral form of 

equations is more convenient, it la more advantageous to use the latter 

approximation, 

§ 12. Local Equilibrium and Approximation 
of Radiant Thermal Conduction 

In an infinite medium with conatant temperature in steady state. 
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radiation is thermodynamically equilibrium. Intensity of it does not 

depend on direction, and is determined by formula of Planck, To a 

certain point of space there arrive quanta generated in neighborhood 

of this point at distances of not more than several mean free paths; 

quanta generated far off do not reach the point; they are absorbed 

along their path. Consequently, in creation of equilibrium intensity 

at a given point, there participates only its immediate environment. 

Even if temperature far off is different from temperature of this 

neighborhood, this in practice does not affect intensity of radiation 

at the considered point.  This means that if in a sufficiently extended^ 

optically thick medium temperature is not constant, but changes suf- 

ficiently slowly with distance, so that its changes are small at dis- 

tances on the order of mean free path of radiation. Intensity at some 

point of space will be very close to equilibrium on temperature which 

corresponds to temperature of the given point.  Thus intensity will 

be nearer to equilibrium, the less temperature changes at distances 

on the order of mean free path. In particular, radiation will be 

nearer to equilibrium at those frequencies which are absorbed more 

strongly, and for which mean free path l' is less. If temperature 

gradlen*: is so small that changes of temperature are small at dis- 

tances on the order of the largest of mean free paths Z« for all fre- 

quencies playing an important role in equilibrium radiation of given 

temperature, then radiation will be equilibrium in practically the 

whole spectral interval which is characteristic for temperature of the 

given point. Intensity of radiation depending upon frequency will 

thus be described by Planck function with temperature of this point. 

Such a state, when radiation at every point of medium with 

variable temperature is very close to equilibrium, radiation, which 
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corresponds to temperature of the point, is spoken of as local thermo- 

dynamic equilibrium of radiation with substance. 

Condition of existence of local equilibrium — smallness of 

gradients in an extended, optically thick medium — serves at the same 

time as Justification of the diffusion approximation in examining of 

radiation transfer. In the diffusion appro imation, radiation flux 

is proportional to gradient of radiation density. But if density of 

radiation is close to equilibrium, then it Is possible approximately 

ito replace true density in formula for flux by equilibrium density at 

.given point. Thus, under conditions of local equilibrium, spectral 

flux is approximately equal to 

Total flux is 

(2.75) 5= JfiUv« —|-C CVU^dy 

We will take from under the integral sign a certain mean value of mean 
en 

free path, which we will designate by z, If we consider that / U dv > 

U =» 4aT /c, then formula (2,75) gives 
0 ^ 

s-^vu^-^n. (2-76) 

Energy flow of radiation under conditions of local equilibrium is 

proportional to temperature gradient; i.e., radiation transfer has the 

character of thermal conduction or, so to speak, radiant thermal con- 

duction, where coefficient of thermal conductivity is equal to  , 

and depends on temperature. 

Loss of energy of substance by radiation q according to formula 

{2,56) is equal to divergence of flux of radiant thermal conduction, 

exactly as in the case of usual molecular thermal conduction, and is 
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determined only by temperature of substance at given point, average 

mean free path, which for given substance is function of temperature 

and density, and by their derivatives with respect to coordinates. 

Comparison of formulas (2,75) and (2.76) gives law of averaging 

of mean free path over spectrum which leads to correct value of flux 

of radiant energy under conditions when radiant heat exchange has 

character of thermal conduction. Noticing that U  and U depend on 
vp    P 

coordinates only through dependence on temperature, we will obtain 

U^  \^ (2-77) 
/ = -«- 

3L fdu,p 

0 

By differentiating equilibrium density of radiation taken by the 

Planck formula with respect to temperature and going over in the 

Integral to dimenslonless variable of integration u => ~, we will 
iCJ, 

find law of averaging of mean free path: 

? (2,78) 

6 

where weighting factor G(u) is equal to 

Quantity I,  obtained by means of averaging of mean free path 1 ' 

with weighting factor G(u), called Rosseland average mean free path or 

»imply Rosseland mean free path. If we express mean free path l1, 

corrected for stimulated emission, in terms of coefficient of true 

absorption l^  = 1/K^ = 1/K (1 - e"u), then formulas (2.78), (2.79) can 

be rewritten In the form 

(2.80) 
l< \±G'(u)du,   G'W-^i*^ 
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Rosseland weighting factor has maximum at hv « 4kT, i.e., main 

role in transfer of energy is played hy large quanta with energy a 

few times higher than kT, 

According to the formula (2.76), radiation flux is greater, the 

larger the coefficient, of thermal conductivity, i.e., the longer the 

mean free path. One should not forget that this dependence is accurate 

only as long as mean free path is not too great, in order that there 

is not violated the condition of local equilibrium and formula (2.76) 

has meaning. As we will see later in the opposite limiting case, 

when mean free path of radiation is larger than characteristic dimen- 

sions of the body, radiation flux, conversely, decreases with increase 

of mean free path, 

§ 13, Interrelation of Diffusion Approximation and 
Approximation of Radiant Thermal Conduction 

Usually in astrophysics it is accepted to identify ideas of 

diffusion approximation and radiant thermal conduction with each 

other. This is connected with the fact that in optically thick bodies 

with small gradients, such as stars and stellar photospheres, there 

always are simultaneously satisfied conditions leading to weak 

anisotropy of field of radiation, i.e., to diffusion coupling of 

flux with gradient of radiation density, and to existence of local 

equilibrium, i.e., possibility of replacement of Uv by U . Estimate 

shows that, in general, for small gradients in optically thick bodies, 

deviation from local equilibrium is even less than degree of aniso- 

tropy, i.e., if diffusion approximation is accurate, then local 

equilibrium all the more so exists. Really, let us assume that body 

has dimensions on the order of x, which are the characteristic scale 

for gradients of temperature, density and radiation flux. From 
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equations of diffusion approximation (2,62), (2,65), it follows that 

in order of magnitude 

"T~ % ' ^--ctfv, 

whence 

If degree of anisotropy, which is characterized ratio of diffu- 

sion flux to kinetic flux, S /cU « l^/x, is small and I'/x « 1, then 

relative deviation of density of radiation from equilibrium is a 

quantity of the second order of smallness. 

However, considering problems with more complicated conditions 

than in stellar photospheres, it is convenient nevertheless to draw 

a clear line between diffusion approximation and radiant thermal 

conduction approximation, meaning by the diffusion approximation only 

a method of approximate description of angular distribution of radia- 

tion in which radiation flux is assumed to be proportional to gradi- 

ent of true density, even if it very strongly differs from equilibrium. 

This can be considered as a method allowing us to clarify properties 

of phenomena of transfer of strongly non-equilibrium radiation which 

are not connected with character of angular distribution of quanta, 

since strict calculation of the latter is connected with large 

mathematical difficulties. Diffusion approximation, which leads in 

certain cases to considerable errors, as a rule, nevertheless, does 

not distort qualitative picture of phenomena of radiation transfer, 

even when distribution over angles is strongly anisotropic. This 

permits us to use it for approximate solution of different problems 

in which radiation is essentially non-equilibrium, and use of 
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T, 

Pig, 2.12. Schematic profile 
of temperature In shock wave. 

approximation of radiant thermal conduction, which subjects temperature 

of substance to corresponding equations, frequently contradicts physi- 

cal meaning. 

Let us give an example. Let us 

assume, that we are Interested In 

field of radiation In body with a 

sharp Jump of temperature on the sur- 

face dividing highly heated and cold 

regions, as Is shown In Fig. 2.12 

(case which Is typical for a shock wave). In region with high tempera- 

ture, density of radiation U. Is great and on the order of equilibrium 

U . ■ 4crTi/c. In region of low temperature quanta practically are not 

emitted, and density of radiation In It Is determined by flux going 

out from surface of heated region, i.e., density of radiation also 

is proportional to IL and much higher than equilibrium U 0 ■ 4aT0/c, 

since T^ » TQ. This case, as we see, is extraordinarily far from 

local equilibrium and radiant thermal conduction. Meanwhile, diffusion 

approximation for description of angular distribution leads to qualita- 

tively correct result, which is that if cold medium absorbs light, 

then density and radiation flux drop according to distance from heated 

surface into the cold medium, where scale of distance for noticeable 

attenuation of these quantities is mean free path for absorption of 

quanta in cold medium. Thus, in this case diffusion equations in 

cold medium not emitting quanta take the form 

iS, ctf. 
^—^ 3 iz 

or, in terms of optical thickness measured from temperature Jump x 
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-j—«=—Cl/v. Ov = V 

rftv v' v~      3 dTv * 

These equet.lons give solutions for density and flux: 

cVv   - /IT, Sy**-^~e v. 
/3 

whlch qualitatively correctly reflects drop of these quantities. 

Exact consideration of angular distribution, which Is possible 

In the given simple case, leads to a somewhat different law of decrease 

of flux and density of radiation In cold region containing not usual, 

but exponential Integrals (see work [5]): 

.Sy~£|(Tv).  tfv~£,(Tv). 

At optical distances from temperature jump on the order of one 

or several units, exact formulas give values of the same order as 

diffusion formulas. If we In the considered problem used approxima- 

tion of radiant thermal conduction, then we would have. In particular, 

the temperature jump of the substance being spread out since with 

temperature jump flux S ~ dT/dx turns out to be infinite. 

In general, diffusion approximation always gives qualitatively 

reasonable results. For Instance, in such an extremely "non-diffusion" 

case as when there is extremely pronounced anisotropy of angular dis- 

tribution of quanta, and all quanta move in cold medium in one direc- 

tion, flux is equal to 3 = cU . From exact continuity equation 

(2.62) it is obtained thus that flux, as during diffusion, is propor- 

tional to gradient of density S » "^T"^ (x-axis is directed along 

light beam) with proportionality factor three times as large as usual 

coefficient of diffusion. This case of pure absorption of parallel 

beam of light in a non-radiating medium has an exact solution: 
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which differs from solution in diffusion approximation only by the 

numerical coefficient Vj in exponent of the exponential and coefficient 

1/1/3 in the relation between flux and density. 

Certainly, quantitative distinction for large T » 1 is huge, 

but qualitatively the diffusion approximation gives a correct physical 

result, and for TV ~ 1 even the numerical error is not so bi^. 

§ 14, Radiation Equilibrium in Stellar Photospheres 

Study of distributions of temperature and field of radiation 

in peripheral layers (photospheres) of stationary stars for the pur- 

pose of calculation of luminosity of stars was the classical problem 

on the basis of which there was built the theory of radiation trans- 

fer and developed methods of solution of equation of transfer.» 

For us this problem is interesting not only as a classical object 

for application of theory of transfer of radiation, but also as a 

model, to which leads, as will be shown in Chapter IX, to some extent, 

the problem about cooling of a large volume of heated air by means of 

radiation. Stationary stars are huge gas masses heated to high tem- 

peratures, which vary from ten thousand degrees on the surface to 

millions and tens of millions of degrees in central regions. Mechani- 

cal equilibrium of gas is attained due to balancing of forces of pres- 

sure, which tend to lead to dispersion of the gas sphere, by gravi- 

tational forces which prevent dispersion. 

The heated gas sphere — star — radiates from its surface. Loss 

of energy is replenished by energy release due to nuclear reactions 

which occur in central regions of the star. Substance in stationary 

*See detailed account of these problems and references to litera- 
ture in works of V. A. Ambartsunyan [i] and Unsaid [2]. 
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stars is motionless; there is no hydrodynamic motion. Energy released 

in center is transferred to periphery of star only by radiation and 

departs into space in the form of radiation. Inasmuch as in peripheral 

layers there are no nuclear reactions or energy releases, steady state 

in them is attained due to full compensation of emission and absorption 

of light in every element of volume: loss of energy of substance by 

radiation q is equal to zero and temperature at every point is con- 

stant in time.* 

Equality of emission and absorption of light and absence of 

losses by radiation are spoken of as radiation equilibrium of star. 

From condition of radiation equilibrium q = 0, it follows that diver- 

gence of radiation flux div S also is equal to zero. Total flux of 
p 

radiation through spherical surface of any radius r, ^Trr S, is con- 

stant and is equal to quantity of energy released in center per/unit 

time (S ~ i/r ), Distribution of temperature and density of gas over 

radius of star is determined by means of Joint consideration of 

mechanical equilibrium and radiation transfer. However, in examining 

of distributions in photosphere, the problem to some extent is divided 

into two stages. Distribution of temperature over optical coordinate 

can be found only from consideration of radiation transfer, without 

knowing distribution of density over radius. Then, in case of neces- 

sity, it is possible to go over to distribution of temperature over 

radius by making use of the conditions of mechanical equilibrium and 

»Steady state of star and invariability of distributions of temper- 
ature and other quantities over radius in time does not mean that stars 
do not evolve. When we speak about steady state in reference to prob- 
lem about radiation transfer, we consider the invariability of state 
during a time on the order of the time of heat transfer from center 
of star to surface. 

Let us note that condition of radiation equilibrium q =» 0 replaces 
in a given concrete problem the energy equation of hydrodynamics (2.57). 

10 
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coefficient of absorption of light as a function of temperature and 

density. 

We will formulate problem about distribution of temperature and 

radiation transfer In photosphere of star. Since we are Interested In 

surface layers, thickness of which are much less than radius of star. 

It Is possible to disregard their curvature and to consider the photo- 

sphere to be flat. Let us direct axis x along outward normal to sur- 

face of star (Fig. 2,1.?), and write equation of radiation transfer for 

the plane case: 

where * Is angle between direction of propagation of radiation and the 

x-axis. To this equation is added condition of radiation equllibriumi 

(2.82) 

and also the boundary condition on the surface, for x » 0, which is 

that quanta do not arrive from the vacuum: 

* 00 

^ - J rfv J <«lx; (/vp -/v)« e Jrfvx; (ÜVJ) - CTv) - 0, 

n (2.83) Mx-0. d)-0 forY<«<n. 

If coefficient of absorption of various frequencies H^T, p) 

depends on density of gas in identical manner, i.e., if it can be 

represented in the form ^(T, p) - y{vt  T) f(p), which usually is the 

case In reality, then by means of introduction in place of x a new 

coordinate, differential of which is dy - dx f(p), and which corre- 

sponds to optical coordinate, it is possible to exclude from problem 

the question about distribution of density of gas over x and to look 

for distribution of temperature and intensity of radiation along this 

new optical coordinate y. System (2.8l)—(2.83) completely describes 

these distributions. The problem possesses one arbitrary 

9 
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parameter — radiation flux S, which In the plane case la constant 

(q = dlv S ^ ^— = 0)» Flux S Is equal to flow of energy supplied 

from infinity x = -co, from within the star, and actually is determined 

by energy release in center of star. At the same time, flux S con- 

stitutes flow of radiant energy going out from surface of star, i.e., 

integral brightness of surface. 

Formulated problem in general pre- 

sents very large mathematical diffi- 

culties. The main one of them is that 

equation of transfer is written for t -* 

spectral Intensity I , whereas condition 

,Fig, 2.13. On the problem 
about radiation transfer in 
stellar photospheres. 

of radiation equilibrium has a character 

which is integral over the spectrum. 

For simplification of problem we will introduce into consideration a 

certain coefficient of absorption H1 which is average over the spectrum 

(which is equivalent to the assumption about "grayness" of the medium) 

and will integrate equation of transfer (2,81) over the spectrum. We 

will obtain for integral intensity I » / I dv the equation 

eos«-^ S-~x'(/,-/).  /p=Uprfv = ^ aT* 
n 

(2.84) 

Passing over to the optical coordinate, which is measured from 
x 

surface into depth of photosphere: dx - -x'dx, T - -/ n'dx, we will 

obtain 

eoBt—^I-ftiT). (2.85) 

Boundary condition (2,85) now takes the form 

/(T-0. ^«Ofor ^<«<JI. (2,86) 

:iz 
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and condition of radiation equilibrium (2,82) 

(constant flux S is equal to S ■ / cos * I dfl). 

In spite of anisotropy of radiation, integral of intensity over 

angles, i.e., density of radiation at every point. Is equal to equi- 

librium quantity U , More correctly, temperature of substance at 

every point, which is controlled by radiation transfer. Is established 

in accordance with radiation density at given point u « U , Even in 

simplified formulation the problem of solution of system (2.85)—(2,87) 

(so-called Milne problem) from mathematical point of view is very 

complicated. Approximate solution of it will be presented in the 

following paragraph. Now we will derive the integral equation 

equivalent to this system, which served as a basis for finding of the 

exact solution. 

We will use integral expression for intensity of type (2.52^ which 

in plane case can be written in a form which directly follows from 

equation (2«85)# if we consider it as linear differential equation in 

It 

•/(♦, t)*5/,rr(f)irar5-.^ 4>d>o.       (2.88) 

/(e.t)--j/Pir(t')ir^^i *>*>«. (289) 

First formula gives intensity of radiation propagating in the 

direction toward the surface. Integration is conducted from T - 00, 

inasmuch as photosphere is assumed to be semi-infinite. Second formula 

corresponds to radiation going into the depth; thus it is considered 

that quantum does not arrive from the vacuum. 

^13 
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We will calculate density of radiation IJ = — / IdQ, using dur- 

ing integration over * from 0 to r/2  the first formula, and in the 

interval ^ < * < ir - the second formula: 

iv«       a> x'-x n % x'-x 

0       t n/2      o 

By changing order of integration, introducing into first integral 

the new variable w =• i/cos *, and in the second integral w = -1/cos *f 

taking into account the definition of exponential integrals (2.44) 

and replacing I = cU /47r, we will obtain 

(2.90) 

^ = 4 J UpEl(t'-x)dx'+± J UpE^x-x^dx'. 
» t 

Taking into account condition of radiation equilibrium u = U ~ T , 

we will finally obtain integral equation for equilibrium density U 
h P 

or, which is the same, for T i 

, ? (2.91) 
üp(x)^\up(x')Et(\xt-x\)dx'. 

Let us write out for reference purposes the integral expression 

for flux in the plane case, which is calculated analogously to 

density:* 

•■ * (2 92) 
.y--J- J UpEt(x'-x)dx'—^ I üpEtix-x'}dx\ 

From equation (2»91) it is clear that solution U (T) is determined 

*For point T = 0 this formula already was obtained above in § 7 
(2.45). 

It is interesting to compare exact formulas for density and flux in 
plane case (2,90), (2.92) with those obtained in "forward-backward" 
approximation (2.75). The latter differ from the first by replace- 
ment of exponential integrals by usual ones and also In numerical 
coefficients. 
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with accuracy up to the constant factor. This factor corresponds to 

arbitrary value of flux. S, 

§ 15. Solution of ProlDlsm of Flat Photosphere 

Let us find solution of problem formulated in preceding paragraph 

in the diffusion approximation. After averaging equation of diffusion 

approximation over spectrum and introducing average coefficient of 

absorption n' and mean free path z» = l/w1* we will write these 

equations in the form 

c   I'e iU 
*-—TAT' (2.94) 

or, replacing coordinate x by optical thickness tt  dr - -H,dx 

§-Ha-0,). (2-95) 

S.i%. (2.96) 

Equation (2.95) demonstrates equivalence of conditions of radia- 

tion eaulllbrlum U « U and constancy of flux S ■ const. In this 
P 

case condition of radiation equilibrium leads to strict equivalence 

of diffusion approximation and approximation of radiant thermal con- 

duction, since due to equality U » U 1 

- ,*Vp    4 rfr« (2.97) ,S—i-rfT-^-rfT- 

By solving this equation and using boundary condition (2,66) In 

order to express flux S in terms of temperature of surface T0: 

we will obtain distribution of temperature and density of radiation 
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over optical thickness 

4 
Effective temperature of surface by definition S « aT f is equal to 

Tef =>2 T0«i.2 To. 

Effective temperature is somewhat higher than true temperature 

of surface T0. This is understandable:  quanta going out from sur- 

face are generated in radiating shell near surface with thickness on 

the order of mean free path (optical thickness on the order of unity). 

Temperature of radiating layer is somewhat higher than temperature 

of surface (Pig. 2,14); therefore "temperature" of outgoing radiation 

is also somewhat higher. Temperature of medium coincides with effec- 

tive temperature of radiation at optical depth T = 2/3. It Is possi- 

ble to say that this depth corresponds approximately to middle of 

radiating layer. 

For problem about radiation equilibrium of photosphere which Is 

considered as "gray material," which reduces to Integral equation 

(2,91),  there has been found an exact analytic solution. The problem 

also has been solved by different methods of approximation, which are 

more exact than the diffusion approximation, (This problem, which is 

one of the few problems of theory of transfer of radiation which it is 

possible to solve exactly, serves usually as the standard for check- 

ing different methods of approximation,) 

In exact solution, temperature of surface T0 for the very same 

flux S, l.e,, with the same effective temperature T f, turns out to 

be somewhat less than in the diffusion approximation. In exact 

solution TQ « 1Z Tgf, T0 » 0.811 T -, whereas in diffusion approxima-^ 

4  14 
tlon T0 = - Tef, T0 » 0.841 Tef. Distributions of temperature over 
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TftH,(f*it)* optical thlcknesa In exact and diffusion 

solutions are very close to one another 

(they are depicted In Fig. 2,15), which 

    testifies to good accuracy of the dlffu- 
S #3   0 

_.  _ ...  «.I * JV *4   * aion approximation. Error, given t)> *Flg» 2,14, Distribution of      rv » a J 

diffusion approximation is less, the temperature ever optical 
coordinate in plane photo- 
sphere in the diffusion 
app roximation, greater the optical thickness, i.e., the 

further from the boundary, which is 

fully natural. As T-♦■ oo exact solution U (T) asymptotically becomes 
ir 

diffusion solution (2,99), This can be shown directly on the basis 

of integral expressions for density and flux (2,91), (2.92). This 

conclusion is useful because it shows how diffusion approximation and 

approximation of radiant thermal conduction are asymptotically estab- 

lished in the exact equation. 

As follows from diffusion solution (2,99)* relative change of 

equilibrium density U on mean free path decreases with distance from 

surface: 

&u. I   «Uv       i äüp 

T^^Ufli U,   dx 
1+' 

1 * — 
T 

as T -»■ oo. 

Exponentials Integrals E. and Ep rapidly decrease with increase 

of argument, so that actually in integrals (2.91), (2.92) only region 

|Tt - T[ ~ i near point T plays a role. 

Therefore, integration over T* from zero to T in second Integrals 

in formulas (2,90), (2,92) for T » 1 can be extended to -oo, or, which 

is the same, integration over T - x1 from zero to T » 1 can be 

extended to interval from 0 to oo. Error due to this will be less, 

the larger T is. 
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Fig. 2.15. Comparison 
of distributions of tem- 
perature in flat photo- 
sphere which are calcu- 
lated in diffusion 
approximation (I) and 
exactly (II). For defi- 
niteness effective tem- 
perature is selected 
equal to Tef = 10>500

oK 

(graph is taken from 
book [I]). 

We will expand U (T1) near point T: 

Inasmuch as ^(i1) is a slow function, 

as T -♦■ 00 higher derivatives of it become 

less and less. Substituting this expan- 

sion in (2.90), (2.91) and calculating 

integrals, we will obtain from (2.92) with 

accuracy up to turns which are proportional 

higher derivatives of U up to T: S = p 

dU 
£ __£., and from (2.91): 

d2U. 
?• = 0, i.e.. 

T dx^ 

equations of diffusion approximation and 

radiant thermal conduction. 

The fact that integral density of radiation at every point is 

equal to equilibrium density corresponding to temperature of substance 

does not at all mean that the same also pertains to spectral densi- 

ties.* However, the further from the surface into the depth of the 

photosphere, the less are the relative changes of temperature at 

distances on the order of average mean free path, and consequently 

also mean free paths of various frequencies. Therefore, far from the 

surface there exists local equilibrium also at every frequency, and 

by average mean free path l1 ■ 1/H1 we should understand the Rosseland 

mean. In practice the Rosseland method of averaging can be extended 

♦In exactly the same way, from the fact that S = const it does 
not follow that S,, ■ const; 

4^-H; 0^-^*0. 

Y-1S 

■ 1 ftftiililttfFi 



to the whole photosphere up to the actual surface. If we know dis- 

tribution of temperature over average optical thickness and take 

coefficients of absorption depending on frequency (more exactly, their 

ratios to the average n*/n,),  it is possible   formulas of § 8 

to find spectrum of radiation of star (see [1-5]). Spectrum, in gen- 

eral, does not coincide with Planck spectrum corresponding to T f, 

but in a number of cases is close to it, 

§ 16. Losses of Energy of Heated Body by Radiation 

Let us consider losses of energy by radiation of an extire body 

on the whole. We will consider usual bodies of finite dimensions 

heated in general nununlformly. Total loss of energy by entire body 

in 1 sec Q, is obviously equal to the Integral of loss of energy of 

1 cnr in 1 sec over the volume q. Noticing that q = dlv S, it is pos- 

sible to writer* 

where dV is element of volume of body, and dS is element of surface; 

S0 is normal component of radiation flux on surface of body. It is 
4 

possible to represent it in the form SQ - ^ef where T f is effective 

temperature of surface of body. 

It is not at all obligatory that effective temperature be close 

to average temperature of a nonuniformly heated body T. In cas«, of 

an optically thick body, dimensions x of which are much larger than 

average mean free path ! (we will say, corresponding to average 

*q can change sign over the extent of the body, i.e., individual 
volumes may be cooled, and others may be heated by radiation. 
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temperature), flux In order of magnitude is equal to 

For [l/x) '    « 1,  T f « T, Effective temperature is more 

likely to be near to temperature on the surface. Only in case of a 

not too thick (optically) bodies can effective temperature be close 

to average temperature of body (temperature T - and T can be close 

together also when in the body, in some special way, there is main- 

tained constant temperature). 

Let us consider now optically thin body, dimensions of which are 

small as compared to certain average mean free path of quanta,* 

If optical thickness of body x/l is small, quanta, generated at 

any point of body almost freely emerge to the outside. Along the path 

there is absorbed only a fraction of the quanta on the order of 

x/l « i. Density of radiation in the body constitutes a fraction 

on the order of x/l of equilibrium density, i.e., it is considerably 

less than equilibrium (radiation is essentially non-equilibrium). 

Really, intensity of radiation at some point is equal, according to 

formula (2.52), to the integral over the ray of density of aources 
s 

within the body. Inasmuch as body is optically thin, / n* ds ~ 
8' 

~ x"/l « 1, and exponential factor in the formula, which takes into 

account absorption of quanta, is close to unity. Then intensity 

I ~ ~ I , and density of radiation after integration over angles 

U ~ JL U . If we integrate U over spectrum, introducing a certain 

.^■L^^^*** 

*We designate average mean free path in case of an optically thin 
body by l^  in order not to confuse it with Rosseland average mean free 
path l, which is characteristic for an optically thick body. As we 
will see below, law of averaging of absorption over spectrum in case 
of an optically thin body differs from Rosseland law. 
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aveirage mean free path l1# we will obtain that U ~ {H/IA)  U « U . 

Quantity of energy absorbed in i cnr in i sec also constitutes a 

fraction on the order of x/i. of the energy emitted in 1 cnr in 1 sec 

since both quantities are related as U/U , which may be seen from 

formula for q (2.61), 

Thus, in case of an optically thin body, loss of energy by sub- 
3 

stance in 1 cnr in i sec reduces, with accuracy up to small quantity 

of the order of x/l., to the emitted energy, i.e., to integral emit- 

tance: 
m to 

/-.J.Mv-c$x;^vprfv. (2.101) 

If we take mean value of coefficient of absorption, which we will 

designate by x^, (equal by definition to reciprocal of average mean 

free path l.)  outside the integral sign, we will obtain for integral 

Emission; 

Comparison of formulas (2,102) and (2,101) gives law of averaging 

of mean free path for case of an optically thin body» 

K^rfv  . (2.103) 
«,-*■•_ -C)t;c.(iO(fc. 

/•/-\«15 "''„»» (2.104) 

or, in terms of coefficient of true absorption! 

C,(«)-(l-«-*)C, (o)-5e--a«. (2.106) 

ii iitirfiTüiiiifir •-■*M-^^ 
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This method of averaging, as WQ can see, differs from Rosseland 

method: during Rosseland averaging by formula (2.77)J there Is 

averaged mean free path. I.e., reciprocal of coefficient of absorption, 

where weighting function Is proportional to derivative of Planck func- 

tion with respect to temperature. Integral emlttance Is characterized 

by mean free path, which Is obtained by means of averaging the actual 

coefficient of absorption, with weight proportional to Planck function. 

Total loss of energy by a heated optically thin body Is determined 

by Integral of emlttance over volume: 

(2.107) 
Q=^qdV=\jdV. 

In distinction from an optically thick body, which Is cooled by 

radiation "from the surface," cooling of an optically thin body has 

essentially a volume character. It Is possible, of course. In this 

case to Introduce Idea of radiation flux from surface and to write 

equation (2.107) In form of Integral over surface, since formula 

q » dlv S always retains validity. However, In case of volume cooling, 

such an Interpretation of losses has a purely formal character, whereas 

In case of an optically thick body outgoing quanta In fact are gen- 

erated In surface shell. In accordance with this, spectrum of radia- 

tion of optically thick body In some degree Is close to Planck spec- 

trum corresponding to effective temperature T f or temperature at the 

surface. Spectrum of radiation of optically thin body can considerably 

differ from Planck spectrum corresponding to temperature of body. If 

coefficient of absorption of substance strongly depends on frequency. 

Spectrum In this case Is characterized by frequency function %• U . 

We will compare radiant losses of energy referred to unit of 

volume of body (rate of cooling of unit of volume) and referred to 
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unit of surface (flux from surface) for cases of optically thick and 

optically thin bodies» If dimensions of body are on the order of x, 
2 ■*> 

its surface is on the order of x , and volume is on order of x , For 

optically thick body, rate of cooling referred to surface is on the 

order of 

*~.s~l-*rmr*%   -Ui,        (2.108) 

(2.109) 

and rate of cooling referred to volume is 

In case of optically thin body 

•£~i?~7rflr4<*r45 Tr<1' (2.110) 

£~J~?%t   i<l. (2.111) 

Let us compare relative radiant losses of two bodies of approxi- 

mately identical average temperature, one of which has large dimensions 

(optically thick), and the other — small dimensions (optically thin). 

Densities of substance. Just as temperatures, will be considered to 

be close to each other, so that averaged mean free paths i and l^, 

which are functions only of temperature and density of substance, are 

of the same order (difference between methods of averaging over spec- 

trum, as a rule, does not introduce very large numerical differences 

in magnitudes of mean free paths; I  and i.  usually differ by not more 

than a few times). 

Prom relationships (2,108) and (2.110) it is clear that in both 

cases losses referred to surface, i.e., fluxes from the surface, are 

less than aT . Only a body whose dimensions are on the order of mean 

free path (optical thickness on the order of unity) x ~ I ~ lj* emits 
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from surface radiation flux corresponding to an Ideal black body with 

temperature on the order of average temperature of body. 

However, for losses referred to volume, or which is the same, to 

mass, in case of optically thick body mass rate of cooling is much 

less than in case of optically thin body, for which it is on the 

order of average integral emittance J ~ aT /l. over volume and does 

not depend on dimensions (by virtue of the volume character of radia- 

tion) . 

Physical cause of this is clear: Quanta emitted inside optically 

thick body are "locked" in the body and are not able to emerge to the 

outside, but are absorbed along their path inside the body, 

§ 17. Equations of Hydrodynamics Taking into Account Energy 
and Pressure of Radiation and Radiant Heat Exchange 

In § 9 it was shown how one should take into account the 

interaction of radiation with substance, which reduces to emission 

and absorption of light. Then it was assumed that energy and pressure 

of radiation are small as compared to energy and pressure of the 

substance. 

At very high temperatures or in a strongly rarefied gas (but for 

large dimensions of the gas body — larger than mean free path of 

radiation), it is impossible to disregard energy and pressure of radia- 

tion. It is quite obvious that in case of local equilibrium of radia- 
u . 

tion with substance, when U « U = 4aT /c, and radiation pressure 

p = U /3 = T- aT /c, in equations of hydrodynamics it is necessary 

everywhere to add energy and pressure of radiation to internal energy 

and pressure of substance, and also to introduce term of radiant ther- 

mal conduction. Let us show how this conclusion follows from general 

equations describing system: substance plus radiation. 
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In order to write in complete form the equations expressing law 

of conservation of momentum and energy of system consisting of sub- 

stance and radiation (in general non-equilibrium), it is convenient 

to start with divergent form of equations which are equivalent to 

equations of "continuity" for corresponding quantities. For motion 

of an ideal gas, without taking into account radiation, these equa- 

tions were formulated in Chapter I (see formulas (i.7)* (1.10)), 

Equations for system of substance plus radiation are easy to write by 

means of direct generalization of equations (1.7)* (1.10) (let us note 

that we consider only non-relativistic motions). To momentum density 

of substance we will add momentum density of radiation 0, and to 

tensor of momentum flux density of substance nik we will add tensor of 

momentum flux density of radiation T,k. As it is known, the last 

quantity is equivalent to tensor of Maxwellian voltage potentials of 

an electromagnetic field. In exactly the same way, to energy density 

of substance we will add energy density of radiation U, and to energy 

current density we will add energy flux of radiation S, which is 

Poynting vector (we recall that momentum of radiation if connected 

with Poynting vector by relationship 0 - S/c ). 

We will obtain thus equation of momentum and energy of system 

•jrta»! + c.)+4(iU+rrt)-o.        
(2,112) 

v(9*+S!+l7)+»i{QB*(,+Tf+T-)+^}"0-   (2,113) 

Equation of continuity remains, obviously, unchanged, since 

radiation "does not possess" mass,* 

♦If U ~ e « pc2. 
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Equations (2.112) and (2,113), which were formulated above by- 

means of simple generalization of equations of hydrodynamics and 

which have clear physical meaning, can be obtained also by strict 

formal means, by proceeding from equation of conservation written 

for four-dimensional energy-momentum tensor of system of mass plus 

radiation. If In the component of the tensor pertaining to substance 

we cross over to non-relatlvlstlc approximation (we will here not 

perform this very elementary derivation). 

Quantities characterizing radiation and contained In equations 

(2.112), (2.113) can be Interpreted in two ways. In the electro- 

magnetic , field treatment they are expressed in terms of intensities 

of electrical and magnetic fields £ and H, namely: 

v-^. 
(2.114) 

It is necessary only to consider that radiation is a rapidly 

varying electromagnetic field; period of electromagnetic oscillations 

is insignificantly small as compared to macroscopic times of the pro- 

cess; therefore, it is Implied that in the above formulas there is per- 

formed averaging over time for a period which is large as compared to 

period of oscillations of field. 

In the quantum treatment, macroscopic quantities U, S, T,^ are 

expressed in terms of distribution function of quanta. If 

f(v, H, r, t) is distribution function at point r at time t depending 

upon frequency v and direction of motion of quanta 0, then, as we 

already know (see § 1 of this chapter). 
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(2.115) 

CT- J hvfdQdv, 

S~ J kveQfdOdy, 

By means of expansion of rapidly varying electromagnetic fields 

In Fourier Integrals, fields can be represented In the form of super- 

position of harmonic oscillations of different frequencies. During 

averaging over time of terms which are quadratic with respect to 

components of fields and which are contained in formulas for U, S,, 

Tlk' products of quantities referred to different frequencies disappear, 

and there remain only quadratic terms with products of Fourier com- 

ponents corresponding to the same frequency. Therefore, energy, momen- 

tum, fluxes of energy and momentum of radiation are represented in 

the form of a linear superposition of terms corresponding to various 

frequencies. This permits introduction of the idea of intensity of 

radiation of given frequency I <pj r, t) and expression of macroscopic 

quantities in terms of Integrals of intensity over the spectrum and 

also in terms of directions of propagation of radiation: 

It also permits us to cross over to quantum treatment of intensity as 

the energy of a quantum multiplied by distribution function I - hvcf. 

It is known that electromagnetic fields, frequencies and direc- 

tions of propagation of electromagnetic waves, and consequently also 

(2,116) 

♦Energy of quantum is hv, momentum is flhv/c, flux of 1-th component 
of momentum in k-th direction is fli 0^. ^ü c, whence there is obtained 

formula for tensor of momentum flux T,. . 
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Integral quantities U, S, T.k depend on what system of coordinates 

they are measured In. 

Integral quantities appearing in equations (2.112) and (2.113) 

pertain to a "rest," "laboratory" system of coordinates, in which a 

given particle of substance moves with speed U. Meanwhile parameters 

of radiation measured in a system of coordinates in which the parti- 

cle is at rest are more suitable. Really, in state of full thermody- 

namic equilibrium, energy density of radiation in a substance at 

rest is equal to the equilibrium quantity U = 4aT /c; radiation flux 

relative to a motionless substance has a diffusion character, since 

radiation "drifts" together with the moving substance, and total flux 

includes this "drift." 

Let us cross over in equations (2.112) and (2.113) from quantities 

U, S, T., to the primed quantities U', S', TJ. , which are connected 

with moving particles of the medium. During motion of medium with 

non-relativistic velocities u/c « 1, when it is possible to disregard 

terms proportional to u/c, the corresponding transformation to a 

moving system of coordinates gives (see [6]); 

(2.117) 

Let us introduce the transformed quantities into equations (2.112) 

and (2.113). Then let us note that momentum of radiation 0. is 

extraordinarily small as compared to momentum of substance pyx.,  and 

it can be disregarded.* After writing in explicit form the tensor of 

*If energy of radiation is comparable with energy of substance, 
i.e., U ~ pu2, then momentum of radiation, which is on the order of 

G ~ U/c, is — times less than momentum of substance pui 
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momentum flux of substance nlk » PW, + PBlk, we wil1 olt)'baln 

■^(«"^^(QU^+^+^-O. (2.118) 

■»•(«•+?+^)+^{«tt*(,,+?+-T)+'r» + B^'+u'7';»}"0 

(these equations were obtained by S, Z. Belen'kly [7]) 

We will consider the case of local thermodynamlc equilibrium of 

radiation with substance. Density of radiation is equal thus to 

the equilibrium quantity U1 » 4aT /c. Flux of energy of radiation 

with respect to substance S^ is approximately proportional to gradient 

of equilibrium density of radiation. By formula (2,76) for radiant 

thermal conduction 

c«    le d   /'4qr«\    IQqtT» dT 0»"  3 ^A e ;=    3 dzk ' 

Tensor of momentum flux is simplest of all to obtain from formula 

(2.116) if we note that under conditions of local equilibrium the 

field of radiation is almost Isotropie, and intensity very weakly 

depends on angle. We will find 

where pv ** —si =« — -—- is radiation pressure, 
.2    ^  C 

By substituting all these quantities into equations (2.118), we 

will find for case of local equilibrium: 

4rlOU,)+J-(oUM>)+J-(B4.B„\~0. (2.119) 

(2.120) 

h 
where U « 3p - kaT /c. 

Equations of momentum and energy of system take closed form, 

since all quantities characterizing radiation are expressed in terms 

of temperature (and optical properties of substance). 



If radiation is not in local thermodynamlc equilibrium with sub- 

stance, then to equations (2.1i8) it is necessary to add equation of 

transfer of radiation. About radiation transfer equation of a moving 

medium, taking into account terms of the order of u/c, see [8]. 
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CHAPTER  III 

THERMODYNAMIC PROPERTIES OF GASES AT HIGH TEMPERATURES 

1. Gas of Nonlnteractlng Particles 

§ 1.  Ideal Gas with Constant Heat Capacity and 
Constant Number of Particles 

In many real processes, macroscopic parameters, characterizing 

state of gas, let us say, density p, and specific internal energy 

e or temperature T, change quite slowly as compared to rates of 

relaxation processes leading to establishment of thermodynamic 

equilibrium.  Under such conditions, a particle of gas at every 

moment of time resides in a state which is very close to the 

thermodynamically equilibrium state corresponding to instanta- 

neous values of macroscopic parameters. An exception is very fast 

processes such, for example, as passage of gas through a shock 

wave front.  In this chapter we will consider only thermodynamically 

equilibrium states of gas. 

For description of hydrodynamic motion of substance in 

adiabatic case, it is necessary to assign entropy or specific inter- 

nal energy as functions of density and pressure:  S(p, p), £(p, p). 

In nonadiabatic case, usually in equation of energy in explicit 

form there is contained temperature (for instance, during 

?& 
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consideration of thermal conduction or radiation), which it is 

necessary to relate with density and pressure by means of equation 

of state p = p(p, T), 

As it is known, all thermodynamic functions of a substance 

can he obtained with help of one of generalized thermodynamic 

potentials, which are given in the form of functions of corre- 

sponding variables, namely:  e(S, p); w(S, p); P(T, p); $(T, p), 

where F is free energy, w is enthalpy, and $ is thermodynamic 

potential (in the narrow sense). 

During concrete calculations of thermodynamic properties of 

gases, usually there are directly calculated internal energy in 

dependence upon temperature and density or temperature and pressures 

e(T, p) or e(T, p). Thus it is necessary to introduce independ- 

ently equation of state, which it is possible to derive from 

function e(S, p), but impossible to find from functions e(T, p) 

or e(T, p). 

Everywhere that this is not specially stipulated, we will 

consider ideal gases, in which, by definition, it is possible to 

disregard interaction between particles. In many practically 

important cases the approximation of idealness is satisfied with 

great accuracy (non-idealness appears only at sufficiently high 

densities; see about this in §§ 11-14), 

Equation of state of ideal gas can be written in one of the 

equivalent forms: 
».. air — VAIT—£*r .. *. »r .. ,i AT 

(3.1) 
> - «if - ^8*r - ^ - iL Qf - AQr, 

where n is number of particles in 1 cm , N is number of particles 

in 1 g, R is universal gas constant,* A is gas constant calculated 

^  *R = Ö..53T107 erg/degree.mole = 1.99 cal/deg»mole, k = 1.38-iO"16 

erg/degree = 8.51 joule/degree«mole. 
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for 1 gj p. Is average molecular weight, V is specific volume. 

Number of particles in 1 g N or average molecular weight p. can 

themselves depoiid on temperature and density due to dissociation, 

chemical reactions or ionization. 

Internal energy of gas, and, together with it, heat capacity 

at constant volume, in general are composed of a series of com- 

ponents, which correspond to different degrees of freedom of gas: 

translational motion, rotations and vibrations of molecules, 

electronic excitation of atoms and molecules, and also of components 

corresponding to dissociation of molecules, procec-s of chemical 

reactions, ionization.  Subsequently, for brevity^ we will also 

include these last factors in the general idea of "degrees of 

freedom .  Just as energy, over degrees of freedom there are summed 

all the other thermodynamlc potentials, and also entropy. Different 

degrees of freedom, with the exception of translational motion of 

particles, are included in thermodynamlc functions only starting 

with more or less definite values of temperatures. For degrees of 

freedom connected with change of number of particles (dissociation, 

chemical reactions, ionization), these temperatures depend on 

density of gas. 

At very low temperatures, atoms and molecules are not ionized 

or excited; chemical composition corresponds to the energetically 

most suitable statej thermal motion is limited to only translational 

displacements of particles. Specific internal energy, measured from 
3 

zero temperature, is thus equal to e.    = -^NkT; specific heat ^      trans c. 
3 

capacity at constant volume is cv cons-t = ^^» 

In a monatomic gas the region of temperatures in which thermo- 

dynamlc functions are determined purely by translational motion 
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of atoms extends to very high values, on the order of several 

thousand or even tens of thousands of degrees, until ionizatlon 

and excitation of electrons in atoms start. 

In a molecular gas at the lowest temperatures there are excited 

rotations of molecules. This occurs usually at several or ten degrees 

Kelvin. Energies of rotational quanta expressed in degrees (i.e., 

divided by Boltzmann constant k), are minute: for instance, for 

oxygen 2.i0K, for nitrogen 2.90K, for nitric oxide 2.40K.  An 

exception is only the molecule of hydrogen, for which this magnitude 

is equal to 85.40K. Even at room temperature 300oK (and all the 

more so at higher temperatures) quantum effects do not play a role. 

Rotational part of heat capacity is equal to its classical value. 

Heat capacity c ^ = Nk for diatomic and linear polyatomic 

molecules and cv rot = ^Nk for nonlinear polyatomic molecules. 

Corresponding components of internal energy are equal to e. . = 

= NkT or |NkT., 

Vibrations in molecules are excited at much higher temperatures, 

on the order of several hundred or thousand degrees; therefore 

there exists a range of temperatures in which thermal motion of 

molecular gas is composed only of translational and rotational. 

Heat capacity in this range is constant, and for a diatomic gas 

(for instance, air) is equal to cv = cv trans + cv rot = |Nk. Corre- 

sponding internal energy e = ^NkT. 

Energies of vibrational quanta expressed in degrees, in 

diatomic molecules are usually on the order of several thousand 

degrees. For instance, for 02 hv/k = 2230
oK, for N2 - 53^0

oK, for 

NO - 2690oKj for triatomic molecules the lowest frequency of 
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vibrations is usually less, for Instance, for NCU ^ = 9l60K, 

i960 K, 2310 K, At temperatures which are lower and on the order 

of hvA* vibratlonal part of heat capacity should be calculated 

by quantum formulas and Itself depends on temperature. However, 

at temperatures which are higher than hv/k, vibratlonal heat 

capacity is constant and is equal to its classical value k for one 

vibratlonal degree of freedom. Diatomic molecule has one vibra- 

tlonal degree of freedom, nonlinear m-atomic molecule has 3ni-6, 

and linear molecule has 3ni-5 degrees of freedom. 

Thus, at temperatures higher than the largest of values of 

hv/k, total classical heat capacity from calculation for one 

molecule cv = cv trans + cv rot + cv nb is equal to cv = |Nk + Nk + 

+ (5m - 5)Nk = (3m - ^)Nk for linear m-atomlc molecules and 

cv = ^Nk + |Nk + (3m - 6)Nk = (3m - 2)Nk lor nonlinear molecules. 

For diatomic molecules Cy = ^Nk.  Equation of adiabat for ideal 

gas with constant heat capacity and constant number of particles is 

determined from general thermodynamic relationship: 

TdS-dt + pdV^evdT + NkTy-^O- 

Hence there is obtained after Integration 

where proportionality factors depend only on entropy. Here 

7 = cr/cv is adiabatlc index; c = cv + Nk is specific heat capacity 

at constant pressure. For instance, for monatomic gas 7 = %» for 

diatomic gas with unexcited vibrations — y = -L;  with completely 

excited vibrations — 7 = ^. 

It is necessary, however, to note that there does not exist a 

wide range of temperatures in which vibration in molecules would 

be completely excited, and heat capacity and adiabatlc index would 
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be constant, since dissociation of molecules and chemical reactions 

frequently start at such temperatures, when the vibrational part 

of heat capacity only attains its limiting classical value, 

§ 2. Calculations of Thermodynamic Functions 
by Method of Statistical Sums 

In the most rigorous and systematic way, all thermodynamic 

functions can be found with help of so-called method of statistical 

sums. Let us expound briefly basis of this method* in order to 

obtain expression for entropy, ctuartum formula for vibrational energy 

of molecule, and also in order to apply it in the subsequent sections 

to a gas with variable number of particles. 

According to statistical mechanics, probability of n-th state 

of system, consisting of N particles, energy of which is equal to 

E , is proportional to the quantity exp (-E AT)«  Sum of these 

probabilities over all possible states of system and determined 

with accuracy up to the constant factor 

is called statistical sum of system. 

For ideal Boltzmann gas consisting of molecules of several types, 

numbers of which are equal to N., NB,. . . , statistical sum is 

expanded into the product of factors corresponding to every type 

of particle: 

»Detailed derivations can be found in courses of statistical 
physics, for instance, in book of L. D, Landau and E. M, Lifshits [1]. 
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Here Z-, Zp, . . . are statistical sums of one molecule of every 

type, which are expressed by formulas similar in form to {3,3): 

Ä-|e"S (3.5) 

where £k is energy of molecule in k-th state, and summation is 

produced over all possible states of one molecule. 

General formula for free energy of system has the form 

F=-kT\aQ. (3.6) 

If we replace factorials in expression {3A)  by the formula 

of Stirling Nl « (N/e)N and place obtained expression in (3.6), we 

will obtain 

F~-NAkT\nfö-NBkT\n^~... (3.7) 

Inasmuch as free energy is thermodynamic potential with 

respect to the variables: temperature and density (volume), all 

thermodynamic functions can be derived from formula {3,7)  if there 

are known statistical sums of molecules in dependence upon 

temperature T and volume V. By general formulas of thermodynamics, 

entropy, internal energy and pressure are equal to 

(3.8) 

If we disregard interaction between electronic states, 

vibrations and rotations, consider molecule as a rigid rotator, 

and consider vibrations to be harmonic, energy of molecule can be 

*As it is easy to check by means of direct substitution of 
(3.6), (3.3) in (3.9) e = 2En exp (-En/kT)/Zexp(-EnA-T), internal 

energy is simply energy of system averaged over all possible states. 
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represented in the form of sum of energies corresponding to 

different degrees of freedom. Thus, as one may see from formula 

(3.5)* statistical sum of one molecule also Is expanded Into the 

product: 

We will give here formula for statistical sums without 

derivation. 

Translatlonal statistical sum of any particle Is equal to 

• (3.12) 

where M Is mass of particle, and V Is volume, occupied by gas (If 

by N we understand number of particles In 1 g, then V Is specific 

volume). 

Rotational sum at temperatures much higher than energy of 

rotational quantum divided by k Is equal to 

_   8ii«f*r 1 •     (3.13) 

for a diatomic or linear polyatomic molecule* and 

I (3.14) 

for a nonlinear polyatomic molecule. 

Here I In the first of the formulas Is moment of Inertia of 

linear molecule, and In the second Is geometric mean of three moments 

of Inertia of nonlinear polyatomic mole  '? I = (Ijlpl,) '*;  a  Is 

so-called symmetry factor, which Is equal co the number of permu- 

tations of Identical atoms In the molecule, which are equivalent 

2  2 ♦Energy of rotational quantum hv . = h /Sir I, so that 

Zrot » kTAvrot.a. 

239 

1 ilillil liilÜiillilBillM'lli" iiaül ^^■'■""•—■-^f^"-'"-"^^ 



to rotation of the molecule as a whole increased by one.* 

Quantum expression for statistical sum of harmonic oscillator 

of frequency v  is: 

^««(l-e""5^)-1. (3.15) 

In this formula energy of oscillations is measured from the 

lowest quantum vibrational level. It is assumed that energy of 

zero-point vibrations h.v/2  is included in energy of ground state 

of molecule. 

If molecule possesses several vibrational degrees of freedom, 

then its total vibrational sum is represented in the form of 

product of factors corresponding to all normal vibrations. 

Finally, electronic statistical sum retains its initial form: 

where e is energy of n-th electronic quantum state of atom or 

molecule.  If levels are degenerate, then every component all the 

same is contained in sum in the form of an Independent term, so that 

numbers of identical terms are equal to statistical weights of 

levels. 

Different atomic and molecular constants necessary for cal- 

culation of thermodynamic functions of gases are known usually from 

spectroscopic data. Energies rotational and vibrational quanta for 

a series of molecules already have been given in the preceding section. 

Energies of first excited electronic states of atoms and molecules 

EA  usually are on the order of several ev, i.e., E1/k is on the 

♦For instance, in diatomic molecule consisting of identical 
atoms, a = 2, and of different atoms, a - 1. 

240 

^•siL'i-Li i,;^*^i^:-^.i^--- tmtsat0^mtmitämmmtmäiiitla^mmMäeä^^^2£ZS^SSsaa 



order of several tens of thousands of degrees; for instance, for 

atoms of 0 ^-term e^^ = 1,96 ev, e^k = 22,800oK; for N 2D0-term 

£1 = 2.37 ev, e1/k = 27,500
0K; for the molecules: N2 - A^-term 

e^,^ = 6.1 ev, e1A = 71i000oK; for NO - A2S+-term e.^  = 5.29 ev, 

e^/k = 6l,4000K. The occur exceptions: Thus, for a molecule of 
-1 

02, the first excited levels are low — A -term e1 = O.98 ev, 

e1A = ll,300oK; V-term, e2 = 1.62 ev, e2A = l8,800oK. 

At not too high temperatures, when T « E. A* electronic sum 

reduces essentially to terms corresponding to ground electronic 

state. If intervals between levels of fine structure of ground 

state (when such exists) are less than kT,* then corresponding 

terms in Z , can be approximately considered to be identical. 

By measuring energy en from ground state (EQ = 0), it is possible 

to assume that Z , is equal to statistical weight of ground state 

g0 (for instance, for atoms: 0 ^P-term gQ = 9; for N ( S) g0 = 4; 

for molecules; Og (3S) g0 = 3; Ng (1S) g0 = 1; NO (2II) g0 = 4). 

Calculation of Z , at high temperatures will be discussed in 

§ 6. 

Inasmuch as statistical sum of molecule Z is equal to product 

of separate factors corresponding to different degrees of freedom, 

free energy of gas, and together with it other thermodynamic functions, 

are represented in the form of sum of corresponding terms. Putting 

expression for factors of Z in formula (3.7), we will obtain explicit 

expression of free energy in terms of temperature and density; 

♦For instance, for atom 0, intervals for components of funda- 
mental triplet state ^'D0  are equal to AeA = 230° and 320oK; for 

2 o 
NO, splitting of doublet II - AeA = 178 K. For spectroscopic sym- 
bolism and interpretation of designations of terms see § 14 
Chap. V. 
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the latter Is contained due to the fact that translatlonal sums 

Z+T,QV,C, contain volume V. Quantities N,/V, NT,/V", . . . , which 

appear under the sign of logarithm in formula (5.7)* are numbers 

of particles per unit of volume n,, nB, . . . , which are expres- 

sible in terms of density of gas and percentage contents of particles 

of various types, which in this case are constant. 

Statistical sum of monatomic gas consists only of translatlonal 

and electronic factors; putting it in (5.7)* we will find free 

energy of N identical atoms (we consider Z , = Sn)'' 

(3.17) 
/=s_jVftnn(^.)

iÄ. 

Specific entropy of monatomic gas in absence of ionization 

and excitation of electrons, by formula (3.8) is equal to 

* 3 (3.18) 

For energy and pressure we obtain the already known expressions: 

»M.^NkT,   p = nkT. 

In an analogous way it is easy to obtain rotational and 

vibrational components of thermodynamic functions.  Internal 

energy of rotations, naturally, coincides with formulas, written in 

§ 1, and internal energy of vibrations is expressed by Planck func- 

tion. Energy of N identical oscillators (diatomic molecules) 

is equal to 

*v  ! (3.19) 
«KM »A' 

In the limit kT » hv it tends to its classical value e .,v = NkT, 
■N _ vib he vib and heat capacity cv    .fe = ■ ^ ► Nk.    Actually,  energy and heat 
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capacity are close to their limiting values already at kT « hv. 

For Instance, for kT/hv = 0.5, cv/Nk = 0.724; for kT/hv = 1, 

cv/Nk = 0.928; for kT/hv = 2, cv/Nk = O.979. 

Rotations and vibrations of molecules give no contribution 

to pressure. Formally this Is connected with the fact that 

corresponding statistical sums, and also Internal energies and 

heat capacities do not depend on volume. Pressure of an ideal 

gas is connected exclusively with translational motion of particles, 

At high temperatures on the order of several thousand degrees, 

when amplitudes of vibrations of molecules become considerable as 

compared to Interatomic distances, there appear anharmonicity of 

vibrations and interaction of vibrations with rotations. Anhar- 

monicity somewhat decreases vibrational part of heat capacity. 

Corresponding corrections in first approximation are proportional 

to temperature. Usually these corrections are small (dissociation 

of molecules starts before the corrections become large). For 

calculation of corrections see, for instance, [2]. 

§ 3. Dissociation of Diatomic Molecules 

At temperatures on the order of several thousand degrees, 

diatomic molecules usually dissociate into atoms. Polyatomic 

molecules, in which bond is weaker, .start to disintegrate at lower 

temperatures. Breaking-up of molecule requires very great 

expenditure of energy; therefore dissociation considerably affects 

thermodynamic functions of gas. 

Let us consider the simple and at the same time practically 

important case of a diatoinic gas of molecules of one sort Ap, con- 

sisting of identical atoms A. Let us assume that at temperature 
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T and density of p there is dissociated into atoms fraction a 

of initial molecules (according to the scheme Ap ^ 2A)«  If" w lc 

number of initial molecules in 1 g, then at degree of dissociation 

a in 1 g there are contained N«2a atoms and N(l - a)i molecules; 

total number of particles is equal to N(l + a) , so that pressure 

of gas 

p~N(i+a)Qkr. (3 20) 

For complete dissociation (a = 1) it is twice as large as pressure 

at the same T, and p, but in the absence of dissociation. 

For small dissociation a « 1,  change of pressure is small, 

but change of energy and heat capacity of gas all the same can 

be considerable.  Let us assume that e.  is energy of one molecule 
A2 

at temperature T, and e* is energy of one atom.  Let us designate 

energy necessary for breaking-up of unexcited molecule (i.e., in 

reference of rotations and vibrations or at T = 0) by U. U is 

binding energy or energy of dissociation of molecule; for instance, 

for 02: U = 5.11 ev-* 118 kilocalories/mole,* U/k = 59^00
oK; 

K2: U = S.jh  ev-»• 225 kilocalories/mole, U/k = li3,000oK; NO: 

U = 6.5 ev -* 150 kilocalories/mole, U/k - 75,500oK. 

Specific internal energy of gas measured from molecular state 

at zero temperature is equal to 

«=.^eAt(l-a) + A'.eA-2o + Ar£;a. (3.21) 

Usually dissociation starts at temperatures much lower than 

U/k lower, the more rarefied the gas is. At density of atmospheric 

1Q ^5 
air (n = 2.67'10 y  molecules/cm ), dissociation is noticeable already 

at kT/U ~ 1/20. This is connected with large statistical weight 

of state in which molecule is broken up into atoms. Actually, at 

*i ev/molecule corresponds to 23.05 kilocalories/mole. 
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kT « U, molecules are broken up by Impacts with very energetic 

particles, which belong to the extreme tail of the Boltzmann 

energy distribution. In absence of ionization and electronic 

excitation eA = ^-kT,  If kT is larger than energy of vibrational 

quanta hv,  vibrational energy of molecule, as follows from formula 

(3.19), is equal approximately to kT and e. « XkT.  Energy of 

dissociated gas (3.21) noticeably exceeds energy in absence of 

dissociation e = Ne» , even at small degrees of dissociation 
A2 

(a ~ 0.1 and less), due to the last term, which corresponds to 

energy expended to break up molecules. In exactly the same way, 

heat capacity c^ = taljy of dissociating gas noticeably increases. 

It is necessary to note that formulas (3.20), (3.21) are also 

valid under conditions of non-equilibrium dissociation, when 

degree of dissociation differs from its thermodynamlc equilibrium 

value, which corresponds to "temperature" and density of gas. 

By "temperature" here is implied temperature of translational and 

rotational degrees of freedom of particles, which are always 

thermodynamlc equilibrium.* 

Thermodynamlc equilibrium degree of dissociation is uniquely 

determined by temperature and density (or pressure) of gas. 

Dependence of degree of dissociation on temperature and density 

can be derived from general expression for free energy of gas which 

is a mixture of particles of various types (3.7), if we consider 

that to the equilibrium composition of the mixture undergoing 

♦Equilibrium in vibrational degrees of freedom is established 
more slowly than in rotational and translational, but usually 
faster than equilibrium dissociation is established. For detail 
about this see Chap. VI. 
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chemical transformations, the particular case of which Is 

dissociation, there should correspond the minimum of free energy. 

Let us consider free energy F as a function of number of 

particles N» and N. at given temperature, volume, and initial 

^      0 
number of molecules N. : 

A2 

/= -JVA.AT'ln'^-ArAfcnn ^ . 

We will form the variation 5F: 

Variations  6NA    and 5NA are related to each other by the condition 

of conservation of number of atoms 

NAt+?£ = N\t~ const;   MrAt= _laArA. 

By equating 5F to zero  (minimum of free energy)  under the 

condition of conservation of number of atoms,  we will obtain 

ATiiL (3.22) 

Inasmuch as statistical sums Z, and Z.  are proportional to volume 

V, which is contained in translational sums, and in other respects 

depend only on temperature, instead of (3.22) it is possible to 

write 

^r/(^,, (3.23) 

or, for partial pressures p. = n ^T: 

♦Quantities in parentheses constitute chemical potentials of 
molecules and atoms, taken with reverse sign: 
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Expressions (3.22) or (3.23), (3.24) are a particular case of 

so-called law of mass action for chemical equilibrium, and quantity 

K (T) is called equilibrium constant for dissociation reaction. 

It depends only on temperature and molecular (and atomic) constants. 

Putting in (3.22) the expressions for statistical sums of molecules 

Ap and atoms A and considering for simplicity that vibrations in 

molecules are completely excited, i.e., Z ., « kT/hv (see formula 

(3.15))* and in electronic statistical sums there participate only 

terms corresponding to ground states of molecule and atom, we will 

obtain 

The last two factors in (3.25) appeared from quotient of 

electron statistical sums: 

since difference between zero-point energies 2e OA - e OA2' 
by 

definition, is equal to energy of dissociation U. 

Passing in (3.25) from partial pressures to degree of dis- 

sociation. 

we will obtain 

M\* 

ItJiA.VIf 

*>A      1     -TF 
(3.26) 

f«A, 
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where rr  = p/MA is number of Initial molecules In 1 cnr of gas. 
2      2 

For small degrees of dissociation a « 1 (when U/kT » 1), as 

-1/2 -U/2kT 
can be seen from formula (3.26),a~p /e     ^ i.e.,a sharply 

increases with increase of temperature and slowly increases during 

rarefaction of gas. Past increase of degree of dissociation with 

Increase of temperature entails sharp increase of heat capacity. 

At high temperatures, when dissociation is almost complete, a ^ 1, 

concentration of molecules 1 - a ~ pe '  is proportional to density 

and changes more slowly with temperature, since U/kT now is not 

a very large number. 

It would seem that at high temperatures, after termination 

of dissociation, heat capacity of gas (which was converted to a 

monatomic gas) should decrease and become equal to 3/2 k per atom 

or 3 k per initial molecule, i.e., even less than before dissociation 

(7/2 k per molecule).  In reality, this usually does not occur, 

since after termination of dissociation with increase of temperature 

(and sometimes even before termination), there starts ionizatlon 

of atoms (and molecules), which introduces its own (considerable) 

contribution to heat capacity. 

Dependence of degree of dissociation on temperature and density 

of gas, and also Influence of dissociation on thermodynamic 

functions are illustrated in Tables 3.1 and 3.2, which are composed 

according to tables of [3]* in which there are given corresponding 

values for air (79^ N2 + 21^ 02) in region of dissociation.* 

*In Table 3.2, data of [3] pertain only to temperatures 
lower than 20,000 K. Higher temperatures are considered in work 
[2f] (see below). 
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Reaction of oxidation of nitrogen Np + 0« ^ 2N0, which occurs in 

air (see following section), does not strongly affect dissociation 

of molecules of N2 and 02 and thermodynamic functions of air. 

Table 3.1. Equilibrium Composition of Air in Region 
of Dissociation and Beginning of lonization 

Normal density p0 = I.ZS'IO'^  g/cnr5 

TTC K« N Ot 0 NO V* O* KO» 

aooo 0.788 0,205 0,015 0,007 
4000 0.749 0,0004 0,100 0.134 0.084 
woo 0,744 0,044 0,006 0,356 0.050 
8000 0,571 0,416 0,007 0.393 0,024 

10000 0,222 1,124 0.407 0.009 0,0034 0,0015 
12000 0,050 1,458 0,411 0,003 0,020 0,0034 0,001 
15000 0,008 0,096 0,015 

Density p =  10"' "Po 
rnc »• N Ot              0 NO V* O» NO* 

2000 0,788 0,248 0.002 0,007 
4000 0,777 0,004 0,008 0.378 0,024 
eooo 0,592 0,394 0.413 0,005 
8000 0,068 1,440 0.416 0.001 0.004 0.001 0,0001 

10000 0,004 1,528 0.410 0,046 0.006 0.0002 
12000 1,380 0,384 0,202 0.034 
15000 0,858 0,282 0,724 0,136 

Concentrations of all particles c. here are 

defined as ratio of number of particles of given 
type to initial number of molecules. At room tem- 
perature cw = 0.791, cn « 0.209. Data for argon 

are not given, since its role is very small. 

The latter are mainly determined by dissociation of No* Op, so 

that effects of dissociation and all dependences are seen from 

Table 3.2. For comparison, in the table there are shown values 

of energies corresponding to given temperatures on the assumption 

that dissociation is absent (specific energy in this case does not 

dpend on density). Inasmuch as lonization starts before dissociation 
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Table 3.2. Thermodynamic Functions of Air 

Normal density p0 = 1.29 X     Density p = 10 p0 

X 10"^ g/cm^ 

■      9V 
P, atm V 

|»T. TTC '■'mol eoul a 2 
av/moleoule 

2000 0,515 7.42 1,335 0,604 
4000 1,52 15,8 1,240 1,21 
8000 5,38 41,7 1,180 2.42 

12000 12,7 88 1,160 3,92 
20000 24 183 1,175 6,04 
SO 000 95 870 1,215 15.1 

KM) 000 278 2690 1,225 30,2 
250000 922 10870 1,275 75.4 
500000 1450 23150 1,370 151 

rnc •      ev P, «tm "'molecule V 

2000 0,520 0,074 1,330 
4000 2,09 0,177 1,195 
8000 10,6 0,575 1,125 

12000 16,6 0,994 1,140 
20000 45,3 2,8 1.145 
50000 158 11,6 1,170 

100000 499 37,3 1,175 
250000 1080    . 125 1,270 
500000 3310 412 1,290 

Internal energies are given in electron volts 
per initial molecule; for air, 1 ev/molecule =0.8 
kilocalories/g. Effective adiabatic index 7 is 

P 
defined as 7 = 1 + — .  In the last column, for pe 

7     ev 
comparison, there is given energy e = -^-kT molecule. 

which air would possess in absence of processes of 
dissociation and ionization, but with classical 
vibrations of molecules. 

of nitrogen is finished, in the table are also shown concentrations 

of ions (for ionization see § 5). It is necessary to note that 

during exact calculations of dissociation and thermodynamic functions, 

there are used not simple formulas of type (3.26), but more exact 

ones, taking into account excitation of highest electronic states, 

anharmonicity of vibrations, etc. 

Thus we start with exact expressions (5.22), calculating 

statistical sums on the basis of spectroscopic data on atoms and 

molecules. Description of method of such calculations can be 

found in work [5]. 
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§ 4. Chemical Reactions 

Chemical composition of mixture of gases under ordinary 

conditions, i.e., at room temperature, very frequently differs 

from thermodynamic equilibrium composition. This is connected 

with the fact that for occurrence of chemical reaction, even if 

there is then liberated heat and the gas passes into an energetically 

more favorable state, usually there is required activation energy 

E. Chemical reaction rate, which is proportional to Boltzmann 

factor e" '  , at low temperatures and high activation energies, 

when E/kT » !* is very low and reaction practically does not 

occur. Thus, system of mixture of gases is in equilibrium, but 

this is not thermodynamic equilibrium. Such equ-Mibrium can be 

called conditional. As a typical example can serve a mixture of 

hydrogen and oxygen in composition H2 + 2Q2*   which under conditions 

of thermodynamic equilibrium at low temperatures would have to 

completely be turned into water HpO (energy of reaction is 57.1 

kilocalories/mole). However, at usual temperatures and without 

influence of external factors, this irreversible reaction does 

not occur, and mixture is in state of conditional equilibrium. 

At high temperatures on the order of several thousand degrees 

(for certain reactions at lower temperatures), rate of chemical 

transformations are high, and in mixture of gases there is estab- 

lished chemical equilibrium. Flow of reversible reactions (i.e., 

reactions which can occur in both directions, in accordance with 

condition of chemical equilibrium at given temperature and density) 

affects chemical composition and thermodynamic functions of gases. 

An example is air, in which at high temperatures on the order of 

several thousand degrees there occurs oxidation of part of nitrogen 

by the scheme: 
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-^N.+IO^M-S-^NO. (5.27) 

Reaction of oxidation of nitrogen requires high activation 

energy, so that at temperatures below 'yl500oK it practically does 

not occur (for achievement of equilibrium there are necessary very 

long tines); however, at temperatures ~3000 K and above, equilibrium 

is established very quickly (at normal air density in 10" sec and 

less), and it is possible to speak about equilibrium composition 

of air, taking into account formation of nitric oxide.* 

Let us consider chemical equilibrium and influence of it on 

thermodynamlc properties of mixture of gases in the example of a 

reaction of the type of oxidation of nitrogen, i.e., of the type 

A,+BJ^:2AB. (5.28) 

Let us assume for simplicity that dissociation of molecules 

is small.  This assumption is justified at not too high tem- 

peratures; for instance, in air at T ~ 2000-3000oK dissociation 

of molecules Np, Op is very small, and equilibrium concentration 

of nitric oxide is noticeable. 

Let us assume that in one gram of initial mixture there are 

0      0 
contained N.  and NB molecules Ap and Bpj concentrations of them 

are m° = N° /N and m^ = Ng /N, where N = N^ + Ng is total 
2    2        2    2 2    2 

number of molecules in 1 g of initial gas. Let us assume that 

at temperature T and density of gas p equilibrium numbers of 

molecules in 1 g are equal to N. , NB , N^, and concentrations 

*For detail about rates of reaction of oxidation of nitrogen, 
see Chapter VI, § 8, and about kinetics of reaction in a shock 
wave, see Chap. VIII, § 5. 
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m. = N./N are equal to m. , nu , m^. Numbers of molecules and 

concentrations are related with each other by conditions of 

conservation of number of atoms: 

: -yi,+|^AB-n..  ^B. + yATAB-^.. (5.29) 

"»At+yWAB-wii. WBt + yWAB-"»!,. (3.30) 

Let us designate by eA , eB , e^ energies of one molecule, 

and by 211', the energy of reaction, i.e., energy which is released 

during transformation of the two molecules, Ap and Bp, into two 

molecules AB (if reaction occurs with absorption of heat, U' < 0). 

Then, if as before we take as zero energy the energy of initial 

mixture Ag + B2 at T = 0, we will obtain that specific internal 

energy of gas is equal to 

• -jymAl»At + iV»B|Sj^ + ArWAB8Afl-MrtAB^'- (3.31) 

Total number of particles in gas during considered reaction does 

not change, so that pressure at these same T and p is not influenced 

by the reaction.* 

Numbers of particles participating in reaction are related with 

each other under conditions of equilibrium by law of mass action, 

which it is possible to derive from general expression for free 

energy fully analogously to the way this was done in case of 

dissociation of molecules. For this we seek minimum of free energy 

for constant T, p and numbers of initial molecules NA Ng , but 

variable N^, N^, N^. 

♦Just as for dissociation, formula (3.31) is accurate in the 
case when chemical equilibrium is absent and concentrations are 
non-equilibrium. 
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As a result we will obtain 

z\i 
TV*    iz*t7H 

(3.32) 

in full analogy with formula (3.22) for dissociation. 

By factoring out volumes from translational statistical sums, 

we will obtain for numbers of particles in 1 cur or partial pres- 

sures: 

(3.33) »^B ^B ,lC-p(T), 
»At^   WB, 

where K1(T) is equilibrium constant for reaction (3.28). By sub- 

stituting expressions for statistical sums, as in the case of 

dissociation, we will obtain 

*"m if    ^AB >? ^B  WB IÖAB ^l*   (3.34) 
,kT 

B    «'0Ai*0Bt 

For instance, for reaction of oxidation of nitrogen, with good 

accuracy: 

48000 
fjiO       ir' /T\  ^ -~ RT 

where R = 2 cal/mole»degree. 

Here it is approximately considered that masses, frequencies 

and moments of inertia of all three molecules are identical; 

U' = -21.4 kilocalorles/mole, ratio of statistical weights is equal 

to 16/3 (see § 2). 

If gas constitutes a mixture in which there occurs a whole 

*The factor 4 appeared from ratio of symmetry factors 
2 
AB 
0 

aA2
aB2

/a^ aAB = 1 aAr 2   "2 
during dissociation, here it is assumed that 

= aB =2; see footnote on p. 240 .  Just 
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series of reactions, then for each of reactions it is possible 

in an analogous way to derive a iaw of mass action connecting 

similarly to formula (5.32), the numbers of particles participating 

in the reaction and their statistical sums. Substitution of 

expressions for statistical sums gives equilibrium constants. 

Numbers of particles participating in many reactions are related 

with each other by conditions of conservation of number of atoms 

of every type, similar to (3.29). 

The set of laws of mass action for each of reactions and con- 

ditions of conservation of number of atoms will form a system of 

nonlinear algebraic equations, which determine chemical composition, 

i.e., numbers of different particles N. in dependence upon tem- 

perature and density of gas (or pressure) and initial atomic 

composition of mixture. As was shown by one of the authors [6], 

this system has a unique solution; i.e., equilibrium chemical 

composition of mixture is determined uniquely. By forming expression 

for energy of type (3.31)* we can calculate Internal energy of 

mixture. On the basis of general formula for free energy 

P(T, V, N.) and thermodynamic formulas (3.9)* (3.10)* it is also 

possible to obtain expression for energy and pressure, and with 

help of formula (3.8) — an expression for entropy of mixture. 

As an example cf such calculations can serve calculation of 

composition and thermodynamic functions of air, taking into account 

dissociation of molecules of Np, Op and reactions of oxidation of 

nitrogen [3* 5]. Other reactions, leading to formation of NOp, 0,, 

etc., practically do net affect calculations, since concentrations 

of these components turn out to be extraordinarily small. 
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Chemical composition and therraodynamic functions of air arc- 

illustrated in Tables 3.1 and 3.2. 

§ 5.  lonization and Electronic Excitation 

Just as dissociation of molecules, lonization of atoms (and 

molecules) begins at values of kT considerably smaller than 

lonization potential I. Cause of this is the same as in the case of 

dissociation:  statistical weight of free state of electron is 

very great. 

Potentials of first lonization of majority of atoms and 

molecules change from 7 to 15 ev (l/k ~ 80,000-170,000oK) .* 

The exception is mainly atoms of alkali metals with very low lon- 

ization potentials. lonization begins usually at temperatures on 

the order of several or ten thousand degrees earlier, the lower the 

lonization potential and the more rarefied the gas. 

With increase of temperature, degree of lonization Increases, 

and when temperature becomes on the order of several tens of 

thousands of degrees, practically all atoms turn out to be singly 

ionized. In hydrogen, process of lonization Is thus finished; upon 

further heating, the gas remains completely ionized and consists 

of protons and electrons; every particle accomplishes only transla- 

tional motion, and heat capacity is equal to 2k per particle. 

In gas of heavier atoms, after first lonization there starts 

the second, then the third, etc. Usually the folxowlng lonization 

begins still before complete termination of the preceding one, so that 

at temperatures higher than several tens of thousands of degrees. 

*For Instance I0 = 13.6 ev, IN = 14.6 ev, IQ = 12.1 ev, 

IN = 15.6 ev, IN0 = 9.3 ev. 
2 
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in the gas there are present ions with several charges, but if gas 

consists of mixture of several elemerts, then there are present 

ions with several charges of every element. 

Just as during dissociation of molecules, internal energy of 

ionized gas is composed of energy of thermal motion of particles 

(atoms, ions, electrons) and potential energy, which is equal to 

expenditures in breaking away of electrons from atoms and ions. 

Furthermore, in region of ionization, a certain role can be played 

by energy of electronic excitation of atoms and ions. 

Let us consider for simplicity a gas consisting of atoms of 

one element, and assume, as this most frequently occurs, that all 

molecules, if gas Is not monatomic, in region of noticeable ion- 

ization are completely dissociated into atoms. Let us assume that 

j g of gas contains N atoms. Let us designate by I potentials 

of consecutive ionizatlons: 1^ is energy, necessary for breakaway 

of first electron from neutral atom, I2 is energy for breakaway 

of electron from singly ionized atom, etc. In order to detach 

from the atom m electrons, it is necessary to expend the energy 

fc»-/i+/i+... + /« (/o-0). (3.35) 

Let us assume that at given temperature T and density p or specific 

volume V, in 1 g of gas there are N0 neutral atoms, li, singly 

ionized atoms, etc. For brevity we will call ion with charge equal 

to m an m-ion; number of m-ions in 1 g we designate by N 

(neutral atoms are a particular case of m-ions). Number of free 

electrons will be designated by N . Assuming that gas is suf- 

ficiently rarefied and electrons obey statistics of Boltzmann,* 

♦Degenerate electron gas will be considered in § 12. 
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we have to ascribe to every particle of gas a thermal energy 

of translational motion V2kT«  Furthermore, m-ion possesses 

energy of electron excitation W . 

If we measure internal energy from non-ionized state of gas 

at zero temperature, then specific internal energy per initial 

atom can be written in the form* 

t~lN{i+a,)kT + N2Qmam + N2Wmam, (3.36) 
m m' 

where a is degree of ionization of gas, i.e., number of free 

electrons per initial atom (a = N /N); a = N /N are concentrations 

of m-ions. Concentrations a are related with each other by 

conditions of conservation of number of atoms 

lNm~N,   Sam=l (3.37) 

and conservation of number of charges 

2mNm~N„  S"»«™»«.- {3.38) 

Pressure of ionized gas** 

P~NQ(i + <i,)kT. {3.39) 

Equilibrium concentrations of ions satisfy equations which are 

analogous to law of mass action for dissociation. This is under- 

standable since process of ionization can be treated as the chemical 

reaction of "dissociation" of an atom or ion; for instance, process 

of breakaway of the m + 1-st electron from an m-ion can be written 

in symbolic form: 

*If gas at low temperatures is polyatomic to e it is necessary 
to add energy of dissociation. 

**Let us note that, just as for dissociation, formulas (3.36) 
for energy and {3.39)  for pressure are accurate also in the case 
of non-equilibrium ionization, if by T we understand "translational" 
temperature of particles. 
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A.^A^. + tf, m-0, 1. 2, ... (5-40) 

"Law of mass action" for this reaction is easy to derive from 

general expression for free energy. Just as this is done for 

reaction of dissociation. Let us write free energy of 1 g of 

ionized gas 

m 

where Z_ and Z are statistical sums of m-lon and electron, m    e 

In thermodynamic equilibrium for constants T and V, free 

energy is minimum with respect to numbers of particles. By forming 

the variation 5F with respect to change of number of m-ions due to 

their ionization by the scheme (5.^0), considering then that 

5N = -5N ,„ = -5N , and numbers of all other particles do not 
m    m+1    e* r 

change, and equating variation 5F to zero, we will obtain 

■Urn Z"» 

Translational sums of both ions cancel out, since masses of ions 

practically do not differ from each other. In the electronic 

part of statistical sum of ion (atom), we will separate the factor 

corresponding to zero-point energy (ground state): 

After designating difference between energies e. - e0, which 

is simply excitation energy of ion in k-th state, by w, , we will 

write transformed electronic sum u in the form 

(3.45) ,« 2 T^ - g.+gte'^+g^ + • • M 

where g0, g^. . „ are statistical weights 0.1 . . .of energy levels 

/ 
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of Ion; if the latter are not degenerate, g = 1. 

Statistical sum of free electron consists of product of 

translational sum and statistical weight of free electron, which is 

equal to two, in accordance with two possible spin orientations. 

By noticing that difference between zero-point energies of m + 1-st 

and m-th ions is equal to ionization potential of m-ion 

e0 m+1 ~ £o m " ^l* and also dividing expression (3.^2) by 

volume (n. = N./V), we will obtain 

(m    is mass of electron). x e 

This formula is Imown by the name of Saha formula. By 

multiplying it by kT, we can obtain relationship for partial 

pressures p. = n.kT. For numerical calculations, Saha formula 

can be conveniently rewritten in the form of an equation relating 

concentrations of particles a. = N./N = n.V/N = n./Np, 

-2S5l-«7r*m+i(7')' "»=0.1.2-..       {3A5) 

Equations (3.45), (3.37)* (3.38) form a closed system of 

nonlinear algebraic equations for determination of concentrations 

of Ions and electrons in dependence upon temperature and density of 

gas. 

Usually there exists a certain range of temperatures in the 

region from 8000° to 30,000oK in which only the first ionization 

is important, and the second still does not start (potential of 

second ionization is approximately twice the potential of the first). 

In this range, equations are simplified, since of all the equations 

(3.^5) there remains only one with m = 0. By noticing that in 
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region of first lonizatlon a. = a = 1 - OL, and omitting indices 

for ou and lonizatlon potential, we will obtain formula for degree 

of lonizatlon a = a^ = a : 
i   e 

(3.46) 

which is very similar to formula for degree of dissociation (3.26). 

For 1/fcT »1, a « 1, degree of lonizatlon is proportional 

to a ~ p" 'e" '  , i.e., very rapidly Increases with increase 

of temperature and slowly Increases with decrease of density of 

gas. For gas of atoms of hydrogen, formula (3.46) is always accurate. 

Energies of excited levels of atoms and ions usually are quite 

high, and are comparable with lonizatlon potential. In a number 

of cases there are low lying levels (and they, of course, have 

to be considered during calculation), but their number is very 

limited. More detail about calculation of transformed electronic 

sums u will be given in the following section. Here we note that, 

as a rule. It is sufficient to consider only the first several 

terms in these sums, where in most cases the overwhelming role is 

played by first term, and sum simply reduces to statistical weight 

of ground state u « g0. The fact is that in a not too dense gas, 

electron in atom or ion "prefers" to detach rather than to occupy 

a high energy level. In region of single lonizatlon T ~ 10*000 to 

20, 000oK, quantity I1/kT usually is on the order of 5-10.   If 

we go to higher temperature, then I^AT will become a small quantity, 

and simultaneously singly ionized atoms disappear, since second 

lonizatlon starts, and for the most wide-spread ions quantity 

I^_iA
T all the same will be on the order of 5-10.   Inasmuch as 

energies of excited levels in atoms have the same order as lonizatlon 
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potential, then even the second term in sum u will he, let us say, 

-5 on the order of e , i.e., very small. Due to this, it turns out 

that in electronic sums u, for the most wide-spread ions, the main 

role is played by the first term g0. 

During exact calculations, usually there are taken into account 

the first 5 to 10 levels in ions and atoms, where energies and 

statistical weights of them are taken from corresponding tables [7], 

There are also tables of potentials of consecutive ionizations of 

different atoms [8]. 

Internal energy of gas can be calculated by the formula (3.36), 

which follows from the general expression for free energy (3.^1) in 

accordance with thermodynamic formula (3.9). Energy of electronic 

excitation W thus is equal to (index of charge of ion m is omitted): 

v -w , (3.^7) 
Wmt ^ KI ^r ■ 

Entropy according to (3.8) is obtained by means of differentiation 

of free energy with respect to temperature: 

5 S 

If excitation can be disregarded, second term vanishes and um = Sn • 
m 

Most simple are calculations in the region of first ionization, 

where degree of ionization can be calculated simply by the formula 

(3.46). The starting ionization gives a considerable contribution 

to heat capacity and energy of gas, and consideration of it is 

absolutely necessary during calculation of thermodynamic functions. 
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The wide range of temperatures and densities In which atoms 

are multiply Ionized was encompassed In work of V. V. Sellvanov 

and I. Ya. Shlyaplntokh [4], Authors calculated lonlzatlon 

composition,* thermodynamlc functions and shock adlabat of air at 

temperatures from 20,000 to 500f000
oK and densities from 10 p0 to 

10  Pn (Pn is norinal air density).   How lonlzatlon composition 

and degree of lonlzatlon changes with change of temperature, and 

also how lonlzatlon Influences thermodynamlc functions can he seen 

from Tables 3.2 and 3.3 for air, which are based on calculations 

of V. V. Sellvanov and I. Ya. Shlyaplntokh.** 

At very high temperatures*** (or very low densities), energy 

and pressure of thermal radiation may turn out to be comparable to 

energy and pressure of the substance. Under conditions when radiation 

is in thermodynamlc equilibrium with substance (whether tnis con- 

dition is satisfied or not it must be specially checked in every 

specific case; see Chap. II), energy and pxessure ul" radiation 

should be simply added to energy and pressure of gas. 

"Specific" energy of equilibrium radiation is equal to density 

of energy of radiation divided by density of substance: 

. «f» fun (5.49) 

and pressure of radiation 

v9   4or« (5.50) 

*Generalization of the above-written equations to the case 
when gas is a mixture of elements is not difficult. 

**In Table 3.2, data [4] pertain only to temperatures of 20,000oK 
and above. 

»♦♦For air of normal density, these are temperatures above a mil- 
lion degrees. 
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Table 3.3. Composition of Ionized Air of Normal Density 

o = 1.29*10'^ g/cn?  at High Temperatures* 

T-,K ATOM 0 i* ?♦ 3* 4* 5* 6* • 

20000 N 
O 

0,589 
0,172 

0,201 
0,036 

0.48 

50000 N 
O 

0,018 
0,0065 

0,451 
0,303 

0,321 
0,048 

0,001 
1,35 

100000 N 
O 

0.012 
0.005 

0,275 
0,09 

0,463 
0,113 

0,04 
0,005 

2,65 

250000 N 
O 

0,005 
0,005 

0,183 
0,020 

0,603 
0,114 0,074 

2,65 

500000 N 
0 - 

0,017 0,75 
0,010 

0,025 
0.200 

5,2 

^Concentrations are defined as ratios of numbers 
of particles of given type to number of Initial atoms. 

0 are neutral atoms, 1 are singly Ionized, etc. 
e are electrons; N and 0 are Ions of nitrogen and 

oxygen. 

Entropy of radiation can be found with help of general thermo- 

dynamic relationships: 

«fv   r-    T- P ev j^    AoT*        c  16<rr»       (3.51) 
3c« 

In work [4], thermodynamlc functions of air were calculated, 

taking Into account equilibrium radiation. 

§ 6.  Electronic Statistical Sum and Hole of 
Excitation Energy of Atoms 

An Isolated atom (Ion, molecule) located In an Infinite 
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space possesses infinite number of energy levels, which converge 

to continuum, which corresponds to states with detached electron 

(ionized states). Formally electron statistical sum u contains 

infinite number of terms and diverges. Average excitation energy 

of atom W, calculated by formula (3.^7) with infinite number of terms, 

is equal to ionization potential, since excitation energies of 

higher states asymptotically approach ionization potential. 

This difficulty, which appears during purely formal calculation 

of u and W, has only an apparent character. In fact the atom 

never is isolated, but is located in a gas of finite density. 

Dimensions of electronic orbit rapidly increase during transition 

to higher states of electron in atom and finally become comparable 

with average distance between particles of gas, which is equal 

-1/3 approximately to r « N /  (here by N we designate number of par- 
3 

tides in 1 cm ). Trajectories of electrons moving along such 

large orbits are distorted due to the presence uf neighboring 

particles, and an electron which is removed from atomic core to 

a distance comparable with average distance between particles of 

gas essentially does not differ from a free electron. Thus, 

finiteness of density of gas imposes a limitation on number of 

possible states of atom and number of terms in electronic statistical 

sum, and also limits average excitation energy of atom. 

Let us consider gas consisting of atoms of hydrogen. Results 

of consideration of hydrogen atoms have large generality, since 

highly excited states of any complicated atomic systems are very 

similar to excited states of an atom of hydrogen. If electron in 

complicated atom (ion, molecule) moves along a very great orbit, 

then field in which it is located is very close to Coulomb field of 
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point charge (atomic core), and therefore structure of highly 

excited states of any atoms and ions is close to that of hydrogen. 

In order that we may extend results of consideration to multiply 

charged ions, we will into all formulas introduce charge of 

"nucleus," i.e., consider not hydrogen in the literal sense, but 

hydrogen-like atoms which are systems of positive "nucleus" with 

charge Z and an electron. 

Levels of energy of hydrogen-like atom are characterized by 

principal quantum number n (see scheme of levels in Fig. 2.2 In § 2 

of Chap. II). Energy of n-th level, measured from boundary of 
2 2 continuous spectrum, is equal, as is known, to e = -1JI  /n , n    n 

where !„ = 15.5 ev is ionization potential of hydrogen. Absolute 

value of it E = |e I = I^Z /n is binding energy of electron 

located on n-th level. Binding energy of ground state n = 1* is 

equal to ionization potential: 

Ex = IJ? = /. 

Excitation energy of n-th state is equal to wn = 
£
n - 

£± ~ ^± ~ 

hydrogen-like atom has the form 

- E = 1JZ  (1 - ^TTIO Transformed electronic statistical sura of 

-21      VV, L] 

p 
where gL= 2n is statistical weight of n-th level. 

Binding energy of electron on n-th level is equal to its 

Coulomb energy in field of nucleus at distance on the order of 
P 

dimensions of orbit, namely, E = Ze /2a, where a is semi-major 
p        2 2   2      2 

axis of elliptic orbit; a = Ze /ZE    = e n /ZI^ = aAn /Z, where n       n   u 

*In distinction from the preceding, here we will assign to 
ground state index "1," and not "0," in accordance with equality 
to unity of principal quantum number n. 
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—3 
a0 = 0.55»iO" cm Is Bohr radius. Statistical sum u In any case 

should be broken off at that- value of n* at which semlaxls of 

orbit becomes compareole with average distance between particles 

of gas. I.e., at a = a0n*
2/Z = r, n* = (Zr/a0)

1//2 ~ N"1/6 (n* Is 

less, the denser the gas). As a numerical example we will consider 

molecular hydrogen, which at room temperature was under atmospheric 

pressure and then was heated by a strong shock wave to temperature 

on the order of tens of thousands of degrees. Compression in shock 

wave Is equal approximately to 10, so that under conditions of com- 

plete dissociation of molecules, number of atoms In 1 cnr will 'he 

N « 5»i0 /cm , Average distance between atoms r « N** ' ^ = 1.3»i0~' 

cm and limiting value n* = 5(Z = 1).  At a temperature of T = 

= ll,600oK = 1 ev, statistical sum containing five terms is equal 

to u = 2.00053, i.e., is practically not different from statistical 

weight of ground state g^ = 2. Average excitation energy of atom 

calculated by formula (3.^7)^ taking into account five terms in the 

sum, is equal to W = 0,003 ev. At shown values of N and T, degree 

-"5 of lonizatlon of hydrogen is a = 3«10 , i.e., ionizing energy, 

per atom I„a « 0.04 ev. Excitation energy W is small as compared 

to ionizing energy (W/I„a = 0,075). At higher temperature T ■ 

■ 23,200oK » 2 ev and the some density u « 2.212 (also a little 

larger g^ » 2), W =» 1.16 ev. Degree of lonizatlon now a « 0.22j 

lonizatlon energy from calculation for one initial atom is equal to 

IHa " ^ ^ and excl"fca"tion energy, also for one Initial atom, 

W(l - a) » 0.9 ev. 

In this case excitation energy plays a noticeable role, but 

still it Is less than ionizing energy. It is necessary to note 

that cut-off of upper levels in gas of finite density siaultaneoualy 
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lowers ionlzatlon potential exactly by a magnitude equal to value 

of binding energy of electron on boundary of cut-off, i.e., by 

the amount AI = E^  = Ze2/2r = ZIHc.0/r = Z T.lcT^N"
1/^ ev (N in 

1/cm3). 

In our example this decrease is equal to AI = 0.55 ev, so that 

calculated degrees of ionization are somewhat too low. 

At very high temperatures, ~50,000 K and above, excitation 

energy of remaining atoms of hydrogen becomes great, comparable 

with ionization potential, but then degree of ionization thus 

strongly increases and actual number of neutral atoms becomes 

small, so that contribution of excitation energy to energy of gas 

all the same is less than contribution of ionizing energy. This 

corresponds to the situation where it is more "favorable" for the 

electron to be completely detached from the atom than to occupy 

a high excited level.* 

The earlier given estimate of number of terms in electronic 

sum most likely overstates the actual number of levels. Cut-off 

*This situation can be explained by means of the following 
semiqualitative reasoning, which is especially graphic in the 
limiting case of a gas of very low density. Ratio of probabilities 
of free and bound states of electron is proportional to ratio of 
translational and electronic statistical sums (Z.    ~ y ~ i/p). 

Electronic sum in the limit of low densities, when in it there 
participates a very large number of terms, can roughly be represented 
as follows: 

-^   -X  »• 
ZM-21«»' "-S2"**  -J^^^^- 

But n* ~ r1/2, so that Zel ~ V
1/2 ~ p"1//2. Hence Ztrans/Zel ~ 

~ v ' ~ p~ ' , Thus, with decrease of density In the limit of 
low densities, in spite of Increase of number of possible bound 
states, probability of breakaway of electron from atom all the 
sane Increases faster. 



of higher levels In atoms and ions Is considerably affected by the 

direct influence of electrostatic field of the nearest neighboring 

charge particle — the Stark-effect, 

Furthermore, in a sufficiently rarefied gas, binding energy 

of electron moving along limiting orbit with dimension a •*- r, E # = 

= AI = JtiO ' N ''   ev turns out to be less than kT (in our example 

AI = 0.55 ev, and temperatures were 1 and 2 ev). Kinetic energy 

of electron in hydrogen-like atom is equal to its binding energy 

at given level. It is doubtful whether it has special meaning to 

consider a bound electron which binding energy and kinetic energy are 

less than kT. Practically every "collision" with free electron 

will knock a weakly bound electron from the atom. Certain authors 

therefore break off the electronic sums still more sharply, at that 

level where binding energy of electron is equal to kT. 

To problems connected with lowering of ionization potentials 

in ionized gas and problem of calculation of electronic statistical 

sums there is dedicated a whole series of works [9-1^, 54], It 

is necessary to say that here there does not exist a single common 

opinion, and various authors offer different schemes for breaking 

off of electronic sums. Luckily, calculations show that variation 

in number of terms considered in electronic sums, as a rule, little 

affects thermodynamic functions of gases. But lowering of Ionisation 

potentials as a result of cut-off of upper levels sometimes 

noticeably affects ionization composition of gas (see work [14]), 

In conclusion of this paragraph, let us note that phenomenon of 

cut-off of upper excited levels in atoms, ions, and molecules has 

experimental confirmation. In spectra of low-pressure arc dis- 

charges usually there is not observed more than 5-10 spectral 
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lines of Balmer hydrogen series, which Is connected with transitions 

of electron from upper excited level to ground level. Even In 

spectra of gaseous nebulae, density of which Is extremely low (order 

of tens of particles per i cnr), there Is not observed more than 

50-60 Balmer lines. 

§ 7. Approximate Method of Calculation In 
Region of Multiple lonlzatlon 

Calculations of lonlzatlon equilibrium, which are the basis 

for finding of thermodynamlc functions of gas at high temperatures, 

require very great and labor-consuming calculating work. For every 

pair of values of temperature and density. It Is necessary to solve 

a nonlinear system of algebraic equations for determination of 

concentrations of Ions of various charges, which Is still more 

complicated If gas contains atoms of several elements. Essentially, 

within a wide range of temperatures and densities, tables are composed 

only for air. Certainly, at the contemporary level of computer 

technology, the problem of large numerical calculations to a 

considerable degree loses Its severity, but still for practical 

purposes It Is useful to have a simple method of approximation 

which would make It possible rapidly and with minimum expenditure 

of labor to calculate degree of lonlzatlon and thermodynamlc functions 

of any gas within a wide range of temperatures and densities In the 

region of high temperatures, when atoms are multiply Ionized. In 

this section there will be described such a method, which was pro- 

posed by one of the authors [15]* which In Its extreme simplicity 

possesses accuracy which Is fully sufficient for solution of majority 

of practical problems. 
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0    12   5* 

Flg. 3.1. Transition 
to continuous curve 
I(m). 

We consider a gas, consisting 

of atoms of one element. 

At the basis of method of 

approximation there are made two 

"basic assumptions. We will, first 

of all, consider numbers of ions in 

i cnr n and potentials of ioniza- 

tion I ^ as continuous functions 

of charge of ion m, while connecting 

discrete values of n and I 
'm ~" m+i 

by continuous curves. Function I(m) is constructed by means of 

connection of points I on diagram of I, m (Fig. 3.i) by a continuous 

curve, let us say, by means of connection of neighboring points by 

straight line segments. System of recursion formulas of Saha (3.44) 

thus can be transformed into a differential equation in the function 

n(m), if we Introduce differentiation in place of finite differences: 

n(m + l)-n(m) + -il. Am«!. 

Ratio of electronic statistical sums of ions um+i/
u
m usually 

changes in a very irregular way during transitions from one charge 

m to another for a given element or transition to other elements; 

however, this ratio always has the order of unity. Let us assume 

It to be approximately equal to one. After this the system of Saha 

formulas can be written in the form of a differential equation: 

(3.52) 

Simultaneously conditions of conservation of numbers of particles 



and numbers of charges (5.37), (3.38) will be written in integral 

form: 

Jn(m)dm = «, (3.53) 

^mn(m}dm = nt. (3.54) 

Consideration of results of exact calculations. Just as 

consideration of system of Saha equations conducted below, shows 

that in gas there are always present in considerable number ions 

of two, and a maximum of three charges. Consequently, distribution 

function n(m) has the form of a very narrow and sharp peak near a 

certain value ni 0 . which, of course, depends on temperature and 

density of gas. 

From this follows the second assumption. Let us assume, 

approximately, that average value of charge of ions, which coincides 

with average number of free electrons per initial atom 

~J **('*)<"* ss*!Lt (3.55) 
jj n (m) dm        n 

is exactly equal to the value m^gv* ^ which distribution function 

of ions n(m) passes through meximum. It is obvious that this 

assumption is all the more accurately, the sharper and narrower the 

peak of distribution n(m) is. 

Designating by 1  ionization potential of ions with "average" 

charge m and noticing that at point of maximum of peak, derivative 

dn/dm = 0, we will obtain from (3.52) with help of (3.55) the 

following expression, which relates m and 1: 

- J -4 (^56) 
m—-j-e     • 

In order to transform thia expression into an equation for 

finding of average charge (or degree of ionization) in dependence 

upon temperature T and density (number n of Initial atoms in i cm ), 
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it Is necessary to determine relation between I and 5. Here there 

Is a certain arbitrariness connected with the purely symbolic question 

In exact theory about assigning of Indices to lonlzatlon potentials. 

If we designate lonlzatlon potential of m-lon by Im+i 

(lonlzatlon potential of neutral atom 1^), then formally we should 

set I = I(m + 1).  Sometimes lonlzatlon potential of m-lon Is 

designated by I (lonlzatlon potential of neutral atom I0), In 

this case. In Saha formula (5,44) Instead of I ±t  it Is necessary 

to write I , and formally It would be necessary to set I = I (in). 

Certainly, If we consider heavy elements and very high 

temperatures, when degree of lonlzatlon Is so high that m has the 

order of several tens, such arbitrariness numerically does not 

lead to essential variation in number m (since then 

Vl -Im«Im)- 

However, in region of small lonlzatlon, when average charge 

of ions is on the order of several units, such arbitrariness 

noticeably affects results of calculations of m and thermodynamic 

functions, which is connected with the approximate character of 

replacement of discrete quantities by continuous functions. 

Comparison of results of approximate and exact calculations 

shows that best agreement is obtained if, as before, we designate 

lonlzatlon potential of m-lon by I ^ = I(m + 1), considering 

that I0 = 1(0) = 0, but refer "average" value of potential T to 

point m + :g* i.e,, consider I = I(m + -K).     This is quite natural, 

if we consider that in reality the series of discrete values of m 

is divided by finite Intervals Am = 1, 

By taking the logarithm of (3.56), we will obtain simple 

transcendental equation for determination of m(T, n): 
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\ * y mn 

Thanks to logarithmic dependence of right side on m, it is 

sufficient to make two to three successive approximation in order 

to find very exactly the root m with help of graph of function I(m). 

Let us be convinced of the fact that distribution of ions over 

charges always has character of a narrow peak, and find the law 

of decrease of sides of the peak of distribution function n(m). 

By combining consecutively the written Saha formulas for various 

m = 0, 1, 2 . . . , setting in them preliminarily the ratio of 

electronic statistical sums equal to one, and using definition of 

"average" potential (3.56), we will obtain; 

1=1 

^-.xp[-27-^]. 

where l = 1, 2, 3 . . * 

Let us select m equal to that value at which n_ is maximum. 

1  approximately corresponds to ionization potential of such ions, 

so that all terms in sums are positive, and concentrations of ions 

decrease on both sides of the maximum. In order to estimate law 

of decrease and width of peak, we will cross over in these formulas 

to continuous functions n(m), I(ra),  Expanding approximately 

/(m)W + (-i£)(»»-m). 

we will obtain Gaussian distribution curve 

»("O-iwexp [-(-^i^) ] (3.58) 

with half-width of peak 

*-/^3=- (3.59) 
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If we consider that on the average for various elemencs and 

various ionizations ionization potentials increase with charge of 

ion faster than the charge itself,- i.e., that dl/dm > l/m, we will 

find that 

A<V/Hp-/f . 7.-4. (3.60) 

After substituting in this formula numerical values of x^ aad 

m, which are found, for Instance, with help of Tahle 3,5 for air, 

we will see that A < i, i.e., that peak indeed is narrow,* 

Approximate formulas for thermodynamic functions are obtained 

from exact formulas if, in accordance with the above made approxi- 

mations, we consider that distribution of ions n(m) constitutes a 

very narrow peak — almost a 5-function near the value of m, i.e., 

if we consider that all Ions in gas possess one non-integer "average" 

charge m. Specific internal energy (3.56) thus takes the form 

t~lN{i+m)kT+NQ(m) (3.6i) 

(energy of electronic excitation will be disregarded). Here 

continuous function Q(ni) analogously to I(in) is constructed 

graphically by means of connection by a continuous curve of discrete 

values of Q^ determined by formula (5.35). Let us note that best 

coincidence with exact calculations is obtained if in formula (3.6i) 

we set 5 = Q(5), in distinction from I = 1(5 + 4) . Pressure is 

equal to 

p-ii(l + m)*r. (3.62) 

♦The fact that the peak of distribution n^ Is narrow, on 
the order of the "finite" difference Am = 1 itself, in general 
deprives the transition to differentiation with respect to m of 
meaning. However, actually the method has turned out to be better 
than its foundation. 
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Specific entropy (5.^8) (if we disregard electronic excitation and 

assume statistical weight of all ions to be identical and equal 

to g) is obtained equal to 

s 5 

s^NkxaQ^jk+Nk^(^^jl^^ (3-65) 

By considering S = const and using formula (3.57)* we will obtain 

equation of adiabat in parametric form; 

As the parameter serves m; const in the right side is determined 

by values of T0, n0, through which the adiabat passes. 

The above method of calculation of degree of ionization and 

thermodynamic functions is easily generalized to the case of a 

mixture of gases. For instance, in mixture of two elements, average 

charges of ions of each of the elements iL, nu are found from 

system of two transcendental equations, 

I (3.65) 
/.(m1 + 4) = /s(;mJ + l) = *nD- AT 

e|ini4-etms) 

where c^, c« are atomic concentrations of both elements, I*, Ip are 

curves of their ionization potentials, and n is total number of initial 

atoms in 1 cm , Specific internal energy is equal to 

• «I iV (1 + c.m, + cm,) kT + Nc.Q^ (m.) + A'cft (m)      (3.66) 

etc. In many cases, however, it does not have much meaning to 

complicate calculations thus. If potentials of consecutive ion- 

izations of atoms of various elements do not strongly differ from 

each other, it is expedient to introduce "average" curve of potentials 

l(m), while considering all atoms as identical and averaging values 

of consecutive potentials over all elements in accordance with their 
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percentage content In the mixture. 

Table 5.4, Comparison of Approximate Cal- 
culations of Degree of lonlzatlon and Internal 
Energy of Air with Exact Calculations* 

T».K 
i-fS l+nt ••ttoä 

gtf»l,2«.lO",^om •=10"*^ 

30000 

SO 000 

100000 

1,68 
1.77 
2.4 
2,42 
3,72 
3,75 

16,6 
23 
40,5 
47,8 

126 
140 

2,30 
2,21 
3,35 
3,26 
5,10 
5,16 

33 
33 
83 
80 

243 
252 

»Upper figures In each pair are obtained 
by method of approximation [15]j lower figures 
are taken from work of V. V, Sellvanov and 
I. Ya. Shlyaplntokh [4], 

In Table 5.4 there are compared results of approximate 

calculations of degree of lonlzatlon and Internal energy of air 

with exact data of V, V. Sellvanov and I. Ya. Shlyaplntokh [4], 

It Is clear that even for small degrees of lonlzatlon, where error 

should be especially great, method of approximation does not give 

bad accuracy. At high degrees of lonlzatlon, error does not exceed 

several percent. 

The method truely transmits irregularities of change of m and 

e with temperature and density, which correspond to sharp Jumps in 

lonlzatlon potentials which appear during transitions from ions 

with filled electron shells to ions with unfilled shells. Cal- 

culations have shown that the method also gives good accuracy for 

xenon. Inasmuch as curves of lonlzatlon potentials for all elements 

are similar to one another, it is possible to rely on the fact 
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that the approximate method will provide sufficient accuracy also 

In the case of any other gas. 

§ 8, Interpolation Formulas and Effective Adlabatlc Index 

A direct result of calculations of thermodynamlc functions 

Is tables composed In the form of a grid of temperatures and 

densities (or temperature« and pressures). Use of tables during 

solution of gas-dynamic problems is connected with large incon- 

veniences. It is much more pleasant to deal with simple inter- 

polation formulas, which more or less accurately approximate the 

tabular data. Exceptional Interest is presented by such an 

approximation of real functions, with which adlabatlc index 

determining behavior of hydrodynamic process approximately turns out 

to be constant. Introduction of constant effective adlabatlc index 

permits using self-elmilar and exact solutions of equations of gas 

dynamics, which, as a rule, it is possible to obtain only for a gas 

with constant heat capacity. 

Adlabatlc relations between some two thermodynamlc parameters, 

for Instance T and p or p and p, during consideration of incomplete 

excitation of vibrations, dissociation, and ionization no longer 

are described by equations of type of Poisson adiabats. It is 

possible formally to determine at every point the index 7 in such 

a way that in neighborhood of this point true adiabat approximately 

coincides with equation of Poisson adiabat. For this it is obviously 

necessary to set: 

However, then Indices corresponding to different pairs of 

thermodynamlc parameters differ from each other. Therefore, with 
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Introduction of effective adiabatic index 7 in the interesting 

range of T and p or p and p, it is necessary to define it so 

that it best corresponds to nature of gas-dynamic process. 

Third equation of gas dynamics in general is the equation 

of conservation of energy, and in order to close the system of 

equations in hydrodynamics of an ideal fluid,* it is sufficient 

to introduce relation between specific internal energy and pressure 

and density e(p, p). Usually this relation is described by the 

formula 
 *P 

Therefore, for determination of effective adiabatic index in 

the interesting range of p and p we should compose a table for the 

combination 

*        •• (3.67) 

and select .• certain constant value of 7 - 1, which best approximates 

actually non-identical values of this combination. As a result, 

equation of adiabat de + p dV = 0 (V = 1/p) will take the form of 

Poisson adiabat p ~ p7, e ~ p7" with effective constant value of 7. 

Specific internal energy in dependence upon temperature and 

density is the most conveniently approximated by formula of the 

power type 

(3.68) 

with constant a, a and 0, 

In region of excitation of oscillations, heat capacity does not 

depend on density and ß = 0. In the region of dissociation and 

♦In hydrodynamics of an ideal fluid there are not considered 
viscosity and thermal conduction. 
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and lonlzatlon, heat capacity always Increases with decrease of 

density of gas, since there Is then Increased degree of dissociation 

or lonlzatlon, and corresponding expenditures of energy Increase. 

Therefore Index ß Is always positive. Index a Is always greater 

than 1, since heat capacity Increases with Increase of temperature 

In region of Incomplete excitation of vibrations, as well as In 

regions of dissociation and lonlzatlon. 

During approximation of function e(T, V) by formula (5.68) 

with constant Indices a and ß and approximation of function p(e, p) 

or p(e, V) by equation (3.67) with constant Index 7, the three 

constants a, ß and 7 cannot be chosen Independently, 

Functions p(e, V) and c;(T, V) have to satisfy the general 

thermodynamlc relationship: 

It Is easy to verify by means of direct substitution that three 

Indices a, ß, 7 are related to each other by the condition 

Y-l-^rr« (5.69) 

which holds, of course, only in the case when they are considered to be 

constant. During the described interpolation, which is easy to 

check with help of equation of adiabat de + p dV » 0, adiabatlc 

relations of T and p and e and p also are characterized by a single 

adiabatlc index 7, Just as in the case of the Poisson adiabat: 

r~Qt-«; t~(jY->; I~QV y — cooai. 

This is obtained in spite of the dependence of heat capacity on 

temperature and volume. 

For illustration of the numerical values of adiabatlc index, 

in Table 5,2 there is presented the combination 1 + p/pe = 7 in 
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region of multiple ionizatlon of air. We see that index 7 decreases 

with decrease of density. 

In ranges of temperatures 10,000o-250,000oK and densities 

I0p0-10 ■'PQ (p0 is normal density). Internal energy of air in 

rough approximation can be described by interpolation formula 

(3.68) with following values of constants: 

-8.3(w),,J(f )0,,J *v/mle ' (3,70) 

By formula (5.69) effective adiabatic index is equal to 7 = 1.24. 

It is important that index 7, determined by formula (5.67), 

is changed much less than indices a and ß in formula (3.68), This 

situation is extremely favorable, since for analysis of adiabatic ' 

processes the relation e(T, V) actually is not needed; it is sufficient 

to have relation e(p, V) or p(e, V), which is given by equation 

(3.67). 

It is necessary to note that effective adiabatic index and 

exponents a and ß in interpolation formula (3.68) quite weakly 

change during transition rrom one gas to another if we try to 

approximate a wide range of temperatures and densities. This is 

understandable, since curves of ionizatlon potentials in general 

are always similar to one another; they differ in details, which 

influence behavior of energy and pressure in small regions of 

variation of temperature and density of gas. 

§ 9. Shock Adiabat Under Conditions of 
Dissociation and Ionizatlon 

Parameters of shock front in gas with constant heat capacity 

were calculated in Chapter I. In case of a strong wave, when 

pressure behind the front is much higher than initial p^ » p0, 

compression in front tends to limiting value h = (7 + l)/(7 - 1), 
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Thus, In a monatomic gas (inert gases, vapors of metals) 

Cy = ■|-Nk> 7 = 5/3 and h = 4; In a diatomic gas with non-excited 

vibrations cv = 5/2NkT, 7 = 7/5 and h = 6.* Already from the 

formula for h in case of gas with constant heat capacity, we may 

see that compression in front is greater, the larger the heat 

capacity is and the nearer the adiabatic index is to unity. The 

tendency to increased compression during increase of heat capacity 

is retained in the general case, when heat capacity depends on tem- 

perature and density. If diatomic gas is so dense that vibrations 

are excited still before beginning of dissociation, then during 

transition to stronger shock waves heat capacity behind the front 

increases, tending to the value cv = ^NkT, adiabatic index tends 

to 7 = ^, and compression behind the front is increased to h = 8. 

Dissociation and ionization lead to further increase of com- 

pression.  It is important to note that magnitude of compression 

is affected only by that part of heat capacity which is connected 

with potential and internal energy of particles: energy of 

dissociation and ionization, rotational and vibrational energy of 

molecules, energy of electronic excitation of atoms and ions. 

Increase of specific heat capacity due to increase of number of 

particles in gas does not affect compression, since simultaneously 

with increase of energy of translational motion of particles, 

pressure of gas increases. Change of number of particles is not 

directly reflected on adiabatic index 7, which is determined by 

*Maximum compression in practice, which is equal to 6, is 
attained in a diatomic gas with non-excited vibrations only at very 
low initial temperatures T-.. Otherwise, at those temperatures behind 

the front at which vibrations are still not excited, pressure ratio 
P^/PQ is not large enough for shock wave to be "strong." 
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compression. This is easy to verify if we represent Internal 

energy In the form of the sum e = etrans + ®'*  where In Q there Is 

Included potential energy and energy of Internal degrees of freedom 
p 

of particles. Noticing that pressure p = fP^rans' we w111 sul:>~ 

stitute these expressions in formula for shock adiabat (1,71). 

By disregarding initial energy and pressure, i.e., considering 

shock wave to be strong, we will obtain after elementary calculation 

that magnitude of limiting compression is equal to 

enocT 

This quantity differs from 4, which corresponds to a monatomic 

gas more, the greater the relative role of potential and internal 

energy is. 

In region of dissociation and ionization, potential energy 

usually turns out to be higher than translational energy of particles, 

and compression in the front is great, on the order of 10-12; 

especially great is compression for small initial density, when 

degrees of dissociation and ionization are very high at given 

temperature.** 

Compression in region of ionization for heavy gases does not 

remain constant during increase of amplitude of wave. Relative 

contribution of potential energy after passage of maximum of com- 

pression, in period of dissociation or first ionization, gradually 

*In article of authors [16] instead of formula (3.71) there was 
given incorrect relationship h = k/{l -  3Q/Etrans) (formula (2.5)). 

**Thus, for instance, when through air with Initial pressure 

PQ = 10  atm there are propagated shock waves with velocities 

D ~ 6,5 - 12 km/sec (Mach number M ~ 20 - 35), compression behind 
front is equal approximately to 17. 
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decreases, since translational energy Increases faster than potential 

energy due to Increase of number of particles. Thus compression 

also gradually decreases. It occurs In this way until all electrons 

are detached from some shell of the atoms. Between lonlzatlon 

potentials of the last of the electrons of this shell and the first 

of the electrons of the following closed shell, there always Is a 

great gap.   is gap Is especially great between L- and K-shells. 

Thus, for Instance, In nitrogen this Is 97 ev and 550 ev. In oxygen 

1^7 ev and 735 ev. Therefore, In air there exists quite a wide 

Interval of amplitudes of waves, approximately in range of tem- 

peratures from 500,000° to 70O,0O0oK, when all electrons In atoms 

of oxygen and nitrogen filling L-shells have already been detached, 

and lonlzatlon from K-shells still has not begun: in gas there are 

present only helium-like ions. When during further increase of 

amplitude of wave there starts breaking away of K-electrons, 

expenditures of energy on lonlzatlon again sharply Increase, relative 

contribution of potential energy. Just as in beginning of first 

lonlzatlon, is increased, and compression passes through a second, 

clearly pronounced maximum. 

Pressure behind strong shock wave front, as follows from 

equations of conservation of momentum and mass (1.61), (1,62), is 

little sensitive to magnitude of compression, especially during 

large compressions, and is approximately proportionally to square 

of velocity of propagation of wave D: 

(for Instance, at h ~ 10 with accuracy up to ~10^). 

With still greater accuracy, on the order of 1#, specific 
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enthalpy behind front Is proportional to square of velocity: 

[this expression follows from formulas (l,6i), (1,62), (1,64)]. 

Temperature, which in gas with constant heat capacity is also 

proportional to square of velocity, under conditions of dissociation 

and ionization increates with increase of amplitude of wave much 

more slowly. 

In region of first ionization, this occurs due to relative 

increase of expenditures of energy on ionization, i.e., of the 

quantity QA-trans ~ ^/T' subsequently, when fraction of potential 

energy in Internal energy decreases as compared to translatlonal 

energy, delayed temperature rise is explained by Increase of number 

of particles, to which e+ranß and p are proportional: 

Let us note that after occurrence of total ionization, when 

with increase of amplitude of shock wave and temperature behind the 

front e4.rans increases and Q remains constant, compression during 

Increase of amplitude tends to 4 (if we do not consider thermal 

radiation). This one may see from formula (3.7I). For Instance, 

in hydrogen, in region of total dissociation and ionization potential 

energy per atom is equal to 15.74 ev (energy of dissociation of 

Hg is 2.24 ev per atom; ionizing energy is 13,5 ev), translatlonal 

energy per atom (energy of proton and electron) is equal to 

3 kT = 3 T ev, i.e.. 
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(total lonizatlon In hydrogen, at atomospherlc density before 

the wave, occurs at T ~ 100,000oK ~ 10 ev). 

For Illustration of the presented considerations ahout Influence 

of dissociation and lonizatlon on parameters behind shock front, we 

present Table 5.5* which contains results of calculation of these 

parameters for air for normal initial density. Data for low 

temperatures in region of excitation of vibrations are taken from 

book of Ya. B. Zel'dovich [17]; calculations in region of dissociation 

and beginning of first lonizatlon were made by Davis [18], Within 

a wide range of temperatures from 20,000° to 500,000oK, parameters 

of front were calculated by V. V. Sellvanov and I. Ya, Shlyaplntokh 

in work [4], already cited above. 

Table 3.5. Parameters Behind Wave Front in Air for 
Normal Conditions Before the Front n 

p0 = 1 atm> T0 = 293"K 

f.K D.toa/sBO J>i. atm Qi/Oo r.K D.to/seo Pi, atm MO» 

293 0,33 1 1 14000 9,31 1000 11.10 
482 0,70 5 2,84 20000 11.8 1650 10.10 
705 0,98 10 3.88 30000 15,9 2980 9.75 

2260 2,15 50 6,04 50000 23.3 6360 8.97 
4000 3,35 127 8,58 100000 40,t 19200 8.62 
WOO 4,54 236 9.75 250000 81.6 76500 7,80 
8000 5,64 306 10.30 500000 114.0 143900 6,27 

10 000 8,97 561 11.00 

Calculations of parameters behind shock wave front in air in 

-5 
wide range of initial pressures from normal to p0 ^ 10 

v atm were 

made by I. B. Rozhdestvenskly [19] and H. F. Gorban' [20] (for 

temperatures behind the front not exceeding 12,000 K). 

In a number of works there were calculated parameters of shock 

wave front In other gases:  in argon and hydrogen (N, A. Prokof'yev 
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[21]), in argon (Realer and others [22]), in xenon (Sabol [23]), 

In hydrogen and xenon (S. R. Kholev [24]). Phenomena in all gases 

do not differ from each other qualitatively and shock adlabats are 

very similar to each other. 

Calculated adlabats In argon and xenon agree well with experi- 

mental adlabats obtained on the basis of study of shock waves In 

shock tubes. Regarding air - here there Is satisfactory agreement 

of calculations with experiment. It Is necessary to note that 

behavior of shock adlabat In region of dissociation strongly depends 

on which of the two previously questionable values Is ascribed to 

dissociation energy of nitrogen: 7,38 ev or 9.74 ev. Experiments 

of Christian and others [25] studying shock waves In air with help 

of shock tube confirmed that experimental shock adlabat Is nearer 

to calculated adlabat corresponding to dissociation energy of 

nitrogen of 9.7^ ev. In favor of this value witness experiments 

of Model, [26], who measured velocity of front and (by an optical 

method) temperature behind the front. 

§ 10. Shock Adlabat Taking Into Account 
Equilibrium Radiation 

At very high temperatures (or very low densities of gas)^ 

when energy and pressure of equilibrium radiation are comparable 

with energy and pressure of substance, radiation should be considered 

during calculation of shock adlabat (of course, preliminarily, we 

should check to see If equilibrium of radiation with substance under 

specific conditions of the problem Is established. 

Let us consider a very strong shock wave propagating through 

a cold gas, and assume that fluxes of radiation In both sides of 

the front are equal to zero. Let us assume also that behind the 

287 



shock wave front radiation is equilibrium (without "being interested 

here in the question of the process of establishment of equilibrium). 

Thus, we consider problem from a purely thermodynamic point of view, 

as this usually is done during derivation of shock adiabat.* Let 

us stress that we consider the non-relativistic case, when velocities 

of shock wave and substance are much less than velocity of light, 

and energies of substance and radiation are much less than rest 

energy of substance. Let us introduce into equations of conservation 

of fluxes of momentum and energy on shock wave front the energy and 

pressure of radiation behind the front e .,  p . (see § 13, Chap. I 

and § 17, Chap II). Laws of conservation on front will be written 

in the form 

Qi«t = QoZ>, (5.74) 
Pi+Pyi + Q&l^QoD*, \ 

• J-.    4..£L4. *$. ±1 = -??.     I 

In order to simplify problem for the purpose of clarification 

of role of radiation, we will consider that gas possesses constant 

heat capacity and adiabatic index 7 and obeys usual equation of 

state: 

P-*AQT,   i4 = const; e =-^ ^»^-J . 

By substituting in (3.7^0 evi and p . according to formulas 

(3.^9)* (3.50)* expressing pressure p^ and energy e1 iii terms of 

temperature T^, and eliminating u^ with help of the first of 

equations (5.7^)* we will obtain relationships corresponding to 

formulas (3,72), (3.73), in which radiation is not considered: 

♦This problem was considered by Sachs [27]. 
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(5.75) 

where h = P-J/PQ is compression in front of shock vave. Let us 

further eliminate D from these equations and solve the obtained 

expression for T^; 

ffl ^*(*-*>) (3.76) 

where h0 = (7 + l)/(7 - 1) Is limiting compression In strong shock 

wave without taking Into account radiation. 

This relationship can be considered as an equation determining 

compression h In dependence upon amplitude of shock wave, which 

can be characterized by temperature behind the front T^, 

Quantity In left side of equation (3.76), which Is proportional 
3 

to T£, Is simply ratio of radiation pressure to pressure of substance 

behind shock wave front p ^/p^. From formula (3.76) It follows 

that If radiation pressure Is relatively small, Pvi/Pi « 1»  then 

h ^ h0. I.e., compression Is equal to usual magnitude 

JIQ = (7 + l)/(7 - 1). In the limit of a very strong wave, when 

p -,/Pi ^ T;[ -♦■ 00, compression h tends to h » 7, This result should 

have been expected, since equilibrium radiation from thermodynamlc 

point of view behaves as Ideal gas with adlabatlc Index 7 « 4/5 

(see § 3, Chap. II), which corresponds to limiting compression In 

shock wave equal to 7« 
pvl       pvl In Interval between two limiting cases ~- -♦ 0 and ► oo, 
pl        "l 

compression h with Increase of amplitude of wave monotonlcally 

changes from h0 - (7 + l)/(7 - 1) to h^ ■ 7, Independently of whether 
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h0 > 7 or h0 < 7, I.e., Independently of whether adlabatlc Index 

of gas, without taking Into account radiation is less than or larger 

than 4/3. 

In limiting case, when energy and radiation pressure are much 

larger than energy and pressure of substance, i.e., when second 

terms in left sides of equations (3.75) are much larger than the 

first, temperature behind the front T. ~ D ' , in distinction from 
2 

usual case T. ~ D , without taking into account radiation (in gas 

with constant heat capacity). 

We recall that relative role of energy and pressure of 

equilibrium radiation are greater, the less the density of the sub- 

stance is: P,,/? ~ 1/p (in gas with constant number of particles). 

For instance, in completely ionized hydrogen, radiation 

pressure is equal to pressure of gas at T = 10 0K, if number of 

IQ    3 
particles (protons and electrons) n = 10  1/cm j if, however, 

n = 10  1/cm , pressures are equal at T = 10  K, 

2. Gas of Particles with Coulomb Interaction 

§ 11. Rarified Ionized Gas 

We will consider deviations of ionized gas from idealnesses 

which are caused by Coulomb Interaction of charged particles. We 

will be limited in this paragraph to the case of weak nonideality, 

when terms of Coulomb interaction in thermodynamic functions can 

be considered as small corrections to terms corresponding to an 

ideal gas. 

In order that ionized gas may be considered as ideal, it is 

necessary that energy of Coulomb interaction of neighboring particles 

be small as compared to their energy of thermal motion, i.e., that 
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there be satisfied the condition (Ze) /r0 « kT, where Z Is average 

charge of particles (Ions, electrons), and r« « n" '^  Is average 

distance between them; n Is number of particles In 1 cm of gas. 

This condition can be rewritten In the form 

For Instance, for degree of lonlzatlon on the order of unity 

(Z ~ 1) and T ~ 30,000OK, for Idealness It is necessary that 

n « 6,2»10  1/cm^ (for comparison let us remember that number 

of molecules In air of normal density Is equal to 2,67*10 ^ 1/cm^). 

Coulomb corrections to thermodynamlc functions for weak 

nonldeallty can be calculated using method of Debye and Huckel as 

this Is done In book of L, D, Landau and E, M. Llfshits [1] (see 

also work of B. L, Tlman [11]). Around each of Ions or electrons 

there will be formed a nonunlformly charged cloud of neighboring 

particles, where distribution of density of charge In this cloud 

is determined by law of Boltzmann In accordance with electrostatic 

potential created by Joint action of central charge and cloud. 

Solution of Polsson equation for distribution of electrostatic 

potential over radius r near central Ion with charge Z.e In first 

approximation leads to formula 

where d Is so-called Debye radius, which characterizes dimensions 

of cloud, 

(3.78) 
,.(^S^)-'.6.90(^)'"cm 

(n^ is number of ions with charge Z.e in 1 cm, electrons also are 

Included here in concept of "ions"; for them Z » -1), 
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Statistical consideration by method of Debye-HUckel Is valid 

if in the cloud there are contained many particles. I.e., If Debye 

radius d Is much larger than average distance between particles 

r0 « n" Z'. Condition d » r0 leads to condition n « ( k§ ^  = 

-  l.l.lO^f^r -=T* which is still more rigid than condition of 
Wl    cm5 

ideality of gas (3.77). Thus, Debye consideration assumes very weak 

nonldeality of gas. 
Z.e  Z.e 

Near center ?/t r « d (p1 = -j- - -|-. First term is potential 

created by central ion itself, and second term -(pi = -Z-e/d is 

potential created by surrounding charges in the place where the given 

Ion is located. Coulomb energy of gas in volume V, according to 

general electrostatic formula, is equal to 

•      (3.79) 

Correction to free energy can be found by means of integration of 

(3.80) 

thermodynamic relationship E/T2 = -ö/öT(F/T): 

/T-- |i?w |e« |/^ (2 AT.Z?)*. 

where N^ « ^V is total number of particles of 1-th type in volume 

V, Correction to pressure: 

f*^   ^4 (3.81) 
PW -(-irX^ 

On the average, between particles there act attractive forces, 

since every ion surrounds Itself chiefly with charges of opposite 

sign. Therefore, Coulomb energy and pressure are negative. 

Coulomb interaction Influences state of gas in two ways. First, 

it decreases energy and pressure (and also entropy: 

292 

i*i***i>*~bäm 



ÖF      E 
Scoul " W^ " "3^) • Second, and this effect Is the most 

Important, it shifts lonlzation equilibrium in the direction of 

higher degree of lonlzation. 

Really, free electron in interacting ^as possesses negative 

potential energy, i.e., it is also as if somewhat bound with ions; 

therefore, for breakaway of electron from atom or ion, it is 

necessary now to expend somewhat less work, which corresponds to 

effective decrease of lonlzation potentials. Decrease of lonlzation 

potential is determined by change of not the total, but only the 

free Coulomb energy, since "turning on" of Coulomb forces of 

interaction changes entropy of system, whereas change of potential 

energy coincides with change of total energy only in reversible 

process. 

In order to derive formula for lonlzation equilibrium, taking 

into account Coulomb interaction, we will proceed Just as in § 5. 

Let us write total free energy of system in the form 

where F.d is expressed by formula (3,41), and Pcoul is expressed 

by (5.80), and form variation 5F with respect to variation of 

number of m-ions as a result of their lonlzation. 

Using the condition 6Nm » -
6N
m+i = -

5N and equating 

variation 5F to zero, we will obtain in place of (3.42) the 

corrected expression for "law of mass action." In order not to 

confuse here statistical sum with charge, we will note statistical 

sums by a "tilde" (Z): 
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where quantity AI ^  which Is equal to change of Coulomb parts 

of chemical potentials 

can be treated as decrease of lonlzatlon potential of m-lons 

(we recall that Zm+1Ze/^m ~ exp (-I^/kT)). 

Calculation gives for correction to lonlzatlon potential the 

quantity 1 

A/m+. = 2 (Zm + i)«» /^ ( S n^?)2. (3.85) 

where Z Is charge of m-lon; essentially, Z = m. 

If we take Into account definition of Debye radius (3.78), (3.83) 

can be rewritten in the form 

A/m...= 
(Z"+1)g,=-g^-. (3.84) 

o a 

Decrease of lonlzatlon potential of m-lon Is exactly equal 

to energy of Coulomb Interaction of m + 1-ion, which is obtained 

as a result of lonlzatlon of m-ion, with detached electron, if the 

latter is located at a distance equal to Debye radius. 

In accordance with conditions of validity of method of Debye 

and HUckel and condition of weak nonideallty, formula (3.84) is 

valid if d » r0, i.e., AI « kT. 

In region of first lonlzatlon, formula (3.84) takes the form 

(i = 0, 1, e; Z0  » 0, Z1 » 1, Ze = -1): 

A/.-^-^L/. (3.85) 

where a = ne/n = n^/n is degree of lonlzatlon. 

In region of multiple lonlzatlon, by replacing, as vc 'Ud in 
n 

§ 7, all ions by ions with the same "average" charge m = — (n - 

number of initial atoms in 1 cnr) and considering Zf = m , we will 
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obtain for change of "average" lonizatlon potential: 

m^2im+i)e»[S^p^]\ (5.86) 

As an example we will consider air at a temperature of T » 

» 100,000oK and normal density n = 5.3^10 ^ 1/cm-5. Without taking 

Into account Coulomb Interaction, we have under these conditions 

degree of lonizatlon m = 2,72 and "average" lonizatlon potential 

I = 60 ev (I/kT * 6.9). Correction to "average" lonizatlon 

potential with this value of m Is equal to ^T = 5.^ ev (SI/kT = 

« 0,65), I.e., Coulomb Interaction decreasre "average" lonizatlon 

potential almost by 10^, which corresponds In the following 

approximation to Increase of degree of lonizatlon approximately by 

14#.* 

Influence of Coulomb corrections on shift of lonizatlon 

equilibrium In argon at T = 45,000oK and p ^ 10"^-10 atm Is 

considered In work [14], This influence turned out to be quite 

noticeable, while corrections to thermodynsmic functions did not 

exceed 1^, 

§ 12. Dense Gas, Elements of Fermi-Dirac 
Quantum Statistics for Electron Gas. 

Above, In examining of ionized gas, it always was assumed 

that free electrons obey classical Boltzmann statistics. Strictly 

speaking, electron gas is described by Fermi-Dirac, quantum 

statistics which only in case of sufficiently high temperatures or 

sufficiently low densities becomes Boltzmann statistics. This 

♦Formally, under the considered conditions, we are at the limit 
of applicability of this method, since 23" » 5,4 ev is only a little 
less than kT = 0,6 ev. 
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transformation occurs If temperature of electron gas Is much 

higher than so-called degeneracy temperaoure T0, which is 
3 

determined by number of electrons in 1 cm n: 

■=KI) 3 A« 
mek w3 = 4,35.10-un3" deg. 

(3.87) 

For usual gas densities and temperatures, at which due to 

ionization there appear free electrons, condition T » T0 is much 

more than satisfied. For instance, for density of atmospheric air 

and approximately single ionization of atc^is n = 5.5^ x 10 " 1/cm , 

degeneracy temperature T0 = 610 K, temperature of gas thus 

T ~ 55,000oK, so that T/T0 « 60. Condition of applicability of 

Boltzmann statistics can be unsatisfied either at very low tem- 

peratures, or at high densities of electron gas. First case, in 

consideration of gases, usually does not occur, since at low 

temperatures gases are not ionized. 

Regarding, however, the second case, in a number of processes 

there will be formed a very dense, highTy heated gas, in which 

there are present electrons. Usually such a situation occurs when 

an initially solid body is rapidly heated to very high temperatures, 

on the order of tens or hundreds of thousands of degrees,* and 

♦For instance, during impacts of meteorites flying with high 
velocities on the order of several tens of km/sec against surface 
of a planet, during explosions of wires by an electrical current, 
during heating of anode needles in pulse X-ray tubes by electron 
impact (see work of V, A, Tsukerman and M. A. Manakova [28]), 
during heating of solid body by powerful shock wave, and others. 
We do not dwell here on such a classical object for application 
of quantum statistics as free electrons in metals under usual 
conditions. 
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essentially is turned into a dense gas, since at such temperatures 

energy of thermal motion frequently exceeds binding energy of atoms 

in solid or liquid substance. 

For density on the order of density of solid body and, number 

of free electrons per atom on the order of unity, degeneracy 

temperature is equal to several tens of thousands of degrees (for 

instance, for n = S'iO22 l/cnr5 T0 « 59*000
oK), i.e., even at a 

temperature of one hundred thousand degrees, it is in no way 

possible to describe electrons by Boltzmann statistics. 

It is necessary to note that for densities on the order of 

density of solid body and temperatures of tens or hundreds of 

thousands of degrees, energy of Coulomb interaction of charged 

particles, electrons, and ions is comparable with their kinetic 

energy, and the electron — ion gas is essentially nonideal.* 

Problem of determination of thermodynamic properties of gas 

under such conditions is approximately solved by method which 

constitutes a generalization of method of Thomas — Fermi for 

statistical description of atom in case of temperature different 

from zero. In order to expound the essence of this method it will 

be necessary for us to recall the basic ideas of Fermi-Dirac 

quantum statistics (for greater detail see, for instance [i]). 

22 ♦For instance, for n ■-= 5*10  and Z « i. Coulomb energy 
e /r «» e n ' ■5 is equal to kT at T » 60,000oK, Kinetic energy 
of free electrons, which is determined not simply by temperature, 
but also by degeneracy temperature T0, is also comparable to 

Coulomb energy, inasmuch as TQ is thus equal to 59,000oK. 
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Let us consider a free* electron gas at zero temperature 

(so-called completely degenerate gas). Number of quantum states 

in element of volume dV and interval of absolute values of electron 

momenta from p to p + dp (number of cells in phase space of 

coordinates and momenta) is equal to 47rp dp dV/h . In each cell 

there can be found two electrons with oppositely directed spins, 

so that total number of quantum states in given interval dpdV is 

2     3 
87rp dp dV/h . According to the Pauli principle, in every quantum 

state, with given direction of spin, there can be not more than one 

electron. 

N electrons located in volume V (n = N/V is number of electrons 

in i cm ) fill all of the lowest energy states with momenta from 

0 to PQ, so that 

N^V \—fti 3A3 
0 

From this there follows the expression for maximum kinetic 
2 

energy of electrons £_ = p0 /2m — so-called (maximum) Fermi energy: 

a     2     H   2 (3.88) 

Degeneracy temperature (3.87) is defined as T-. = £0A« Kinetic 

energy of N electrons in volume V is equal to: 

tt-y^'^-hJ'-» 
p. . . ..  „    • -; (3.89) 

♦Free in the sense that forces do not act on electrons. At 
the same time it is assumed that electron gas does not spread out. 
Actually this can be imagined as an electrically neutral mixture 
of ions and electrons, in which average self-consistent field 
is considered to be equal to zero (everywhere, besides at 
boundaries of the body). 
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(Average kinetic energy of one electron Is equal to 4^Q)» 

Inasrauch as electrons are assumed to be free, then kinetic 

energy at the same time Is also equal to total energy £. » E, and 

In virtue of thermodynamlc relationship TdS » dE + PdV, referred 

to zero temperature, pressure of free degenerate electron gas Is 

equal to 

a    «  * *»  2.^  * flV * „5 (5.90) 

Pressure Is proportional to density to the 5/3 power. 

Relationship between pressure and kinetic energy P - 2/5.E./V 

Is the same as In a monatomlc Boltzmann gas. This Is understandable 

since "kinetic" pressure Is determined by transfer of momentum 

by particles, and Its relation to kinetic energy of particles Is 

purely mechanical, not depending on type of statistics which the 

particles obey. 

With Increase of temperature, electrons which earlier filled 

the lowest energy levels pass Into higher quantum states. In 

quantum statistics of Fermi-Dirac, it is proven that distribution 

function of particles over quantum states, i.e., average number 

of electrons in quantum state with energy e, is 

/-  ! (3.91) 

where M- is a constant depending on temperature and density of 

electrons, an constituting the chemical potential of an electron 

gas. In free electron gas energy e is equal to kinetic energy 
o 

e » p /2m . At zero temperature, distribution function is equal 

to 1 if e < nr=li-i-i = -CD), and is equal to 0 if 
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e > ^ ( k'T— ~   +00)1 1''e'* we obtain the already found above 

distribution, where, as we may see from this reasoning, chemical 

potential of free gas coincides with Fermi energy e0. At tem- 

perature different from zero, distribution is "spread out," as 

shown in Fig. 3.2. 

Number of electrons in 1 cm 

with momenta in Interval from 

p to p + dp is 

(3.92) 
U-~*/ -*l 

Fig. 3.2. Distribution 
function for electron 
gas according to Fermi — 
Dirac statistics. 

/  \J       Snip dp ,     8«      itdp 

ekT +1 

and total number of electrons 

per unit of volume is equal to 

(3.93) 

0 e »T 

Thus formula determines in implicit form the chemical potential 

p. as a function of temperature and density. 

Kinetic energy of electrons per unit of volume is equal to 

p»dp (3.9^) 

+i 

Statistics can be applied also to electron gas located in a 

potential field.  It is clear that the field must change in space 

quite slowly, so that in elementary volume dV, throughout which the 

field can be considered to be constant, there are sufficiently many 

particles. Otherwise, application of statistics to particles loses 

its meaning.* If we designate electrostatic potential of field at 

♦Field should change little at a distance on the order of wave 
length of electron. 
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point r by <p(r),  then energy of electron e can be written In the 

form 

•-£-«»(')• (5.95) 
In statistical mechanics it is proven that if gas is located 

in a field, then in state of equilibrium its chemical potential 

li must be identical at different points. Otherwise particles will 

flow from one place to another. 

If we consider an electron gas located in a field at zero 

temperature, then, according to formulas (3.91), (5.95)* distribution 

function f as before is equal to 1 if e = p /2m - ecp(r) < \it  and 

is equal to 0 if e = p /2me - ecp(r) > p..  Thus, maximum kinetic 

energy of electron at given point r is equal to eg^1") = M- + e<p(r). 

It now depends on coordinate, but maximum total energy of electron 

p0/2me - e(p(r) = e0 - e(p(r) = |x, which is equal to chemical 

potential, does not depend on the point (if it depended on 

coordinate, electrons would flow from place with higher to place 

with lower maximum energy). 

Formulas (5.92) to (5.9^) are also valid for a gas located in 

a field if by e we understand quantity (3.95). Formula (3.93) now 

gives implicit relation of density of gas at point r, n(r) to 

quantity E0(r) = p. + e(p(r), i.e., to potential at given point 

and temperature T. At T = 0 this relation, as before, is expressed 

by formula (3.88). 

§ 13. Thomas-Fermi Model of Atom and Strong 
Compression of a Cold Substance 

During description of a dense gas according to method of 

Thomas-Fermi,  there is not made a distinction between "free" and 

"bound" electrons, and gas is considered to consist not of ions and 
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electrons, as at small densities, but of nuclei and electrons. 

Nuclei obey Boltzmann statistics and introduce their own 

contribution to total pressure and total specific thermal energy. 

At high temperatures this contribution corresponds to a usual 

monatomic gas: 

(n is number of nuclei in 1 cur, p is density of substance). 

All of the energy of interaction of particles will be ascribed to 

electrons. For calculation of electronic parts of energy and 

pressure, gas is divided into atomic cells, each of which contains 

nucleus with charge Ze and Z electrons. For simplicity the cell 

is considered to be spherical. Volume of it V is taken equal to 

average volume in substance per nucleus: V = 1/n . and radius a 

r0 = (3V/4r)
1/5 = 0/kim/L^, 

Between atomic cells in Thomas-Fermi model there do not 

act cohesive forces, so that this model does not describe bonds 

of atoms in a solid body. Cells exert on one another a positive 

pressure, which coincides with pressure of electron gas, i.e., model 

describes only repulsive forces and "thermal" pressure. Therefore, 

model gives reasonable results either for large densities, for a 

strongly compressed solid body, when repulsive forces sharply 

predominate over attractive forces of atoms, or at high temperatures, 

when cohesive forces can be disregarded. From what has been said, 

it follows that in the model of Thoir as-Fermi, energies of 

"ionization," "excitation" and "thermal motion" of electrons no 

longer are calculated separately, as in examining of rarefied 

gases. They automatically are included in total electron energy 
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of the atomic cell. In order to separate from It the "thermal" 

part of energy, which is specially related with existence of tem- 

perature, from total energy we should eliminate energy of cell of 

the very same volume, but corresponding to zero temperature. The 

same pertains also to pressure. 

Let us first consider atomic cell at zero temperature, i.e., 

the statistical model of atom according to Thomas and Fermi.* 

At the basis of this model lies the assumption that in complicated 

atoms with large number of electrons, majority of electrons possess 

high principal quantum numbers and their motion is quasiclassical. 

Electrons in atom are considered as a gas located in a 

self-consistent electrostatic field quite slowly changing over 

radius** <p(r) , which is caused by charges of nucleus and electrons 

themselves. Thereby there is considered nonideality of the 

electron gas. To this gas there is applied Fermi-Dirac statistics. 

Maximum kinetic energy of electron at given distance from 

nucleus re0(r) = \x +  e(p(r) is related with density of electrons 

at this point by formula (5,88), so that density is expressed in 

terms of potential by formula 

s 
8K »3 mf 3 (3.96) 

ii(r)—f-2i^-IeT(r)+fiJ
f. 

Electrostatic potential ip(r) satisfies Poisson equation: 

Af-|^-Irf(r)l«4nen(r), ^•97) 

which after substitution of (3.96) and Introduction of new "potential" 

*To detailed account of this question is dedicated the book 
of Gambosh [29]. Short and clear account can be found in book of 
L. D. Landau and E. M. Lifshits [30], 

"Possibilities of statistical description of electron gas in 
a field were discussed in the preceding section. 
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f = q> + \i/e  (potential Is determined with accuracy up to the 

additive constant) takes the form: 

2\« e*m}    -' 
y-^rvY/ 3   p 
IJl^.i^.^^ 

2  * s (3.98) 

(3.102) 

To equation (3.98) there are attached boundary conditions. In 

the center, as r-»■ 0, field becomes Coulomb field of nucleus. I.e., 

f(r)s=ii as r_o. (3.99) 

Inasmuch as cell Is electrically neutral, on the boundary Its 

field Is equal to zero (outside of the cell potential Is constant): 

^ = 0 for ^r«. (3.100) 

This condition Is equivalent to the obvious relationship 

? (3.101) 

By Introduction of dlmenslonless variables 

i 
x = L    ffl _ V 9n« N 3 a,  0 885go 

a* a~ i\   2   J     1 r~' 

2   2   2 —8 
where a0 = h /kw me = 0.529*10" cm Is Bohr radius and 

equation (3.98) Is reduced to universal form 

Boundary conditions (3.99)* (3.100) take the form: 

x{0)=l: x(xo) = xo(-g-)xo. 

Dlmenslonless form of equations demonstrates character of 

similarity with respect to number of electrons Z, Namely, 
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distribution of density over radius according to (3.96), (3.102), 

(3.103) can be written In the form 

3/2 
where function f Is proportional to (xA)  • 

Solution of equation (3.104) 

with corresponding boundary- 

conditions (this Is done by means 

of numerical Integration) gives 

distribution of potential and 

density of electrons over radius, 

after which It Is possible to 

calculate all quantities which 

are Interesting to us. 

Electron density In free neutral atom which Is not compressed 

by external forces, as the solution shows, extends to Infinity: 

X-*0, n-Oasx—ocf» (Pig. 3.3). If as zero potential energy Is 

taken the state In which all charges are separated to Infinity, we 

should set potential 9 equal to zero at Infinity. Chemical potential 

thus becomes zero. Pressure on boundary of free atom which Is not 

compressed by external forces, and consequently also pressure*» In 

Fig. 3.3. Schematic 
distribution of 
electron density 
In free atom. 

»Inasmuch as field of electrically neutral atom should decrease 

at Infinity faster than r"2, "potential" ^ decreases faster than 

r" ; boundary condition In this case takes form r^ ^ x -♦ 0 as 
r -► 00. 

♦»Pressure In system of Interacting particles Is composed of 
two parts:  kinetic, connected with motion of particles and their 
kinetic energy by usual relationship Pk = 2ne./3, where n Is number 

of particles In 1 car,  and e^ Is their mean kinetic energy; and 

"potential" energy, which Is equivalent to forces acting on particles 
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all of space are equal to zero. According to the virial theorem 

for an unfounded Coulomb field, total kinetic and potential energies 

of particles are connected by the relationship 2E?? = -E . Total 
K p 

energy of atom E® = E™ + E°° = -E?? = fe00.       Virial theorem in this 
K.    p     K   c p 

case, in essence, expresses the fact that kinetic repulsion of 

electrons is exactly balanced by Coulomb attraction of them toward 

the nucleus, due to which total pressure, which is equal to sum of 

"kinetic" and "potential," at every point is equal to zero. Although 

electron density, in principle, extends to infinity, main charge is 

concentrated in a finite volume V -. According to (3.105), as the 

linear scale of this region serves Bohr radius a0, where V f ~ Z" 

(see Pig. 3.3). This follows also from virial theorem. Potential 

energy of atom in order of magnitude is equal to E ~ -e Z njf* 

Kinetic energy according to (3.88), (3.89) is on the order of 

3 

From condition of mechanical equilibrium or virial theorem we will 
nipe ^ -1   3-1 

find V - ~ (-^—-^Z  ~ aiZ .  Total energy of atom is on the order 
ei    h^ 

of E® = Ep/2 ~ -e2 Z7//3/a0 ~ -IH iJ^,   .    Exact value of E00 = 

= -20.QZ*" ev,  this  is, in absolute value, the energy which it is 

necessary to expend in order to separate all charges of an atom 

[FOOTNOTE CONT'D FROM PRECEDING PAGE] 

(in the given case Coulomb forces). Formally this separation follows 
from the relationship (at zero temperature) P = -öE/öV = 
= -öE, /öV - bE„/bV  =?,+?. Kinetic pressure is always positive, 

k      P     ^   P 
potential pressure P > 0, if particles are repulsed, and P < 0, 

if they are attracted. 
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to Infinity (energy of total lonlzatlon of atom). 

Let us consider now a "com- 

pressed" atom. I.e., an atomic 

cell of finite volume V. Now 

pressure (equal to "external" 

p 
force acting on 1 cm of surface 

of cell Is different from zero 

and positive. Consequently, also 

electron density on boundary of 

cell Is finite (Pig. 5.4). Really, 

field on boundary of cell Is 

lacking. Electrons at the boundary 

Fig. 5.4. Schematic 
dlstrlbtulon of elec- 
tron density In "com- 
pressed" atom — In 
atomic cell of radius 

behave as free electrons and all of the pressure at the boundary Is 

of "kinetic" orgln. "Kinetic" pressure, by definition. Is equal 

to transfer of normal component of momentum to 1 cm of surface 

of cell In 1 sec. Inasmuch as electrons are distributed over 

directions of motion Isotroplcally, 

where p(p, r0) Is distribution function over momenta at boundary 

of cell r0, and v « p/m Is velocity of electrons. Pressure, 

as we should have expected. Is equal to 

P - y » (r,) e» (r,) -1- n (rt) e, (r,). 
(3.107) 

where ejt(r0) = *-e0(r0) Is average kinetic energy of electron at 

boundary of cell. Pressures at all points are Identical: 

p « P. + P » const, although "kinetic" and "potential" components 

change from point to point. "Kinetic" pressure Pk at any point 
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is expressed in terms of kinetic energy by a formula of type 

(5.107). 

By expressing total kinetic and potential energies of the 

entire cell E, and E„ by integrals over volume of cell of energy 
K    p 

densities, which are proportional to electron density, it is 

possible by means of direct calculation, to be convinced that* 

Equation (3.108) can be derived from virial theorem applied 

to system of particles located in Coulomb field and occupying 

finite volume.** In particular, for a free atom P = 0 and 

2EV = -E , as it was already said above. 
K    p 

♦During calculation of potential energy, it is necessary to 
break potential into two terms, which correspond to potential 
of nucleus and potential of electrons 9 = cpQ + <pöj cp = Ze/r: 

Ep~E l»+^j»--jAne\rtdrn (r) 9, (/•)-4jie \ r«rfc« (r) «p0 (r) = (^. 109) 

Factor 1/2  in E  is introduced because energy of interaction of 

every electron with every other one in the integral is taken 
into account twice. In order that potential energy be measured 
from the value corresponding to separation of all electrons to 
infinity, it is necessary to set potential on boundary of neutral 
cell <P(r0) equal to zero. Inasmuch as density on boundary of 

compressed atom is different from zero (it is proportional to pres- 
sure), chemical potential, in virtue of definition of cp(r0) = 0, 

according to (3.96), is not equal to zero and is positive. 

**Virial theorem for motion of system of particles in Coulomb 

field states:     M»-/« —ynfj,  where r. is radius vector of 

l-th electron, and F, Is force acting on it. Averaging Is carried 

out over all positions of electrons (or over time). By dividing 
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During compression of atom, pressure and density on boundary 

Increase. Also energy of cell Increases, in virtue of relationship 

dE = -P dV (p > o). Physically this is obvious if we consider that 

the electron cloud which is not restrained by external forces 

while tending to reduce energy of system to a minimum spreads out 

to infinity. If we are interested in energy of compression of 

cell, then it is necessary to measure from energy of free atom, 

i.e., from total energy of cell E(V) it is necessary to subtract 

energy of atom E00. Inasmuch as pressure in free atom is equal 

to zero, then from pressure it is not necessary to subtract 

anything. 

Here we should stress that Thomas-Fermi model is essence 

describes only repulsive forces acting between atoms (atomic cells), 

which are equivalent to positive pressure, and does not describe 

attractive forces, which appear only during calculation of exchange 

energy. Therefore, the model cannot provide for binding of atoms in 

a solid body. In order to compress atomic cell to its dimensions 

in a solid body in Thomas-Fermi model, it is necessary to expend 

[FOOTNOTE CONT'D FROM PRECEDING PAGE] 

virial I into three components corresponding to forces acting 
on electron from other electrons I.., nucleus I_ . and boundary 

I0, and producing simple transformations (see [51])* we will obtain 

■?' /•-'• 21 'n,...» 1 = W»3^' 

/«-J-TT"-^ 'i 

/*—««S S TA/P ""TS 2 in-oi"-^ 
I i i J 

By substituting all these terms into virial theorem, we will obtain 
(3.108). 
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work against forces of pressure, and energy of such a cell is 

larger than energy of free atom, whereas In reality pressure in 

solid tody at zero temperature is equal to zero, and energy of 

bound state of atom is less than energy of free atom. 

During small compressions of free atom in the considered 

model, when volume V » V f, electron density is redistributed 

only near boundary (Pig. 3.5)* pressure and energy AE = E - E00 

are small. Approximate dependence of pressure on volume of cell 

can be obtained by assuming that density on boundary r0 is the 

same in first approximation as density at point r = r0 in a free 

atom. As it is easy to verify, asymptotic solution of equation 

(3,104) for free atom as x -♦• oo has the form x -  1^4 x . 

According to (3.105) and 
■ i /> 

rr aJ-V rf    r*      r, r 

Pig. 3.5. Redistribution 

(3.102), density on boundary 

i 

n (r0) - ^(T)1
 - V*'% ~P W1 - T? - F",• 

and pressure according to formula 

(3.107) P ~ ne0 ~ vP^ ~ v"10/3 

and does not depend on Z, 

Considerable Increase of 

ÄS M.durlng p-™ ^ -^ ^ ^^ 
n , n n"" are ,11 , n  , 
schematic distributions large compressions, when volume 

in cells of radii rX, r'',  _ 0+Ä->4„ „„,, v««^»,«« ^« +Kä 0  0   of atomic cell becomes on the 

' r0 nco±s 

distribution in free atom 
(rn = oo). 

order of and less than effective 

volume V », which is occupied 

by the main part of the electrons in the atom. Electrons now 

occupy the whole volume of the cell (see Fig. 3.5)* and average dis- 

tance between particles r is on the order of v ' , and average density 
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n ~ Z/V.    Thus Ejj. ~ Zn2/5 - Z5/3V"2//35, and E ~ -z2/r ~ zV1/5. 

As can be seen from these relationships, during compression, 

kinetic energy Increases faster than potential energy, and In the 

limit of small volumes. I.e., large densities of substance, 

Ek ^ Ep; E ~ Ek' p ~ \ft*    A11 Pressure becomes "kinetic" and 

limiting law has the form 

/»r-zV^ni (3.1i0) 

Pressure of strongly compressed cold substance is proportional 

to density of substance p (to which average density of electrons n 

is proportional) to the 5/3 power, as for a free degenerate electron 

gas.    Specific energy accordingly is proportional to e ~ p '   , 

It is necessary to say that actually these limiting laws 

become valid only at very high densities, which by about ten times 

exceed density of usual solid bodies.    Actual dependences of 

pressure and energy of cold compression of solid bodies on density 

will be discussed in Chapter XI. 

§ 14.    Calculation of Thermodynamic Functions of Highly 
Heated Dense Gas by Thomas-Fermi Method 

General scheme of thermodynamic description of a dense gas at 

high temperatures in the model of Thomas-Fermi was presented in 

beginning of preceding section.    Generalization of equations of 

model of cold atomic cell to the case of temperature different 

from zero is made elementarily.    At the basis lies the Poisson 

equation (3.97) for electrostatic potential in cell  q)(r),*   which 

*Let us note that Poisson equation lies at basis of calculation of Coulomb 
interaction of given ion with electron-ion cloud forming around it in method of 
Debye-Hückel.   However, in distinction from this method, here Couloob energy is not 
assumed to be small as compared to kinetic energy-, and for density of charges there 
is written an exact expression and, furthermore, for description of electrons there 
are used distribution functions not of Boltmann, but of Fermi-Dirac. 
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as before satisfies boundary conditions (3.99) and (3,100), and 

also is assumed to be equal to zero on boundary of cell in order 

to provide an expedient reference for potential energy. However, 

instead of simple relationship (3.96) connecting electron density 

n(r) with potential, now there appears integral relationship (3,93) 

with distribution function f (p) , which depends on temperature 

according to formula (3.9^)* where energy of electron is expressed, 

as before, by formula (3.95). 

Just as before, the normalization condition (3.101) is valid. 

Total kinetic energy of cell is calculated by means of integration 

of density of kinetic energy (3.9^) over volume of cell, but potential 

energy is expressed in terms of electron density and potential by 

formula (3.109), 

For pressure formula (3.106) is accurate, if by p(p, r0) we 

now understand distribution function over momenta, which depends on 

temperature according to formula (3.92). As before we have the 

virial theorem, leading to relationship (3.108), which follows 

directly from expressions for P, E. and E . K    P 
Certain difficulties are presented by calculation of entropy 

of cell S. Direct calculation of it with help of thermodynamic 

relationships and expressions for energy E and pressure P of cell 

was made by Brachman [32]. Less rigorously, by means of 

approximate calculation of statistical sum. Latter [31] found 

entropy. Entropy of cell is equal to 

S''-r[^Ek + 2Ep,+ EPa-ZVL], (3.111) 

where E  and E  are potential energies of interaction of electrons 

with each other and with nuclei (see formula (3.109)). For 
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determination of chemical potential \i as function of T and V serves 

normalization condition (5,101), 

It Is possible to show that as T -*> 0 the expression In 

parentheses tends to zero faster than T, so that S -»■ 0 In accordance 

with theorem of Nernst, 

System of equations for determination of functions qp(r) and 

n(r), and also expressions for energy, pressure and entropy can be 

transformed to dlmenslonless variables (as scale of length there 

Is Introduced radius of cell r0), where, as at zero temperature, 

model allows similarity transformation with respect to Z, At zero 

temperature distribution of density was expressed by formula 

(3.105), whence It follows that density on boundary of cell can be 

represented In the form n(r0) = Z F(V»Z) (r0Z '* -♦ V»Z); pressure, 

according to (3.107), In the form P = Z ^^(V.Z); and energy, 

according to (3.108), In the form E - Z7^P2(V.Z), 

At temperature different from zero these sj^nllarlty relations 

are generalized In such a way that temperature always Is contained 

In the form of combination TZ '', so that 

10 it 4 
pz"r.f{VZ,TZ~*), EZ~*~tt(vz, rz"3). 

Entropy and chemical potential always appear In the form of 

combinations SZ , i^Z"* ^. 

Equations of Thomas-Fermi model were-solved numerically 

with help of electronic computer, and results of calculation of 

thermodynamic functions within a wide range of variables VZ 

and TZ" '^ (densities and temperatures) axe given In the form of 
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graphs In the article of Latter [51].* 

From energy E there was subtracted energy of cold free atom 

E00 (accordingly from E, and E there were subtracted E? and E°°). 

Consideration of results of calculations shows that with 

increase of temperature in cell of given volume, kinetic and 

total energies and pressure monotonically increase. 

Potential energy changes little — only due to redistribution 

of electron density, which with increase of temperature is 

equalized over the volume of the cell. In the limit of very high 

temperatures, when there is plotted degeneracy of an electron 

gas (for kT » —(Z/V) '^; see formula (5.87))* energy and pressure 
e 

tend to their natural values: 

E-tEk^jZkT; P*,y-kT~nkT. 

If we isothermally compress atomic cell, pressure in it mono- 

tonically increases, and indeed, more slowly than in case of zero 

temperature, which may be seen at least from the fact that in the 

limit of high temperatures P ~ 1/V* whereas at T = 0 and 

V-► 0 P ~ 1/V ' . Energy at not too high temperatures has a flat 

minimum, depending upon volume: increase of energy during 

rarefaction is connected with the fact that for large dimensions of 

cell, electrons, due to presence of temperature and "thermal" 

*Even before the work of Latter, a number of authors [33] 
tried to consider by method of perturbation theory a temperature 
correction to solutions for zero temperature. However, such a 
procedure entails numerical calculations which are not much less 
complicated, than solution of exact equations, and encompasses 
a temperature range which is much narrower. 
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pressure, tend to occupy Bomewhat larger volume than In case of a 

cold cell, which leads to certain Increase of potential energy. 

As an example of temperature dependence of energy, we will 

indicate that energy of cell for one atom of iron, at normal 

density of solid iron, can be approximated in interval of tem- 

peratures from 20,000° to 30,000oK by interpolation formula 

£-0,865^* ev/atom 

(from energy of cell there is eliminated energy E00; temperature is 

measured in ev). 

At densities less than density of solid state, energy weakly 

0 i^ 
depends on volume, roughly speaking, as E '- V * . In order to 

obtain total energy and pressure of substance, to electron components 

corresponding to atomic cell E and P it is necessary to add nuclear 

components (see beginning of § ij), i.e., to assume that 

Pmmm -i>.+/>-«a*r + />.(K. T), P.sP, 

2 En*m~Em+Em*YkT+E*(V'T)  P9r«tom; E,= E. 

For density equal to density of solid body, it is possible 

to somewhat improve these results by eliminating from pressure 

and energy quantities corresponding to cold cell of the same volume 

(since in reality pressure in real solid body at zero temperature 

is equal to zero), and adding to energy the binding energy of atoms 

of the solid body (heat of evaporation U) 

Pmmm - **kT + P, (K, T) - P, (F, 0), 

&M,-|M
,+£,(K.r)-£#(M) + ^per atom. 

Thus energy is measured from normal state of solid body. 
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CHAPTER       IV 

SHOCK TUBES 

§ 1. Use of Shock Tube for Study of Physicochemical Kinetics 

In the preceding chapter were mentioned different physicochemical 

processes which occur in gases at temperatures of the order of a 

thousand or several thousand degrees and higher, such as excitation 

of molecular vibrations^ dissociation of molecules, chemical reactions, 

lonizatlon, emission of light. We considered the Influence of these 

processes on thermodynamic properties of gases, absolutely not being 

interested by their kinetics, speeds of reactions, times of establish- 

ing thermodynamic equilibrium. 

Meanwhile questions of kinetics have a large, frequently decisive 

value, if the over-all gas-dynamic process occurs so rapidly that 

thermodynamic equilibrium cannot be established, and state of gas 

particles Is essentially unbalanced. 

These questions are especially timely in connection with problems 

of entrance of rockets and artificial satellites into the atmosphere, 

supersonic flows in powerful Jet engines, strong explosions, powerful 

electric discharges, etc. 

In distinction from thermodynamic properties of gases, which are 

comparatively easily calculated by theoretical methods, our information 

about effective cross-sections of elementary processes and speeds of 
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various physlcochemical trajisformatIons is drawn mainly from experiment. 

The tool most convenient and widely applied at present for production 

in laboratory of high temperatures and investigation of physlcochemical 

processes in gases is the shock tube. A shock tube serves for creation 

of a shock wave in the gas which heats the gas to the needed temper- 

ature . * 

As we know, in a shock wave initially cold gas is practically 

instantly heated to a high temperature** which may be regulated, chang- 

ing intensity of shock wave. Then in the heated gas particle begin 

different processes: excitation of molecular vibrations, dissociation, 

ionization, etc., role and speed of which depend on temperature (and 

density). Gradually these relaxation processes lead to establishment 

of thermodynamic equilibrium, corresponding to amplitude of shock wave. 

Thus, for a shock wave there exists an unbalanced shell (which it is 

possible to include in the Idea of front of shock wave), where relaxa- 

tion processes develop; this shell is also investigated by experiment. 

Theory permits connecting distribution of density and temperature in 

relaxation shell with speeds of reactions; therefore, measurement of 

distributions by experiment makes it possible to determine speed of 

relaxation processes.  (In certain cases is possible direct recording 

of kinetics of reaction.) 

We will deal in detail with the structure of relaxation layer 

in front of shock wave in Chapter VII. In Chapter VI will be considered 

different physlcochemical processes occurlng In heated gases, and 

estimates of their speed. Inasmuch as many actual data about speeds 

*There also exist other methods of obtaining shock waves: with the 
help of explosions, powerful electric discharges, etc. 

**By "temperature" here is understood temperature of forward degrees 
of freedom of atoms and molecules. 
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are obtained with the help of the shock tube, It Is expedient to see 

preliminarily how this Important device works. 

Juanpeemi   (a) 

TB") (cl 

W 
Mcxtdnoe 

(d) 

c^ 
h T, r. 

t) 

£? 

A 
Fig. k.l.  Action of 
shock tube, a) diagram 
of tube before opera- 
tion; b) profile of 
pressure before break- 
ing of diaphragm; c), 
d) profiles of pressure 
and temperature in cer- 
tain moment t^ after 

breaking of diaphragm; 
e), f) profiles of pres- 
sure and temperature at 
time tp after reflection 
of shock wave from closed 
end of pipe. All profiles 
are given schematically. 

Arrows for shock waves 
show direction of prop- 
agation of shock wave. 
Other arrows show direc- 
tion of motion of gas. 
KEY:  (a) diaphragm; (b) 
working gas; (c) investi- 
gated gas; (d) initial 
state. 

Let us stress that our account, pur- 

suing a purely auxiliary purpose, will be 

extraordinarily short. It in no way 

reflects the real volume of experimental 

work which is truly huge. For more 

detailed familiarization with questions 

of construction and work of shock tubes, 

and xlso with experimental methods of 

investigations and measurements of differ- 

ent magnitudes, it is possible to recom- 

mend survey articles [1, 2] and books [J>> 

4]. In the same place the reader will 

also find reference to original works. 

Here these references are not numerous 

and have a more or less random character. 

We will not remain on other methods 

of obtaining high temperatures (see [16]). 

Let us note only the very Interesting 

works of Yu. N. Ryabinin [17] on adlabatic 

compression of gases. Gas in a pipe was 

compressed by a "flying" piston hundreds 

of times up to pressures in 10,000 atm. 

and adiabatically was heated up to temp- 

eratures ~9000oK. With the help of 

Installation he created, Ryabinin studied 

thermodynamic and optical properties and electrical conductivity of 
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high-heated gases. 

§ 2. Principles of Action 

A shock tube is a long pipe, usually round or of a right-angle 

cross section, which is divided by a thin diaphragm into two parts. 

One of them, the chamber of low pressure, is filled by the investigated 

gas.  Into the second part, the chamber of high pressure, is forced 

the working gas. Dimensions of the tube are different. Usually its 

length is several meters, but the internal diameter is of the order 

of several centimeters. The length of the chamber of low pressure is 

a few times larger than the length of the chamber of high pressure. 

Pressure of Investigated gas, as a rule, does not exceed atmospheric, 

and most frequently is lower, of the order of several centimeters of 

mercury. In the chamber of high pressure it is attempted to create 

a possibly larger pressure, of the order of several tens or hundreds 

of atmospheres. 

At the needed moment the diaphragm, with the help of a special 

device, quickly bursts and the strongly compressed working gas rushes 

into the chamber of low pressure. Along the investigated gas spreads 

a shock wave, but along the working gas runs a wave of rarefaction. 

Profiles of pressure before and after break of diaphragm, and also 

profile of temperature after break of diaphragm are schematically 

shown in Pig. 4.1. 

On the figure are not shown the parts of distribution of magnitudes 

in front of shock wave, which Is represented in the form of a "class- 

ical" shock wave. After the shock wave reaches the end of the tube, 

usually a closed motionless cover, it is reflected and flows toward 

the working gas. Pressure and temperature in the reflected shock wave 

sharply Jump as compared to values In the incident wave. Gas in the 
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Pig. 4.2, x,t-Diagram 
for motion In shock 
tube, shown In Fig. 
4.1. OA — shock wave, 
OC — contact discon- 
tinuity, fan between 
OE and OD — wave of 
rarefaction In work- 
ing gas, AB — reflec- 
ted shock wave. 

reflected shock wave is motionless with respect 

to walls of pipe, x, t-Dlagram of process Is 

shown In Fig. 4.2. 

§ 3. Elementary Theory of Shock Tube 

Parameters of Incident shock wave are easy 

to estimate, considering the collapse of the 

arbitrary Initial break (see § 24, Ch. I). We 

will consider for simplicity that Investigated 

and working gases possess constant adlabatlc 

Indices 7 and 7' correspondingly, we will con- 

sider only strong shock waves.* Let us ascribe to the magnitudes in 

undisturbed investigated gas the index "0", the index "l" to the 

magnitudes after front of shock wave, the index "2" to the magnitudes 

in the working gas, having passed through the wave of rarefaction, and 

the index "5" to magnitudes in the undisturbed wave of rarefaction 

working gas. 

By the formulas of (1.111) for a strong shock wave we have 

(M. - molecular weight of investigated gas). 

On contact boundary between the two gases pressure and speed are 

continuous, so that Pg ■ P^ - P* u2 » ^ - u (density and temperature 

on contact experience a discontinuity). The contact boundary, which 

moves with speed u, serves as a "piston", pushing the shock wave. By 

the known formula (see § 10 Ch. I) speed of working gas, having passed 

through the wave of rarefaction, equals 

--TZTto-'.H^.O--*). (4.2) 

where speed of sound c2 and c, are connected by the condition of 

*Is assumed also that the mass of the diaphragm may be disregarded, 
i.e., times are considered when the shock wave encompasses a suffi- 
ciently large mass of investigated gas. 
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adiabaclty of expansion: 

(T'-O 

Expressing p = p.  by u =■ u.   according to the formulas of (4.1)  we will 

obtain an equation from which can be found speed of "piston" at known 

initial values of parameters; 
y'-l 

T   T^il1    I      2      toi}}      ■ (4.3) 

Speed of sound c, equals C,«=(Y'* Ts)it2,  where jj,' is molecular weight of 

working gas. Intensity of shock wave is completely determined by 

speed of "piston" u. In particular, temperature after the front equals 

The most powerful shock wave, other things being equal, will be 

formed if ratio of initial densities PQ/P-Z IS small, so th&. the 

working gas, after break of diaphragm, flows practically into a 

vacuum, with maximum speed of outflow 

The corresponding upper limit of temperature for the front of the 

shock wave equals 

From the last formula it is clear that for creation of high temp- 

eratures it is necessary to use a light working gas, while the highest 

temperatures appear in heavy monatomic gases (the less the heat capa- 

city, the bigger the magnitude 7 - 1 = B/cy,  vhich is in the numerator 

of formula (4.5)> 

The most profitable of all to use as a working gas is hydrogen 

(n' = 2, 7« - 7/3,  T1 max - 8.75(7 - l)kLT,); helium is also used 
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(^ = i\, Y= 5/3, T1 max = 1.87(7 - l)^T3). 

Achievement of highest possible speed (4.4) requires an exception- 

ally small ratio of initial densities of gases PQ/P^ (extraordinarily 

large pressure drop P^/PQ). Under real values of pressure drop the 

investigated gas renders an essential "resistance" to the outflow of 

working gas and speed u, calculated by equation (4.3), turns out to 

be a few times less than speed of outflow into the vacuum. Temperature 

in the shock wave is lowered still more sharply. 

Let us consider a specific example.  Let us assume that hydrogen 

serves as the working gas and argon Is investigated {\x  = 40, 7 = 5/3) • 

Initial temperatures of both gases are identical and are equal to room 

temperature: T0 = T, = '$00
oK.  Ratio of initial pressures P^PQ = 7600, 

we will say, p- = 5 mm Hg, p^ = 50 atm. We obtain: u = 3.9 km/sec, 

D = 5.2 km/sec. Mach number M = ~ = ±6,  T = 4lT = 12,300oK, 
c0       x ? 

p. = 320PP, =2.1 atm.  Upper limit of speed u   =9.4 km/sec.* x      u max 

In fact, temperature in shock wave will be somewhat lower than 

12J300 K, since with such a temperature consumption of energy on 

ionizatj.on of argon already plays a certain role, which somewhat lowers 

effective adiabatic index of argon 7.  For more exact calculations 

it is necessary to use the actual shock adiabat of gas, taking into 

account ionization. Values of speed of gas u, calculated by equation 

(4.3), and also values of speed of front, pressure, internal energy 

in shock wave are little sensitive to assumptions relative to thcr„;o- 

dynamic properties of the investigated gas. Calculation of temperature 

without taking into account consumption of energy on ionization, 

dissociation, etc. can give strongly oversized figures. 

♦Calculation of T.    by formula (4.5) which for adiabatic index 
7 » 5/3 gives 70,000 K, has no meaning, since at such high temperatures 
the essential role played by ionization and actual temperature is much 
lower. 



During investigation of air in a shock tube with hydrogen as the 

working gas speeds of front up to 4 km/sec are obtained.  (Mach number 

of order 12) and temperature after front of shock wave of the order 

of 4000oK. There are different methods of increase of effectiveness 

of shock tubes, making it possible to increase somewhat the parameters 

of shock wave. In particular, it is profitable to increase initial 

temperature of working gas T, (see formula (4.5)). For this an explosive 

mixture of hydrogen with oxygen is frequently used as the working gas 

(the mixture is usually diluted by a light neutral gas — helium). At 

the needed moment the mixture is ignited and as a result of the reaction 

the working gas is heated. In such a way we obtain in air speeds D 

of the order of 5 km/sec (Mach number of order 15) and temperatures 

of the order of 6000 K. Constructions of shock tubes have been devel- 

oped with a variable cross-section and others (see [4]). 

Let us calculate now parameters of reflected shock wave, as before 

considering that heat capacity and adiabatic index are constant. To 

parameters of the reflected wave we will ascribe the index "4," and a 

"1" to parameters of the incident wave, as also earlier. Using formula 

(1.69), connecting difference of pressures, specific volume and speeds 

with respect to both sides of front of shock wave. Difference of 

speeds, which is speed of gas after front with respect to gas before 

front, in incident sind reflected waves is identical. Assuming that 

the incident wave is strong, we will obtain hence equation 

Equation of shock adiabat (1.76) for reflected wave (which is 

not strong) has the form 

T7 (T^l) •1)A+(V-H)A ' 

Noticing that VQ/V^ - (7 + l)/(7 - 1) and excluding from these 
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two equations V^/V,, we will find pressure ratio on front of reflected 

wave Pji/P., after which we will calculate density ratio and temp- 

eratures. We obtain 

ft _ 3Y-*  gi • Y   
r*_ivzJ. (u  fi^ 

/•l~Y-l, ■«^~7:^l', r7—T-* l4,ö; 

During numerical estimation it is necessary to show caution.  The 

fact is that in reflected wave temperatures usually so are high that 

heat capacity of gas due to dissociation, ionization, etc., is not 

constant.  Strictly speaking, parameters of reflected wave should be 

calculated using real thermodynamlc functions of gas.  However, for 

a rough estimate it is possible to use formulas (4.6), selecting for 

the adiabatic index a certain effective value.  In rarefied gas in 

the region of dissociation or ionization it is possible to take for 

an estimate, for instance, 7 = 1.20.  This gives: p^/p^ «» 13, Pu/p*  « 6, 

T^/T. «2.17.  In heavy monatomic gases tens of thousands of degrees, 

can be obtained In reflected shock wave.  In air at initial pressure 

p0 = 10 mm Hg and speed of Incident wave D » 5 km/sec when T, « 58000K, 

p./pQ »10, in reflected wave T. « 8600 K, Pu/p±  « 7 (these data are 

obtained taking into account real thermodynamlc properties). The 

real process in a shock tube is much more complicated than is sketched 

by the idealized system given above.  The shock wave becomes 

stationary not immediately after the diaphragm breaks, but only after 

a certain time.  Friction against walls, interaction with boundary 

layer, especially in reflected shock wave, irregularity of heating 

with respect to cross-section of tube, loss of energy through walls 

and on radiation (at very high temperatures), mixing of gases near 

contact discontinuity and many other effects play a role (see in 

reference to this [2, 4, 5]; in the same place are references to many 

original works). 
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§ 4. Electromagnetic Shock Tubes. 

Shock tubes, in which a shock wave in the investigated gas is 

obtained during a sudden, expansion of initially compressed working 

gas, are widely used for investigation of different high-temperature 

processes. However, maximum speeds of the shock wave (Mach number), 

and consequently also temperatures which are attained even in Improved 

constructions based on the shown principle, are very limited. 

||    ,       Recently new types of shock tubes were pro- 

posed, at the basis of which lie other principles. SiS? I In these devices, which are frequently called 

electromagnetic or magnetic shock tubes, for 

Fie 4 3 Diagram  creation of Intense shock waves effects of heating 

lev  tube of &&a  ^urin8 a,n eiectric discharge and accelera- 

tion of it under action of magnetic intensities are used. The early 

construction of Fowler and his colleagues [6] is the T-form tube shown 

In Fig. 4.3. The tube is filled by the investigated gas under low 

pressure, of the order of a millimeter of mercury. Into the cross 

beam of the "T" are Introduced electrodes and through the gas 

is discharged a capacitor battery. Gas in the discharge is rapidly 

heated to a high temperature and under the action of high pressure 

with great speed spills into the "vertical" tube, pushing before Itself 

a shock wave. 

In distinction from Fowler tube, where electric discharge is used 

as a means of rapidly heating the gas, in the T-form tube built by 

Kolb [7] for acceleration of gas — plasma. The phenomenon of electro- 

magnetic Interaction of currents is used. A busbar, along which flows 

a return current in the electrical discharge circuit, maxmally nearing 

the discharge part of the tube, as was shown in Fig. 4.4. As is known, 

parallel conductors with oppositely directed currents are repelled 
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from each other. This may he considered as the result of Influence 

of the magnetic field of one current on the conductor with the other 

current. The force acting per unit of volume of conductor with the 

current. Is determined by vector product of density of current J and 

magnetic field strength H: f = - [j H] (permeability of plasma Is 

very close to unity). This force Is perpendicular to direction? of 

current and magnetic field.  In this case the magnetic field of return 

current, current along the busbar repels the plasma with a discharge 

current flowing along it in the direction of the vertical tube, addi- 

tionally accelerating it. As is said, a "magnetic piston" acts on 

the plasma. The plasma spills into the vertical tube with a still 

higher speed, creating in the latter an even more powerful shock wave 

than in the absence of a magnetic field.  Dimensions of magnetic 

shock tube are small: radius is approximately 1.5 cm; length of vertical 

part is 12 cm.  In one of the typical experiments of Kolb, a tube was 

filled by deuterium with an initial pressure of 0.7 mm Hg.  Capacitance 

of capacitor battery was C = 0.52 ^.f; it was charged to V = 50 kv. 

As an oscillogram of discharge current showed frequency of discharge 

was equal to v ~ 700  kc. With these parameters was attained maximum 

speed of shock wave, D ~ 90 km/sec (at a distance of 3.5 cm from the 

discharge part of the tube). The wave is weakened according to prop- 

agation, for instance, at a distance of 9 cm its speed drops to 

75 km/sec. Tempt-rature after the front of the shock wave at D « 90 

km/sec equalled approximately 120,000oK.* 

With a simple estimate we will ascertain that magnetic intensity 

with the shown parameters indeed can accelerate the plasma to such a 

♦This temperature is calculated with respect to speed of front with 
the help of shock adiabat taking Into account effects of dissociation, 
but without taking into account radiation flux from front, since it 
is small due to transparency of gas. 
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high speed. Without taking into account damping (which is small) dis- 

charge current from moment of rupture is changed according to the 

sinusoidal law I » I v sin (at,  where CD « 2Trv,  and I v « V^C/L)
1' - 

- VCOJ (L is self-inductance of circuit, and in this case equals 0.1 

millihenry). Maximum current equals I   » 115*000 amp = 1.3«10^ c/10 

units of the CGS electrostatic system. Current I, flowing along the 

busbar, creates at distance r from it magnetic field H = 2l/cr. As 

average distance between busbar and plasma it is possible to take 

radius of tube. Magnetic field acts on plasma as a piston with pressure 

H /Sir. Speed u, which plasma obtains under action of such pressure, 

2       2 
is determined by evident relationship H /8r « pu , where p is density; 

hence u - H/VBirp » l/cr V^rp. As I we will take average current 

Putting in formula for speed r - 1.5 cm, p » O.T^IO""' g/cnr 

(this is the density of deuterium under a pressure p0 - 0.7 mm Hg 

and room temperature) and magnitude of current, we will obtain 

u « 80 km/sec. Thus, the magnetic piston accelerates the plasma to 

a speed of the order of the observed (D   •» 90 km/sec). Let us note 

that time of action of magnetic piston, which is of the order 

t « r/u « 1.9*10  sec, is less than a quarter of the period of dis- 

charge T/4 *= 1/4 v ■ 5.6» 10*' sec. The whole process of acceleration 

of plasma occurs in the first quarter of the period of discharge, 

while the current does not grow to maximum value. In calculation 

which was made, we disregarded acceleration owing to purely thermal 

expansion of plasma heated by discharge current. Estimates show that 

indeed the basic role in acceleration is played by magnetic pressure, 

but not thermal pressure. For an Increase of magnetic pressure acting 

on the plasma, in certain experiments to the magnetic field of the 
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return current (which for I = -~£ = 80,000 amp and r = 1.5 cm equalled 

approximately llyOOO oe) was added still an external magnetic field 

of the same t-lv^tion ('-I'^OOO oe) .  In the Kolb T-form tube It ic 

very important to obtain a high speed of build-up of current and a 

large amplitude of current (high frequency of discharge), i.e., it is 

necessary to take special measures for maximum decrease of self- 

inductance of circuit.* 

CfT 
/**■ 

*~J   H 

f.M 

'h 

Fig. ^.4 Diagram of 
electromagnetic Kolb 
tube. 

Fig. 4.5. 
Diagram of Kolb 
and Poltavchenko 
tube. Elec- 
trodes are shaded, 

By the principle of the "magnetic piston" also acts the other 

tube, built by S. P. Poltavchenko and D. S. Poltavchenko [9], whose 

diagram is shown in Fig. 4.5. The discharge current flows in a radial 

direction between the electrodes, one of which is a rod located on 

axis of tube, and the other Is a cylinder near surface of tube.  Radial 

discharge current interacts with concentric magnetic current field, 

flowing along the central electrode. A pondermotlve force Is directed 

along axis of tube and accelerates plasma in this direction. Along 

the tube spreads a shock wave. A characteristic is ejection of plasma 

from interelectrode region, breaking away of it from "bottom" of tube 

under the Influence of magnetic field, which acts like a piston. 

*Let us indicate [8], whose authors obtained Intense shock waves in 
a T-form tube filled by hydrogen and helium, and Investigated the glow 
of heated gas in filaments. 
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Experiments were made In air. The most Intense shock wave with 

Mach number M * 250, D •• 80 km/sec, T. - 150,0000K was obtained with 

the following parameters! C - 2400 mf, V - 5 kv, I *» 560,000 a (the 

tube was made from plexlglas and had a diameter from 2 to 5 cm and a 

length from 50 to 90 cm). The wave rather rapidly attenuates during 

propagation along pipe. Weakly attenuating shock waves, but then 

smaller amplitude, (D < 10 km/sec) are obtained on the device of S. R. 

Kholev and L. I. Krestnlkova [10]. 

Principle of action of the above tube of S. R. Kholev and D. S. 

Poltavcheko has much in common with principle of action of the dough- 

nut tube built by Patrick [11], 

Josephson [12] described a tube with a conical hood. To the 

cylindrical pipe is Joined a conical hood (Fig. 4.6). On its end is 

located central electrode. The second electrode is the ring on the 

Joint of cylindrical and conical parts of tube. Along the generatrix 

of the cone go busbars for return current. During discharge there 

occurs magnetic compression of plasma to the axis — "pinch effect" — 

iwhere radial compression starts near central electrode 

and gradually Includes layers closer to the central. 

Then the accelerated plasma is ejected into a cylindrical 

tube, forming a shock wave in it. In [15] such a tube 

was used for acceleration of strongly rarefied air to 

speeds of the order of 12 kn^/sec (M « 40, T1 •" 12,000oK) 

and investigation of flow around models simulating 

rocket heads. 

More specifically, questions of construction of 

electromagnetic shock tubes and work with them can be 

Fig. 4.6. 
Diagram of 
tube with 
conical head. 
Electrodes 
are shaded. 

found in the collection of translations [14]. 
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§ 5. Methods of Measurements of Different Magnitudes 

Up to the present time there have been developed and widely used 

various methods of observation of fast-flowing processes in shock tubes 

and measurement of different magnitudes» speed of front of shock wave, 

density, temperature, and others. A description of these methods and 

an account of results obtained with their help is the subject of 

extensive literature. Many questions can be met in [3, 4] and surveys 

[1, 2]; in the same place are numerous references to journalistic 

articles. 

Here we will not remain on a detailed consideration of methods 

of experiment and we will only briefly enumerate the basic ones. We 

hold the basic classification of methods accepted in survey [2], 

1. High-speed photographic survey.  The gas-dynamic process can 

be photographed either thanks to intrinsic radiation of gas heated 

to a high-temperature, or in light of an outside source.  Chambers 

have been developed and applied which permit filming of the rapid 

processes with a frequency up to a million frames per second.* Widely 

applied also is the method of photo-scanning at which a beam of light, 

being reflected from a revolving mirror, continuously runs along the 

film, so that a moving luminescent object (let us say, front of shock 

wave) describes on the film a continuous slanted line.  By slope of 

the line one can determine speed of object. 

2. Measurement of density. Measurement of distribution of density 

of gas in an unbalanced layer after the shock wave has an especially 

important value, since distribution of density is connected with speeds 

of relaxation processes (see Ch. VII). Namely, in such a way were 

*For references to works of Soviet scientists and designers 
creators of unique high-speed chambers, see in Chapter XI. 
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basically determined speeds of excitation of vibrations and dissociation 

of molecules at high temperatures. 

For measurement of distribution of density mainly the interference 

method is applied, at the basis of which lies the fact that the refrac- 

tive index of a gas is changed with a change of its density. On the 

change of refractive indices during motion of compressible gas are 

based other important optical methods of observation of field of flow: 

the schlieren method and the shadow method. However,the most exact 

quantitative data on distribution of density is given by the inter- 

ference method.* 

In the works of Corning and  others [5] distribution of density 

in front of weak shock waves was determined according to reflection 

of light from surface of front. Initial density of gas was selected 

in such a manner that thickness of front of shock wave was comparable 

with wave length of light. Under this condition the coefficient of 

reflection depends on thickness of transition layer and distribution 

of density (i.e., refractive index) in it. Thus were measured thick- 

ness of front and speed of excitation of rotations of molecules in 

weak shock waves. 

Distribution of density of gas was measured also according to 

scattering of electron beam, by absorption of x-rays. 

3. Measurement of concentration of components of gas. In a number 

of cases, when in an unbalanced layer after the shock wave there is 

dissociation of molecules or a chemical reaction, it is possible to 

watch directly for change of concentration of specific particles. 

This is usually possible, if any particles possess absorption of light, 

sharply expressed as compared to other particles. Thus, for Instance, 

•The shown optical methods, in which light Is used from an outside 
source, usually are applied at not too high a temperature, when Intrin- 
sic radiation of the heated gas Is small. 

333 

 ..-^..^-.^ ■„,,-, in-.i inWMtrmffl—— m m mmmmm  ytmimmmmmmmimtMimmm 
jgaätoMtagaMaaafeiiaa 



was studied the dissociation of molecules of bromine and iodine in a 

shock wave, dissociation of molecules of oxygen, etc. Molecules of 

bromine and iodine strongly absorb visible light, whereas their atoms 

do not absorb; molecules of oxygen possess characteristic system of 

absorption bands in ultraviolet region (see Ch. V). 

4. Measurement of emission and absorption of light. In many works 

spectral measurements were made of emission rate of light by gas heated 

from a shock wave. Knowing density of gas and temperature, it is 

possible thus to determine radiating ability at various temperatures 

and in various sections of the spectrum. Light is usually registered 

by photographic methods or with the help of photomultipliers.  According 

to radiating ability, using Kirchhoff's law (see Ch. V) coefficient 

of absorption of light in heated gas can also be found. Coefficients 

of absorption sometimes are also measured directly, according to weak- 

ening of beam of light from outside source during passage through gas. 

5. Measurement of temperature. For measurement of high tempera- 

tures optical methods are most frequently applied. Literature on 

methods of optical pyrometry is huge. We recommend, in particular, 

collection of translation [15]] see also survey [16]. 

6. Measurement of concentration of electrons and electrical 

conductivity. For measurement of degree of ionizatlon of gas and 

concentration of electrons in shock wave the probe method of Langmulr, 

which is applied during the study of gas discharges, is frequently 

used. Applied also is the method of absorption and reflection of 

microradlowaves. Concentration of electrons is measured also accord- 

ing to glow of gas (for instance, intensity of recombination glow is 

proportional to the square of concentration of electrons). Magnetic 

methods. In particular, based on effect of displacement of moving 
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plasma of an external magnetic field are applied; displacement depends 

on electrical conductivity. Determining electrical conductivity, it 

is possible to calculate concentration of electrons. 

7. Measurement of pressure. Pressure most frequently Is measured 

with the help of piezoelectric transducers with a sensing device from 

barium titanate. 

8, Measurement of speed of front of shock wave. The simplest of 

all to measure is speed, recording by one or another method the moments 

of passage of a shock wave of specific cross sections (at known dis- 

tances from each other) in a tube. For registration piezopressure 

transducers, ionlzatlon transducers, different electromechanical 

transducers, and others, are used. 

Very high speeds which are obtained in electromagnetic shock tubes, 

are usually measured with the help of photo-scanning (see paragraph 1). 
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CHAPTER  V 

ABSORPTION AND EMISSION OP RADIATION IN 
GASES AT HIGH TEMPERATURES 

§ 1. Introduction. Types of Electron Transfer 

In Chapter II it was shown that the basic optical characteristic 

of a gas, which determines degree of blackness of a heated body, inten- 

sity and radiation spectrum, energy balance of substance in conditions 

of radiant heat exchange, is the coefficient of absorption of light.* 

Knowing the coefficient of absorption, with the help of Kirchhoff law, 

which serves as an expression of the general principle of detailer1 

equilibrium, light emissivlty of a substance can also be found. 

In § 2 Chapter II was given a short survey and classification 

of different mechanisms of absorption and radiation. 

In accordance with the general scheme of possible energy states 

of the atomic system, the simplest of which is a system from one proton 

and one electron, in the bound state forming an atom of hydrogen, all 

possible electron transfers accompanying absorption and radiation of 

light were subdivided into three types. Thus: 

1) free-free transfers (bremsstrahlung and absorption of light); 

2) bound-free transfers (photoelectric absorption); 

♦We recall that, speaking of "light," "light quanta," "optical" 
properties, we consider radiation of any frequencies, and not only 
those belonging to the visible part of the spectrum. 
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5) bound-bound (discrete) transfers. 

Free-free and bound-free transfers lead to formation of a contin- 

uous (solid) absorption spectrum and radiation of light. 

Bound-bound transfers In atoms give a line spectra. As a result, 

bound-bound transitions in molecules form band spectra. Band spectra 

consist of a great number of spectral lines closely located one to 

another with respect to frequency.  In certain conditions the separate 

lines are so closely adjacent that they even partially overlap and an 

almost continuous (quasi-continuous) spectrum is obtained. 

From the point of view of energy, there is a fundamental interest 

in continuous (quasi-continuous) spectra. 

Let us imagine, for instance, a body heated to constant temperature 

T.  If it is an ideal black body, then from its surface emerges a 

radiation flux with plank distribution with respect to the spectrum. 

A spectral flux as a function of frequency v  is shown in Fig. 5.1 by 

the dotted curve. The area bound by this curve gives total quantity 
2 

of radiant energy emitted from 1 cm of the surface of a body in 1 
4 

sec and equal to aT . Let us assume now that a substance, absolutely 

transparent in the continuous spectrum, absorbs and radiates only 

line spectrum, while in frequency lines radiation is in thermodynamic 

equilibrium with substance.  Spectral radiation flux from the surface 

of a body is shown now by a system of separate narrow lines whose 

height corresponds to Planck function, as is shown In Fig. 5.1 by 

solid curves. The uOtal quantity of radiant energy outgoing from 

2 
1 cm of the surface of a body in 1 sec is numerically equal to the 

shaded area of these lines, which due to small width of lines, is much 
4 

less than total plank flux aT . Losses of energy of body on radiation, 

and also brightness of glow of surface in the considered case is much 

less than if the rpectrum was continuous. 
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Fig. 5.1. Emission 
spectrum of a heated 
body,, absolutely trans- 
parent in the contin- 
uous spectrum, but 
opaque in lines. Dotted 
curve corresponds to 
plank spectrum at a 
given temperature. 

Exactly as in many cases, line spectra play a small role as com- 

pared to continuous spectra, in transfer of radiant energy inside a 

body. Therefore, basic attention in this chapter will be allotted 

not to line spectra, but to continuous and quasi-continuous molecular 

spectra. 

At high temperatures, when molecules 

are dissociated and a gas consists of atoms, 

and at still higher temperatures when a 

gas consists of ions and electrons, a contin- 

uous spectrum of absorption and emission 

appears as a result of bound-free and free- 

free transfers. Calculation of probabilities 

of electron transfers, with whose help can 

be found coefficients of absorption (and 

emission) of light in the case of many- 

electron atoms (complex atomic systems), constitutes a very difficult 

quantum-mechanical problem. It requires special consideration in 

every specific case, for every atom or ion and even for every quantum 

state of system. Such calculations are made only for a few particular 

cases. 

A comparatively simple calculation can be conducted only for the 

simplest, hydrogen-like system, i.e., for transfers of a single electron 

in a Coulomb field of positive charge Ze. Practically, even in examin- 

ing absorption and emission of light in gases consisting of complex 

atoms or ions, frequently it is necessary to use formulas derived for 

hydrogen-like systems. 

Here the atom or ion is in the form of some "atomic remainder" 

with positive point charge Ze, in the field of which moves an "optical" 

electron, transient during absorption or emission of light quantum 
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from one energy state to another. As will be shown below, in a number 

of practically Important cases, such an approximation turns out to be to 

a certain degree justified. 

During calculation of coefficients of molecular absorption usually 

it is possible to determine the coefficient as a function of frequency 

and temperature with an accuracy up to a certain factor — strength of 

oscillation for a given electron transition, which, as a rule. Is 

found from experiment. 

In subsequent paragraphs of this chapter we will consider in 

detail different mechanisms of absorption and emission of light in 

gases at high temperatures and the calculated corresponding coefficients 

of absorption. We will be Interested basically in the physical side 

of matter, not remaining in detail on different approximate methods 

of improvement of calculation formulas for coefficients of absorption. 

Very frequently in absorption and emission of light in gas during 

all given conditions a whole series of mechanisms participates. All 

of them act independently from each other.  Total absorption coeffi- 

cients and radiating abilities in every spectral section are composed 

of magnitudes, corresponding to different mechanisms. Therefore, 

consecutive and Independent consideration of separate mechanisms is 

fully natural. At the end of the chapter, as the most Important 

example of such joint action of many mechanisms, from a practical point 

of view, the optical properties of heated air will be considered. 

1. Continuous Spectrum 

§ 2.  BremsStrahlung of Electron in Coulomb Field of Ion 

As is known from classical electrodynamics, a free electron, 

moving in an external electrical field, let us say, in a Coulomb field 

of an ion with positive charge Ze, radiates light. It loses part of 
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its kinetic energy, and is "braked/' which is why such radiation is 

called braking.* 

The quantity of radiant energy S, emitted by an electron in 1 sec 

is determined by its acceleration w; 

S-lir*- (5.1) 

Total radiation for the whole electron transit time past the ion 

equal to the integral with respect to time from this expression: 

hS-]sdt-l'*'lw*dt. (5.2) 

Spectral composition of radiation can be found by expanding g- 

vector w into a Fourier integral and putting the expansion in formula 

(5.2). 

We will obtain 

where 

is Fourier component of g-vector w(t). 

Magnitude 

^-T-S-«* (5.4) 

constitutes the quantity of radiant energy of frequency v,  emitted 

during the transit of an electron past the ion and happening on a unit 

interval of frequencies.** 

According to classical mechanics, in the absence of losses cf 

*Ed. note. The Russian term for bremsStrahlung includes the word 
for "braking" or "decelerating," whereas the English term does not. 

**In accordance with astrophyslcal traditions we will always use 
not angular frequency en ■ 2TV, but ordinary v. 
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energy on radiation the free electron (sum of kinetic and potential 

energies of which is positive) flies past the ion along a specific 

hyperbolic orbit, characterized by Impact parameter p, the meaning of 

which is clear from Pig. 5.2. 

The total quantity of radiated energy and spectral 

composition of radiation may be approximately cal- 

culated by the formulas of (5.2)-(5.4), taking as 

acceleration w(t) the magnitude corresponding to 

motion of electron without radiation.* 

Let us assume that onto an ion from infinity 

drops a parallel beam of electrons whose initial speed 
Fig. b.2.. 
Trajectory of 
electron dur- 
ing transit 
past positive 
ion. 

on infinity equals v and density N is constant 

(electron stream equals N v). Through an elementary 

ring with an area of 27rp dp near the ion in 1 sec 

pass N v'STrp dp electrons. Each of them radiates an energy of AE erg. 

Radiation of these electrons in 1 sec equals AEN v27rp'dp erg/sec. 

Radiation in 1 sec of electrons passing the ion along all possible 

orbits, will be obtained if one integrates this expression with respect 

to p from 0 to CD. Total energy content of radiation calculated on one 

-2   -1 ion and a single electron stream N v = 1 cm  sec , is 

OB 

9— \ A£'2>tQ(fe(ergcm2}. (5.5) 

It Is possible to speak also about content of energy radiated in 

an interval of frequencies from ^ to v + dv,  about so-called effective 
Vses 

radiation rfj, ( 5 ^v = df»)- In accordance with determination (5.3) 
«•0 

effective radiation, i.e., content of energy radiated in interval of 

frequencies dv from calculation on one Ion and single electron stream 

♦This corresponds to the assumption about the fact that radiation 
is small. 
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equals 

By effective radiation is determined spectral radiating ability 

of a substance due to bremsStrahlung. 
•55 

■ If in 1 cnr there are N. ions of a specific kind and dN electrons + e 

with velocities from v to v + dv, then energy content in interval of 
■5 

frequencies from v to v + dv,  emitted in 1 sec in 1 cnr as a result 

of the deceleration of these electrons in a field of ions, equals 

N. dN V'da erg/cnrsec. 

Let us estimate effective electron emission in a Coulomb field 

of an ion. If electron is at distance r from the ion (radius vector 

r), from the ion force -Ze r/r^ acts on it. Acceleration caused by 

2/3 this force is equal to w «= -Ze r/r^m,  where m is mass of electron. 

Let us assume that the electron possesses initial velocity v and flies 

past the ion on impact parameter p. Time of action of force is of the 

order t ~ p/v,  and acceleration during this time is of the order 

2 2 
w ^ Ze /p m.  In the expansion of vector of acceleration into a 

Fourier integral a basic role is played by frequency of the order 

v  ~ l/27rt ^ v/2irp.» It is possible to say that frequency v  basically 

is radiated by those electrons which fly past the ion on impact para- 

mater p ~ v/2.rv,  and frequencies in interval from v to v + d^ are 

emitted mainly by electrons with impact parameters included in the 

interval dQ-^-g-j-dv^fci-SL rfy. 

Energy emitted by each such electron is of the order 

*For larger accuracy we will preserve the numerical coefficient 2Tr. 
(A basic role in the expansion is played by "circular" frequencies, 
such that cut ~ 1.) 
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Effective radiation of frequency v  corresponds to electron emission 

with impact parameter from p to p + dp, connected with frequencies by 

the method shown above, so that 

^-^•^^-T-^-T^r"-        (5-7) 

Consecutive calculation of effective radiation by the formulas 

(5.6), (5.^) with g-vector, found from solution of mechanical problem 

about motion of electron along a hyperbolic orbit near an ion, is 

made in the book by L. D. Landau and Ye. M. Lifshits [1].  It gives: 

^"3/3 mMp« dy whenv»-^^, (5.8) 

.   32«  ZV ,   miA     j TTv,Qr, „   me» 
^Ä—1iii^lnX78Ä^irfvWhenv<2Hz?-        (5,9) 

As is evident, with large frequencies the exact result differs 

from a simple estimate (5.7) by only the numerical factor ^/VT3 2.3. 

With small frequencies the exact formula differs from the simple 

estimate, besides by a numerical factor, also by a logarithmic factor 

depending on frequency. The fact is that small frequencies are 

radiated during far collisions with large impact parameters p, while 

when v —■ 0,  p -♦• 00 collisions with parameters p > ^—7 give relatively 

even greater and larger contribution in radiation of frequency v as 

compared to collisions with parameters p ~ T^T-,  which are only consid- 
TTV' 

ered at the conclusion of simple formula (5.7). 

Divergence of effective radiation on the side of small frequencies 

is characteristic for a Coulomb field slowly dropping with distance, 

thanks to which distant collisions obtain so essential a role. This 

divergence is removed during calculation of shielding, always existing 

in a real gas. Actually with respect to p in formula (5.6) one should 

integrate not ad infinitum, but, let us say, to Debye radius d, which 

will limit radiation on the part of small frequencies to frequency 
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Vln ~ v/27rd' 
It Is necessary, however, to note that Integral radiation 

q = / ciqv along spectrum converges on the part of small frequencies, 

since dq divergence is only logarithmic and contribution of peak 

da when v-* 0 in integral with respect to v  is small. Therefore, if 

one were interested in integral radiation, the question on impact 

parameters p from above, and frequencies — from below. Is not so 

essential. 

Radiation of large frequencies in the classical theory does not 

depend on frequency, and effective radiation on unit interval of fre- 

quencies dq^dv remains final even when v-»-oo.* Formally, total 

radiation q » /da diverges on the part of large frequencies. 

This contradictory theory is connected with imperfection of 

classical presentations about motion of electron and is removed in the 

quantum theory. Large frequencies, as we have seen, are radiated 

during transit of electron past ion on small impact parameters. But 

according to quantum mechanical concepts, an electron possessing ini- 

tial momentum p = mv cannot be localized more exactly than is dictated 

by the indetermlnancy principle ArA ~ h/27r.  Inasmuch as uncertainty 

in momentum cannot exceed the actual momentum, there is no meaning in 

talk about Impact parameters smaller than pmin ~ h/2Tnnv. Maximum 

frequency radiated with such minimum impact parameters in order of 
p 

magnitude, equals v . ~ v/27rPmin ~ mv /h' ThlB limitation of radiated 

frequency from above has a very graphic physical meaning. In the 

quantum theory bremsStrahlung is presented in the following way. A 
p 

free electron, possessing initial energy E = mv /2, flying past an 

ion, can emit light quantum hv. If after emission of quantum it 

♦This is accurate only under the condition that colliding particles 
possess opposite charges (electron — positive ion). During Interaction 
of particles with charges of one sign dq/dv -♦ 0 when v -* ao. 
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remains free, i.e., departing from the ion, it possesses positive energy 

E', then, obviously, the electron cannot emit quantum exceeding initial 

energy E. Thus, T; „ = tr = öTT-
* which with an accuracy of immaterial 

mdx  n t-ii 

factor 1/2 coincides with limitation of frequency dictated by indeter- 

minancy principle. 

In quantum mechanics a free electron is presented as a plane wave 

and the idea of Impact parameter does not have a strictly defined mean- 

ing.  Is possible to speak about emission probability of quantum of one 

or another frequency, more correctly, about effective cross section of 

emission of quanta with energies from hv to  hv + d (hv). The content 

of energy radiated in interval of frequencies dv  by a single electron 

stream interacting with one ion is equal to the product of energy of 

quantum hv by effective cross section of emission da . This magnitude 

also corresponds to effective radiation of classical theory: 

«tyv«.ÄV«rfo»(er^ciii2), (5.10) 

In light of corresponding of principle the effective radiation of 

frequency v is connected with transition of electron from one "station- 

ary hyperbolic orbit," corresponding to energy of electron E, to 

another, corresponding to energy E' = E — hv. Effective cross section 

da , and consequently also effective radiation dq are calculated in 

quantum mechanics by the usual methods, through matrix elements of 

energy of Interaction of electron with ion. 

However, before presenting the result of quantum-mechanical 

calculation of bremsStrahlung, we will see what are the limits of 

applicability of classical formulas (5.8), (5.9) and when, properly, 

it is necessary to replace them by quantum-mechanical formulas. 

According to classical conclusion, formula (5.8) for large fre- 

quencies is accurate under the condition v » mvy^Ze . Cf course. 
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there is no meaning in extending it to frequencies exceeding upper 

limit dictated by quantum energy concepts, vmDv ■ E/h » mv /2h. Let 

us rewrite these limitations put on frequency In formula (5.8), in 

the form 

p 
But inequality hv/VZe « 1 with an accuracy of two constitutes nothing 

else but condition of quaslclassicallty of motion of electron in a 

Coulomb field (see, for Instance, [2]) 

Therefore classical formula (5.8) for effective radiation of 

frequency v,  limited from above and from below by Inequalities (5.11), 

may be approximately used In addition to all those velocities of 

electrons which satisfy Inequality (5.12).  If condition of quasl- 

classicallty (5.12) holds, then domain of applicability of formula 
2 

(5.8) spreads to very small frequencies, such that hv/E ~ hv/VZe « 1. 

Inasmuch as usually there is interest in quanta which are not very 

small as compared with kT, I.e., with energies of electrons, and 

contribution of peak when v -* 0 in  integral radiation is small, formula 

(5.8) may be successfully extended to v « 0, replacing formula (5.9) 

and thereby removing formally divergence dq when v -»• 0. 

Let us convert condition of quaslclassicallty (5.12), which is 

condition of applicability of formula (5.8), thus, in order to obtain 

the condition put on energy of electron, 

2  2 2 
where an = h /kir  me is Bohr radius, and !„ = 15.5 ev is the potential 

lonizat ion of an atom of hydrogen.* 

♦Condition of quasiclassicallty for motion of electron In Coulomb 
field Is equivalent to condition of smallness of energy of electron as 
compared to its energy on first Bohr orbit. 
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For Instance, in the case of hydrogen plasma formula (5.8) Is 

accurate up to temperatures of the order of 10 ev ^ 100,000 K; in gas 

from heavier elements it Is accurate to still higher temperatures, 

since due to multiple ionization charges of Z ions increase. Thus, in 

air of normal density at T = 10  K Z «» 6 and average energy of 

electrons is four times less than the "quasiclassical" limit. 

At very high temperatures, when there are inequalities opposite 

to the conditions of quasiclasslcality (5.12), (5.13), the Born 

approximation in quantum mechanics* is accurate. For unrelativistic 
2 

energies (E « mc = 500 kev calculation of effective radiation in 

Born approximation gives the expression (see [3]): 

dq automatically turns into zero when hv = E and weakly, logarithm- 

ically, depends on frequency in whole interval of frequencies from 

0 t0 vmax- 

It is remarkable that the quantum formula leads to values of 

effective radiation very close to those given by the classical formula 

(5.8) (with the exception, of course, of frequencies very small and 

very close to maximum). This may be seen from Table 5.1J in which 

are presented values of the ratio 

V  V *» AM-TK rfv A«ee   n ln    i 

hv    "" 
depending upon dimensionless value x = "V " ^ 

max 

♦For Born approximation it is necessary that not only at initial, 
but also at terminal velocity of electron conditions (5.12), (5.15) 
hold; otherwise one should use exact wave functions of electron in 
Coulomb field, which introduces known Coulomb factor into resultant 
formulas [2, j]. 
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Table 5.1, 

* 0 0,1 0.2 0.3 0,4 0.5 0.8 0.7 
9 

0,8 0.» 1 
f 00 2.01 1.61 1.84 1.13 0.97 0,81 0.68 0.53 0.36 0 

Integral radiation, calculated by quantum formula, is written in 

the following form: 

Thus, it is possible to use classical formula (5.8) with good 

approximation for practically any non-relativistic temperatures. 

§ ?, _ Free-Free Transitions in Heated Gas 

Let us find radiating ability of ionized gas, connected with 

b rems st rahlung. 

Let us assume that in 1 cm gas there are N. positive ions with 

charge Ze and N electrons with Maxwellian, distribution with respect 

to velocities f(v,)dv' (/ ^v^dv1 ■ 1). The temperature of the 

electron gas will be designated by T. Energy which is radiated by 

electrons possessing velocities from v! to v1 + dv', in 1 cm in 1 sec 

for the interval of frequencies from v to v + dv is equal to 

NJNJWWifdqy .* (5.1^) 

The content of energy spontaneously radiated as a result of free- 

free transitions in interval dw in 1 cnr for 1 sec will be obtained, 

if one integrates expression (5.14) with respect to velocities of 

electrons from v . to co, where v .„ is minimum velocity of electrons 
mm        p min 

able to radiate quantum hv: mVgmln = hv. Using formula (5.8) for 

effective radiation and integrating, we will find spectral radiating 

ability connected with the deceleration mechanism: 

*Is assumed that velocities of ions are very small as compared to 
velocities of electrons. 

mgmgmsaaSM 
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'.^(^yUW^v. (5.15) 

Emission of large quanta h^ » kT Is exponentially small. This 

is connected with the fact that large quanta are radiated by electrons 

with high energies, concentrated in tail of Maxwellian distribution 

with respect to velocities. 

Integral radiating ability for bremsstrahlung is equal to 

1 

1 
« i&'WPrtN.N, efg/cm^ec (5 .16) 

(T — temperature in Kelvin degrees). 

Integral deceleration emission rather weakly depends on temperature 

(it is proportional to YT). 

If in the gas are ions of various Z charges, then formulas (5.15), 

(5.16) should be summed over all sorts of ions. 

Now we will find coefficient of deceleration absorption of light. 

For this we will use principle of detailed balancing.  If U  is 

equilibrium spectral density of radiation, determined by formula of 

Planck (2.10), 

and a is the spectral coefficient of true deceleration absorption, 

calculated on one ion and one electron moving with velocity v, then 

the quantity of radiation in the interval of frequencies from v to 

v +  dv, absorbed during thermodynamic equilibrium in 1 sec for 1 cm^ 

by electrons with velocities from v to v + dv, equals 

NWiptocfWdoaili-•"&}. (5.18) 

350 

^....^^^Jvit^^s-s^r-'-!. as as -'•;-"■!■ •--•" «tsasaaaaaai 



Factor (1 - e"w) considers effective decrease of absorption 

owing to forced emission (over-radiation; see § 4 Ch, II),  In conditions 

of thermodynamic equilibrium absorption and emission accurately 

compensate one another, i.e., expressions (5.18) and (5.14) are equal. 

Velocities of electrons emitting quantum hv and absorbing these quanta, 

are connected by the law of conservation of energy 

nr-^+Äv. (5.19) 

Noticing that v dv = v' dv' and using formula (5.8) for dq^ we 

will find from equalities (5.14) and (5.18): 

*•■ yi kcmhr* ' (5-20) 

This formula was obtained by Kramers in 1923. Multiplying a by 

N.N and, using Maxwelllan distribution function, averaging with res- 

pect to velocities of electrons, we will obtain spectral coefficient 

of true deceleration absorption in gas at a temperature of electrons Tt 

t 

-4,M0-»Z»-^arS x—jgr. (5.21) 

Remembering determination of average coefficient of absorption, 

characterizing radiating ability (2.102), we will calculate this 

magnitude for deceleration mechanism: 

«»-lfc-l^-6'52'10',1Z,J![±TS-CJt'1- (5.22) 

Corresponding average range is equal to 

Let us calculate average Rosseland path (2.80) for the case when 

gas is completely ionized and deceleration mechanism of absorption is 
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unique (and all ions possess identical Z charge) 

7 

/-4,8.10««-^^-fj«. (5.24) 

Rosseland path i for  deceleration mechanism is equal to spectral 

run with energy of quanta hv = 5.8kT.  As can be seen, in transfer 

of radiant energy by means of thermal conduction with deceleration 

mechanism of absorption a basic role is played by very large quanta 

found in the Wien region of the spectrum.  Conversely, during volume 

radiation a basic role is played by small quanta. Average coefficient 

K,   is equal to spectral coefficient H. (1 - e' v'     ),  corrected on 

forced emission, corresponding to hv = i.73kT. 

In order to imagine the order of magnitudes of optical character- 

istics of plasma, corresponding to deceleration mechanism, we will 

give a specific example. 

Let us consider nydrogen at density p = 1.17-10  g/cnr5 (such den- 

sity corresponds to a pressure of 10 mm Hg at room temperature) and 

temperature T = 100,000OK.  In these conditions hydrogen is completely 

dissociated and is completely ionized, so that N = N = T-IO-' cm 
+  "e 

The coefficient of absorption of red light X = 6500 A here equals 

-3  -1 
K^ = S-T'lO  cm , and range I    = l/n    = ±75  cm. 

The Rosseland path I  = 3.1-10 cm.  The mean path characterizing 

radiating ability, I.,, = 0.98-10 cm. 

If dimensions of body are much less than "ength I.,  then the body 

emits as a volume radiator (see § 16 Ch II) and speed losses 

of energy on radiation equal 

it        ~J' 

11 
where e is specific internal energy.  In our example J = 2.2-10 

erg/cm sec.  Taking into account energy of dissociation and lonlzation 
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e = 41.6 ev/atom, pe = 4.66'10' erg/cm^. Initial scale of time of 

radiant cooling T = pe/j = 2.12'iO' sec 

§ 4. Effective Capture Cross Section of an Electron 
by an Ion with Emission of Quantum 

Let us consider the capture of a free electron by a hydrogen-like 

"ion" with quantum emission and formation of a hydrogen-like "atom." 

We will, as in § 2,   originate from semiclassical presentations.  In 

classical mechanics without taking into account radiation the transi- 

tion from free states of an electron to bound states is continuous. 

The state or orbit of an electron are characterized by magnitude of 

total energy of electron — ion system E and (in general) instead of 

"impact distance" p is angular momentum, also determining geometric 

parameters of trajectory. With decrease of energy and constant moment 

he hyperbolic orbits, corresponding to positive energy E > 0, contin- 

uously change to parabolic orbits (E = 0) and further, in a bound state 

of the system, characterized by negative energy, E < 0, into elliptic 

orbits (Fig. 5.3).  In light of correspondence principle the capture 

of a free electron and quantum emission, whose energy exceeds initial 

kinetic energy of electron E, are connected with transition of electron 

from a hyperbolic trajectory to an elliptic trajectory. 

In classical mechanics energy 

of an electron — ion system can be 

arbitrary.  In quantum mechanics 

the energy spectrum of a system is 

continuous only if the electron is 

free and E > 0.  In the bound state, 

when E.< 0, energy can take only 

discrete values. Energy levels 

Fig. 5.3. Hyperbolic, para- 
bolic, and elliptic orbit of 
electron. 
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of hydrogen-like atom E are characterized by the prime quantum number 

n, going through values from 1 to CD, 

£.-—rf—-IP-.-'.»-57 si-- (5.25) 

p 
I = I„Z = [E.| is the absolute value of energy of the ground state^ 

i.e., ionization potential. Binding energy of electron in n-th quantum 

state equals -E = |E | = l/n . A diagram of levels of an atom of 

hydrogen is depicted in Fig. 2.2 in § 2 Ch, II. As is known., 

during motion of a bound electron in a Coulomb field of an ion its 

kinetic energy on the average with respect to time is equal to half 

of the potential taken with the opposite sign, and is equal to the 

total, also taken with reverse sign: E,.  = -E +/2 = -E(E = E, . + jtxn    p^v Kxn 

+ E .).  Consequently, on the average with respect to time 

fi«»~ 2 ^ n« ""nT"' 

From this formula, taking into account inequality (5.13) it is clear 

that motion of an electron in strongly excited quantum states with 

large quantum number n is quasiclassic. 

In examining bremsstrahlung,in § 2 we applied classical 

formula (5 8) for effective radiation, describing by it "transitions" 

of an electron from one hyperbolic orbit to another, corresponding 

to less energy, while they extended the formula up to transitions to 

an orbit with infinitely small positive energy, almost parabolic, 

which corresponded to radiation of maximum frequency v    v =  E/h. Here, max 

of course, initial energy E was assumed sufficiently small, E « lu^ , 

v « 27rZe /h, so that motion in initial state was quasiclassic. Motion 

in f'nal state is all the more quasiclassic, since an electron 

during transition loses kinetic energy and decelerates.  Inasmuch as 

small negative energies, as we just now saw., also correspond to small 
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velocities and corresponding elliptic orbits are also close to para- 

bolic (but only on the part of negative energies), it is natural to 

extend formula (5.8) also to the case of radiation of frequencies 

somewhat in excess of vm_v,  i.e., to the case of capture of an electron max 

on high levels. One should consider here that the final state of an 

electron falls in the discrete spectrum. Effective radiation in certain 

small, but finite interval of frequencies Av, Aa = (da /dv)Av, is 

equal according to quantum treatment to hvAa . where Aa is effective 

cross-section for emission of quanta in small Interval Av. But now 

emission of quanta from hv to hv + A(hv) corresponds to capture on a 

defined finite number of levels An and effective capture cross section 

of them Aa can be presented in the form of product a,,«An where a,_ 

is the mean cross section of capture on any of the levels in this 

interval. This cross section depends on average number n in small 

interval An. Thus, 

Using formula (5.25) for determination of energy distance between 
dE 

levels for large nt |-~| = — = 2IHZ
2/rr5 and formula (5.8) for 

effective radiation, we will obtain effective capture cross section 
o 

on level n of a free electron possessing initial energy E * mv /2t 

Energy of quantum emitted during capture of electron on level n 

equals 

*-*+|*j-J!£+ii*. (5.28) 

As quantum-mechanical calculations show (see following paragraph), 

semiclassical formula (5.27) gives good results also in reference to 

capture on deep levels. Including also on ground levels (n = l), in 
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spite of the fact that motion of electron in the ground state is no 

longer quasiclassic (Eicln = -p
- ~  ^w2 )'* 

Let us calculate with the help of formula (5.27) the total effec- 

tive cross section of photocapture of electron with given energy 

E = mv /2 on all levels of hydrogen-like ion. For this one should sum 

cross section a      over the formula (5.27) for all n from 1 to oo taking 

into account the fact that quanta of different energies are emitted, 

which are given by formula (5.28)! 

Zi     A* A   * (     E 1 \     ^, 
2,8-io-«z« _rtj*\ 

(5.29) 

Fig. 5.4. Diagram 
explaining relation- 
ship between energy 
intervals of final 
states of electron 
during deceleration 
and capture by ion. 
KEY":  (a) decelera- 
tion,  (b) capture. 

Here qp designates sum over n. In rough 

approximation for small energies of electrons 
n* 

E 4.1*0,   9^^24) + J' where n* -ifuPW*. 

For small (but also not very small) energies 

2 
of electrons, when E is less than I^Z , but 

comparable with this magnitude, the sum of cp 

is of the order 1 and capture cross section 
2 

-21 Z    2 
equals approximately a « 3'10   ^— cm'. 

c ev 
It is interesting to compare integral 

effective radiation of free electron with given 

energy E during deceleration in field of hydrogen-like ion with integral 

radiation during photocapture, i.e., magnitudes qdec = /^Q^ " /
hv der, 

and q   = y hva  . The first magnitude according to (5.8) equals 
n 

q,  = (dq /dv) E/h, and the second, in virtue of the actual derivation 

of cross section a  (see formula (5.26)), q   =■ (ty^  x -y- , where 

constant (dq /dv), is determined by formula (5.8). Both magnitudes, 

^dee an<^ ^can' are ProPor'fcional to energy intervals of possible final 

♦Initial motion of free electron is assumed to be quasiclassical, 
i.e., inltlal energy E </„z«. 
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states of electron (Fig. 5.^) and relate to one another as these 

intervals: 

fm/fev«-/.&/£. 

§ 5. Effective Cross Section of Bound-Free 
Absorption of Light by Atoms and Ions 

Let us consider the process which is opposite to that of photo- 

capture —photo-ionizationof a hydrogen-like atom, i.e., absorption 

of quantum with transition of electron into continuous spectrum. 

As in calculation of deceleration absorption, we will use principle 

of detailed balancing. 
"5 

In 1 cm in 1 sec there are 

NJiJWto'V.a* (5.30) 

acts of photo-capture of electrons with velocities from v to v + dv on 

n-th level of ions. Quanta are emitted with frequencies from v  to 

v + dv, which are connected with velocity of an electron by relation- 

ship (5.28). 

The number of reverse processest acts of photo-ionization of 

"atoms" remaining in n-th quantum state, by quanta with frequencies 

from v to v + dv, equals 

where a  is the effective absorption cross section of quantum hv by 

an atom in the n-th state, N is the number of such atoms in i cm ,* 
-hv/kT factor (1 - e '     ^, as earlier, considers forced emission. In 

conditions of total thermodynamic equilibrium f(v) is function of 

Maxwellian distribution of electrons, U  is Planck function: the vp ' 
number of excited atoms N is expressed by Boltzmann formulai 

i»r.-jMtr1Vü.Jvl.fe«-£<
l~H        (5.32) 

■ft      'fi 
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p 
where g = 2n is static weight of n-th level of hydrogen-like atom, 

3 
and N, is the number of atoms in i cur remaining in the ground state; 

g = 2j E - E, = IHZ
2 (1 - -4) = I (1 - -i) is the excitation energy 

n n 
of the n-th state. 

The numbers of free electrons, ions, and "neutral" atoms (if 

Z > 1,  then "neutral" hydrogen-like atom is an ion with charge Z - 1) 

are connected by the equation of Saha (see formula (3,44)   in § 5 

Ch.   Ill): 

2C-P-J T-* ^ (5.53) ~~s~ 

while in this case the electron statistical sum of an ion u = 1. The 

number of "neutral" atoms in 1 cnr N = uN./g., where u is the electron 

statistical sum of an atom. 

Equating the numbers of direct and reverse processes to each other 

(5.30), (5.31) taking into account all remarks on magnitudes in the 

formulas, we will find effective absorption cross section of quantum 

hv by a hydrogen-like atom, the charge of the "atomic" remainder of 

which equals Z and which is in the n-th quantum state: 

Here through v    designates minimum frequency of quantum, which is able 
2 2 

to pull electron from n-4-1 level: hvn = IgZ /n ,  (see formula (5.28)). 

A characteristic peculiarity of the cross section is the inverse 

cubic dependence on frequency a  ~ [v-fv).    The cross section is ma 

imum for threshold of absorption when v  = vn. Formula (5.54) is 

known in literature under the name of the Kramer formula. 

Somewhat more strict, quantum-mechanical consideration of photo- 

ionization of hydrogen-like atoms from high levels leads to a formula 

differing from (5.34) by correction factor [4]i 
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•-.-o.i^ytK-r)-«]- 
In the majority of cases having a practical interest this factor is 

very close to unity, so that it, as a rule, cannot be considered. 

Semiclassical formula (5.3^)J by its very own derivation is 

accurate only for highly excited states of n » 1; nonetheless it gives 

good results even when it is applied to photo-ionization f rom ground 

level n = 1. 

Quantum-mechanical calculations of effective cross section of 

photoeffect with K-shell of atoms, i.e., for ground state of hydrogen- 

like atom, carried out with exact wave functions of free electron, 

in a Coulomb field give [5] (from calculation on one electron, as 

also (5.33))t 

***'  *  C^V' v-v«~v»; (5.36) 

The first of the formulas corresponds to region near boundary of 

absorption, the last one — when energy of liberated electron is 

considerably larger than binding energy hv.  <=« 1„Z  , which corresponds 

to transition to Born approximation. 

Comparison of formula (5.3^), in which we will put n - 1, with 

formulas (5.35)* (5.36) shows that on boundary of absorption, when 

v = v1, "semiclassical cross section" (5.3*0 equals 7.9«10  /Z2 cm2 

and in all is 25%  larger than quantum (5.35). When v - v    ~ v., i.e., 

when energy of liberated electron is of the order of the binding 

energy of it in the ground state of the atom, formulas (5.34), (5.35) 

coincide with 5^ accuracy and even give identical dependence on 
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2 
frequency. There is strong deviation only when hv  » L-Z ,  when energy 

2 
of liberated electron E » IHZ , i.e., in Born region, where position 

is opposite to quasi-classical. 

As will be seen further, such large quanta always are in far 

Wien region of spectrum and under conditions close to thermal equilib- 

rium, do not play a practical role. Thus, semiclassical formula (5.34) 

may be approximately extended to photo-ionizationfrom all levels of 

hydrogen-like atoms.  Exactly so, the formula for photo-capture (5.27) 

is applicable for capture of electron on all levels up to ground level, 

as was used in the preceding section during calculation of total 

capture cross section. 

Let us consider briefly what it is possible to expect from appli- 

cation of formulas derived for hydrogen-like atoms to complex atomic 

systems. 

Small quanta, considerably smaller than ionizatlon potential I 

of atom or ion, are absorbed (knocking out an electron) only by highly 

excited atoms (ions) whose excitation energy is not less than I - hv. 

But in strongly excited states the optical electron moves along a great 

orbit, in whose region the field of "atomic remainder" is very close 

to a Coulomb field, created by a chc.rz^  equal to the charge of the 

"remainder." Therefore, it is possible to trust that in this case 

approximation of "hydrogen similarity" is justified. Unfortunately, 

there are no exact quantum-mechanical calculations of absorption by 

highly excited atoms and ions, which could confirm this rather probable 

assumption. 

The available calculations, which are not numerous, pertain mainly 

to photoeffect from ground state of atoms (for ions, data are even 

less). 
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In this case the field in which absorbing electron moves is 

created by a complex system of charges of the nucleus and remaining 

electrons, the dimensions of which are the same as the "orbit" of 

the electron, and, of course, the field strongly differs from a Coulomb 

field. Exactly so, the wave function of an electron strongly differs 

from the wave function of the S-state of a hydrogen-like atom. For 

a number of atoms effective cross sections of photo-ionization f rom the 

ground state very strongly differ from corresponding cross section 

for an atom of hydrogen, equal according to (5.3^) to a . = 7.9*10" 

-z      2 -l8      2 
{vjv)j cm    (on boundary of absorption a* - 7.9'10"      cm ),  for others 

they are very close on boundary of absorption, but have another 

dependence on frequency. Thus, for instance, for oxygen and fluorine 

on boundary of absorption the cross sections are equal approximately 

-18  2 
2.5'10   cm , and then hardly depend on frequency up to v « 2v±.    For 

-ifi   2 —"I ft 
nitrogen on boundary a*  » 7.5'10"  cm , and for carbon a* = 10«10" 

2 -"5 
cm , but the cross sections drop with increase of v  slower than ~v , 

-l8 
as for hydrogen-like atoms; for lithium a* =» 3.7*10~ , for calcium 

-18  2 
a* = 25"10   cm . Especially great Is the distinction from "hydrogen- 

—1 ft  ? 
likeness" for alkali metals. For sodium a*  = 0.31«10'  cm . 

-18  2 
Experimental values for rubidium a* - 0.1-10   cm , for cesium 

-l8  2 
a* » 0.6*10   cm . A more detailed survey of available data can be 

found in an article by Beyta [7]. Fortunately, as we will see below, 

in sufficiently rarefied gases in states which are close to thermo- 

dynamic equilibrium, the role of large quanta, exceeding ionization 

potentials of atoms and ions, is comparatively small, so that strong 

divergences in this case do not make senseless use of approximation 

of "hydrogen-similarity," 

In certain cases there la a large value in photo-capture of 

»Graphs for cross sections of photo-ionization from ground state of 
0, N, P, C are given in [6]. 
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electrons by neutral atoms with formation of negative Ions and, corres- 

pondingly, photoelectric absorption of quanta by negative Ions. This 

pertains to negative Ions of hydrogen, playing the most Important role 

In absorption of light in stellar atmospheres, and negative ions of 

oxygen, essential for absorption of light in air in certain conditions. 

Binding energies of ionizatlon potentials of negative ions, determining 

lower bound of absorption hvmln, equal 0,75 ev for hydrogen, 1A5 

ev for atomic ions of opcygen 0~ of the order of several tenth ev for 

molecular ions oZ.      Dependence of cross section on frequency has 

nothing in common with the law that v    . In Fig. 5.5 are presented 

results of quantum-mechanical calculations of effective cross section 

of photo-lonization of 0~. The graph is taken from [8]. Around 

theoretically calculated curve are shown experimental points according 

to measurements [9]. Data on absorption by H" ions can be found in 

[6]. 

T 

Flg. 5.15. Effective absorption 
cross section of light by nega- 
tive 0" ions of oxygen. 

§ 6. Coefficient of Continuous Absorption 
in Gas from Hydrogen-Like Atoms 

Let us calculate coefficient of bound-free absorption of hv quanta 

by hydrogen-like atoms, whose "nucleus" charge equals Z. At a given 
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Flg. 5.6. "Paling" of 
absorption. Dotted curves 
correspond to absorption 
by atoms In given quantum 
state. Solid curve Is 
total coefficient of 
absorption. The figure 
Is schematic. 

For large n, wnen Index In exponent does 

not depend practically on n, the number 
r 

of atoms N is simply proportional to n* 

(«n " 2n2)' 

. pv^   I "'* Inasmuch as effective cross section 
1-» i--r.— i ». _c 

avn ~ n -^, components in sum (5.38) when 

n -* co decrease in proportion to l/n ,  so 

that contribution in absorption of light 

of a given frequency of all the higher 

and higher levels very rapidly decreases, 

and actual infinite sum converges,* 

We will be interested by temperatures at which degree of ioniza- 

tion is small. As was shown in § 5 Ch. Ill, noticeable ionizatlon in 

not too dense a gas starts when kT is still much less than ionization 

potential I. The number of excited atoms here is minute, since for 

excitation even the lowest state n ■ 2 energy close to ionization 

potential and equal to 3/^ I ls necessary. 

Thus, when kT « I the number of atoms in the ground state N^ 

is very close to full number of atoms N - ZNn and in formula of 

Boltzmann (5.32) it is possible to set approximately N. «» N. Under 

this condition setting Nr and avn by the formulas of (5.32), (5.3^) 

in expression (5-38) and introducing designations: 

^-^-^ 4-^1 
(5.39) 

*In real gas due to interaction of atoms and ions upp^r levels will 
be cutaway (see § 6 Ch. Ill), so that in fact the number of members in 
aum (5.38) is finite. In this case there is no necessity to cut the 
sum with respect to n since the sum converges rapidly. 
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We will obtain coefficient of bound-free absorption in the form 

«;--^T|i^"'->- (5.40) 

In order to obtain full coefficient of continuous absorption, to H1 

one should join coefficient of deceleration absorption by free electrons 

in field of ionized atoms — "hydrogen-like ions" — which is given by 

formula (5.21). Expressing in this formula the product N.N by the 

number of "neutral" atoms according to the formula of Saha(5.33) 

and considering that u <« g. = 2, N « DL, we will rewrite the coefficient 

of deceleration absorption in the form 

•  16«« Z**kTN  --jjjr  64«« Z*tV>mN  g-*1 (5.^1) 

Total coefficient HV = K^ + H^J equals 

„   64«« «lOmZ«jy fv 1  .  _% t-*i\ 

This formula is considerably simplified if energy of quantum is 

small as compared to ionization potential, so that quantum is absorbed 

only by highly excited atoms (n* is great).  Inasmuch as levels rapidly 

condense with growth of n, summation with a large n can be replaced 

by integration ("differential" corresponds to An = 1). Integration 

with respect to n is equivalent to integration with respect to spectrum 

of energy states with replacement of discrete spectrum by continuous. 

In accordance with equality dn/n^ « -1/2 dx /x.. 

As the lower limit of the Integral with respect to x , one should, 

obviously, take dimensionless energy of quantum x « hv/kT. Thus, 

2^<«i-^.*--£rJe--(te.--^-(e'-l). (5.43) 

*It is frequently called the Kramer — Unsold formula. 
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If one were to formally extend summation or integration to 

"negative binding energies" or, which is the same, to energy of 

"excitation" x. - x , exceeding ionizatlon potential, then the integral 

with respect to x from 0 to -co yields magnitude e~xV2x,, accurate 

to corresponding free-free transitions. This should have been expected, 

since the states of an atom with "excitation" exceeding the ionizatlon 

potential are states with a detached electron, and continuous transition 

from bound state of electron to free state was from the very beginning 

assumed on the basis of derivation of effective cross section of bound- 

free absorption. 

Putting expression (5.^3) in formula (5.42), removing in the 

coefficient standing before the brackets, factor l/kT - LZ /kT and 

reducing it by magnitude x., contained in denominator of (5.43), we 

will obtain final formula for coefficient of absorption of small quanta 

hv « I:* 

*   ypt  M«^   -..-^.ae.io'-jrsr—3—CM*. (5.^4} 

2i 
Coefficient of absorption n    is -jroportional not to Z , as it 

can appear by looking at formula (5.40), but only to Z .  In order to 
ii 

explain this, we will remember, what the origin is of factor Z in 

formula (5.40). One factor Z enters into the coefficient in connec- 

tion with proportionality of effective absorption cross section to 

the square of "acceleration" of electron in Coulomb field (according 

to classical treatment) or square of matrix element of energy of inter- 

action with "nucleus" (according to quantum treatment). The other 
2 

factor Z appeared due to proportionality of absorption cross section 

avn to the distance between levels, which in turn is proportional to 

p 
total energy interval of bound states, I » IHZ . 

*It is frequently called the Kramer — InsBld formula. 
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Cross section a , Indeed, is proportional to the energy distance 

between levels, since the cross section of photo-capture is proportional 

to this distance (see formula (5.21)), which is connected with absorp- 

tion cross section by the principle of detailed balancing. During 

summation of partial coefficient H^n = 
N
n
a
vn 

over levels or, which 

is the same, during integration with respect to energy interval of 

bound states participating in absorption of given quantum, the last 

2 
dependence on Z disappears.  The remark on dependence of H on Z is 

essential for transition to multiply charged ions (see below). 

As can be seen from formulas (5.42), (5.43), bound-free transi- 

tions and free-free transitions introduce into total coefficient of 

continuous absorption H fractions, which are related to one another 

as 

It follows from this that in absorption of large quanta hv « kT 

a basic role is played by bound-free transitions, but in absorption 

of little quanta h « kT, free-free transitions play a basic role. 

§ 7. Continuous Absorption of Light in Monatomic 
Gas in Region of First lonization 

Let us consider continuous absorption of light in monatomic 

gases, such as inert gases (argon, xenon, and others) or vapor of 

metals, in region of first lonization. We will assume the gas to be 

monatomic in order to exclude from consideration quasi-continuous 

molecular spectra (if dissociation of molecules is almost total, then, 

obviously, any gas is monatomic). 

The region of first lonization lies in range of temperatures of 

the order of 6000-30,0000K (depending upon lonization potential of 

atoms and density of gas) and presents great interest In connection 
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with numerous laboratory investigations and practical applications. 

At higher temperatures second and subsequent ionizations begin^ which 

must be considered in examining absorption; this will be done in the 

following section. 

Let us consider a strongly excited atom as a hydrogen-like system: 

an  "optical" electron (which is one of the outer valence electrons) 

moves along a great orbit in field of nucleus and remaining electrons. 

If dimensions of this system of charges, forming "atomic remainder," 

are small as compared to dimensions of orbit of "optical" electron, 

which is exactly what happens in the case of great excitations of 

atom, then it may be presented as point charge Z » 1, creating a 

Coulomb field (if we deal not with a neutral atom, but with an ion, 

then Z per unit is greater than charge of ion; see following paragraph). 

Extending results obtained for hydrogen-like atoms to complex 

atoms, it is natural by ionization potential in formulas to understand 

the true potential of a given atom. 

Really, the basic factor determining temperature dependence of 

coefficient of absorption of quanta, considerably smaller than ion- 

ization potential, is Boltzmann factor exp [-(I - hv)/kT], to which 

is proportional the number of atoms, excited somewhat, so that quantum 

is in state to pull an electron from them. This factor, undoubtedly 

assists absolutely regardless of whether it is a hydrogen-like atom 

or a complex atom. One of the co-factors of Boltzmann factor, exp 

(-l/kT), describes the degree of ionization, or more exactly, product 

N N , to which is proportional coefficient of deceleration absorption, 

furthermore independently of the type of atom. 

In complex atoms each of the "hydrogen-like" levels with given 

prime quantum number n Is split somewhat In accordance with its own 
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statistical weight. This Is connected with the fact that In complex 

atoms due to deflections of field from Coulomb field I-degeneration . 

is absent, and energy of levels with given prime quantum number n, 

but different orbital numbers I do not coincide (in distinction from 

hydrogen-like atoms). 

If one were to consider such "reproduction" of levels in complex 

atoms, which leads to appearance of a large number more closely located 

"teeth" in "paling" of curve n(v), then replacement of summation over 

levels by integration or replacement of "paling" by an averaged smooth 

curve is even more natural than in the case of hydrogen-like atoms 

(Unsold [10]). 

Absorption of small quanta, considerably smaller than ionizatlon 

potential, apparently, should be not badly described by formula (5.44), 

derived for hydrogen-like atoms, where for neutral atoms one should 

consider Z equal to one. Really, the high levels, only from which 

electrons are pulled by small quanta, in complex atoms are very clos^ 

to "hydrogen-like," since the field at large distances from the atomic 

remainder is very close to a Coulomb field. 

Regarding large quanta, which are absorbed by atoms, which are in 

ground or low states, use here of formula (5.44) can, of course, lead 

to considerable errors.* 

Formula (5-44) becomes in general, senseless when energies of 

quanta exceed ionizatlon potential hv > I, x > x.. In this case in 

the sum over n participate all levels from n = 1 to oo and formula 

(5.45) with variable lower limit of integration loses its meaning. 

The sum over levels in this case is simply constant and does not depend 

♦See § 5> p. 5fc>0, where results are given of calculation of absorp- 
tion cross section of quanta by certain atoms, which are In the ground 
state. 
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on v (from x). An overwhelming role in absorption of quanta hv > I is 

played by atoms which are in the ground state, and approximately the 

sum may be considered equal to first member, i.e., unity. This gives 

approximate formula 

when «>«lt Av>/f (5.^5) 

which should replace formula (5.^4) when hv > I. 

Let us find average Rosseland run of monatomic gas in region 

of first ionization. The Rosseland run is determined by reciprocal 

of coefficient of absorption, i.e., transmission. 

Spectral range I    = i/Hv> characterizing transmission is schemat- 

ically depicted in Fig. 5.7. Frequency domains of transmission are 

opposite regions of absorption and are near discontinuities on the 

side of smaller frequencies. In energy band of hv quanta, exceeding 

ionization potential, there is practically no transmission, since 

these quanta are very strongly absorbed by atoms remaining in the 

ground state. 

A basic contribution in transfer of radiant energy is given by 

quanta corresponding to maximum of weighting function in Rosseland 

integral (2.80) x = hv/kT « 4. If temperature is considerably less 

than ionization potential, as usually occurs in region of first ion- 

ization of a not too dense gas, absorption of such quanta can approx- 

imately be described by formula (5.44), which is more exact the less 

hv is and which it is possible to use for calculation of mean path 

("paling" of transmission by this formula is replaced by smooth curve 

3 -x 
x-^e , depicted in Fig. 5.7 by the dotted line). 

Inasmuch as large frequencies x > x^ introduce practically no 

contribution in Rosseland Integral (2,80), it is possible to calculate 
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Fig. 5.7. "Paling" of trans- 
mission.  Solid curve is 
range as a function of fre- 
quency. The dotted curve 
is a run, smoothed along 
teeth. Figure is schematic. 

this Integral, extending formula 

(5.44), having a meaning only when 

x < x., also to x > x.. Actually, 

formula (5.44) formally ensures very 

rapid damping of transmission when 

x > x,, x -* oo. Putting expression 

(5.44) in Rosseland integral (2.80), 

we will obtain Rosseland path * 

.t _L 
1-0,9.10»^^^. (5.^6) 

It is necessary to note that if one were to calculate Rosseland 

path with coefficient of absorption, taken not by formula (5.44), but 

according to the "exact" formula for hydrogen-like atoms (5.42), i.e., 

without replacement of "paling" of transmission by a smooth curve, 

values of the path are obtained five larger than formula (5.46) gives 

(when x1 = £f ~ 
10) • 

Let us make, for example, calculations of Rosseland path by the 

formula of (5.46). For hydrogen when T = il,600oK = 1 ev, N = 10 ^om"-5 

we will obtain I  -  100 cm (degree of ionization under these conditions 

equals 0.02). 

If one were to formally calculate by the formula of (2.105) with 

the help of formulas (5.^^)* (5.^5) average coefficient of absorption, 

characterizing integral radiating ability of gas H-, then for corres- 

ponding path length we will obtain 

1.-1-2,3.10^^?«.. (5.47) 

*The integral appearing here J«%-«( ffW* equals 0.87. 
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It is necessary, however, to note that this formula can contain 

a large error, since in integral (2.105) a basic role is played by 

the region of large frequencies x > x. for which approximation of 

hydrogen likeness is the worst of all (basically large quanta are emitted 

during capture of electrons on ground levels of atoms). 

Coefficient of continuous absorption of small quanta, much smaller 

than ionizatlon potential kT « I, in region of first lonization when 

kT « I depends on temperature basically according to the law H — 

^ exp(-I/kT), i.e., very sharply. Correspondingly mean path is 

proportional to I ~ exp(l/kT). Boltzmann temperature dependence of 

absorption is characteristic both for is bound-free transitions, and 
« 

also for deceleration absorption in field of Ions, i.e., for both 

components x,1 and H" in H, (since n" ^ NJN ~ e '  ). r v vvv     v+e      ' 
In a number of works are proposed methods to improve Kramer and 

Kramer — Unsold formulas, derived for hydrogen-like atoms, during 

application of them to complex atoms. Instead of charge of "atomic 

remainder" Z, Unsold [11] introduces effective charge Z,* which is 
2 2 determined in such a way that magnitude E , " -IJJZ* /n corresponds 

to actual energy level of complex atom with given prime and orbital 

quantum numbers n and I. Furthermore, the Kramer formula is 

multiplied by 7/2-. ..here 7 is equal to ratio of number of sublevels 

of a complex atom for given n and I to analogous magnitude for hydrogen, 

and 20 is the statistical sum of the atom. Unsold [11] and others [12] 
p 

recommend taking for all levels Z* * 4-7, corresponding to energy 

of ground state of atom. 

Burgess and Seaton [13], using monoelectron semi-empirical wave 
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functions, found with the help of the method of quantum defect,* 

obtained general expression for cross section of photo-ionlzation of 

arbitrary atom or ion'. 

L. M. Biberman and G. E. Norman [14], using as a basis the formula 

of Burgess and Seaton, developed method of approximation of calculation 

of coefficient of continuous absorption for non hydrogen-like atoms. 

The coefficient of absorption is presented by them in the form of a 

2 
formula of the Kramer — Unsold type in which factor Z is replaced 

by some function of frequency and, in general, temperature £(v, T). 

This function was calculated by them for 0, N,, C atoms (it approximately 

does not depend on temperature). Very high levels of atoms always 

are "hydrogen-like," therefore very little quanta are absorbed Just as 

in hydrogeni when hv -♦ 0 £ -♦ 1 (when Z » 1). 

With increase of energy of quantum from zero to hv ~ 4 ev coeffi- 

cient i  monotonically decreases for these atoms to a magnitude M./5. 

In [15]  functions are calculated for a number of other atoms (Li, Al, 

Hg, Kr, Xe, Ar). For instance, for argon in visible region of spectrum 

hv ~ 2-5 ev, £ ^ 1.5-2.    Magnitude £ changes irregularly from atom 

to atom. 

Let us stress once again that the theory of continuous absorption 

of light by complex atoms and ions at present is in a very imperfect 

state and existing methods of calculation of coefficients of absorp- 

tion, apparently, give the only true order of magnitude. 

There are experimental indications of the fact that the Kramer — 

♦The quantum defect is the magnitude An(En j) = n - n* where n 

is the prime quantum number for level En j of an atom, and n* is the 

effective number, such that Ai.t--lHZ*/«^/ The quantum defect character- 

izes deflection of energy level of complex atom or ion from energy of 
the corresponding level of a hydrogen-like atom. 
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Unsold theory gives fair results in application to inert gases. Thus, 

in the work of A. P. Dronov, A. G. Sviridov and N. N. Sobolev [42] 

the continuous spectrum of glow of krypton and xenon was studied in 

a shock tube was studied. The measured intensities will satisfactorily 

agree with the calculated ones according to the Kramer — Unsold theory. 

It is necessary to note the existence of one more mechanism, which 

at sufficiently low temperatures certainly should play a predominant 

role in continuous absorption. It is free-free transitions (decelera- 

tion absorption) in field of neutral atoms. The electrical field of 

a neutral atom, in distinction from the field of an ion, extraordinarily 

rapidly drops with distance and, essentially, is concentrated only 

in region of order of dimensions of atom. Nevertheless, a free electron, 

flying from an atom at very close distance, so to say, piercing the 

atom, is subjected to the action of this field and can absorb quantum. 

The coefficient of deceleration absorption in a field of neutral 

atoms is proportional to H'*I
'
S
' NN . At a small degree of ionization, 

i.e., at low temperatures, when the number of neutral atoms is prac- 

tically constant, x'" ^ N ~ exp(-I/2kT), whereas coefficient of 

continuous absorption, considered above, is proportional to H ~ 

'- exp(-l/kT). It is clear that at sufficiently low temperatures and 

a sufficiently small degree of ionization the first magnitude has to 

become larger than the second while relatively greater the lower the 

temperature: W^/H ~ e '  . 

Calculations of deceleration absorption in the field of neutral 

atoms of hydrogen were made by Chandrasekhar and Breen [16]. These 

calculations show that, as one should have expected, coefficient H•" , 

belonging to one atom, is much less than the coefficient of free-free 

absorption in field of ions H", relative to one ion. Thus, for 
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instance, when T = 7200OK for light with wave length X = 5965 A 

coefficient Hm, calculated on one atom and one electron, HnI/NN « 
v v   e 

=» 2.5*10 -^ cm^, whereas coefficient H'1, calculated on one ion and 
_-iQ c 

one electron, equals by formula (5.21) HN/N.N = 3*10'  cm . Exper- 

imental data for air (see § 21) also indicate that effectiveness of 

field of neutral atom with respect to deceleration absorption by free 

electrons is approximately an order less than effectiveness of field 

of ion. 

There is an indication that in the case of heavy atoms, such as 

mercury, free-free absorption in the field of a neutral atom sharply 

increases as compared to light atoms (L. M. Biberman and V. Ye. Romanov 

[17]) and that in heavy mou vtomic gases this mechanism can play an 

essential role even during a not very small degree of ionlzatlon. 

However, the quantitative side of this question at present is still 

not clear. 

§ 8. Mean Paths of Radiation During Multiple 
Ionlzatlon of Atoms of Gas 

At high temperatures, of the order of several tens of thousands of 

degrees and higher, atoms of gas are repeatedly ionized. Molecules 

with such temperatures are completely dissociated so that all gases 

are "monatomic" and behave in the relation of absorption light in an 

identical way. Let us find mean paths of radiation in repeatedly 

ionized gas. (Results put forth below were obtained in the work of 

author [18]). For simplicity we will ronsider a gas consisting of 

atoms of one element. 

Calculations of ionlzatlon equilibrium show that for every pair 

of values of temperature and density in gas ions of only two-three 

charges (see § 7 Ch. Ill) assist in considerable quantity. Each of 
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these ions introduces its own contribution in continuous absorption, 

participating both in bound-free, and also in free-free transitions. 

The sadie calculations indicate that in a gas of not too great a density, 

ionization potentials of ions assisting in large quantity, are always 

much larger than kT. For instance, in air with a density 100 times 

smaller than normal, the "average" ionization potential of ions I 

(corresponding to ions with "average" charge at a given temperature 

and density) is approximately 11 times more than kT. Consequently, 

quantum with energies hv, 3-5 times exceeding kT, which play e  main 

role in transfer of radiant energy, are absorbed not from ground, but 

from excited levels of ions. As also in the case of neutral atoms, 

this can serve as base for transfer of formulas derived for hydrogen- 

like atoms to multiply charged ions. Moreover, for multiply-charged 

ions the approximation of hydrogen similarity is even more Justified 

than for neutral atoms, since the field of "atomic remainder" of a 

multiply charged ion is nearer to a Coulomb field the larger the 

charge of the "remainder" is. 

Let us consider continuous absorption by multiply charged ions 

as absorption by hydrogen-like atoms with corresponding charge. Let 

us assume that in gas containing N nuclei in 1 cnr at temperature T, 

in 1 cm-5 is N m times ionized atoms (for brevity, we will call them 

ra-ions). We will set forth the total coefficient of bound-free absorp- 

tion by m-ions and free-free absorption in field of m + 1-ion by 

formulas (5.^^)* (5.^5)* in which we use charge Z equal to charge of 

"atomic remainder" of m-ions, Z ■ m + 1, and as ionization potential 

we ..fill take the true potential of an m-ion —■ !_. ^ Assembly of 

bound-free and free-free coefficients for multiply charged ions fully 

corresponds to the same assembly in region of first ionization. Actu- 

ally, coefficient of free-free absorption in field of m + l-ions is 
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proportional to the product N^Ng, which, as earlier, by the formula 

of Saha (3.44)  is expressed though the number of m-ions Nm.    Let us 

write the total coefficient of absorption in the form 

where 
«-^J^-O.W.IO-T  cm2deg2

J 

in F (x)  is included frequency dependence 

./•W-y^n «<*«-• (5.49) 

For quanta exceeding ionization potential, we will put in 

accordance with (5-45) 

/•(sH^iM-r "^ « > *»• (5.50) 

In order to obtain total coefficient of absorption of frequency 

v, one should sum partial coefficient H over all sorts of ions, i.e., 

over charge m: 

«•-S«*m. ' (5.51) 
m 

Let us find before average coefficient of absorption H^, charac- 

terizing integral radiating ability. 

Putting spectral coefficient Hy in formula (2.105) and calculating 

the integral over the spectrum, we will obtain 

m 

Now we will find average Rosseland path, for which we will place 

H in formula (2.80): 

f_fi?    6»(>><K » 

•JSir.o»+f)«r,Wlli(.)' 
(5-53) 

Here G'Cx) is Rosseland weighting factor. In this expression it is 
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impossible without additional considerations to be free of integration 

over the spectrum, as during calculation of n*,  since here is averaged 

not coefficient of absorption, which is additive but is reciprocal. 

However, Integration nevertheless may be conducted approximately. 

According to the formula of (5.49) all ions in their own band of trans- 

mission, i.e., when x < x. (hv < I-.-)* with change of frequency absorb 

light equally. Actually the upper limit of integral (5.55) is least 

of boundaries of transmission, which possess ions assisting in gas 

in so considerable a quantity that they give a noticeable contribution 

in absorption. 

As was noted above, for every pair of values of temperature and 

density of gas ions of on.ly two-three charges assist considerably. 

Inasmuch as average ionization potential I is considerably larger than 

kT, boundaries of transmission of these Ions x. lie beyond the limits 

of that region of the spectrum which gives an essential contribution 

in Integral (5.55). Therefore it is possible to approximately disregard 

dependence of function F (x) on m and to carry It after the sign of 

sum over m, and furthermore, to extend expression (5.^9) for F (x) 

also to values of x > x. , Just as was done in the preceding section. 

With these simplifications the Integral is turned Into precisely the 

same as and in case of neutral atoms (see footnote on p. 570 ). We 

obtain 

^OjfTf« 1 

•~ 2**1*+*,-*' (5-54) 

For approximate calculation of suras over charges of Ions in 

formulas (5.52), (5.5^) we will use the method applied in § 7 Ch. Ill 

during calculation of thermodynamic functions of gases In region of 

multiple lonizatlon. We will consider distribution of ions N as a 
m 
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temperature In gas are present atoms excited to all possible energies. 
•35 

If N Is the number of atoms In 1 cm , being In n-th quantum state, 

and cr  Is the effective absorption cross section of hv quantum by 

these atoms, then coefficient of absorption equals* 

xi-S^vM (5.38) 
»• 

The lower limit In this sum Is determined from the condition that 

energy of quantum Is larger than binding energy of electron In atom, 

hv > [E j. Otherwise quantum cannot force out electron and, conse- 

quently, atoms excited to states with n < n,* for which |Enj > hv, 

do not participate In absorption of hv quanta. In particular. If 

energy of quantum exceeds binding energy of electron In the ground 

2 
state of the atom. I.e., 1 on:'.zat ion potential I = IHZ , then in absorp- 

tion participate all atoms (n* =1). In absorption of very little 

quanta hv « L-Z participate only highly excited atoms (n* » 1). 

The absorption curve depending upon frequency has the character 

of "paling," as is shown in Fig. 5.6. As soon as energy hv, increasing, 

attains binding energy of electron in any state |E I, atoms excited 

before this level, are included in absorption and coefficient of absorp- 

tion grows by jumps. Then, up to Inclusion of the following level, 

-3 -3 
x' decreases ~v    , In conformity with the law a  ~ v ^. Every level 

introduces its own "tooth" Into paling N a  (dotted lines in Fig. 5.6), 

and total coefficient of absorption n' is obtained by means of summa- 

tion of all "teeth" (solid line in Fig. 5.6). 

If the gas Is in a state of thermodynamic equilibrium, the number 

of atoms in the n-th state N is determined by Boltzmann formula (5.32). 

♦Let us note here the coefficient of bound-free absorption by a 
dash in order to distinguish it from the coefficient of free-free 
absorption, which will be marked by two dashes. 
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5-function around Its "average" charge m, which Is determined by equa- 

tion (3.57). 

As was shown in § 7 Ch. Ill, distribution function of ions N has m 
the character of u  sharp peak, described by Gaussian curve N ~ 

~ exp[-(in - in) /A ] (see formula (3,58), 
-x^m 

If one were to expand factor e ^ ,  which is in the sum of (5.52), 

(5.5^)* near mean value x, , we find that this factor depends on m - m 

according to the law e-*"» % e^>«-«"•*<*'-"')..i.e., weaker than N . Therefore. 

application of shown approximate method of calculation of sum over 

m in this case, just as in § 7 Ch. Ill, is possible. Carrying mean 

values of coefficients for N in components of sums after sign of 

summation and taking into account that IM   » N, we obtain 

• Jr(S^-l)•, 

where x, » *      m T/kT. 

Using formula (3.56) for replacement of exponent and putting in 

numerical value of a, we obtain finally: 

»-^0- (5-55) 
^-^tS+D-i. **■ (5.56) 

Average charge m and average relative ionization potential x^ = 

= T/kT, depending upon temperature and density, are determined by means 

of solution of equation (3.57). 

As a check shows, error connected with approximate calculation of 

sums over m, is minute; in any case it is less than possible errors 

connected with use of approximation of hydrogen-similarity in examining 

of complex ions. It is possible, however, to trust that obtained 
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formulas (5.55), (5.56) give correct order of magnitude of mean paths 

and truly describe dependence of them on temperature and density of 

gas. 

For illustration of numerical values of mean paths in Table 5.2 

are given results of calculation for air.* Unfortunately, dependences 

liT,  N) and I. \  N) in a wide range of change of variables cannot 

more or less exactly be described by interpolation formula of expo- 

nential type, very convenient for practical purposes. In rough approx- 

imation indices of degree in the law I  ~ TN  are such: a ^ 1.5-3; 

ß - 1.6-1.9. 

If one were to investigate dependence of mean path on temperature, 

starting from low temperatures, then it will develop that function 

I(T) has a minimum. 

Table 5.2. Mean Paths of Radiation in Air in 
Region of Multiple lonlzation 

T,»K 
W*nor : Wn#r-».H.|0MoB"3 

1 10"»       |           10-« 

50000 m 
I, CM 

1.4 
0,063 
0,02 

1.85 

5:1 
2,35 
170 
39 

100000 m 
1,<M 

•I, CM 

2,72 
0.13 
0.06 2 

4 1 
470 
110 

250000 m 
I, CM 
h,CM 

4.85 
0,72 
0.24 

5,15 
61,5 
15,6 

5,2 
(WOO 
1200 

500000 m 

tl.CM 

5,2 
6.8 
2,0 

5,4 
610 
140 

5,85 
50000 
9500 

In region of single lonlzation, when Jfef </,, l~gn   (see 

formula (5.^6)), i.e., very rapidly decreases with increase of temper- 

ature. The path becomes minimum in the region where second lonlzation 

begins (in air when T ~ 20,000-40,000oK). After that it increases 

7/2 
during temperature rise, at first slower them T ' , and then, during 

*In the table given in [18], error was allowed. All values of paths 
I and li were understated uniformly by 10 times. 
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total ionizatlon when there remains only the deceleration mechanism, 

in proportion to T *     (see formula (5.24)). It is necessary to note 

that growth of Rosseland path is not infinite: with very small absorp- 

tions light scattering becomes essential (see § 2 Ch. II), which was 

not considered in calculations. The range for Compton scattering of 

2 
quanta hv « mc = 500 kev in air of normal density equals JJ  m. This 

also is the upper limit of the Rosseland path at normal air density. 

Let us stress that character of dependencies I (T, N), l^T, N) and 

order of magnitude of paths in region of multiple ionizatlon for all 

gases are approximately identical, since potentials of consecutive 

ionizations for all elements are more or less similar to one another. 

Let us estimate, for example, radiating ability and speed of 

radiant cooling of a transparent particle of air with dimensions 

R « I,. When T = 50,000oK and N = 10"2N    lA  = 39 cm, J = kaTk/lA  = i nor  J- J- 
13     "5 

= 5.6*10 ^ erg/cnrsec. Internal energy of air in these conditions 

e = 83 ev/atom. Initial scale of time of cooling T => Ne/J is T = 

= 1.9.10-6 sec (^1^-= -J). 

2« Line Spectrum of Atoms 

§ 9. Classical Theory of Spectral Lines 

Line spectra are emitted and are absorbed as a result of bound- 

bound transitions in atoms (ions), i.e., during transitions of an atom 

from one energy state to another. 

In the classical theory a model of radiating atom is an elastically 

bound electron, which vibrates near a certain position of equilibrium. 

In zero approximation, without taking into account losses of energy on 

radiation, such a system constitutes a harmonious oscillator. Inasmuch 

as a vibrating electron moves acceleratedly, it radiates light. If 
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loss of energy after a period of one vibration is very small as com- 

pared to the actual energy of vibrations W, then speed of radiation 

can be calculated after the general formula (5.1), placing in it 

acceleration of harmonious oscillator.  Let us designate by v*  the 

natural frequency of the oscillator.  If r is coordinate of electron, 

counted off from position of equilibrium, then acceleration is 

2 2 
w = 4ir VQT.    Time average speed of loss of energy of electron on 

radiation according to (5.1) equals 

^--^-^:<r')=-^ä<*>. (5.58) 

where d = er is the dipole moment. Symbol <> signifies time average. 

2 
Expressing average square of deflection of electron <r > by energy of 

oscillator W, we will obtain the energy radiated in 1 sec: 

*—TT-^-V":- (5-59) 

The combination 

,-^-2.5.1(r-v:4-ec (5.60) 

is the reciprocal of the time during which energy of oscillator 

decreases e times (if initial energy of oscillator equals VL,, then 

W = Wf.e-^ ). The magnitude 7 is called the attentuation constant. 

The condition of weak damping 7 « v^,  lying at the basis of 

derivation of formula (5.58), is always executed with great accuracy.* 

Thus, for instance, for violet light X = 4,000 A, v  = 7.5-10  sec"1 

(hv = 5.1 ev), and 7 = 1.4-108 sec"1; T = 1/7 = 0.7-10  sec. 

If we calculate losses of energy on radiation, then in the follow- 

ing approximation the oscillator accomplishes no longer harmonious, 

but damped oscillations, whose amplitude is proportional to j/W = 

" ^^o6    Consequently, radiated now is not natural frequency v., 

♦Using quantum ideas, this condition can be rewritten in the form 
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but the whole spectrum of frequencies. In order to find spectral 

composition of radiation, it is necessary to expand into a Fourier 

integral the acceleration of the oscillator (is assumed that when 

t < 0 there is no motion and r = 0, w = 0). Energy radiated through- 

out the time in spectral interval äv, S dv,  will be determined through 

Fourier-component of acceleration by formula (5.4). Calculation, which 

can be found in [19]* yields when v - v0 « VQ* 

^-S^ry*- (3.6.) 

It is easy to check, integrating this expression over the whole 

spectrum from v >« 0 to v ■ oo, that total energy is equal to initial 

energy of oscillator! 

•    •   • 

Is possible to speak about energy radiated by oscillator in 

frequency Interval dv in 1 sec. This magnitude equals 7S dv, where 

in expression (5.6l) Instead of WQ it is necessary In this case to 

write W as energy of oscillator in given moment of time. 

Spectral distribution of radiation of fading oscillator, which is 

expressed by formula (5.61), is depicted in Fig. 5.8. Half-width of 

peak, so called natural width, whose meaning is clear from Fig. 5.8, 

equals Av = 7/277-. 

In scale of wave lengths the natural width does not depend on 
p 

wave length and equals AX » ^- = -j- -^ = il r0 = 1.2.10 
H A(r0 = 

= -^- = 2.8.i0"13 cm - "radius of electron)." 
mc 

Above was considered the inadvertent emission of light to a once 

excited oscillator. Let us assume that now on the oscillator from 

without falls monochromatic light wave of frequency v with amplitude 
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constant in time. Under action of electrical field of wave the elas- 

tLcally bound electron performs forced vibrations.  If there was no 

damping, the light wave in a short time after the moment of its 

"inclusion" would excite the oscillator, imparting to it a specific 

energy, and after that (on the average with respect to time) would 

not produce work.  If, however, there is damping, forced vibrations 

are accompanied by continuous radiation of energy by oscillator.  This 

energy is drawn out owing to work producible by external field. 

Let us find work accomplished by periodic field of light wave 

above oscillator. Let us solve for this the equation of motion of an 

oscillator: 

mr + m (^o)* r+myr « eReu,w^ 

Here E0 is the amplitude of electric field 

strength.  Term nryr considers "frictional 

force" connected with damping. Solution 

of this equation has the form 

f r»r»ea",". ru^r^-zrEt '•"ST (5.62) 

Fig. 5.8. Form of line 
of absorption. 

Work accomplished by external force 

in 1 sec Is equal to product of force by 

speed f. Multiplying equation of motion by r and averaging with res- 

pect to time, as a result of which terms <V  f> and <r f> disappear, 

we will find that work in 1 sec equals 

<«F,e«*"r>-2n«mYv«|r;|. (5.65) 

2 
It is determined by modulus of complex value r . 

Work is equal to energy which is taken away by oscillator from 

Ixght wave in 1 sec, i.e., is absorbed by oscillator. 

Leaving for now the question about further fate of the absorbed 

energy, we will calculate effective absorption cross section.  It, by 
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definition, equals the energy absorbed in 1 sec divided by average 

energy flow of light wave with respect to time. Average flux equals 
c  2 ^— E0. Thus, we will obtain effective absorption cross section of 

light of frequency v. At frequencies v,  not too far from resonance 

|v - v0| « ^o* ^ is eclual ^0 

- *« (Mo).+( jL)«' (5.64) 

If damping of vibrations of oscillator is connected exclusively 

with radiation, then all energy is expended on emission of light. In 

this case we deal essentially, not with absorption of light, but with 

its scattering (in classical theory). The attenuation constant here 

is expressed by formula (5.60).* 

For effective attenuation cross section of incident light wave 

by oscillator we will obtain in this case by formula (5.64): 

_4ta.M»  1  ^_7.2-lfr->  t    . 

(5.65) 

In center of line the effective cross section is equal to a v max 3 2 -Q      2  2 
= 27 ^ or cr    =7.2.10 /(hv ) «cm (X = c/v is wave length of 

max 
light). This cross section is very great. For visible light hv ~ 

-9  2 ~ 2-5 ev av  max ^ 10 ^ cm , which corresponds to mean free path of 

light I ~ 10~  cm during atmospheric density of atoms N ~ 10 ° l/cm^. 

An excited oscillator can lose its own energy also because of 

collisions of atoms with each other. In this case absorbed energy 

of light wave partially passes into heat. It is possible to show (see 

[19]), that also in this case vibrations of oscillator are described 

by formula (5.62), but only by 7 should one now understand not natural 

♦Putting in (5.58) the solution of (5.62), we will obtain 5« 
„lij(2JW)«1T£. Equating this expreesion (5.65), we will obtain formula 
(5.60) for attenuation constant, 
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width line (5.6O), but sum of natural width and magnitude 2/T ,, 

where T ■, is average time between collisions leading to "deactivation" 

of oscillator. Formula (5.64) preserves its own form in exactly the 

same way for effective absorption cross section, if by 7 we understand 

total line width, widened due to collisions. 

The fate of absorbed energy of light is determined by relationship 

between natural width 7 and reverse time between collisions 2/T ., . '   col 
If 7 » 2/T ,, which occurs in a very rarefied gas, then absorbed 

energy is illuminated (light is dispersed); if, however, 7 « 2/T   — 

energy passes basically into heat (absorption in the literal meaning 

of the word). There exist also other mechanisms of broadening spectral 

lines in gas (see [6, 10, 19]). 

Let us assume that in an "atom" there are f, oscillators with 
•5 

frequency v«, , and number of atoms in 1 cnr equals N. Total coefficient 

of absorption of light of frequency v then equals 

«Cv-^/kOv». (5.66) 

Usually individual lines v0, will stand from each other at a 

distance much larger than the line width. An overwhelming role in 

absorption of light of a given frequency is played by oscillators 

with natural frequency v0, the closest to the absorbed, and in sum 

(5.66) there remains actually only one term. Inasmuch as lines are 

extraordinarily narrow, there are absorbed, essentially, only fre- 

quencies very close to natural frequencies of oscillators: absorption 

has a selective character. Let us assume that on the atoms falls a 

continuous spectrum of radiation with density of energy U , which, as 

usually occurs, changes little in interval of frequencies of the order 

of the line width. Total energy content absorbed in 1 sec in 1 cnr by 
00 CD 

oscillators with frequency v,-, equals / U dv c Na f = U cNf / a dv 
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1 

(index k is omitted). Absorption on one atom is characterized by a 

magnitude obtained by means of integration of cross section of (5.64). 

For one line the integral from the cross section with respect to fre- 

quency, i.e., area of line, equals 

m 

This is constant, depending only on number of oscillators f and not 

depending on line width. Therefore, if line is widened, for instance, 

owing to collisions, then effective cross section now will be less 

than for a line with natural width. 

Absorption of light by oscillator depends on frequency exactly 

as radiation does (cf. formula (5.6l) and (5.64)). This is in accord- 

ance with principle of detailed balancing, fulfillment of which is easy 

to check by means of direct calculation.* 

§ 10, Quantum Theory of Spectral Lines. 
Vibration Strength 

Let us consider radiation and absorption of light from the quantum- 

mechanical point of view. 

Between results of quantum and classical theories there is a deep- 

seated parallelism. In zero approximation of quantum theory of atom, 

corresponding to steady states, only strictly defined levels of energy 

of atom are possible (analogous to constancy of energy of sustained 

vibrations of classical). In the following approximation appears 

possibility of transitions between energy states of atom. In virtue 

of the fact that states are non-stationary, according to indeterminancy 

*7SV dv = Uyc dv avi  this relationship la satisfied, if one places 

w and Uv thermodynamlc equilibrium values of energy of oscillator 

^three-dimensional) and density of radiation, either according to the 

classical theoryi W « :5kT, U - STTV kT/e* or according to the quantum 
theory. 
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principle levels of energy (besides ground) turn out to be blurred on 

magnitude AE ~ h/At, where At - "life" of atom in considered state - 

equal to reciprocal of probability of spontaneous transitions to lower 

levels. But blurring of levels leads also to blurring of lines on a 

magnitude of the order Av ~ AE/h ^ i/At, i.e., order of constant 

"damping" l/At, as also in classical theory. Width of n-th energy 

level is equal, in accordance with what was said, to the sum of prob- 

abilities of transitions to all lower levels, 

r,.»:^«.., (5.68) 

where A^, sec" is the probability of spontaneous transition n-^n1, 

so called coefficient of Einstein for emission. 

Quantum mechanics gives for speed of radiation the magnitude 

64«« V*nn' 
S ■■ AVfHi'4m' "■ • (5.69) 

where jdj is matrix element of dipole moment.  Expression (5.59) is 

very similar to classical expression (5.58); the difference consists 

only in replacement of mean square of dipole moment by doubled square 

of matrix element of the same moment. Numerical values of probability 

of radiation A^i, have the same order as classical "probability," 

i.e., attenuation constant 7. 

Table 5.3.  Probability of Transitions in Atom 

of Hydrogen in Units of 10 sec"1 

Initial 
state 

Final 
state 

M»t n-t Sum 
Life 

XCr8 see 

M' eC» 
• 0 

6.25 0.16 
3 Average 4.,09 
3t 

M ll4 
0.063 
0.22 
0.64 

0.063 
1,88 
0.64 

16 
0,54 
1.56 

1 Average 0.55 0.43 0.48 t.02 

In Table 5.3 are given values of A^i for certain transitions in 
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atom of hydrogen* (for a diagram of levels see in Fig. 2.2 and 5.9). 

Knowing coefficients of probability A^i, it is easy to calculate 

intensity of corresponding lines of emission. Namely, if N is the 

number of atoms in 1 cm , remaining in n-th state, which can be cal- 

culated by the formula of Boltzmann, then energy radiated in line v    i 0 nn 

in 1 cnr in 1 sec equals »nA^'^nn1 * 

The principle of detailed balancing establishes a bond between 

probabilities of absorption and emission of light for given transition 

n^ n'. Energy absorbed in 1 sec in i cnr by atoms which are in 

state n' with their transition into n-th state, equals 

where a    is the effective absorption cross section of frequency v 
n n 

within limits of given transition n^-»- n, and B,i is the coefficient 0 n n 

characterizing total absorption in given line (so-called coefficient 

of Einstein for absorption). It is proportional to "area" of line 

^-«bS *■•"*'• (3-70) 
* 

-hv/kT 
Multiplying speed of absorption by (1 - e  '  ) in order to 

consider forced emission (see § 4 Ch. II), equating obtained expression 

of speed of emission and substituting density of radiation Uv according 

to the formula of Planck, and number of atoms N according to the 

formula of Boltzmann, we will obtain bond of coefficients of Einstein: 

•■HL« ft W «n* (5.71) 

Here g , g i are statistical weight of i- and n1-energy states of 

atom. Usually it is accepted to characterize absorbing ability of 

atom in given line v^i, determined by area of line / o, i_ dv, by 0        nn vn n 

the number f i„, equal to that number of classical oscillators with n n  ^ 

•These data are taken from book of Bete and Solplter [5] . 
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Fig. 5.9. Diagram 
of levels of atom 
of hydrogen. 

natural frequency vnni which would give the same 

effect as the considered atom. This number f i 

is called oscillator strength for a given transi- 

tion and now no longer is an integer. Comparing 

area of line by formulas (5.70) and (5.67) and 

considering (5.71), (5.60), we will find bond 

between oscillator strength and coefficients of 

Einstein, which, in essence, are determinations 

of idea of oscillator strength: 

(5.72) 

(5.7?) 

Regarding distribution of absorption with respect to frequency 

within limits of line, the quantum theory leads to the same,dependence 

of probability of absorption of quantum on frequency, as the classical 

formula for cross section o . Standardizing this probability in the 

appropriate way, it is possible to write the quantum formula for 

absorption cross section in a form analogous to that of the classical 

formula (5.6^) (we will transpose indices n and n1, i.e., will desig- 

nate by n the lower state from which transition is accomplished with 

absorption of quantum), 

1 
'' 7T—Ni* (5.74) 

If one were to substitute here the value of f i according to nn       ^ 

formula (5.73)* using expression for 7, and to consider that c/v » X, 

the cross section can be written in the form 

»Let us note that the number fnln determined by formulas (5.72) or 

(5.73) constitutes average oscillator strength calculated on one degree 
of freedom of electron. Pull oscillator strength is three times larger 
in accordance with the fact that an electron in an atom possesses three 
degrees of freedom. 
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where cross section in center of line: 

«    _ w *» i<"'n 

Line width (natural) in quantum theory is put together from 

probabilities of transitions (5.68): r 1 = ^ + F «.* In accordance 

with determinations of oscillator strength and coefficient of Einstein 

B^i and (5.72), (5.70), area of line equals 

Jovim.rfv-^/W.'-2,64.10-«/n«. c^-sec-l. 

It absolutely does not depend on line width Ft, in which in the 

presence of collisions is included also the term 2/T ,. This is 

very natural, since area of line by the principle of detailed balancing 

is simply connected with probability of spontaneous emission, which, 

of course, cannot depend on such external causes as collision of atoms, 

and is determined only by structure of the actual atom. 

Usually in real gas there exists a series-of causes according to 

which spectral lines expand: collision of atoms with each other, 

Doppler effect. Stark-effect.** Thus, broadening due to collisions 

adds to natural line width 7 a magnitude equal to doubled probability 

of collisions 7 T ^ 2/T ,. For instance, in air during normal con- 

ditions the time between collisions of molecules T „T 'w0.74«10"y sec col 
q   _i 

and 7co-i = 2.7«ICr sec ,**#which is an order larger than attenuation 

*In width of levels rn, rn,,are included also probabilities corres- 

ponding to forced emission. These terms are proportional to density of 
radiation and are essential only with sufficiently large densities. 

**For greater detail about broadening of lines, see [6, 10, 19]. 

♦»»Strictly speaking, one should take into account not any collisions, 
but only those which lead to deactivation of excited atomij. 
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constant 7 for ultraviolet radiation. Correspondingly, line width 

also Increases by an order. Doppler broadening equals approximately 

Av = vv/c, where v Is rate of thermal motion. When v = 4.6«10 cm/sec 

(velocity of molecules of air at normal temperature) for line X = 4,000 
0        14-1 9   -1 
A = 7.5*10  sec , Av = 1.15-IQ'  sec , i.e., also considerably 

larger than natural width. 

§ 11. Absorption Spectrum of Hydrogen-Like Atoms 

• Let us assume that on a gas from hydrogen-like atoms (in partic- 

ular, on atomic hydrogen) from without falls light with a continuous 

spectrum in which all frequencies are represented.  Let us consider 

which of these frequencies will be absorbed by atoms remaining in a 

specific n-th, state, and what intensity of absorption will be. 

Atoms selectively absorb frequencies v     ,, corresponding to tran- 

sitions of electron from n-th level to higher levels n^ n.  Having in 

mind formula (5.25) for energy level, we will find bond of these fre- 

quencies with quantum numbers n and n', so-called series formula of 

Balmer: 

^-,-^ö-Ä)='.a-Ä). (5.75) 
where v1 = 1„Z /h = vRZ . Frequency vR = 1^/h =  3.27.1015 sec'1 

corresponds to lonlzation potential of an atom of hydrogen.  It Is 

frequently used as the unit of frequency called "Rydberg." During 

growth of n' levels and correspondingly, v  » lines are rapidly com- 

pressed and in limit n-*■ & pass into continuum (continuous spectrum). 

since during absorption of frequencies exceeding upper limit of series 
o 

^n := vn 00 = vi/n >   lonlzation occurs, and final state of electron falls 

into continuous spectrum of energies. Spectrum of absorption from 

given level o^ atom n is depicted in Fig. 5.10 (in the same place for 

comparison is given diagram of levels). For definity it is assumed 
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that n = 1, i.e., figure depicts absorption spectrum of cold gas from 

hydrogen-like atoms, in which all atoms are in the ground state. In 

heated gas levels are excited and absorption spectrum constitutes 

totality of series corresponding to absorption by atoms which are in 

different states. 

Near upper boundary of series, 

where lines are strongly compressed, 

overlapping of individual lines begins. 

This occurs when frequency distance 

between lines, which decreases when 

n -^ oo, becomes comparable with width of 

lines«  Overlapping of lines promotes 

their broadening owing to collisions, 

Doppler effect etc. 

Fig. 5.10. Absorption spec- 
trum of light by atom of 
hydrogen which is in the 
ground state. On the left 
is diagram of transitions. 

It is easy to see that overlapping of atomic lines begins during 

such large quantum numbers n and v    = v      series, so close from upper 
n   mo 

boundary that all this frequency domain of overlapped levels is very 

narrow and practically does not play a role. In real atomic gas it 

never exists due to cutting of upper levels owing to interaction of 

atoms and effective lowering of ionization potential. Thus, for 
Q   _i 

instance, for width of lines Av ~ 10^ sec  their overlapping starts 

when n'« 200, at distance Av1 » v./n  =» 2.5 x lO'^v.   from boundary 

of continuous spectrum (in scale of wave lengths AX « 0.02A). 

Actually overlapping of individual lines can appear only during 

absorption of light by molecules, where the number of lines is much 

larger than in atoms, and they are located much nearer to one another 

(see more about this lower). 

Let us consider transitiorüL n-♦ n with absorption of light between 
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high levels with large quantum numbers. Motion of electron on such 

levels is quas Idas sic, and absorption of light accompanied by n -»■ n' 

transitions from n, n » 1,   can be studied using semlclassical concepts. 

In spectral region corresponding to transitions from n, n1» 1, 

where lines are located very frequently and are almost overlapped, it 

is natural to smooth dependence of effective absorption cross section 

on frequency by means of introduction of averaged cross section. 

Averaging should be done in such a way that total area of lines, which 

characterizes flux depression of external radiation with continuous 

spectrum, remains constant. 

Let us consider the small spectral interval from v to v + Av 

such that in it is contained many lines, but these lines differ little 

from each other. Furthermore, we will assume that the interval Av is 

much larger than width of individual line. Effective absorption cross 

section of frequency v by atoms which are in the n-th state is equal 

to a  = 2 a  i, vn  n, vnn' 

We will average the cross  section in interval Av: 

jj ff^rfv = ÖW Av = 2 5 0»"B'dv "■ 2 S" ^ 

Let us average also oscillator strengths, determining average value 

^nn' = ^nn1 = fn^   for Siven interval Av.  If in interval of frequen- 

cies from v to v + Av are contained lines corresponding to final states 

from n to n + An1, the number of which Is equal to An', then mean 

cross section can be written in the form 

^-^/.(v)^. (5.76) 

The number of lines on a unit spectral interval can be calculated by 

means of differentiation of Balmer formula (5.75): 

A»' /'*wv* /^V1 

Sf^-lirJ      K&J   ' (5.77) 
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In § 4 we found effective cross section for bound-free transitions, 

extending the classical expression for effective radiation during free- 

free transitions to the case when one of the states falls In the dis- 

crete spectrum. Justification for such an operation is those consid- 

erations that in states with large quantum numbers n motion of an 

electron is quasiclassic and that motion along "elliptic" orbit, corres- 

ponding to large n and small negative energy, is very close to motion 

along "hyperbolic" orbit with small positive energy. Let us take one 

more step and consider in that same approximation the case when both 

states are in the discrete spectrum with large quantum numbers. 

Let us consider transitions from n-th level during absorption of 

quantum in the framework of the same semlclassical concepts. With 

increase of frequency an electron in the final state falls on an 

"elliptic" orbit, more and more approaching parabolic; when v = v 

it falls on a parabolic orbit, and at frequency v, only a little exceed- 

ing v . it falls on a "hyperbolic" orbit, close to parabolic. Inasmuch 

as motion of electron in final state changes continuously, one should 

expect that mean effective absorption cross section of light by atoms 

in n-th state, a , also will be continuous during transition from 

discrete spectrum to continuum. 

Let us extend expression (5.5^) for cross section of photo-ionlza- 

tion from n-th level to absorption of frequencies of somewhat lower 

bound of photo-lonlzatlon— v ,* and equate the cross section of (5.54) 

to the expression for mean cross section in the case of bound-bound 

transitions (5.76). 

Remembering determination of potential lonlzation of an atom of 

hydrogen !„ by formula (5.25) and the expression for frequency boundary 
p 

of series vn - v^/n    (see (5.75))* we will find average oscillator 

♦Just as in § 4 we extended the expression for effective brems- 
strahlung to frequencies somewhat exceeding the highest possible during 
a free-free transition and, thus, described the photo-capture. 
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strength fn(v) for transition from n-th level to one of the n*-levels, 

included in the narrow interval An', Av.  Designating it by f t,  and 

frequency v  by v i, we obtain 

/ ,«  16 If  vt V 1 Av 
'**      SnVi^K^J  vnB. An" 

Substituting here average distance between levels Av/An , calculated 

by formula (5.77)^ and replacing frequency of transition v i accord- 

ing to the formula of Balmer (5.75)* we will obtain finally oscillator 

strength f i for transition n-* n': 0   nn 

4 32 1 1    1 
/iin»r 

anKa«»«'!/! _rY' (5.78) Gs-^)' 
For transitions to levels n1» n we will find asymptotic formula: 

As can be seen, oscillator strengths depend only on quantum numbers 

n, n'. 

In Table 5.^ are presented oscillator strengths for certain tran- 

sitions in an atom of hydrogen, calculated by quantum-mechanical means 

[5]. 

It is reroarkable that semiclassical formulas (5.78), (5.79), 

derived for the case n, n'» 1, give a fair estimate even for tran- 

sitions between levels with small quantum numbers, and also for tran- 

sitions from ground level.  For instance, semiclassical values f-jo != 

= u.pu^, J--i-i = w.xut, »».yuipouoxv; -L/i-i = J-.yu n   , auu uy one ottuxe 

f12 = O-416^ f
13 = 0.079, asymptotic fini = l.ö.n1"5. We here meet 

the same position as during comparison of semiclassical and quantum 

cross sections of photo-lonization from ground level of hydrogen-like 

atom. 
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Table 5.4. Oscillator Strengths for an Atom of Hydrogen* 

Initial stat« If 2» 2P 

Final state V »P M ml 

from n • 9 tod). Jf 

0,4182 
0.0791 
0.0290 
0.0139 
0,0078 
0,0048 
0.0032 
0.0101 

0^425 
0,102 
0,042 
0,022 
0,013 
0,006 
0,026 

-0,139 

0^014 
0,0031 
0,0012 
0,0006 
0,0003 
0.0002 
0,0007 

0^694 
0,122 
0,044 
0,022 
0,012 
0,006 
0,063 

Asymptotic formula M-JT« 3,7.ir« O,!-»-« 3,3-JI-* 

Line speotrum 0.5641 0,638 -0,119 0,923 

CoBtinuoua spectnan 0.4359 0,362 0.008 0.188 

1 SUB   ! 1,000 1,000 -0,111 1,111 

»Negative oscillator strengths correspond to tran- 
sitions with emission of quantum. See § 12. 

§ 12. Oscillator Strengths for Continuum. 
Theorem of Sums 

In the preceding sections we saw that probability of transitions 

between discrete levels of atom with absorption of light quanta are 

characterized by oscillator strengths. By oscillator strength is 

determined area of line of absorption, i.e., integral with respect 

to frequencies from effective absorption cross section of light of 

frequency v in a given line. 

By analogy it is possible to Introduce idea of oscillator strength 

also for bound-free transitions, characterizing by magnitude fn the 

integral with respect to frequencies from effective absorption cross 

section of light with transition of electron from n-th level of atom 

into continuous spectrum. If a      is the effective cross section of 

397 

mtf£&Mi^miai&jmfäMliMIB&iM&äu&Si&eäium  ■*.,■-    i    .1,   ii<iiniai-iiiniaiiJii«iir'■ -    —..        astiaüMiÜtMllia« 



*^Trwi?»?wwwE'«ftwirtp^w 

bound-free absorption of frequency v  with such transition, then 

as 

W*"8^/- (5.80) 
% 

where Integration with respect to frequencies is conducted from lowest 

frequency v  ,  at which transition into continuous spectrum is possible. 

Let us calculate oscillator strength f for bound-free absorption 

by hydrogen-like atoms. 

Using semiclassical formula (5.3^) for a  and noticing that 

v    =  LrZ /hn ,  we will obtain after integration n  Ti 
t        8 1 0,49 ,  „ v U~2^t"—- (5.81) 

Results of quantum-mechanical calculation for an atom of hydrogen 

are presented in Table 5.^. For instance, for n = 1 the exact value 

of f1 = 0A36,  and by formula (5.8l) f1 = 0.49. 

In the classical theory every electron participating in radiation 

and absorption of light is replaced by an oscillator.  The sum of 

numbers of oscillators, consequently, is equal to the prime number of 

electrons in the atom. The quantum analog of this position is the 

theorem of sum of forces of oscillators, according to which sum 2f 1 

with respect to all allowed transitions in an atom from given state 

n is equal to the number of electrons.  If one were to be limited only 

to transitions with participation of external, optical electrons, then 

the sum is equal to the number of the latter.  In particular, in the 

case of a hydrogen-like atom the sum is equal to one.  In the sum 

with respect to final states are included also transitions into 

continuous spectrum, i.e., the term f , which, as will be seen 

below, can be presented in the form of an integral with respect to 

final states of continuous spectrum.  Furthermore, in the sum are 

included also terms corresponding to transitions to lower levels 
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n^ n,  i.e., transitions with emission of light.    Corresponding termr 

of the sum are negative and are determined by probabilities of ill 

transitions  (see  [5]).    Data in Table 3A,  of course,  satisfy the rule 
i 

of suras, which can be checked by means of direct calculation. | 

In describing bound-free transitions (continuum), and also bound-  f 

bound transitions between densely located levels in band spectra of 

molecules (quaslcontinuum) we frequently use the idea of differential 

oscillator strength or oscillator strength calculated on unit interval 

of frequencies. Formally, differential oscillator strength 2_ is 

determined in the following way. If a    is absorption cross section 

of frequency v  during transition from n-th level, then 

•-■S(^).-*.«*-«>-(£)."! -8-10-M[j^B].-ä    (5.82) 

(v/vR is frequency measured in Rybergs). 

Hence, total oscillator strength for the whole continuum is defined 

as 

i**-£?(IO>-S/. (5-83) 
%  '  .      *» 

in accordance with formula (5.80). 

Let us calculate differential oscillator strength for bound-free 

absorption from n-th level of hydrogen-like atom. Comparing formula 

(5.5^) with determination (5.82), we will find 

a).-^-^.-^- (5.84) 

Integrating this expression with respect to v from v to oo, naturally, 

we will come to formula (5.Si). 

If absorption spectrum constitutes totality of many  lines, then 

by cross section a,.„ one should understand mean cross section a vn vn 

(see formula (5.76)), and the differential oscillator strength is equal 
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to average oscillator strength of one transition, multiplied by the 

numher of lines in a unit interval of frequencies: 

W.~f*<y>%~f*(y>%~f**'%' (5.85) 

In Table 5.5, taken from the book of Unsold [10], are given 

forces of oscillators of atoms of hydrogen and alkali metals for 

continuous spectrum, corresponding to absorption from ground level. 

There are also values of differential oscillator strength for boundary 

of absorption (df/dv) when v = v (v is measured in Rybergs). 

These data are obtained by means of quantum-mechanical calcula- 

tions. They show degree of "non-hydrogen likeness" of atoms of alkali 

metals. 

Table 5.5.  Oscillator Strengths for 
Continuous Spectrum f and Differential 

Force -3— for Boundaries of Main Series 

(v  in Rybergs) 

Atom x       A 
margin / if 

4v /(ev) 

H 912 0,436 0,78 13,5 
U 2281 0,24 0,46 5,4 

...Ma   . 2442 0,0021 0,038 5,05 
K 2857 0,0024 4,32 

§ 15. Rema,rks About Energy Role of Lines in Radiation 
of Heated Body and Radiant Transfer of Energy 

Above it was noted that energy role of line spectrum in heated 

gas is small as compared to role of continuous spectrum. During cal- 

culation of average Rosseland path and speed of volume cooling only 

transitions giving a continuous absorption spectrum were taken into 

account. Now, after we have met regularities of line spectrum, it is 

possible to explain what causes a similar position. Let us consider 

radiation of optically thin volume of rarefied gas. According to the 

law of Kirchhoff radiating ability J is proportional to coefficient 
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of absorption HV, and speed of radiant cooling Is proportional to 

integral over the whole spectrum from coefficient of absorption taken 

with a specific weight (see formula (2.105)). Let us return to Pig. 

5.6, on which Is shown "paling" of continuous absorption, and more 

Intently we consider only one, mein "tooth" corresponding to absorption 

from ground level n = 1 (Fig. 5.11). Before the "tooth" of photo- 

lonlzatlon at frequencies lower than the bound of continuous absorp- 

tion v.,  are located lines of absorption. The area of all these lines 

(and integral of radiation is characterized namely by the area Jo    dv, 

if one were to digress from weighting function comparatively slowly 

changing with frequency) is by no means small. Really, curve of 

average absorption cross section near boundary of continuous absorp- 

tion v. continues in the direction of frequencies lower than bound in 

proportion to v~^ (see § 11), i.e., mean cross section in region of 

lines is not at all small and even larger than cross section in 

continuum (dotted line in Fig. 5.11). Other evidence of significance 

of area of lines is the fact that oscillator strength for continuum 

of main series of an atom of hydrogen (n = 1) equals, as follows from 

formula (5.8l), 0.^9 (or, more exactly, from Table 5.4, 0.456). Thus, 

approximately half of oscillator strengths, and consequently also area 

of absorption curve, belongs to continuous spectrum, and the other 

half belongs to lines (sum of oscillator strengths is equal to one). 

So large an area of lines is due to their colossal height, which 

compensates smallness of width. Let us consider, for instance, line 

hv = 10 ev, which widens 100 times as compared to natural width owing 

to Doppler-effect. Effective cross section in the center has an order 

-12  2 
of 10   cm (see formula (5.65)) which Is 100 times more than the 

cross section of photo-lonlzation (see (5.34)). This signifies simply 
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that shell of gas, optically transparent for continuous spectrum, 

most likely is opaque for frequencies corresponding to lines; these 

«»» frequencies are "locked" in gas shell, are in 

thermodynamic equilibrium with substance, and 

their flow from surface of body is not deter- 

mined by radiating ability; it does not exceed 

Planck flow. Role of lines powerfully compares 

with role of continuous spectrum only under the 

condition that the body will be transparent also 

in lines. Optical thickness of layer for contin- 

uous spectrum will become of the order of ratio 

Pig. 5.11 Effec- 
tive absorption 
cross section of 
light by an atom 
of hydrogen from 
ground state. Tran- 
sition of discrete  of cross sections of photo-ionization and selec- 
spectrum into con- 
tinuum Dotted line 'tiv'e absorption in line, i.e., extraordinarily 
shows averaged cross   nn  .^-5 . 
section with res-   small, <10 J  in given example.* 
pect to lines in 
region of discrete Regarding the Rosseland path, as one 
spectrum. Figure 
is schematic. may see from Fig. 5.12, it influences not 

so much the area of absorption curve, but 

total width of lines, since owing to great 

magnitude of absorption in line from inte- 

gral with respect to spectrum corresponding 

sections will be simply completely cut 

(range in line is practically equal to zero) 

independently of magnitude of absorption. 

Total width of lines is small as compared 

Fig. 5.12. Concerning 
the question of influ- 
ence of lines on mag- 
nitude of path. 

to total spectral interval participating in transfer. 

♦For the energy role of lines in radiation of hydrogen plasma 
see [49]. 
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It is necessary to note that in gas of great density, when broad- | 
a 

ening of lines is very great, their role can become noticeable for    | 

transfer of radiant energy; the lines can noticeably lower the Rosse-  | 

land path. | 
■i 
; 

3.  Striped Spectmm of Molecules | 

\ 

§ 14. Energy Levels of Diatomic Molecules i 

It makes sense to consider absorption of light by molecules at    j 

temperatures lower than i2,000-8,000oK, since at higher temperatures 

molecules completely dissociate into atoms. ; 

The energy of an atom is determined only by its electron state. 

The energy of a molecule, besides the electron state, depends even on 

intensity of vibrational and rotational motion. Therefore, the number 

of energy levels and number of allowed transitions between them for 

molecules is much larger than for atoms; the molecular spectra is 

considerably more complicated thcji the atomic spectra. Sometimes 

individual lines in the spectrum are located so close to each other 

and their number is so big that in certain sections they form an almost 

continuous spectrum. At high temperatures or densities of gas due 

strong broadening the lines can even overlap. Therefore, striped 

molecular spectra of radiation find absorption in certain conditions 

render an essential energy influence analogous to that of continuous 

spectra. Molecular spectra have a large value for absorption and 

emission of light in air at temperatures of the order of several 

thousands and tens of thousands of degrees. 

We will consider the simplest and at the same time the practically 

important case of diatomic molecules. In the first approximation 

electron, vlbrational, and rotational motion in a molecule occur 
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Independently and total energy of the molecule can be presented in 

the form of the sum of corresponding components. During not too 

intense vibrations the latter are close to harmonious and their energy 

equals 

Em*-'hem0Q>+j), (5.86) 

where CD    = V   .,/C  is the wave number measured in cm"  (usually in 

_1 
spectroscopy it is accepted to use instead of frequencies v  sec  the 

wave numbers j- = v/c cm ) ;* v = 0, 1, 2. . . is vibrational quantum 

number. Energy of rotation is characterized by rotary quantum number 

J « 0, 1,  2,   . . . and moment of Inertia of molecule I: 

^'^j^-hcB^HJ+i), (5.8?) 

2 -1 
where B = h/87r cl is the constant of rotation, measured in cm" . 

Thus, if U is electron energy in a given state, then in first 

approximation total energy of molecule equals** 

Ä-Cr,+*«(.,(p+i)+Ac^ (/+!). (5.88) 

In the following approximations to expression (5.88) are added 

terms considering the anharmonicity of vibrations, interaction of 

vibrations with rotation, etc. (see [20, 41]); we will not remain on 

this. 

Wave numbers of emitted or absorbed radiation l/X = v/c (in 

spectroscopy it is sometimes referred to as "frequency," measuring 

"frequency" in cm ) are determined by difference of energies of initial 
1 * g 
♦To wave number 1 cm  correspond: wave length X - 10 A, frequency 

v - 5«10  sec' , energy of quantum hv » I/806O ev, hv/k m l.?50K. 

♦«Rotational energy in formulas (5.87), ^5.88) is determined with 
an accuracy of constant depending on type of bond between rotational 
and electron states; on the type of bond depends also the exact meaning 
of rotational quantum number. The constant has the order hcB and  It 

can be included in U . writing energy in the form of (5.88); for 

reference to this, see [20]. 
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and final states. Subsequently the upper state always will be desig-  j 

nated by one prime, and the lower by twot J 

+IJK/'(/'+l)-IV(/'+l)l.      (5.89) a 

Between differences of electron, vibrational, and rotational 

energies (the scale of the last two are the magnitudes hca) and hcB ) 

there always exists the relationship 

A^«>*£„*>&£„;£ >©.»i?« (5.90) 

where lA00 = (U + ^e/
2 " ue " ^o/2)/110 is ^he  wave number correspond- 

ing to electron transition in absence of vibrations and rotations. In 

the accuracy of inequalities (5.90) one can be certain, considering 

Table 5.6, in which are presented spectroscopic constants of the most 

important stf.tes and transitions in molecules Op* Np* N«, NO.* 

The arrangement of levels of a molecule has the form shown in 

Fig. 5.13. The dotted line shows electron energies of levels A and B. 

The first actual levels of the molecule, corresponding to absence of 

vibrations (v = 0), lie somewhat higher due to zero-point energy of 

vibrations. To each electron state corresponds a great number of 

vibrational levels, and to each of the vibrational levels in turn 

correspond a great number of rotational levels. Vibrational levels 

during growth of excitation are somewhat compressed due to anharmonicity 

and In limit v -♦ oo pass into continuum, corresponding to dissociation. 
Rotational levels, conversely, diverge during growth of J (for not 

too large J numbers, when approximation (5.87)** is accurate). 

♦Different electron states of a molecule differ by forms of poten- 
tial curves describing interaction of atoms depending upon internuclear 
distance, and also mean internuclear distances (i.e., during transition 
from one electron state to another frequency of vibrations, moment of 
inertia, and constant of rotation change). The table is taken from [8]. 

**I)uring very strong rotations (extraordinarily large J) change of 
potential curve of molecule owing to centrifugal forces becomes 
essential. In limit J-♦ 00 rotational levels. Just as vibrational, 
start to compress and pass into continuum. 
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Table 5.6. Spectroscoplc Constants of the Most Impor- 
tant Molecules 

Molecule State 
Electron 
energy 
U , ev ev 

fransitior 
i t»t, cm"1 Be, om-1 Transition and namft 

of system of bafi'is 

o» 6,11 
0 

6,11 49363 

0 
700,4 

1580 

0,819 

1.446 

B-*X 
Schumann-Hunge 

N« Cttu 11.1 3.69 29670 2035 1,826 c-*o. 
2nd positive 

fi«nu 7.4 1.18 9557 1734 1,638 B-*A 
1st positive 

**K 8,17 6,17 49757 1460 1,440 A-fX 
Forbidden band 

Vegard-Kaplan 

™: 0 2360 2,010 

NO B*TL 

AW 

5,63 

5,48 

5,63 

5,47 

45440 

44138 

0 

1038 

2371 

1904 

1,127 

1,995 

1,705 

B-*X 
fl- band 

Ar^X 
Y-band 

N} B»2*u ' 3,16 25566 2420 

2207 

2,083 

1,932 

B-*X 
1st negative 

A diagram of levels of a molecule of 

nitrogen with indication of terms and their 

energies, and also vibrational states^is 

presented in Fig. 5.14.  For molecules of 

oxygen and nitrogen oxide we present a 

diagram of potential curves on which are 

also shown terms and energy.  Subsequently 

we frequently will have to use designations 

of different electron states of molecules, 

therefore, we will recall briefly the basic 

positions of spectroscopic symbolism. 

An electron state is characterized 

hy projection of orbital moment of electrons onto axis of molecule or 

quantum number A, total spin of electrons S, and properties of symmetry. 
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diagram and transitions 
in a diatomic molecule. 
Vertical lines show 
different bands. 
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4 

States with A = 0, 1, 2, . . . are designated by Greek letters z, II, 

A, . . . Projection of spin onto axis can take 2S + 1 values, in 

accordance with which every term Is split. Multiplicity of term 2S + 1 
■z      o 

is indicated on the left above, for instance, -% II(S = 1, S = 1/2 

correspondingly). 

During reflection into the plane passing through axis of molecule, 

projection of electron orbital moment changes sign; in conformity with 

this terms with orbital moment different from zero are doubly degener- 

ated, more exact; they are split into two due to existence of inter- 

action between rotation of molecule and motion of electrons. This 

phenomenon is called A-doubling ("lambda"-doubling). 

If however A = 0, reflection does not at all change the electron 

energy; wave function is multiplied by +1 or -1.  This property of 

symmetry 2 of terms is indicated on the upper right; Z  , Z'. 

If the molecule consists of identical atoms, there appears one 

more property of symmetry, namely, energy is invariant relative to 

simultaneous change of sign of coordinates of all electrons and nuclei. 

The wave function is multiplied by +1 or -1, which is designated by 

indices g and u on the lower right, for instance 2 , 11 . 

As a rule, the ground state of diatomic molecules possesses full 

symmetry and the basic term is 's . An exception compose is the O2 mole- 
O 

3 _ 
cule, for which the basic term is 2 , and the NO molecule with basic 

g 
2 

term H. 

Consecutive electron states are designated by letters: X (ground 

state). A, B, C . . . or a, b, c . . .  In the case of ionized mole- 

cules a prime is added to the letters: A , b . . . Thus, for instance, 

5v+ the first excitation (metastable) state of Np is A^2^ 

iemmittmm-M^-^-^'' "•■ gMatBiaiiiiMBMiiteiiaaM i «tunWunmmmm 
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Fig. 5.1^. Diagram of levels of molecule of 
nitrogen. 

Permissible transitions between different electron states (dipole 

transitions with emission or absorption of light) are subordinate to 

certain selection rules. These rules depend on type of bond between 

orbital motion of electrons, their spin and rotation of molecule.  In 

many important cases of selection the rule is the following: AA = 0 ± lj 

multiplicity 2S + 1 does not change; transitions I,   *- z'  and transitions 

g -► g, u -♦• u are forbidden (the last two rules do not depend on type 

of bond) 
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§ 15. Structure of Molecular Spectra 

Totality of transitions between two electron states B-A will 

form a series of bands corresponding to transitions between two given 

vibrational states v -vl' 

Frequencies of quanta radiated or absorbed during electron tran- 

sitions of molecules, lie usually in ultraviolet or visible parts of 

the spectrum. Transitions without change of electron state correspond 

to frequencies belonging to Infrared region of the spectrum; we will 

not be Interested in them. Each of the bands consists of many closely 

located lines, corresponding to transitions between various rotational 

states. Rotational transitions obey selection rules, which in consid- 

erable degree simplify the spectrum. Namely, transitions are possible 

with the following changes of rotational quantum number: AJ = J - j" = 

= 0, +1, where transition 0-0 is forbidden, in the case of 2 -* 2-tran- 

sitions also transitions AJ «■ 0 are absent. In Fig. 5.13 vertical 

lines show transitions between different vibrational states of two 

electron levels (bands v'-vS 0-0, 1-0, etc.). In Fig. 5.15 one band 

v -v is specially separated and its rotational structure is shown. 

It is assumed that at least in one of the states B or A A ^ 0, so that 

AJ = 0 transitions exist. The series of lines with AJ = 0, +1, -1 are 

called Q-, R-, P-branches correspondingly. 

If vibrational levels in different electron states were disposed 

with equal accuracy. I.e., frequencies OJ and üD., would coincide, and 

compression due to anharmonicity would occur identically, then bands 

with identical value of difference Av = v* - v",as one may see from 

Fig. 5.13^ would be exactly superimposed. Actually the location of 

levels in various electron states differ somewhat from each other, 

where difference of frequencies of oscillations CD - co is usually 
6     6 
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considerably less them the frequencies themselves. Therefore, bands 

with identical difference Av are close to each other, forming so-called 

sequence of bands, whereas bands with different Av will stand at 

larger frequency distances. This position Is illustrated by photog- 

raphy of emission spectrum of so-called second positive system of 

nitrogen* (transition Crll -♦• B-5!! : see diagram of levels. Fig. 5.^). 
g 

On this photography (Pig. 5.16) is scale of 

wave lengths and numbers of vibrational tran- 

sitions are shown (first figure corresponds 

to upper electron state). As can be seen from 

photography, distance between neighboring bands 

of sequence Av =-2,  for instance, are equal 

approximately to 50 A; distance between the 

nearest bands of neighboring sequences is 

larger, for Av =-2 and Av = -1 it equals 

approximately 230 A. With increase of frequency 

bands compress in accordance with compression 

of vibrational levels when v -* oo and finally 

pass into continuum, connected with dissociation 

1 

. . 9 

0 

^  • 
— r        tr 

I 

Q       P        *     0 
AW    Al*-t     Af'*l 

Fig. 5.15. Rotational 
structure of bands. 
Diagram of transi- 
tions corresponding 
to Q-, P-, and R- 
branches. 

GO 
S3 

!5 «S i    li I I i s §   i 

•Jr t x s  5   2 
(b) 

Pig. 5.16. Emission spectrum of second positive 
system of nitrogen. Photography is taken from [20a]. 
KEYj  (a) 1 pos. group N2J (b) 2 pos. group N^. 

*The system of bands corresponding to different electron transitions 
carry usually some name. The most important systems are shown on the 
diagram of levels. 
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of molecule. 

Location of lines in rotational structure of band is easy to 

£s2 
•as?;:'*-'» 

Mt**3P 

Pig. 5.17. Dependence of wave 
number In P-,. Q- and R-branched 
band from rotary quantum number 
Jn for the case Bj" > B^ (red 
edge). e e 

establish, using formula (5.89) and rules of sampling: J' - J" =» 0, 

+1,   -1. We obtain for three branches the following regularities: 

P:J'-''-i>i~T •v (ä-ä;)/"
,
-(ä;+ä)/-, /•>!: 

ä:7'-/'+I, |-3JL+(5;-Ä;)y«+(3fl;-Ä)/'+2«, j'>o. 

(5.90) 

(5.91) 

(5.92) 

Here l/X . ,i is a constant, the wave number which corresponds to 

electron-vibrational transition in absence of rotational structure 

(without third term in formula (5.89)). Rotational structure depends 

on which of two rotational constants is larger: B' or B". Dependencies 

of wave numbers l/X on quantum number J" and spectrum are schematically 

depicted for both cases in Figs. 5.17 and 5.18 (so-called Portra 

diagrams). From Fig. 5.17 it is clear that when Bi > B" the spectrum 

has a low-frequency boundary, where the lines are compressed ("red" 

edge); the lines spread in the direction of high frequencies and 

distances between them increase. When B» < B" , conversely, "violet" 
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edge and lines spread in the direction of low frequencies. In region 

of "frequency" edge distances between lines of the order B1 - B" 

(^0.2 cm   for 2nd positive system Np which corresponds in scale 

of wave lengths AX ~ 0.2 A). In region of rarefaction of lines when 

J" » 1 all branches behave approximately according to the law 

l + (B',-B't)J'* (5.93) 

and distances between lines A(l/X) grow in proportion to J". 

iljfililllJUii'AiilÜJlllTi'' 

sm,9i 375S,*i 

II jlllll IIH 
Fig. 5.18. Dependence of 
wave number in P-, Q- 
and R-branched bands on 
rotational quantum num- 
ber J" for the case 
Be > De (violet edge). 

Fig. 5.19. Spectrum in band 0-2 of second 
positive system of nitrogen. Photography 
is taken from [20a]. 

For illustration of rotational struc- 

ture we conduct photography (Fig. 5.19), 

on which is resolved band 0-2 of second 

positive system Np.  For the transition Crll -* BOI of nitrogen B' > B" 

(see Table 5.6) and the band is shaded in the "red" side ("red" edge). 

Each of the lines of the rotational structure on this photography 

consists of three, in accordance with multlplet splitting of levels. 

A-doubling on photography is not resolved (it is usually less than 

1 cm  which corresponds in scale of wave lengths when X ^ 3800 Ato A> < 

< 1 A). 

As was already noted above, electron transitions in molecules, 

as also in atoms, correspond to ultraviolet or visible regions of 

spectrum.  If the nearest unforbidden transition of their ground state 

12 
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Into an excited state corresponds to ultraviolet quanta, the gas Is 

transparent and Is colorless, as for instance, Ng, Og, NO. In certain 

molecules, such as Br2, Jp, the nearest electron level with the allowed 

transition from ground state is located rather low, and the molecule 

absorbs visible light. Such gases are strongly colored. In the 

direction of large frequencies of absorption bands of molecules spread 

usually into the far ultraviolet region of the spectrum and pass then 

into a continuum. 

§ 16. Pranck-Condon Principle 

Electron transitions in a molecule are connected with simultaneous 

change at once of three characteristics of its state. A great number 

of all possible combinations of initial and final states is limited 

by rules of sampling. However, selection rules are extended only to 

change of electron and rotational parameters of molecule and nothing 

Fig. 5.20. Potential curves of an 0 
molecule. 
KEYi  (a) volts. 

on 

2 

refers to possible change of state of vibrations. In order to establish 

what combinations of vibrational quantum numbers during transitions are 
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the most probable, we will turn to diagram of curves of potential 

energy of molecule, disregarding rotation. 

Potential energy of molecule depends on Internuclear distance. 

At approach of nuclei repulsive force predominate, during withdrawal, 

attractive force predominate. At certain distance r repulsive force 

and attraction forces balance one another and potential energy at this 

point is minimum. The absolute magnitude of minimum of potential energy 

corresponds to energy of electron state U . The difference between 

energy at infinite withdrawal of nuclei and this magnitude gives energy 

of dissociation (with an accuracy up to energy of zero vibrations). 

Form and position of potential curve depend on electron state, so that 

every molecule belongs to several curves.  In Figs. 5.20 and 5.21 are 

shown potential curves of molecules of 02 and NO, built on the basis 

of spectroscopic data.* On the figures are drawn horizontal lines, 

corresponding to levels of oscillatory energy in each of the electron 

states. 

From the classical point of view the internuclear distance at a 

'given energy of vibrations periodically changes near position of 

equilibrium r . The change occurs in the Interval between points in 

which the horizontal line corresponding to energy of vibrations, 

intersects the potential curve. In intersection points speed of 

relative motion of nuclei turns into zero, since direction of motion 

changes and in these positions (points of return) the molecule remains 

longest of all. Conversely, it goes past the position of equilibrium 

very rapidly, since speed here is maximum. 

Therefore, spontaneous transition from upper electron state into 

lower most frequently occurs when nuclei occupy extreme positions. 

Reconstruction of electron shell during transition with emission of 

quantum occurs so fast that during that time neither position of nuclei 

•Figures are taken from [20, 21], 
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nor their kinetic energies can change. Really, duration of reconstruc- 

tion is measured by the time during which electron passes a distance 

of the order of dimen- 

(aj ^Jjj* slons of molecule, i.e., 

sec (when veloc- 

8 

40000- 

MOOO- 

^*i^— 11111111«11»1111 

9 1,0 10      (h\ 

Fig, 5,21. Potential curves of NO molecule. 
KEY: (a) dissociation range; (b) inter- 
nuclear distances. 

HLO 

ity of an electron ~10 

era/sec and dimensions 

of molecule '«do  cm). 

Dlstajice between nuclei 

noticeably changes during 

the time of order of 

period of vibrations, 

i.e., during the time 

-14 
M/cügC ^ 10   sec 

_i 
(when (ü„ ~ 1000 cm , v    e 

which pertains to light 

molecules; in heavy 

molecules m is still e 

less, and the period of 

vibrations is larger.* 

Electron transition into lower state is accomplished at a constant 

internuclear distance, i.e., mainly along verticals conducted from 

points of return on diagram of potential curves (Fig. 5.22). 

In final state molecule arrives with zero velocity i.e., starts 

♦Probability of unforbldden electron transitions from upper state 
Q        A 

into lower state in atoms and molecules is of the order of 10 sec . 
Q 

Thus, an excited molecule during a time of the order of 10  sec (for 

which atoms accomplish much, ~i0  vibrations) Is in upper state, but 

then during the time ^o"1^ sec it transfers into the lower state, 
emitting light quantum. 
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vibrational motion with new vlbrational energy also from points of 

return. 

Thus, the easiest transitions of all are accomplished Into such 

lower vibrational states for which one of the points of return Is 

located on the same internuclear distance as one of the points of 

return In the upper state. This position, 

known under the name of the principle of 

Frank-Condon, Is Illustrated by Fig. 5.22, 

on which are verticals of the most prob- 

able transitions of their upper state 

v' = 4 Into lower v" = 0 and v" =6. 

Conversely, transitions for which 

verticals from peaks of return fall in 

the middle of segment of the lower level 

or in general, go beyond the limits of 

the segment limited by the potential curve 

(as, for Instance, transition 2-6, shown 

Fig. 5.22. Diagraic uf 
potential curves am' tran- 
sitions, illustrating 
Franck-Condon principle. 

in Fig. 5.22 by the dotted line), are doubtful. 

§ 17. Probabilities of Molecular Transitions 
with Emission of Light 

Let us consider transition of molecule from upper state into lower 

state from the quantum-mechanical point of view. 

The probability of a spontaneous dipole transition with emission 

of light quantum is proportional to the square of matrix element of 

dipole moment of system d and is described by general formula (5.69). 

Let us consider the transition from upper state Bv'J'M' into lower 

state Av"j"M". Indices B and A designate electron states of molecule; 

v1, v" are vibrational states, and J1, J" are rotational quantum 
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numbers. M is "magnetic" quantum number determining magnitude of 

projection of rotational moment onto axis of molecule. It can take 

2J + 1 values: M ■ J, J - i, , . ., - J. Rotational energy does not 

depend on It, and wave function of system ? does depend. Matrix 

element equals 

R!v3r - J IW*' d 1!W*- rft, (5.94) 

where Integration is produced with respect to all coordinates on 

which wave function of system depends. 

¥e will as before originate from simplified model of molecule, in 

which motion of electrons, vibration, and rotation are assumed to be 

not dependent on each other. The full wave function can be presented 

in the form of the product of three wave functions Y ,, ^vib* ^rot* 

describing electrons, vibrational motion and rotational motion. They 

depend on corresponding coordinates: ¥ , on coordinates of electrons, 

Vy^  on internuclear distance, Y . on angles of turn of molecule, 

and also on corresponding quantum numbers. For Instance, for upper 

state: 

▼»•V'lr "• ^JI« foa ••. a tipy. If'. (5.95) 

^vlb ^P61108 on electron state, since frequency of vibrations depend 

on the latter. 

Let us present dipole moment of system d - 2eiri (sum is extended 

to all particles) In the form of sum of electron and nuclear moments 

d » d + dn. Electron wave functions, by definition, are orthogonal 

in  different electron states (nuclear coordinates enter Into them 

only as parameters). Upon substitution of d and f into Integral (5.95) 

in the term with nuclear moment is eliminated factor Wri*^«!*^ 

which turns Into zero when B / A, so that matrix element disappears 
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from nuclear moment. Inasmuch as f.. and f . do not depend on 

coordinates of electrons, the remaining matrix element from electron 

moment can be presented in the form of product: 

D-i),- 5 i|»t,Irf.H»M J ♦SoalW 5 *>yBp = DM.DKOa.D,p, (5. :>6) 

where in rotational matrix element entered only direction of averaged 

electron "dipole moment — unit vector n, which is averaged with respect 

to "turns" of molecule, ^or brevity we omitted hure indices — quantum 

numbers for wave functions and differentials). The condition that 

D . be different than zero also gives selection rule for change of 

rotational quantum numbers during transition. 

Energy of molecule in our approximation does not depend on direc- 

tion of rotational moment; therefore, in order to obtain probability 

of transition from one energy state, Bv'J', into another, Av"J", 

probability must be averaged with respect to all possible directions 

of rotational moment in initial state and summed over directions in 
-1 

the final state. Thus, probability of transition in units sec  accord- 

ing to (5.69) equalst* 

A**'r " msr^'J'' A»V^M BA^fPrj; (5-97) 

where 

«t'.--AS«•>•-j JtÄa.'CO*.«••('■)<&• I*, (5.98) 

Prj'mW+r S DlprM'.j-M'. (5.99) 

Intensity of corresponding line in spectrum in erg/cm -sec equals 

the product of probability of transition A(l/sec), energy of quantum 

♦Strictly speaking, electron matrix element D , depends on inter- 

nuclear distance r (it is calculated in a specific moment of time, at 
fixed internuclear distance which enters into electron wave functions). 

2 
By magnitude D ,, which enters in formula for probability of transition 

(5.97), one should imply certain value D , average with respect to r^ 

let us say, corresponding to position of equilibrium r in upper elec- 
tron state. 
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hv(erg) and number of molecules N(l/cnr) remaining In upper quantum 

state: I = hvNA (for brevity Indices are emitted). 

Dlmenslonless probability Pjtjii determines distribution of inten- 

sity In lines of rotational structure Inside given band Bv' -»• Av". 

In quantum mechanics of molecule it is proved that PJIJ« obeys rule 

of sumst 

2/»JV«2 S Sr+jDlw.J-M'^i, (5.100) 

whose meaning is that during the accomplished transition from upper 

electron vibrational state into lower state the molecule must fall on 

one of the possible rotational levels J"  (corresponding probability 

is equal to one). 

Probability of transition Bv1 -♦• Av" to any of the rota-*- Vonal 

levels is obtained by means of summation of expression (5.97)  over 

J".    In accordance with condition (5.100),  it equals 

A& - ^g vW. A^U&tf .•,-. (5.101) 

where vB ,  . « is certain average frequency for given band (in virtue 

of smallness of rotational energies as compared to vibrational energies, 

the scattering of frequencies inside the band is small and introduction 

of average frequency for the band is Justified). 

Relative probability of vibrational transformation v' -»• v" during 

electron transition B-♦ A is characterized by dr.mensi-onless factor 

q , n^ determined by formula (5.98). 

Let us consider integral (5.98). Wave functions belong to 

different electron states, i.e., differ by frequency of vibrations 

and position of equilibrium r .  Owing to this the integral is different 

than zero for different v'v" combinations, and for vibrations there 

are no rules of sampling (if electron state did not change and 
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vibration would be strictly harmor;io. Integral (5.98) in virtue of 

condition of orthogonality would be equal to zero for all v' T  v"). 

Wave functions of different vlbratlonal states are schematically 

depicted In Fig. 5.25.  So that Integral (5.98) from product of 

vlbratlonal factors (does not vibrate only ^vib v _ Q) has consider- 

able magnitude. It Is necessary that, first, factors not be In 

"reversed phase" and, secondly, that high maxima of both factors 

overlap.  But the largest maxima of vlbratlonal wave functions lie in 

"cusps," which also Indicates the biggest probability of these 

positions. Therefore those transitions are most probable for which 

at least one point of return in upper state is on the sane internuclear 

distance as the point of return in the lower state.  The given reason- 

ing substantiates the principle of Frank — Condon from the quantum- 

mechanical point of view. Magnitude q , „, called frequently the 

Frank — Condon factor, is the probability of given vlbratlonal tran- 

sition v' -* v" during the electron transition which takes place, since 

by the rule of sums for matrix elements total probability of tran- 

sition from given v' into any v" is equal to one: 

J?^-JOJca .'.•=!. (5-102) 

To illustrate the presented quantum-mechanical interpretation of 

the principle of Frank — Condon we presented in [21] a table of 

integrals | / ^ , i* »  dr(, the square of which equals q , M for 

2    2 
ß-system N0(B n-»■ X 11).  It is useful to consider Table 5.7 simulta- 

neously with the diagram of potential curves Fig. 5.21, checking, 

thus, fulfillment of Frank — Condon principle. 

A knowledge of Frank — Condon factors is necessary for calculation 

of relative probabilities of different v1 -»• v" transitions, i.e., 

relative intensities of different bands in the framework of given 

4^0 
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cm -1 

electron transition. They are calculated for a number of systems of 

the most important molecules: NO, 02, N2, Ng (see [8, 21-24]). 

In order to find absolute values of probabilities of transitions 

and intensities of lines or bands, it is necessary to know the value 

of electron matrix element D ,. Theoretical calculation of electron 

matrix element D , is very difficult. Usually it is found from 

experiment (see §§ 18 and 21). By analogy with the theory of atomic 

transitions, instead of electron matrix 

element the idea of oscillator strength 

is usually used. 

Let us sum probability of tran- 

sition Ag . ^ . H according to formula 

(5.101) over final vibrational states 

v" and average with respect to initial 

v1. Let us obtain probability of 

electron transition B -♦ A during 

arbitrary vibrational and rotational 

transformations: 

,   64a« 
vLl^MBA» (5.105) 

Q  * 4—^"7 
Fig. 5.23. Potential curves 
and wave functions of a 
series of vibrational states 
for a RbH molecule, (graph 
is taken from [20b]). The 
number of zeroes (nodes) 
for every wave function is 
equal to vibrational quan- 
tum number v. 

where v. .„. is a certain average fre- 

quency for electron transition (Just 

as earlier. Justification for intro- 

duction of average frequency was the 

fact that differences of vibrational 

energies are small as compared to 

difference of electron energies). Using formulas (5.69)> (5.73)> 

(5.60), we will determine oscillator strength for electron transition 

B-* A: 
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'8n*m 
' 3*«« VBA^. tnBA' (5.104) 

Table 5.7.     Square Root from Frank — Condon Factor 

yat   n for ß-system of Bands of NO molecule  (v'  Pertains 

to Upper State,  v"  - to Lower)* 

-* i flbrational quantum number of upper s täte v' 

0 i a s 4 » 6 7 • 

0 0.0000 

0,0003 

0.0021 

0.0086 

0,0250 

0,0554 

0.0002 

0.0024 

0.0119 

0.0364 

0.0010 

0.0087 

0,0336 

0,0735 

0,0032 

0,0219 

0.0619 

0,0079 

0,0414 

0.0161 

0,0625 (" 

0.0280 0.0429 0,0587 

I 0,0788 0.0811 0,07071 
2 0,0819 0,0803 0,0569 

0,0016 

0,0286 

0,0448 

0,0027 

0,0231 

0,0389 

0,0567 

0,0299 

0,0003 

0,0198 

0,0506 

0.0399 

0,0070 

0,0046 

0,0361 

0,0557 

0,0374 

0.0068 

0,0031 

0,0326 

0,0685 

0.0257 

0,0065 

0.0471 

0.0146 

0.0097 

0,0401 

0,0055 

0.0040 

3 0,0896 0,0680 

0,0115 

0.0100 

0.0530 

0.0363 

0,0000 

0,0629 

0,0286 

0,0006 

0,0158 

0.0515 

0,0619 

0,0363 

0,0057 

0,0036 

0,0329 

0,0693 

0,0273 

0,0025 

0.0447 

0.0371 

0,0001 

0.0317 

0.0004 

0,0301 

0.0572 

0,0382 

0,0047 

0.0070 

0.0404 

0,0587 

0,0394 

0,0080 

0,0022 

0,0297 

0,0663 

0,0286 

4 0,0750 0,0967 | 0,0607 

0,0077 

0.0121 

0,0573 

0.0489 

0.0046 

0,0395 

0,0686 

0.0599 

0.0252 

0.0010 

0,0102 

0.0449 

0,0793 

0.0362 

5 0.1069 0.0693 

0.0153 

0,0041 

0.0497 

0,0756 

0.0391 

0.0059 

0.0033 

0.0318 

0,0704 

0,0001 

6 

7 

; 0.0972 

i 0.1380 

0.1020 

öTöMT 
0,0075 

0,0101 

0.0452 

0,0849 

0.1100 

0.0341 

0,0170 

8 0.1603 0,0066 

9 

10 

11 

; 0.1522 

i 0.1276 

| 0.0964 

12 0.0657 

0,0405 

0.0226 

0.0113 

0.0051 

0,0021 

0,0007 

0.0002 

0,0001 

13 0.1123 

14 0,0956 

15 0.0698 

0.0442 

0.0246 

0.0120 

0.0051 

0.0019 

0.0006 

0.0002 

0.0962 

16 0,0985 

17 0,0816 

18 
 m 

0.0565 

0.0334 

0.0169 

0.(X)74 

0,0028 

0.0000 

0.0932 

19 0,0838 \ 
20 0.0610 

0.0369 

0.0188 

0.0801 

0.0030 

0,0001) 

0,0881 i 

21 0,0821 

0,0603 

0.0361 

0,0179 

0.0074 
0.0026 
0.0007 

22 0.0852 | 

23 0.0784 

0.0559 

0.0331 
0,0150 
0.0057 
0,0018 

24 0,0665 

25 
26 
27 
28 
29 

0.0727 
0.0486 
0,0258 
0.0110 
0.0038 

»'. 
»'-9 

-0:0.0731 
10 

0.0637 
11 

0,0892 
12 

0.0666 
13 

0,0641 
14 

0,0744 
15 

0,0601 
16 

0,0445 
17 

0,0303 

»'. 
»'-18 

-0:0.0190 

♦Red 

0.0110 

iangle 

2U 
0,0059 

s  - tl 

21 
O.0G29 

le mos 

22 
0,0013 

t prol 

23 
0.0006 

sable t 

24 
0,0002 

,rans i 

25 
0,0001 

tions 

26 
0,0000 

from 
every upper state. 
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The ratio of statistical scales of upper and lower electron 

states here is taken equal to one on the assumption that multiplicities 

of both terms are identical. It is necessary to expect that oscillator 

strengths for molecular transitions have the same order as those for 

atomic transitions. Numerical values of oscillator strengths for 

the most important systems will he given below. 

§ 18. Coefficient of Absorption of Light in Lines 

To calculate line absorption coefficient corresponding to tran- 

sition Av'^"->• Bv'J'j which is the converse with respect to transition 

with emission of light of that considered in the preceding paragraph, 

we will use the principle of detailed balancing. The latter establishes 

a connection between coefficients of Einstein for direct and reverse 

transitions (5.71).* Substituting in this relationship the emission 

probability according to formula (5.97)j taking into account deter- 
2 

mination (5.70) and replacing in expression (5.97) D , by oscillator 

strength according to formula (5.104), we will obtain coefficient of 

absorption in the form 

*jurr. Btv - —fBAqvfprj-NAvrF (v), (5.10 5) 

where N. i..,« is the number of mole .ales in 1 cm , being in lower state 

Av"J", and F(v) is the function describing distribution of absorption 

inside line; it is standardized per unit / F(v) dv = 1. 

We will integrate the coefficient of absorption connected with 

electron transition A-♦• B, over the whole spectrum. Obviously, the 

same result will be obtained if we will integrate over frequency the 

coefficient of absorption of every line (5.105) and will sum over all 

lines of the spectrum.** Summation over lines is equivalent to 

*The ratio of statistical weights in this formula, as also before, 
is considered equal to one. See (5.104). 

**Here one should include also the continuum which starts from that 
frequency at which bands converge to limit of dissociation. 
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summation over all initial and final v"J", v'J1 states. Summation 

over final states is carried out with help of rules of sums (5.100), 

(5.102); summation over initial states is brought to summation over 

numbers of molecules! NA^JJNAW,   where N. is the number of molecules 

in 1 cnr' which is in electron state A. If A is ground state, then 

N. for practical purposes equals total number of molecules in i crP N. 

For integral over spectrum from effective absorption cross section 

of molecule in state A during transition of it into state B a = 

= H /N., we will obtain 
IB 

|^-Sf/BA. (5.106) 

This relationship is in full conformity with the same relationship for 

atomic transitions. Thus, as in the case of atoms, "area" of absorption 

corresponding to given electron transition. Is determined only by 

oscillator strength. The difference is that In molecules this "area" 

is distributed with respect to very many lines, owing to which on each 

of the lines is only a small part of it. Accordingly the "height" of 

the molecular lines is much less than the "height" of the atomic lines. 

Multiplet splitting of lines and A-doubling still lower the "height" 

of lines a few times, not changing total "area." 

By means of experimental investigation of absorption spectrum of 

molecules one can determine oscillator strength for a given system of 

bands. With this purpose is measured weakening of light by an optical 

film of gas, transparent in peaks of lines. This permits finding 

"area" of absorption spectrum and calculation of oscillator strength 

by formula (5.106).  If Frank — Condon factor is known from calculation, 

then for estimate of oscillator strength it is possible to directly use 

absorption curve in separate line or band (for probabilities of 

rotational transitions PJMJ, there exist simple formulae). 
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In such a way, for Instance In [25] oscillator strengths were 

measured for 7- and ß-bands of a NO molecule (7: X n-♦■ A 2 ; ßi X II-»• 

-»■ B n). It turned out that f « 0.0025, fß « 0.008. In [26] oscil- 

lator strength was found for system of Schumann — Runge bands of a 

molecule of oxygen (transition X^s"-»■ B^2"): f = 0.239,  while of the 

total "area" of absorption bands occupy the fraction Af = 0.044 and 
« 

continuum occupies fraction Af = 0.215, corresponding to dissociation 

of Op molecules into 0(>P) + 0( D) atoms. The continuum starts when 

X = 176O A (lower bound of bands X = 2030 A). The effective cross 

section in the continuum has a maximum when X = 1450 A, equal a = 

= 1.8l.iO"17 cm2, and drops in half to X = 1567 A and X = 1570 A. 

It is necessary to note that value of oscillator strength for Schumann — 

Runge bands, extracted from data on radiation of light at high temp- 

eratures, turns out to be much less (see § 20; in [26] absorption of 

light by cold oxygen was measured). In connection with possible 

causes of such a difference, see [27]. 

In general, one should note that, in distinction from atomic 

transitions, the oscillator strength for molecular transition is not 

strictly constant (in particular, it depends on degree of vibrational 

excitation and method of averaging with respect to internuclear 

distance). Source materials about oscillator strength for the same 

transitions frequently strongly differ. A summary of known results 

on oscillator strengths for molecular transitions and references to 

literature can be found in the survey of V. N. Soshnikov [27a]. 

§ 19. Molecular Absorption at High Temperatures 

At room temperature practically all molecules are in the ground 

electron and vibrational states. Thus, for instance, in a portion 

~10 ^   molecules of nitrogen only one vibrational quantum is excited. 
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Long-wave boundary of absorption of diatomic molecules lies always in 

ultraviolet or visible regions of spectrum: for instance^ for Cu, NO, 

Np molecules it is In the far ultraviolet region,* for molecules of Br^, 

J2, CN it is in the visible region. With an increase of temperature 

in the gas appear excited molecules, which are in the upper vibrational 

states, from which transition into that same upper electron state 

requires energy. Thus, with increase of temperature long-wave boundary 

of absorption shifts to the "red" side. At temperatures of the order 

of 10,000 degrees molecules in upper electron states appear also, 

from which new transitions into still higher electron states are 

possible;  so appears absorption in first and second positive systems 

of nitrogen (transitions A 2 -♦ B\    and B^II -*■ c n : see Table 5.6 

and Fig. 5.14. 

Let us consider molecular absorption of light at high temperatures 

in the example of molecules of NO.  Nitrogen oxide will be formed in 

air at temperatures of the order of 2,000-10,000 degrees K in rather 

considerable concentration of the order of several percent (see § 4 

Ch. III). Absorption of light by NO molecules, as one will see later, 

in certain conditions plays an essential role for optical properties 

of heated air.  Calculations of absorption by NO molecules were made 

in [21], which we will basically follow. 

There are three important systems of NO absorption bands from 

2     2  + 2 2 
the ground electron state: 7 (transition X n-► A Z ), ß (XU-* B II) 

2    3 and 6 (X 11 -»■ C 2). Long-wave boundaries of the first two systems 

correspond to ^45,000 cm" , of the third ^52,000 cm"1 (see Table 5.6). 

In absorption of light at temperatures T ~3*000-10,000oK a basic 

♦Transitions to low-lying levels IA4 and »ij in an Op molecule are 

forbidden. Also forbidden la transition to the level «it.  Correspond- 

ing to the latter Herzberg bands are extraordinarily weak. Transition 

jfTS -♦ A^Z in Np (Vegard — Kaplan bands are very weak) is also forbidden. 
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role is played by the ß-syatem, since by the principle of Prank — 

Condon probable transitions In 7- and 5-systems occur without a large 

change of the vibration number, I.e., basically high frequencies are 

absorbed of the order of 45,000-52,000 cm , which lie In far ultra- 

violet region and are not so essential with such temperatures. 

Conversely, in ß-system transitions are probable from high lower 

vibration states with v" ~ 12 to the ground upper state v« ~ 0, which 

give an absorption in close ultraviolet and visible regions of spectrum | 
-i 

^25,000 cm . 

With large densities of gas and high temperatures molecular 

lines strongly widen and can even overlap. Here the spectrum becomes 

almost continuous. 

Let us compare width of lines and average distance between them 

for a NO ß-system. In estimating we will assume that temperature 

T = 8,000oK and density of gas is equal to normal air density. 

At a temperature of 8,000oK the Doppler width of lines with fre- 

-1 -1 
quencles '-25,000 cm  has the order of 0.3 cm . If one were to assume 

that every gas kinetic collision changes state of vibratlonal or 

rotational motion, then broadening due to collisions turns out to be 

large, of the order 

A* Hen*    MO^S-IO-'M.S.IO« , -  -1 

Let us estimate average distance between ß lines of NO system 

-1 -1 
in frequency Interval from 15,000 cm  to 45*000 cm . For absorption 

at least quantum 15,000 cm  the molecule should be excited to an 

energy of 45,000-15,000 = 30,000 cm , i.e., to a vibrational level 

of v" «= 20. Considering the diagram of potential curves and considering 

Frank — Condon principle, it may be concluded that from every lower 

vibratlonal level transitions are probable approximately in five upper 

L,.,..^..^.Mv...,..^,....^,^,^^^ 
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states, i.e., the considered interval contains in itself approximately 

20-5 = 100 bands. At temperature T = 8,000 K rotational excitation 

to 2-3 kT is essential, which corresponds to 7^500 cm , i.e., in the 

transitions there take part approximately J" « ^2.5 kT/hcB » 80 

rotational levels of the lower state. Each of them gives two lines: 

ji = J" + 1 and J' = J"- 1 (Q-branch J» = J" is usually very weak when 

J" ^ 10), i.e., there are in all l60 rotational lines in a band. Each 

of them is doubled due to multiplet splitting and once again is split 

into two due to A-doubling. Thus, in the considered frequency interval 

30,000 cm  there are approximately 100.160-2.2 = 64,000 lines. The 

average distance between them is of the order 0.5 cm ; Inasmuch as 

the width of lines ~ 1 cm , the lines strongly overlap and the spectrum 

indeed is almost continuous. 

Let us estimate coefficient of absorption in a rough approximation. 

During average vibrational excitation of a molecule of the order kT, 

i.e., an order of 5,000 cm' when T = 8,000oK, the most probable 

transitions are to low vibrational levels of an upper state. Let us 

assume for estimation that light is absorbed basically during tran- 

sitions to the level v' =« 0 of an upper electron state. Then quantum 

hv are absorbed only by molecules excited to energy E0-hv, where E0 is 

energy of upper electron state.  The number of such molecules according 
/ E0 - hv \ 

to the law of Boltzmann is proportional to exp C r-«  J Let us 

present coefficient of absorption in the form of (5.82), expressing 

absorption cross section by differential oscillator strength 

where N is the number of NO molecules in 1 cm . Taking into account 

that by the Prank - Condon principle the probability of absorption of 

quanta exceeding E0 is very small, one may assume that the whole 
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"area" of absorption / (df/dv) dv is concentrated basically in the 
0 

interval of frequencies from 0 to E0/h and contribution in integral 

of region v from E0/h to oo is very small. Considering that H ^ f^- ^ 

~ exp^ —^G^-Y we will find proportionality factor from condition 

(5.106) or, which is the same, from the condition of equality of 

integral / (df/dv) dv to oscillator strength f. Let us obtain, thus. 

that 

and 
*-'irexn—if-) 

*-S>irrfi^ (5.107) 

Let us introduce instead of N the number of NO molecules in 1 cm , 

their concentration in air cN0 » NPQ/NQP, where N- is the number of 

molecules in 1 cnr of air under normal conditions, and p/p0 is the 

ratio of air density to normal — p0 » 1.2J'10'^  g/cm . Let us cross 

from frequencies of light to wave numbers l/X ■ v/c. 

We will obtain: 

_ i.44 / r,_ i 
*-^/.CHoir-Mc;--T) ^-i^ (5>lo8) 

He -Is re l/X00 = ^o/hc (this magnitude equals for ß-system NO 45440 cm" ). 

In formula (5.108) lA00 and l/X are expressed in 1 cm" . Knowing 

oscillator strength, it is possible, consequently, to estimate coeffi- 

cient of absorption. Considering for ß-system of NO fß *» 0.006 (see 

§ 20), we will find for red light X - 65OO A when p/p0 =» 1, T » 8,000oK 

(cN0 - O.O36), KNO * 4.i«i0''
? cm  (effective cross section on molecule 

oN0 sHN0/NN0 = ^3-10-21 cm2). 

With respect to location of potential curves and fulfillment of 

Frank — Condon principle transitions in basic system of absorption of 

oxygen 02 (Schumann — Runge system) are fully analogous to ß-system 
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of NO, so that for estimation of coefficient of absorption of 02 at 

high temperatures it is also possible to use formulas (5.107), (5.108), 

in which one should, of course, put the constant for Op. 

§ 20. Definitized Calculation of Coefficient of 
Molecular Absorption at High Temperatures 

For more exact calculations (see [8, 21, 28]) it is necessary to 

originate from strict formula for line absorption coefficient and to 

consider actual probability of vibratlonal transitions. We will as 

before consider that lines are so expanded that they almost (or 

noticeably) overlap. 

Let us introduce into consideration average coefficient of absorp- 

tion of frequency v for given electron transition A-♦■ B, averaging 

the true coefficient in small spectral interval from v to v +  Av, as 

was done in § 12. For this it is necessary to Integrate coefficient 

of absorption for separate line (5.105) with respect to frequency 

(here we will obtain "area" of one line) and to sum integral over all 

lines contained In interval of frequencies from v to v + Av. The 

obtained result will equal H Av. Performing this operation just as 

during derivation of formula (5.106), we will find averaged coefficient 

of absorption of frequency v for given electron transition, 

«M.-S^ S l^lNw (5.109) 
baadi   J" 

Sums over J" and over bands are extended to those initial rota- 

tional levels and those bands which give lines falling in the considered 

spectral section Av. The number of molecules in state A. .iJ" at a v 

temperature T can be calculated by the formula of Boltzmann, putting 

in it the energy of a molecule in given vibrational and rotational 

states (see [29]): 
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NWN/*      
iU'+i)'trA • (5.110) 

Here N is the number of molecules in electron state A; 

— vibratlonal and rotational statistical sums in lower electron state. 

Basically the band will be filled by lines with large rotational 

numbers J" » 1, for which, according to formulas (5-90), (5.91)* it 

is possible to set approximately wave numbers equal to 

^-,J-+(Äir-Bil)/-. (5.111) 

Interval of frequencies Av fill line of band v'V', corresponding 

to rotational numbers from J" to J" + AJ", where AJ" is determined 

'by differentiation (5.111)t 

T-
A
(T)-^»-^

2/
'
A/

'- (5.112) 

Assuming that J" » 1, AJ" « J" (interval Av is sufficiently small), 

it is possible to consider all AJ" of terms in the sum over J" in 

formula (5.109) as the same. Ignoring units in comparison with J", 
o 

we will place in index of exponential of formula (5.110) J" according 

to formula (5.111) and will replace Av In formula (5.109) by expression 

(5.112). Removing in formula (5.109) the exponential factor, in 

order to bring final expression into conformity with approximate 

formula (5.107), we will obtain 

*u.-S7/8*A^e ""  f. (5.113) 

where dimensionless factor q> equals 

X J^- ^ÄCx-d)]} •    (5.114) 



1     1 
Here •^=— = ^— (£„ - E.) as before is the wave number corresponding to 

electron transition In absence of vibrations and rotations (Eg and E. 

are energies of electron states taking Into account zero-point energy 

of vibrations E = U + hcü)/2), l/X „ , is the wave number corresponding 

to transition Av" -»• Bv1 in the absence of rotations.  If Bg > B., 

bands have an edge with a "red" side and extend into "violet"; if, 

however, BB < B., then it is the opposite (see formula (5.111)). There- 

fore, the sum over bands in (5.114) extends to bands with X „ , > > when 

BB > B. (as in the case of 7-system of NO) and to bands with X „vI < X 

when BR < B. (as in the case of ß-system of NO or in Schumann — Runge 

system of Op).  This position is excellently illustrated by Figs. 5.24 

and 5.25, on which are given in [21] values of sums in the factor cp 

depending upon wave length of light for 7- and ß-systems of NO. Curves 

have a character of "paling," where every new tooth appears during 

inclusion in absorption of new band. In the case of 7-system absorp- 

tion intermittently increases with decrease of X, and in the case of 

ß-system — with an increase of X. 

fl id w • 

w" yw' 

vX^ w £/Vl 
VMV M9 

Fig. 5.24. Coefficient of 
spectral absorption in 7- 
system of NO in relative 
units. T » 8,000oK.  Jump of 
absorption when X = 2480 A 
corresponds to inclusion of 
vibrational transition 0-2. 

A? 

it 

rlSSXW ^    tW W   <M 

9m—tsr 2600 
It») 

im im 

Flg.   5.25.   Coefficient 
of spectral absorption 
in ß-system of NO in 
relative units.  T = 8,000 K. 

A more exact  formula  (5.114) 

is turned into an approximate one 

(5.107)*   if one were  sets  factor 

q),  considering probability of different vibrational transitions,  equal 
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to one (Inasmuch as formula (5.107) pertains to transition from ground 

state, then E. »0, N. » N). Calculations show that coefficient qp 

not very strongly differs from 1,  so that formula (5.107) can he used 

for a rough estimate. 

We see that coefficients of molecular absorption can be theoret- 

ically calculated with the help of spectroscoplc data about molecules, 

diagrams of levels, vlbrational and rotational constants, potential 

curves, with an accuracy of constant factor — oscillator strength f, 

which should be determined from experiment. On figures 5.26-5.28 are 

given results of calculations of factors cp, at several temperatures 

for the most important systems of absorption,* determining absorbing 

properties of heated airt 7- and ß-systems of NO, Schumann — Runge 

system of Og* 1 -, 2 -systems of Ng and 1 -system of N« (ionized mole- 

cule of nitrogen); values of I/XQQ for these systems are presented in 

Table 5.6. A table of oscillator strength for these systems is 

presented in the following section. Figures 5.26-5.28 are taken from 

[8]. 

V 

V 

v m 
4M 
00* 

-"Pw K-HirlT- ' _jt j-j  ^ --U U : _ _i_i  
"5" = ^=--'-'2J WK. 

^^ S£5« WO 
wo 

- Jd - 5^ i^i;^ ii wo    . 
4- -J _. %' MlvW^öo   1 

-ti 
A\ III 

^- 
zttz -rysrzjnm --f^V- 
I J_I Yu' feted A.. 

■■~^n 
1-9 "~ n-i  

ZZZlAk'^L im 
' 1  1         1 t^

- 
1  '        1 1 ■ 

* VO    Hü    W     4«     W     W Q2       «J 
(a) Jl*u*a ßu>*v.*H 

Fig. 5.26. Factor cp for 7- and ß-systems of NO. 
KEY:  (a) length of wave \j,. 

*q)X are smoothed by means of averaging in small intervals AX, 
which is necessary for comparison with experimental data, where AX 
is determined by equipment (monochromator). 
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£MHa SOJIHbl,** 

Flg. 5.27. Factor tp for Schumann 
of 02 and 2

+- system of Ng. 

KEY}  (a) length of wave^ |i. 

_4_1_ 1.   1    .'    j          j    j    j L_ . 
:>W^ 

F^-FFRS1^^» 
^:4^=g^- «- 1    1    «    ■ 

(tf/          J ^' s,. j 
/m                ^ s:__. -i. 

 jjl/ T  : -WS: - j|L.-^i!!-  --:?$ _M«- j^._ f^f^  s 
///               I 1 m   m   m   m 

Rungvi system 

■c 

^      ^     <♦ 
fi/Hmkmi,m 

Fig.   5.28.  Factor cp for l'-system of NJ and 1+- 

system of Np. 
KEY:  (a) length of wave, \i. 

4. Air 

§ 21.  Optical Properties of Heated Air 

The question about absorption and radiation of light by heated 

air has paramount value for such practically important problems, as 

study of phenomena occurring in the fireball of a strong explosion 

(see Ch. IX), calculation of radiation heating of ballistic rockets 
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and artificial satellites upon entrance into atmosphere, and others. 

For the first problem a wide range of temperatures is essential from 

normal to hundreds of thousands and even a million degrees. For the 

second problem the most interest is in temperatures ';-5J000-20,000
oK, 

which are developed in a shock wave before bodies moving in the atmos- 

phere with speeds of the order of several or 10 km/sec. The range of 

densities with which it is necessary to deal is also wide, from ~10 p0 

(in a shock wave propagated in air of normal density p0) to very small 

-■=5 -h- 
~i0 -^-10   p0 and even less, which is in central regions of fireball 

and at great heights. 

Cold air, as is known, is transparent for visible light. Absorp- 

tion starts in ultraviolet region of spectrum and is connected with 

system of Schumann — Runge bands of molecules of oxygen. Actually 

absorption attains noticeable magnitude when X « i860 A. An experimen- 

tal curve of coefficient of absorption of cold air of normal density 

depending upon wave length is shown in Fig. 9.3 in § 2 IX. 

At temperatures higher than 15,000-20,000oK, when molecules 

almost completely dissociate into atoms and the latter are noticeably 

ionized, absorption of light in continuous spectrum is composed of 

photoelectric absorption by atoms and ions and braking absorption in 

field of ions. These mechanisms were in detail considered in the first 

division of this champer, where estimation formulas were given for 

calculation of coefficients of absorption and mean free paths of 

radiation, based on approximation of hydrogen-likeness.  In Table 5.2 

§ 8 were given results of calculations of mean free paths in air in 

the region of multiple ionization, i.e., at temperatures above approx- 

imately 50,000 K. At temperatures lower than ^15,000OK in absorption 

all the above mechanisms participate while the comparative role of 
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different components very strongly depends on frequency of light and 

on thermodynamlc conditions: temperature and density. To components 

of continuous and quasi-continuous absorption belong: molecular tran- 

sitions In molecules present In heated air Np^ CU, Np., NO, NOp, photo- 

electric absorption by particles of Op, Np, NO, 0, N, 0", free-free 

+  +   +  +  + 
transitions In field of 0 , N , NO , Op, Np, ions and also, possibly. 

In field of neutral atoms and molecules. 

For specific calculations of coefficients of absorption, knowledge 

of concentrations of all shown components of air, and also concentra- 

tion of free electrons (see Ch. Ill) Is necessary, of course. 

Optical properties of heated air were experimentally Investigated 

with using a shock tube In an AVCO laboratory in the United States. 

Experimental and calculation data are presented in [8, 31, J>2,  32a, 

45-46] and surveys [28, 30, 47] (see also [33, 48]). The basic result 

of the experiments Is determination of oscillator strengths for the 

most Important molecular transitions. 

By experiment Is measured spectral intensity of radiation of a 

column of heated gas at different temperatures and densities.  In a 

direct Impact wave are studied temperatures of the order of 3,000- 

5,000 K, in a reflected wave — of the order of 8,000oK. Recalculation 

of measured intensities on coefficient of absorption can be made with 

help of the known formula for radiation flux from a heated layer of 

a given thickness d (see § 7, Ch. II, formula (2.38)). Namely, 

quantity of radiant energy in wavelength Interval dX, given off in 

2 
1 sec from a 1 cm surface of a layer In unit of solid angle normal 

to the surface, equals 

/l&-/x,rfX(^-e-Ki,,), (5.115) 
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where I. Is corresponding magnitude for an Ideal black body 

and H{ = ^(^ - e~    ) is the coefficient of absorption, corrected 

on forced emission. If the shell is optically thin, self-absorption 

in It can be disregarded (even in centers of lines): ni  d « 1. Inten- 

sity of radiation in this case is determined by radiating ability: 

The ratio of measured intensity of radiation from calculation on 

shell of unit thickness to intensity of ideal black body gives directly 

corrected coefficient of absorption H,. Oscillator strength for 

system of Schumann — Runge bands was determined by means of investiga- 

tion of intensity of radiation in pure oxygen at comparatively low 

temperatures ^3,000-4,000^, obtained in a direct wave. 

With such temperatures the degree of ionizatlon is very small, 

absorption of negative ions of oxygen and practically all absorption 

is connected with molecular transitions. From these data on formulas 

(5.113) > (5.114) with use of calculation coefficients q)X oscillator 

strength was deduced fs ,_ = 0.028 + 0,008.  In the wavelength inter- 

val from 3/500 to 4,700 A it turned out that it did not depend on X, 

T, p. 

Data on oscillator strengths of NO and No were obtained by means 

of treatment of spectra of radiation in air at various temperatures 

and densities. 

These magnitudes were extracted consecutively during the study 

of those sections of the spectrum, of temperatures and densities at 

which still unknown mechanisms play a small role, with the exception 

of one; absorption due to already known mechanisms was excluded from 

. 437 

^wk=--:»=^:a.Jj:BOtMJiUu«^^ 



measured magnitudes. 

Thus, were found oscillator strengths for all important systems;* 

they are gathered in Table 5.8. 

Table 5.8. Oscillator Strength for the Most Important 
Systems of Bands 

System, ICdn-P) N<^ NOy Nf(2«) N{(l-) Nf(I*> 

Error               . . 
Interval   X, A 

0,028 

3^-4700 

0,006 
+0,002 

Sfifö-SOOO 

0,001 
+0,0005 

2500-2700 

0,09 
±0'03 

2900-3300 

0,18 

3300-^4500 

0,025 
+0,008 

10460 

In Pig. 5.29 are depicted experimental and theoretically calcu- 

lated intensities of radiation when T = 8,000 K p = 0.83p0. 

Formulas for calculation of coefficients of absorption of air: 

IVet 
**molec 

n 000 
9,5fnilpe     T 

»300 

63 500 
0,34?,«       T 

127 500 
30,69,+«       X 

•4 900 
8t5<pt4< 

36100 

1^—2.67.10"c0_4 

system 
Schumann - Runge 
ß-system NO, 

^-system NO, 

2*-system N,, 

1*- system Nj, 

1"- system NJ, 

«HKwuner^" 
a,56.i0Wfa-8- h« 

*»     1.44 
"if " W5" 

6» 
a0- 

» ue 000 
i     * 

ill 000 
S        T 

156 000 r * 
too 000 

1         T 

106 000 
»"       * 

0,. 

N,. 

O, 

N, 

NO 

«No1-2,67.10
,»cNot-^-ONo,(T in 

0K, X in cm, H in cm"1) 

For convenience of calculation of coefficients of absorption of 

air we cite numerical formulas for calculation of separate components 

*For N2(i
+)-system f strongly depends on X due to sharp change of 

internuclear distance with change of X. 

.   438 

..»..«.«a.-.,- ri-jii aaaaaiiMMtM 1"   -'-"■ - 
iMMaMfiililiiilill mmtm iMiMiiiaiJittMaiiiimii 



in regions of molecular absorption and first lonlzatlon. I.e., when 

T < 20,000ÖK. 

Concentrations c. of all particles are determined In these 

formulas as the ratio of numbers of particles to number of Initial 

molecules In cold air. In formulas for coefficients of molecular 

im ■ i t I I I ■! 

4S    46  47 4* 49 /.o 

Fig. 5.29. Spectral Intensity of radiation 

I, watt/cm^»sterad'M- layer of air of thick- 

ness d =» 1 cm. T = 8,000OK, p « 0, 83p0 

(p0 — normal density). Shown are experi- 

mental points and calculated curves, corres- 
ponding to different mechanisms of emission. 
Dotted line gives magnitude 0.1 I,  (1/10 

Intensity of radiation of black body). 

Ratio I^/l^ gives directly *« cm" , inas- 

much as d = 1 cm. The figure is taken from 
[8]. 

absorption are placed oscillator strengths from Table 5.8. Effective 

charge in formulas for Kramers absorption is taken equal to 1.* 

Concentration of negative ions of oxygen can be calculated by the 

♦Correction factor of Bieberman and Norman (see § 7) is not con- 
sidered. 
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^(bflJ    q*    0,5    Qfi    «7    ^ 
M^u/ta to***, ** 

Fig.  5.30,    Emission rate of air when 
T = 12,000oK,  p = p0  (normal density). 

Shown are contributions of different 
mechanisms, iip — free-bound tran- 

sitions; A — total radiation; B — 
1/10 intensity of radiation of black 
body. 

KEY: (a) emisslvlty, watt/sterad.cnr.p.; 
(b) length of wave, \i, 

formula of Saha, knowing the concentration of atoms of oxygen and free 

electrons. Effective absorption cross sections by negative 0~ ions 

is given in Pig. 5.5 in § 5. Knowing all components of coefficients 

of absorption, it is possible to calculate total coefficients and 

radiative abilities for any temperatures and densities. On figures 

5.30 and 5.31 is shown reconstruction of radiation obtained thus for 

several values of temperature and density (these data are borrowed 

from [28]). On graphs are shown contributions of individual components 

of absorption. 

In [32] was Investigated the question about free-free absorption 

440 

irillltil iMil'tfiTf*"'-^'' 
iiii virnfil"—''•'*■ 



4/    4*    &    4«    45    45    47    ^    ^ 
b)   Miami im* (b] 4M 

Pig. 5.51. Emission rate of air when 

T - 8,000^, p - 10""5 p0. A - 10'5 

intensity of radiation of black body, 
B — total radiation, pu. — free-bound 

transitions. 

KEYt (a) eraissivity, watt/sterad.cnr.p.; 
(b) length of wave, p,, 

by electrons in a field of neutral atoms. For this radiating ability 

was measured when T = 8,000oK p/p0 « O.85 in infrared region of 

spectrum with X ~ 20,000-40,000 A, where by calculations all other 

mechanisms have to play a small role. It turned out that coefficient 

of absorption may be approximately described by the usual formula for 
p 

brake absorption with square of effective charge Z =» 0.04 for 0 atoms 
2 

and Z =0.02 for N. In visible and ultraviolet regions of spectrum. 

Judging by these data, a free-free absorption in field of neutral atoms 

does not have to play a role. 

Coefficients of absorption of red light X =» 6500 A in air in a 

shock wave for two values of temperatures were measured by I. Sh. Model' 
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[34], In the experiments of I. Sh, Model a detonational wave emerged 

from explosive on boundary with air. By photographic means change in 

time of luminous intensity of surface of front of shock wave in a 

direction normal to surface was measured. If d is thickness of layer 

of air enveloped by shock wave to moment t, then luminous intensity 

of surface of front is determined by formula (5.115). When shell of 

heated air becomes optically thick n'd » 1,  the front gleams like a 

black body and I « I . Taking curve of build-up of glow I (d), it 

was possible to measure coefficient of absorption. Independently 

temperature was determined after the front according to brightness of 

front in the stage when H' » 1 and the front gleams like a black body. 

I, Sh. Model obtained values of coefficient of absorption for two 

temperatures, T = 10,900oK, n^ = 3.7 cm j T = 7480oK, n^  = 1.66 cm" 

(X = 6,500 A, p/p0 « 10). The first value satisfactorily agrees with 

the value calculated by the given formulas. 

A basic role is played by absorption in the 1 -system of Np and 

by the Kramer mechanism. Regarding, however, the second point, the 

experimental value is much higher than that given in theory.* 

A characteristic feature of all the above components of absorp- 

tion (see summary of formulas pp. 458-440 is a sharp, Boltzmann 

dependence on temperature with very considerable energies of activa- 

tion. At not very high temperatures of the order of 3,000-4,000oK 

all coefficients in visible region of spectrum become very small; for 

instance, when T = 4,000oK and p/p0 = 1 H ~ 10  cm' . 

At such low temperatures a basic role In absorption is played by 

molecular absorption by nitrogen peroxide, which is present in air in 

insignificant quantities (see Table 5.9),** but strongly absorbs light 

*It is impossible to express defined Judgement about causes of this 
divergence. 

**Concentrations of N0p were calculated in [59]. 
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in visible and ultraviolet regions of spectrum. Molecular bands of 

Table 5.9. Equilibrium Concentrations of Nitro- 
gen Peroxide in Heated Air, C^Q «lO^ 

Nsp/o» 
10 6 i 

^N^w 
to s 1 

T.-KV T.-KN^ 

2000 1.11 0,79 0,35 3500 2,91 1,92 0,79 
2600 2,02 i,V 0,63 4000 2,86 I.«» 0,67 
3000 2.24 1,58 0,69 5000 2,11 1,29 0,25 

Note; cNn = number of molecules of NOp/number 

of initial molecules in air. 

NOg form a very complicated system with practically overlapping lines. 

In Pig. 5.52 is given dependence of effective absorption cross section 

of cold molecules of N02 according to [55]. The cross section monot- 

,    _IQ  p -20  2 
onically drops from a - 6.5.10 ^ cm to a « 10   cm in wavelength 

interval from X » 4,000 A to X - 7,000 A. According to measurements 

of [56] absorption cross section in infrared region is very small: 

when X - 10,000-20,000 A a < 4.5-lO"2"5 cm2. 

In close ultraviolet region when X = 

» 3020 A the cross section passes through 

a minimum [37]; this together with curve of 

Fig. 5.32 indicates that maximum of absorp- 

tion lies in blue part of spectrum X «- 

- 4,000 A. 

It is necessary to expect that at 

temperatures of the order of 2,000-4,000oK 

absorption spectrum is strongly displaced 

in red side and effective cross section of 

N02 in all visible region of spectrum becomes of the order of several 

units on 10 ""■^ cm" (for greater detail see article [38]; see also 

tpri) 
' MkktiM iMf   iM   WO      MO kJi 

Fig. 5.32. Averaged 
effective absorption 
cross section of light 
by unexcited molecules 
of N02. 

KEY: (a) degree. 
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§ 7 Ch. IX). 

For instance, during concentration of NOp molecules In air of 

-4 
the order of 10  this gives a coefficient of absorption at normal 

-"5   -1 
density of the order of 10 ^ cm . 

In conclusion, -once again we will stress that the question about 

optical properties of heated air Is still very far from Its final 

solution.  In a number of cases there are deviations between theory 

and experiment and values of oscillator strengths for molecular tran- 

sitions are Impossible to consider fully reliable. 

i 
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CHAPTER  VI 

SPEED OP RELAXATION PROCESSES IN GASES 

1, Molecular Gases 

§ 1, Establishment of Thermodynamlc Equilibrium 

The state of a gas depends on concentrations of different com- 

ponents; atoms, molecules, ions, electrons, and distribution of 

internal energy with respect to degrees of freedom. In general the 

internal energy of a gas is composed of energy of translational 

motion of particles, rotational, and vibrational energy of molecules, 

chemical energy, ionizing energy, and electron excitation of atoms, 

moleucles, ions.  In conditions of total thermodynamlc equilibrium 

the state is completely determined by element composition of gas 

mixture and values of any two macroscopic parameters, fo.^ instance, 

density and specific internal energy. 

Excitation of each of the degrees of freedom* and establishment 

of thermodynamlc equilibrium require a certain time, the scale of 

which is the so-called relaxation time. Relaxation times for 

♦For brevity we will talk about dissociation, chemical trans- 
formations, ionizatlon as about "degrees of freedom," 
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exaltation of different degrees of freedom are frequently very 

strongly distinguished! therefore, there are possible such conditions 

when thermodynamlc equilibrium Is established not In all, and only 

In part of the degrees of freedom. Most likely equilibrium Is 

established In translatlonal degrees of freedom of particles. If In 

the Initial moment there existed some arbitrary distribution of 

atoms or molecules with respect to speeds, then after a few elastic 

collisions of particles with close masses, distribution with respect 

to speeds In these particles becomes Maxwelllan, Establishment of 

Maxwelllan distribution occurs as a result of an exchange of 

momentum and kinetic energy of particles, where during collisions of 

particles with masses not strongly distinguished momentum and energy 

are exchanged, which on the average are of such order as actual 

momentum and energy of colliding particles. Therefore, relaxation 

time for establishment of Maxwelllan distribution In particles of a 

given sort or In particles of various sorts, but with close masses, 

has an order of the average time between gas kinetic colllslonst 

taoW^TfM —— —,-=-—i (6,1) 

where I  Is average gas kinetic range, v Is average velocity of parti- 

cles, n Is number of particles In 1 cm , and a       Is gas kinetic 

effective cross section. For Instance, In air under normal conditions 

l  ~ 6»10~ cm, Ttrans ~ 10**  sec. 

Usually gas kinetic times are very small as corapared to times 

during which macroscopic parameters of gas, let us say, density and 

energy change in a noticeable way. Therefore, as a rule, it is 
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possible in every moment to add to gas "translatlonal" temperature — 

a magnitude characterizing average kinetic energy of translatlonal 

motion of particles.* In a state of Incomplete thermodynamlc 

equilibrium, when one talks about thermodynamlcally equilibrium 

degrees of freedom, we consider that distribution of energy (and 

concentrations of corresponding components of gas mixture) In these 

degrees of freedom Is In equilibrium with "translatlonal" temperature 

of gas. 

Magnitudes corresponding to unbalanced degrees of freedom, can 

be arbitrary; they depend on many factors. Including the preceding 

"history" of the process in which gas participates. 

Such conditions ,re met in rapidly occuring gas-dynamic processes 

or in regions of sharp change of macroscopic parameters, for Instance, 

in ultrasonic wave or in front of shock wave, when time scales of the 

phenomenon** turn out to be comparable or even much smaller than 

corresponding relaxation times. In this case distributions of energy 

and concentrations of corresponding particles are determined not 

simply by temperature, density, and element composition of gas, 

as during thermodynamlc equilibrium, but even by the kinetics of 

physico-chemical processes leading to establishment of equilibrium 

in given degrees of freedom. 

In certain cases relaxation times for establishment of thermo- 

dynamlc equilibrium in a specific degree of freedom are so large that 

*It is necessary to note that during Isotropie distribution of 
particles with respect to directions of speeds of translatlonal motion 
pressure of gas is determined by energy of translatlonal motion of 

particles which are in 1 cur E, : p = ZE^/J,  absolutely independent of 

what the distribution of particles with respect to absolute values of 
speeds is, i.e., whether or not Maxwelllan distribution and "tempera- 
ture" exist, 

**In a shock wave this is the time of sharp compression of gas. 
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the unbalanced state of the system turns out to be very stable, 

stationary. Usually such a positlcn appears in a mixture of gases 

capable of chemical transformation, which actually does not occur 

due to great activation energy necessary for flow of reaction, A 

typical example is the fulminating mixture ZH^ + Og, which in a state 

of strict thermodynamic equilibrium at low temperatures had to 

completely turn into water. We speak of such cases as "false" equili- 

briums. 

As was already noted above, relaxation times for establishment 

of equilibrium in different degrees of freedom frequently very 

strongly are distinguished. If at a given temperature and density 

we pass from fast to slower relaxation processes, then usually it is 

possible to establish such a sequence: translational degrees of 

freedom, rotation of molecules, vibration of molecules, dissociation 

and chemical reactl-^*, ionization and electron excitation. 

Owing to a very sharp distinction in relaxation times, each of 

the relaxation processes may be studied individually, separating 

it from others and assuming that in easily excited degrees of freedom 

equilibrium exists in every moment, and slower relaxation processes 

do not take place during the period of the considered times. 

All relaxation processes possess certain general patterns, 

independently of their nature. Namely, approach to state of thermo- 

dynamic equilibrium in given degree of freedom OCQUTS asymptotically, 

according to the exponential law. If one were to characterize "state" 

of given degree of freedom by some parameter, let us say, number of 

particles N (for Instance, number of molecules whose vibrations are 

excited, or number of molecules of a given sort in the case of 

chemical transformations), then at a given temperature and density 
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(and element composition) the gaa may be written 

4r-^. (6-2) 

where N Is the equilibrium number of particles, and T Is a certain 

magnitude of dimension of time, which characterizes speed of approach 

to equilibrium. Prom solution of equation (6,2) 

It Is clear that T IS relaxation time for given process. In general, 

the kinetics of physico-chemical processes by far are not always 

described by a linear equation of type (6.2). However,* in stage of 

approach to equilibrium, when JN - N| « N , equation (6.2) is 

accurate as first approximation, if in the general equation of kinetics 

of the type 

ir-m.r,«....) (6, if) 

we present the function in the right side in the form of an expansion 

with respect to a small deflection from equilibrium (N - N)/N . 

It is necessary to say that time T, determined by equation (6.2), 

as a rule, characterizes scale of times of establishment of equili- 

brium and in the case of the general equation of kinetics (6,4) 

(in this we will check by a series of specific examples in subsequent 

sections). 

Consideration of kinetics of physico-chemical relaxation 

processes has two aspects. First, the question about speeds of 
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elementary processes, leading to excitation of one or another degree 

of freedom. I.e., question about effective cross sections of cor- 

responding nonelastlc collisions of particles, as a reault of which 

excitation occurs. Usually by these cross sections Is also determined 

characteristic relaxation time T. Secondly, the question about the 

actual kinetics of the relaxation process In given specific condi- 

tions taking into account the changing In time of macroscopic param- 

eters of system and reverse Influence of the process on change of 

macroscopic parameters. In this chapter we will stop only on the 

first of the shown aspects. (The second will be considered In 

Chapters VII, VIII), Here we will always assume that In gas are 

maintained constant temperature, density, and concentration of those 

particles which do not havs a relation to the conöluer-eu process, 

§ 2, Excitation of Rotations of Molecules 

Energies of rotation quanta of molecules are usually very small. 

Being divided by the Boltzmann constant^ they have an order of 

several degrees, for Instance, for oxygen it is 2,10K, and for 

nitrogen it is 2.90K, Therefore, even at room temperature T « 500OK, 

and even more so at high temperatures, quantum effects of rotations 

of molecules do not appear. Only the lightest molecules of hydrogen 

and deuterium are a certain exception, possessing very little 

moments of inertia and comparatively large rotation quanta — 85,4 

and 450K. 

Due to "classlcallcy" of rotations of a molecule during collisions 

translational and rotational energies are very intensely exchanged. 

Really, time of collision, i.e., time during which colliding molecules 

interact, is of the order a/v, where a is dimension of molecule, and 
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v Is average thermal speed. If energy of rotations Is of the order 

of kT, then time of collision Is comparable with period of rotation.* 

Consequently, the collision of molecules can be presented as the 

collision of two slowly turning "dumbbells" and sufficiently small 

asymmetry during approach of particles, so that they obtain a notice- 

able rotational moment. 

Experimental data confirm the fact that rotations are easily 

excited. With the exception of E*  and D2, rotational energy of 

molecules attains Its equilibrium classical value kT (for diatomic 

molecules) after ten gas kinetic collisions. Times of rotational 

relaxation were measured by experiment mainly by means of the study of 

dispersion and absorption of ultrasonics (for more about this method, 

see § 5, ^ Ch, VIII). They are In qualitative agreement with measure- 

ments of Corning and Green [1-5] of thickness of the front of weak 

shock waves according to reflection of light (for more about this 

method, see § 5 Ch, IV). Certain data about times of rotational 

relaxation and number of collisions necessary for establishment of 

thermodynamic equilibrium in rotational degrees of freedom of molecules 

are given in Table 6,1, More detailed data with numerous references 

to original works can oe found in the surveys of L, V. Leskov and 

F. A. Savin [4] and S, A, Losev and A, I, Osipov [5], 

With the exception of hydrogen at not too high temperatures, 

one may practically alawys assume that equilibrium in rotational 

degrees of freedom is established Just as fast as in translational 

degrees, i.e., that rotations always have "translational" temperature. 

2 2 ♦Energy of rotations is of the order kT «♦ Jtü a , where (a  is 
angular frequency of rotations, M Is mass of molecule. Period of 
rotations 
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Table 6,1, Rotatlcml Relaxation of Molecules 
.•    1 
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1    m. 

soo 
293 8.110-» 

20 
10 

Shook nave 
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*** :   806   ' 2.8-10-« 16 Ultruonloa 1111 

§ 3, Eqxaatlon of Kinetics for Relaxation of 
Vlbrational Energy of Molecules 

Energies of vlbrational quanta of the most important diatomic 

molecules, being divided by the Boltzmann constant, have an order of 

a thousand or several thousand degrees; for instance, for oxygen hv/k ■ 

-- 22300K, for nitrogen it equals 3340oK, By formula (5.19) for vibra- 

tlonal energy of gas vibrational degrees of freedom give a noticeable 

contribution In heat capacity of gas, starting from temperatures at 

which W? Is a few times less than hv. Thus, when hv/kT « 4 energy on 

one vibration composes 7a25J< of its classical value kT, when hv/kT - 

- 3-15^i for air of this temperature it is near 10000K, Thus, in 

distinction from rotations of molecules the question about vibrational 

relaxation practically appears when vibrations have essentially a quan- 

tum character. Conversely, in the nfarM classical region when KT » hv, 

let us say, at temperatures of the order of 10,000-20,000oK the question 

loses, to a considerable degree. Its timeliness, since in this case 

the molecules are basically dissociated into atoms. In the "far" 

classical region when kT » hv for excitation of vibrations, as also 

for rotations of molecules, not many collisions are required. However, 

at those temperatures of the order of a thousand or several thousand 

degrees, when the question about vibrational relaxation presents 

practical Interest, relaxation times are very great: for excitation 
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of vibrations, as theory and experience show, thousands and hundreds 

of thousands of collisions are needed. 

Let us formulate equation of kinetics for excitation of vibra- 

tions. Let us consider for simplicity gas from diatomic molecules 

of one sort. Let us assume that T < hv/k, so that excitation of 

only the first vlbratlonal level of molecules* Is essential (for 

air - this Is temperatures of 1000-20000K), If noi n^, n = n0 + n^ 

Is the number of unexclted, excited and all molecules In 1 cm , 

T , Is the average time between gas kinetic collisions, determined 

by formula (6.1), and pi0 and pl0 [p^ ?J are the probabilities 

of excitation of vibrations and deactlvatlon of excited molecule 

during collision, then the equation of kinetics can be written in 

the form 

^f—^(/»oino-PionO. J6#5J 

By principle of detailed balancing, in accordance with the law 

of Boltzmann, 

Ä«^.e-w (6,6) 
ft»       "Op ' 

(Index p always notes equilibrium values). 

Inasmuch as when kT « hv n^ « n^ ~ n, we will obtain aporoxl- 

mately: 

din     "ip-*! 
(6.7) 

♦If the molecules are polyavomlc, then we are limited to the 
case of excitation of only the most low-frequency vibrations. 
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whwe relaxation time 

».& (6.8) 

Is proportional to the number of collisions necessary for deactlvatlon 

of molecule -VPio* Multiplying equation (6,7) by hv, we will 

obtain the equation for relaxation of vlbratlonal energy of unit of 

volume E « hvn^E (T) - hvn^ (T): 

^ EP(T)~E {6.9) 

As we see« for excitation of vibrations equations of kinetics {6,7), 

(6,9) have the form of (6,2) during any deviations from equilibrium. 

Let us consider now temperatures which are not small, kT it hv, 

yrhen In gas are present molecules which are In the most diverse 

vlbratlonal states. In this general case one should write the system 

of equations of kinetics for mcabers of molecules n,* possessing I 

vlbratlonal quanta (l ■ 0,  1» 2 .,,), However, an equation of type 

(6,9) for relaxation of full vlbratlonal energy all the same remains 

in force where relaxation time is determined by a formula which is 

only somewhat modified as compared to (6,3), 

From quantum mechanics it is known* that if vibration is 

harmonic the oscillator can change its own energy only by a magni- 

tude of one vlbratlonal quantum, where probabilities of transition 

from a state with I - 1 quanta into a state with I quanta p, ^ , and 

transition from l-level to I - 1 level p  , ^ are proportional to I, 

♦See, for instance the book by L, D, Landau and Ye, M, Lifshifts 
[23. 
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Thus, If we consider a molecule as a harmonic oscillator, which 

Is accurate for not too high vlbratlonal states. I.e., at tempera- 

tures which are not too large as compared to hv/k, then It Is possi- 

ble to write 

Pi~ui = lP(n',   Pt,i-i = lpoi;   /=I,2, 3, ...       (6.10) 

The equation of kinetics for the number of molecules possessing 

I quanta taking into account transitions into the l-th state both 

from the (l - l)-th, and also from the (l + l)-th state, has the form 

-JJ- =» ^ (Pi-i, i «J-t + Pt+i. IKM — pi, i-i ni — /?/, /+i n,). ( 6,11) 

By the principle of detailed balancing, analogous to (6.6), 

IL±l=:JlhJLsse
Jw (6.12) 

PI,I-I    *i-t.p ' ' 

Let us multiply equation (6.11) by hvl. Putting (6,10) in 

(6.11), summarizing over I and noticing that E = Zhvln, is the total 

energy of vibrations in 1 cm , we will obtain 

*§r~~\P*J"n-{p*-PK)E\, (6.13) 

where n = 2n, is the total number of molecules in 1 cm , Considering 

(6.6) and the fact that magnitude E = hvn(e v'  - 1)  constitutes 
sr 

energy of vibrations in i cnr in conditions of thermodynamic equili- 

brium (see formula (3.19)), we will come to equation of kinetics 
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(6.9) witt1 ^kae of relaxation 

T"^^- l6'u) 

The average of collisions necessary for establishment of equili- 

brium In vlbratlonal degrees of freedom equals 

z- L_. g. 

where Z^ = VP^O i3 "tt16 number of collisions necessary for deactl- 

vatlon of a molecule possessing one vlbratlonal quantum« When 

hv » kT Z « Z1 and formula (6.14) Is turned Into (6.8), At high 

temperatures, when the average of vlbratlonal quanta In moleucles 

Is great, T «■ KT/hv »1, 

In kinetic equation (6.11) for change of number of molecules In 

l-th quantum state only transitions accompanied by an exchange by 

energy between translatlonal and vlbratlonal degrees of freedom of 

molecules are taken Into consideration. In fact during collisions 

of molecules also an exchange by vlbratlonal quanta can occur, where 

It turns out that the probability of such an exchange Is much larger 

than probability of exchange between translatlonal and vlbratlonal 

energies [1?]. Therefore, Boltzmann distribution of molecules by 

vlbratlonal levels In accordance with t;otal reserve of vlbratlonal 

energy of gas Is established quickly. It Is possible to say that In 

unbalanced system at first "vlbratlonal11 temperature Is established. 
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and then levelling of "vlbratlonal" and "transitional" temperatures 

already occurs [14]• 

§ 4. Probability of Excitation of Vibrations 
and Relaxation Time 

Let us consider the most simple case, when on diatomic molecule 

BC falls atom A along direction of axis of molecule, as was shown 

in Fig, 6,1, If between colliding particles A and BC there is no 

chemical affinity, then during the approach repulsive forces, appear 

between them, at first decelerating atom A, and then repelling it 

from molecule BC, 

On atom C acts coercive force, which at 

L        Ji JL    first tends to withdraw it from the position 0 0 0 
of equilibrium and to displace it in the 

Fig, 6,1, Concerning  direction of atom B. If approach occurs very 
the question of exci- 
tation of vibrations   slowly, atom C slowly will shift from the 
in molecule upon im- 
pact of atom, place and then, when atom A and molecule BC 

are repelled and start to move away from 

eacn other, also slowly return to the initial position: the blow, 

so to speak, will be "adiabatic" and vibration will not appear. The 

condition of adiabacity consists, obviously, in: so that time of 

interaction of atom with molecule, which has order a/v, where a is 

the range of operation of forces, and v is relative velocity of 

particles during infinite withdrawal, is great as compared to period 

of vibrations: av/v » 1, Otherwise this condition can be imagined 

so: for "rocking" of molecule it is necessary that during decom- 

position of compelling force in Fourier integral there be great 

resonance components with frequencies close to natural frequency v, 

but for this It is necessary that time of collision a/v be of the 
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order 1/v, 

L. D, Landau and Ye» Teller [15] estimated the dependence of 

probability of excitation of vibrations on speed of collslons and. 

In the end, on temperature, using the conformity principle. For 

accuracy of quasi-classical approximation It Is necessary that wave 

length of particles be small as compared to scale of field: 

aMy/h » 1, where M Is reduced mass of colliding particles. It Is 

easy to check that this condition Is executed. If, along with the 

condition of adlabaclty av/v » 1, kinetic energy of relative motion 

Is much larger than energy of quantum Mv^ » hv. 

The probability of excitation of vibration during collision Is 

proportional to the square of the matrix element of energy of Inter- 

action of particles A and BC as a function of the distance between 

them U(x), In the quasi-classical approximation the matrix element 

Is turned Into a Fourier-component of energy of Interaction: 

\uism0**dt. (6,16) 

Let us take the law of repulsion In the form Ü - const e"^a 

and say for simplicity that const » f » M\r/2, I.e., that an atom 

can "closely11 approach a molecule. Integrating the equation of 

motion 

*.I/5^.,.S7^ 

we will find function t(x), x(t) and hence dependence U(t): 

U(l) *—- •  * (+) when       -oo<t<0, 
(-) when      0<<<« (• •+«• 
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(t =» 0 corresponds to the biggest approach of particles). 

To estimate Integral (6,16) let us turn to Integration with 

respect to a new path In complex plane t, passing along the straight 

line In the upper half-plane, parallel to real axis and distant from 

It at a distance of the pole of function U(t) nearest to real axis: 

t,, = lira/v. It Is easy to see that the Integral Is proportional to 
o 

the exponential factor exp (-2T av/v), and probability of vlbratlonal 

transition Is proportional to exp (-H-TT av/v)t  l,e,, exponentially 

drops with Increase of factor of adlabaclty av/v. Probability, as a 

function of relative velocity of particles v, must be averaged with 

the help of Maxwelllan distribution with respect to relative speeds, 

i.e,, with the help of a function proportional to exp (-Mv^/ßkT), 

Here appears Integral with respect to speeds contained in integrand 

2 2 
exponential factor exp (-47r av/v - Mv /2 kT), A basic role in the 

Integral is played by speeds v* = (^TT avkT/M) ' ^ at which index of 

exponential has least absolute value. Collisions with such speeds 

are mainly caused by excitation and deactivatlon of vibrations. 

Integral and probability of transltinns PQ. and p.. are proportional 

to maximum value of exponential factor:* 

1    kT j 

M-C^O3] 
(6.17) 

Substitution of numerical values of constants in index of 

*It Is curious to note that likewise, according to the law exp 

(-const T ' ), rate of thermonuclear reactions depends on tampera- 
ture. This occurs because the probability of approach of nuclei 
repelled by Coulomb forces also depends on relative rate of approach 

according to the law exp (-const«v), which is averaged with help 
of Maxwelllan distribution with respect to speedc of nuclei. 
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exponential (6*17) and experiment show that at not too high tempera- 

tures the index much larger than unity*4. This means that for 

collisions introducing basic a contribution into excitation and 

deactivatlon of vibrations, the condition of adiabacity holds and 

kinetic energy of colliding particles is much larger than kT, 

Quantum-mechanical calculations of probability of deactivatlon 
P10* deterininin6 relaxation time (Zener [17]# Schwartz and Herzfeld 

[18]}, also lead in adiabatic limit to a formula containing exponen- 

tial factor (6,17), In [18] is considered the most general case 

of collisions and for a number of collisions before deactivatlon is 

obtained the formula: 

*•-£-* F/I(^),(v)1•"Ä^•,'(*)",•     «6-18) 

where EQ m löira vH/l,    The last exponential factor accurately cor- 

responds to exponential in (6.I7) and at not too high temperatures 

owing to the great magnitude of the index describes basic temperature 

dependence of number of collisions. Factor exp (-e^/kT) considers 

certain easing of transitions from acceleration of particles during 

their approach owing to long-range attractive forces, which are 

described by a "potential well" with energy e^j e^ is usually of the 

order of several tenth fractions of an electron volt. Formula (6,18) 

is somewhat definltized in a later work of Herzfeld, [18a], 

As follows from the above-stated theory, time of vlbratlonal 

«For instance, in oxygen when T - 10000K the index equals 
approximately 10 (according to [16] j see below). 
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relaxation depends on temperature according to the law 

t = ZtCT = TCTi4 exp (ftr-5), (6.19) 

where b = const, and A Is a slowly changing function of temperature. 

Thus, graph In T depending upon T ~J ^ should give an almost straight 

line. 

By experiment times of vlbratlonal relaxation are measured at 

room temperature and small heating by the method of absorption and 

dispersion of ultrasonics, and in a wide range of temperatures with 

the help of shock tubes, by means of investigation of establishment 

of equilibrium in the front of a shock wave. A thorough investigation 

of relaxation in oxygen and nitrogen was conducted with the help of 

a shock tube by Blackman [16], Its results are presented in Table 

6,2, In the same place are given theoretical values for oxygen. 

Table 6.2. Vlbratlonal Relaxation in Oxygen and 
Nitrogen According to Measurements of Blackman [16]. 
Theoretical Values of Schwartz and Herzfeld [18].. 

T.MC PM (experiment)* PM (theory) 
Numter of col- 
lisions  I (ex- 
periment) 

t in sec reduced 
to density 

288 
900 

1200 
1800 
2400 
3000 

4.10-»**) 
1.1-10-» 
2.410-» 
9.8-10-» 
3.7-10-« 
1.2-10-» 

0^y 

MO-» 
.   3-10-« 

1.3-10-» 
8.6-10-» 
5.5-10- « 
1.510 » 

.;fr. 

2,5-10» 
t-10» 
5-10« 
1.4-10« 
4.5-103 
1.6-10» 

96-10-» 
41-10-» 
9.5-10-» 
2.7-10-» 
0.83-10-T 

l.'itro^e: 

800 
3000 
4000 
sooo 

3-10-« 
3.1 10-» 
».710-» 
2.5-10-« 

3.3- 50» •••) 
4.6-10« 
1.8-10» 
0.8-10* 

2.1-10-« 
0.87 10-« 
0.27-10-» 

•ihirlng calc-ilstior. of Pi(   fi on experimttita'  times T are   .sed ,-,6j kinetic  sections CJ,-    ■ 

• 3.6»10-15 en2, ^  • 4.1-1 -15 cir2. 

••r-di point is oltalned I., -..ht  -ItrsMnlc net'.ad  [1-]. 

•••11.1» ■■■Int Is obtained K-jitroKit.   [2C] t    r* J.S :f inveati.:*tlon ,;f    Aflow tr-M no::le. 

SA 
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calculated In the work of Schwartz and Herzfeld [18]. As can be seen, 

agreement between theory and experiment 1B not bad. 

Experimental values measured for the most diverse gases more or 

less satisfactorily lie on theoretical straight lines In T or In Z 

from T" '% This may be seen from Pig. 6,2, borrowed from [5]. 

Deviations from straight lines partially are explained by temperature 

dependence of pre-exponentlal factor A In formula (6.I9). 

Fig. 6.2. Experimental data on prob- 
abilities of deactlvatlon of mole- 
cules In Which vibrations are excited. 

Time of vlbratlonal relaxation In oxygen with that same tempera- 

ture Is less than In nitrogen, since the natural frequency in 

nitrogen Is one and a half times more than In oxygen which hampers 

excitation of vibrations In nitrogen. Therefore, vlbratlonal relaxa- 

tion In air has two periods: at first oxygen arrives In equilibrium« 

and~then nitrogen. It Is necessary to note that collisions of IU 
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molecules with 02 is 2,5 times less effective with respect to exci- 

tation of vibrations in Og, than 0g - 0g collisions. In general, 

certain molecules very actively excite vibrationj for instance, 

molecule of EUO 50-100 times more rapidly excite vibrations in Og, 

than the actual 02 molecules. Therefore, during measurements of 

vibrational relaxation a high degree of gas scrubbing from impurities 

is essential. 

Detailed summaries of source material on times of vibrational 

relaxation in different gases. Just as references to numerous 

experimental and theoretical works, can be found in the surveys of 

L, V, Leskov and F, A, Savin 1^] and S. A, Losev and A, I, Oslpov 

[5], Let us Indicate several of the recent works on the study of 

excitation of vibrations in 02 [58, 59], NO [60], CO [61], C02 [62, 

6^]. Let us note also a survey of [64] and work [65, 66] en vibra- 

tional relaxation in mixtures, 

§ 5, Equation of Kinetics of Dissociation of 
Diatomic Molecules and Relaxation Time 

Dissociation of diatomic molecules occurs usually during 

collisions of sufficiently energetic particles according to the 

scheme: 

At+M<tA + A + M, (6.20) 

where M is any particle,* In uniform diatomic gas particle M can 

♦Direct disintegration of a sufficiently strongly excited 
molecule into atoms Ag»- A + A has an extraordinarily small probabi- 

lity. Just as the reverse process of unification of atoms into a 
molecule without participation of a third particle to which could be 
transmitted part of the energy given off during unification., There 
are also small probabilities of photodissociation and recoiabination 
with emission of light quantum. 
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baieither molecule iW OP atom A. The reverse process leads to i 

recombination of atoms In three-body collisions, where third particle1 

M iakes on part of the binding energy given off. i 

The equation of kinetics for process (6.20) taking into account 

the fact that particle M can be both a molecule, and also an atom, 

has the form 

] Here for brevity the numbers of particles in 1 cnr are designated by 

i their symbols. Constants of rates of reactions depend only on 

( temperature and are connected by the principle of detailed balancing: 

fc-HS-*^ (6.22) 

where in parentheses are enclosed equilibrium values of numbers of ' 

particles for given temperature and density of gacj K(T) is the , 

equilibrium constant, distinguished from equilibrium constant for i 

pressures ^(T) by the factor (kT) i K(T) - K (T)/l{T, The equlllb-l 

rlum constant determines equilibrium degree of dissociation a at 

given temperature and density. By formula (5.26) 

£-.-'-&.-!,& V£ ft.'-*' lM 
(6.2?) 

where N is the number of initial molecules in 1 cnr, M. is the atomic 

jaass I for remaining designations see in $ 3 Ch. Ill). 
t 

j In distinction from vibration*! relaxation, the equation of  
— i 

J 
•TOf- 
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kinetics for dissociation of molecules in general is nonlinear. 

However, with a small deflection of It from equilibrium, it is 

possible in accordance with general indication in § 1 to bring to a 

linearized form (6.2) for numbers of particles A or Ag, where relaxa- 

tion time T is determined by expression 

i = 4a(2-a)^(Är + *;J^). (6.24) 

As calculations show, by time T is characterized not only the 

final stage of asymptotic approximation to equilibrium, but also 

in general, all kinetics of dissociation, even in that stage when 

1L is described by nonlinear equation (6.21), so that T in order of 

magnitude is equal to time of establishment of equilibrium dissociation 

and in general of arbitrary initial conditions. In llmitinc cases 

of small and strong equilibrium dissociation formula (6.24) is 

simplified. When a « 1 there are few atoms, a basic role is pl.ayed 

by dissociation of molecules by impacts of molecules also taking 

into account (6.22), (6,23) 

{-SaWkr-lxh. (o.£5) 

When i — o « 1, if even in Initial moment there are no atoms, 

the late stage occupies the main time, when there are few molecules 

and remaining molecules are smashed by the impacts of the atoms. 

In this case 

T-rr-.W'-2^- (6.26) 
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Thus, the question about time of establishment of equilibrium 

leads to the question of rates of reactions of dissociation or 

reoomblnatlon. Inasmuch as both rates are connected by the principle 

of detailed balancing {6,22),  It Is sufficient to know one of them 

from theory or experiment, 

§ 6. Recombination Rates of Atoms and Dissociation 
of Diatomic Molecules 

A rough estimate of the recombination rate of atoms In a diatomic 

molecule can be obtained from the most elementary considerations, 

assuming that every gas kinetic collision of atoms In the presence of 

a third particle leads to recombination« The number of collisions of 

A atoms with each other In 1 cnr In 1 sec equals A«v»a*A# where v «■ 

■ (8kT/MATr) / Is average thermal speed, and c Is gas kinetic cross 

section. The probability that at the time of collision "in the 

neighborhoods11 l,e#, at a distance of the order of molecular dimensions 

r, a third particle will appear, approximately Is equal to average of 

particles In a volume equal to the volume of one molecule: (4wr*y5)M, 

where N Is the number of particles In 1 cnr* Thus, the number of 

triple collisions In 1 car In 1 sec equals A^va-A^mry^N, Intro- 

ducing for generality the numerical coefficient ß, equal to pro- 

bability of recombination under the condition that a triple collision 

happened we will obtain for constant of recombination rate the expres- 

sion: 

^-^T*. (6.27) 

For Instance, for atoms of nitrogen v ■• 2.9*l(r r T0 a^sec. 
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a ~ 10        cm ,    Considering r- =» 3,k»±0      cm and ß = i, we will obtain 

Är = 2.2-10wV/To   cm /mole »sec (in one mole there are 6'10 ^ atomn). 

When T « 300oK kr - 5.8«10 ^ czi/mole^'aec. 0K kr - 5.8«10
15 cm6/mole2* 

Recombination of atoms of nitrogen is usually studied experi- 

mentally by measuring the change in time of the number of molecules 

of nitrogen according to the afterglow.* Thus was found constant of 

recombination rate with molecules of nitrogen as the third particle. 

In the interval of temperatures from 297° to 4420K it turned out to 

almost not depend on temperature and equal k = 5.8»10  cm /mole2.sec 

[21], in good agreement with the given estimate. Close results have 

been obtained by other authors [22, 25]). 

In [70] by means of measuremenc of unbalanced radiation was 

studied dissociation and recombination of nitrogen in a shock tube. 

It was found that when T = 6400oK the constant of recombination rate 

equals k N «■ 6,5«10  cm /mole «sec, if an atom of nitrogen serves 

as the third particle, and is 1? times less, if the role of third 

particle is played by a molecule of nitrogen. 

In general, at not too high temperatures (T ~ 300-1000ÜK) 

constants of recombination rate usually have the order 

10-10  om /mole*"'3ec which points to rather large probabilities of 

recombination ß during a three-body collision. The recombination rate 

comparatively weekly depends on temperature, usually manifeotinc a 

■»The phenomenon of afterglow of nitrogen consists of the fol- 
lowing: during recombination of atoms of nitrogen N2 molecules turn 

out, to be in an exoitaa ~üatc ''z , Subsequent collisions with other 

mclc-julcs or atoms partially deactivate the molecules so that they 

pass into a lower state B^II , after which are emitted quantum of the 
o 

first positive system IL^lPlI   ^ A^),  which are recorded by experi- e g u 
ment. One Judges kinetics of recombination according to change of 
luminous intensity. 
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certain tendency to decrease with temperature Increase, This Is pos- 

sible to grasp. If one considers that the probability of recom- 

b:.natlon during a triple collision Is even greater the larger the 

time of Interaction of colliding particles. I.e., the less their 

speed or the less the temperature, so that probability ß Inversely 

depends on temperature. For Instance, If ß ~ 1/T, then 

k, ~ vß -v l/TT'  in accordance with theoretical calculations of 

Wlgner [24], 

The recombination rate of atoms depends on the kind of third 

particle; for Instance, during recombination of atoms of nitrogen, 

atoms of nitrogen as third particles are 15 times more effective 

than molecules (when T « 6400oK), In [25] the study of kinetics of 

dissociation of Iodine In a shock tube (concentration of I» molecules 

was measured by absorption of light) showed that when T - 1500oK 

molecules of Iodine are 55 times more effective as third particles 

during recombination of atoms of Iodine than atoms of argon. Recom- 

bination rate of Iodine In a three-body collisions with argon when 

T - 15000K kp - I.^IO1* cm6/mole2*aec  [25] j when T - 2980K 

kp - 2,9»1015 cm6/mole2.sec [26], 

Dissociation of a molecule upon collision with another particle 

can occur only In the case when energy of colliding particles exceeds 

energy of dissociation. The total number of collisions In 1 sec 

of a given molecule with other particles whose number In 1 cnr 

equals N, Is v - tfv'a, where v' Is the average speed of relative 

motion of particles v' ■ (SKP/iru) '   i  M- Is the reduced mass,* During 

♦In estimating the recombination rate, for simplicity v' was 
replaced b> v, l,e,, |i-atomlc masses M., 
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a Maxwelllan distribution with respect to speeds the number of col- 

lisions of molecules with kinetic energy of relative motion exceeding 

energy of dissociation U, composes the fraction (U/kT + l)e ' 

of the total number of collisions (usually U/kT » 1,  so that 

(U/kT) + 1 ~ U/kT). It is considered that with respect to dissoci- 

ation only that component of kinetic energy of particles which cor- 

responds to component of relative speed directed along line of centers 

of colliding particles is effective (if the latter are considered 

as hard balls). In this assumption the fraction of "sufficiently 

energetic" collisions instead of (U/kT) exp (-U/kT) equals simply 

exp(-U/kt). 

It is natural to think that on breaking the bond in a molecule 

not only kinetic energy of translaticnal motion of colliding particles 

can be expended, but also energy of their Internal degrees of freedom: 

vlbi-ational, rotational. It is possible to show (see [27]) that 

the fraction of collisions in which total energy of colliding parti- 

cles taking into account energy of internal degrees of freedom 

exceeds energy of dissociation, equals* 

u 1 f ü VVW" 

where every vibratlonal degree of freedom introduces unity .Into index 

n, and every rotational degree of freedom introduces 1/2 (in the case 

of half-integral s factorial s' is replaced by gama-functicn: 

r(. -i i). 

♦In deriving this formula it is considered that distribution of 
molecules by energy states in all internal degrees of freedom is 
3oltsmann, corresponding to translational temperature T. 
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At present the theory of dissociation of molecules by Impacts of 

particles Is very far from completion, therefore, during comparison 

with experiment for constant of speed of dissociation a formula of 

the shown type Is usually used: 

*--Ä'»-a-(^)Vir- (6.28) 

The number s, characterizing degree of participation In dissoci- 

ation of Internal degrees of freedom, and factor P, which constitutes 

probability that dissociation Indeed will occur during collision of 

particles with sufficient reserve of energy for dissociation, are 

considered as parameters .<hich one should determine from experiment. 

According to contemporary Ideas a basic role In dissociation Is 

played by the vlbratlonal energy of the moleucle. Ye. V. Stupochenko 

and A« 1. Oslpov [28] showed that the probability of dissociation of 

an unexclted molecule Is extraordinarily small, even If translations! 

energy of colliding particles exceeds binding energy U, Mainly 

molecules dissociate which are on very high vlbratlonal levels whose 

energy Is close to the energy of dissociation. Here energy of trans- 

latlonal motion of particles can not strongly differ from average 

thermal energy. 

If one were to assume that distribution of molecules by vlbra- 

tlonal states Is Boltzmann, then for rate of dissociation a formula 

of the type (6,28) remains In force with corresponding value of 

Index s. 

Ye, V. Stupochenko and A. I. Oslpov [29] showed that this 

assumption Is not always Justified, The "drain" of molecules from 

highest vlbratlonal levels due to dissociation can sometimes strongly 
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disturb Boltzmann distribution of molecules by highest vlbratlonal 

states. In this case kinetics of dissociation should be considered 

jointly with kinetics of excitation of highest vlbratlonal states. 

The process occurs In such a way that owing to collisions molecules 

"are given" to upper levels, whence pass Into a dissociated state. 

During recombination of atoms in the presence of a third particle 

energy of dissociation is transformed mainly Into vlbratlonal energy 

of the formed molecule. The theory of these processes is presented 

in survey [76], 

By experiment was studied basically dissociation of oxygen after 

the front of a shock wave in a shock tube (work of Matthews [30}, 

Byron Dl], N, A, Generalov and S. A, Losev D2], Camac [67], Rink, 

and others [68]; for a survey of source material and references to 

other works, see in [k,  5]), 

A thorough investigation was conducted by Matthews, By the 

interi'erometrlc method was determined movement of density in an 

unbalanced zone after a shock wave, which was compared with theoretical 

calculations carried out on the basis of the formula for rate of 

dissociation of type (6,28) (see Ch. IV: VII), Equilibrium in the 

vlbratlonal degree of freedom is established at least an order faster 

than dissociation occurs,* so that effect of relaxation of vibrations 

does not hinder study of rate of dissociation. The 2000-:f0000K 

region of temperatures was studied. The degree of dissociation in 

experiments of Matthews was small, a ~ 0,05-0,1, so that the basic 

*Not too high vlbratlonal states are considered, in which 
there is an overwhelming majority of molecules. 
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role In dissociation was played by OL - Ou collisions,* In calcu- 

lations It was assumed that S •• 3j effectiveness of collisions 

turned out to equal Pn n ■• 0,07?, and constant of speed of dls- 

soclatlom 

knr* - 5.4.1(W«(^?),«"J^«»«/mole'sec (6.29) 

Calculations conducted with s » 0 gave an Improbably large 

value of P (larger than unity). This Indicates that In dissociation 

an essential role Is played by energy of Internal degrees of freedom 

of molecules. Knowing equilibrium constant for dissociation Ogt 

jr(r)- l,85.10»r'V"*r' mole/cm3 ( 6.50) 

recombination rate with Og molecules as the third particles can be 

found: 

^-•.MOMf"* ej»Vmole2 sec**»      (6,51) 

*Wlth the reaction 0« + Ou « 20 + Ou competes a two-stage 

reaction of 0« dissociation with Intermediate formation of ozone 0« + 

+ Og ■• 0 + 0,1 0, + M^O+Og + M (correspondingly the reverse pro- 

cess of recombination can also occur). At high temperatures this pro- 
cess plays a small role (In particular. In experiments of Matthews), 
However, recombination of oxygen at low temperatures and small degree 
of dissociation occurs mainly through formation of ozone, since 0 + 
+ 0 + M collisions occur much rarer than 0+0g + M-*0, + Mcolllslons, 

For constants of rates of reactions with participation of ozone, see In 
£55]. 

**Thls formula Is accurate only In the Investigated Interval of 

temperatures T « 2000-4000oK. Extrapolation of It to room tempera- 
tures gives an oversized value of the recombination rate. 
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Relaxation time for T » 5500oK and normal density T = 0,95»lO" 

sec (a » 0,084)# This result Is very close to data of Gllck and 

Wurster [54], measuring relaxation time for dissociation of oxygen 

In a shock tube. Their times, corrected to normal density, equal 

T, 0K  5100  5500  5400  5850 

T.106 sec   2    0.8   0.5  0.06 

In 0% 56, 25] was studied rate of dissociation of bromine and 

iodine (also In shock tube; concentration of molecules Brp, I2 was 

measured according to absorption of light from an outside source). 

In [55] in an interval of temperatures up to 2000oK for speed of 

dissociation of molecules of bromine by impacts of atoms of argon, 

is obtained: s = 2, P- -Ar = 0,12. Satisfactory agreement with 

this result is obtained in the theoretical work of Ye. Ye. Nikitin 

[57]. For a survey of works on dissociation of molecules, see in 

[5], Let us note recent work [69], in which was studied dissociation 

of hydrogen in a shock tube. For rates of Op and Np dissociation and 

other relaxation processes in air see also [55]. 

§ 7. Chemical Reactions and the Method of 
the Activated Complex 

Prom the point of view of energy effect chemical transformations 

are subdivided into two types: endothermic, requiring specific 

energy content, and exothermic, accompanied by liberation of heat. 

Examples of reactions of both types are dissociation of molecules 

and recombination of atoms into a molecule, considered above. It is 

clear that for- an endothermic reaction it is necessary that colliding 

molecules possess certain minimum reserve of energy, so-called 
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activation energy E, therefore, the rate of such a reaction Is pro- 

portional to Boltzmann factor e" '  and Increases rapidly with 

Increase of temperature. In dissociation binding energy of molecule 

U serves as activation energy. Experiment, however, shows that for 

the majority of exothermic transformations energy of activation 

is also required and rates of corresponding reactions increase with 

temperature according to the exponential law e~ '  , called the law 

of Arrhenlus, Recombination of atoms into a molecule is in this ratio 

untypical, since it occurs without, activation and therefore easily 

occurs at low temperatures, as do many other reactions with partici- 

pation of free atoms. 

So that the elementary event of chemical transformation occurs, 

let us say, exchange by atoms during collision of molecule XY with 

molecule VIZ: 

XY + WZ-*XW+ YZ (6,52) 

is necessary in order that there be a close approach of molecules of 

reagents. Independently of whether this process is energetically 

profitable or not, l,e,, energy is given off or absorbed as a 

result of exchange, during close approach of particles between them, 

as a rule, appear repelling forces, to surmount which is necessary 

a specific energy. It is possible to say that for transformation 

a potential barrier should be surmounted. This position is explained 

in Fig. 6.3, on which is plotted the potential energy of a system 

of four atoms XYWZ depending upon "coordinate of decomposition," 

characterizing mutual space configuration of atoms. For deflnity it 

is assumed that forward process (6,52) is exothermic. The difference. 
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„, p. 

L 

xvwz 
of energies between Initial and final 

states of the system is equal to energy 

reaction yield Q, Prom Fig. 6.3 it is 

clear that activation energy of reverse 

process EL exceeds activation energy of 

forward process E^ by the magnitude of 

energy of reaction Q, Correspondingly 

the rate of the reverse, endothermlc, 

reaction much more sharply depends on 

temperature than does rate of forward, 

exothermic reaction. 

The equation of kinetics for process (6,52) taking into account 

both forward and also reverse reactions can be written in the form 

Coordinate of dacompoaltlon 

Pig, 6,3, Concerning the 
question of potential bar- 
rier during chemical re- 
actions. 

i^- - A.XYWZ-^XWYZ* . {6.33) 

Constants of reaction rates, depending only on temperature, are 

connected, as usual, by the principle of detailed balancing: 

*t,(XY)(WZ)  ,m 
Tr,  (XW)(YZ)  A ^ '* (6.34) 

Using the ideas of the theory of collisions, for constants of reac- 

tion rates it is possible to write expressions consistent with the ex- 

pression for rate of dissociation. Thus, if one were to consider for 

♦Reactions in whose elementary event participate two molecules 
(atomj, are called bimolecular in distinction from monomolecular 
reactions, in which occurs decomposition of one molecule into simpler 
ones or into atoms, for Instance, XY -♦ X + Y, 
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simplicity that In surmounting the potential barrier £ only the com- 

ponent of translatlonal energy of colliding particles along the line 

of their centers Is effective, and other components. Just as Internal 

degrees of freedom of molecules, are Ineffective In this ration, we 

will obtain 

».-iWr^. (6.55) 

where P, as earlier. Is the probability that as a result of a suf- 

ficiently energetic collision, chemical transformation Indeed will 

occur (P Is sometimes called the sterlc factor), 

Experiment shows that many reactions, especially those In which 

complex molecules participate, occur much slower than It would have 

been possible to expect, proceeding from the number of sufficiently 

energetic collisionsi probability P frequently turns out to be very 
-8 

small, even of the order of 10 , 

A more defined estimate of the reaction rate In a number of 

cases can be obtained using the so-called method of activated or 

transition complex,* which consists of the following. Potential 

energy of the system of atoms participating In the elementary event 

of a reaction, depends on their mutual configuration. If change of 

coordinates of atoms occurs sufficiently slowly (and this Is 

practically always so), the electron state of the system changes 

continuously, and potential energy depends only on nuclear coordinates 

(this corresponds to adlabatlc approximation In the theory of 

♦A detailed account of this method and Its applications to cal- 
culation of speeds of a number of reactions can be found In D8]| 
see also £27], 
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molecules). Potential energy constitutes a continuous surface In the 

conflguratlonal space of nuclear coordinates. At Initial and final 

configurations of atoms, potential energy Is minimum. For Instance, 

for reaction (6,52) energy Is minimum when atoms are united In 

molecules XY + WZ and XW + YZ, while molecules are separated at large 

distance from each other. 

In order that the reaction occur, the point describing motion 

of system In conflguratlonal space should pass through maximum, 

dividing minima on the surface, to surmount the potential barrier. 

There exist. In general, different paths from the Initial state to 

the final. Actually the most profitable way of reaction Is carried 

out, corresponding to least value of maximum of energy; the surface 

of energy near this path has the character of a "hollow." Figure 6,3 

schematically depicts the cross section of surface of energy along 

the "bottom of the hollow," while path of reaction also corresponds 

to coordinate of decomposition. 

The peak of the potential barrier corresponds to a very close 

approach of the reacting particles. In Its neighborhood. In the 

region with linear dimensions 6 of the order of molecular dimensions, 

atoms form something like a molecule. Such a state Is called an 

activated complex. However, a fundamental distinction of the 

activated complex from the molecule Is that a molecule is in a stable 

state with minimum of potential energy; the complex is in a state of 

unstable equilibrium with maximum of potential energy as a function 

of the coordinate of decomposition. The point describing the state 

of the system moves along reaction path with a speed of the order of 

speeds of relative iuotion of atoms, i.e., with average speed v of 

the order of thermal speed. The time of its stay in the neighborhood 



of the peaks i.e., life of the activated complex. Is of the order 

T « 6/v, When Ö ~ 10  cm and v ~ 10 cn/sec T X 10"  sec. The 

life of a complex is very short as compared to the characteristic 

time of reaction (time of achievement of chemical equilibrium in 

mixture of gases). This serves as a base for the basic assumption of 

theory, which assumes that complexes, considered as some molecules 

which possess basically the usual thermodynamic properties, are in 

chemical equilibrium with reagents, and concentration of complexes 

"watches" after change of concentrations of reagents,* 

If it is considered that every formed complex disintegrates 

in the direction of products of reaction, then the number of events 
3 

of the reaction in 1 cmr in 1 sec equals the number of disintegrations 
3 

of complexes, i,e,, the number of complexes in 1 cnr divided by their 

life. Designating by chemical symbols A, B, M the number of reagents 

A and B and complexes M in 1 cm: (for instance, for reaction (6,52) 

A and B is XY and WZ, and M s XYWZ), we will find that the number of 

events of the forward reaction in 1 cmr  in 1 sec equals lo»A»B » ty^ 

whence constant of rate of forward reaction is k^ »■ (ty^AB) (VT)» 

According to the law of active materials (see § 5 Ch, III) the 

ratio of numbers of particles participating in reaction A + B -♦ M, 

in the state of equilibrium is equal to the ratio of statistical sums 

of particles, (Inasmuch as by A, B, M are implied the numbers of 
•5 

particles in 1 cm , volumes V entering into translational sums should 

be set equal to 1 cm*5). Separating from statistical sums factors of 

the type exp (-e/kT), corresponding to zero-point energy of particles. 

LlMi*^ 

♦Really, relaxation time for the establishment of similar equili- 
brium is of the order of the life of the complexes, i.e.. Is very 
small. 
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and noticing that eM " ^eA + eB) ^ E ecluals activation energy, we 

will obtain 

"-(i^)«-C-^) "SI 

Statistical aums Z., ZB are calculated by the usual methods 

which concerns statistical sum of complex, then here it is necessary 

to note the following. The complex is stable as also a usual molecule, 

in relation to all changes of configuration of atoms, with the ex- 

ception of direction along path of reaction. Therefore, if one were 

to consider normal vibrations of the complex, the frequency of 

normal vibration, corresponding to coordinate of decomposition has 

an imaginary value. If we assume that the peak of the potential 

barrier is sufficiently flat, then motion along coordinate of decom- 

position can be considered as translational with average speed 

v = {kT/2irm*) ' , where m* is effective mass of complex. The 

statistical sum of one-dimensional translational motion of a particle 

with mass m* on segment 6, equivalent to the "volume" occupied by 

complexes along coordinate of decomposition, equal to 

Zone dim, trans, m  ^»Kr/h)1^ (cf, with formula (3.12)), During 

calculation of statistical sum of complex ZM one should replace the 

statistical sum of one of the normal vibrations of this translational 

sum. Thus, constant of speed of reaction equals 

* 
where ZM designates statistical sum of complex from which is excluded 
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the factor corresponding to one normal vibration,* Erom this formula 

it is clear that indeterminate value 6 and m» are reduced. Intro- 

ducing still so-called transmission coefficient n characterizing 

disintegration probability of complex in the direction of products of 

reaction (and not in the direction of initial particles; H is usually 

of the order of unity, we will finally obtain the constant of 

reaction rate 

W    XL    -JL 
^-«-r-ji^«^- (6.56) 

The origin of the factor of dimension of frequency KT/h in 

universal for all reactions, (6,42) can be imagined thus. We will 

consider the degree of freedom of a complex along the reaction path 

as a normal vibration with frequency v. Its statistical sum is equal 

to kT/hv (when hv < kT), so that Z« « Z^ff/hv,    But every vibration 

actually leads to disintegration of the complex, so that life T is 

equal to period of vibrations T •■ 1/v, whence also is obtained 

(kT/hv)l/T » kT/h, i,e,, formula (6,56), 

Placing in (6.56) specific expressions for statistical sums and 

comparing the obtained formula with formula (6,53), the value of 

steric factor P can be obtained in evident form. 

Let us consider first of all purely formally the imaginary 

reaction of unification of two atoms into a molecule without parti- 

cipation of a third particle. Then Z. and ZQ are purely translational 
♦ sums, and Zw consists of translational and rotational (vibration of 

U- 

*It can be calculated by the usual methods if one defines the 
.onstants of the complex as molecular," 
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diatomic complex is excluded). Putting in (6,^6) ZA B ^ 

« (2TrmA BkT/h2)3/2, Z* =  [2ir(mA + niB)kT/h2]3/2.(8Tr2IkT/h2), 

o 
and noticing that moment of inertia of complex I « ^p^"1»^^"^ + ^^ 

where (Lg is the average diameter of atoms d^g ^ (d. + ci~)/2t  we 

will obtain exactly formula (6,55) of the theory of collisions, if 

one identifies steric factor P with transmissional coefficient H 
o 

(effective cross section of collisions a « ^d^g). 

In general for an estimate it is convenient to write the stati- 

stical sums of reagents and complex in the form of products of sums, 

each of which corresponds to one degree of freedom and not to dis- 

tinguish sums belonging to identical degrees of freedom but to various 

particles. For instance, if A and B are diatomic molecules, 
"5    2 ZA ^ ^ ~ Ztrans Zrot ^ib* Assumlng that the complex is nonlinear, 

we will write ZM ~ 
ztrans rot Zvib ^ln coraPlex ^ atom, 6 vibrational 

degrees of freedom, while one is excluded). Thus, in order of magni- 

tude 

Analogous to the reaction of unification of two atoms into a molecule, 

factor 

gives approximately the number of collisions in (6,52), so that the 
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sterlc factor In order of magnitude equals 

2* 

••»Ml 

At room temperatures Z ,, has the order of unity, Z . of the 

order of 10-100, Is less the lighter the molecule Is. Hence It 

Is clear that the sterlc factor can be a very small magnitude, 

lO^-lO-6' 

In § 10 we will use the method of the activated complex to 

estimate rate of formation of nitrogen peroxide In heated air which 

Is Important for clarification of certain optical phenomena observed 

with a strong explosion, 

§ 8, Oxidation Reaction of Nitrogen 

In heating air to a temperature of several thousand degrees In 

It occurs the chemical reaction: 

yNi+T^+^SS-NO. (6,57) 

as a result of which will be formed a rather considerable quantity 

of nitric oxide NO, Equilibrium concentrations of oxide at tempera- 

tures of 3000-10,000oK and air densities of normal order reach 

several percent (see Table3.1,In Ch, III), A certain quantity of 

oxide Is oxidized to dioxide KOg, whcse equilibrium concentrations In 
-4   -2-, the shown conditions have an order of . n^ ■ lo Ji, Oxides of 

nitrogen play an Important role In radiation and absorption of light 

by heated air. Especially great In this ratio Is the role of nitrogen 

peroxide In the region of temperatures of the order of 2000-4000oK* 
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when optical properties of air In the visible part of the spectrum 

are practically wholly determined by N02 molecules. In heating air 

In strong shock waves, for Instance during an explosion, temperature 

and air density undergo very rapid changes; therefore. In estimating 

concentrations of oxides of nitrogen there Is an essential value In 

the question about kinetics of their formation and decomposition. 

As will be shown In Chapter VIII, IX, features of kinetics 

determine certain characteristic optical effects observed during a 

strong explosion. In this section will be considered kinetics of 

the oxidation of nitrogen, and in the following — kinetics of oxida- 

tion of oxide to dioxide. 

The oxidation reaction of nitrogen has a high energy of activa- 

tion, therefore practically it occurs only at sufficiently high 

temperatures of the order of 20000K and higher. The reaction was 

studied in detail both experimentally and also theoretically in the 

work of Ya. B, Zel'dovlch, P, Ya, Sadovnikov, and D, A. Prank- 

Kamenetskiy [59] • 

In experiments the reactions of formation and decomposition of 

nitric oxide were studied with the help of explosive bombs in which 

a mixture of hydrogen and oxygen was burned. In such a way high 

temperatures of the order of 20000K were obtained. To a mixture 

Hg and 02 were added nitrogen and, in different concentrations, 

nitric oxide. Upon small additions oxide was formed as a result of 

the combination of oxygen and nitrogen; with large additions, the 

initially introduced oxide was decomposed. After explosion residual 

quantities of oxide were determined and by means of comparison of 

theory with experiment reaction rates of formation and decomposition 

were found. The process itself of the combination of oxygen with 

. 406 



M^WIM 

hydrogen hardly affected the formation and disintegration oxide and 

served only as a means of obtaining a high temperature. 

If one assvunes that the reaction occurs according to a blmolecular 

mechanism. I.e., upon colllslc;i of two N2 and Og molecules two 

molecules of NO are formed, then for the constant of the reaction 

rate It Is possible to write a simple expression following from the 

theory of collisions (see formula (6,52)): k« « Pvae*" '  , By 

experiment was found the value of the pre-exponential factor, equal 

to l.l'lcrOg-  * where Og designated the number of molecules of 
3 18 oxygen In 1 cm . If one were to substitute, for Instance, Og " 10 

molecules/cnr, we obtain a pre-exponential factor equal to l.l'lo" 

cnrVsec. When T » 2500oK v % 2«105 cn/sec, a ~ 10~15 cm2,, for 

transition of probability P Is obtained an Improbably large value 

P ~ 5000. Thus, the assumption about blmolecular mechanism of 

reaction leads to a physically senseless result] experiment shows 

that In fact the reaction occurs much faster, N, N, Semenov expressed 

the assumption that the oxidation reaction of nitrogen occurs 

according to a chain mechanism In which an active role Is played by 

free atoms of 0 and N: 

$ 0+N, rr NO+N-75.S kcal/mole,       (6,58) 

»t 
N+0, rt NO+O+32.5 kcal/mole.       (6,59) 

Heats of reactions here correspond to energies of dissociation of 

molecules of Ng and NO, equal to 9,74 ev « 225 kllocalorle/mole and 
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6,5 ev = 150 kllocalorle/mole.* 

The rate of the process on the whole Is determined first, by 

the endothermlc reaction requiring an activation energy of not less 

than 75,5 kllocalorle/mole. As soon as resulting from the exchange 

0 + N2 -»• NO + N an atom of N Is liberated. It Immediately reacts 

with oxygen 02,  restoring the disappeared atom of 0, Therefore, the 

concentration of 0 atoms In the reaction remains stationary and 

corresponds to equilibrium with Op molecules, which Is established 

faster than the oxidation reaction of nitrogen occurs,** 

Designating the constant of speeds as Is done in formulas of 

(6,58), (6,59)* we will write the general equations of kinetics: 

^At.O.^+Aj.N.Ga-fcj.N.NO-VO.NO.        (6.40) 

4r=-4r"-*i,0,N»+*a'N,NO+*»-N'0*-*4-o.No.  (6.41) 

In virtue of statlonarlness of the concentration of 0 we will 

equate the right side (6.41) to zero, will express the concentration 

of N through 0, and will place the found expression In (6,40), We 

obtain 

j^-2 VOANO (*.*.-N.-O,-*.-VNO').    {6A2) 

*In ["59] the old values of energies of dissociation of N2 and 

NO were accepted: 7,58 ev and 5.5 ev; however, as later to be 
mentioned calculations show (and also the most recent experiments 
[40]), new values of energies of dissociation do not contradict the 
assumption about chain mechanism. All numerical values of constants 
in the subsequent account correspond to new energies of dissociation. 

♦♦Inasmuch as atoms of oxygen are in equilibrium with 02 molecules, 
the mechanism of dissociation of Op does not affect occurrence of the 

oxidation of nitrogen. 

4G8 
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Let us make certain transformations. Constants k_ and kp 

determine rates of exothermic reactions of an atom with a molecule 

and, probably, of one order« Inasmuch as the concentration of 

NO « Og, the term k,»NO In the denominator (6.^2) can be disregarded. 

The concentration of 0 atoms we express using equilibrium constant 

02 ^ 20, which we will designate C0: 

O-CV^"-6.6.10"«""«^/ST. (6.45) 

Here, as also subsequently, all numerical values of constants of 

equilibrium and constants of reaction rates correspond to measurement 

of concentrations In units of molecules/cm , Energies are expressed 

In cal/mole, Oas constant R - 2 cal/mole»deg. Constants of rates 

are connected by the principle of detailed balancing, and namely:* 

Hence follows the Indentlty: 

't-ft-Ms-*-*-™- (6'w) 

♦Pre-exponential factors In equilibrium constants C^, C , C 

are calculated In approximation of equality of masses N and 0, of 
moments of Inertia and frequencies Ng, Og, NO during calculation 

of different symmetry and multiplicity of terms. This approximation 
Is sufficiently accurate. 
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Removing k,k. from parenthesis In (6.42) and using (6,44), we will 

obtain finally the equation of kinetics of the oxidation of nitrogen: 

dm ̂ = ik'.N,.Oa-&NO« = &f(NO)J-NO«),       (6.45) 

where constants of speeds equal 

ifc'=i^t. *=*! = -** (6.46) 

Equation (6.45) differs from the usual equation of a blmolecular 

reaction by the dependence of constants of speed on the concentration 

of one of the reagents — oxygen. 

The physical meaning of the expression for formation rate oxide 

A'.N1-0, = 2CoA:iN, .1/0"» Is very simple:  Co/Öi is the concentration 

of atomic oxygen, ktCoVÖl - Nj Is the rate of the first reaction of 

the chain; but In virtue of the exothermic nature the second reaction 

follows "instantly" after the first, so that every event of the first 

reaction, which "conducts" the process, leads to the formation of 

two NO molecules, 
-E^T 

Removing In constant of speed k, the factor e     and noticing 

that according to (6.43) CQ ~ e"*61000/™, it Is possible to see that 

the activation energy for the reaction of formation of nitric oxide 

/     -E'/PTx 
E»(k' ^ e  ' ' ) Is comprised of energy necessary on formation of 

one atom of oxygen — 61 kllocalorle/mole* and activation energy for 

the reaction of an atom of oxygen with a molecule of nitrogen — E^, 

♦This magnitude Is effective for temperatures of the order of 
5000°; it differs somewhat from tl 

absolute zero - 58,5 kllocalorle/mole. 
2000-5000°; it differs somewhat from the energy of formation at 

r ■DO 
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In experiments described In [59], nitric oxide was obtained as 

a result of explosions of a fuel mixture containing oxygen and 

nitrogen. The quantity of oxide formed was measured after cooling 

of the explosion products. On the basis of theoretical consideration 

of kinetics of the reaction In the cooling process were removed 

activation energy of formation of the oxide E» ■ 125 + 10 kllocal- 

orle/mole and absolute value of constant of rate In the Investigated 

Interval of temperatures 2000-5000oK, where It Is noted that more 

probable Is an upper value of activation energy E' « 125 + 10 = 155 

kllocalorle/mole. Hence, for activation energy of the first reaction 

of chain 0 + N2 -♦ NO + N Is obtained the value E^^ - 155 -61-74 

kllocalorle/mole, coinciding with heat of endothermlc reaction. 

This means that the reverse reaction N + NO -♦ 0 + Ng occurs practi- 

cally without activation (or with very small activation energy) 

which Is typical for an exothermic reaction of a free atom with a 

molecule. Absolute values of constants of rate, which follow from 

experimental data, equal 

^JJ      •   /^    sec u>53-     vwn; 

Constant of rate for first reaction of chain k^ - 8,5«10"11e'74ooo/RT* 

Comparison of this magnitude with formula (6,52) of the theory of 

collisions gives sterlc factor P ■ 0,086 (If one takes effective 
-8 diameter d^g ■ 5.75»10  cm equal to the diameter of a molecule of 

Ng, determined from data on viscosity). Such a value of P Is fully 

reasonable. 

Later Investigation of the kinetics of formation of nitric 

oxide was undertaken by Qllck and others [40], using a shock tube 
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In which a gas mixture containing nitrogen and oxygen was heated by 

a shock wave to a temperature of 2000-5000 K, These authors found 

activation energy E' » 1^5 + 5 kilocalorie/mole (E^ = 74 + 5 kllo- 

calorle/mole) which agrees well with data of [39] and confirms 

coincidence of activation energy of the first reaction of chain E. 

with heat of reaction. Absolute values of the constant of rate also 

turned out to be close to data of the first work. 

From formula (6,47) It Is clear that activation energy for 

decomposition of nitric oxide is also very great, E = E' - 4j5 = 92 

kilocalorie/mole; therefore, at low temperatures the oxide is decom- 

posed very slowly. Owing to this during fast cooling of initially 

heated air the nitric oxide formed in it at high temperatures is 

kept after cooling for long time so that its concentration consider- 

ably exceeds equilibrium values whici are very small at low tempera- 

tures (this effect carries the name of the effect of hardening; we 

will return to it in § 5 Ch, VIII), As can be seen from the equation 

of kinetics (6,45) and formulas (6,44), (6,47), the relaxation time 

for establishment of equilibrium concentration oxide is equal to: 

1    MJO^T-'-W5 2.06-lQ-»/m^on (6.48) 

It decreases rapidly with an Increase of temperature. Let us give 

♦According to determination of time of relaxation (6,2), with 
a small distinction of NO from (NO), I(NO)2 - NO2] « 2(N0).{(N0) - . 
- NO], whence is obtained (6,48). Time T characterizes not only 
approach to equilibrium, but also in general, the process of establi- 
shment of equillbrijAm, even if in the initial moment there was no 
oxide. 

v_ _,. 
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several values for air of normal density (Ng ■« 2.1»10 ° molecules/cm^): 

T, 0K   1000  1700 2000   2500    2600    3000    4000 

T, sec 2.2»1012  140   i  5,3»10"5 l.^'lO"5 7.8#10~5 7.2-10"7 

§ 9, Rate of Formation of Nitrogen Peroxide at 
High Temperatures 

The reaction of formation of nitrogen peroxide from oxide 

2NO+0,-21*0,+25.6 kcal/mole        (6.49) 

Is exothermic, therefore the lower the temperature Is, all the more 

so does equilibrium shift In the direction of oxidation of oxide. 

This reaction is widely used in industry and is well studied experi- 

mentally at temperatures lower than 10000K, It has very small, 

practically inconspicuous, activation energy and therefore occurs 

easily at normal temperatures. The equation of kinetics of the 

reaction has the form 

^ä-2{Ä;NO«.Oi-*iNO«J-2*;{(NOI)«-NOJ}.     (6.50) 

Constants of reaction rates describe number of events of 

reactions] the factor 2 considers the fact that in every event are 

formed or disappear two NOp molecules. Relaxation time for establi- 

shment of chemical equilibrium of nitrogen peroxide with oxide and 

oxygen equals 

^-öswuns^j» (6.51) 

■^igj^jgnjaaaiigäaMfca 
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where C2 = (N0o)2/N02»02 Is the equilibrium constant of dioxide with 

actual quantities oxide and oxygen, which can be also unbalanced. 

The equilibrium constant can be calculated by the statistical method. 

After substitution of values of all parameters It turns out to equal* 

17*0 2270 |  6*60 
r-  (NO»)      1.25-10-xi (l-r l )(!-«" T ) e T 
0 JSB - —^ -^ ^ 23tö~t ID.D^J 

NOOa» T*      (l+rT)(l-e    T)(1_e-  T )(!_,"  T ) 

where temperature Is everywhere expressed in degrees, and dimension 

C corresponds to measurement of concentrations in numbers of particles 

in 1 cm . 

Constant of speed ic, was calculated in [58] by the method of 

the activated complex, where good agreement was obtained with experi- 

mental data of Bodenstein [44], investigating reaction rate in an 

interval of temperatures i'rom 553° to 845 K. Comparison testifies 

to the absence of activation energy for reaction. The formula for 

constant of speed ki, derived in [38], can be used to estimate rate 

and time of relaxation also at high temperatures, which by experi- 

ment were not studied. Results of calculation of time of relaxation 

of formation of nitrogen peroxide in heated air for several values 

of temperature and densities are presented in Table 6.3 (here equili- 

brium concentrations (N02) were calculated on the basis of equilibrium 

values of concentrations of oxide (NO) and oxygen (Op). 

At high temperatures and especially with low densities of gas 

*As was noted by one of the authors [41], the equilibrium 
constant given in a widely-popularized reference book [42], is 
taken from an erroneous work [43] and is oversized by 2,42 times. 
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Table 6,5, Relaxation Tlmefl for Establishment of 
Equilibrium Concentration of Nitrogen Peroxide In 
Air, In Sec, (T» - trlmolecular reaction, T" - bl- 
molecular) 

.' .   -   ■ # •*nor 
».nt 1« « 1 

r !      f f f f f 

1000 «.10-« 0.3S 0.00 o.eo • 
1800 8.510-« 3,910-« 0,04 0.09 
aooo 6J5-10-« 3.M0-» 1.8510-» 4.510-« 2.2.10-« 0,01 
9300 1.4210-« 2.7.10-« 410-4 4.010-« 4.510-« 0.9-10-« 
2600 4.75-10-» 4.410-» 1.3S10-« 6310-» 1.5I0-« 1,4-10-« 
aooo 1,7510-» 6,610-« 4.7510-» 9.4-10-« 5.5-10-« 2.1-10-» 
4000 2,5.10-» 2.8-10-» 7.5-10-» 4,010-» 1.05-10-« 1.0-10-« 

with a trlmolecular reaction (6,49) competes another mechanism of 

formation of dioxide 

KO+0,+45^-NOk+O. (6.55) 

In spite of the fact that this reaction Is endothermlc. It 

possesses as compared to reaction (6,49) the sane advantage that Is 

carried out by means of not triple, but paired collisions of mole- 

cules. This advantage should appear at high temperatures, when 

conditions for activations are favorable. Reaction (6.5?) was not 

studied by experiment; a theoretical estimate of its rate was given 

in the work of one of the authors [41]. 

The equation of kinetics for reaction (6.55) may be written in 

the form 

iIg«-J<.NO.Ql-*;NO>.0-ik;0{(N01)-N01). (6.54) 

Relaxation timei 

<•- l£ff (6.55) 

......^.^^.^^...■»«a.. 
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Let us estimate the constant of rate by the method of the acti- 

vated complex, the essence of which was presented In § 7. In parti- 

cular, this estimate can serve as an Illustration of a specific 

application of the method. For convenience we will consider reverse 
# 

reaction NOp + 0 -»■ NO-* -»■ NO + 02, where the asterisk marks a complex. 
it 

According to general formula (6,?6) constant of rate 1<^ equals: 

** h ZHo,'zO ' 

Calculation of statistical sums of 0 atoms and NCU molecules 

does not present difficulties, since spectroscoplc constants of the 

NOp molecule are known. Regarding, however, a complex, then here Is 

a whole series of unknowns of magnitudes, which for an estimation 

must be selected wisely. 

The mass of an NO-, complex Is 1,39 times more than the mass of 

an NOg molecule. Assuming that Its dimensions somewhat exceed the 

dimensions of a molecule of NOp, we will consider that the average 

moment of inertia of the complex is 1,5 times more than the average 

moment of inertia of a molecule of NOp, The natural frequencies of 

a molecule of NO-,, with respect to which it would have been possible 

to Judge about frequencies of complex, are unknown. It is possible 

to trust that the three highest frequencies are less than the fre- 

quencies of a NOp molecule: hvN0 /k « 960, i960, 2310
0K, since 

2 

the bonding In a complex is weaker. It is easy to check that at 

temperatures of 2000-4000° the constant of rate Is not very sensitive 

to selection of frequencies of complex within the limits of a 

reasonable Interval, Let us set for calculation the following five 

4S6 
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m*mpm#'rrmm^*w^--r^-v**&*r**. -«wi*««wCT!K«m««P'W«*»»»««fi»' 

I      frequencies hv^/k - 600, 800, 900, 1500, 2000oK (the sixth Is excluded 

from Z*), The complex Is asymmetric, so that factor of symmetry 

a «* 1, Statistical weight of electron state g* > 2, since the com- 

plex contains one unbound electron. Let us set g* = 2. Activation 

energy of the exothermic reaction NOg + 0 -♦ NO + Og, apparently. 

Is minute, as occurs when one of the reagents Is a free atom. Let 

us aev  for estimation E = 10 kllocalorle/molej this In the worst 

case can underestimate rabe of" reaction by 2-5 times at temperatures 

of 2000-4000°. 

Putting these, and also other known constants In expressions 

of statistical sums and taking transmlsslonal coefficient H equal 

to one, we will obtain constant of speed 

t-^yw-P • ^ a|,/flec (0.56) 

where vlbratlonal statistical sums equal Z ,. « (i - e / ), Using 

the theory of collisions (see formula (6,55)) In order to obtain, 

the constant of rate of the same order as according to formula (6,56), 

one should have considered sterlc factor P of a magnitude of the order 

of 2*10 . To select so small a value without any visible bases 

would be fairly difficult, so that the theory of collisions In this 

case turns out to be practically useless and estimation of reaction 

rate Is possible only using the method of the activated complex. 

Relaxation times calculated for air by the formulas (6.55), 

(6.56) also are presented In Table 6,5, 

Comparison of these times shows that for air densities of an 

uprder less than normal and temperatures ~2000-5000
oK second reaction 
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occurs faster and Is basic. 

2, lonlzatlon and Electron Excitation 

§ 10. Basic Mechanisms 

Excitation of the highest electron states of atoms (molecules. 

Ions) and lonlzatlon have much In common. In essence, lonlzatlon 

constitutes the limit case of electron excitation, when an electron 

bound to an atom obtains energy sufficient for breakaway from the 

atom and transition Into a continuous spectrum. Each of the elementary 

processes, as a result of which occurs excitation of electrons in 

atoms, can also lead to lonlzatlon, if for this it slezes energy. 

Therefore, it is convenient to classify and to consider elementary 

processes uniting lonlzatlon and excitation. 

All elementary processes of excitation and lonlzatlon can be 

subdivided into two categories: excitation and lonlzatlon of atoms 

(molecules, ions) impacts of particles and photoprocesses, in which 

the role of one of the "particles" is played by light quantum. In 

the first circle of processes one should diatinguish lonlzatlon and 

excitation by electron impact and nonelastic collisions of hea^y 

particles, since the probabilities of those and other nonelastic 

collisions sharply differ from each other. According to such classi- 

fication the basic reactions of lonlzatlon can be written in the 

following symbolic form (A, B — heavy particles, e — electrons, hv — 

light quanta): 

A + e - A* v e + e, (6.57) 

A + B - A» + B + e, (6.58) 

A + hv - A» + e, (6,59) 

IBS 



The reverse processes proceeding from right to left, lead to 

recombination of electrons with ions: the first two constitute 

recombination in triple collisions with participation of an electron 

or a heavy particle as the third particlej the last reaction is 

photo-recombination or photo-capture of electrons. 

To each of the processes of (6,57)-(6.59) corresponds the pro- 

cess of excitation (the excited atom is marked by an asterisk): 

A + e - A» + e, 

A + B »■ A* + B, 

A + hv ■ A*. 

(6.60) 

(6.6i) 

(6.62) 

The first two reverse processes constitute deactivation of excited 

atoms by so-called impacts of a second kind| the third is luminiscence 

of an excited atom« 

In general, processes of all three types occur in gas simultane- 

ously. However, frequently one of the processes turns out to be 

predominant. With energies of the order of excitation potentials 

or ionization of atoms, i.e., an order of several or ten electron 

volts, effective cross sections of nonelastic collisions of heavy 

particles are several orders less than effective cross sections of 

nonelastic electron impacts. Furthermore, velocities of heavy parti- 

cles with comparable energies is approximately a hundred times less 

than velocities of electrons (with respect to square root of masses). 

Therefore, processes of the type of (6.58), (6.6i) in heated gas 

have a value only if there are practically no free electrons. For 

degrees of ionization of the order of 10 -10   and higher, rates 

of processes of the first type (6,57), (6.60) are larger than rates 

of processes with participation of heavy particles and the role of 
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the latter is negligible. Essentially, lonlzatlon by Impacts of atoms 

or molecules Is important only for formation of a small initial quan- 

tity of "initiating" electrons, when gas is "instantaneously" heated, 

as happens, for Instance, during the passage of a strong shock wave. 

In certain cases initial lonlzatlon in "instantly" heated gas is 

created by a sufficiently intense radiation flux or fast electrons 

arriving from without, from earlier heated regions, and thereby 

even this "initiating" role of the second process is brought to zero. 

The comparative role of the first and third processes in a 

more complicated way depends on macroscopic conditions. The number 

of events of lonlzatlon by electron impact in 1 sec in 1 cm~^ 

is proportional to density of electrons, whereas the number of events 

of photo-ionization is proportional to density of radiation. 

If dimensions of the region occupied by heated gas are suffi- 

ciently great as compared to paths of quanta, so that density of 

radiation is considerable and of the order of equilibrium, it does 

not depend on density of gas and is determined only by temperature. 

Therefore, in sufficiently rarefied gas rate of ionization by electron 

impact turns out to be small and a basic role is played by photo- 

ionization. The same pertains also to the processes of excitation, 

and also to the reverse processes of recombination and ieactivation: 

photo-recombination predominates above recombination in three-body 

collisions, and lumlniscence of excited atoms predominates above 

removal of excitation by impacts of the second kind. Such a position 

is observed, for instance, in stellar photo-spheres.. 

If the region occupied by heated gas, is bound and transparent 

("optically is thin"), quanta radiated in the gas, not being held 

back* abandon the heated volume, and density of radiation in gas 

500 
  «■___ 



Is less than equlllbrlunu In these conditions even with a low density 

of electrons the rate of lonlzatlon toy electron Impact can turn out 

to be higher than rates of photo-lonlzatlon whereas relationship of 

rates of reverse processes of recombination can remain as before. I.e., 

photo-recomblnatlon can predominate. 

In a sufficiently dense gas photo-lonlzatlon and photo-recomblna- 

tlon play a secondary role as compared to the first process (6.57). 

Speaking of reactions of lonlzatlon {6.57)-(6,59)J one should 

consider that not only atoms remaining In the ground state, but also 

excited atoms can be Ionized, so that to the list of reactions (6,57)- 

(6,59) one should also add reactions of the type 

A» + e - A* + e + e, (6,6?) 

A» + B « A* + B + e, (6.64) 

A» + hv - A« + e, (6,65) 

The same pertains also to processes of excitation (6,60)- 

(6,62), more exactly, to processes of Increase of degree of exci- 

tation. In spite of the fact that the number of excited atoms Is 

usually considerably less than the number of atoms, remaining In the 

ground state, the role of lonlzatlon of excited atoms In releasing 

electrons. Is not small. In any case not exponentially small, since 

correspondingly In their lonlzatlon participate particles with 

smaller energies. Really, the number of particles able to Ionize an 

unexclted atom Is proportional to exp(-l/kT), where I Is lonlzatlon 

potential. But the number of events of lonlzatlon of atoms excited 

to level E*, also Is proportional to e"2*/1^ e^-E*)/^ m  e"1/1^ 

since to thi first factor Is proportional the number of excited 

atoms,! and to the second — the number of particles able to Ionize 
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an atom» (Usually In not too dense a gas lonlzation occurs when 

KT « I, so that 1/kT » 1 and Boltzmann factor e"1'  Is very signif- 

icant). 

The comparative role of lonlzation of excited and unexclted 

atoms In conditions of equilibrium excitation Is determined, mainly, 

by effective cross sections of lonlzation of those and others during 

Impacts by particles with energy which Is above threshold energy. 

In molecular gas In which the molecules and atoms possess 

potentials of lonlzation not considerably exceeding energy of dis- 

sociation, lonlzation starts long before the end of dissociation, so 

that there exists a region of temperatures In which simultaneously 

concentration of electrons and concentration of molecules are con- 

siderable. An example Is air at temperatures of the order of 700O- 

-15,000 K — very Important from the point of view of practical appli- 

cation. In this case, along with the shown processes of lonlzation 

(6,57)-(6.59)> there exist more complicated processes, the most 

Important of which Is recombination of atoms Into a molecule with 

simultaneous lonlzation. 

This process from the viewpoint of energy profitably differs 

from others by the fact that It requires an energy consumption which 

Is smaller than the lonlzation potential by the magnitude of the 

released energy of dissociation. At comparatively low temperatures 

and small degree of lonlzation the most Important role for lonl- 

zation of air Is played by the reaction: 

N + 0 + 2,8 ev - NO* + e, (6,66) 

which occurs several orders faster than simple lonlzation of NO by 
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the Impacts of atoms and molecules.* In recombination of electrons 

[ with ions in molecular gases an Important role is played by so-called 

dissociative recombination. In particular, in air occur the processes 

#   #  # 
e+02-*0 +0 + 6,9 ev, 

e + N* -f N* + N* + 5.8 ev, (6.67) 

#   #   # 
e + N0"*N +0 + 2,8 ev. 

As a result of dissociative recombination excited atoms are formed. 

The released binding energy of an electron is expended on dissociation 

of the molecule, and the surplus goes to excitation of atcms and 

, partially passes into kinetic energy. 

If in gas there are atoms or molecules possessing an electron 

affinity (for instance, H, 0, 02, Cl, Br, I., and others), at com- 

paratively low temperatures negative ions are formed which renders 

an essential influence on kinetics of formation and disappearance 

of free electrons. Besides reactions of the type (6.57)-(6,59), 

in which A and A are replaced correspondingly by A" and A, more 

complicated energetically advantageous reactions of the type (6,66) 

can occurj for Instance in air — it is exothermic reactions» 

N + 0" - NO + e + 4 ev, 
0 + 0" - 0. - e - 3.6 ev.        ^6,68) 

'2 

♦At comparatively low temperatures the basic supplier of free 
electrons in air is NO molecules, whose ionization potential IN0 ■ 
« 9.25 ev lower than for all other components of air (In ■ 12.15 ev, 

ü2 
IN - 15.56 ev, I0 - 13.57 ev, IN - 14.6 ev, 1^ - 15.8 ev). 
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A full list of reactions occurlng In heated air and leading to 

formation and disappearance of free electrons, and also to exchange 

by a charge, with Indication of their power yield. Is In [73]. 

§ 11, lonlzatlon by Electron Impact 

Let us consider the process of first lonlzatlon of gas from 

Identical atoms and estimate characteristic time for first reaction 

(6,57) on the assumption that all atoms are Ionized from the ground 

state, and during recombination an electron Is captured on the ground 

level. The effective cross section of lonlzatlon during collisions 

depends on relative speed of colliding particles. Inasmuch as the 

velocity of atoms at comparable temperatures of atoms and electrons 

Is always considerably less than velocity of electrons, relative 

velocity coincides with the latter] the reduced mass characterizing 

kinetic energy of relative motion coincides with mass of electron, 
■5 

If N and N are the numbers of atoms and electrons In 1 cm , 
Qi    e ' 

fe(v)dv Is the function of Maxwelllan distribution of electrons with 

respect to velocities, corresponding to electron temperature T ♦ 
to e 

([  /.(^«k = 1) and atv)  is effective cross section of lonlzatlon by 
•0 e ' 

electron Impact, then the number of events of lonlzatlon In 1 cnr In 

1 sec equals 

W, J o. (v) vf, (v) dv = NaN,*,, (6,69) 

♦Due to the large difference of masses of electrons and atoms 
exchange of energies between electrons and heavy particles during 
elastic collisions occurs rather slowly. Therefore, electron tempera- 
ture. In general, can differ from translatlonal temperature of heavy 
particles (see § 14), 
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where integration spreads according to velocities of electrons, whose 

energy exceeds ionization potential: UgV^/S ■« I« 

Designating constant of recombination rate by ße,* we will write 

the equation of kinetics of the first reaction (6,57)« 

^-«JVJV.-p^iv:, (6.70) 

where the number of ions N. equals number of electrons N , Constants 
T e 

of velocities a and ß are connected by the principle of detailed 

balancingi 

fc-lfc (6.71) 

where the equilibrium constant is determined by Saha formula (3*44): 

iC(r#).l^=L;i(?«^V
rf'. JAJB5.i0uLrTt'lrlJeM,, [6.72) 

The number of recombinations in 1 cor in 1 sec is somatimes 

written in the form Z^,, - b N . N , The magnitude bÄ « ß N is 

called coefficient of recombination, be has a dimension in cmr sec, 

the same as constant of rate of ionization o • 

If concentration of electrons (and ions) is much less than 

equilibrium, recombination does not play a role and the development 

of ionization by electron impact carries the character of an electron 

avalanchet if It is considered that electron temperature does not 

♦We will not extract the integral expression for recombination 
rate, similar to (6.69)« 
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depend on time, concentration of electrons exponentially grows In 

time N - N expft/r )j here N la the "initial" number of electrons. e   e  • ' e*      e 

and the scale of time of build-up of avalanche approximately 

(N « const) equalsi a 

T.» 
1 ♦ 
OT ' (6.75) 

It Is easy to check that magnitude T characterizes also relaxa- 

tlon time for approach to lonlzatlon equilibrium by means of first 

mechanism (6.57)» More exactly, when UflL) - N I « (NQ), relaxation 

time, according to general determination (6,2), Is twice less than T , 

The typical curve of dependence of effective cross section of 

lonlzatlon ae on speed or energy of electrons Is depicted In Pig, 6,4. 

The cross section Increases after the threshold of lonlzatlon 

e0 ■ I, attains maximum when energy of electrons Is a few times 

more than threshold energy, and then slowly drops. In maximum the 

-16  2 
cross section, as a rule. Is of the order of 10   cm , In not too 

dense a gas lonlzatlon sets In usually at temperatures of much smaller 

♦It Is necessary to stress that the simple exponential law of 
build-up of electron avalanche with scale of time T IS accurate only 

under the condition that T «■ const. In real conditions electron e 
temperature can actually depend on time. The fact Is that when 
kTe «la very great fraction of thermal energy of electrons Is 

expended on lonlzatlom roughly speaking, on the production of one 
new electron Is expended a thermal energy of l/kT electrons. If 

there Is no source to replenish loss of energy of electron gas on 
lonlzatlon, the electron temperature drops with time, a ~ exp(-l/kT ) 

sharply decreases, development of avalanche fades. At the front of 
a shock wave losses of energy of electrons are replenished owing to 
flux of energy from atoms (Ions) to electrons. For In greater detail, 
see § 10 Ch. VII, 

^-aggagasa iii'iiiiir mr ü>I ^-■'^^^''^f^^^-!^^^^^^'i^k'=m 
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Fig» 6,4« Dependence of 
effective cross section 
of lonlzatlon by electron 
Impact on energy of the 
electron. 

lonlzatlon potential! I/M? » 1. Thus, 

for Instance, In atomic hydrogen when 

Na «« 10 " l/car (which corresponds to a 

pressure of undlssoclated molecular 

hydrogen at room temperature, equal to 

155 mm Hg) and T - 10,000oK the equilibrium 

degree of lonlzatlon Is equal to 6#25»l0 j 

now I/kT - 15.7. 

Energy sufficient for lonlzatlon Is possessed only by electrons 

corresponding to the tall of Maxwelllan distribution with respect to 

velocities, the number of which Is exponentially small (proporti- 

onal to exp(-mev^/21fl?e) « 1), Therefore, In Integral (6.69) a basic 

role Is played by electrons whose energy only somewhat, by a magnitude 

of the order W? (kT « I), exceeds the lonlzatlon potential. Theory 

and experiment show that near the threshold the effective cross 

section linearly depends on energy of electrons eÄ» 

a,(o)<%C(«,-/), C»const. (6.74) 

Putting this magnitude In expression {6.69) and Integrating, we 

will find constant of lonlzatlon ratei 

wnere 

«.- 5 ».(^/.WÄ-a, ^(j^+2)«"^ t      (6.75) 

5.« (^)T«6.21 • I0»/Tr«*/sec (t.76) 
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♦la average thermal velocity of electrons, and a la certain mean 

value of effective croaa aectlon a (v), which accurately corresponds 

to energy of electrons e «« I + kT j a CkTe. 

Constant of recombination rate, according to (6,7!), (6,72) and 

(6.75), equals 

*•    gXkT,+* J 2n*mlkT ~ gX*T,+   J f* atCM ^ SeC (6.77) 

,-ii In not too dense a gas, when l/kT » 1, ß„ ~ T~ (a ~ T ), character- 

Istlc time Te In region of small degrees of ionlzatlon depends on 

temperature according to the law T ~ exp(l/kT ). 

Table 6,4, Ionlzatlon by Electron Impact 

ktOKf Region of 
molecule 1, ev C-«0"C*«/9V aoplloabl- 

lity,  s^ 

eiiiaxi 
av 

<'.max•«0,,"', 
Literature 

Ha 15.4 0,59 16-25 70 1.1 46 
H! 24.5 0.13 24.5-35 100 0.34 46 

47 N 14.6 0.59 15-30 -100 -2.1 
N, 15.6 0.85 16-30 no 3.1 46 
0 13.6 0,6 14-25 -  80 -1.5 48 

& 
12.1 0.68 13-40 110 46 
9.3 0,82 10-20 -100 3.25 49 

Ar 15.8 2.0 15-25 100 3.7 46 
1.7 15-18 

Ne 21.5 0,16 21.5-40 -160 0.85 46 
Hg 10.4 7.9 10.5-13 42 5.4 46 
Hg 2.7 10.5-28 

In Table 6.4 are experimental data on cross sections of Ionl- 

zatlon of certain atoms and molecules by electron Impact (for 

designations see in Fig 6.4).** The numerical value of constant C 

♦Translation editor's notei Designation omitted from phrase in 
original; probably is V . 

♦♦A detailed survey and analysis of source material is in the book 
of Messi and Barkhop [45]. We recommend also the book of V, L, 
Qranovskly [46], 
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2 
coincides with effective cross section (In cm ) for an energy of 

electrons exceeding lonlzatlon potential by 1 ev, l.e», with mean 

cross section a   at a temperature T »■ 1 ev «■ ll,600oK, exactly 

characteristic for region of first lonlzatlon. As can be seen from 
-17  2 the table, cross section a   has an order of 10 ' cm , 

In order to obtain an Idea about order of magnitudes, we will 

consider a specific exaraplex argon when T «■ i?,000oK and N " 

•■ 1,7 X io"  cm"p (such density corresponds to a pressure of 50 ram Hg 

at normal temperature). Equilibrium degree of lonlzatlon in such 

conditions equals 0.14; or ■» 2,24*l0~ ' cm j v. » 7»i*i0' cn/sec; 

constants of velocltiesi a0 « 2,10   cnr/secj Pa ■ s.^lo"^ 

cm /sec, characteristic time T_ ■» 2,9«i0** sec» At temperature T ■« 

- 16,000 K and the same density time T is approximately 15 times 
-6 lessi T ■ 2*10  sec» 

§ 12» Excitation of Atoms by Electron Impact 

Analogously to the preceding we will for simplicity consider 

that an atom possesses only one level S», so that an atom is excited 

only as a result of transition from the ground state. Let us write 

the equation of kinetics of excitationi 

ig-tiNJft-WN* (6*78) 

**^'"" """^T^T i^' *^^^-^^f^'-^^^"^ 

a   is the constant of rate of excitation, and ßÄ is the constant 

of the deactlvation rate, equal to ße • 
v
e*
a
e2* 

whei,e a
e2  i8 effective 

cross section averaged according to Maxwellian distribution for 

electron impact of the second kind. Constant of rate of excitation 

is expressed through effective cross section of excitation afv) e    * 
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precisely the same Integral as ae (see (6,75)), with the only dif- 

ference being that the lower limit Is now velocity v*, corresponding 

to threshold of excitation m v /2 « E*. The dependence of cross 

section a (v) on velocity or on energy (so-called function of 

excitation) has the same character as the curve of ionlzation 

depicted in Fig, 6,4, Exactly so, near the threshold it may be 

approximated the straight line: c (v) « C (e-E*),* Therefore 

OB e^ 

a:= J a', {v)vft{v)dü = afv.(f~ + 2y~kT, (6,79) 

where a corresponds to energy of electrons E* + kT, 

By the principle of detailed balancing, taking into account that 

!£!.(£);-£ (6.80) 

(g* and g are statistical weights of excited and ground state), it 
♦  ♦ 

is possible to connect constant of speeds a , ßa  or effective cross e  e 

sections of excitation and deactivation: 

«rt-a:*(g-+2);p?-^rt. (6.81) 

The characteristic time corresponding to excitation by electron 

impact, which coincides in time of relaxation for establishment of 

Boltzmann distribution (6.80) under the condition that T^ •« const 

*This is possible for many, but not all atoms; in any case 
approximation gives small error. 
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(sae footnote on p, 506 la 

(6.82) 

Source material on cross sections of excitation are In [45, 46], 

Certain results are presented In Table 6,5, Mean cross sections of 

Table 6,5, Excitation by Electron Inqaact 

Atom Laval« 
Potential 
E*, ev 

Interpolation of total cross section 
«:.   om» Souroe* 

He 

Ne 

Ar 
Hg 

ZfßP 
2i'S 
3*Pt 

9A 

19.7 
20.6 
18.« 
18.5 
11.5 
4.87 

j         4.6.10-»(«ev-20) CM* 

\         1.5.10-W(%v-ie)«i« 
7.10-W(%T-ll,5)aiii 

Mn. sestion wh«B   Sss6t5 ev 
oi^-MlO-M MI« 

1*61 

I«! 

131 

♦Data with reference [46] are taken from tables 
given In book of V, L, Qranovskly, References to 
original works can be found In this book, 

excitation ae have an order of 10 ^ cm2.  Such Is the order of 

cross sections of Impacts of second kind cre2 (the factor In paren- 

theses In formula (6*81) Is of the order of lo, but the ratio of 

statistical weights ga/g* Is usually ~1-10"
1). 

For an example we will estimate relaxation time In argon when 

Te-15,000% Na - i,7l*l0
15 cm"5. Cross sections a* - lo"17 cm2, 

—17  0 
ae2 *" i0   cm • If one takes equilibrium concentration of electrons 

(N ) - 2,4-10 7 cm"5, we will obtain T* « 6»iO"9 sec. This tin» la 
sS 

considerably less than the time of lonlzatlon T , It Is Interesting 

to conpare characteristic times for lonlzatlon and excitation by 
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electron Impact, By the! formulas (6,7;5), {6»82) 

i i 
x, W*n*~        ^ JL '-lie"' 1*«.-'- ^ 10. 

Under conditions close to equilibrium and with small degrees of 

lonization Ne/N « (ö.lO21/^)1'2T^ ev exp(-l/2kTe); for regular 

densities of gas Boltzmann distribution with respect to excitations 

is always established faster than lonization equilibrium« In the 

considered example with argon wKa N = 1,7» 10  cm"', T « 15,000°^ 

i * 
T /T « 5000. Times can appear comparable only in the beginning of 

lonization, when the number of electrons is much less than equilibrium. 

Unfortunately, there are no data in literature about cross 

sections of lonization of excited atoms, so that it is fairly diffi- 

cult to estimate the role of this effect in establishment of loni- 

zation equilibriunu Furthermore, here appears the question about 

the number of practically existing states of atoms in ionized gas 

(see § 6 Ch, III). Apparently, the cross sections decrease with 

growth of excitation levels, see § 5 Ch. V, and also § 14 of this 

chapter). In not too rarefied a gas the upper levels of atoms "are 

cut," so that the number of actual states is small. It is possible 

to trust that the above estimates of characteristic times give a 

true order of magnitude, although rates of lonization, apparently, are 

understated because lonization of excited atoms is not considered. 

The preceding results are easily generalized in the case of a 

mixture of gases, and also on secondary, etc, lonization. 

There Is also no data about cross sections of lonization of ions. 

We must assume that cross sections increase with growth of charge 

of ions. 
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§ 13» lonlzatlon and Excitation by Impacts 
of Heavy Particles 

A formal description of these processes Is fully analogous to 

that considered In the preceding sections to the case of lonlzatlon 

and excitation by electron Impact, Thus, the equation of kinetics 

of lonlzatlon has the form 

iN, -«o/vs-p^wr. (6.85) 

where by the principle of detailed balancing ß, « <»/K(r), Character. 

Istlc time 

*"srflj"^£fl£)- (6.84) 

Constant of lonlzatlon rate a Is expressed by the same formula 

as a. It Is necessary only to consider that the effective cross 

section of lonlzatlon O-fv») depends on relative speed of colliding 

atoms and as a function of Maxwelllan distribution with respect to 

relative speeds enters reduced mass \i,  equal In the case of Identical 

atoms to it » niV&» If« as before, we approximate the cross section 

near the threshold by linear dependence on kinetic energy of relative 

motion e' ■ \iv* /2t  we will obtain for a a formula analogous to 

(6.75)* If, however, we simply remove from the Integral sign certain 

mean value of cross section o , Instead of factor 1/kT + 2 the 

magnitude 1/kT + 1 will appear close to It« Thus, 

...^(^+2).-*.      ?-(f)T.        (6.85) 

♦Coefficient of recombination equals by definition, b0 - ß N • a   a a 
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where a corresponds to energy e1 » I + kT, It Is possible to describe 

similarly kinetics of excitation. 

Unfortunately, in distinction from the case of electron Impact, 

It Is very difficult to make any quantitative estimates of rates of 

the processes. Comparison of constants of rates of lonlzatlon by 

electrons and atoms by the formulas (6,85), (6.75) shows that 

a /a « (VgAo) (^AO* At comparable temperatures v /v « 

« Y*njmt ~ 100, Regarding, however, cross sections, than the only 

thing that It Is possible to say Is that ae Is several orders larger 

than a , There are no experimental data about cross sections of 
a 

lonlzatlon or excitation by atoms with energies of the order of ten 

ev, since cross sections are so small that they cannot be measured. 

So that a collision Is nonelastlc. It Is necessary that the 

Impact be sufficiently sharpj In other words, the rate of rapproche- 

ment of particles should be of the order of speeds of orbital 

electrons In an atonu In the case of an electron Impact with energy 

of the order of lonlzatlon potential or excitation energy, i.e., 

the order of several or ten ev, this condition Is fulfilled and the 

nonelastlc cross section Is great. Upon collisions of heavy parti- 

cles speeds are comparable only when energies are approximately 

Vmjm,    ~ 100 times larger than the shown magnitudes, i.e., at 

energies of the order of a kilo-electron-volt. And indeed, here the 

effective cross section of lonlzatlon or excitation is comparable 

with analogous cross sections for electron impact. For energies of 

the order of 10 ev rate of rapprochement of particles is very small 

and Impact is "adiabatic," The position Is fully analogous to the 

case of excitation of vibrations in molecules, considered in § 4, 

Exactly so, in order that during a collision a nonelastlc energy 
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transfer happens with considerable probability. It Is necessary that 

adlabatlc factor av/v be not too great, of the order of unity. Here 

by v one should now understand not frequency of vibrations of mole- 

cules, but frequency of rotation of an electron along Its own 

orbit (av of the order of velocity of an electron In an atom, since a 

Is of the order of dimensions of an atom). The lowest energies of 

relative motion* e1, at which lonlzatlon was measured by experiment 

were of the order of 50-40 ev. It was found that the cross section 

of lonlzatlon of argon by atoms and Ions of argon when e' « 55 ev 

a ~ 3#10~  cm [51]j for helium by atoms of helium a ~ 2»10~ " cm 
cL a 

when e1 » 35 ev [52] j for argon by Ions of potassium ao  ~ 2
,lo" " cm' .,, ___ _„,.. „v  _,™ „ ,.-.„„__„.. . ~ e'ln"1^ cm2 

when e» ~ 45 ev,** 

As the quantum-mechanical analog of the condition of he^.z 

adlabatlc av/v » 1 serves the condition av/v -♦ ahv/hv «• aAE/hv »1, 

where AE Is the nonelastlc transformation of energy during collision. 

The origin of this condition Is such. The probability of the process 

Is determined by matrix element of Interaction, In which there Is the 

product of wave functions of Initial and final states of particles. 

♦By experiment usually a beam of fast particles penetrates the 
gas from "motionless" atoms. Here the threshold of lonlzatlon accord- 
ing to energy of Incident particles Is twice as high as lonlzatlon 
potential. This corresponds to the fact that the reduced mass Is 
twice less than the atomic mass and at a given relative speed e' ■ 
-e^j enp - 28'np ■ 21. [Editors note: Definition foi< subscript nr 

Is not available, 

**In [54] the effective cross sections of nonelastlc Ar-Ar and 
He-He collisions are theoretically calculated and a comparison Is made 
with experimental data [5i, 52], Data on cross sections of lonlzatlon 
during collisions of Ions and atoms with energies of the order of 
several hundreds of ev and higher are In survey [75], 
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Wave functions of translatlonal motion are described by plane waves 

e P ' ;♦ the product of plane waves of Initial and final states 

yields In the Integrand an expression of matrix element csclllatory 

factor e   '   ,  where Ap Is change of momentum of Incident particle 

during collision. The Integral has a noticeable magnitude. If this 

factor does not oscillate In a region where there Is great energy 

Interaction, i.e., at a distance r of the order of atomic dimensions 

a. Thus, the condition of great probability of the process is 

Ap*a/ti <C  1, Change of momentum Ap is of the order AE/v, where AE is 

change of kinetic energy of particles, i.e., nonelastic energy 

transfer. Hence is obtained the condition of considerable probability 

aAE/hv^i 1; the condition of small probability is aAE/hv » 1. 

From this condition, in partlcuxar, it follows that there must 

be great cross sections of processes in which nonelastic transformation 

of energy AE is very small (the so-called case of resonance). And 

actually, cross sections of ionization of atoms by excited atoms or 

molecules are great when, on breaking away of electron is expended 

not kinetic energy of translatlonal motion, but energy of Internal 

degrees of freedom. Thus, a cross section of processes of the type 

A + B* -♦ A* + e + B, 

where excitation energy E* of particle B is close to ionization 

potential of particle A, in an order of magnitude close to gas 

kinetic. Therefore, the process of Ionization by heavy particles, 

especially molecules, is most likely two stage or multistage: first 

*h - h/27r. 
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oocurs excitation of one of the particles, and then lonlzatlon by 

Impact of excited particle (so-called lonlzatlon by Impact of second 

kind) or, conversely, breaking away of electron from excited particle. 

Certain data about these processes can be found In books [45, 46], 

The question about estimating rates of lonlzatlon and excitation 

by heavy particles can appear only In examining the most early stage 

of lonlzatlon of "instantly" heated gas, while concentration of 

-4  -5 
electrons Is very small, less than 10 —10 , l,e,, as yet an electron 

avalanche Is not formed. 

In order to estimate the lower limit of the time necessary for 

formation of "initiating" electrons and appearance of electron 

avalanche, we will consider the following Imaginary process. Let us 

assume that gas Is "instantly" heated to high temperature T and 

liberated electrons Instantly obtain the same temperature T as the 

atoms. In the beginning of the process, while lonlzatlon Is consi- 

derably less than equilibrium, recombination can be disregarded. At 

/       2       2 first dNVdt ■ a N and a Nt, The number of electrons grows linearly 
&     a a    3, a 

In time until the rate of lonlzatlon by electron Impact Is equal to 

rate of lonlzatlon by Impacts of atoms and avalanche does not appear, 
p 

This moment t,. is determined from the condition a NQN ■ a N , 

Substituting here Ne - a N
2^ and noticing that by formula (6,75) 

a
Ä
N " To* we wil1 obtain tH " TQ. In other words, the minimum 

necessary time t^ Is equal to characteristic time of development of 

avalanche. 

The real time of "induction" for development of an avalanche can 

be quite large. It Is determined not by the appearance of a sufficient 

quantity of free electrons, but by heating of electron gas to a 

temperature high enough to produce noticeable lonlzatlon. This time 

517 



is limited by deceleration of exchange by energy between atoms (ions) 

and electrons, which lose much energy to nonelastic collisions: 

ionization and excitation. For the exchange of energy between ions 

and electrons, see § 16, 

The conditions in which atoms are "instantly" heated to a high 

temperature, after which ionization starts, are fulfilled in a shock 

wave. The kinetics of ionization in the front of a shock wave and 

establishment of ionization equilibrium after the front will be the 

subject of §§ 10, 11 of Ch. VII. 

§ 14. Ionization and Excitation by Light Quanta 

Photo-ionization and photo-recombination were already considered 

in Ch. V during calculation of coefficients of absorption and radiation 

of light; therefore, inevitably it will be necessary for us to repeat 

here certain reasonings and conclusions of this chapter. 

Let us assume for simplicity that all atoms remain in the ground 

state and during recombination electrons are captured on the ground 
•5 

level. If N0 is the number of atoms in i cm , U dv is energy content a v 

of radiation in spectral Interval from v to v + dv in i cm , and 

a^(v) is the effective cross section of photo-ionization from ground 

level of atoms, then the number of events of photo-ionization in 1 cm 

in 1 sec equals 

OB 

where only quantum hv > hv^ ■ I; participate in absorption; av is the 

constant of photo-ionization rate. 

Let us designate by 0cl(v) the effective cross section of 
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photo-capture of electrons possessing speed v, on the ground level of 

an atom. Then the number of events of photo-recombination In 1 cnr 

In 1 sec la 

25U-6^Ar.-^iV,5/.(0)rfo.tp.ael(tf)[l4-^.J.     (6.86) 

The component c'TJ/STTIIV^ In the factor under the sign of Inte- 

gration considers processes of Induced recombination, corresponding 

to forced emission of quanta. Energy of emitted quantum Is connected 

with velocity of an electron by the equation of photoeffect 

*v-5s?+/. (6.87) 

The Integral In (6,86) Is the coefficient of photo-recomblnatlonb • 

By the principle of detailed balancing In conditions of full 

thermodynamlc equilibrium differentials In Integral expressions for 

Zrec ^^ Zlon are e<lual "^ each other. 

Setting as fe(v) the function of Maxwelllan distribution of 

electrons, and as U — Planck function, using the Saha equation 

(6.72) and equation of photoeffect (6,87), we will obtain the con- 

nection of effective cross sections of photo-lonizatlon and photo- 

recomblnatlom 

<»et(P)-Jj^i|£iav..(v). (6.88) 

Cross sections of photo-ionlzation from n-th excited level of 

atom and photo-capture on n-th level are likewise connected! 

AM a-w-J:^ *-(*)• (6.89) 
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Here ^ la the atatlatloaa ^ ^ ^ ^^ ^ 

^equency v an. veZocity of an electron v also are 
v aJ-S0 ^e connected by the 

equation of photoeffect: 

-^e.-^.,. (Mo) 

w-e en ls blndlng energy of an ^^^^ ^ ^ ^^^ ^ w 

excitation energy of the n-th level of an atom. 

Equation of kinetics of lonlzatlnn r™   u . 
form lonizatlon for photo-processes has the 

(D.91) 

Relaxation time for photo-processes: 

Let us estimate the constant of photo-lonlzatlon rate, assuming 

that the density of radiation Is close to equilibrium. In distinction 

from cross sections of Impact lonlzatlon, which are equal to zero 

for the threshold of lonlzatlon, the cross section of photo-lonlzatlon 

Is different than zero for threshold and In many cases, conversely. 

Is maximum when hv » I « hv^. Thus, for hydrogen-like atoms a_, - 

" 0SL^VI/V' ' where a^  » J,9»±0~      cm , If the charge of the "nucleus" 

Is equal U unity (see formula (5,34)}, If, as usually occurs, 

1/kT » 1, Ionizing quanta are In the Wien part of the spectrum, 

where U ~ exp(-hv/kT). Removing from under the Integral sign (6.85) 

average value of cross section, which with great accuracy can be put 

equal to cross section for threshold of lonlzatlon, we will obtain 
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after integration 

«*-§S-x05.r^-3-95-1OM7'"^r^'M"1,      (6.93) 

The coefficient of recombination b can be found either by the 

principle of detailed balancing: b^ »■ av(N )/(N+)(Ne), or directly, 

calculating integral (6,86), It is necessary to note that when 

I » kT the role of the induced recombinations is very small: the 

factor in brackets In integral (6,86) approximately equals 

1 + e"hv'^ « 1,  since hv > I » kT. For the coefficient of recom- 

bination we obtain (when 1/kT » i): 

S-ih^'t-t&A'^"'' (6.95) 

where a. is mean cross section of photo-capture on ground level 
cl 

(v is average thermal velocity of electrons). 

Mean cross section of photo-capture is inversely proportional 

to electron temperature. Effective cross sections of photo-ionlzation 

and photo-capture at a temperature, correspondingly, of 1 ev, (a^ j 
1 o 

a     " a   /T0..) for certain atoms are presented in Table 6,6, c^   c^.  ev 

Regarding cross sections of ions, if one were to consider them as 
0    -2      0    2-2 hydrogen-like systems, then cr' ~ Z , and a*   ~ I Z , Usually 
1 i 2 

ionizatlon potentials of ions grow with charge, as I ~ Z-Z , 

whence o. - Z -Z , 
cl 

Let us compare recombination rate in three-body collisions with 

participation of electrons and with emission of quantum. By the 

formulas (6,77), (6,94), (6,95) we will obtain 
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Table 6,6. Effective Cross Sections of Photo-ionlza. 
tloh from Ground Levels of Atoms and Photocapture 
of ^J^otrons on Ground Level 

«Jj-IOMCJH» 
Moment  "f cro.';s sect iot. <TVl 

nfter threshold Atom /. «v <i t* ofrtmcMUr 

H 13.54 2 1 7.9 Crops    — v-s 2.9 
Li 5.37 2 1 3.7 0.21 
C 11.24 9 6 10 Crops by twice when hv « 1  ♦ 10 ev 1.9 
N 14 6 4 9 7.5 Slowly drops 0.7 
0 1357 9 4 3 Almost constant up toAv~/-f-15 ev 1.24 
F 17.46 6 9 2 Almost constant up toAv~ /-flS ev 0.41 
N« 5.09 2 1 0.31 Drops faster than       v_* 0.016 
Ca 6.25 1 2 25 Drops     ~ y~a 0,51 

Effective cross section cr,, and data about 

movement of cross section after threshold are 

taken from book [55]. Magnitudes a      are cal- 

culated by the formula {6,95). 

Independently of whether concentration of electrons Is equilibrium 

or not. As can be seen from Tables 6.4 and 6.6, C and av   are of one 

order (~5»10  ), lonlzatlon potentials of atoms I ~ 10 ev, typical 

for region of first lonlzatlon temperature T ~ 1 ev » 11,600 K. 

Prom (6,96) It follows that recombination In triple collisions pre- 

dominates above photo-recorablnation only when density of electrons 

N > ±0^ l/cnv5. At smaller densities a basic role Is played by 

photo-recombination. 

In states close to the thermodynamlc state equilibrium (both 

with respect to degree of lonlzatlon, and also with respect to density 

of radiation), the number of ionizations is close to number of 

recombinations, i.e., are in that same ratio. Ratio of relaxation 

times. 

-'——S2^:10-17^.). 
"mam     *j»«« 

(6.96a) 

47 1 /,.m3 i.e., when N < 10 ' 1/cnr thermodynamlc equilibrium is established 
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mainly owing to photo-processes,  and when (N ) > iO ' l/cnr photo- 

procesaes play a secondary role. 
4 ft 

In the above example with argon when T - 13,000 K, N. ■ 1#7»10 

cm"5, (Na) - 0.14, Nfi - 2,4»10
17 cm"5, xa  - 2.9.I0"5 sec, and T - 

m  6.2, T - 1,8»10  sec (here it is assumed that a° - Y.c^lO" e v^^ 

cm as for hydrogen-like atoms, and I and C are taken from tables), 

i.e.,photo-processes are less essential. By the formula of Saha, 

for small degrees of ionization (N ) ~ V^l  , so that f^Ag * V3^: 

ratio of time grows in proportion to the root of the density of 

gas (at constant temperature). In the shown example photo-processes 

will become basic when N0 < 4 X IO
16 cm"5 (T » 15,000oK). 

It is interesting to estimate the role of recombinations with 

capture of electron on excited levels. The coefficient of recombina- 

tion in general is equal to (compare with formula (6.94)) 

*.- :S«Mo). (6,97) 

where summation is produced over all levels n, and averaging is 

according to Maxwellian distribution of electrons, ac (v) is 

expressed by formula (6,89). For hydrogen-like atoms a     •* 1/n , 

g_ ■ 2n , so that oc ~ 1/n^, where v and v are connected by formula 

(6.90), in which en ■ l/n . In general, during summation over n 

appears a question about number of actual levels in the atom, which 

should be considered (see § 6 Ch, III)j however, in this case the 

sum over n rapidly converges and summation can be approximately 

extended to n - oo. Magnitude (6.97) is calculated in book Splttser 

[56]. The coefficient of recombination there is represented in the 

form b ■ const »(ß), where const depends only on temperature (and 

charge of "nucleus" Z), and ß - l/XE»  where function 9(ß), including 
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sum over n. Is tabulated. If one were to consider only capture on 

ground level, then when ß » 1 one should consider 9(ß) - 1, Accord- 

ing to [56] when ß - 5 «p « I.69, when ß » 10 <p » £.02, when ß - 100 

<p * 3.2, Thus, under the usual conditions encountered In the region 

of first lonlzatlon, when ß « 1/kT ~ 10, capture on all excited 

levels gives approximately the same contribution In recombination, as 

capture on ground level. 

In virtue of the principle of detailed balancing, under the 

condition that distribution of atoms with respect to excited states — 

Boltzmann and radiation equilibrium, the same pertains also to 

photo-ionlzation. Thus, duringphoto-lonlzatlon the role of lonlzatlon 

of excited atoms is comparable with the role of lonlzatlon of 

unexcited atoms, so that our estimates of rates of photo-lonlzatlon 

and photo-recombinations are understated approximately one time in 

two. 

Apparently, it is also the same with lonlzatlon by electron 

impact and recombination in three-body collisions. 

Let us have a few words apropos of excitation and deactivation 

of atoms by radiation. The lifetimes of excited atoms with respect 

♦     8 
to spontaneous emission have an order of T ~ 10  sec. Lifetime 

with respect to deactivation by electronic impacts of second kind by 

formula (6.82) at an electron temperature of T *» 1 ev T -V i,5»10vN 

sec. Deactivation by electrons predominates over spontaneous 

luminiscence when Ne >, l.S'lO ' l/cnr, i,e,, with those same con- 

ditions at which recombination in three-body collisions predominates 

over photo-recombination. 

Under conditions close to thermodynamlc equilibrium, there is a 

similar relationship of rates of excitation of atoms by electrons 
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and light quanta. Let us note that absorption cross sections of 

resonance ratlatlon, able to excite atoms, are very great, resonance 

radiation Is practically always equilibrium (medium Is always opaque 

for resonance quanta), so that time T ~ 10" sec characterizes 

relaxation time for establishment of Boltzmann distribution with 

respect to excited states by means photo-excitement of atoms. 

§ 15. lonizatlon and Recombination in 

Molecular Gases (in Air)* 

At very high temperatures, higher than 10,000-15,0000K, 

mechanisms of lonizatlon in molecular gases in general do not differ 

from mechanisms of lonizatlon in monatomic gases. At lower tempera- 

tures, below ~ 10,000 K, on the first plan come forward processes 

which are the reverse of dissociative recombination (6,67), They are 

profitable by the fact that on lonizatlon is expended, besides, 

thermal binding energy, liberated as a result of unification of atoms 

into a molecule. Therefore^ activation energy of these processes is 

comparatively small, and they occur at low temperatures much faster 

than do processes of lonizatlon of atoms or molecules by impacts of 

particles. 

In particular, the basic and the most Important mechanism of 

lonizatlon in air at temperatures lower than 10,0000K is reaction 

(6,66), which requires minimum consumptions of energy, in all 2,8 ev. 

All possible mechanisms of lonizatlon in air at temperatures of the 

order of l0,000oK and lower are considered in detail in the fun- 

damental investigation of Lin and Teare [73],** in which are given 

♦This section, based on the most recent works, was adaed to the 
book in proofreading and therefore is extraordinarily compressed, 

♦♦See also [72]. 
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many data on cross sections and rates of different processes. 

For the most Important reaction (6.66) the constant of rate Is 

given In the form 

AWiM.^S-lO^r-'Vwioo/T- CM3/seQ 

The equilibrium constant of this reaction In the Interval of tempera- 

tures from 500 to 30,0000K Is approximated by the formula 

32900 

A:=(i.4.io-»r+i.2.i(r"r+i.4.io-"P)e—r- 

(T Is in 0K)# The constant of the rate of the reverse reaction — 

dissociative recombination — according to the principle of detailed 

balancing is equal to bdls rec - klon/K cnr/sec. For low tempera- 

tures this gives bdis rec N0
+ « 3*±0~\0~3'2 cnP/aeo. 

The processes of dissociative recombination (6,67) play the 

most important role in E- and F-layers of the ionosphere (at altitudes 

greater than 100 km above sea level), A detailed summary of experi- 

mental data on coefficients of dissociative recombination bJ4 dis,rec, 

is in the survey of Q, S. Ivanov-Kholodnyy [71], b,. __ decreases 

with increase of temperature approximately as 1/lr'   -l/Tr'     (accord- 

ing to various data). For 1^ ions when T - 300oK bdl    Nl ** 

•• lO" cnr/sec which corresponds to a very large effective cross 

section a *• 10~ ^ cm^# For 0o and NO ions b,. „An    is somewhat 2 dis,rec, 
less. 

Recombination in cold air during comparatively large densities 

(in D-shell of ionosphere below ~80 km) occurs basically through 

formation of negative ions of oxygen. Electrons adhere to molecules 

of oxygen chiefly in triple collisions Og + e + M -♦ 00 4 M, and 
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then OÖ lona recombine with N! or OZ  lona In paired or triple colli- 

sions. The latest data on recombination In cold air, and also on 

many other nonelastlc processes occurring In the Ionosphere, are In 

the survey of Dal^garno [74], 

3, Plasma 

§ 16, Relaxation In Plasma 

In atomic or molecular gas relaxation time for establishment 

of Maxwelllan distribution according to rates Is characterized by 

the time between collisions of particles. I.e., gas kinetic cross 

-15  2 
sections, which have an order of 10   cm , Qas kinetic cross sections 

2 
equal approximately a *« ira , where radius a Is of the order of the 

range of action of Interatomic and Intermolecular forces of Inter- 

action, l,e., of the order of dimensions of particles. There Is 

another character to the forces effective between charged particles 

of plasma: electrons. Ions, Coulomb forces drop with distance very 

slowly, as 1/r, and do not have characteristic scale of length. 

Therefore, the question about "collisions" between charged particles 

and the question about corresponding relaxation times should be 

especially considered. 

Plasma can be Imagined as a mixture of two gases, electron and 

Ionic, with sharply different masses of particles m and m. Owing 

to a sharp distinction of masses bet'-en electrons and ions exchange 

of energy Is hampered, since during   -llslons" an electron and Ion 

exchange energy which composes only a fraction of the order nu/m « 1 

of their kinetic energy. Thus, average kinetic energies of electrons 

and Ions, l.e,, electron and Ionic temperature, can during a com- 

paratively prolonged time strongly differ from each other. Two 
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factors are noted; long-range character of Coulomb forces and sharp 

distinction of masses of electrons and ions, determine specific 

peculiarities of plasma» 

Let us consider at first the Interaction of charged particles 

with masses of one order. During collisions they can exchange 

energy comparable with Initial energies of particles; therefore, 

establishment of Maxwelllan distribution according to rates. I.e., 

temperature, requires only several collisions. If by "collision" 

we understand such Interaction of particles at which occurs consider- 

able change of speed and energy. I.e., deflection at a considerable 

angle (order of 90°)* then In the case of charged particles "colli- 

sions" occur during their approach on such a distance at which 

kinetic and potential (Coulomb) energy turn out to be comparable« 

This characteristic distance r0 Is determined, obviously, from the 

condition Z e /r0 •* kT, where Z Is the charge of the particles. 

Thus, a measure of the effective cross section of "collisions" can 

be the magnitude 

""""^"(Ifji- (6.98) 

In reality the matter Is somewhat more complicated, since In 

change of velocities of particles, with the Coulomb law of inter- 

action a large role is played by "far" collisions, corresponding to 

large impact distances (Fig, 6,5). 

"Par" collision occur more frequently than "close" ones. In the 

slow. Coulomb law of drop of forces the total effect of "far" colli- 

sions is great in spite of the fact that change of speed in every 

such collision is small. 
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a) t>) 

Fig, 6.5. Trajector-y 
of ion during flight 
past an ion of the 
same slgnt a) r ~ r — 
strong interaction! 
b) r » r — weak 
Interaction. 

Let us estimate this effect. During 

flight of one particle past another at 

impact distance v,  the force acting on Itj 
2 2/2 in order of magnitude equals P ^ Z e /r , 

Time of action of force t ~ r/v, where v is 

velocity of a particles. Change of speed 

during flight is of the order of Av ** Pt/m ~ 
2 2 

~ Z e /mvr. Inasmuch as change of speed Av 

can be both positive and also negative, it 

is natural to characterize Interaction by 

the square of change of speed (Av) ~ 

~ Z4eVmVr2. ■ 

The probability of such change is proportional to area of ring 

27rrdr, Thus, rate of change of magnitude (Av) for particle flux 

Nv is of the order 

where N is the number of particles in 1 cur. The lower limit of the 

2 2/  2 integral is the minimum distance on which particles r0 ~ Z e /mv ~ 

- Z e /kT can approach. On the upper limit, when r -♦■ oo, the Integral 

logarithmically diverges. However, very far interactions in electron- 

neutral gas are shielded by Joint action of positive and negative 

charges. The radius of shielding, which can be taken as the upper 

limit, is, obviously, Debye radius d (see § 11 Ch. Ill), Taking 

into account formula (5,78) for this magnitude, we will find: 

(6.99) 

(4«)' 2H»N 
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If one determined relaxation time T as the time during which 

2 2 2 
(Av) changes by a magnitude or the order v , and put mv ~ kT, we 

will obtain 

'- ** iVwt-__-inA. «* dt (*r)> (6.100) 

Using the usual connection of time of relaxation with "gas 

kinetic" cross section 1/T = NÄra It Is possible to Introduce the 

conditional Idea of "effective cross section" also for "collisions" 

of charged particles. It equals: 

.    Z*e* .    k 
(6.101) 

Table 6.7, InA when Z - 1 

l.e,, InA. times more than magnitude (6,98), In which "far" collisions 

are not considered. As follows from Table 6,7^* InA has order 10. 

More strict consideration (see 

[56]) leads to the appearance In for- 

mulas (6.100), (6.101) of a numerical 

factor of the order of unity, namely: 

o-O.eQn^laA-^lnAc^. (6.102) 

■"-■       N.CM-* 
^-—^^ 101« toi» 101« 10*1 

T.'K ^-^ 

10» 5,97 
10* 9 '.3 5.97 
10» 12.8 9.43 5.97 
10« 159 12.4 8,96 5.97 

(*T)» yo' 

The effective cross section is very 

weak, logarithmically depends on density, and is Inversely pro- 

portional to square of temperature. It is comparable with the usual 

-15  2 
gas kinetic cross sections a ~ 10   cm at temperature 

♦Data of the table are taken from book [56], They are somewhat 
definltlzed as compared to formula (6,99), 
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T - 250,000OK.» 

Effective cross section a and length of free path i  « 1/Na 

of charged particles do not depend on mass. I.e., for electrons and 

Ions with equal temperatures they are Identical (when Z » i). 

Relaxation time, owing to dependence on rate. Is proportional to the 

root of mass T ~ i/v ~ m'   ,  I.e., for electrons one time In 100 less 

than for Ions (at equal temperatures). 

For Instance, In electron gas when T « 20,000oK, N » 10  i/cnr, 

-14  2 -1"5 
a «* o'iO   cm and x » 2*10   sec. In gas from nuclei of hydrogen 

(protons) with the same temperature and density time Is 43 times 

-12 
more, T » 8,6 X 10   sec. From these estimates It Is clear that 

temperature In each of the gases Is established very rapidly, so that 

practically the question about relaxation of establishment of trans- 

latlonal temperature almost never appears. 

Another matter Is the establishment of thermodynamlc equilibrium 

between electron and Ionic gases. I.e., equating of electron and 

Ionic temperatures. In a number of physical processes there appears 

a difference In the temperatures of Ionic and electron gases, which 

with a tendency of the system to thermodynamlc equilibrium should 

disappear with passage of time. Thus, for Instance, In a shock 

wave spreading along plasma. In the shock are heated only lonsj 

electrons remain cold and gradual energy transfer from Ions to 

electrons and equating of their temperatures occur after the shock 

*It Is necessary to note that at such large temperatures and 
energies, at which radius r0 Is less than the radius of Ions (com- 

plicated) and cross section (6,102) Is less than the "gas kinetic" 
cross section, frequency of collisions and path length of "ions" are 
determined by this latter, but not by "Coulomb" (6,102), 
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over a comparatively large time (aee § 12 Ch, VII), Let us estimate 

relaxation time for exchange of energy between Ions and electrons 

and equating of their temperatures. 

The "effective cross section" (6,102) does not depend on mass 

of charged particles and characterizes actually the probability of 

strong deflection of particles from Initial direction of their 

motion during Interaction, The effect of exchange of energy Is, so 

to say, a corollary of deflection. With comparable masses of parti- 

cles, strong deflection Is simultaneously connected also with great 

energy transfer. In consequence of which cross section a  also 

determined rate of exchange of energy during collision of Identical 

particles. During Interaction of particles with sharply distinguished 

masses (electrons and Ions) exchange of energy during collision, 

according to law of conservation of momentum and energy, cannot 

exceed the fraction of order m /m. Therefore, so that there Is con- 

siderable energy transfer. It Is necessary that particles undergo 

approximately m/m ,  l,e,, very many "collisions," 

Repeating the conclusion of "effective cross section" for "colli- 

sion" of electrons and ions, let us note that by kinetic energy of 

colliding particles one should understand kinetic energy of their 

relative motion. If the electron temperature is not far less than 

ionic, then relative rate always coincides with velocity of an 

electron. Reduced mass also coincides with ma.ss of electron, so that 

average energy of relative motion is characterized by electron tempera- 

ture, Furthermore, in the expression for effective cross section 

one of the factors Z pertained to one of the particles, and the 

second pertained to the other. Inasmuch as for an electron Z ■ 1, 
4 2 

Instead of Z into the cross section will enter the factor Z , 
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Thus, the "effective cross section" of " collisions" of electrons 

with Ions is of the order a' w irZ e InA/C^) # time between "colli- 

sions" T1 ~ 1/Nv a1, and characteristic time of exchange» e 

More strict consideration [56] leads to the appearance in this 

formula of a numerical coefficient of the order of unity. After 

substitution of values of constants the expression for time of exchange 

obtains the form 

where A is the atomic weight of ions, and N is their number in 1 cnr. 

For instance, when N « ICT cm , T_ « ZO^OOO0^ Z « 1, A ■* 16 (atoms 

of oxygen), T  « 2#8
,10'*° sec. With a small difference of tempera- 

tures of electrons and ions rate of change of temperature of one of 

the gases is naturally presented in form of the usual equation of 

relaxation of the type (6,2): 

^-^. (6.105) 

It turns out, however that the equation of kinetics for tempera- 

ture balance (6,105) is accurate also with a great difference of 

temperatures. Equation (6,105) in time of exchange (6,104) (differing 

*Jn the case of interactlor. of electrons and complex ions with 
sufficiently high energies the remark made in the footnote on p, 531 
holds true. 
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by only Immaterial numerical coefficient of the order of unity) was 

for the first time derived by L, D, Landau In ±956 [57] by means 

of strict consideration of the kinetic equation for gas from charged 

particles. Interacting according to Coulomb's law. 
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CHAPTER  VII 

STRUCTURE OF FRONT OF SHOCK WAVES IN GASES 

§ 1. Introduction 

Basic presentation about shock waves were given In Chapter I. It 

Is shown that equations of hydrodynamics of an Idea liquid allow the 

existence of discontinuous solutions, which describe shock waves. 

Hydrodynamlc magnitudes:  density, pressure, speed on both sides of 

the surface of discontinuity, are Interconnected by differential equa- 

tions corresponding to differential equations which describe regions 

of continuous flow. These equations are expressions of general laws 

of conservation of mass, momentum, and energy. From the laws of pres- 

ervation it follows that on a surface of discontinuity entropy of 

matter experiences a Jump (increases). Magnitude of growth of entropy 

in a shock wave is determined only by conditions of conservation of 

mass, momentum, and energy and by thermodynamic properties of matter 

and absolutely does not depend on the mechanism of dissipation leading 

to growth of entropy. 

In a certain meaning it is paradoxical that equations of adiabatic 

motion of matter allow the existence of such surfaces on which entropy 

experiences a jump. The irreversibility of shock compression indicates 

that in it participate dissipative processes:  viscosity and thermal 

conduction, which leads to growth of entropy. 
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Namely thanks to vlncoslty there in carried out an lrrevcr,r;ib l.e 

transrormatlon into heat ol' a considerable part of the kinetic energy 

of the gas-dynamic flow incident on the discontinuity In the system 

of coordinates where the discontinuity rests. 

Thus, if one were interested in the mechanism of shock compression, 

the Internal structure and the thickness of that transition layer in 

which occurs transformation of substance from initial state Into final 

state and which within the bounds of hydrodynamics of an Ideal liquid 

Is replaced by a mathematical surface. It is necessary to turn to 

theory. Including a description of the dissipative processes.  In 

Chapter I this question was considered In reference to shock waves of 

weak intensity.  In this chapter limitations will not be put on ampli- 

tude of shock wave. 

Usually In hydrodynaralc processes, changes of macroscopic para- 

meters in regions of continuous flow occur very slowly as compared to 

speeds of relaxation processes, leading to establishment of thermody- 

namlc equilibrium. Each particle of gas at each moment of time is in 

a state of thermodynamlc equilibrium, corresponding to slowly changing 

macroscopic parameters, as it were. It "follows" change of these para- 

meters.  Therefore, in examining shock discontinuities within the 

bounds of the hydrodynamics of ideal liquid, states of gas along both 

sides of discontinuities, with full basis, are assumed to be in ther- 

modynamlc equilibrium. 

In the thin transition layer where occurs transformation of gas 

from the initial thermodynamlc equilibrium to final thermodynamlc 

equilibrium, density, and pressure, etc., change very quickly. Ther- 

modynaraic equilibrium in this region, called the front of the shock 

wave, can be essentially disturbed. Therefore, during the study of 
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the Internal structure of the front of the shock wave it is necessary 

to take into account also the kinetics of relaxation processes, to 

consider in detail the mechanism of the establishment of the final 

state of thermodynamic equilibrium of matter, which is attained behind 

the front of the wave. 

Study of the internal structure of the front of shock waves pre- 

sents interest from many points of view. At first the question about 

structure attracted attention as a purely theoretical problem, the 

solution of which helps us to understand the physical mechanism of 

shock compression, one of the most remarkable phenomena in gas dynamics. 

Later shock waves were used in laboratories for the purpose of obtain- 

ing high temperatures and investigation of various processes which 

occur in gases during high temperatures:  excitation of oscillations 

in molecules, dissociation of molecules, chemical reactions, ionization, 

radiation of light (see Chapter IV). 

With the help of theoretical consideration of the structure of 

the front of a shock wave we derive from experiment valuable informa- 

tion about the speeds of these processes. 

Finally, study of the structure of fronts of very strong shock 

waves, in which radiation plays an essential role, sheds light on the 

question about such an important characteristic as brightness of the 

surface of the front of the wave and explains certain interesting 

optical effects observed by experiment and during strong explosions 

in air (see Chapter IX). 

In the basis of mathematical theory on the structure of the front 

of a shock wave lies the assumption of stationarity of structure. 

Time of transformation of matter in a shock wave from initial state 

to final is very small, much less than characteristic times during 
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which noticeably change parameters of gar. In the region of contlnuour, 

flow behind the front of the wave. Exactly so the width of the front 

Is much less than characteristic sealer-, of length, at which noticeably 

changes the state of gas behind the front, let us say, distance from 

front of shock wave to piston, "pushing" wave (piston moves with var- 

iable speed). 

For that small time, during which the shock wave passes a distance 

of the order of the width of the front, the speed of its propagation, 

the pressure and other parameters of gas behind the front practically 

do not change. But the kinetics of the internal processes occurring 

in front of the shock wave, spreading along gas with assigned Initial 

parameters, depends only on the amplitude of the wave. 

Therefore, during a certain comparatively large Interval of time 

each of particles of gas, flowing in the shock discontinuity, passes 

through the same sequence of states as the preceding.  In other words, 

distribution of different parameters in the front of the shock wave 

will form, as it were, a frozen picture, which during this time as a 

whole moves together with the front (Fig. 7.1). 

If speed of front is designated D (D = |D| > 0), and a coordinate 

normal to the surface of the front at a given place of surface is 

designated x, then it is possible to say that all parameters of the 

state of the gas inside the wave depend on coordinate and time only 

in combination x + Dt, In the system of coordinates connected with 

the front, process is stationary establishment and does not depend on 

time. This circumstance (which, one should mention, already was used 

during conclusion of relationships in the discontinuity) extraordinarily 

facilitates the problem from the mathematical point of view, since in 

the system of coordinates, moving together with the wave, all paraaeters 
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of the state of the gas are ronctlons not of two variables x and t, 

but only of one coordinate, and processes are described by ordinary 

differential equations. 

In § 23* Chapter I, in examining the width of the front of shock 

waves of weak intensity, it was shown that width of compression shock 

a) 
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has, for its scale, the mean free path of 

the molecules. With increase in amplitude 

of wave, width decreases, and when excess 

of pressure behind the front over initial 

pressure becomes comparable with the actual 

initial pressure, the width of the front 

becomes of an order of the mean free path. 

Physically, it is clear that in strong 

shock waves the width of the shocK wave, in 

which under the action of forces of "viscos- 

Pig. 7.1. Profile of 
pressure in a shock 
wave:  a) propagation 
of shock wave In a 
laboratory system of 
coordinates; b) Jump 
in system of coordi- 
nates connected with 
front. 

lty!! there occurs shock compression. Is always of the order of the 

mean free path of molecules.* This is simplest of all to explain 

when one considers shock wave in a system of coordinates in which gas 

behind the front rests (in a system of coordinates, connected with the 

piston) or the same when one considers braking of high-speed gas flow 

incident on motionless wall.  The kinetic energy of directed motion 

♦It is necessary to emphasize the conventionality of the idea of 
"viscosity in this case. When we talk about viscosity, we imply that 
gradients of speed are small and speeds noticeably change at distances 
much longer than the length of the mean free path of molecules. In 
other words, viscosity, which is introduced in hydrodynamics, is a 
macroscopic concept.  If a sharp change of speed and density of gas 
occurs at a distance of the mean free path of molecules, then this 
phenomenon of "miscroscopic" ssale one should consider not hydrody- 
namically but on the basis of the molecular-kinetic theory or gases. 
As applied to a case of very large gradients, in front of the shock 
wave under "viscosity" one should understand the mechanism of trans- 
formation of directed velocity of molecules into chaotic velocity, 
caused by molecular collisions. 
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of molecules (kinetic energy of hydrodynamic motion) during braking 

is turned into kinetic energy of chaotic motion, i.e., into heat. 

For "braking" of fast molecules, the directed speeds of which are much 

larger than initial thermal speeds (which corresponds to high amplitude 

of wave: high supersonic speed of wave), several gas kinetic colli- 

sions since at each impact a molecule, on the average, changes the 

direction of its motion to a great angle. Therefore, after several 

collisions the directional momentum of molecules is almost completely 

dispersed and speeds become chaotic. 

For distribution of energy on different internal degrees of free- 

dom — excitation of oscillations in molecules, dissociation^ ionization 

— there is required usually many collisions. Width of the relaxation 

layer, in which occurs establishment of final, thermodynamically 

equilibrium state, is much larger than the width of the initial com- 

pression shock. The whole transition layer of the front of the shock 

wave it is possible, consequently, to divide into two zones, essen- 

tially distinguished in their width:  a very thin, "viscous" shock 

wave and an extended relaxation layer. 

In a sufficiently strong shock wave, in which gas is heated to 

high temperatures, an essential role is played by radiation and radiant 

heat exchange. The structure of the front is still more complicated. 

Width of front is determined by the biggest scale characterizing the 

transition process connected with radiant heat exchange: by the length 

of the mean free path of radiation, which is usually many times larger 

than the gas kinetic mean free paths of particles. 

In subsequent paragraphs there will be considered in detail the 

peculiarities of structure of the front of shock waves. We will start 

from consideration of shock waves of comparatively small intensity 
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and will pass to more and more powerful waves. 

1.  Compression Shock 

§ 2. Viscous Shock Wave 

Inasmuch as the process of shock compression in the shock wave 

develops at distance commensurable with gas kinetic molecular path, 

during the study of the structure of compression shock, one ought, 

strictly speaking, to start fr^m concepts of molecular-kinetic theory 

of gases.  However, as a first step in this direction it is natural 

to consider the problem within the bounds of the hydrodynamics of real 

liquid, taking into account dissipative processes:  viscosity and 

thermal conduction.  Besides, in distinction from calculations in § 23, 

Chapter I, we will not put limitations on amplitude of shock wave. 

For the purpose of continuity of account we will repeat here certain 

conclusions and computations from § 2^>,  Chapter I.  In order not to 

complicate consideration by (immaterial in this case) parts connected 

with retarded excitation of nonprogressive degrees of freedom of gas, 

we will consider gas monatomic and disregard ionization. 

Let us record equations of one-dimensional flow of viscous and 

heat-conducting gas, stationary in the system of coordinates connected 

with front of wave: 

ifiu-O. 
_., du   . dp      d   *    du     n 

(7.1) 

,'MI dx     3 ^ \dtj      d* • 

Here S Is specific entropy; |x is coefficient of viscosity,* S is non- 

hydrodynamlc energy flow equal, in the case of usual thermal conduction, 

to 
■S--«£. (7.2) 

*In this case. Ideas of first and second viscosity are indis- 
cernible. 
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where n  is  coefficient of thermal conduction. 

To the system of equations (7.1) one should Join boundary condi- 

tions, expressing the absence of gradients "before" and "after" front 

of wave, and the tendency of hydrodynamlc magnitudes toward initial 

(at x = —ID) and final (at x = +00) values.  Converting the third equa- 

tion of (7.1) with the help of the second law of thermodynamics: 

Tdl^dt + pdV = dw--dp 

and Integrating all equations (7.1)^ we will obtain first Integrals of 

system: 

QU-QoD. ^ 

Constants of Integration here are expressed through parameters 

of Initial state of gas to which Is ascribed Index "0" and speed of 

front D = UQ. 

If one were to carry equations (7.3) to final state (to parameters 

of It we will ascribe index "l"), we will obtain already known rela- 

tloncships on discontinuity, which for convenience we will write out 

once again: 

Pi + QiU^Po + QoD*, 

»» + y = «»o+ y. 
(7.4) 

From these relationships It follows that the jump of entropy in 

shock wave 2.   - SQ = S(p^, p^) - 2(PQ, PQ) absolutely does not depend 

on mechanism of dissipation nor on magnitude of coefficients of vis- 

cosity and thermal conduction \x  and n.     The last ones determine only 

Internal structure of front of wave and its thickness 5. Thickness 

of viscous shock wave 5 Is proportional to coefficients p, and H, which 

"in turn are proportional to the mean free path of molecules I.  In 
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limit I -♦ 0 hydrodynamics of real liquid turn, in regions of continuous 

flow, into hydrodynamics of ideal liquid. As regards the front of the 

shock wave, in limit I -► 0 it is turned into a mathematical surface, 

since 6 ~ I -♦ 0.  The gradients of all hydrodynamic magnitudes in the 

front rush to Infinity as l/l, and jumps of magnitudes remain final. 

Assigning as coefficients of viscosity and thermal conduction, 

and also thermodynamlc bond w(p, p) (in monatomic gas w = c T = iip/p), 

it is possible numerically to integrate equations (7.5)* (7.2) with 

the shown border conditions.  It is much more convenient, however, to 

deal with analytic solution since it more graphically demonstrates all 

laws of the phenomenon.  Unfortunately, in general, we cannot find 

analytic solution of the system.  To Integrate equations analytically 

it is possible if one were to be limited by waves of weak Intensity 

and to expuri the solution in a series with respect Lo small changes 

of one of the gas-dynamic magnitudes.  This method was used in § 2^* 

Chapter I for appraisal of width of a front (full solution Is In 

a book of L. D= Landau and Ye. M. Lifshits [1]). 

Exact analytic solution for a wave of arbitrary amplitude can be 

found in one special case.  This solution, obtained for the first time 

by Becker [2] and later Investigated by Morduchow and Llbby [5], 

describes all the physical regularities of the structure of a compres- 

sion shock, while possessing simplicity and clarity.  Let us pause on 

it in greater detail. 

Usually in gases transport coefficients — kinematic viscosity 

v =  u/p and temperature transfer x = H/C p — are close to one another 

and to coefficient of diffusion lv/3. 

We will assume combination Pr = n.c /H = v/x>  called Prandtl num- 

ber, to be equal to j/k.     In this case, the expression in parentheses 
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In the third of the equations (7.3) Is tyrned Into a total differential 

of magnitude w + — and the equation takes the form 

/  . II«N *   u    d S     ,  u»N    , ßi 

after writing an Integral of this linear equation, we will see that 
u2 

condition of finiteness of magnitude w + -p at x = +oo It is possible 

to satisfy only considering it not depending on x: 

«+?-*.+ ?•). (7.5) 
Thus, during Prandtl number Pr = 3/4 relationship (7.5) is fulfilled 

not only after front of wave (see {7A))  but also at any Intermediate 

point x. 

Equation (7.5) gives a curve on plane p, V, along which occurs 

transformation of gas from initial state to final.  Noticing that in 

monatomic gas, which we will consider here, w = 5/2 pV, and passing 

to dimensionless speed or specific volume 

D 

will find equation of this circle 

^z^Fo-.e' 

, 'JX!^! „.-,. (7.6) 

Here TU pertains to final state after front of shock wave: 

« -l*5 B&     lu.3 * (7.7) 

M — is Mach number equal to M = D/co* where CQ is speed of sound in Ini- 

tial state (c0
2 = 5/3 Povo)-  At conclusion of formulas (7.6), (7.7) 

were used relationships connecting magnitudes along both sides of the 

front of the wave.  The shock adiabat in variables P^/PQ, TU has the 

form 

*This equation is analogous to Bernoulli Integral in the theory 
of stationary flow. 
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In Fig. 7.2 are depicted shock adiabat and curve along which 

changes the state of a particle in the wave (and also the character- 

istic straight line connecting initial and finalstates). 

With the help of formula (7.6) and the first two equations of 

(7.3) we write a differential equation determining profiles of speed 

and volume in the front of the wave TI(X): 

Ti^nS«=-(i-^(n-%). (7.8) 

We will, for simplicity, consider the coefficient of viscosity 

to be not dependent on temperature and equal to p. = Po^O~c/^ ^on ^en" 

sity coefficient of viscosity does not depend, since \x ~ pi,  and 

I  ~ ?/p). Integral of equation (7.8) contains an additive constant 

in accordance with the arbitrary nature in the selection of the origin 

of coordinates. Placing the origin of coordinate at the point of 

inflection of the profile of speed (in the "center" of the wave) and 

taking into account formula (7.7)* we will find for T)(X) expression: 
Mt-t x 

i-n 1-/11 M  <• O-l/f-u). <^*)i"_(y5=fl*        V-WK-!--■••;• (7"9) 

Knowing profile of speed u ■» J>r\,  it is already easy to determine pro- 

files of all other magnitudes. Thus, for tempera- 

ture, according to formula (7.5) we have T/T^ ■ 1 + 
p 

+ ■= (i - r\  )j pressure is determined through formula 

(7«6); entropy is equal tot 

Prom formula (7.9) one may see that at x-♦ -00 

Pig. 7.2. Shock 
transition A -* B 
on p, V diagram. 
H is shock adia- 
bat. A point de- ^ -♦ 1, and at x -♦ +00, T) -♦ TL, , where approach to 
scribing the a 

state inside the initial and final values occurs asymptotically, ac- 
front of the wave 
passes from A to cording to exponential law. All hydrodynamlc magnl- 
B along dotted 
curve' tudes in the wave — speed, density, pressure, and 
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temperature — monotonlcally are changed from their Initial to their 

final values and asymptotically approach them at x-*■ +'jj ,* 

Entropy changes nonmonotonically and inside wave attains maximum 

(already shown in § 23, Chapter 1).  This is easily seen if one convert;; 

the third, entropic, equation (7.1) with the help of the second law of 

thermodynamics, "Bernoulli's integral" (7.5)* of the second of the 

equations (7.1)* and conditions of constancy of the coefficient of 

viscosity are: 

,d   A     du 4  diu 

Hence it is clear that entropy is extreme at the point of the bend in 

speed, i.e., in the "center" of the wave. Appearance of maximum of 

entropy in the wave is connected with the existence of thermal con- 

duction.  One of the dissipative processes, viscosity, leads only to 

growth of entropy, proportional to (du/dx) .  Owing to thermal con- 

duction, heat in irreversible form is transferred from the more heated 

layers of gas to the less heated. The Increase in entropy of particles 

because of thermal conduction in the less heated layers, where 
2 

dS    d T — ~ _ —-- < o, is positive, and in the more heated layers, where 
ax    dx^ o 

i d T 
dS/dx ~ - -—rj > 0, Is negative. 

Decrease of ertx-opy in the more heated layers of gas in now way 

contradicts the second law of thermodynamics.  Entropy of all the gas 

on the whole of of separate particles, as a result of the entire process 

of shock compression, increases during transition through shock dis- 

continuity. A separate layer of gas passing through the wave no longer 

constitutes an isolated system.  Its entropy in the beginning grows 

when to it proceeds heat, thanks to thermal conduction and work of the 

♦Points where various magnitudes in the front of the wave experi- 
ence a bend do not coincide. 
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forces of viscosity, but then decreases when departure of heat, because 

of thermal conduction in the direction of the layers of gas following 

after the one considered, exceeds flow owing to the work of the forces 

of viscosity. 

«. 
,....-. 

1 
a)       ■ 

«    ' IP -- 
k  

 '.       X 
w 'S -4   0 i    S   12   It 

i. 

\" 6        —    — ■ 

/ ..           — t) 

, 

.   / ' -* -2   0 2   4       «i 

Pig. 7.3. Distribu- 
tions a) of speed; b) 
of pressure; c) of en- 
tropy in a viscous 
shock wave with Mach 
number M = 2 in gas 
with adiabatic index 
7 = 7/5 and a coeffi- 
cient of viscosity not 
depending on tempera- 
ture.  Along the axis 
of abscissas is a coor- 
dinate measured in rang- 

fukf i i n MM i x es 0^ molecules in un- 
~4 -2  0  2   4    *•  distributed gas graphs 

are taken from [5]). 

Let us define width of front, as also in § 23, Chapter I, by 

condition 

From formula (7.9) it is clear that width of front in order of magnitude 

is equal to 
«~i, ip-r 

In a shock wave of small amplitude, when M - 1 « 1, 5 ~ IQ/(M - 1) 
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in accordance with results of § 23, Chapter T. Width of wave can equal 

many mean free paths of molecules.  In a limiting case of a strong 

wave, when M » 1, formally 6 ~ in/M -*■ 0. 

In the case M = 2,  depicted in Fig. 7.3, the width of the front is 

equal to approximately three mean free paths iQ.     The trend of the 

width of the front toward zero with an increase of amplitude of wave 

should not, of course, be understood literally.  The matter is simply 

that when the width of the front becomes of the order of a mean free 

path, hydrodynamic theory loses meaning, since in the basis of it lies 

an assumption of the smallness of gradients, i.e., the smallness of 

range as compared to distances at which there occur considerable changes 

of hydrodynamic parameters.  Therefore, to sufficiently strong waves 

the theory is simply not applicable.  Physically, it is clear that the 

thickness of the shock wave in a wave of any amplitude cannot become 

less than a mean free path since molecules of gas, incident on the 

discontinuity, must make at least several collisions so that directional 

momentum disperse and kinetic energy of directed motion be turned into 

kinetic energy of chaotic motion (into heat). At the same time, the 

thickness of shock wave in the case of a strong wave cannot compose 

many paths since in each collision, molecules of incident flow lose, 

on the average, a considerable fraction of their momentum. 

The problem about the structure of strong compression shocks should 

be considered on the basis of the molecular-kinetic theory of gases; 

therefore, numerous investigations directed toward a more precise 

definition of the above-stated simple theory, calculation of the depend- 

ence of transport coefficients on temperature, and clarification of 

the influence of the Prandtl number on the structure of the front, etc., 

[4-13] do not Introduce anything new in principle as compared to the 
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considered particular case, and In the best case present Interest for 

waves of weak intensity.* 

I. Ye. Tamm and. Independently, Mott-Smlth [16] applied a kinetic 

Boltzmann equation to the problem about structure of a shock wave. 

Approximate solution of the Boltzmann equation In the region of the 

jump Is constructed In the form of the superposition of two Maxwelllan 

distributions corresponding to temperatures and macroscopic speeds in 

the initial and final states.  The relative weight of both functions 

changes, during the period of the wave, from 0 to 1.  Thickness of the 

front during unlimited growth of amplitude of shock wave aspires to 

the final limit. By the calculations of Sakurai [±7],  which have some- 

what improved the method of Mott-Smlth, in a model of solid spheres 

for the Interaction of molecules, widths of compression shocks, measured 

in lengths of free path during initial conditions, are equal** to: 

5/10 = 2.11; 1.68; 1.46; lA2  during Mach numbers equal to M = 2.5; 

4; 10; 00 respectively. 

In recent years there have appeared several works in which there 

is developed Mott-Smlth method and a shock wave is considered on the 

basis of Boltzmann equation [52-55]. 

♦Attempt at more precise definition of the hydrodynamlc approach by 
means of calculation of second derivatives In expressions for members of 
transfer (the so-called approach of Barnett), undertaken by Zoller [14], 
somewhat deflnltlzes results for weak waves and, essentially, only Indi- 
cates limits of applicability of hydrodynamlc theory. During amplitude 
of wave PI/PO ■ 1»5 thickness of wave, according to Zoller, Is equal to 
17 mean free paths, but during PL/PQ ■ 4 it IS equal to 6 paths. Widths 
of fronts of weak shock waves in monatomlc gases were measured by the 
method of light reflection In the works of Cowan, Hornig, and others 
[15] (see § 5, Chapter IV), The width turned out to be equal to 50, ±9, 
and 1"5 paths for Mach numbers M ■ 1,1; l,5j 2.5, respectively. Calcu- 
lations of Zoller give good agreement with these results. See also [56], 

♦♦Width of front 5 is determined in the following way. If fa and fß 
are distribution functions of molecules In initial and final states, 
then for a distribution function at intermediate point of wave x theory 
gives f - v (-x)fa + v (x)fQ, where 
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§ 3.  The Roles of Vlscor.ity and Thermal Conduction 
In the Formation of a Shock Wave 

In spite of the fact that transport coefficients — kinematic 

viscosity and temperature conductivity — Just as the corresponding 

disslpatlve members in the equation of energy, are comparable among 

themselves, the roles of both the disslpatlve processes in the forma- 

tion of a shock wave by far are not equivalent. Physically, It is clear 

that a fundamental role in the mechanism of shock compression is played 

by viscosity, but not by thermal conduction, since namely the mechanism 

of viscosity leads to the scattering of directed momentum of the inci- 

dent gas flow and transformation of the kinetic energy of directed 

motion of molecules into kinetic energy of chaotic motion, i.e., trans- 

formation of mechanical energy into heat. Thermal conduction only 

transfers thermal energy from some layers of gas to others and influ- 

ences transformations of mechanical energy by Indirect form thanks to 

redistribution of pressure. 

In order to see this, it is useful to consider the problem about 

one-dimensional stationary motion of gas with boundary conditions 

corresponding to shock compression of undisturbed flow on the assumption 

that viscosities, in general, are lacking, and dissipation is responsi- 

ble exclusively to thermal conduction. The investigation of this ques- 

tion, for the first time conducted by Rayleigh [18], has a fundamental 

value, since It reveals peculiarity of structure of the front of a 

shock wave in the presence of other mechanisms of heat exchange:  radi- 

ant transfer of energy or electron thermal conduction (in plasma). 

If one were to not consider viscosity, then first integrals of 

equations of hydrodynamics of a one-dimensional stationary flow (7.5) 

take the form: 
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Qtt-Q/), 

•+T+^7i»»« + -2 

(7.10) 

From the first two equations (7.10) it follows that In the process 

of shock compression, in the absence of viscosity, the state of a par- 

ticle of gas must continuously change along a straight line on the 

pressure — specific volume diagram 

p-iv+cofl'fi-i). n-^-. (7.11) 

This important property of the flow of nonviscous gas is illustrated 

in Pig. 7.^ on which is depicted shock adiabat and a straight line 

connecting initial and final states of gas. Let us try to solve a 

system of equations (7.10), for which, as ear- 

lier, we will exclude all variables besides 

dimensionless speed or relative specific volume 

T). For generality we will not be limited by 

the case of monatomic gas and will preserve arbi- 

trary magnitude of adiabatic index 7, which we 

will consider constant. 

Considering equation of state 

(7.12) 

7/     ' 7-'A 

Fig. 7A.     Straight 
line of impact trans- 
mission for a non- 
viscous gas. 

p-i.r-^r. A.± 

(p0 is molecular weight) and thermodynamic bond w =^-^73 ^ we will 

express from the third equation of (7.10) and equation (7.11) non- 

hydrodynamic energy flow and temperature through r\: 

•£.i+YM«(i-»i)(n-Y-iO' 
(7.15) 

(7.1^) 
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Here, as earlier, magnitude 

»h! Y-i 
Y+l ^ Y+l M« 

is diraensionless speed in final state, and M = D/c0 is Mach number. 

Function T{T\)  passes through maximum, finding at point 

In examining shock waves of different amplitude there can be presented 

two cases. If amplitude is sufficiently small, then TU > r\.    Really, 

r/r„s 

7/ / 

V 7 

at Mach number close to unity (M - 1 « 1), 

T^ « 1 - ^£j- (M - 1), i.e., also close to unity^ 

whereas T]max « (7 + l)/2y < 1.     In this case. 

Fig. 7.5.    T, Ti- 
and S, r)-diagram 
for a case when 
there is possible 
continuous shock 
transition with 
QnlyJthermal Gen- aue t ion. without 
taking into account 
viscosity. 

during monotonic compression of gas from Initial 

volume to final (from t) = 1 to r) = ru) temperature 

monotonically increases from initial value Tn to 

final T., equal (during all conditions) to 

Graphs of T{T])  and S(TI) in this case have the form 

depicted in Fig. 7.5. 

If one were to exclude T^ from equations (7.±3),   (7.1^) and to 

substitute expression (7.2) for flow S, we will obtain differential 

equation of type dT/dx = f(T), which has continuous solution. Profiles 

of temperature and entropy in such a wave are schematically depicted 

in Fig. 7.6; they are similar to profiles found in preceding paragraph. 

As can be seen from entropy equation (7.1) u = 0, entropy is raax- 

d  dT 
imum at a point where dx >t TfT ^ ^ or> ^n ^he  case H = const, at the 

point where temperature in the wave T(x) has a bend:  d T/dx = 0. 

Thus, the existence of a weak shock wave is possible with a contin- 

uous distribution of hydrodynamic magnitudes in front and in the absence 

of viscosity when there is only thermal conduction. 
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1 

T, 

J^ t, 

Let us consider now a sufficiently strong 

shock wave. 

In this case the volume at which temperature 

is maximum is Included between initial and finite 

values:  ^ < T^ < 1. Actually, at 

M » 1 W * 1/2' and ^l = ('Y - ^/("Y + !) < V^, 
since the adlabatic index of gas cannot exceed 

Thus, during monotonic continuous compression 

Fig. 7.6. Profiles 
of temperature and 
entropy in a shock 
wave with only ther- 5/3. 
mal conduction, 
without taking into 
account viscosity, 
in a case when con- of gas from initial volume to final temperature, 
tlnuous transition 
is possible.       in the front of the wave it must unavoidably pass 

through maximum.  Graphs of functions T(T]) and S(TI) for this case are 

depicted in Fig. 7.7. Let us see if the existence of continuous solu- 

tion of equations (7.13)^ (7.1^) in this case is possible.  Prom for- 

mula (7.14) and Fig. 7.7 it is clear that flow of heat S, caused by 

thermal conduction, in the whole Interval of change of relative volume 

from T] = 1 to T) = T^. does not change sign and is directed toward flow 

of gas:  S < 0.  In accordance with determination of flow S = -ndl/dx, 

temperature during change of volume from Initial 

to final can only increase:  dT/dx > 0. 

Consequently, the region after maximum 

of temperature, where dT/dri > 0, is not real- 

ized.  In this region the volume still does 

not attain final value and must decrease 

dn/dx < 0, temperature drops with decrease 

of volume, i.e., 

ATli* = (df/rfn) (<Vrfr) < 0, 

and flow would be directed to the other side 

Fig. 7.7. T, T)- and 
S, T^-diagram for the 
case of an isothernal 
jump during calcula- 
tion of only thermal 
conduction, without 
taking.into account 
viscosity. 

(S > 0), which contradicts formula (7.14). 

c: 57 

-^ZiZzMStzLäX^d^ 



Thus, In the case of a strong wave, during calculation of only- 

thermal conduction, continuous distribution of temperature and density 

on coordinates Is Impossible. To come from Initial state to final, 

passing region of fall of temperature with Increase of compression. 

Is possible only after Including In solution discontinuity:  namely, 

state changes continuously from initial (point A in Fig. 7.7.) to point 

B, and then by jump falls to final point C. Appearance of a jump of 

density indicates that in it must be manifested forces viscosity, i.e., 

a strong discontinuity can be blurred only thanks to viscosity, but 

Fig. 7.8. Profiles 
of temperature and 
density in a shock 
wave with isother- 
mal discontinuity. 

not thermal conduction. Temperature in the jump 

remains constant; only its derivative changes, 

i.e.. How.  Profiles of temperature and density 

in such a wave, called "isothermal" discontinuity 

are depicted in Fig. 7.8.* 

It is easy to find the biggest amplitude at 

which continuous solution in the absence of vis- 

cosity is still possible.  It corresponds to a 

case when maximum of function T(TI) coincides with final state, i.e.. 

Mach number and pressure ratio along both sides of front are equal 

to: 

y  YP-Y)' rt  3-Y' 

for instance, at 7 » 5/5 M1 = 1.35, PJ/PQ = 2; at 7 = 7/5 M' - 1.2, 

P^/PQ =1.5. 

♦Let us note that the "isothermic" nature of the Jump, i.e., 
continuity of temperature in the shock wave, is caused by the fact that 
heat flow is assumed proportional to gradient of temnerature.  In the 
third section of this chapter, in examining radiant heat exchange in the 
front of the shock wave, we will see that if one were to not make such 
an assumption, then the value of temperature also would have a discon- 
tinuity. 
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If we consider the other extreme case, 

when there is only viscosity and there Is no 

thermal conduction, we will obtain a continuous 

solution for hydrodynamlc magnitudes In the shock 

wave. In principle not differing from solution of 

preceding paragraph, with the only exception that 

Fig. 7.9. p V-dla- entroPy ln thls case Increases also monotonlcally 
gram for shock wave 
taking Into account 
vlsco.Ity, H — 
shock adlabat; S0, 
2^, 2' adlabats of 
Polsson; along the 
dotted curve occurs 
transition from Ini- 
tial state to final. 

(see third equation of (7.1) without member 

dS/dx), The course of entropy In both extreme 

cases It Is possible to comprehend by means of 

the consideration of diagram p, V or p, r\  (Pig. 

7.9)- ln the absence of viscosity the state 

In the wave changes along straight line AB, and entropy, as can be seen 

from comparison of shock adlabat and adlabats of Polsson, In the begin- 

ning, grows, attains a maximum at point of contact of straight line 

with adlabat of Polsson 2', and then decreases. In the absence of 

thermal conduction, the state changes along dotted curve, passing below 
o 

straight line AB (equation of this curve Is p « p0 + p0D (1 - TJ) + 

+ ^r ix ~, where du/dx < 0), and It nowhere touches adlabats of Polsson. 

The position here Is fully analogous to that which takes place In the 

waves of weak Intensity, considered In § 23,  Chapter I. 

§ 4. Diffusion In a Binary Mixture of Gases 

If In a mixture of gases there are gradients of thermodynamlc 

magnitudes, then there appears diffusion flow of components of the mix- 

ture, thanks to which there occurs redistribution of their concentra- 

tions. In general, diffusion tries to equalize concentration of com- 

ponents In space. However, during the existence of gradients of pres- 

sure, temperature, or in the field of external forces: gravity, 
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centrifugal force in a revolving mixture, and, in general, in the pres- 

ence of accelerations, there occurs separation of an initially uniform 

mixture. 

In particular, such a situation appears in a shock wave spreading 

along a mixture of gases. Before and after the front of the wave con- 

centrations of components are identical and constant in space. In 

the region of the front, where there are gradients, concentrations 

are changed. Like viscosity and thermal conduction, diffusion consti- 

tutes an irreversible molecular mass transfer of a defined component 

(viscosity carries momentum and thermal conduction — internal energy) 

and is one of the sources of dissipation of mechanical energy. 

Diffusion flow is determined in the following way. Let us assume 

that in a binary mixture of gases mass concentration of one of the 

components, let us say, the light one with mass of molecules m., is 

equal to a. Concentration of the second, the heavy one, a component 

with mass of molecules m2(mp > m.) is 1 - a.* Thanks to diffusion of 

one gas relative to other gases they possess different macroscopic 

speeds. Let us designate them through u,, and tu. If p is density of 

mixture, then total flux of first component is pau,,, and flow of sec- 

ond is p(l - a)u2. Macroscopic or hydrodynamlc speed of mixture Q 

is determined so that total flux of mass of gas is equal to pu (u is 

momentum of a mass unit). Thus, pu = poOL + p(l - a)Up or u ■ au^ + 

+ (1 - a)u2. Within the bounds of hydrodynamics of an ideal liquid 

speeds of both components of the mixture coincide and equal.u. Flows 

of components are equal to pau and p(l - a)u. 

♦Mass concentration a Is equal to mass of first, light component 
In one gram of mixture. If the number of molecules In one gram of 
mixture Is H^  and NgCNj, + N2 ■ N), then a « Niro^, 1 - a ■ ^mg. Molar 
concentrations are equal to    . * 
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In the following approach, in hydrodynamic theory there are vis- 

cosity, thermal conduction, and diffsuion (in the mixture). Diffusion 

flow i is the difference between full and hydrodynamic flows of one, 

let us say, the first component, i = pau. - pau = pa(u> - u). 

Total flux of first component is equal to the sum of hydrodynamic 

and diffusion pau + 1. Total flux of the second component, obviously, 

is equal to p(l - a)u2 = p(l - a)u + p(l - a)(u2 - u) = p(l - a) u - 1, 

Diffusion flows of both components in a binary mixture are equal 

in magnitude and are opposite in direction. 

As already was noted above, diffusion appears when in the gas 

there are gradients of concentration, pressure, and temperature.* 

In a one-dimensional case, gradients of magnitudes are equal to 

derivatives with respect to x, and vector i has one, x-th component, 

which we will designate simply through i. Diffusion flow is equal to 

(see [1]) 

Hera D is coefficient of diffusion; k D is coefficient of barodiffusion; 

k^D is coefficient of thermal diffusion.  Dimensionless value k is T P 
determined purely by thermodynamic properties of the mixture and is 

equal to [1]** 

^-(m.-mOaO-a)^-^)*** (7.16) 

♦State of the binary mixture Is characterized by three therinody- 
namlcs magnitudes: concentration and any two of the three magnitudes» 
temperature, pressure, and density. During the study of diffusion, as 
Independent variables It is convenient to select pressure and tempera- 
ture, 

♦♦In the absence of viscous transfer of pulse (see below), 
♦♦♦Magnitude of kp Is the simplest of all to derive, considering 

equilibrium of the binary mixture In the field of gravity during con- 
stant temperature. In equilibrium state numbers of molecules 1 cm? 
ni and r^ by formula of Boltzmann are proportional to n^ ~ 
~ expf-m^gx/kT), n2 ~ exp(-mggx/l<T), where g is acceleration of gravity 
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At nu > nuk   > 0 and barodlffusion flow of light component la directed 

toward lowering. Plow connected with gradient of concentration also 

Is directed toward lowering of concentration. Thermal diffusion flow 

of light component for a majority of mixtures Is directed toward 

Increase of temperature (at m2 > m^ kT < 0). 

In distinction from magnitude k . magnitude k», called thermal 

diffusion ratio, depends not only on concentrations of components (at 

a ■ 0 or 1 k™ « 0) and masses of molecules, but also on law of Inter- 

action of molecules. Magnitude of k^ Is determined purely by thermo- 

dynamlc properties of gas, since In the field are external forces 

thermodynamlc equilibrium Is possible even In the presence of gradient 

of pressure. If there exists gradient of temperature, then state 

already Is unbalanced. 

If between molecules act only repulsive forces, changing according 

to the law i/r , then at n > 5* which usually takes place, kT < 0: 

light gas tends toward Increase of temperature. At n < 5* which Is 

rarely encountered, light gas tends toward lowering if temperature 

(to the n < 5 pertains the Coulomb law of Interaction of charged par- 

ticles, n ■ 2). At n ■ 5 there Is no thermal diffusion: k™ - 0. 

Usually during comparable relative gradients vp/p* vT/T the role of 

thermal diffusion is small in comparison with the role of barodlffusion. 

For greater detail about thermal diffusion see [19]. 

With diffusion flow is connected additional irreversible energy 

flow q, which is proportional to diffusion flow 1 (see [1]). 

Quite recently there appeared a work of V. Zhdanov, Yu. Kagan, 

and A. Sazykin [19a], which Introduces essential corrections to -ehe 

[FOOTNOTE CONT'D FROM PRECEDINQ PAQE]. 
x is height. Inasmuch as diffusion flow in equilibrium is equal 
to zero, da/dx'+ lkp/p)(d /dx) ■ 0, Using bond between concentration a 

and numbers of particles n^, r^ and noticing that p - (n^ + r^kT, we 
find hence the given formula for kp. 
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above-stated classical presentations on diffusion. 

In this work the expression for diffusion flow is derived from 

kinetic equation with the help of the so-called "13 moments" approxi- 

mation of Gred.  This approximation possesses a number of advantages 

as compared to the method of Chapman — Enskog, on the basis of which 

is obtained expression (7.15), every time, when it is necessary to 

take into account highest approximations in a series of distribution 

functions.  It turns out that expression (7.15) for diffusion flow is 

accurate only in the absence of viscous transfer of pulse in gas. 

Under conditions when there exists viscous transfer of pulse (i.e., 

gradient of speed), expression (7.i5) one should supplement with mem- 

bers proportional to the forces of viscosity.  In spite of the fact 

that these forces are determined by derivatives of the second order 

from macroscopic magnitudes (from speed), they can have the same order 

of smallness as members proportional to the first derivative, let us 

say, a member with gradient of pressure. For instance, in the case of 

purely viscous established flow, when accelerations are lacking, gra- 

dient of pressure is simply balanced by forces of viscosity.  During 

transient flow calculation of forces of viscosity in the expression 

for diffusion flow actually brings to this expression members propor- 

tional to the accelerations of gas. 

In the case of purely viscous flow, replacement of the force of 

viscosity by the gradient of pressure balancing it leaos to a change 

in the constant of barodlffusion k as compared to purely therrao- 

dynamic value (7.16). The constant of barodlffusion in viscous flow 

is no longer a thermodynamic magnitude; it depends on the character 

of interaction of the molecules between themselves. The constant of 

barodlffusion can even become, under certain conditions, negative (if. 
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molecular weights of components differ only slightLy, and effective- 

sections of molecules differ strongly).  During calculation of viscous 

transfer of pulse, thermal diffusion ratio kT changes also. 

§ 5. Diffusion in a Shock Wave Spreading 
Along a Binary Mixture 

We will observe what occurs when along a binary mixture of gases 

spreads a shock wave.  In front of the shock wave are large gradients 

of thermodynamic magnitudes, and, consequently, 

there appear favorable conditions for diffusion. 

Physically, it is clear that in front of the 

shock wave there occurs concentration of the 

light component.  Really, in heated gas after 

the front of the shock wave the molecules of 

the light component possess larger thermal 

velocity than the molecules of the heavy com- 

ponent (v ~^ T/m). 

Therefore, molecules of light gas "burst 

forward" and somewhat outstrip molecules of 

heavy gas (in the laboratory system of coor- 

dinates, where initial mixture rests). 

Let us assume that in heavy gas there is a small impurity of light 

gas.  Then distribution of densities of basic, heavy, and light gases 

(p2 and p.) in a strong shock wave has the form shown in Fig. 7.10. 

There depicted is the profile of concentration of the light component: 

a » P1/(p2 
+ Pi)- 

Width of the zone in which there is an increased concentration 

of light component, in order of magnitude is equal to Ax - D/u0, 

where D is the coefficient of diffusion, and through u-. is designated 

Fig. 7.10. Profiles 
of pressure and den- 
sities of heavy (pp) 
and light (p.) com- 
ponents and concen- 
trations of light 
component (a) in a 
shock wave spreading 
along a binary mix- 
ture of gases. 
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here the speed of the shock wave.* The coefficient of diffusion D 

of an order of Tv., where v. is thermal velocity of light gas heated in 

the shock wave, and I   is range of molecules.  Speed of front u0 of the 

order of the thermal velocity of the heated heavy gas u0 ~ Vp. But 

v./vp «^nZTnij, so that Ax «\hufa. I.   Width of the viscous shock wave 

is of the order of I.  Consequently, width of the zone of concentration 

of the light component is y&u/ra-L times more than the width of the 

shock wave.  The sharpest components are most sharply distinguished 

during great difference in mass of particles (nu/m,, » 1). 

This effect should be especially clearly expressed in the case 

of plasma in view of the huge difference masses of electrons and ions. 

However, in plasma an essential role is played by the electrostatic 

interaction of electrons and ions, which very strongly limits the 

diffusion process (see about this in § 13). 

Along with viscosity and thermal conduction diffusion affects 

the structure of the front of the shock wave.  In order to describe 

this structure, one should compose an equation of flat stationary 

conditions, just as this was done in § 2, in examining a viscous shock 

wave. Equations of conservation of mass and momentum, the first and 

the second of the equations of (7.3), remain, obviously, without 

changes (under [i  now one should understand the coefficient of viscosity 

of the mixture).  In equation of conservation of energy (third of the 

equations of (7.?)) it is necessary to add molecular flow of heat, 

connected with diffusion, and instead of molecular flow, caused by 

thermal conduction S, to write sum of S + q.  In system of equations 

♦This follows from condition of stationariness of total flux of 
the light component in the system of cioordinates connected with the 
the front. Approximately P^UQ » Ddp^/dx, whence p1 = p1;. exp (_u0|xj/D), 
Hire is used approximated boundary condition, according to which one 
may assume that at point x = 0, where there is viscous shock wave, 
density of the light component is equal to its final value p^. 
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now will enter diffusion flow i, to which is proportional flow of heat, 

q, i.e., will enter new unknown function, concentration a. Therefore, 

to the system there should be added one more equation. This is the 

equation of continuity (conservation of mass) of one of the components 

(in the presence of an equation of continuity for all the mass of gas; 

preservation of the second component is ensured automatically). 

Condition of constancy of flow of mass of light component in a 

flat stationary case has the form* 

QOB+<-B const =* 9,0,11, 

(before the wave diffusion flow disappears).  Hence, one should men- 

tion, it is clear that after the wave, where diffusion flow also dis- 

appears, concentration is equal to initial a. = a0 (since p^u,. = p^u«). 

System of equations of a one-dimensional stationary flow in a 

binary mixture, in principle, it is possible to solve Just as for 

single-component gas (see § 2). Solution will give distribution of 

all magnitudes in front of the wave.  Such problem was considered by 

S. P. D'yakov [20] for the case of a shock wave of weak intensity, 

when it is possible to produce expansion of all magnitudes (see § 23, 

gl. I).** 

As was shown in § 18 and 25, Chapter I, if one were to consider 

change of pressure in a weak shock wave Ap = p^ - PQ as a magnitude 

of the first order of sraallness, then change of volume and temperature 

also constitute small magnitudes of the first order. Full change of 

entropy during transition of gas from initial state to final 21 - Z0 

♦General equation of continuity for one of the components has the 
form [1] 

-^.+div(Qaii+0-0. 

♦♦See also work of Sherman [21]. 
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is a magnitude of the third order of sraallness, and change of entropy- 

inside front of wave, let us say, Z   - Z0 is a magnitude of the sec- 

ond order of smallness. Width of the front of the shock wave, in order 

of magnitude, Is equal to Ax « ip0/Ap, where I  is range of molecules. 

From equation of preservation of flow of one component, which can be 

rewritten in form 

and expression for diffusion flow, it is clear that change of concen- 

tration in wave Aa and flow i Is a magnitude of the second order of 

smallness (indeed, 

a — o, ~ J ~ <{/) |-(fc ~ Ap/Ax ~ (Ap)1). 

Consequently, member containing gradient of concentration in 

expression for diffusion flow it is possible to disregard (da/dx ~ 

~ Aa/Ax ~ (Ap) , then as dp/dx ~ (Ap) ). 

In the work of S. P. D'yakov [20] there is obtained an analytic 

solution for the distribution of concentration in the front of a shock 

wave of weak intensity. We will not here introduce it (distribution 

has the form shown in Fig. 7.11)* but we will estimate change of con- 

centration in order of magnitude. If we disregard thermal diffusion* 

which usually plays a smaller role than baro- 

^    diffusion (since magnitude of kp usually is ^ 

Fig. 7.11. Profiles 
of density and con- 
centration in a shock 
wave of weak inten- 
sity, spreading along 
a binary mixture of 
gases. 

less than k ), then it is possible to record 

Aa-o-o^ilL^.*^. 

Coefficient of diffusion D ~ fv, where 

thermal velocity of molecules v is of tne 

order of the speed of sound, i.e., of the order 

of UQ. Noticing that Ax ~ (p/Ap)l, we will 

find Aa - k^Ap/p)2. 
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Excess quantity of the light component gathered by the shock wave 

(on 1 cm2 of surface of front), is of the order of 
• A 

AfnQ ^ (o-a,)rf;r~cAa.A*~o*j»-~*' 

In a sufficiently strong shock wave, where Ap ~ p'. Act ~ k , M ~ 

~ pk I. If difference in mass of molecules is comparatively great (k «v 

•v (nu - nu)j then change ^f concentration In a strong wave is of the 

actual concentration and excess mass of the component is of the order 

of the actual order of the actual mass of the component in a layer with 

thickness in the range of molecules. 
Above it was noted that diffusion is like viscosity and thermal 

conduction leads to dissipation of mechanical energy and increase in 

entropy of the gas (see about this in [1].* We know that if one were 

to exclude from consideration the dissipative processes, then within 

the bounds of hydrodynamics of an ideal liquid a shock wave constitutes 

a mathematical discontinuity. The discontinuity fades out and is 

turned into a layer of final thickness with continuous distribution 

of ma/jiitudes only during calculation of dissipative processes. One 

thermal conduction can ensure continuous transition in shock wave only 

If the amplitude of the wave is not too great (see § 5). 

It is interesting to observe whether dissipation of diffusion 

origin, without taking into account viscosity and thermal conduction, 

can ensure continuous transition in a shock wave spreading along a 

binary mixture. This question was investigated by Cowling [22] (Cowling 

disregarded thermal diffusion). It turns out that, as in the case of 

the action of only thermal conduction, continuous solution is possible 

only during amplitudes of shock wave not exceeding a defined limit, 

•Like thermal conduction diffusion can lead to local decrease of 
entropy (see § 2}.  ^Thanks to diffusion there is increased entropy of 
all the system oh the whole or entropy of a particle for the entire 
process, let us say, during transition from the initial state to the 
final in the shock wave, in distinction from thermal conduction and 
diffusion, viscosity leads to local Increase of entropy, i.e., because 
of viscosity entropy of particle can only Increase. 
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I. 
which depends on the difference In mass of molecules and concentration 

of components.  In limiting cases, when concentration of one of the 

components aspires to zero (a -► 0 or a-* 1),  I.e.,  when gas is turned 

Into single-component gas, or when relative difference in mass aspires 

to zero, the upper value of the possible amplitude of the shock wave 

also aspires to zero. During large difference in mass of molecules 

and congruent numbers of molecules of both sorts, diffusion ensures 

continuity of transition up to rather large amplitudes of shock waves, 

being In this respect more effective than thermal conduction.  Thus, 

for Instance, in a mixture of hydrogen and oxygen (m^/nu » 1/8) during 

molar concentration of oxygen (Np/N), equal to 10$, continuous compres- 

sion is possible of mixture in shock wave up to 4.78 times (limiting 

compression at value 7 = 7/5. which was accepted in calculation, equal 

to 6). One thermal conduction can ensure continuous compression not 

■5-v - 1  4 more than ^ --T- = -^  times. 
7 + 1  5 

2.  Rslaxation Layer 

§ 6.  Shock Waves in Gas with Delayed Excitation of Certain 
Degrees of Freedom 

For excitation of certain degrees of freedom of gas* there are 

frequently required many collisions of molecules, where necessary 

numbers of collisions, i.e., relaxation times, for various degrees of 

r'reec'om can differ strongly. 

Time of establishment of full thermodynaralc equilibrium in the 

front of the shock wave, and consequently also the width of the front 

are determined by the slowest of relaxation processes.  Of course. 

*Let us remember that for brevity of terminology "degree of 
freedom" also includes potential energy of dissociation, chemical 
transformation, and ionization. 
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one should take into account only those processes which lead to excit- 

ation of degrees of freedom giving a noticeable contribution to heat 

capacity during final parameters of the gas. If T   is the biggest 
max 

relaxation time, and u. is the speed of gas after the front, with 

respect to the actual front, then the width of the front is of the 

order of Ax ~ u^^ = D(p0/p1)Tmax .* 

"Excited" fastest of all in the gas are forward degrees of free- 

dom of particles. Therefore, machanical energy of the flow of gas 

incident on the discontinuity, first of all, is turned into energy of 

forward thermal agitation of atoms and molecules of gas. As was shown 

in § 2, width of viscous shock wave in strong shock waves is of the 

order of one or several gas kinetic mean free paths. 

During room temperatures, rotation in molecules is excited also 

fast, as a result of the small number of collisions; oscillations with 

these temperatures usually do not play a role.  Consequently, the width 

of a front of weak shock waves spreading along molecular gas, heated 

to room temperature, is of the order of several gas kinetic mean free 

paths.** 

During temperatures of the order of 1000oK, when magnitude of 

kT is comparable with the energy of vibrational quanta of molecules 

hv ., , excitation of vibrations requires many thousand, and sometimes 

tens and hundreds of thousands of collisions. Width of front of shock 

wave of corresponding amplitude is determined by relaxation time for 

vlbrational degrees of freedom. 

Speeds of relaxation processes always rapidly Increase with 

increase of temperature; thus, for example, temperatures of the order 

* i 

♦Subsequently, we again will designate speed of the front of the 
shoclc wave through D. 

♦♦Exceptions are molecular hydrogen and deuterium, in which for 
excitation of rotations there Is required an order of hundreds of gas 
kinetic collisions (see § 2,  Chapter VI)* 
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of 8000 K, when kT » hv   .,, for excitation of vibrations even a few 

collisions are sufficient.  Those processes which during any wave 

amplitude were slow and which determined width of front, in a wave of 

large intensity become fast, and others arrive to replace them. 

For instance, at a temperature of the order of 4000-8000oK in 

diatomic gas achievement of therraodynamic equilibrium basically is 

delayed because of slow dissociation of molecules (vibrations are 

excited comparatively fast, and ionization still is insignificant). 

At a temperature of the order of 20,000 K, for dissociation of 

molecules of a sufficiently small number of collisions, and width is 

determined by speed of first ionization (second ionization is imma- 

terial). At T - 50,000oK for replacement of first ionization there 

arrives the second,etc. 

Certainly, the boundary of the temperature range in which a 

relaxation process is slow is not clear.  Exactly so at a given tem- 

perature not always only one of the processes determines thickness of 

front.  But in any approximation it is always possible for a shock 

wave of a given amplitude to subdivide processes of excitation of 

different degrees of freedom, introducing a noticeable contribution 

to heat capacity, into fast and slow.  Under fast we should understand 

processes for which relaxation times T , are comparable to gas kinetic 

processes and for which characteristic scales Ax = u„ T -,  are of the l rel 

order of a few gas kinetic mean free paths, i.e., are comparable with 

thickness of viscous shock wave.  The slow ones Include processes 

requiring a very large number of gas kinetic collisions. 

The question about the structure of the front of the front of 

a shock wave in gas with delayed excitation of part of the heat capac- 

ity was for the first time analyzed by one of the authors in 1946 
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[23,  24] in examples of reversible chemical reaction and excitation 

of vibrations in molecules. 

Let us consider qualitatively the process of shock compression in 

gas with delayed excitation of certain degrees of freedom. We will 

not, as yet, specify forms of degrees of freedom and will only divide 

them into two categories:  those which are excited fast and those 

which require man.y gas kinetic collisions. 

Dissipative processes — viscosity and thermal conduction — play 

a role only in the region of large gradients of hydrodynamic magni- 

tudes, i.e., in the zone where are excited rapidly relaxing degrees of 

freedom. This zone., in some measure, coincides with the region of 

viscous shock wave.  In the zone of slow relaxation, stretched to 

distances of many gas kinetic paths, gradients are small and it is 

possible to disregard dissipation. 

We will not be interested in the structure of the narrow zone of 

fast processes.  It, in principle, does not differ from the structure 

of viscous shock wave considered in § 2.  Increase of heat capacity 

because of fast excitation of nonforward degrees of freedom introduces 

only certain quantitative changes in the structure of viscous shock 

without changing basic qualitative regularities.  Inasmuch as thick- 

ness of this zone is small, of the order of several paths, it is pos- 

sible, approximately, to consider it as infinitely thin and magnitudes 

along both sides of It to connect by equations of preservation, fully 

analogous to equations (7.4).  Subsequently, for deflnitlveness of 

terminology, we will call the zone of fast relaxation "compression 

shock" in distinction from the idea of "front of shock wave," which 

includes all the transition region from initial to final thennody- 

namlcally equilibrium state. Marking hydrodynamic magnitudes directly 
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after compression shock by a stroke, we will record equation for 

determination of these magnitudes 

Enthalpy w' - w^p', p') » w'^T', p') Includes only the rapidly excited 

degrees of freedom of gas. 

Stretched zone of slow relaxation Is described by Integrals of 

equations of a one-dlmenslonal stationary flow of type (7.3),  in which 

It Is possible to disregard dlsslpatlve members. 

Considering p, p, e,  w, u as functions of current coordinate x, 

we will record Integrals of equations In this zone: 

/»+ «a« - /»0 + QJD*=p' + Q'U'«. (7.17) 

2 »-1-2  « -r 2 ' 

Origin of coordinates x = 0 Is convenient to place at a point corre- 

sponding to compression shock, which Is considered "infinitely thin." 

Exactly so If one were to trace the change In time of the state of a 

specific particle of gas passing through the front of a shock wave, 

then for Initial moment t = 0 It Is convenient to take the moment of 

sharp compression In the shock wave.  Initial or boundary conditions 

for gas-dynamic parameters p(x), u(x), etc., have the form p(0) = 

» p', u(0) = u1, etc. At x -♦ +00, as also earlier, p(co) » p., U(CD) » 

» u1, etc. 

Let us depict on diagram p, V two adlabats of Hugonlot, coming 

out of point A of Initial state of gas (Fig. 7.12).  One of them (II) 

corresponds to achievement of full therraodynamic equilibrium, i.e., 

corresponds to final states of gas after front of shock wave.  The 

other (I) corresponds to excitation only of rapidly relaxing degrees 

freedom anö the "frozen" nature of the slowly relaxing ones (during 

calculation of adiabat I it is considered that specific internal 
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energy in slowly excited degrees of freedom Is the same as In the 

initial state. In spite of the fact that density and pressure of gas 

change). 

Adlahat I is steeper than II, as was shown 

in Pig. 7.12. Actually, during identical den- 

sity, temperature and pressure of gas during 

the "freezing" of certain degrees of freedom 

are higher since, roughly speaking, identical 

energy of compression is distributed among 

a smaller number of degrees of freedom,* 

Let us make straight line AC, connecting 

Initial and final state of gas. As is known, 

slope of this straight line is determined by 

speed of propagation of shock wave along unex- 

cited gas D. 

From the first two equations of (7.17) it follows that the state 

of a particle of gas in the relaxation zone changes along this straight 

line: 

& K 

Pig. 7.12. p, V-dia- 
gram for a shock wave 
spreading along gas 
with delayed excit- 
ation of part of the 
degrees of freedom. 

p-p.+e,D«(i—^)-p'4-eV«(i—^) (7.18) 

Thus, a point describing the consecutive states of a particle of 

gas at a given speed of front, by a Jump pressure from initial state 

A(p0, V0) to intermediate state B(p
lVl) after compression shock and 

then moves to final state C(p1, V^) along a straight line (7.18), 

Pressure and compression increase as it approaches final state, but 

*With this, as calculations show, increase in number of particles 
during dissociation or ionlzation does not compensate for decrease of 
temperature because of expenditures of energy on dissociation and 
ionlzation during constant volume, so that pressure in case II Is, 
nevertheless, less than in case I. 
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Pig. 7.13. P, V-dia- 
gram for a weak shock 
wave spreading along 
gas with delayed exci- 
tation of part of the 
degrees of freedom. 
AK — tangent to shock 
adiabat I at point A. 

speed of gas, with respect to the front, 

decreases. 

If a wave is so weak that the speed of it 

is less than the speed of sound, corresponding 

to the frozen nature of part of the degrees of 

freedom, straight line AC passes below tangent 

to adiabat I at point A (Fig. 7.13).    With 

this, the state changes continuously along 

straight line AC from point A to point C, and 

in the gas, from the very beginning, occurs 

gradual excitation of the delayed part of heat 

capacity. 

From formula (7.i8) it is clear that pressure in the relaxation 

zone in a strong shock wave increases somewhat. Really, even if in 

the zone of fast compression there are excited only forward degrees 

of freedom, V'/VQ « 1/4, then pressure, in the relaxation layer can 

grow not more than 25^, since magnitude 1 - V/VQ, which is propor- 

tional to change of pressure p - p0, is included in interval 1 > 1 — 

- V^/VQ > 1 - V'/VQ » 5A» If* howeverj other degrees of freedom are 

fast excited, V1/^ < 1/4* change of pressure in the relaxation zone is 

still less. Quite insignificant is the increase of enthalpy in the 

relaxation region. From the third and first equations of (7.17) it 

follows that 

—^TO-S)- (7.19) 

Magnitude (V/VQ) < l/l6, so that increase of enthalpy in relax- 

ation zone in any case does not exceed 5-6#. 
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Fig. 7.1^. Profiles 
of pressure, density- 
speed, and temperature 
In the front of a 

Inasmuch as In the relaxation zone spe- 

cific emthalpy Is almost constant, and heat 

capacity, according to the amount of exltatlon 

of earlier frozen degrees of freedom. Increases, 

temperature In It decreases. Decrease of 

temperature can be quite considerable If the 

delayed part of heat capacity Is large and 

Introduces a large contribution to final heat 

capacity of the gas. Final temperature T^ can 

be two-three times less than temperature T" 

after compression shock. Exactly so can con- 

siderably Increase also density of gas (roughly 

speaking, p ~ pT; p changes slightly and T 
shock wave spreading 
along gas with delayed strongly). Profiles of p, p, u, T in the front 
excitation of part of 
the degrees of freedom; of a shock wave spreading along gas with 
Ax« UT -, is width 
of front: delayed excitation of part of the heat capacity 

are depicted schematically in Fig. 7.1^. 

For concrete calculations of profiles one should use equations 

of kinetics for corresponding relaxation processes, which will be 

done for several cases in the following paragraphs. 

Let us note that if a shock wave is created by a piston moving 

with constant speed u, then speed of gas after compression shock 

relative to undisturbed gas D - u1 does not coincide with speed of 

piston (it is less than the latter); with speed of piston coincides 

only relative speed of gas in final state after front of wave:  D - u1. 

§ 7. Excitation of Molecular Vibrations 

At temperature of the order of 1000-3000oK after the front 

576 
||IMaMa^lBitgl(MiltiilMMMiaii( irririfMiBtf"^^^""'-'""--^ 



of the shock wave (depending upon type of molecules), dissociation of 

molecules Is very small, and the contribution of chemical energy to 

Internal energy of the gas It Is possible to disregard. Broadening 

of the front occurs basically because of delayed excitation of molecu- 

lar vibrations. Rotation of molecules with such temperatures are 

excited very fast, as a result of several collisions, so that rotary 

energy In each point of the front of the wave Is equilibrium and 

corresponds to "forward" temperature of gas at this point. 

We will consider diatomic gas from molecules of one sort, in the 

initial state heated to normal temperature of an order of T0 « 3ö0
oK. 

With such temperature vibrational energy is exceedingly small and 

adiabatic index is equal to 7/5. Parameters of gas after compression 

shook it is possible to calculate with the help of the usual formulas 

for ideal gas with constant heat capacity corresponding to the par- 

ticipation of only forward and rotary degrees of freedom of molecules 

and adiabatic index 7' » 7/5. Let us write out these formulas, char- 

acterizing amplitude of shock wave by Mach number (M « D/c0; c0 » 

» -X- PQVQ), as this is assumed when carrying out laboratory investi- 

gations: 
^   6 

Parameters of final state, after the front of the shock wave, it is 

possible to calculate with general relationships on the front, being 

given by functions >'1(T1) or e1(Ti) taking into account vibrational 

energy. 

In general the final parameters of the gas are not expressed by 

simple formulas, since vibrational energy in the quantum region in a 
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complex form depends on temperature (see formula (3.19)). If one were 

to consider sufficiently strong shock waves In which temperature after 

the front is larger than energy of vlbratlonal quanta divided by Boltz- 

mann constant, T^ > hv/k, then vlbratlonal energy is equal to its 

classical value kT per molecule and e « ~ •_---r p/p, where adiabatic 

index 7 « 9/7. In this limiting case e. « 7/2 p^, shock adlabat has 

simple form:* 

pt     6-yt/F,      Yt      PifPo+t (7.20) 

With the help of general relationship (I.67), from which it follows 

that 

it is possible to easily express P-J/PQ* Just as V./VQ and T./TQ « 

" pl^l/pOV0' ■tlirough Mach number M. 

It is necessary to say that domain of applicability of the shown 

simple formula, for shock adlabat of diatomic gas is very limited. 

If T. < hv/k, then vlbratlonal energy is not equal to kT; at tempera- 

tures noticeably exceeding hv/k, dissociation of molecules becomes 

essential. 

Let us consider for example a shock wave in oxygen with Mach 

number M ■ 7. Let us assume that initial temperature is equal to T « 

■ 300oK.  If initial pressure is atmospheric, speed of sound is equal 

to CQ - 350 m/sec. and speed of shock wave D - 2.45 km./sec. Para- 

meters of gas after compression shock are equal to p'/pn " 5.^5* 

P'/PQ - 57, T'/T0 - 10.5, T' - 3150
oK. 

Parameters in final state after front of wave are: P±/PQ  " 7.3, 

•We will emphasize that these formulas do not coincide with 
formulas for gas with constant index 7 - 9/7, since in initial state 
7 - 7/5 and 60 = 5/2 p0V0. 
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P^PQ - 60, T^TQ - 8.2, T1  - 2460oK. For oxygen hv/k » 2250OK; T1 

a little more than this magnitude, so that a simple formula for cal- 

culation of T^ it is possible to use (dissociation of oxygen with suGhjl 
"I 

a temperature and not too small a density is so small that it is pos- | 

sible not to consider it). 

Let us find the distribution of parameters of gas in the relax- 

ation zone and we will estimate its width. Specific internal energy | 

of gas at any point x is composed of the energy of forward and rotary 

degrees of freedom, equal to 5/2 AT, where T is "forward" temperature ] 

at point x, and A is constant, calculated per gram, and nonequillbrlura I 

energy of vibrations t which we will designate by ek : E ■ 5- AT + e. . 

As already was noted above, specific enthalpy practically does not 

change in relaxation zone (in the given numerical example its change 

is only 1%),  therefore, 

Vay^r+e* * «Ollst * V|*> »'. 

This formula connects nonequilibrium energy of vibrations with 

temperature at point x. Directly after compression shcjk vibrations 

are still not excited (in initial state at T ■ T0 *< 3000K vibrational 

energy is very small), so that at point x - 0 after compression shock 

e. ■ 0. Then starts gradual excitation of vibrations; e^ grows, and 

temperature drops from T1 to final quantity T1, at which vibrational 

energy attains equilibrium value corresponding to this temperature 

In order to find distribution of temperature with respect to x, we 

will use equation of kinetics of excitation of vibrations (6.9)« 

TT—-* — • 

Tere ej.(T) is equilibrium energy of vibrations, corresponding to for- 

ward temperature T, and T^ is relaxation time. 

We will, for simplicity, consider only sufficiently strong shock 
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waves In which temperature Is high and equilibrium vlbratlonal energy- 

Is expressed by classical formula: Zy-C?) "  AT. With this Eu " w^ - 

- i- AT - |- AT^ - -k AT. Substituting these expressions In equation of 

kinetics and pesslng from particle time derivative to differentiation 

with respect to coordinate, taking Into account statlonarlness of the 

ri ?\ rS ri 
process:    TTF " XT + u^r " u"3x"' we wi-11 o^aln equation: 

df     9Tt-.T 

Relaxation time T. depends on temperature and density (or pres- 

sure) of gas. This dependence It Is possible to describe approximately 

by the formula (6.17), derived In § 4. Chapter Vlt 

For the purpose of clarification of the physical side of the 

matter we will approximately consider magnitude m.   in the relaxation 

zone as constant and corresponding to a certain average between T' and 

T., p» and p., to values of temperature and density (u - Dp0/p). Such 

an approximation has meaning since temperature and density change not 

strongly. Thus, in our numerical example temperature changes by 1.28 

times, T '-^ -- by 1.08 times and density and speed change by 1.34 times. 

Integrating the equation for temperature with initial condition 

T ■ T' at x « 0 and taking into account the fact that owing to con- 

dition w' ■ w^, T1 - * T., we will obtain profile of temperature: 

Considering that pressure is almost constant (p ~ pT *• const), and 

temperature changes also not strongly, we will find approximately 

distribution of density: 

. *■ it 

• -«•-(Oi-«')« ,ai-«'+(«i-Q')(l-«"75»).        (7.22) 

Si 
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Thus, temperature and density at x -♦oo asymptotically near their 

final values T., p., where effective width of relaxation zone and front 

of shock wave is equal, approximately to 

AX-^BT». 

Table 7.1. 

Pt/Pt A«. «M 

(7.23) 

Formulas (7.22), (7.23) can serve for experimental determination 

of time of vibrational relaxation. For this purpose, usually by 

interferometric method, is measured distribution of density after 

compression shock and width of front of shock wave (see Chapter IV). 

For deriving more exact data from experiment the presented simple 

theory it is possible to definitize, considering quantum dependence 

of vlbrational energy on temperature, changeability of speed u ■ u(x), 

etc. A qualitative picture of dis- 

tributions and the order of width of 

the front, all of these more precise 

definitions, of course, do not change. 

The presented theory is extended 

even to vibrational relaxation in 

polyatomic molecules if the amplitude 

of the shock wave is such that there 

are excited only the most low-frequency vibrations.* Calculations 

and measurement for CO,, and No0 gases are in work [25]. In Table 7.1 

there are given several values of width of front of shock waves in 

oxygen and nitrogen, determined by vibrational relaxation (according 

to measurements of Blactoaan [26]). 

'   aio 

tMO», 
■ec 

oxygen 

S.«5 I 2.08 I 2000 | 6.3 
8.0 I 2.8  | 3300 I 7.1 

5 
0.8 

0.165 
0.031 

nitrogen 

7,42 2.43 
3.26 

3000 
5000 

6.55 
7.14 

30 
5 

1.11 
0.23 

*In the case of nonlinear polyatomic molecules the numerical 
coefficient 9/7 in formulas (7.21) and (7.22) it is necessary to 
replace by 11/9 in accordance with different rotary heat capacity 
(3/2 k per molecule instead of i k). 
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They are given to pressure after the front p. » 1 atm. (Ax ~ x ~ 

~ l/v^).  Initial temperature T0 « 296
0. 

The most detailed survey of all theoretical works dedicated to 

calculating the structure of the zone of vihrational relaxation in 

the front of a shock wave is contained in article Blythe [57]. There 

are considered the most varied approximate solutions, and also are 

presented results of exact solutions of equations, obtained with the 

help of computers (see also [58]). 

We will note everal of these experimental works in which is 

studied vibrational relaxation in the front of a shock wave and are 

determined corresponding relaxation times and speed of excitation of 

vibrations. Oxygen was studied in works [59* 60], nitrogen oxide in 

[61], carbon oxide in [62], carbon dioxide in [65, 64]. 

§ 8. Dissociation of Diatomic Molecules 

At temperatures after the front of a shock wave in diatomic gas 

of the order of 3000-7000oK there is not yet ionization, vibrations 

of molecules are excited comparatively fast and broadening of the 

front of the wave is connected with the slowest relaxation process — 

dissociation of molecules. Appraisals show that time of vibrational 

relaxation at shown temperatures is approximately one order less than 

time of establishment of equilibrium dissociation. Therefore, it is 

possible approximately to consider vibrational energy at each point 

of relaxation zone, Just as rotary in equilibrium. Parameters of gas 

after compression shock correspond to intermediate valves of adiabat 

index 71 - 9/7 (vibrations during such high temperatures are fully 

I "classic"). It is possible to calculate them by the formulas (7.20) 

and (7.21). 
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Noticeable dissociation appears only in sufficiently strong shock 

waves, so that compression after compression shock is close to limiting, 

which corresponds to index 7 ■ 9/7 and equal to 8 (we assume that 

shock wave spreads along gas heated to normal temperature T « 300oK). 

Formulas (7.20) and (7.21) are simplified and given approximately 

where M is Mach number. 

Parameters of gas after front of shock wave, taking into account 

dissociation, are not expressed by simple formulas (see § 9, Chapter 

III); they are not calculated on the basis of general relationships 

on front. 

Let us find the distribution of parameters of gas in the relax- 

ation zone. Specific internal energy of gas, taking into account 

dissociation of molecules, is equal to (see formula (5.21)): 

where U is energy of dissociation of 1 g of gas, and a is degree of 

dissociation (which can be nonequilibrium), 

Inasmuch as already, directly after compression shock, the com- 

pression of gas is very great (close to octuple), change of pressure 

in relaxation ^.one is small, and change of enthalpy is insignificantly 

small. Hence it follows that 

p • .4 (1 + o) QT « const - p'- .AQT. (7.24) 

' (T+ T)AT+o(7 * ««rt - w' -1 AT'. (7.25) 

These formulas permit expressing degree of dissociation and density 

at point x of wave through temperature, or temperature and density 
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through degree of dissociation. Thus, for Instance, disregarding 

a (a < 1) as compared to 9* we will find from formula (7.25)! 

(7.26) 

where Tdis = U/A (for Instance, for oxygen Tdig » 39t^00OK). 

After compression shock at point x « 0 there Is not yet disso- 

ciation a = 0 and T = T'. 

Then starts dissociation; degree of dissociation grows, and 

temperature, due to expenditures of energy on dissociation, drops. 

This occurs as long as dissociation does not attain equilibrium value 

corresponding to temperature of gas. 

For finding distributions of parameters with respect to x we will 

use an equation of the kinetics of dissociation (see § 5/ Chapter VI). 

Let us consider here shock waves of not very great amplitude, in 

which the degree of dissociation obtainable after the front is small: 

ou « 1. In this case it is possible to disregard dissociation of 

molecules by blows of atoms and to leave in equation of kinetics (6.21) 

only members corresponding to dissociation by blows of molecules and 

recombination of atoms in triple collisions with the participation of 

molecules as third particles. During transition in equation of kinet- 

ics (6.21) from numbers of atoms in cnr to degrees of dissociation by 

the formula N. = 2aN0 (N0 is number of initial molecules In cnr), one 

should differentiate with respect to time only the degree of disso- 

ciation, but not the density of gas (i.e., N0), since in equation 

(6.21) there is no member describing density change. If we add such 
dNo 

a member, then it will be reduced with component 2a —XTJ obtained 

during differentiation of N0 in expression 

NA • ZlTa.) 
Disregarding In all members magnitude of a as compared to unity. 
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considering determination of time of relaxation T (6.25), and passing 

from particle time derivative to derivative with respect to coordinate, 

we will record equation of kinetics in the form 

to" 25* L  (o»)J ' 

where (a) is equilihrium degree of dissociation, corresponding to 

temperature and density of gas at point x (see formula (6.25)). 

As also in the preceding paragraph, we will consider relaxation 

time T(T, p) and speed of gas with respect to compression shock 

u = DPQ/P as constants and corresponding to certain mean values of 

temperature and density in the relaxation zone. If final degree of 

dissociation is very small, change of temperature and density is not 

very great, and for the purpose of rough estimate such an approximation 

is possible to make. Equilibrium degree of dissociation (a) which 

depends on T and p, also we will consider constant and equal to degree 

of dissociation in final state ou.  Integrating with these assumptions 

the equation of kinetics and subordinating the solution to initial 

condition a = 0 at x » 0, we will obtain 

£-:-.-*. (7.27) 
If one were to substitute degree of dissociation a calculated 

by this formula in expression (7,26), we will find profile of temper- 

ature T(x) (at a ■ a1, T « T1), and then by the formula (7.24) we will 

find profile of density p(x). We will not extract formulas for distri- 

butions T(x) and p(x).  It is clear that they. Just as formula (7.27), 

testify to the asymptotic tendency of these magnitudes toward final 

values after front of the wave T^ and p^. Effective width of relax- 

ation zone and the front, as one should have been led to expect, is 

equal to approximately 

&** ux, 
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where T Is certain average relaxation time in nonequlllbrlum zone. 

Nonequlllbrlum 

4* 

U 

/,-j«Wiu,-aw4 
r?l^JciSß}s-£M?A 

absolute error 

"T'1 uncertainty       ^ 

4/  4« 4* -^ tf <♦ 

dissociation in the 

front of the shock 

wave by experiment was 

studied by many authors. 

A whole series of works 

is dedicated to oxygen. 

Matthews [27], by 

interference method, 

measured distribution Pig. 7.15. Distribution of density after 
compression shock in oxygen according to [27]. 
Initial pressure p,-, « 19.6 mm Hg, initial tem- of density in non- 
perature Tr 500 «i 0  "" "' equilibrium zone after 

compression shock in a shock tube. Experimental data were compared 

with theoretical calculations carried out on the basis of a solution 

of an equation of kinetics of dissociation. There was calculated a 

number of profiles with different values of constants, entering in 

the expression for speed of reaction, and constants we/e chosen so 

that, best agreement with experiment be received. Calculations of 

profiles were made more exactly than this was presented above). 

The speed of dissociation of oxygen obtained from the experiment, 

was given in § 6, Chapter VI. In Fig. 7.15 is depicted the profile 

of density in nonequlllbrlum zone of a shock wave in oxygen according 

to Matthews. From Fig. 7.15 it Is clear that width of the front of 

a shock wave, in experimental conditions, is of the order of Ax « 1 cm. 

S. A. Losev [28] and N. A. Generalov and S. A. Losev [29] measured 

distribution of temperature after compression shock in zone of 
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nonequlllbrlum dissociation of oxygen with respect to absorption of 

ultraviolet radiation In Schumann — Runge bands of molecules of Op, 

which depends on temperature. With respect to absorption of light was 

studied the speed of dissociation of bromine and Iodine In a shock 

wave [30],    Reference to many works can be found In review [31]. 

Recently there appeared experimental works of Camac [65], Rink, 

and others [66] In which was studied dissociation of oxygen In a 

shock wave, work [67], In which was Investigated dlssocla"1 ^ ^ of hydro- 

gen; In work [68] was studied dissociation and recomblnt    of nitro- 

gen. 

§ 9.  Shock Waves in Air 

Air constitutes a mixture of two diatomic gases:  nitrogen and 

oxygen (79 and 21% In  number of molecules).  In shock waves, whose 

amplitudes correspond to final temperatures T, ^ j5000-8000OK, there 

is observed a considerable expansion of the front of the shock wave 

due to dissociation of molecules of nitrogen and oxygen. Besides 

reactions of dissociation, in heated air there occurs the reaction of 

oxidation of nitrogen. Definition of profiles of gas-dynamic magni- 

tudes in the front of a wave and the width of the front requires Joint 

solution of equations of kinetics of all these reactions. 

\ Such calculations were made by Duff and Davidson [32], and also 

by a number of other authors. A number of works are dedicated to the 

experimental study of nonequlllbrlum zone in air with the help of 

shock tubes. References to these works can be found in review [31]. 

We will give, for illustration, results of calculations [32] 

(calculations were made with an electronic computer). In calculations 

were taken into account the following basic chemical reactions: 
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0,+ M^04 0+M. 
N.+M^N+N + M. . J 
NO + M^N + 0+M, 
O+N^NO+N, 
N+Oa^NO+0. 

In all these reactions M corresponds to any atom or molecule. 

For three reactions of dissociation were accepted the following con- 
14    14    ^  14    -2 stant values of recombination rates:  5*10 >  3*10  and 6»10  mole . 

6    -1 •cm . sec . Speeds of straight fourth and fifth reactions were taken 

in the form 

*4 = 5.10"exp(-^)  mole "»en,»-sec-«. 

1 

*,- MO"?1 BXp ( -?jg?)   mole ->• em«, see"1 

(compare with data in § 8, Chapter VI). 

Calculations were conducted on two assumptions:  1) vibrational 

degrees of freedom at every point of the nonequilibrium zone are 

equilibrium degrees of freedom, 2) the kinetics of excitation of 

vibrations were calculated simultaneously with the kinetics of chemical 

reactions. Distributions of temperature and density after compression 

shock in a shock wave with Mach number M « 14,2, spreading along air 

with p0 « 1 ram Hg, T0 - 300
oK are shown in Fig. 7.16. Temperature 

\    after compression shock T1 is equal to 97720K if it is considered 

that in the discontinuity are excited equilibrium vibrations, and 

12,000 K — without taking into account vibrations. 

Curves of the first calculation are solid lines, of the second 

are dotted. Divergence of curves is not very great but still notice- 

able since speeds of chemical reactions not very greatly exceed speed 

of excitation of vibrations. Width of front of wave is shown condi- 

tions, as can be seen from Fig. 7.16, is of the order of 5 mni. 
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distance from compression shock, mm. 

Fig. 7.16. Profiles of temper- 
ature and density in the front of 
a shock wave in air with Mach 
number M - Ik.2.    Along the axis 
of ordinates are temperatures and 
density ratio p/pQ. Initial pres- 
sure P^ » 1 mm Hg, temperature 
T0 = 500 K.  Solid curves corre- 
spond to instantaneous excita- 
tion, and dotted curves to ter- 
minal velocity of excitation of 
vibrations. 

Width of relaxation layer in 

air in the region of dissociation 

was measured by N. A. Oeneralov 

and S, A. Losev [33]. Change of 

temperature in relaxation layer 

was recorded with respect to 

change of absorption of light 

from outside source in Schumann — 

Runge bands of molecules of oxygen. 

Pressure after the front of the 

shock wave was close to atmos- 

pheric. At D - 3.7 km/sec Ax « 

« 0.5 cm (average temperature in 

layer T - 4500oK)j at D - 2.8 

km/sec Ax - 1.3 cm (T « 3200OK). Comparison with calculations of 

Duff and Davidson, above-stated, testifies to correctness of selection 

of basic constants of speeds of reactions in these calculations. 

In one of the last of the works (Wray, Teare, Hammerling, Kivel 

[69])there is presented a list of constants of speeds of chemical 

reactions occurring in heated air. Constants are selected by authors 

on the basis of analysis of available experimental material and are 

recommended by them for calculations of nonequilibrium processes in 

shock waves. Calculations of the structure of the front for air, 

carried out by the authors, will agree with measurements of Lin [70] 

in a shock tube. 

We will give this list. In the latter of the two lines are 

given constants of speed of reactions of ionization and recombination 

of electrons, which play the most important role in the establishment 
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of equilibrium ionization in air at comparatively low temperatures. 

Reaction 

0+(H-lI-»0|+M 

N+N+M->-N,+M 

N+0+M-»NO+M 

NO+N-^O+N, 
N0+O-»-N+Oa 
N+0-»NO*4.e 
NO++«-»-N+0 

Constant of recombination Ihird particle 
rate>cmi/rrolp»'sec 

2,2.10Mr-"/» 0 
8,0.10^»^-•/« Pi 
2,5.10i»r l/* N,, N. NO. A 
s.s.iowr-*/« N 
2to•lo«o^-•/« N, 
e.o.iour-1/«. 0,, 0. NO. A 
2,O■i0n^-•/« NO. 0. N 
LO-iowr-*/» 0,. N8, A 

Constant of speed. 
om*/mole «see 

1,310« 
l,0-10»»T1/»e~s,20/T 

S-lOuy-V^-SlTiS/T 
LS-ioar-*/« 

Constants of speeds of inverse processes for chemical reactions 

it is possible to express through constants of speeds of forward 

processes and corresponding equilibrium constants. 

Let us note works [71-75]* in which are studied relaxation layer 

in a shock wave in air and adjacent questions. 

§ 10. Ionization in a Shock Wave (Theory) 

At temperatures after the front of a shock wave of the order of 

15,000-20,000oK gas is noticeably ionized. Establishment of ioni- 

zation equilibrium with such temperatures is the slowest of relaxation 

processes and namely it determines the width of the front of the wave.* 

From the point of view of the experimental study of ionization 

in shock tube are particularly attractive monatomic gases such as 

argon. Thanks to the absence of a number of degrees of freedom which 

molecular gases possess, in monatomic gases more easily are attained 

high temperatures ~15i000-20,000oK. Monatomic gases are favorable 

also for checking the theory of the phenomenon since ionization (first) 

♦Dissociation of molecules with such temperatures occurs very 
fast, as a result of small number of collisions. 
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is a natural relaxation process expanding the front of the shock wave. 

Let us consider a shock wave In monatomlc gas. Noticeable lonl- 

zatlon Is obtained only during very great amplitude of wave; therefore. 

In the shock wave there Is attained limiting compression equal to four. 

In accordance with adlabatlc Index 7 « 5/5. Parameters after the 

compression shock are expressed through Mach number by the simple 

formulas: 

£.4, -t-iM-. •£-> (7.28) 

For Instance, at Mach number M - 18 and Initial temperature T0 « 

» 300oK , which corresponds to speed of shock wave D » 5.75 km/sec, 

temperature after compression shock T' » 30,000 K. In equilibrium, 

after the front of a shock wave In argon, at Initial pressure p0 » 10 

mm Hg, gas turns out to be Ionized approximately 255^, and temperature 

T1 - l4,000
oK. 

Width of compression shock Is equal to approximately two-three 

gas kinetic mean free paths of atoms. Directly after compression 

shock gas Is not Ionized. After shock compression. In highly heated 

particles of gas lonlzatlon starts. As Is known, the basic mechanism 

of lonlzatlon In gases not too low In density Is lonlzatlon by 

electron blow (see Chapter VI). However, In order that lonlzatlon be 

developed by means of electron blows with the formation of an electron 

avalanche. It Is necessary that In the gas there be a certain Initial 

"startup" quantity of electrons. One of the basic mechanisms which 

can lead to this initial lonlzatlon is lonlzatlon during collisions 

of atoms with each other. As was marked in Chapter VI, the effective 

section of such a process is extraordinarily small. Therefore, for 

forming "startup" electrons rather considerable time is required. 
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Correspondingly, the zone after compression shock, where parameters 

of gas correspond to an Insignificantly small degree of lonlzatlon. 

I.e., are equal to p, p', T', extends a very large distance. 

Avalanche-type lonlzatlon starts when speed of lonlzatlon by 

electron Impact becomes more than speed of lonlzatlon by Impacts of 

atoms. Inasmuch as the latter Is extraordinarily small, avalanche- 

type lonlzatlon starts with very little "priming" when degree of loni- 

zatlon a ~ 10  - 10 ^ (depending upon density and temperature of gas; 

see § 11, and ±3,  Chapter VI). Let us leave awhile the question on 

formation of "startup" electrons and let us consider the basic process 

of lonlzatlon by electron impact, as a result of which the degree of 

lonlzatlon grows from very small to equilibrium values (a,. » 0.25 in 

the above mentioned example). 

During constant electron temperature T , avalanche grows by 

exponential law of the type n ^ a ~ e ' T (see § 11, Chapter VI) until 

recombination starts noticeably to compensate for lonlzatlon. After 

that the degree of lonlzatlon gradually nears to equilibrium, at 

which recombination accurately compensates for lonlzatlon. 

Actually, development of the avalanche occurs in a more complex 

form. The fact is that in each ionizing event electron gas loses 

energy equal to lonlzatlon potential I (which in argon is equal to 

15.7 ev). Temperature of electron gas is of the order of 10,000°^ 

i.e., thermal energy of one electron of the order of 1.5 ev. Thus, 

on the formation of one new electron is expended energy equal to the 

thermal energy of approximately then electrons. If thermal energy of 

the electrons is not complete, electron temperature falls fast. 

Together with it would fall also speed of lonlzatlon, which very 

sharply, by Boltzmann law e~ '  e, depends on electron temperature 
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(see § 11, Chapter VI). 

Losses of energy of electrons on lonlzatlon are replenished thanks 

to transmission to the electrons of energy from atomic gas heated In 

the compression shock. However, exchange of energy between heavy 

particles and electrons due to a large difference in their masses 

occurs extremely slowly, and namely this process of exchange limits 

speed of development of electron avalanche and determines time of 

achievement of equilibrium lonlzatlon. 

During a very small degree of lonlzatlon. Ions are few, and elec- 

trons obtain energy during collisions with neutral atoms. But effec- 

tiveness of such collisions at electron temperature T ~ 1 ev « 10  K 
•* 

is approximately ICr times less than the effectiveness of collisions of 

electrons with ions. Therefore, even at small lonlzatlon a ~ 10'-5 

a basic role is played by energy exchange between Ions and electrons. 

Ions have a temperature coinciding with temperature of atomrf since, 

due to identity of masses, energy exchange between atoms and ions is 

carried out very fast. Thus, a small quantity of ions in given con- 

dition serves, as it were, as an intermediary during energy transfer 

from atoms to electrons. In electron gas itself energy is distributed 

quickly so that it is possible to speak about electron temperature 

Te, which, naturally, differs from temperature of heavy particles — 

atoms and ions T. Electrons not only ionize but also excite atoms. 

Energy of the first excited level of an argon atom is equal E* -ll«5ev. 

The fate of excited atoms can be different. Excited atoms partially 

de-excite their energy. Quantum appearing as a result of de-excitation 

is absorbed by another, nearby, unexcited atom (effective absorption 

cross section of resonance quanta is very large), which in turn is 
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de-excited,etc.* 

During great density of electrons, exceeding approximately 

17  -3 
10 ' cm , excited ato-.„i3 are deactivated basically by electron Impacts 

of the second kind. With this, excitation energy anew returns to 

electron gas. There Is possible also such a process:  a fast electron 

whose energy exceeds the difference between lonlzatlon potential and 

excitation energy I-E*, i.e., binding energy of an excited electron 

In an atom, knocks out an electron from an atom. 

lonlzatlon with this occurs, as It were, in two steps:  In the 

first act an electron excites an atom, and in the second another 

electron ionizes an excited atom. With such a two-stage process the 

expenditure of energy on the formation of one new electron also is 

equal to lonlzatlon potential (I - E* + (I - E*)), as also in single- 

stage. It is necessary to say that equilibrium degree of excitation 

of atoms is established very fast, much faster than equilibrium 

lonlzatlon. 

We 'vill compose now fundamental equations which describe the proc- 

ess of lonlzatlon after a compression shock and profiles of gas-dynamic 

magnitudes. If a is degree of lonlzatlon, U Is ionizing energy of 1 g 

of gas, and T and T are temperatures of atoms and electrons, then 

specific Internal energy and enthalpy of gas, on the assumption that 

degree of lonlzatlon Is small (a « 1), can be approximately recorded 

♦Resonance quanta« generated in the heated zone after the front 
of the shock wave, diffusing through the gas and penetrating through 
the surface of the front, emerge beyond the limits of the heated region« 
After that they diffuse in undisturbed gas, outstripping propagation 
of the shock wave. Thanks to diffusion of resonance radiation before 
the front, at large distances there appears a noticeable concentration 
of excited atoms« This process was considered L. M, Blberman and B. A« 
Veklenko [54]• They showed that at a distance of 1 m from the front of 
a wave in argon with p0 ■ 10 mm Hg, M ■ 18, T^ - 14,0000K, concentration 
of excitation of atoms reaches 5'lOr^ cm , which corresponds to a 
"temperature" of excitation of ~15,5000K, only a little lower than tem- 
perature of resonance radiation outgoing from the surface of the front 
and equal to T^* 
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— ^AT+jAaT.+aU * | AT+aU, 

w^AT+^AaT^aU^-jAT+aU. 

Pressure of gas in that same approximation Is equal to p » ApT + 

+ AapTe « ApT. 

From approximate condition of constancy of enthalpy In the relax- 

ation zone there follows a connection of degree of lonlzatlon with 

atomic temperature, analogous to (7.26): 

 o A imti    m\      ST —T 

.50, where Tlon - U/A - l/k (In argon Tlon - 1.82»10
:::,UK). Density p It Is 

possible to express through temperature from equation of straight line 

(7.18) or, approximately, considering p ■ ApT ~ const. Equation of 

kinetics of lonlzatlon It Is possible to record In the form 

£K£).+(£).-'-<o'r- ^•<7' «>• ^-^ 
where first component corresponds to lonlzatlon by electron Impact, 

and the second describes Initial "startup" lonlzatlon by Impacts of 

atoms (and by means of other mechanisms If such exist; see below). 

As soon as any noticeable quantity of electrons Is formed, the first 

member becomes larger than the second and the equation of kinetics 

Is turned into an equation of avalanche-type lonlzatlon. Function 

f was plotted In § 11, Chapter VI. In the shock wave xr " u:p • 

For determination of electron temperature, on which depends speed 

cf lonlzatlon by electrons, there serves equation of balance of elec- 

tron energy. If one were to designate Dy 2 , w » *AaT , p - AopT 

entropy and enthalpy of electrons, calculated per 1 g of gas and 

pressure of electrons, then It Is possible to record 

**.£-K£-T£)-- (7.30) 
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I where resultant energy release In electron gas per 1 cnr in 1 sec. 

CD Is composed of Inflow of heat thanks to energy exchange between 

I  atomic (ionic) and electron gases üJ„ and losses of energy by elec- 

trons on ionization oi.: a> ■ CD.ö - CD.. The first magnitude, according l      sa   1 

i  to formula (6.105), is equal to 

— I*^)..»-!*».1^. (T.JD 

; where T  is characteristic time of exchange, determined by formula 
SSL 

; (6.104):  T  « const T^/n (n is number of electrons in 1 cm ). 
©S, 6   6  6 

Losses of energy on ionization are equal to 

•'-'(£) .»-Kä).-"«»!?- ("2) 
Extracted equations also detennine the kinetics of the develop- 

ment of an electron avalanche and the distribution of all magnitudes 

with respect to x in the relaxation zone. It is necessary to note 

that rate of exchange and nonelastic losses to a considerable degree 

compensate one another (in electron gas is established a quasi-stati n- 

ary state): CD ■ CD  - a^ « cüea* cDi. 

The equation of balance of electron energy during this it is 

possible to record approximately in the form 

«-«•.-«i-O, 

as this is done in the work of Petschek and Byron [55]f which theoret- 

ically and experimentally studied ionization in a shock wave in argon. 

Speed of ionization da/dt ■ u da/dx then is determined simply as func- 

tion T , p and a. 

Regarding initial stage of ionization , when degree of ionization 

is still too small for an avalance to appear, then here position is 

very indefinite, since effective sections of ionization by impacts 

of atoms are unknown. However, if one were to be given to some section, 
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Pig. 7.17. Profiles of 
temperature of atoms, 
density, and degree of 
ionization in the front 
of a shock wave in argon 
for three values of 
speed of front D. In 
undisturbed gas P0 ■ 
- 595 mm Hg, T0 - 285

0K 
(graphs are taken from 
work [36]). 

of ionization for several 

then it is possible to produce an entire 

calculation of kinetics of ionization start-^ 

ing from moment t - 0 or from point x « 0 

after compression shock, in which a ■ 0, and 

up to achievement of equilibrium,        | 

Calculations on presented program were | 

I 
carried out by Bond [J>6]  for a shock wave  | 

in argon initial pressure p0 « 593 mm Hg   | 
I 

(equal to atmospheric pressure in Los Alamos)! 
i 

and T0 » 285
0K. Equations of the kinetics  I 

I 
of ionization,* balance of electron energy, i 

i 
I 

and hydrodynamics were Integrated numeri- \ 

cally. 

For  calculation of Initial ionization 

of argon during collisions of atoms with 

each other. Bond [356] extrapolated to low 

energies effective sections of ionization 

Ar-Ar, obtained in works of Rostagni [37] 

and Wayland [38]. Effective sections corre- 

sponding to energy of atoms of the order of 

I -• 1 ev, accepted in the calculation of 

Bond has an  order of 4«10   cm .♦* 

In Pig. 7.17 are shown profiles of 

temperature of atoms, density, and degree 

values of speed of shock wave. 

♦In the equation of kinetics of ionization there was considered 
also recombination, without which the degree of ionization does not 
aspire to equilibrium value, 

**Thbse values are not presented in the work of Bond; however, 
it is possible to extract them from results of calculation of profiles, ? 
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As we see, after the compression shock there spreads a wide region 

where there Is practically no lonlzatlon (where Is stored "startup" 

quantity of electrons) and parameters of gas are equal to thel'r own 

values after the compression shock (lonlzatlon degree of freedom Is 

frozen). When a attains magnitude ^lO"-3, an avalanche Is developed, 

and all magnitudes "rush" to their final equilibrium values. 

It Is necessary to note that In spite of the uncertainty In the 

selection of an effective section of lonlzatlon by blows of atoms, 

the width of the region of accumulation of "startup" electrons has a 

correct order, since It weakly depends on the section and Is determined 

basically by the scale of time of formation of the avalanche. 

In the case T * const, time of accumulation of "startup" elec- 

trons does not at all depend on effective section, as was shown at 

the end of § 15, Chapter VI, and Is determined only by time of devel- 

opment of avalanche. 

§ 11. lonlzatlon In a Shock Wave (Experimental Results; 
Remarks about Initial lonlzatlon; Air) 

Experimental investigation of the establishment of lonlzatlon 

equilibrium in the front of a shock wave in argon was conducted by 

Petschek and Byron [55]. For this purpose the authors used a shock 

tube. In order to expand the nonequllibrium region of the front and 

to Increase time of achievement of equilibrium, after making them 

accessible for measurements. Initial pressure of gas was selected 

comparatively low: p0 ■ 10 mm Hg. With such densities and speeds of 

shock wave of the order of 4-5 km./sec. times of relaxation were 

~10 -^ sec. and widths of front ~1 cm. Distribution of electron den- 

sity in the front of the wave was measured by two methods: by radia- 

tion of continuous spectrum of glow and with the help of probes. 
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Continuous spectrum appears as a result of recombination of electrons 

with Ions and, consequently. Intensity of volume of glow In a given 

section x of front of shock wave Is proportional to square of density 

of electrons. 

Glow was recorded by photomultlpller, current from which was 

given on an oscillograph. Form of osclllograms was In qualitative 

agreement with theoretical calculations of degree of lonlzatlon In 

nonequlllbrlum zone. 

Second method, the probe method, allowed to determine gradients 

of electron density similarly to the usual Investigations In gas dis- 

charges. Thanks to the existence of a gradient of electron density 

and the sharp excess of speed of electrons over speed of Ions there 

occurs separation of charges, polarization, and electrical fields 

appear. The field In Ionized gas Is shielded at distances of the order 

of Eebye length; therefore, electrons cannot depart from Ions to great 

distances. In experimental conditions Debye length was considerably 

less electron path.  Separation of electrons occurred very fast, as 

compared to rate of change of electron density, and was always station- 

ary (relative velocity of electrons and Ions Is equal to zero). 

In this case gradient of electron pressure Is balanced by elec- 

trical field (vPe 
m -  n eE), appearing as a result of polarization, 

for measurement of which Into the gas Is Introduced a probe. Probe 

measurements of distribution of electron density agreed with measure- 

ments by glow and with theory of electron avalanche, restrained by 

delayed exchange of energy between Ions and electrons. 

The authors especially Investigated the Initial stage of lonlza- 

tlon. In which are formed "startup" electrons. Comparison of experi- 

mental data about the distribution of electron density with the theory 
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of electron avalanche showed that avalanche is developed only after 

initial ionization attains magnitude of the order of 0.1 from equilib- 

rium, i.e., a ~ 10 . Initial ionization can be connected with impacts 

of atoms and photo-ionizatlon with quanta being generated as a result 

of photo-recombination in the equilibrium zone. According to apprais- 

als, photo-recombination in experimental conditions did not play a 

role. The experiment testifies to the important role played by impurity 

in the process of initial ionization. Speed of initial ionization 

strongly depends on degree of purification of argon. However, it is 

much larger than this is possible to obtain on the basis of appraisals. 

Possibly, for initial Ionization the diffusion of electrons, the 

penetration of free electrons in neutral gas from a region of strong 

ionization, has some value. To the study of the diffusion of electrons 

in a shock wave are dedicated works [39* 76, 77]. The question about 

the mechanism of initial ionization as yet remains not fully clear. 

Let us give certain results of the measurement of the time of 

ionization relaxation in argon, obtained in work [35]. Relaxation 

times and approximate widths of fronts are given to initial pressure 

p0 « 10 mm Hg (they are inversely proportional to density of gas). 

-■5 Values pertain to very pure gas, with aiLlowance of impurities ~5'10 ^ 

JT      r»,K      D, km/sec 
3,3 
3.7 
4.3 
5.25 
6.5 

Experiment shows that in T, roughly speaking, linearly depends 

on l/T', i.e., that T ~ exp^onst/T"). 

Ionization in the front of the shock wave in air was studied in 

works [40, 70, 78, 79, 80] (see also [41]). In waves of comparatively 

small amplitude, after whose front degree of ionization is very small. 
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the mechanism of ionlzation of air essentially differs from the mech- 

anism of Ionlzation of air essentially differs from the mechanism of 

Ionlzation In monatomlc gases . Free electrons are formed basically 

as a result of reaction N + 0 —♦ NO + e, which requires small expendi- 

ture of energy, only 2.8 ev. Inasmuch as Ionlzation potentials of 

all components of heated air are considerably larger than this magni- 

tude, the shown reaction at low temperatures occurs much faster than 

direct processes of Ionlzation of molecules and atoms by Impacts of 

particles. 

Constant of speed of this reaction Is given In table § 9 (see also 

§ ±3,  Chapter VI). Calculations of the kinetics of Ionlzation, carried 

out In the work of Lin and Teare [86] with this value, agree well with 

experimental data [87]>  obtained with the help of a shock tube. As 

shown by experiments and calculations, at speeds of shock wave 4.5-7 

km./sec. and Initial pressures of 0.02-0.2 mm Hg, Ionlzation after 

compression shock Is developed very fast, at a distance of 40-10 gas 

kinetic mean free paths, corresponding to unexclted air. With this, 

maximum degrees of Ionlzation In relaxation layer, which ~10 , several 

times exceed equilibrium values corresponding to final state. 

In sufficiently strong shock waves, at high temperatures and 

noticeable degrees of Ionlzation In air, as also In monatomlc gases , 

to the first plan comes forward ionlzation by electron Impact. Reac- 

tion N + 0 -♦ NO + e serves one of the sources of startup needed for 

the development of an electron avalanche. 

One of the most characteristic properties of ionized gases is 

their ability of conduct electrical current.  To the calculations 

and experimental study of electrical conductivity of ionized air (and 

other gases) have been dedicated a rather large number of works. See, 

601 



for instance, [70, 81-84]. 

§ 12.  Shock Waves In Plasma 

Interesting peculiarities are possessed by the structure of fronts 

of shock waves spreading along ionized gas.  These peculiarities were 

marked by one of the authors [42]; quantitative calculations of the 

structure of a front were done by V. D. Shafranov [45]; see also the 

work of V. S. Imshennik [51], Jukes [44] and Tidman [44, 44a], S. B. 

Pikel'ner [85]. Basic features of the structure are connected with 

the delayed character of energy exchange between ions and electrons 

and great mobility of electrons, thanks to which electron thermal 

conduction many times exceeds thermal conduction of ions. 

Maxwellian distributions in electron and ionic gases are estab- 

lished very fast, during the order of time between "collisions" of 

particles.* Levelling of temperatures of both gases, due to the huge 

difference in mass of electrons and ions, occurs much more slowly. 

This relaxation process also determines width of the front of a shock 

wave in plasma. 

Let us clarify qualitatively, to what leads the small rate of 

energy exchange of electrons and ions, for which we will assume at 

first that electron thermal conduction does not differ from ionic. 

Furthermore, we will consider that ionization occurs not in the actual 

shock wave, but the wave spreads along already ionized gas. 

In the system of coordinates, connected with the wave, a consid- 

erable part of the kinetic energy of the gas, incident on the compres- 

sion shock, under the action of forces of ionic viscosity, irreversibly 

passes into heat.  Increase of ionic temperature in the shock wave in 

♦About the idea of "collision" of charged particles, interacting 
by Coulomb law, see § 16, Chapter VI. 
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order of magnitude Is equal to AT. ~ m.D /k, where m. Is mass of the | 

J 
Ion, and D Is approach stream velocity equal to the speed of the front| 

I 
of the shock wave.  Thickness of viscous discontinuity Is determined I 

by the time between Ionic collisions Ti; It Is of the order of the   | 

range of Ions i.  ^'VTJ, where v ~ D Is thermal velocity of Ions In the! 

I compression shock (definition of -^ Is given In § ±6,  Chapter VI).   1 

During compression T. Ionic gas does not succeed In transmitting to 

electron gas any noticeable thermal energy since characteristic time 

of exchange -r  ~ Yai./m^'T.,  Is very great. For Ions with average ea   * i e i 

masses -r  is hundreds of times more than time T4 ; for protons It Is ea l 

43 times more than T^. 

Increase of temperature of electrons In compression shock because 

of transformation of kinetic energy of Incident flow of electron gas 

Into heat under the action of forces of electron viscosity Is Inslg- 

nlflcantly small.  It Is of the order of AT ~ m D /k. I.e., m./m 

times less than AT.. Heating of electron gas In shock wave occurs by 

other cause. 

Electrons and Ions are connected between themselves by electrical 

forces of Interaction.  This connection Is very strong.  The least 

separation of electron and ion gases leads to the appearance of power- 

ful electrical fields which prevent further separation. Therefore, 

each particle of plasma remains electrically neutral.  Denslt" of 

electrons n always coincides with density of positive charges Zn. 

(Z is charge of ions, n and n. are numbers of electrons and ions in 

1 cm ).  In the shock wave electron gas behaves not Independently, 

but is compressed exactly as ionic.  It is possible to say that elec- 

trons are "rigidly attached" to ions by electrical forces. These 

forces are "external" with respect to electron gas and do not produce 
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dissipation.  Inasmuch as dissipation of energy because of the action 

of forces of electron viscosity is insignificantly small, in compression 

shock there occurs adiabatic compression and heating of electron gas. 

Thus, for instance, during compression of hydrogen plasma by a 

strong shock wave the density of it is increased in the shock wave 

four times, in accordance with adiabatic index 7 » 5/3. Temperature 

of ions can increase very strongly, if amplitude of wave is high, 

temperature of electrons in shock wave increases only 4^" « 4 '-^ ~ 

=2.5 times. 

Therefore in a strong shock wave, spreading along plasma with 

identical temperatures of electrons and ions, after compression shock 

there appears a sharp distinction in the 

temperatures of both gases; then in the 

particle experiencing shock compression 

there starts the process of transmission 

of thermal energy from ions to electrons, 

which leads to temperature balance 

through a period of the order of the 

9 Ac   * 
Fig. 7.18. Profiles of 
ion and electron (dotted 
line) temperatures in 
the front of a shock wave 
in plasma, without taking 
into account electron 
thermal conduction. 

time of exchange -r  (see § 16, Chapter 

vi). 

Width of relaxation zone after compression shock, where there 

occurs approach to equilibrium state of plasma with equal temperatures 

T ■ T. - T,, has an order of Ax ~ U.T  (u. ■ J-^D). Final temperature ell 1 ea v 1  p,. ' 
T^ is determined by general equations of preservation for front of 

shock wave. Thus, in the presence of effects connected with the 

existence of increased electron thermal conduction, distribution of 

temperatures in the front of the wave should have the form depicted 

in Fig. 7.18. 
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11 
If there is no excitation of any other degrees of freedom besides 

the earlier "frozen" forward degrees of freedom of electrons (as takes 

place in completely ionized gas), then density of gas and pressure in 

relaxation zone remain strictly constant. Actually, indices of adiabat 

of gas with "frozen" and equilibrium degrees of freedom coincide and 

equal 7 ■ 5/5# so that compression in shock wave occurs by shock adia- 

bat coinciding with shock adiabat of final state. The physical cause, 

obviously, consists of the fact that pressure is determined only by 

average forward energy of particles, which during exchange remains 

constant and does not depend on distribution of it between particles. 

Let us consider now, what Influence electron thermal conduction 

renders on the structure of the front. Till now it has always been 

considered (and for this there were bases) that dissipative processes, 

viscosity and thermal conduction, play a role only in the region of 

large gradients, in a shock wave where macroscopic magnitudes strongly 

change at distances of the order of a gas kinetic mean free path. In 

relaxation zone, spreading to distances calculated as many paths, the 

gradients are small and it is possible to disregard dissipative 

processes. Really, the characteristic scale serving the criterion of 

gradient smallness is the scale of length, composed of transport 

coefficients and speed of front. Transport coefficients, for instance, 

thermal diffuslvlty of atoms, are of the order of x ~ lv/2 &nd scale 

of length X ~ x/b ~ iv/D ~ l of the order of gas kinetic mean free 

path« since thermal velocity of atoms in the front v is of the order 

of speed of front D. 

Coefficient of electron thermal diffuslvlty x« Is equal approx- 

Imately to 
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where I    is range of electrons, v is their thermal velocity, and x 

is time between "collisions" of electrons with each other. 

As was shown in § 16, Chapter VI, range of charged particles does 

not depend on their mass, but depends only on charge and temperature 

l  ~ T2/z\ 

At comparable temperatures and in light gases , for instance 

in hydrogen (Z = 1), range of electrons and ions are of electrons and 

ions are of one order. Speed of electrons isym./m    times more than 

speed of ions. Therefore, coefficient of electron thermal conduction 

is^/m77in times more than coefficient of ionic thermal conduction, 

and the characteristic scale, on which is performed the process of 

electron thermal conduction, is 

This scale is of the same order as the width of the relaxation zone 

of temperature balance of electron and ion gases: 

Therefore, with respect to electron thermal conduction, gradients in 

the relaxation zone are not small and the thermal conduction of heat 

exchange in this zone will compare with heat exchange between ions 

and electrons. Electron thermal conduction promotes fastest temper- 

ature balance after viscous shock, since it transfers heat, from 

layers of gas more remote from the compression shock, forward where 

electron temperature is less. Besides this, and this effect is extraor- 

dinarily essential, electron thermal conduction leads to heating of 

gas before viscous compression shock. Although "hot" ions cannot 

far escape from behind shock wave into region in front of shock (their 

thermal velocity is comparable with speed of propagation of shock 

along undisturbed gas), "hot" electrons with success penetrate forward 
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and outstrip shock wave, since their speed is approximately y1 mi/me 

times more than speed of front. Before compression shock will he 

formed a heated layer. In this layer electron temperature is higher 

than ionic, since first of all is heated electron gas and only then is 

heat partially transmitted to ions. In shock wave there occurs a sharp 

growth of ion temperature. Electron temperature does not change, since 

its intermittent increase prevents smoothing out because of great 

thermal conduction. Shock wave has "isoelectronic-thermal" character. 

Distribution of temperatures in the front of the wave, taking into 

account electron thermal conduction, is shown in Fig. 7.19. 

We will estimate width of heated layer before compression shock. 

We will consider, for simplicity, that there is no energy transfer 

from heated electron gas to ionic, and also that gas before compression 

shock is not compressed and is not retarded (in system of coordinates 

where front rests). Exact calculations Justify these simplifying 

assumptions. Flow of electron thermal conduction is equal to 

I 

dT (7.33) 

r,  
T, 

where H. Y c is coefficient of thermal ^e e 

HirJ    0 i*     * 
Fig. 7.19. Profiles of 
ionic and electron (dotted 
line) temperatures in the 
front of a shock wave 
spreading along cold 
plasma. 

conduction, c is heat capacity in 1 cm 

of electron gas during constant volume. 

Because of stationariness of process 

flow of thermal conduction in heated 

layer is equal to hydrodynamlc flow of 

electron energy:* 

-Ä-DcJ'.-X-c. dT (7.34) 

♦This is the first integral of equation of energy for given case» 
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(initial temperature of electrons before the front is assumed to equal 

zeroj far before wave flow S disappears). 

Noticing that xa ~ ~olo ~ To  or X0 " 
aTo * where a » const and 6     6 6     6 6       6 

integrating equation (7.5^)* we will find 

or 

'-[IT (*-*.)]*■ «-^ 
where x0 is coordinate of the front edge of the zone of heating, where 

temperature turns into zero. Profile of temperature, described by 

this formula, is depicted schematically in Fig. 7.19. If one were to 

place origin of coordinates x - 0 at point where shock wave is located, 

and to designate temperature at this point by T 0 (electron temperature 

on shock does not change), then width of heated layer it is possible 

to record in the form 

During calculation of electron thermal conduction temperature of 

electrons on shock has the same order as after the front of the wave, 

so that width of heated layer has the same order as width of relax- 

ation zone after the shock: 

Width of the heated layer before the compression shock quite 

rapidly increases with increase in amplitude of wave. If one were to 

consider that xe ~ T g ~ T
5^2» and D - T^'2, then from formula (7.?6) 

we will find dependence |x0| ~ T. ~ D . 

Obtained profile of temperature is characteristic for nonlinear 

thermal conduction, when coefficient of thermal conduction decreases 
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with lowering of temperature.* During usual thermal conduction with | 

constant coefficient H ■ const, x " const, we would find from equatloi 

of energy that heating exponentially spreads ad Inflnltum: 

-Ö 
T~Tte  *>, rl«f(x=0), 

where characteristic scale x. « x/D. During usual thermal conduction, 

effective width of zone of heating x.. In distinction from nonlinear, i 

decreases with growth of amplitude of wave: x1 ~ D  ~ Tj ' . 

During calculation of electron thermal conduction In a very 

strong shock wave, non-lonlzed gas Is strongly heated and Is Ionized 

even In front of compression shock so that qualitative characteristics 

of the structure of a wave spreading along Ionized gas remain In force 

also In the case when a wave spreads along non-lonlzed gas. 

For strict calculation of the structure of the front of a shock 

wave In completely Ionized gas, to general hydrodynamlc equations, 

taking Into account flow of electron thermal conduction of the type 

(7.10), one should add an entropy equation for electron gas, similar 

to (7.50): 

Qrt'lf-—&+**' (7.37) 

where CD  Is energy transmitted in 1 cnr In 1 sec. from Ion gas to 

electron gas; It is given by formula (7.31).** 

*For greater detail about nonlinear thermal conduction, see Chapter 
X. 

**It is necessary to emphasize that integrals of equations of 
momentum and energy for a one-dimensional stationary flow of heat- 
conducting «as (7.10) are accurate only for all gas on the whole. It 
is impossible to record Integrals of equations of momentum and energy 
for ion and electron gas separately since these equations contain 
members which are not presented In the form of derivatives with respect ; 
to x; for instance, in equations of energy there are members of exchange! 

(Dea.    During the composition of equations^for both gases members of    i 
similar type are reduced, and it is possible to integrate equations    i 
for all gas on the whole. j 
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Speeds and compression of both gases at each point are assumed 

to be Identical (n » Zn.). Enthalpy and pressure are equal to 

w~wt+w,*'jAT,+ ZjÄTtt 

P^Pt+P»** AQK+ZAQT,, 

where A Is gas constant calculated per 1 g of plasma. 

Entropy of electron gas calculated per 1 g of plasma Is equal to 
8 I 

Y  »Zi4In-^-+ const = Z^In^• +const. (7.38) 

Let us find the condition determining electron temperature in the 

shock wave. 

Let us integrate equation (7.37) hy region of shock wave, directing 

width of it to zero and taking into account the fact that electron 

temperature at the shock is continuous (it is equal to TO). Marking 

by indices 01 and 02 magnitudes before and after compression shock, 

we will record result of Integration: 

QtpTH\nSa.~S,i-S9i. (7.39) 

Flow at discontinuity experiences a Jump; difference of flows 

on both sides of the discontinuity corresponds to the work of isother- 

mal compression of electron gas by "external" forces effective on the 

part of the ions. 

A system of equations describing the structure of the front it 

is possible to solve only by means of numerical integration. This was 

done by V. D. Shafranov [45] for limiting case of a strong wave 

(P./PQ »1) in hydrogen plasma (Z - 1) with zero initial temperature. 

Profiles of temperature and densities are shown in Fig. 7.20. Temper- 

ature T* here is arbitrary (it is proportional to the square of speed 

of wave D). For unit of length is accepted magnitude 0.019 DtÄO , ea,» 

where -r   is characteristic time of exchange in final state after ea. " 
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front of shock wave; for 

instance, at Initial density 

n.0 - n 0 » lO1^ cm'5 and i    e 

temperature after fronts T. = 

' ea 

Fig. 7.20. Profiles of temperature 
and density for a strong shock wave 
in plasma (figure is taken from 
work [h3]).    Electron temperature 
on shock is equal to T^ - 0.9J5 T.j 
ion temperatures in front of and 
after shock: IV - 0.16 T^ T^    =- 
» 1.24 T^. Densities in front of 
and after shock: PQ±/PQ  " 1.15* 

P02/P0 

D « 9^ km./sec., and unit of 

length is equal to 5.9-10  cm. 

§ 13.  Polarization of Plasma 
and Appearance of Electrical 

Field in a Shock Wave 

5.53. 

In preceding paragraph 

it was assumed that electrons 

and ions rigidly are connected 

by electrical forces, <.:id 

plasma at each point of the shock wave is electrically neutral: den- 

sity of electrons changes from point to point exactly proportionally 

to density of ions. In reality this position is not very strictly 

executed. Thanks to the existence of large gradients of electron den- 

sity in the compression shock and high mobility of electrons connected 

with the exceptional smallness of their mass, there are created favor- 

able conditions for the diffusion of electron gas relative to ionic, 

a change of concentration of electrons, and the appearance of space 

charges. 

Effects of diffusion during propagation of shock wave in a binary 

mixture of gases were considered in § 5. However, diffusion in plasma, 

in an essential form, differs from diffusion in a mixture of neutral 

gases. The fact is that the least change of relative concentration 

electrons and ions, which leads to the formation of space charges. 
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polarization of plasma. Is accompanied by the appearance of a powerful 

electrical field. This field prevents further polarization and 

restrains diffusion current of electrons. 

Let us estimate, with respect to order of magnitude, how plasma 

is polarized in the presence of gradients of macroscopic magnitudes, 

i.e., how far is executed, on the average, the condition of electro- 

neutrality. 

For simplicity we will consider hydrogen plasma (Z « 1). Let us 

assume that temperature of electrons is of the order of T, the number 

of electrons and ions in 1 cnr is n = n. » n. Let us assume that, el ' 

further, that there are gradients of macroscopic magnitudes, let us 

say, density, pressure etc., such that tLe characteristic dimension 

of the region in which there occurs noticeable change of magnitudes 

is of the order of x. 

Due to diffusion of electrons in the region of the order of x 

there is obtained a certain difference in densities of electrons and 

ions, 5n « n. - n , and there appears space charge e5n. The appear 

electrical field E ~ 47re.5n.x* and potential difference on the bound- 

aries of the region 5(p ~ Ex ~ 47re5n.x . Lut in the absence of exter- 

nal fields, separation of electrons and ions and potential difference 

are supported only because of thermal motion of electrons, conse- 

quently, potential energy of electrons e5<p cannot exceed magnitude of 

the order of kT; e6q) ~ 4Tre »ön-x ~ kT. Hence degree of polarization, 

i.e., degree of deflection from electroneutrallty, in the considered 

region has an order of 
6m kT 

Strong separation of electrons and ions, at which 5n/n ~ 1, can 

♦We remind that equation of electrostatics for field strength E 
and potential 9 state: 



appear only In a thin layer, the thickness of which d Is determined 

by condition 6n/n « 1 «» kT/^ue nd . Hence 

Length d Is nothing else but Debye radius (see § 11, Chapter III),* 

Debye radius characterizes the distance at which plasma shields the 

electrical field of any charged body. I.e., thickness of so-called 

double layer forming near the charged body. In particular, a "charged 

body" can be a separate Ion (exactly In this way was Introduced the 

idea of Debye radius In § 11, Chapter III). 

By determining d it is possible to record the amount of deviation 
2 

from electroneutrality in the form ~~ C-^) . 

The biggest gradients in plasma appear in a viscous shock wave 

during propagation of a strong shock wave, when macroscopic magnitudes 

strongly change at a distance of the order of the length of the mean 

free path of charged particles: 

Mean deviation from electroneutrality in the zone of the shock 

wave is (x - xmln ~ z): 

**   ~f   * Y       «•»OnA)« . oo in.« * _. ^—J- ^jy ^ 3.9.10 «-p-. 

This magnitude is very small during all reasonable values of densities 

and temperatures; for Instance, at T » 10^ K n - 10  cm , d « 

* 0.8-ID"6 cm, i  « 3.5-10"4 cm, 5n/n ~ 4.10'5, 5cp ~ kT/e - 8.6 v,*** 

E ~ 5(p/l ~ 2.5*10 v/cm. 

*More exactly, Debye radius multiplied by y^,  since n in (5.78) 
is total number of ions and electrons. 

♦♦Logarithmic factor In the length of a mean free path (see § 15, 
Chapter VI) has usually an  order of InA ~ 10. 

♦♦♦Magnitude 5q) is numerically of the order of temperature, expressed 
in electron volts. 
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Let us note that compression of electron gas In a strong compres- 

sion shock, the width of which Is of an order of the length of a mean 

free path i,  occurs only because of electrical forces effective on 

 7—    the part of Ions (Ion gas Is compressed, as 

/ »t J usual, because of the action of viscosity). 

"x    Consequently, potential difference on the 
m,m lx shock wave Is determined by the work of 

1A 
U. 

compression of electron gas going into one 

electron, 

«(«Poa-foO-AT'.oln-to-. 
dot 

During compression a few times, loga- 

rithmic of the order of unity and, conse- 

Pig. 7.21. Distribu-    quently, e5cp ~ kT, as was affirmed above, 
tlons of mass density, 
density of space charge.     Distributions of charge, electrical 
electric field strength, 
and electrostatic poten- field, and potential in the front of a shock 
tial in the front of a 
shock wave spreading    wave in plasma are schematically shown in 
along plasma during cal- 
culation of diffusion of Fig. 7.21. 
electrons. 

The essential difference in distribution 

of concentrations in a mixture of neutral gases consists of the fact 

that, along with the region of increased concentration of electrons 

in the front part of the front of the shock wave, there will appear 

a region of lowered concentration in the rear part of the wave. In 

a mixture of neutral gases, in the front of the shock wave there occurs 

only a concentration of the light component (excess mass of light 

component flows in from "infinity"). 

In the case of plasma such a situation is impossible. Concen- 

tration of electrons without simultaneous concentration of positive 

ions in a neighboring region would lead to the appearance of an 
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1 

electrical field to "infinity," i.e., there would be required the   | 
I 

expenditure of infinite energy. | 

I 
In work [^5] was considered the structure of the front of a weak j 

•a 
| 

shock wave in plasma, taking into account only diffusion of electrons | 

restrained by electrical forces, but without taking into account \ 

viscosity and thermal conduction, just as Cowling did [22] for a mix- | 

ture of electrically neutral gases (see § 5).* As also there, dlffu- | 
I 

sion ensures the blurring of a shock discontinuity of not too great 

intensity. Thanks to the restraining role of the electrical field,  ] 

the width of transition layer is smaller than in a mixture of neutral I 

gases. 

5. Radiant Heat Exchange in the Front of a Shock Wave 

§ 14. Qualitative Picture 

When a shock wave spreads along gas occupying a great volume, 

and the dimensions of the heated region are very great as compared to 

the mean free path of light, so that temperature of gas little changes 

at distances of the order of the length of the mean free path, thermal 

radiation in the volume arrives in local thermodynamic equilibrium 

with matter. Radiation is equilibrium also directly after the front 

of the shock wave. 

Density of energy and radiation pressure become comparable with 

density of energy and pressure of matter only during extraordinarily 

high temperatures or extraordinarily low densities of gas. For 

instance, in air of normal density this occurs at a temperature of 

«*2.7,10  K. In shock waves of not so great amplitude radiation pres- 

sure and energy are much less than pressure and energy of matter and. 

»See also works [44, 46]. 

S15 
^^a^aites ssiä^iiaii&^m^äM i^fci^J^t-^i.W-1- 



therefore, hardly affect parameters after fronts. Of another order 

is the relationship of energy flows of radiation and matter, since 

speed of shock waves with which it is actually necessary to deal is 

of many orders less than speed of light. The ratio of flows of energy 

aT /Dpe ~ (uracj/p
e) (C/D)* roughly speaking, is c/D times more than 

density ratio of energy.  Thus, at D « 100 km./sec c/D = J'lO .  In 

air of normal density, for instance, both flows become identical at 

a temperature ~300,000oK, at which density of radiation is still very 

small. 

One would think the drain of energy by radiation from the front 

of a shock wave of great amplitude should play an important role, and 

in the third of the shock relationships (7.^) it would be necessary, 

along with the energy flow of the substance to include also flow of 
k 

energy removed from the surface of the front by radiation S » aT.. 

This would actually affect the final state after the front of the shock 

wave, leading to large compression after the front. Just as an increase 

in heat capacity of gas leads to large compression. Actually losses 

of energy to radiation from the surface of the front of the wave are 

very limited and their effect is usually insignificant. The fact is 

that in continuous spectrum gases are transparent only for comparatively 

small quanta. Atoms and molecules strongly absorb quanta, whose 

energy exceeds ionization potential and which cause photoeffect, and 

molecules, as a rxL/.A,  absorb even smaller quanta; for instance, the 
o 

boundary of transparency of cold air lies at X ~ 2000A hv ~ 6 ev. 

At high temperature after the front, energy in the region of small 

frequencies composes only a small share of the total energy cf the 

spectrum. Thus, at a temperature after fronts of T - 50,000oK in a 

region of transparency of air hv < 6 ev there is concentrated only 
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4.5^ of the energy of plank spectrum. Small quanta are in the Ray- 

leigh — Jeans part of the spectrum and their flow, i.e., possible 

losses of energy, in any case are proportional not to the fourth, but 

only to the first degree of temperature. 

Radiation from the front of a shock wave, indeed, departs in its 

basic part to "infinity" only with amplitudes at which the maximum of 

the plank spectrum lies in the spectral region of transparency of gas, 

i.e., at temperatures after fronts of the order of 1-2 ev. But with 

such temperature, absolute value of radiation flux aT. is minute and 

additional compression because of losses to radiation in air of normal 

density does not exceed a percentage. 

Thus, the existence of thermal radiation little affects parameters 

of gas after the front of a shock wave of not too great amplitude. 

Another matter is the influence of radiation on the internal structure 

of the transition layer between initial and final thermodynamically 

equilibrium states of gas, i.e., on the structure of the actual front 

of the shock wave. Here the role of radiation in waves of large (but 

presenting real interest) amplitudes turns out to be extraordinarily 

essential and, moreover, namely radiant heat exchange determines 

structure of front. The problem concerning the structure of the front 

of a shock wave, taking into account radiant heat exchange, to which 

§ 14-17 of this chapter are dedicated, was considered by the authors 

in works [42, 47-49], Although radiation flux departing from the front 

of a wave to "infinity" is minute and does not render any power influ- 

ence on parameters of the shock wave, the fact that it exists has a 

huge value since it permits observing the wave by optical methods. 

The Question about the glow of a shock wave and the brightness of 

the surface of the front is tightly interlaced with the question about 
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the structure of the front. It will be considered In Chapter IX. 

Due to the nontransparency of cold gas, radiation outgoing from 

the surface of the SLOGA discontinuity. In waves of great amplitude Is 

almost completely absorbed In front of the discontinuity, heating 

layers of gas flowing Into the discontinuity. This energy, going Into 

heating. Is drawn out because of de-excltatlon of layers of gas, 

already experiencing shock compression, which, consequently, are cooled 

by radiation. The effect leads, thus, to transfer of energy from some 

layers of gas to other means of radiation. Radiation heat exchange 

Is performed at distances measured by the length of the mean free path 

of quanta for absorption. Usually the length of the mean free path 

of quanta are several orders larger than the gas kinetic mean free 

path of particles (see Chapter V) and larger than the width of the 

relaxation layer, where thermodynamlc equilibrium Is established In 

the actual substance. 

Thus, In air of normal density length'.; of the mean free paths of 

quanta with energies of hv ~ 10-100 ev, corresponding to temperatures 

after the front of T1 ~ 10
4 - 10^ 0K, have an order of 10"2 - 10"1 cm, 

whereas a gas kinetic path Is of the order of 10 J  cm. 

Width of the front of a shock wave In which radiant heat exchange 

plays an essential power role is determined by the length of the mean 

free path of light— the largest scale of length. With some meaning 

It Is possible to speak about relaxation of radiation In the front of 

a shock wave and about the establishment of equilibrium of radiation 

with the substance after the front. 

Let us trace qualitatively, how the structure of the front changes 

during transition from waves of small amplitude to waves of great 

amplitude. With this we will consider the phenomenon In "large scale," 

618 

^«lli^tfililtiilllrv^^^ite^vMi•ilr'^■ii^i^, 



not being Interested In "small scale" component connected with relax-i 

ation In different degrees of freedom of gas, i.e., assuming that at 

each point of the wave the substance is in a state of thermodynamic 

equilibrium. A viscous shock wave together with the relaxation zone I 

after it we will consider as a mathematical discontinuity. 

In the limiting case of a sufficiently weak wave, when the power? 

role of radiation is small, profiles of all magnitudes in the shock 

wave have the character of the "classical" steps (Pig. 7.22). During^ 

growth of amplitude rapidly grows flow of radiation from the surface 

of the front — aT^. Radiation is absorbed before the discontinuity 

-—    at a distance of the order of the mean free path : 

~** of quanta and heats the gas; heating is less the 

1    further from the discontinuity due to absorption 

 ■£    of radiation flux. The shock wave is propagated 
Fist 7 22  Pro- 
files of temper-    now not alonS 'the col(i l3u't along "the heated gas 

o^1"™^™^    and temperature after the shock IV is higher and pressure In + ° 
a "classical" ä 

shock wave        tlian ln the al:)sence of heating, i.e., higher   | 

than in the final state. After the compression I 

shock temperature decreases from T to T.. In other words, a particle] 
I 

of gas flowing through the shock wave at first is heated by radiation,] 

but after experiencing shock compression it is cooled, de-exciting 

part of the energy which goes into creation of radiation flux. Heati: 

of gas before the discontinuity leads to increase of its pressure and ] 

a certain compression (and also to braking in the system of coordinate^ 

where the front rests). In the shock wave gas is compressed to a 

density somewhat smaller than final. Cooling of gas after the com- 

pression shock promotes its further compression to final density (as 

also in the case of lowering temperature due to excitation of addition! 
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T. 

P* X A 

J: ft 

degree of freedom). Pressure Increases. 

Profiles of temperature, density, and pressure In the wave, 

U responding to the described picture, are 

depicted schematically In Fig. 7.2^. 

Temperature of heating before disconti- 

nuity T^ Is proportional to radiation flux 

outgoing from the surface of discontinuity — 

S0 w aT., and Is quickly Increased with growth 

of amplitude of wave. Thus, In air of normal 

density T « l400oK at T1 » 25,000
oK; T - 

- 4000oK at ^ = 50,000oKj T =- 60,000oK at 

T^ =» 150,000oK. Correspondingly Is Increased 

excess of temperature after shock T, over 

final T. (roughly speaking, T - T. « T ). 

At a certain temperature after the front 

T. « Tcrit temperature of heating T_. attains 

magnitude T. and profile of temperature obtains the form shown In Fig. 

7.24. This temperature T .,, equal approximately to 500*000OK for 

air, can be called critical since It divides two essentially different 

cases of structure of the front of the shock wave. 

Let us consider a wave of great, supercritical amplitude with 

temperature after the front T^ > T *+• Energy flow of quanta radiated 

by gas after the compression shock and outgoing from the surface of 

discontinuity In the direction of cold gas would suffice to heat a 

layer of the order of the length of a mean free path In which quantum 

Is absorbed, up to a very high temperature, of more than T^. Can 

heating In fact be carried out so high? Obviously not, since the 

heated layer Itself would begin Intensely to radiate and is rapidly 

Fig. 7.2?. Pro- 
files of temper- 
ature, density, 
and pressure In 
the front of a 
shock wave of not 
too great ampli- 
tude during cal- 
culation of radi- 
ant heat exchange. 
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cool to temperature T.. Appearance of state with T > T. would sig- 

nify that In a closed system heat Is Inadvertently transferred from 

less heated layers of gas to more heated. In contradiction of the sec- 

ond law of thermodynamics.* In fact, energy removed by radiation 

from gas heated in a shock wave is simply expended on heating thicker 

layers before the discontinuity.  Quanta 

going out from behind the surface of 

discontinuity are absorbed in front of the 

discontinuity in a layer of the order of 

the length of the mean free path and heated 

to a temperature close to T.; the substance 

Itself radiates, heating neighboring 

layers, etc. We will deal with a typical case of the heating of gas 

by means of radiant thermal conduction. Before the discontinuity 

Fig. 7.24. Profile of 
temperature in a shock 
wave of "critical" 
amplitude. 

t*r, 7, 

0 * 

Fig. 7.25. Profiles of 
tcnperature and density 
in thfc frur>t of a shock 
wave of very great ampli- 
tude during the calcula- 
tion of radiant heat ex- 
change. Dotted line cor- 
responds to approximation 
of radiant thermal conduc- 
tion (Isothermal Jump). 

spreads a thermal conduction wave, gripping 

a thicker layer of gaa the larger the 

amplitude of the shock wave. The phenom- 

enon Is fully analogous to a shock wave 

with electron thermal conduction, which 

was conduction, which was considered in 

§ 12 (radiant thermal conduction also in 

nonlinear). 

Profiles of temperature and density 

In a shock wave of supercritical amplitude 

are depicted In Fig. 7.25. After compres- 

sion shock, as before, there is a peak of 

♦In greater detail, the ImposBlblllty of a state with T_ > T^ 
will be discussed In § 17, Strict proof of this position is given in 
work [42], 
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temperature, appearing as a result of shock compression« As also ear- 

lier, particles of gas, after experiencing shock compression, are 

cooled, de-excltlng part of their energy, and they return It to crea- 

tion of thermal wave before the discontinuity. 

However, In distinction from a subcrltlcal case, thickness "»f 

the peak is now less than the mean free path of radiation and decreases 

with growth In amplitude of wave (see § 17). 

In approximation of radiant heat exchange, when from consideration 

are dropped parts of phenomena occurring at distances less than the 

mean free path, the peak will be "cutoff," as was shown by dotted line 

In Fig. 7.25> and shock wave obtains the character of an "isothermal" 

shock (see § 5 this chapter). 

In subsequent paragraphs the physical picture outlined here In 

broad terms will be given a mathematical basis. 

§ 15. Approximate Formulation of the Problem 
About Structure of a Front 

We will consider, as usual, a one-dimensional steady-state oper- 

ation In system of coordinates where the front rests. For clarifi- 

cation of peculiarities of structure of front, connected with radiant 

heat exchange, we will Introduce a number of simplification. The gas 

we will consider Ideal, possessing constant heat capacity, so that 

Its pressure and specific Internal energy are expressed by simple 

formulas: 
p~MT, «--^zT^r. 

Viscous compression shock, together with relaxation layer where 

there occurs establishment of thermodynamlc equilibrium In the sub- 

stance, we will replace by a mathematical discontinuity. In the zone 

of radiant heat exchange we will disregard relaxation phenomena, 

viscosity and thermal conduction of the substance, and also electron 
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thermal conduction.* The shock wave we will consider strong (Initial 

pressure and energy of the substance are small as compared to final)| 

We will not consider waves of extraordinarily great amplitude; in 

this case It Is possible to disregard energy and pressure (but not 

flow!) of radiation. 

Small flow of small quanta, departing from the front of the wa^ 

to "infinity," we do not take into account, considering that before | 

the front radiation flux is equal to zero. 

With the assumptions made the system of integrals of equations I 

(7.40] 

of hydrodynamics (7.10) takes the following form: 

Here S is energy flow of radiation.  Let us note that it is directed- 
i 

toward flow of gas, which moves to positive side of axis x, so that : 

S < 0 (D, u > 0). 

Before the fronts at x ■ -co, and after the front of the shock 

wave, at x » +oo, flow is S - 0, and all quantities take their initi« 
1 
i 

and final values with which, as always we will add indices "0" and  j 
I 

"l." Coordinate x we will count off from point where shock wave is ] 

located. I 

For determination of radiation flux, it is necessary to join 
i 

equation of radiation transfer to equations of hydrodynamics (7.^0), | 

We will consider angular distribution of quanta in diffusion approxi-i 

matlon, replacing strict kinetic e , ion for intensity by two equa-; 

tions for density and radiation flux (see § 10, Chapter II).       j 
j 

■ü 

♦Appraisals show that in a number of real cases, including such 
a practically important process, as shock wave In air of normal nor- 
mal density, electron thermal conduction plays a smaller role than 
transfer of energy by radiation (see [48]). 
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Let us emphasize that In the diffueion approximation there are 

formally contained no assumptions about the nearness of radiation den- 

sity to equilibrium and the diffusion approximation Is by no means 

equivalent to the approximation of radiant thermal conduction. With 

Its help we describe also essentially nonequlllbrlum radiation, only 

by approximate form while considering angular distribution of quanta 

(see § 13, Chapter II). 

We will operate with only Integral values of density and flux of 

radiation U and S over the spectrum, for which we will Introduce a 

certain average length of mean free path of light 1  over the spectrum. 

As was marked In Chapter II, such an approximation, strictly speaking. 

Is possible only In defined limiting cases. However, It does not 

distort qualitative regularities of radiant transfer and for our pur- 

pose Is sufficient. 

Let us copy equations for radiation In shown approximations (see 

formulas (2.62) and (2.65)): 

c    it 4U 

h 
Here U - 4oT /c Is density of energy of equilibrium radiation, corre- 

sponding to temperature of the substance at a given point x. 

Equation of hydrodynamics and transfer of radiation do not contain 

In evident form coordinate x; therefore. In them It Is possible to 

cross to new coordinate — optical thickness T, which Is counted off 

from point x - 0 In positive direction of axis x: 

If length of mean free path 1 Is known as a function of temperature 

and density of gas. In the final solution It Is easy with the help of 
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«-c(l7p-J7). dt 
• dU 

equations (7.4l) to cross from distributions of different magnitudes 

with respect to optical coordinate to distributions with respect to 

x (at i  = const both types of profiles, obviously, coincide). In 

terms of optical thickness, equations of transfer obtain such form: 

(7.42' 

Equations of hydrodynamics (7.^0) and transfer of radiation (7J 

(7.43) together with natural boundary conditions, expressing the 

absence of radiation In cold gas before the wave and the thermodynam- 

Ically equilibrium character of the radiation after the front of the 

wave,* 
t--«, j=o, t/=o. r=o, (7.44] 

t-+oo, .y-o. ü^u^-^p-, r-r,.        (7.45) 

completely describe the structure of the front of a shock wave in the 

presented setting.  The system of differential equations has second 

order.  It is possible to lower the order if one excludes from ■•"he 

system coordinate T, dividing equation (7.42) and (7.45) one by the 

other: 

dS      tß u-u9 
HO—l—1— (7.46) 

For explanation of the physical meaning of laws of structure of 

the front diagrams p, V; T, V; S, V, considered in § 5, are very 

convenient. Introducing, as there, relative specific volume T\  « V/7Q 

equal to reciprocal of compression and dimensionless speed 

we will find from the first two equations of (7.40) that in regions 

where gas dynamic magnitudes are continuous, pressure changes along 

♦From these conditions only two are Independent; the others are 
results of equations. 
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straight line 

p-fc0«(l-'il). (7.47) 

Temperature and flow depend on compression by formulas, analogous 

to (T.I?) and (7,14). These formulas are obtained from equations 

(7.w) In the case of gas with constant heat capacity. Let us Intro- 

Fig. 7.26.  T, Ti and 
S, T)-dlagrams for a 
shock wave, taking 
Into account radiant 
heat exchange. 

7' 7* 7-    '   7 
Fig. 7.27. P, Ti-dlagram 
for a shock wave, taking 
Into account radiant heat 
exchange. 

duce In formulas (7.13) and (7.14), Instead of Mach number, temperature 

after the front of the shock wave T^. We will obtain 

where ^ « (7 - ±)/{y +  1). Radiation in a shock wave plays an essen- 

tial role only at high temperatures, when gas Is strongly ionized. 

The effective adiabatic index in region of ionization, for numerical 

appraisals, it is possible to assume as equal to 7 « 1.25. Correspond- 

ing compression after front of wave 1/T^ «9* % ■ 0,111. 

Function T(T)), S{r\),  P(T)) are depicted in Fig. 7.26 and 7.27. 

Curve T(S), which can be obtained from equations (7.48), (7.49), as 

may be seen from Fig. 7.26, has two branches: one of them, which in 

limit S -♦ 0 gives T-► 0 (T) -♦ 1), corresponds to states close to 
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initial, i.e., zone of heating before discontinuity; the other, with 

limit S-» 0, T-► T^, [r]-* ri^), corresponds to states close to final, 

i.e., region after discontinuity. 

In the subsequent two paragraphs we will find approximate solu- 

tions of equations of regime for the two extreme cases described in 

§ Ik:     for shock waves of subcritical and supercritical amplitudes. 

It is necessary to note that transition from one case to another is 

continuous.  Simply for intermediate values of amplitudes close to 

critical, it is not possible to find solution in an analytic form. 

Numerical integration for intermediate amplitudes is no difficulty. 

However, there is no particular necessity for it since the found, 

limiting, analytical solutions are valid up to amplitudes very close 

to critical from any direction. 

§ 16.  Shock Wave of Subcritical Amplitude 

Let us consider a shock wave of small amplitude, in which all 

effects connected with radiation, are great.  Temperature after com- 

pression shock is close to final temperature and from surface of 

discontinuity emerges radiation flux equal in absolute value to |SQ] « 

w oT..  Let us trace state of particle of gas, flowing into wave. 

Current point on diagrams T, r\;  S, T\;  p, r\  moves from initial position 

A in the direction of compression up to position B, in which flow is 

equal to SQ.  Density of gas, temperature, pressure, and radiation 

flux in the particle monotonically grow during approach to disconti- 

uity. From formulas (7.^8) and (7.49) it follows, and this one may 

see from Fig. 7.26, that on those branches of curves, which emerge 

from initial point A, i.e., in the zone of heating, compression is 

very small. Even at T ■ T. on this branch compression composes only 

1/(1 - T)1) « 1.13 (if 7 » 1.25, T)1 ■ 0.111), and during temperatures 
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before discontinuity T, smaller than T^, compression in the heating 

zone is still less. If one were to approximately exclude r\  from 

equations (7.48) and (7.49) and express S through T with an accuracy 

up to small terms of the second order relative to r\.,  we will obtain 

-5-^-iV. (7.50) 

This equation, which is obtained from integral of energy (7.40), if 

one were to omit in it members p/p, D /2, u /2,  has a simple physical 

meaning. It means that energy of absorbed radiation in zone of heat- 

ing is expended only on increase of temperature of gas. And indeed, 

it is easy to show that work of compression p/p and change of kinetic 

energy (D /2) - (u /2), which basically are proportional to TU with an 
2 

accuracy of small terms of the second order, proportional to r\.,  com- 

pensate one another. 

Equation of energy conservation in the absence of braking and 

compression of gas, recorded in the form 

-J-Dccr.eo) (7.51) 

is valid even in the general case when heat capacity depends on tem- 

perature.  If one were to carry it to point x « 0 directly before 

discontinuity, we will find maximum temperature of heating T : 

\St\*,oT\~Dw(Tm). (7-52) 

In gas with constant heat capacity D ~|/ TT and T ~ T?' , i.e., 

heating rapidly grows with growth of amplitude of wave. By equation 

(7.52) it is possible approximately to estimate that temperature after 

the front, at which temperature before compression shock T attains 

magnitude T. (we called such a wave critical).  The approximation 

consists in the fact that flow from the surface of discontinuity, as 
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before. Is assumed equal to aT., whereas In reality it Is somewhat 

more since temperature after discontinuity is somewhat higher than 

« T 

Approximate equation for determination of critical amplitude T, 

crit is 

oT4 « D(T )pAe(T ) 
Kp^ Kp' 

(7.53) 

Table 7.2 

D. "" Tj.Mt 
molecule 

,-1 _   ». 
Ti.UC •       ev r-nc sec 1      sec 

' 'molecule 

23,3 
28.5 
32.1 
40.6 

SO 000 
65000 
75000 

100000 

3.7 
8.4 

13.1 
32.7 

4000 
9000 

12000 
25000 

56,5 
81,6 
86,2 
88.1 

150000 
250000 
275000 
285000 

122 
635 
910 

1020 

60000 
175000 
240000 
285000 

In Table 7.2 are given (calculated by formula (7.52) values of 

temperature before compression shock in air of normal density when 

considering real dependence e(T). From the table it is clear that 

critical temperature in air is equal to approximately 500,000oK 

(285,000oK according to equation (7.53)). 

As follows from determination (7.53)* 

critical temperature is the temperature 

at which energy flows of matter and radi- 

ation become approximately identical (we 

will remember remark in the beginning of 

§ 14). 

Returning to initial equations for 

gas with constant heat capacity, we will 

find approximate solution in the zone of 

heating of a subcritical wave. If tem- 

0 x 
Fig. 7.28. Profiles of 
flow and density of radi- 
ation and temperature in 
a shock wave of subcrit- 
ical amplitude. 

perature in the zone of heating is low as compared to temperature 
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after the front (T_ < T.), then equilibrium density of radiation, 

proportional to fou. th degree of temperature- of gas (U ~ T ),  is 

much less than actual density U, which is determined by radiation 

penetrating the gas coming from behind the surface of discontinuity 

and having temperature T. (U ~ [SJ ~ T^). 

Radiation generated in the actual zone of heating gives small 

contribution to total flux and density. Density of radiation, thus, 

is essentially nonequilibrium in the zone of heating. Disregarding 

in equations (7.42) and (7.46) U as compared to U, we will find solu- 

tion before the discontinuity during x < 0: 

9-9t^9--9tc-Vllt\ (7.56) 
to    9* 

p~p,e-y*.K (7.57) 

All magnitudes exponentially drop In optical thickness according 

to their distance from the discontinuity (Pig. 7.28). Values T_, p_, 

p are easy to calculate with the help of formulas (7.52) and (7.48) 

and equations of state. 

At point of shock discontinuity, density and radiation flux remain 

continuous. Really, discontinuity in density of radiation would cor- 

respond, by the formula (7.45), to infinite flow, which in reality 

is limited by laws of conservation of energy, and discontinuity in 

flow would lead to non-stationary accumulation or decrease of energy 

of radiation at point of discontinuity. Consequently, current point 

on diagrams T, r\i  S, T) during passage of viscous shock Jumps from 

position B on one branch of curves to other branch at position C, 

corresponding to the very same flow SQ.     (Derivative of flow, of 

course, endures a discontinuity). The same occurs also with point 
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on diagram p, T}: gas is compressed in shock wave in accordance with 

shock adiabat CB passing through point B. After shock compression, 

state of particle monotonically nears final, toward point D. Temper- 

ature and radiation flux decrease, and density of gas and pressure 

increase. 

In a wave of low amplitude, the excess of temperature after 

discontinuity T above temperature after front T., as can be seen 

from diagram T, T\,  just as the change of volume after discontinuity, 

is small. Excluding, as earlier, t) from equations (7.^8) and (7.49), 

for the second branch we will find, with an accuracy up to small terms 

of the second order relative to TU, connection of flow and temperature 

after discontinuity: 

-S-^DtoAiT-n. (7.58) 

In order to decide approximately equation of radiation transfer 

in the region after the discontinuity, we note that temperature here 

changes and it is possible to assume U « U . =» 4aT1/c = const. Let 

us obtain at x > 0: 

-•*—~(tf*-tf)--.V-V3t. (7.59) 

r-TWr.-r.)*-^. (7t6o) 

where T+ - 1^ - [(3 - y)/{y  +1)] T_ « 0,78 T_ at 7 » 1.25. 

Value of radiation density at point of discontinuity we will 

find. Joining at point T - 0 two branches of curves U(S), which are 

given by formulas (7.54) and (7.59). Let us obtain* 

U,~±U„~2art. (7.61) 

*Let us note that with this there appears a new value of flow 
SQ - (2/|/DaTj, somewhat differing from former: SQ = aT^. This small 
disharmony is a consequence of the imperfection of diffusion approxi- 
mation and disappears during use of exact equation of radiation trans- 
fer; see about this in work [47]. 
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Profiles of density and radiation flux In subcrltlcal wave are 

depicted In Fig. 7.28, where for comparison Is given also profile of 

temperature. 

Let us look at the limits of applicability of approximate solu- 

tion of equations In zone of heating. Formula (7.50) has high accu- 

racy even in a wave of critical amplitude, since at 7 - 1.25 compres- 

sion before discontinuity Is small: P_/PQ «  1.13. 

Regarding, however, solution of radiation transfer equation 

(7.5^)* It Is obtained In approximation U « U and loses force when 

density of radiation U becomes comparative with equilibrium. From 

formulas (7.5^) and (7.50) It follows, that this occurs at temperature 

TK, satisfying equation 

Comparing this equation with expression (7.55), in which we con- 

sider heat capacity constant ns » ■ _■ jATj and noticing that D weakly 

depends on temperature (D ~j/T7 at 7 » const), we see that temperature 

TK Is very close to critical temperature T 4..  It follows from this 

that density of radiation In heating zone always Is nonequlllbrlum 

temperatures lower than critical and our approximate solution Is 

valid for waves with amplitudes up to critical. 

It Is essential that radiation density becomes of the order of 

of equilibrium, when are energy flows of radiation and hydrodynamics 

are equal. As can be seen from formulas (7.5J0-(7.57)* optical thick- 

ness of zone of heating In a wave of subcrltlcal amplitude has the 

order of unity.  Geometric width of zone, consequently. Is of the 

order of the average mean free path of radiation over the spectrum. 

-2    -1 
In air of normal density this width Is of the order of 10  - 10  cm. 
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The bigger It Is the higher the temperature behind the front since the 

mean free path grows with increase of energy of quanta.  The same 

order approximately has the width of the zone after compression shock, 

where there occurs approach to final states of gas and radiation. 

§ 17.  Shock Wave of Supercritical Amplitude 

Let us consider a shock wave of great, supercritical amplitude, 

when temperature after front T. > T  ...  Temperature in the zone of 

heating Increases from zero to magnitude T_, which is equal to final 

T. and, consequently, also largely than T .,•  Inasmuch as temperature 

TK, defined by formula (7.62), is close to critical T ,,, T_ is larger 

than T .  Compression in the zone of heating is small and equation 

(7.50) remains in force. 

On the front edge of the zone where temperature is lower than 

magnitude TK, radiation as before is nonequlllbrlum and solution of 

the type (7.5^)* (7,55) is valid, in which T, S and U exponentially 

drop with optical thickness. At the point where temperature attains 

magnitude TK, density of radiation becomes of the order of equilibrium 

and flow S of the order of Stefan — Boltzmann flow aT .  During further 

advance in the direction toward discontinuity, radiation flux grows 

owing to law of preservation (7.50) proportionally to the temperature 

(S ~ T), i.e., becomes less than Stefan — Boltzmann flow oT .  This 

means that in temperature region where T > TK, one-sided flows of 

opposite direction (which are of the order of 0T ) to a considerable 

degree compensate one another; generation of radiation at every point 

is comparable with absorption and, consequently, density of radiation 

is close to thermodynamic equilibrium.  In other words, in the shown 

region of the zone of heating radiation is in local equilibrium with 

833 
■" MMlWt^MlitMMiniMf^wnTffiWi^^ ■■■->..«v-~..>.-.^...-.^«--i...,-,«-^-.„.<.;^.-Jwi 



substance, and radiation transfer has the character of radiant thermal 

conduction. Flow S Is now determined by gradient of temperature, and 

the smallness of It as compared to Stefan — Boltzmann corresponds to 

the fact that temperature little changes at a distance of the order 

of the mean free path of light. In order to obtain solution In the 

zone of radiant thermal conduction, one should replace. In equation 

of diffusion (7.^5)* density of radiation U equilibrium magnitude 

U « U: 

_    t   dUm ItoeT* dT ,      ^   K 

t—^-lT'-^^' (7.63) 

Solving this equation Jointly with algebraic equation (7.50), we 

will find profiles of temperature, flow, and density of radiation In 

the equilibrium region of the zone of heating. They have to be Joined 

with the solution on the front edge In the nonequlllbrlum region at 

a point with temperature T » TK, effectively differentiating both 

regions. Optical coordinate of this point we will designate by TK. 

After elementary calculation we will obtain solution In nonequlllbrlum 

region, at T < TK, |T| > |TK|, 

in equilibrium region, at TK < T < 0, 0 < |T| < |TK|, 

-t-OH^-O+^-'-iy- (7-65) 

where TK is expressed through temperature before discontinuity 

I'-'-TTf^)*-«]- t7-66' 
Inasmuch as temperature in nonequlllbrlum zone drops exponentially, 

while decreasing a few times at optical distance equal to unity, 

magnitude |TK| in the case of a very strong wave, when T_ » Tj^, 
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constitutes the optical thickness of the zone of heating. 

It Is necessary to note that in the equilibrium region mean free 

path light Is averaged by Rosseland (see § 12, Chapter II). Tempera- 

ture before the discontinuity In supercritical wave T_ almost coin- 

cides with temperature after front T^. 

Temperature before discontinuity T_ never can become higher than 

final temperature after front T^. Really, If T_ > T^, then density 

of radiation In the zone of heating before the discontinuity, which 
li 

4oT_ 
Is equal to approximately U_ « ——, becomes larger than density of 

radiation after the front U^ - —y. Consequently, In the zone 

between discontinuity and region of final state (0 < x < +00) density 

of radiation decreases as distance from discontinuity Increases. Flow, 

which Is proportional to S ~- -3—, Is positive and Is directed In the 

direction of the motion of gas. But this contradicts formulas (7.^8) 

and (7.^9), which are a consequence of the laws of preservation and 

which Indicate that flow In a shock wave everywhere Is negative and 

is directed opposite to the motion of gas. 

Thus, temperature T_ is limited from above by magnitude T.. 

The fundamental impossibility of heating gas before the compresslcn 

shock to a temperature exceeding the temperature after the front T., 

simultaneously attests to the necessity of the appearance of dis- 

continuity in solution (current point on diagrams T, T|j S, T^, so that 

to reach final position D, it must "jump" from position B1 to another 

branch of the curves). The presented physical considerations about 

the impossibility of an excess of temperature T_ above T> and the 

necessity of the appearance of a discontinuity find their confirmation 

in the strict investigation of equations of regime (see work [42]). 

Inasmuch as in supercritical wave T_ * T^ and density of radiation 

before discontinuity is close to equilibrium, it still before 
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discontinuity almost attains Its final volume. Thus, 

ü.-ü^ML*^!-^. (7.67) 

and In the region after discontinuity density of radiation remains 

practically constant: 

ü(x)m,V^top.  mt t>0. (7.68) 

From formula (7.65) It follows that flow at point of discontinuity 

Is equal to 

*'-*$%■ (T.69) 

On diagrams T, T]j S, r\,  current point In supercritical wave moves 

along curves from point A to point B', and then skips point C, where 

flow Is the same.  Temperature after discontinuity T It Is possible 

to calculate "by the formulas (7.^8) and (7.^9) •  It Is equal to 

r,-(3-Y)A. (7.70) 

If one were to use approximation of thermal conduction In the 

region after the discontinuity, then. In accordance with obtained 

condition of constancy of radiation density In this region, temperature 

of gas also turns out to be constant. Temperature on the shock wave 

Is continuous and Is equal to final T^. Current point on diagrams 

T, T|; S, T) from position B' Immediately before the discontinuity 

moves straight to final position D. The flow, of course, experiences 

discontinuity since before the compression shock It Is different than 

zero and Is equal to SQ, and In final state (point D) It Is equal to 

zero. 

Thus, we are dealing with a typical case of "isothermal Jump," 

which we have already encountered In § 3 and 12. 

Appearance of "isothermal Jump" Is a consequence of mathematical 
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approximation. In which flow Is considered proportional to gradient 

of temperature. This excludes the possibility of the existence of a 

temperature Jump, since during discontinuity of temperature flow 

becomes infinite. 

Actually, because of the statlonariness of the process in the 

shock wave, flow is continuous, but temperature experiences a discon- 

tinuity. 

There are no contradictions here:  simply in the region after 

discontinuity radiation is nonequilibrium (density is lower than 

equilibrium ^ince density corresponds to temperature T « T., and 

temperature of gas T. > T.) and flow, which is determined by gradient 

of true density of radiation. Is not expressed through gradient of 

temperatures. After shock discontinuity, as before, there is a peak 

of temperature, and the profile of temperature in the supercritical 

wave has the form depicted in Pig. 7.23. 

We will estimate optical thickness of the peak of temperature 

after discontinuity on simple physical considerations. Geometric 

thickness of peak Ax is such that radiation born in this zone gives 

flow SQ, outgoing from surface of discontinuity and going into the 

heating of gas flowing in wave. Energy radiated in 1 sec. in layer 

Ax (per 1 cm of surface of discontinuity), is of the order of 

•^/b-^t-A*. 

This magnitude approximately is equal to flow SQ, which, according to 

formula (7.69)* is of the order of SQ ~ oTyT^.    Hence Is obtained 

thickness of peak of temperature: 

AT-.*L~ (-*)•. (7.71) 
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It fast decreases with Increase of amplitude of wave, and in a very- 

strong wave peak Is much thinner than mean free path of radiation. 

Therefore, It also will he "cut" In the approximation of radiant ther- 

mal conduction, from which will fall out parts connected with dis- 

tances smaller than the mean free path of radiation. 

In conclusion we will give the value of the width of the zone of 

heating in a shock wave of supercritical amplitude spreading along 

air of normal density. These values are estimated with the help of 

formula (7.66) and calculated by the method in § 8, Chapter V of 

Rosseland mean free paths of radiation in real air. At T. - 500,000oK, 

■ Tk = 3.^ and width Is of the order of 40 cm. At T1 - 750,000
oK Tk - 

» 14, and width is of the order of 2 m. Inasmuch as peak of temper- 

ature is very narrow, these widths at the same time represent also 

the width of all the front of the shock wave. 

§ 18. Shock Wave During Large Density 
of Energy and Radiation Pressure 

In § 3 it was shown that in a shock wave not too weak, in a case 

when there is thermal conduction but no viscosity, continuous transi- 

tion of gas from initial state to final is impossible. Discontinuity 

unavoidably appears, which corresponds to viscous shock wave, and in 

the framework of the given approximation it is infinitely thin (since 

from the very beginning the viscosity of matter was excluded from 

consideration). If thermal conduction flow is proportional to gradient 

of temperature, then on discontinuity all magnitudes experience a 

Jump, with the exception of temperature; an "isothermal" Jump takes 

place. In § 12 and 17 were examined concrete examples of "Isothermal" 

Jumps, to which electron and radiant thermal conductions lead. 

However, at extraordinarily large amplitudes of shock wave, when 
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density of energy and radiation pressure become sufficiently large as 

compared to energy and pressur; jf the substance, the position changes. 

Discontinuity disappears and gas in the shock wave passes continuously 

from initial state to final only because of radiant thermal conduction, j 

even if viscosity of the substance is not taken into account. This 

question was considered by S. Z. Belen'kiy and (later) by B. A. Belokon1 

[50]. 

For description of the internal structure of the front of the 

shock wave, we will originate from general hydrodynamic equations 

(7.^0) where S is flow of radiant thermal conduction. Total pressure 

and energy are composed of magnitudes pertaining to substance and 

radiation, where radiation is considered in thermodynamic equilibrium. 

A point describing state in wave on diagram p, V, moves along straight 

line 

^-(^(I-TI), ti--!-. (7.72) 

where 

'-'VL+T-ip-- (7.7,) 

Temperature and relative volume after the front of the wave T., TU 

are connected by equation of shock adiabat (in variables of temperature 

— volume), which during calculation of pressure and energy of radiation 

was in § 10, Chapter III (formula (5.76)). Let us copy it here in 

the form 

where TU0 » (7 - l)/(7 + 1) is final volume without taking into 

account density and radiation pressure. From this formula it is clear 

that at prad » pga£, n, - Vyi at prad « pgas TJ - T)^. 
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Let us consider dependence of temperature on volume during com- 

pression of gas In the front of the wave, for which we will substitute 

expression (7.75) In equation of straight line (7.72)s 

This formula is more conveniently written otherwise, to replace in it 

p0D through 1^ and T^: 

(7.75) 

Function T(TI) in Interval 0 < ri < 1 has maximiim (we will designate 

coordinates of maximum through 1!  . T v ). 

Radiation flux in wave S, as also in a case when density and 

radiation pressure are small, is directed always to one side, toward 

the flow of gas, and turns into zero only at x » -ooand x - +oo, before 

and after front of wave. Therefore, temperature in the wave is obliged 

montonically to increase from initial T » 0 to final T^, otherwise 

S ~- dT/dx would change sign inside wave. 

If radiation pressure is small, Prad « 

'< Prroe* then, as follows from formula (7.75)* gas 

W " 1/2 > \ " ^IO " ("v " 1)/('>' + 1)- 
Point on diagram T> r\  skips from one branch 

of curve T(r|) to another, passing maximum, 

and isothermal Jump appears (see § 3, 17). 

If however radiation pressure is great 

prad >>  pgas' then polnt 'kax* where function 

T(r|) passes through maximum, lies after interval of actually realized 

volumes 1/7 » TU< r^ < 1: TI   is close to zero (this one may see 

from equation (7.75)). Thus, in this case density of gas in the 

Fig. 7.29. T4, Tv-dia- 
gram for shock wave 
with radiation in the 
absence of discontinu- 
ity. 
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wave changes continuously together with temperature, and discontinuit 

in the wave is lacking. This case is shown on diagram T , r\  (Fig. 

7.29). Profiles of temperature, density of gas, and radiation flux 

in such a wave are depicted schematically in Fig. 7.30. 

We will find amplitude of wave, at which discontinuity disappear^ 

It, obviously, corresponds to such case, when point of maximum 

temperature T  . TI Y coincides with final point T, TU (exactly so 

as in § 5). Really, at r^ < r\max  ("small" amplitudes) discontinuity 

exists; at TI   < TU ("large" amplitudes there is no discontinuity. 

Let us designate parameters of the front, corresponding to transition 

amplitude, differentiating regions of continuous solutions and lsother| 

mal jump through T,* T).* 

Differentiating equation (7.75) for function T(ri) and consideringj 

dT/dT] » 0, T = T,* T^ » r\,*  and also considering in this equation and 

in equation of shock adiabat (7.7^) ^ = T* ^ 

TU » TI,* we will obtain a system of two 

equations for unknowns T,* TJ:* 

•W _rAo  r* ■ 4 orxN 1 

'*tmD 

/,-7/, 

/• 

Fig. 7.30.  Profiles 
of temperature, den- 
sity of gas, and radi- 
ation flux in a shock 
wave, taking into 
account energy and 
radiation pressure in 
the case when Jump is 
absent. 

Excluding from this system T,* we will 

obtain quadratic equation for T^,* one of the 

roots of which, responding to real state is 

is equal to 

n* (7.76) 
4+/2+l/t|10  * 

Thus, for Instance, at 7 » 5/3> T^Q ■ 

=* 1/4, T\* - 1/6.45 (this value is somewhat 

larger than limiting volume during 
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prad -^ Pgas* e(lual to V?). Transition amplitude, according to (7.7^)> 

corresponds to pressure ratio of radiation and the substance, in final 

state equal to (Prad/pgas)' - ^   ^ - *.*5. 

Let us note that with this amplitude speed of gas after the front, 

with respect to the front, is exactly equal to isothermal speed of 

sound in the final state (and during amplitudes larger than transition, 

when there is no discontinuity, speed of gas after the front is higher 

than Isothermal speed of sound:  the front moves with supersonic speed 

with respect to the gas after It). 

The profile of temperature in a shock wave without discontinuity 

can be found, using, as usual, equations of hydrodynamics {7AO)  and 
c7 d 4aT equation for flow of radiant thermal conduction s = - ^ ^    t We 

will not pause on this here. 

In the work of V. S. Imshennik [51] is considered a shock wave 

in two-temperature plasma, taking into account radiation (temperatures 

of electrons and ions are not assumed identical). 
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CHAPTER      VIII 

PHySICO-CHEMICAL KINETICS IN HYDRODmMIC PROCESSES 

1. Dynamlos of Nonequlllbrlum Gas 

§ !♦ Equations of Gas Dynamics In the Absence of 
Themodynamlc Equilibrium 

In the preceding chapter, during the study of the structure of 

the front of a shock wave in gas with delayed excitation of certain 

degrees of freedom, we had the opportunity to meet one of the sim- 

plest problems of dynamics of nonequilibrium gas. Parameters after 

the front of a shock wave in a region where full thermodynamic 

equilibrium is established do not depend on the mechanism and speeds 

of nonequilibrium processesj however, the kinetics of these processes 

essentially affect the distribution of hydrodynamic magnitudes in 

a nonequilibrium region and its width. Distortions of gas-dynamic 

flowSj introduced by nonequilibrium processes, are connected mainly 

with changes of heat capacity and effective adiabatic index of non- 

equilibrium gas, on which depends the course of the gas-dynamic 

process. It is possible to see the Influence of the adiabatic index 

on gas-dynamic solutions in examples of those problems which were 

considered in Chapter I, Thus, during non-stationary expiration of 

gas from a pipe into a v&cuum, exhaust velocity of earlier resting 
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2cn 
gas Is equal to u ■ y „ A>  where c0 is speed of sound in Initial 

state, c0 » (7PQ/PQ) ' . Let us assume that Initially equilibrium 

diatomic gas, heated to such a temperature that In It vibrations 

are excited "classically," with the opening of a flap of a pipe is 

expanded so fast that vibrations remain frozen, and energy of vi- 

brations during expansion cannot be turned into kinetic energy of 

expiration.* 

This would signify that exhaust velocity corresponds not to 

equilibrium adiabatic index 7 » 9A but t0 index 7' = 7/5, i.e., 

will be, roughly speaking, 7/5 =1.4 times less. 

Already from this simplest reasoning one may see what consider- 

able Influence can be rendered by nonequlllbrium of gas on dynamics 

of the process. The necessity of calculating the kinetics of the 

establishment of equilibrium appears whenever we have something to 

do with rapidly varying processes or with prcc?sseB whose character- 

istic scales are comparable with "lengths" of relaxation. 

One of the most Important practical problems of such a type is 

the problem of flow, around a body, of strongly rarefied gas in 

which relaxation times are comparable with the time period for 

flowing around the body, i.e., "length" of relaxation is comparable 

with the characteristic dimensions of the body. During entrance 

into atmosphere of ballistic missiles with great supersonic speeds, 

before the body will be formed so-called forward shock, as is shown 

in Fig. 8.1, Distance of shock wave from front point of body is 

♦During expansion, density of gas decreases, kinetic processf s 
are delayed, and transition of vibrational energy into energy of 
translatlonal thermal motion of molecules, which is necessary for 
subsequent transformation of the latter into energy of directed, hy- 
drodynamlc motion, is protected for a long time, 
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usually SÄveral or about ten times less than the radius of curvature 

of the front part of the body. If gas is so 

rarefied at that distance that it does not con- 

tain a very large number of gas kinetic mean 

free paths, then in the particles of gas after 

Q 4       the front of the shock wave there cannot be ex- Fig, o.l« 

durlm^super-   clted slowly relaxing degrees of freedom, for 

f2«,, ^ i^?«.    instance, there cannot be established chemical around body. ' 

equilibrium. Thanks to this the temperatures in 

the gas compressed by the shock wave turn out to be higher than dur- 

ing a condition of thermodynamic equilibrium, which changes condi- 

tions of heating of the body. Essentially, we deal here with a case 

when the character of gas-dynamic distributions is important in the 

nonequilibrium zone of the shock wave, appearing after the compres- 

sion shock. 

In a number of problems an approximate description of the dy- 

namics of nonequilibrium gas turns out to be possible by means of 

the use of a certain effective value of adiabatic index, correspond- 

ing to some degree of "freezing" of part of the heat capacity, for 

instance, when the change of energy in some degrees of freedom for 

characteristic hydrodynamic times in general can be disregarded. 

In the general case it is necessary to consider the gas-dynamic 

process simultaneously with kinetics of nonequilibrium processes, 

which introduces a complication into the system of equations describ- 

ing the phenomenon. 

Dynamics of nonviscous and nonheat-conducting, thermodynamlcally 

equilibrium gas are described by equations of continuity, motion, 

and adiabatic nature» 
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C-^ + Vp^O. (8.2) 

-g-O. (8.J5) 

to which is Joined the thermodynamlc connection of entropy with 

pressure and density» S(p,p) (for Instance, In gas with constant 

heat capacity S » c In (pp ) + const). 

We will be Interested In the motion of gas whose state deviates 

from thermodynamlc equilibrium. We will not, as before, comider 

viscosity and thermal conduction, considering that nonequlllbrlum 

Is connected exclusively with delayed flow of internal processes, 

not going beyond the framework of a given particle of matter, let 

us say, delayed excitation of molecular vibrations. 

In a nonequlllbrlum case. Instead of the equation of adiabatic 

nature (8*5), which now is Incorrect, one should use a more general 

equation expressing the law of conservation of energyj it is always 

accurate. Assuming that external sources of energy are absent,* we 

will record, instead of (8.35)* 

TF+'-S1-0- (8.4) 

In a state of thermodynamlc equilibrium, equations (8.4) and 

(8.3) in virtue of thermodynamlc identity 

TdS~dt + pdr (8.5) 

are equivalent. If in an equilibrium case Internal energy e is de- 

termined only by pressure and density, t ■ e(p#p)# then in the 

♦Thermal effect of reversible chemical reaction is not external 
source of energyj it is considered by means of the introduction of 
a corresponding component in the expression for internal ene.-gy of 
gas. 



absenoe of equilibrium It depends still on other parameters^ char- 

acterizing the state of the system, which are not equilibrium (for 

Instance, on degree of dissociation}» Without specifying these 

parameters, we will call them X, 

In order to close the system of equations of gas dynamics, to 

equations (8,l), (8.2), and (8#4) one should Join a relationship 

connecting Internal energy with pressure, density, and parameters 

of state Xx 

and also an equation of kinetics, which describes variations of 

parameters X In a gas particle during time: 

Usually functions e(p, p, X) and f(X, p, p) are expressed not 

directly through density and pressure, but with the help of tempera- 

ture 

There Is additionally Introduced equation of state 

Under temperature T, wherever this Is not mentioned especially. 

Is Implied the temperature corresponding to translatlonal degrees 

of freedom of molecules (atoms. Ions), which usually are equilibrium 

even In the fastest gas-dynamic processes, since Maxwellian distri- 

bution of molecules in speeds Is established extraordinarily fast. 

Let us consider, as an example of a nonequllibrium system, 

diatomic gas without dissociation but with delayed excitation of 

molecular vibrations (we will not be interested In too high tempera- 

tures, at which degree of dissociation is still insignificantly 

small)• Role of parameter X Is played by nonequllibrium energy of 

vibrations svi|)(per 1 g of gas). The above-mentioned relationships, 
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which one should add to system of equations (8.1), (8.2), (8.4), In 

this case It Is possible to record In the form 

P-W, (8.7) 

Here e^ Is sum of energies of translations! and rotational 

degrees of freedom of molecules (rotational energy Is assumed to be 

equilibrium. I.e., corrbspondlng to translatlonal temperature T)j 

evito(T) Is energy of vibrations In thermodynamlc equilibrium with 

translatlonal degrees of freedom of moleculesj T(T, p) Is relaxation 

time for establishment of vlbratlonal equilibrium. 

Analogous, but in form more complicated. It Is possible to 

write equations for all other cases when there are nonequlllbrlum 

dissociations, chemical reactions, lonlzatlon or when translatlonal 

temperatures of electron and atomic (ionic) gases differ. All these 

cases were examined In the preceding chapter when we examined the 

structure of the nonequlllbrlum layer In front of the shock wave. 

§ 2, Growth of Entropy 

A very Important peculiarity of gas-dynamic processes In which 

gas Is nonequlllbrlum Is the growth of entropy of gas and dissipa- 

tion of mechanical energy. As also with Internal energy c, the 

entropy of nonequlllbrlum gas Is no longer determined by only two 

magnltudest pressure and density or temperature and density, but 

depends on other parameters characterizing the nonequlllbrlum statet 

S • S(p, p, X) or S(T, p, X). Increase of entropy dS now is not 

equal to inflow of heat from external sources, divided by tempera- 

ture, as in equilibrium case (dS / dQ/P) • Entropy jrows with tine 

even in the absence of inflow of heat (when dQ ■ 0), only because 

of nonequlllbrlum internal processfes. 
. . S53 

aa^^j^jMMMJ&s&^ia^LJaajius „-~M.'...-i>,..v wt..' ^>r^-^Mi«.^tiaM^^ 



et us explain this In the same example of nonequlllbrlum vi- 

brations» Pull specific entropy of gas S Is composed of entropies 

corresponding to translatlonal and rotational degrees of freedom, 

which In virtue of equilibrium It Is possible to unite, and entropy 

of vibrations,* Let us designate these two parts of entropy through 

S1 and Svlb» 

For entropy of translatlonal ^nd rotational degrees of freedom It 

Is possible to record thermodynamlc lientlty: 

TdSt~dtt+pdV. (8.10) 

Usually exchange of vlbrrtlonal energy In molecules occurs much 

faster than exchange between vlbratlonal and translatlonal energies« 

Therefore, Boltzmann distribution with respect to vlbratlonal exci- 

tations for molecules is established quite fast, and it is possible 

to ascribe to vibrations defined temperature T -v« sails temperature 

corresponds to actual reserve of vlbratlonal energy of molecules 

6vib " 8vib^vib^ ^  0Jie were t0 designate vlbratlonal heat capa- 

city c lb, then de ib ■ cvi>j<iTvib* 0jE> cour,Be* vlbratlonal tempera- 

ture T 4^ can strongly differ from translatlonal temperature of 

molecules T, which nonequlllbrlum of gas** consists of. If it is 

possible to ascribe to vibrations defined temperature T lb, then 

for the vlbratlonal part of entropy it is also possible to record 

«During nonequlllbrlum diBBociations or lonizations one should 
record expression for entropy throtigh numbers of particles of various 
sorts (molecules and atoms, for instance), which are not assumed to 
be equilibrium« 

**We have already encountered a similar position in examining 
plasma« Maxwellian dlBtidbutions and temperatures in electron and 
ionic gasses are established very fast« However» electron and ionic 
temperatures differ from each other due to deceleration of exchange 
of energy between electron and ionic gasses« 
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thermodynamlc Identltyi 

TndS^dt„. (8.11) 

(energy and entropy of vibrations do not depend on volume of gas.) 

It is easy to see that entropy of a nonequilibrium system only 

grows with time, independently of what kind of transformations the 

gas endures. Really, in virtue of equations (8.9), (8.10), (8.11), 

(8.4), (8.6) we have» 

dS _dSt       dSK _  i   / dtt dV \        i     rfe* _ deK /   1 IN 
_r__r+__ -.^—- + pdt J-f-jr   dt      är\'T^~TJ'        (8.12) 

Taking into account equation of kinetics (8.8), in which 

> T 

«•.»J cH{T')dT\  and eH(7')=sCc„(r)dr, 

we see that at Tvi. < T vibrations remove energy from translatlonal 

and rotational degrees of freedom, -rr > 0 and -sr > 0» At T .- > T 

oscillations return their energy 'it' <  0, but, as before, •^r-> 0. 

The considered example Illustrates the second law of thermodynamics, 

according to which without participation of external influences 

heat is always transmitted from a more heated object to a less 

heated one, as a result of which entropy of all the system is in- 

creased. In this case the "objects" are not touching bodies, but 

different degrees of freedom of one and the same body. 

If at some moment the gas was in thermodynamlc equilibrium, 

then participated in a fast-flowing process during which equilibrium 

in it was dist\irbed, and then entered into a region of slow changes 

of state, in order to again come into equilibrium, entropy is in- 

creased in the gas. 

Increase in entropy of gas is accompanied by dissipation of 

mechanical energy, irreversible transformation of it into heat. 
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If the process takes place without participation of external sources 

of energy, conforming to equation of energy (8,4), then dissipated 

energy cannot again be turned Into mechanical energy ever under any 

kind of conditions. 

The phenomenon of dissipation we will meet more specifically 

in the following paragraph when examining sound absorption in a 

relaxing medium. Absorption of sound waves constitutes a character- 

istic example of the dissipation of mechanical energy. An example 

of incomplete use of energy due to "irreversiblllty" can be the 

above-considered Idealized case of expiration of gas into a vacuum 

with completely frozen vibrations. Into kinetic energy of momentum 

goes only the "reversible" part of internal energyI the energy of 

translational and rotational degrees of freedom, but the energy of 

vibrations thus will remain in molecules, thanks to which the exhaust 

velocity turns out to be smaller. Similar effects of irreversiblllty 

in the presence of nonequlllbrium processes can lead to additional 

losses in high-speed turbines at high temperatures, in nozzles of 

rocket engines, etc. On the use of the effect of increase of entropy 

with time is based the Independent method of measuring time of vl- 

bratlonal relaxation T applied by Kantrowltz [1] for investigation 

of relaxation in CO-, 

To gas-dynamic calculations, taking into 'ccount nonequlllbrium 

processes pertaining mainly to the problem of flowing around and 

aerodynamic heating of bodies entering the atmosphere (satellites, 

ballistic missiles), is dedicated extensive literature (see, for 

instance [2, 2a] j in the same place are reference to many other 

works). We will not remain here on questions of the reverse Influ- 

ence of physical chimical kinetics on gas dynamics of processes« 
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We trill interest ourselves In this chapter with other question: 

the kinetics of nonequlllbrlum processes not from the point of view 

of Its Influence on the motion of gas, but from the point of view of 

determining concentrations of different components under conditions 

of an essentially nonequlllbrlum course of chemical reactions, lonl- 

zatlon, condensation of vapors In different hydrodynamlc phenomena. 

Hydrodynamics, as a rule, will be considered In approximate form by 

means of the use of certain effective values of adlabatlc Index, and 

to an already known hydrodynamlc solution will be "added" kinetics 

of Interesting processes. 

The only exception will be the following two paragraphs. In 

which there will be considered the phenomena of absorption and dis- 

persion of sound In a relaxing medium (i.e., there will be studied 

the Influence of nonequlllbrlum processes on the gas-dynamic pro- 

cess — the propagation of sound waves) • 

§ 5. Anomalous Dispersion and Absorption of Ultrasonics 

Usually noticeable, dispersion and sound absorption In gases, 

connected with viscosity and thermal conduction, appear only during 

very small lengths of sound waves, comparable with the mean free 

path of particles In gas, and frequencies comparable with the fre- 

quency of gas kinetic collisions (see § 22 Ch, I)• 

However, during propagation of ultrasonic waves In molecular 

gases, sometimes are observed anomalous high dispersion and absorp- 

tion In a region of much larger wave lengths and smaller frequencies. 

These phenomena are connected with relaxation processes of establish- 

ment of equilibrium In slowly excited degrees of freedom of gas« 

In limiting case of low frequencies, relaxation times for establish- 

ment of equilibrium in those degrees of freedom which give a 
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noticeable contribution to heat capacity are small as compared to 

period of sound vibrations« In these conditions the state of a par- 

ticle of gas at each moment Is a state of thermodynamic equilibrium 

and "follows" changes of pressure and density In sound wave. 

Speed of sound, equal to the square root of adiabatio deriva- 

tive from pressure with respect to density, corresponds to its own 

thermodynamically equilibrium valuei 

'-(£).-*-£-• v-S-'+i*- (8.13 
Conversely, in a limiting case of very high frequencies, slowly 

relaxing degrees of freedom cannot be excited in a sound wavej their 

energy simply corresponds to temperature of undisturbed state TQ« 

These degrees of freedom do not participate in periodic change of 

the state of the gasj they are "frozen" and do not affect adiabatic 

connection of changes of pressure and density. The active part of 

heat capacity now Is less than equillbriumj the adiabatic index and 

speed of sound is larger than at low frequencies« 

In the Intermediate region of frequencies there occurs gradual 

change of speed of sound from equilibrium value a0 to value aM, coz*- 

responding to the "frosen" part of heat capacity, i«e«, dispersion 

appears« Thus, for instance, measurement of Kneser [3, 4] showed 

that speed of sound in carbon dioxide at room temperature changes 

from SQ - 260 m/sec at frequency v of the order of 10 sec" ^10 

kilocycles) to a^ «- 270 m/sec at ^ ^ 10 sec" (1 Mc«) • The low 

speed of sound corresponds to equilibrium value of heat capacity! 

«v "*«>«+dl»,+««« «-j i4 + il + 0.8^4 - 3,3i4 

»We use always specific heat capacltlesj A is gas constant, cal- 
culated per 1 g. In avoiding confusion, speed of sound here we will 
designate by letter a instead of c« 
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(a COg molecule is linear^ so that c * • A| at room temperature 

are excited only low-frequency vibrations of a molecule with c hi»/k • 

■« 9540K, where vibrational heat capacity is still less than its 

classical value A) • High speed of sound corresponds to frozen vi- 

brations. I.e., heat capacity c - ctrans "** crot " 2#5 A, Prom 

these measurements it follows that relaxation time for excitation 

of vibrations in a COg molecule (during atmospheric pressure) cor- 

responds to a certain intermediate frequency of sound, and namely 

Tvil;) ~ 1/»' * 10  sec. Rotations in molecules at room temperature 

are excited very fast and dispersion, connected with delayed excita- 

tion of rotations, could be observed at atmospheric pressure only 

1     Q     10    -1 at extraordinarily large frequencies v «*    - 10-7 - 10  sec 
Trot 

(only exception is hydrogenj see § 2 Ch, VI). 

Dispersion of sound is observed even in gases in which occur 

slow chemical transformations during changes of temperature (and 

density) in sound wave* An example can be the reaction of polymeri- 

zation of nitrogen peroxide 2N0g^ NgO^, which occurs lightly at 

room temperature, since heat of its activation in both directions 

is small* It was in reference to just such systems that the theory 

of dispersion of sound was for the first time developed by A* 

Einstein in 1920 [5J. Apparently, analogous phenomena occur also 

during propagation of untrasonios in certain liquids. 

■ Measurement of dispersion and absorption of ultrasonics is one 

of the most important methods of studying relaxation processes and 

experimental determination of relaxation times* To this question 
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1B dedicated much literature,* and we will not here discuss It« In 

detail, let us pause only on basic physical peculiarities and regu- 

larities of the phenomenon. 

Dispersion of sound In a relaxing substance Is always accompan- 

ied by raised absorption, which considerably exceeds "natural11 ab- 

solution because of usual viscosity and thermal conduction. In a 

sound wave a particle of matter accomplishes consecutive cyclical 

transformations, returning, upon completion of each cycle, to Initial 

state. If In the particle there occur Internal nonequlllbrlum pro- 

cesses, then they Inevitably lead to Increase of entropy, dissipa- 

tion of mechanical energy, l«e«, to sound absorption« It Is 

necessary to emphasize that In the presence of dissipation the 

state of the particle, upon completion of the cycle, somewhat dif- 

fers from the Initial state (since entropy of It Is Increased)« 

However, this distinction, let us say. Increase of temperature 

proportional to Increase of entropy. Is a magnitude of the second 

order of smallness with respect to the low amplitude of sound wave 

Ap or AT, Inasmuch as Increase of entropy AS Is proportional to 

sound energy, which In turn Is proportional to (Ap)  (see S 5, Ch« 

I). Therefore, In the first approximation motion In a sound wave, 

even In the presence of absorption. Is adiabatlc and It Is possible 

to consider the cycles as closed. 

The process of dissipation of mechanical energy and sound ab- 

sorption Is easy to comprehend, considering a cycle In gas on dia- 

gram p, V« In Pig« 8.2 Is conducted two families of adlabats, one 

♦Survey of It and references can be found, for Instance, In l6\ • 
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of whloh (l) corresponds to equilibrium changes of state, and the 

other (ll) to the frozen part of heat capacity, Adiabats are con- 

ducted near an undisturbed state of gas, designated by point 0. 

During very slow sound vibrations, a point describing state of gas 

p, V, oscillates near the center 0 along one (equilibrium) adlabat, 

designated In Pig, 8,2 as I». In a limiting case of very high 

frequency the point oscillates .near the center along one "frozen" 

adlabat, designated by 11'. And In either case nonequlllbrium 

processes do not occurj entropy of gas does not change and sound 

absorption Is lacking. Work accomplished upon the gas for the cycle, 

numerically equal to the area of a figure described by the point 

on the diagram p, V, Is equal to zero, as to which the absence of 

absorption attests. The fact that In the second case entropy of 

gas. In thermodynamlc equilibrium as In the first case, does not 

change. Is easy to see In the example of vlbratlonal relaxation. 

As can be seen from formula (8,12), speed of change of entropy in 

nonequlllbrium process Is proportional to speed of change of vlbra- 

tlonal energy. But during strictly frozen vibrations their energy 

In general, ^oes not change, e ^ ■ const and dS/dt »0, 

We will consider now sound 

waves of Intermediate frequen- 

cies, with which the course of 

relaxation processes Is essential 

(For deflnitlveness again we con- 

sider vlbratlonal relaxation), 

For simplicity we will present 

that a sound wave has the unique, 

step profile of density, depicted 

H At   * 

Fig. 8,2. p, V- 
di&gram for a cycle 
in a sound wave with 
rectangular profile. 
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in Flg. 8.3a.» 

In this graph It is possible to consider as distribution of den- 

sity with respect to a coordinate at a given moment of time or as the 

law of density change In a given particle of gas In time. The same 

pertains also to Pig. 8.3b, on which Is shown a corresponding profile 

of temperature (or pressure) profiles of temperature and pressure In 

this case are similar to each other). 

We will trace the change of J   B     c      t     c ' 

a/' 

b) 

4 

i 1          I 

/ 1 
0 / 

4 

* 

state of a particle In a wave both 

on diagram p, V, Pig. 8.2, and In 

Pig. 8.3a and b. During very fast 

compression of gas from point A to 

point B, Its state changes along 

"frozen" adlabat II. Entropy does 

not change, on the gas Is accom- 

plished positive work, numerically 

equal to area NABM. Temperature 

and pressure of gas sharply Increase, 

and vlbratlonal energy remains con- 

stant, corresponding to old, low temperature. Then during a certain 

time density of gas remains constant (transition B-> C). There occurs 

excitation of vlbratlonsj part of the energy is taken away from trans- 

latlonal and rotatloital degrees of freedom) temperature and pressure 

drop, entropy Increases (see formula (8.12)» T lb < T, dtvib/dt > 0, 

dS/dt > 0). 

Inasmuch as volume of gas does not change, work In the period of 

transition B-t C is not accomplished. 

Pig. 8.3* Acoustic 
wave in a relaxing gas 
with step profile of 
density, a) profile 
of density) b) profile 
of temperature. 

»This example, possuasing great clarity, was considered earlier, 
for instance, in the book of 0. S. Qorellk [7] . 
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Further, gas is very fast expanded (transition C -» D) along 

"frozen" adlabat II, Temperature and pressure dropj entropy does 

not change] vlbratlonal energy also does not change, preserving 

Its own value obtained by moment C. Qas accomplishes work numer- 

ically equal to area MCDN (above gas Is accomplished negative work). 

And, finally, during slow transition D-» A at constant volume, 

vibrations are partially deactivated since their energy exceeds 

value corresponding to falling temperature) vlbratlonal energy 

partially passes Into translatlonal and rotational energyj tempera- 

ture and pressure Increase) entropy also Increases (T lt > T, 

de jv/dt < 0, dS/dt > 0). Work, with this. Is not accomplished« 

Thus, in stage of expansion C-» D a gas particle performs over 

the surrounding gas less work than would be accomplished by the 

surrounding gas above It In stage of compression A-» Bj particle 

"returns back" to work not completely« Part of the energy expended 

In the period of compression "forever" remains In It, 

This energy, numerically equal to the difference of works. I.e., 

area of figure ABCD, constitutes mechanical energy Irreversibly 

passing over Into heat* In accordance with dissipation of mechani- 

cal energy sound wave Is weakened (Is absorbed) , where absorption 

of energy of sound for the period (or on the wave length) Is exactly 

equal to area ABCD« 

On the other hand. Irreversible liberation of heat Is connected 

with Increase of entropy after the eyelet It Is equal to Tg&S« 

This magnitude, as can be seen from Fig« 8«2, Is proportional to 

AV • Ap ~ (Ap) • It follows from this that displacement of point 

of final state A1 with respect to point of Initial state A 6p * 

■ (dp/^Oy • AS ~ (Ap) Is a magnitude of the second order of 
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smallnesfi with respect to amplitude Ap, Inaemuch as (^p/&S)T> 0, Öp > 

> 0, I.e., pressure after termination of cycle Is slightly higher 

than Initial. Exactly so Is temperature slightly higher:  6T - 

w I'Ss/ ^ m is "* o * Increase of temperature Is equal to energy 

which Is dissipated after cycle, divided by heat capacity at constant 

volume. 

In a sinusoidal (harmonic) sound wave, point on diagram p, V 

describes a curve. All parameters of state — density, pressure, 

and temperature - change with the course of time by harmonic law. 

However, due to delayed excitation and deactlvatlon of vibrations In 

molecules, changes of temperature of pressure do not manage to fol- 

low changes of density, and sinusoid of pressure Is shifted In phase 

with respect to sinusoid of density (volume). It Is possible to 

show that the point on diagram p, V describes an elliptic trajectory, 

where the axes of ellipse are Inclined with respect to axes of 

coordinates p, V, 

At small frequencies v  (or "circular" frequencies CD - 2w»)  the 

ellipse will stretch along equilibrium adlabat (see Figure 1 In 

Pig, 8.4). The thickness of It In the limit of small frequencies 

Is proportional to frequency (to first member of expansion with 

respect to small magnitude co). Energy of sound, absorbed for the 

period. Is proportional to CD, and for unit of time Is proportional 
o 

to number of cycles I.e., to CD'. At large frequencies, the ellipse 

will stretch about the "frozen" adlabat (Figure 2). Its thickness 
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also, because of expansion Is proportional to l/u, and absorption 

In a unit of time Is proportional to üJ.1/ü). I.e., does not depend 

on frequency. The biggest absorption for the period occurs In 

an Intermediate case, when frequency Is of an order reverse to 

time of relaxation. The ellipse, with this, has the biggest thick- 

ness (Figure 5); this thickness Is of the order of vertical dis- 

tance between equilibrium and "frozen" adlabats during maximum 

change of pressure, equal to amplitude of wave (distance between 

points Q and Q» In Pig, 8,4). If the relative difference of 

equilibrium and "frozen" Indices of adlabat Is great (namely It Is 

characterized by angle between adlabats I and II, I.e., distance 

QQ')* then thickness of the ellipse can even become of the order 

of Its length. This corresponds to a large shift In phase between 

pressure and density of the order of Tr/2 (if ellipse were turned 

Into a circle, shift In phase would become exactly equal to ir/2). 

Pig. 8.4. p, V-dlagram 
for cycles In harmonic 
sound waves of different 
frequency. 
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§ 4, Law of Dispersion and Coefficient of 
Absorption of Ultrasonics 

Presented In the preceding paragraph, qualitative considera- 

tions with respect to dispersion and sound absorption In the presence 

of relaxation processes In a substance are covered In elegant mathe- 

matical form» In the common form^thls was done by L, I, Mandel'shtam 

and M, A, Leontovlch [8]*; formulas for dispersion and absorptions. 

Including relaxation time T, serve usually for experimental deter- 

mination of this time on curves of dispersion or absorption, measured 

by experiment depending upon ultrasonic frequency. 

We will show how It Is possible to conclude the law of disper- 

sion and the coefficient of sound absorption In a relaxing medium. 

For simplicity and clarity all calculations will be made on a con- 

crete example of gas with nonequlllbrlum vibrations, for which In 

§ 1 was formulated a full system of equations of gas dynamics 

(8.1), (8.2), (8.4), (8.6), (8.7), (8.8). Let us record all vari- 

ables in a sound wave — pressure, density, etc. — In the form f ■ 

» f0 + f«, where f. Is mean value corresponding to undisturbed gas, 

and f» is variable part which we will consider a small magnitude 

(speed u ■ u0 + u» - u'j since undisturbed gas is at resti UQ ■ 0) . 

Actual energy of vibrations it is also possible to present In the 

form evlb - evlbo
+ evib' where evibO l8 vlbratlonal energy in undis- 

turbed gas, which, naturally, is in equlllbrium. Variable part of 

equilibrium vlbrational energy we will record in the form 6^j(T) - 

" cvibTI' where cvib iB vibrational h*at capacity, corresponding to 

average temperature T0 (if at temperature TQ vibrations are classical, 

c lb « Aj otherwise c .. is expressed by quantum formula (see § 2 

♦An account of this theory can be found in the book by L, D. 
Landau and Ye. M. Llfshits [9] . 
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§ k.    Law of Dleperslon and Coefficient of 
,       Absorption of Ultrasonica 

Presented in the preceding paragraph, qualitative considera- 

tions with respect to diBpersion and sound absorption in the presence 

of relaxation proceeses in a substance are covered in elegant mathe- 

matical form. In the common fomhthls was done by L, I, Mandel1 shtam 

and M, A, Leontovich [8]*; formulas for dispersion and absorptions, 

including relaxation time T, serve usually for experimental deter- 

mination of this time on curves of dispersion or absorption, measured 

by experiment depending upon ultrasonic frequency. 

We will show how it is possible to conclude the law of disper- 

sion and the coefficient of sound absorption in a relaxing medium* 

For simplicit7 and clarity all calculations will be made on a con- 

crete example of gas with nonequilibrium vibrations, for which in 

§ 1 was formulated a full system of equatlonn of gas dynamics 

(8,1), (8.2), (ö,4), (8.6), (8,7), (8.8). Let us record all vari- 

ables In a sound wave — pressure, density, etc. — in the form f »■ 

» f0 + f«, where f0 is mean value corresponding to undlt'urbed gas, 

and f» is variable part which we will consider a small magnitude 

(speed u ■ u0 + u' " u«j s'nce undisturbed gas is at restt u0 -• 0). 

Actual energy of vibrations it is also possible to present in the 

form evlb - evibo
+ evib' where evibO ls ^rational energy in undis- 

turbed gas, which, naturally, is In equilibrium. Variable part of 

equilibrium vibratlonal er^rgy we will record in the form Ei4v(T) «■ 

» c ,. T', where c .. is vlbr. tional heat capacity, correBpondlng to 

average temperature T0 (if at temperature TQ vibrations are claf^loal, 

cvib * A' otherwise c .. Is expressed by quantum formula (see § 2 

*An account of this theory can be found In the book by L. D. 
Landau and Ye. M, LlfshltE [9] . 
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Ch. III)). 

Let us place In the equations all magnitudes In the shown form, 

and we will disregard members of the second order of smallness. I.e., 

we will linearize the equation, as Is done In acoustics (see § 5 

Ch. I) • Let us obtain. In a one-dlmenslonal flat case, a system of 

equations for variables of parts of the magnitudes; 
9H' 
at e'-l^r+e;, % 

e' 

dt    «r a*     • 

To T g„ 

dt*       eKT'—t'K 

(8.14) 

«2 dt ~~'     dr % 

Here, In equation of energy (8.4), Instead of specific volume 

density Is Introduced, but both parts of the equation of state are 

divided by p0 ■ APo^O' Relaxation time T IS considered constant 

and equal to T « T(T0, PQ) . 

We will look for solution of system (8,14) In the form of a 

harmonic plane wave, recording all magnitudes In the form 

Wave number k In general Is complex: k ■ k^ + Ik«. Real part 

kj. constitutes reciprocal length of wave k. ■ ±/K  and determines 

actual speed of sound — phase speed of propagation of wave a^ - 

- CD/^J Imaginary part kg gives coefficient of sound absorptiont 

Magnitude a ■> cu/k It Is possible to call complex speed of 

sound. 

Amplitudes f»# In general also are complexi f»* ■ lf'*|e . 

The complex character of amplitudes testifies to a shift In phase 

of some magnitudes relative to others (by difference of angles 9). 

Putting In equations (8.14) all magnitudes In the fen (8.15) 

and noticing that ^ ■ -loof», -£- - Ikf», we will obtain a system of 
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algebraic equations for shaded magnitudes (or amplitudes. If one were 

to reduce by exponential factor)t 

(8.17) 

The last equation, being solved relative to ci-w» gives 

**-&' (8.18) 

Namely thanks to this complex connection of variables of parts 

of actual vlbratlonal energy and temperature there appear dispersion 

and absorption. Already from this It Is clear that In limiting cases 

CUT-» 0, and m-> «, when e^lb - c^T» and e^lb » 0# Imaginary unit 

completely falls from system of equations (8.17)J all magnitudes are 

real (if under p»,?1 etc., we understand amplitudes p»*, p»* etc.). 

There are no absorptions and shifts In phase with this. 

The first two equations of system (8,17) # which were obtained 

from equations of continuity and motion after excluding speed, give 

the usual connection: 

*'-^«'-«V. (8.19) 

where a Is complex speed of sound. Excluding from the remaining four 

equations e», e^lb# and T», we will find one more connection of p» 

and p!t 

_» „ Ä -»  ,.  *   i — itot 
'-I*9'   Y" & . ■ H   ■' (8.20) 

Magnitude 7 It Is possible to call a complex adlabatlc Index. 

Let us Introduce designations: oVo » |A + ovlb, Cp0 ■ -j^A + c .^ are 

equilibrium heat capacities during constant volume and pressure and 
5       7 CV«» " ■5A-* cPo» " 2A are heat caPacltleB during completely frozen vi- 

brations. We will record complex adlabatlc Index and expression for 
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complex speed of sound, which follows from equations (8.19), (8,20), 

In the form 
».      c_.—lore. Uta       ««.— '«*««_ 

(8,21) 

In limiting case of small frequencies CDT « 1, 7 « ?Pfl ■ 70, a' 

-vo PQ PO 

Vo 
a«, we obtain equilibrium adlabatlc Index and speed of sound. 

*In the book L, D, Landau and Ye. M, Llfshlt 
an excellent formula (Ch. VIII, § 78, formula (7 

[91 there Is derived 
•3J)* which gives 

——[-SL-.-OT.!^]. 

This divergence Is connected with the difference In determinations of 
relaxation time T, which appears In the equation of kinetics. Magni- 
tude e^vfT) in our equation (8,8) constitutes equilibrium energy of 
vibrations, which corresponds to translational temperature T, Let us 
note relaxation time in our equation of kinetics by index "T.n If 
volume of gas is constant and translational temperature also is main- 
tained constant: T « const, then equation (8.8; gives exponential law 
of approximation to equilibrium with characteristic time f™: 

eK«=eK W+UeriM-** (^«P (—^r) 

Energy of gas e ■ cy^T + e .^ with this, is not constant. 
If, however, we consider energy e constant (and, of course, vol- 

ume) and use equation (8.8), then we will obtain. Instead of simple 
exponential law, a more complicated law of approximation to equili- 
brium. 

In book [9] the equation of kinetics of type (8,8) is recorded 
in such a way that under equilibrium one should understand energy of 
vibrations, which corresponds to equilibrium temperature T , common 

for translational and vibratlonal degree of freedom and responding to 
given volume V and energy e of gas. 

Let us designate relaxation time, which appears in equation of 
kinetics (according to [9]), by T«. An equation gives exponential 
law of approximation to equllibriumt 

•H-«« oy+K«,.),.,,-«!! (rp)j«p (-~), 

if volume, energy of gas, i,e,, equilibrium temperature T , and time 

To are constant (actually T« depends on translational temperature, but 

it is assumed that deflection from equilibrium is small, so that at 
T - const translational temperature T changes little. During small 

deflection from equilibrium condition V « const, e - const it is pos- 
sible to consider as condition of approximate Constance of entropy 
S * const), 

Footnote continued on following page 

G69 

f,&JJaJ«'iateasuHsi^^ iiialümifc» ■HMMAHB dMHU iiiiiiTrliMiiriiimf"''-"---'-'--'-''" m M^^tat iiii ri ritr • 



Experiments, In which there is obtained a gas cloud scat- 

tering into a vacuum, were set up during rocket investigations of 

the upper layers of the atmosphere, when into space were released 

vapors of sodium and nitric oxide.  The same phenomenon took 

place also during creation of artificial comet during flight to 

Moon of Soviet space rocket, 

I^ynamics of the scattering of a gas cloud into a vacuum is 

rather simple; an idealized problem about adlabatic scattering 

into vacuum of a gas sphere, when gas possesses constant heat 

capacity, was considered in §§ 28 and 29, Ch. I. Here we are 

interested in more delicate questions of the state of gas in a 

stage of large expansion, so to say, during scattering into infin- 

ity, which it is possible to consider on the basis of the most 

simple diagram of scattering. In this diagram is taken into 

account the behavior of only average in mass parameters of gas. 

It is clear that parameters of any specific particle of gas change 

in time exactly as average magnitudes, and differ from mean 

values only by numerical factors of the order of unity, which 

for us are immaterial. 

Let us consider a gas sphere of mass M, possessing energy 

E,* In the stage of strong expansion almost all initial energy 

has already been turned into kinetic energy of scattering, and 

♦We, for convenience, will remember here certain conclusions 
in § 28, Ch, I. 
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Coefficient of absorption kg - CD2J absorption at a distance 

equal to wave length, kgX ~ CD. 

In the limit of large frequencies on- » 1 we have 

*-*'+'*'-^+-abr-£-(ir-0-     ' (8.23) 
Coefficient of absorption kg « const does not depend on fre- 

quency] absorption on wave length kgX - l/ü. 

Curve of dispersion a^cu) and frequency dependence of absorp- 

tion on wave length kgX - k^/fo - l^Ai are schematically depicted 

in Pig, 8,5. It is simple to show that magnitude kg/^ has maximum 

at m " /cv0
cP0/

c
Voo

cpeo ~ 1. Earing a 

close but different value of CUT the 

curve of dispersion has a bend. 

From formula (8«19) it follows 

that pressure in the sound wave is 

shifted in phase with respect to den- 

X a. 

IUt 

k*fl 

*»tu* -■'Au 

wt 

Pig. 8.5. Dependences 
of speed of propaga- 
tion a^ and coefficient 

of absorption on wave 
length kgX of ultra- 
sonics in the region of 
relaxation. 

sity. Really, if the speed of sound 

is a complex value, then p» - a p» » 

2i iqp 
a |e Tp'. in limiting cases COT « 

« 1 and ü)T » i, when the imaginary 

part of the speed of sound aspires to 

zero, shift in phase <p disappears. At ü)T ~ 1, when the real and 

imaginary parts are comparable, shift in phase <p is considerable. 

If in the substance there occurs several nonequilibrium processes 

with strongly differing times of relaxation, strong absorption and 

dispersion appear every time when COT ~ i, and these frequency ranges 

clearly are divided. In the case of close relaxation times regions 

merge and are experimentally divided, i.e., to extract relaxation 
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times from experimental data Is very difficult. 

Dispersion and absorption of sound, connected with nonequlllbrlum 

processes, are determined by vibrations of density of substance. 

I.e., In virtue of equation of continuity dp/dt + pdlv u » 0 are 

connected with divergence of speed. Formally, It Is possible to 

describe them by a coefficient of second viscosity C* which charac- 

terizes the dlsslpatlve member In the equation of motion, proportional 

to the divergence of speed (see § 20 and 21, Ch, I). The coefficient 

of second viscosity It Is possible formally to connect with magni- 

tude OUT and with limiting velocities of sound a0 and a^ (see, for 

Instance, [9]). 

However, it is possible to describe anomalous absorption by 

means of the introduction of a coefficient of second viscosity only 

at not too large frequencies. Coefficient of absorption, because of 

viscosity, grows proportionally to k« ~ Oü (see § 22, Ch. I) . There- 

fore, during co-» co absorption, connected with viscosity. Increases 

without limit, then, as in reality, coefficient of anomalous absorp- 

tion during CD-* oo aspires to constant: kg « const (see formula 

(8.25)). 

Certain experimental data on relaxation times for excitation of 

vibrations and rotations in molecules, obtained by studying disper- 

sion and absorption of ultrasonics, already were presented by us in 

§§ 2 and 4, Ch. VI, 

2» Chemloal Reactions 

§ 5. Oxidation of Nitrogen During a 
Strong Explosion in Air 

Atmospheric air consists of molecules of nitrogen and 03Qrgenj 

chemically it is in equilibrium and very stable. For dissociation 
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of molecules Into atoms or partial transformation of them Into mole- 

cules of nitric oxide NO it Is necessary to heat air to several thou- : 

sand degrees. Reaction of the oxidation of nitrogen requires great 

activation energy. Somewhat less, but also great, is the activation 1 

energy necessary for disintegration of molecules of oxide into oxygen -q 

and nitrogen. Therefore, independent of the energy advantage of 

the transformation of nitric oxide into oxygen and nitrogen at low 

temperatures, molecules of oxide NO are extraordinarily stable with 

respect to disintegration. 

In § 8 Ch, VI it was shown that if at a temperature of 4000° K 

time of establishment of equilibrium concentration of nitric oxide 

in air of normal density is ~10  sec., then at 2000° K it is equal 

to approximately 1 sec. and at 1000° K has a colossal magnitude of 

12 
the order of 10  sec., i.e., approximately JO thousand years! Once 

formed and cooled to normal temperature, nitric oxide remains in the 

air an indefinitely long time. In reality, oxidized nitrogen con- 

tinues its prolonged existence in the form of dioxide NOg (or even 

groups of NgOj,, in which molecules of NO« prefer to be united), since 

nitric oxide reacts very fast with atmospheric oxygen and is oxidized 

to dioxide. This exothermic reaction requires very small activation 

energy and occurs easily even at room temperature (see § 9 Oh,  Yl). 

Thus, the chemical process in heated, and then cooled, air leads 

to essentially nonequilibrium states, found in sharp contradiction 

with the laws of chemical equilibrium, according to which nitric 

oxides at low temperatures must be completely turned into nitrogen 

and oxygen. This effect, well-known from laboratory practice, car- 

ries the name of the "hardening" effect of oxides of nitrogen. 

Large quantity of nitric oxides will be formed during a strong 

explosion in air. Atmospheric nitrogen is oxidized in that stage 
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of the process when air In the blast wave Is heated to a temperature 

of several thousand degrees, where several percents of nitrogen is 

oxidized. During propagation of the blast wave, air originally heated 

in the front of the shook wave is rapidly cooled. Nitric oxide 

formed in it does not succeed in disintegrating during cooling and 

remains in the air "forever," During an explosion with energy of 

21 
10  erg, equivalent to approximately 20,000 tons of trotyl, in the 

air will be formed nearly 100 tons of nitric oxides. Several tens 

of seconds or a minute after termination of explosion all oxide is 

turned into dioxide. 

In the usual state nitrogen peroxide constitutes of a sharply 

colored gas of a reddish-brown color which is connected with the 

predominant absorption by NOg molecules of green and blue rays. It 

gives a red shade to the cloud which rises upward after termination 

of explosion,* as was noted by experiment and described in book [12] j 

see also § 5,  Ch. IX. 

The presence of oxides, especially a small quantity of nitrogen 

peroxide, in heated air enveloped by the blast wave strongly affects 

the optical properties of the air in the wave, since, in distinction 

from molecules of oxygen and nitrogen, molecules of dioxide intensely 

absorb and radiate light in the visible part of the spectrum (NO 

molecules also do not absorb visible light). 

Specific peculiarities of the kinetics of the chemical reactions 

of formation and disintegration of oxides of nitrogen in a blast wave 

♦Molecular groups NgO^ do not absorb visible light, i.e., NgO^ 
-as la colorless. However, dioxide disappears after scattering of 

K. -oud of explosion in atmosphere, since the reaction 2NO2 -> NgO^ 
does not occur too fast. 
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had 

lead to the appearance of interesting optical phenomena, observed 

during strong explosion, which also are described in book [12] , 

These phenomena — the glow of the shock wave at comparatively 

low temperatures after the front, of the order of 4000-2000° K, when 

gas, conBlstlng only of molecules and atoms of oxygen and nitrogen, 

should not gleamj a rather sharp cessation of glow of shock wave at 

a temperature near 2000° K and a breaking away of the front of the 

wave from the boundary of the luminescent body, the so-called "fiery 

sphere"j the unique effect of the minimum of brightness of the fiery 

sphere at the time of breakaway, when the glow at first fades, and 

then the sphere, as it were, again inflames, — will be examined in 

§§ 5-7, Ch, IX, Here we will pause somewhat in greater detail on 

oonslderatlon of kinetics of reactions of oxidation of nitrogen in 

a blast wave, which is the necessary basis for the explanation of 

the shown optical phenomena. This problem was considered by one of 

the authors [130 , It Is necessary to note that the study of kinetics 

presents ::n independent interest, as a characteristic example of an 

essentially nonequllibrium chemical process in the gas-dynamic phe- 

nomenon of a strong explosion. 

Oas dynamics of a strong explosion were described in § 25, Ch, 

I, The process is self-simulating! the front of the shock wave 

spreads from the center of -ehe explosion according to the law JU  ~ 

- t ' • Distributions of all gas-dynamlo magnitudes in radius are 

represented in Pig, 1,50. These distributions are constant in time 

in virtue of self-simulatlon| with the passage of time only scales 

change« 

We are Interested here in the course of chemical reaction in 

defined particles of air» For this, first of all. It is necesBazy 
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Pig, 8.6« r, t-diagram 
for a strong explosion 
In air. f) line of the 
front of the shock wave. 
1* 2# j) lines of three 
particles, through which 
the front passes at mo- 
ments t,M, t-.«, t. m- '02' "OJ* 

Pig. 8.7. Schematic de- 
pendence of temperature 
on time In three parti- 
cles heated by blast 
wave. 

Pig. 8.8. Schematic de- 
pendence of density on 
time In three particles 
compressed by blast wave. 

to know how the thermodynaralc state of a 

given particle changes with the passage 

of time. 

On diagram r, t. Pig. 8.6, are sche- 

matically depicted lines of the front of 

the shock wave and several particles after 

the front, designated by figures 1, 2, 3. 

Heated and compressed at moments of pas- 

sage of wave front t01, t02 t—, parti- 

cles are attracted by blast wave, while 

scattering from the center, and with this 

are adiabatically expanded and cooled 

until the pressure In them falls to atmos- 

pheric and particles stop. 

Curves of expansion and cooling of 

air particles with the passage of time 

are schematically shown in Pigs, 8.7 and 

8.8. 

Calculations by formulas in § 25 

Ch. I show that during an explosion with 
21 

energy E « 10  erg, to which will pertain 

all our numerical examples, the tempera- 

ture in the front of the shock wave drops 

to magnitude Tf - 2000° K during a per- 

iod of ^ ie order of 10  sec from the 

moment of energy release. Of the same 

order are cooling times of air particles 

from a temperature of, let us say. 

G76 

ÜlMÜtt I lIMll Uli lltilll -M- A-s^a^Ei^»^^««^^^^«^    .^.,«»aM. 



5000° K to 2000o-d500o K.    Time t ~ ±0~2 sec Is the time ooale of the 
21 

gas-dynamic process during an explosion with energy E « 10  erg, 

with which one should compare times characteristic for the course of 

chemical reactions« 

Let us trace at first kinetics of reactions In any defined par- 

ticle of air. Let us assume that, for Instance, particle 1 was 

heated In the front of the shock wave to a temperature of T« » 

» 3000° K, Speed of oxidation of nitrogen with such a temperature 

Is very high and equilibrium concentration Is attained during a period 

of the order of 10  sec. In a particle of air "instantly" approxi- 

mately 5$ of the nitrogen Is oxidized and subsequently concentration 

of oxide "slowly" changes (decreases) In accordance with the laws of 

chemical equilibrium, while "following" cooling and expansion. Disin- 

tegration of oxide molecules starts to lag behind cooling only If 

the particles cool to a temperature of the order of 2500° K, at which 

relaxation time T Increases from Initial small magnlcude ~10  sec 

to a magnitude comparable with gas-dynamic scale of cooling time, 

10"' sec. During further cooling, disintegration rapidly ceases, 

since the disintegration rate Is very sharply lowered with decrease 

of temperature. Thus, already at 2000° K disintegration rate Is 

characterized by a relaxation time T ~ 1 sec. The residual "hardened" 

quantity of oxide In a given particle corresponds approximately to 

that concentration which was In It at the time when relaxation time 

T was comparable with characteristic time of cooling t *• 10  sec. 

I.e., when temperature In the particle was of the order of 2500° K, 

But slightly earlier the concentration was equilibrium, and equili- 

brium concentration rather weakly changes with decrease of tempera- 

ture by several hundreds of degrees, which very essentially changes 
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disintegration rate (see § k  Ch. Ill and § 8 Ch. VI). Therefore, 

residual concentration of oxide in par:.icleB of air is simply equal 

to equilibrium concentration at a temperature near 2300° K, and this 

is a magnitude of the order of i^. Dependence on time of the concen- 

tration oxide in a particle is schematically shown in Pig« 8,9» Cer- 

tainly, the exact value of residual concentration depends on the 

specific particle, i.e», on the density with which it arrived at the 

abruptly changed (for reaction) temperature «2300° K, at which T ^ t, 

and on the time of coolingj however, these components do not affect 

the order of magnitude of the residual concentration. Reaction of 

the oxidation of oxide to dioxide at temperatures ^000° K proceeds 

quite fast (see § 9# Ch, VI) ♦ Therefore, the concentration of dioxide 

still remains an equilibrium concentration, but dioxide is moreover 

in equilibrium, not with equilibrium but with an actual, "hardened" 

quantity of oxide* At temperatures of the order of 2000° K concen- 

tration of dioxide composes approximately 10" $ (see Table 5,9, § 21 

Ch, V), Subsequently all oxide gradually oxidizes to dioxide^ where 

in the beginning this process "follows" after cooling, and then, at 

a temperature of ~1500o K and lower, lags behind cooling. Full oxi- 

dation of oxide occurs even in a quite cold particle, tens of seconds 

after the explosion. 

In particles of air, which the front of the shock wave heats to 

a temperature below •^200-2000° K, nitric oxide, in general, will not 

be formed since speed of oxidation with such a temperature is minute, 

and the particle fast skips that region of temperatures near 2000° K, 

in which the speed of the reaction composes still a noticeable magni- 

tude. Thus, the spherical shell of air, heated in the front of the 

shock wave to a temperature of ^200-2000° K, limits the mass of air 

f 



in which, in general, oxide appears, and then dioxide (the law of 

motion of this layer Is depicted on diagram r, t Pig, 8.6, let us 

say, by line 5) # An estimate of the full quantity of nitric oxides 

which will be formed during a strong explosion follows from this. 

It is determined by the mass of air heated In front of the shock 

wave to a temperature higher than ^2200^2000° K and the equilibrium 

concentration of the oxide with such a temperature (at slightly 

higher — 2J500 K), since namely with such temperatures there occurs 

21 
hardening.* During an explosion with energy of 10  erg the radius 

of the front of the shock wave, at a temperature of front T~ « 2000° K, 

Is equal to approximately 100 m. The mass of air In the spherical 

volume of such a radius composes approximately 5000 ra and during 

concentration ^l^ mass of oxide Is found to be equal to ^50 nu The 

mass of dioxide, after connecting to every molecule of NO one more 

atom of oxygen, will compose «TS m. I.e., nearly 100 m, as was men- 

tioned above. 

Let us consider now what the distri- 

bution Is of the concentration of oxides 

In radius at a given moment of time. 

Here are possible two typical cases. If 

at considered moment t* (Pig. 8.10) tem- 

perature on the front of the wave Is 

higher than ~25000 K, practically In all 

particles after the front concentrations 

of oxide and dioxide are equilibrium con- 

centrations and distribution of 

Pig. 8,9, Schematic 
dependence on time of 
equilibrium (CNQ) and 
actual (CN0) concen- 

trations of nitric 
oxide in a defined par- 
ticle of air in the 
blast wave. 

♦We remember that equilibrium concentration of nitric oxide in 
ai..' depends only on temperature, not on density (see § 4 Oh. Ill and 
§ 8 Ch. VI). 
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concentrations are determined simply by distributions of temperature 

and density after the front. An exception Is only the very thin layer 

of air directly after the front. In which still by the given moment 

oxides have not been formed (Fig. 8#10)» 

If we concern ourselves with 

moment t1», at which the tempera- '•*' 

Cm«* 

/o 

X* 4 

T-300lf% 

z,* 2S 

Pig, 8.10. Distribution 
of concentration of nitric 
oxide after the front of a 
shock wave during an ex- 
plosion with energy 

E «■ ia2i erg 
Temperature on front T-, ■» 

•■ 3000oK. Concentration 
practically everywhere is 
equilibrium. Are shown 
value of temperatures and 
densities in several points. 

Pig. 8.11. Distribution 
of concentration of ni- 
tric oxide after the 
front of a shock wave 
during explosion with 
E « 1021 erg. Tempera- 
ture on the front Tf ■ 
- 1600° K. The solid curve 
is the actual concentra- 
tlonj the dotted one is 
equilibrium concentra- 
tion. At x > 4m cN0 « 
** (cN0). There are shown 
values of temperatures 
and densities at several 
points. 

ture behind the front is less than ~2000o K, for example 1000° K# 

then near the front there are found particles heated by the front up 

to a temperature lower than 2000° K| in them there are generally no 

oxides. Par behind the front, at a temperature higher than "^500° K, 

the concentration in equilibrium, and in the intervening layer there 

are oxides, but their concentration is nonequillbrlum. Close to the 

front it is less than the equilibrium concentration and a little 

further away. In those particles in which chilling has begun, it is 

higher [Pig. 8.11]. 
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For calculation of the concentration of oxide In a nonequlllbrlum 

region, and also for a more exact determination of quantity of "har- 

dened" oxide. It Is necessary to solve the equation of kinetics of 

oxidation reaction of nitrogen (6,45) In a given particle of air, 

taking Into account the laws of Its cooling and expansion In a blast 
f 

wave. Laws of expansion and cooling of air, which follow from solu- 

tion of problem about strong explosion (§ 25, Ch, I), It Is possible 

to approximate fairly well by the following formulas, convenient 

for the calculation of kinetics: 

where TQ and p0 are temperature and density In the particle at Ini- 

tial moment t0, when through It passed the front of the shock wavej 

a and b are numerical constants depending only on effective adlaba- 

tlc Index In gas-dynamic solution. At 7 »» 1,50, a « 0.44, b » 0.75, 

It turns out (see [15]) that by means of corresponding selec- 

tion of new variables In the equation of kinetics (6,45) this equa- 

tion, together with shown laws of cooling and expansion. It Is pos- 

sible to present In universal dlmenslonless form» 

£-*-•(?-*), (8.24) 

where magnitude x Is connected with a variable — time — and y Is 

proportional to concentration of oxldej 6 Is a numerical constant 

less than unity. Initial condition, corresponding to absence of oxide 

at Initial moment t « t^. Is reduced to condition y ■ 0, when x Is 

equal to a certain magnitude of XQ, depending only on moment t0, pa- 

rameters of Initial state and constants entering Into equation of 

kinetics (6,45). 
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*As A. S. Kompaneyets noted, equation (8.24) with 6 - 0 Is solved 
exactly. In Bessel functions. 
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Ya. B# Zel'dovlch, P. Ya. Sadovnikov, and D. A. Prank-Kamenetskly 

[14] studied the kinetics of the oxidation reaction of nitrogen In 

laboratory conditions with a law of cooling of the type ^ » ^- + S- t 

I 
and constant density, I 

I 
With this, the equation of kinetics (6.45), with the help of the       1 

Introduction of new variables, also is reduced to an equation of the 

type (8.24) with initial condition y - 0 at x » x0. In the book [14]       ■ 

solution of equation y »* y(x, x0)* is tabulated. 

Knowing, from the gas-dynamic solution of the problem about 

strong explosion, parameters of initial state of a particle of air, 

it is possible thus to obtain a full solution, i.e., dependence of 

concentration of oxide CNQ on time. It fully corresponds to the 

qualitative considerations presented above. Thus, was calculated the 

curve depicted in Fig. 8.11. 

3. Disturbance of Thermodynamic Equilibrium During 
Scattering of Gas in a Vacuum 

§ 6. Scattering of a Gas Cloud 

The phenomenon of scattering of a gas cloud into a vacuum is 

encountered in the most varied natural, laboratory, and technical 

processes. During Impacts of meteorites against the surface of the 

planet there occurs a sharp braking of the meteorite and a transfor- 

mation of kinetic energy into heat. If the speed of the blow is 

great, of an order of several tens of km./sec, there are developed 

very high temperatures of tens and hundreds of thousands of degrees. 
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The body of the meteorite and part of the ground of the planet are 

evaporated. The phenomenon reminds us of a strong explosion on the 

surface of the planet.* If the planet Is without atmosphere, for In- 

stance as the Moon, the cloud being formed of steam, while possessing 

high rates of scattering, surmounts gravity force and is freely ex- 

panded into the vacuum. There exists an assumption that as a result 

of such "explosions" during blows of huge meteorites lunar craters 

were formed. 

Analogous phenomena occur also during the much more frequent 

collisions of small bodies in the solar system — asteroids. Scatter- 

ing into vacuum of colossal gas clouds is observed during flashes of 

Novae, when, as a result of the disturbance of energy balance of a 

star, there occurs an emanation of great energyj from the central lay- 

ers to the periphery spreads a shock wave, detaching from the star and 

ejecting into outer space a gas cloud. 

To a certain degree similar phenomena, but, of course, in incom- 

mensurably smaller scales, are encountered in laboratory conditions, 

for instance, during the evaporation of anode needles in pulse X-ray 

tubes under the action of powerful electron pulse (V, A. Tsukerman 

and M, A. Manakov [15]), during the explosion of wires by electrical 

current in evacuated installations, etc. Certainly, in laboratory 

conditions expansion is not infinite, since it is limited by the 

walls of the evacuated vessel! however, in the stage when the gas 

has still not reached the walls, scattering into vacuum occurs Just 

as if vacuum were "infinite." 

♦Hydro-dynamics of this process will be £onslde'»ed below. In 
Chapter XII, 
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Experiments, in which there is obtained a gas cloud scat- 

tering into a vacuum, were set up during rocket investigations of 

the upper layers of the atmosphere, when into space were released 

vapors of sodium and nitric oxide.  The same phenomenon took 

place also during creation of artificial comet during flight to 

Moon of Soviet space rocket. 

Dynamics of the scattering of a gas cloud into a vacuum is 

rather simple; an idealized problem about adiabatic scattering 

into vacuum of a gas sphere, when gas possesses constant heat 

capacity, was considered in §§ 28 and 29, Ch. I, Here we are 

interested in more delicate questions of the state of gas in a 

stage of large expansion, so to say, during scattering into infin- 

ity, which it is possible to consider on the basis of the most 

simple diagram of scattering. In this diagram is taken into 

account the behavior of only average in mass parameters of gas. 

It is clear that parameters of any specific particle of gas change 

in time exactly as average magnitudes, and differ from mean 

values only by numerical factors of the order of unity, which 

for us are immaterial. 

Let us consider a gas sphere of mass M, possessing energy 

E,* In the stage of strong expansion almost all Initial energy 

has already been turned into kinetic energy of scattering, and 

♦We, for convenience, will remember here certain conclusions 
in § 28, Ch. I. 
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matter scatters inertially with average speed 

*2J U=SK If 

Radius of the sphere is of the order of R -• utj density of 

the gas drops with passage of time according to the law: 

where scale of time is approximately expressed through initial 

radius of sphere RQ and density of substance p0: 

If one were to be interested in temperature of gas in the 

stage of large expansion, then it is necessary to consider that 

small internal energy which still remains in the gas and which 

we disregarded during calculation of speed of scattering. Let 

us te.ke into account thau during adiabatic scattering there 

remains constant specific entropy of gas S, Considering for 

simplicity that matter behaves as gas with a certain constant 

effective value of adiabatic indes, we will obtain law of cooling 

of gas: 

where A(s) is entropy constant, calculated by known formulas of 

statistical mechanics. If comparatively high temperatures are 

considered, then, taking into account processes of ionization, 

dissociation, etc., it is possible to assume tentative values of 
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adlabatlc index 7 * 1.2-1,5. In any case the Index is not larger 

than 5/5 « 1.66, which corresponds to full freezing of all Internal 

degrees of freedom of gas, 

§ 7. The Effect of "Hardening" 

We will observe how physical chemical processes take place in 

-■5 
gas expanding by cubic law p ~ t -^ and cooled according to the law 

We will assume that in the beginning the temperature was high, 

let us say, several tens or hundreds of thousands of degrees, so that 

molecules were dissociated and atoms strongly ionized. Let us assume 

also that initial density of gas also was great as this occurs if a 

gas cloud is formed as a result of fast energy release in initially 

solid matter. Then in the early stage of scattering with large den- 

sity and temperature all relaxation processes occur very fast and 

gas is in thermodynamic equilibrium, where characteristics of its 

state, for instance degree of ionization or dissociation, "follow" 

after cooling and expansion. If the gas during all the scattering 

continued to remain in thermodynamic equilibrium, then as it expands 

and cools all electrons must be united with ions into neutral atoms, 

and all atoms possessing chemical affinity would be united into mole- 

cules. 

Really, equilibrium degrees of ionization and dissociation de- 

pend on temperature by exponential law and on density only by power 

law» Oioniz "" p ^ exp (-l/2kT), where I is ionization potential. 

During expansion ad inflnitum and cooling to zero of temperature, 

equilibrium degrees of ionization and dissociation very fast rush to 
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zero, since at T ^ p^" -» 0 exponential member decreases much faster 

than Increases pre-exponentlal factor. Being equilibrium, gas will 

scatter Into Infinity In the form of neutral molecules or atoms. If 

the latter do not possess chemical affinity, as, for instance, atoms 

of metals or inert gases (we now are distracted from the question of 

condensation of gas, which we will discuss subsequently). 

It is easy to see, however, that however great speed of estab- 

lishment of thermodynamic equilibrium might have been in the begin- 

ning, as compared to speeds of cooling and expansion, a moment must 

come when the relationship of the speeds of these processes will be- 

come Inverse, thermodynamic equilibrium will cease to be established, 

and degree of lonization and dissociation will start to deviate from 

equilibrium values more and more. 

Actually, during cooling, equilibrium shifts in the direction 

of a decrease in degrees of lonization and dissociation, i.e., recom- 

bination of electrons with ions and atoms into molecules predominates 

over lonization and dissociation. With high densities a basic role 

is played by recombination in triple collisions, and with low densi- 

ties by photorecombinatlon in paried collisions, so that by the stage 

of large expansion, interesting us, it is sufficient to estimate the 

speed of the latte:.. 

Relaxation time for establishment of equilibrium lonization is 

of the order of T * 1/rivo, where n is the number of ions in 1 cm , 

proportional to density of gasj v is the thermal velocity of electrons, 

v ~ T ' ; and a is effective section of photorecombinatlon, which is 

inversely proportional to temperature a ~ T • Thus, owing to regu- 

larity (8.25), (8.27), relaxation time is proportional to 
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Even during the highest possible value 7 - 5/5 magnitude of T 

increases with passage of time as T «• t , Characteristic time for 

noted changes of temperature and density is of the order of the actual 

moment t, since with power laws (8.25), (8.27) 

dT T       dg Q 
Tt T' IT   7* 

Consequently, relaxation time grows faster than the gas-dynamic 

time scale and, starting from some moment, recombination will start 

all the more strongly and cooling will fall behind more strongly. 

Moreover, approximately from this moment the probability of recom- 

bination of a given electron with all ions during all the subsequent 

process of scattering, up to infinity, turns out to be less than 

unity, since the integral of probability of recombination or number 

of collisions converges. 

Under the "hardest" conditions, when 7 « 5/5 and T ■> xAt/tA  , 

where t^ is a certain arbitrary moment of time, and T^ » T(tj, the 

number of acts of recombination of a given electron with ions for 

all time from t^ and to « is equal approximately to 

as        as      00 

<i     ii    u 

Starting from moment t^, at which relaxation time T^ > t^, the 

number of recombinations w < 1, Thus, during spherical scattering 

of gas into a vacuum equilibrium is not only disturbed, but recombi- 

nation in general, does not proceed to the end. Gas, cooling temper- 

atures to zero during scattering to infinity, remains partially lonr 

ized and dissociatedi "hardening" of ions and atoms occurs. 

Starting from a certain moment, in the gas are almost ceased 

gas kinetic collisions, Deactivation of vibrational and rotational 

excitation of molecules by impacts of particles is ceased. This 
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follows from convergence of the same Integral of collisions (8,28)• 

Howeverj hardening of molecular vibrations and rotations does not 

occur» vlbrational and rotational energies of molecules pass due to 

spontaneous emission of light quanta, Vibrational transitions give 

radiation in the infrared region of spectrum, and rotational — in 

the radio range. 

Regarding cases of nonspherical scattering, in principle during 

cylindrical symmetry of hardening, with respect to ionizatlon, there 
••2 —4 

exists (n ~ t ), and in flat cases it is lacking, since n "  t , 

and the integral of collisions with recombination /rivadt ~ /nT ^dt ~ 

*• In ™dt  - /-T7I parts as t ^ at t -♦ •• Disturbance of ionizatlon 

equilibrium, as will be shown in the following paragraph, occurs also 

in a flat case. Certainly, if we talk about a finite mass of gas, 

then during sufficiently large expansion "flat" (and "cylindrical") 

case certainly will cross into "spherical," 

In view of the convergence of the integral of collisions with 

gas kinetic section placed in it, during spherical scattering with 

passage of time energy exchange of chaotic translational motion of 

atoms ceases. Further scattering continues in general, without col- 

lisions.* 

All particles — atoms, ions, etc. — fly by inertia with speeds 

which they obtained as a result of the last collision. Besides par- 

ticles, in general, possess a non-radial ("chaotio") component of 

;s even 

♦It is curious to note that "collisions" (more exactly, the inter- 
action of particles) do not cease in the case of scattering of com- 
plete^ ionized gas, since effective section of "collisions" is a ^ 

- T"2 and at 7 - 5/3,  T - n2/^ the integral of collisions parti 
in a spherical case: /nvc dt - /nT^T dt ~ /dt-* •• The expan- 

sion into vacuum of a gas cloud without collisions (in approximation 
of free molecular fluxf is examined in the work of Molumd [15a] . See 
also [24, 25]. 

689 



speed. One would think, "hardening" of chaotic speed should occur. 

I.e., "temperature," In reality there Is none, for reasons of purely 

geometric character. The question consists of the definition of the 

Ideas of "hydrodynamlc" and "internal" energies In conditions of the 

absence of collisions of particles. As V. A. Belokon' [l6] noted, 

the Internal energy of a unit of volume of gas Is equal to the 

difference between full kinetic energy n g (n In the number of par- 

tides In 1 cnr, m Is their mass, and v Is mean square of speed) 

and kinetic energy of "hydrodynamlc" motion n X m^ fo)2 1 s square 

of mean speed); 

^■■yTp=^iiww—£n«poa='» jO»1 — (v)*). 

Let us assume that collisions cease at the time t. when gas 

occupies a sphere of radius r^ (Pig. 8.12). At points A and B parti- 

cles arrive from this sphere at moments t« and t", possessing speeds 

whose directions are included in cones shown in Fig. 8.12. 

It is clear that the more the 

distance from center, the less the 

flare of the cone and the nearer TT 

to (If)  , i.e., the less difference 

v2 - ("^)2. In limit t-+ «, r-* ~ all 

particles fly in a strictly radial 

direction and v^ - (^2^ i.e., all 

kinetic energy is turned into "hydro- 

dynamic. " 

§ 8. Residual lonizatlon 

Let us consider kinetics of loni- 

zatlon and recombination during 

BOO 

Pig, 8,12. Concerning the 
question of scattering of 
gas into a vacuum without 
collisions. 
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scattering of gas Into a vacuum and we will estimate residual lonlza- 

tlon In gas during Its expansion ad Inflnltum (results expounded below I 

were obtained In the work of one of the authors [17])• Let us assume 

that In the beginning temperature of gas was high and atoms were 

repeatedly ionized. During adiabatic cooling of expanded gas degree 

of ionization decreases, electrons "sit in their own places" in atoms. 

We will consider scattering that is not too fast, when recombination 

of electrons with repeatedly ionized atoms in early stage of scatter- 

ing proceeds so fast that at each moment there is ionization equili- 

brium. We will consider that ionization equilibrium is disturbed only 

in that stage, when the last electrons "sit In their own places," 

i.e., when a process reverse to first ionization takes place. 

Let us compose an equation of kinetics in the region of first 

ionization, taking into account two basic meohanismsi ionization 

by electron impact and photo-lonlzation and the corresponding inverse 

processes of recombination. Ionization by heavy particles, which is 

essential only during extraordinarily small concentrations of free 

electrons, it is possible to disregard. Equations of kinetics (6.70) 

and (6.91) it is somewhat convenient to convert, expressing members 

of ionization through coefficients of reoombinatior with the help 

of the principle of detailed equilibrium by the formulas (6.71}, 

(6.72), and (6.92). Introducing, instead of numbers of ions and 

electrons in 1 cnr N. - Ne, the degree of Ionization x • Ne/iJ, where 

N is the number of initial atoms in 1 cm , and considering that de- 

gree of ionization is small, x « 1, we will record the equation of 

kinetics in the form 

f-^(4-^). (8.29) 

Here x is equilibrium (at given temperature and density) degree of 

ionization, which is expressed by Saha formula. At x « 1 formula 
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(6.72) gives 

x, = 6.96.10'(^)V2-. (8.50) 

b is total coefficient of recombinationj by the formulas (6,77), 

(6.94), it is equal to 

6=6v+ft.=?effH-lI28.10-"g-(A4; + 2)-^. (8.31) 

During known laws of expansion and cooling N(t), T(t), which 

are given by formulas (8.25) and (8.27), expression (8.29) constitutes 

an ordinary differential equation relative to sought function x(t). 

Inasmuch as we are interested mainly In the qualitative side of the 

matter, we will solve this equation approximately. 

At first speeds of ionization and recombinations, proportional 

to both components in the right part of equation (8.29), are great 

as compared to speeds of expansion and cooling. (For comparison of * 

speeds of different processes we consider relative speeds, measured 

1 dT 1 dN \ 
in reverse seconds, for instance, ^ -yr, -^ —.;  Ionization and re- 

combination almost completely compensate one another; degree of ioni- 

zation "follows" after expansion and cooling, remaining close to 

equilibrium. Approximately x(t) « x (t) = x [T(t), N(t)] and 

difference jx^ - x2| « x2 

The small deviation of the degree of ionization from equilibrium, 

which inevitably exists, inasmuch as temperature and density change 

in time, it is possible to estimate approximately, considering in 

the left part of equation (8.29) dx/dt « dx /dt, replacing x in ex- 

pression for coefficient of recombination (8.3l) by x , and also con- 

sidering x - x « 2x (x - x) , It is easy to see that relative 

deviation |x - xj/x grows with passage of time (since speed of re- 

laxation process becomes less and less as compared to speed of change 

of macroscopic parameters — temperature and density). 
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lonlzatlon equilibrium noticeably Is disturbed and starts harden- 

ing when difference of speeds of lonlzatlon and recombination In- 

creases to a magnitude of the order of the speeds themselves. I.e., 

i 2   21 2 
when magnitude |x - x \  becomes of the order of x . 

It is possible to estimate the moment of "beginning of hardening" 

t^ and magnitudes T^, N., x., at this Instant, considering, as earlier, 

dx/dt « dx /dt, x •* x In coefficient of recombination and equating 

2   2 2 difference x - x magnitude x 

Differentiating with respect to time the equilibrium degree of 

lonlzatlon by the formula (8#30), taking into account the fact that 

the exponential Boltzmann factor changes the fastest of all, and ising 

law of cooling (8.27), which gives g| - -5(7 - l)^, we will find the 

equation determining the moment of "beginning of hardening"! 

M^i-lft-*)*^. (8.32) 

Here b^ « b(T^NLx J. This equation. Jointly with expressions for 

laws of expansion and cooling (8.25), (8.27), and Saha formula (8.JO) 

referred to moment t., is reduced to transcendental equation for 

temperature T^. Finding T^, it is easy to calculate the remaining 

magnitudes t., N*, and x .. (in given approximation the actual degree 

of lonlzatlon x^ it is possible to consider equal to equilibrium x ..) 

After "beginning of hardening" speed of lonlzatlon, proportional 
2 

to x , continues rapidly to decrease with passage of time by exponen- 

tial law e kT( ^ . Recombination rate, proportional to square of ac- 

tual degree of lonlzatlon, in virtue of hardening, drops much slower 

and soon becomes considerably higher than speed of lonlzatlon: 

x(t) » x (t). In these conditions, acts of lonlzatlon it is possible 

to disregard, assuming that only recombination occurs. Equation of 

kinetics is then written approximately in the form 
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*L=_Wz» at t>ti. 

This differential equation is reduced to quadrature, if we disregard 

two as compared to 1/k.T  in coefficient of triple recombination, 

which always can be done, and put approximately adlabatic index 7 « 

« 5/5. With such particular value of adlabatic index both members 

of recombination turn out to be equally time-dependent owing to 

equation of adiabat T ~ IT'^1 ~ t" and from both members it is possible 

to take time factor t. The equation is reduced to quadrature, and 

during an arbitrary value of adlabatic index, if one of the two me- 

chanisms of recombination predominates, it is possible to disregard 

the second. In this last case the final expressions turn out to be 

especially simple. Inasmuch as dependence of the solution on index 

7 in a reasonable interval of values of 7 from 7 » 1.5 to 7 « 5/5 

is not too strong, we will write out final expressions for 7 » 5/5. 

If gas is expanded fast, hardening starts early, during high 

density and degree of lonization. Recombination occurs mainly in 

three-body collisions and residual lonization, corresponding to t -» 

-* «, is equal to ^ ■ y:AkT^/2l)   ^» 

If, however, gas is expanded slowly, hardening starts late, in 

a stage of strong scattering and cooling, during small concentration 

of electrons. Electrons recomblne with ions basically in double 

collisions with the emission of light quanta. Residual degree of 

lonization in this case is equal to x^ - x^kT./l) . 

Let us note that in this (the last one) case the gas sphere turns 

out to be, as a rule, transparent for quanta emitted during photo- 

recombination. Quanta desert the sphere, removing with themselves 

ionizing energy, which, consequently, does not participate in acceler- 

ation of gas. Into kinetic energy of scattering at this stage passes 
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only energy of translatlonal degrees of freedom of particles If gas 

la monatomlc, so that the adlabatlc Index In this case Is Indeed 

close to 5/5« 

For example we will estimate residual lonlzatlon of gas from 

atoms of Iron, forming during fast heating and evaporation of metal- 

lic Iron. Let us assume that Initial heating during normal density 

of solid Iron corresponds to temperature TQ • 116,000° K » 10 ev. 

Appraisal of initial energy and entropy, taking into account elec- 

tronic specific heat (according to method in § 14 Ch« III), gives 

e0 m 72 ev/atom, S " 61 cal/mole degree« Speed of scattering with 

this is u ■» 15» 5 km/sec* 

If initial radius of sphere is RQ * 10 m (large iron meteorite), 

then at the time of beginning of hardening during scattering up to 

a radius of 1^ - 800 m ^ « 4550° K, ^ - 1.4»10i7 cm"5, x1 - 4,2»10"
5 

-4 and residual lonlzatlon x_ « 2,1»10 • 
CO 

If initial radius is RQ « 1 cm, which is close to laboratory 

scales, then 1^ « 50 cm, ^ « 9500° K, ^ »• 6.6» 10 "^ cm"5, x1 - 0,58 

and x^ ■ 0.15. Residual lonlzatlon is the greater, the relatively 

faster expansion and cooling occurs, i.e., the smaller the mass of 

the gas sphere and the higher the initial heating. 

§ 9« Remarks About Plat Scattering and 
About Expiration of Oas into a Vacuum 

During scattering of a flat layer residual lonlzatlon Is equal 

to zero, although lonlzatlon equilibrium is essentially disturbed 

and degree of lonlzatlon aspires to zero not by exponential law, as 

equilibrium, but much slower, by power law# Really, taking into 

account only one photo-recombination, which always becomes predominant 

during sufficiently strong expansion, we will find 
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At 7 - 5/5 T ~ N2^. In a flat case N ~ t"1, T - t"2^5, so that 

dx/dt ~ -x2/*2^5. Integrating, we will obtain | - | - t1^5 - tj^5. X   XJ I 

~lA At t-» « degree of lonlzatlon aspires to zero, as x - t /^-* 0, 

I.e., by power law, whereas equilibrium degree of lonlzatlon aspires 

to zero by exponential: 

«P ~ exp ^ —jÄf J — exp (- const ts). 

Disturbance of lonlzatlon equilibrium, similar to that which 

occurs during scattering into vacuum of a flat layer, takes place 

even on the edge of a wave of rarefaction, during flat expiration of 

gas into a vacuum (see § 11 Ch, I). Let us assume that wave of rare- 

faction is propagated along motionless gas with initial density and 

speed of sound pQ, c0* During expiration into a vacuum the front 

2 
boundary of the gas flies with speed u,. - - cn  (see Pig, 8,13), 

7-1 
Head of wave of rarefaction spreads along initial gas with speed of 

sound CQ. It is easy to show that density of assigned particle of 

gas with Lagrange coordinate m g/cm , calculated from boundary with 

vacuum, with passage of time drops according to the law: 
2 

»-"(^r'-'-*•>. 
2 

♦If x^ is a coordinate of the boundary of gas x. ■ u^t ■ --=--,cut, 

then from formulas (1.5^), (1.55), (i.56) § 11 Ch. I it follows that 
at time t density is distributed on coordinate x according to law» 

--{[fei] [^]f- 
Lagrange coordinate of a particle of gas, which is at time t at point 
x, is equal to 

Expressing * - ^  through density p, we will find 

Footnote continued on following page 
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f-h,t% 

Pig. 8.13, Concerning 
the question about ex- 
piration of gas Into a 
vacuum. 

I.e., somewhat more slowly than during scattering of flat layer Into 

vacuum (for Instance, at 7 » 5/5, p ~ t~^' ) , 

With this, hardening Is lacking, but 

thermodynamlc equilibrium Is disturbed 

Just as In the case of scattering of a 
„■I 

flat layer when p ~ t : degree of lonl- 

zatlon aspires to zero with passage of 

time by power law (certainly, with another 

exponent), but not by exponential law. 

It Is Interesting to note that In 

this case, when we are Interested In mag- 

nitudes not averaged with respect to the entire mass of gas but per- 

taining to a certain gas particle, actual "equilibrium," more exactly, 

"stationary" value of lonlzatlon differs from the therraodynamlcally 

equilibrium value. Actually, the particle Is In the field of radia- 

tion, which goes from deeper layers where temperature Is higher. 

"Stationary" degree of lonlzatlon corresponds to an equality of num- 

bers of lonlzatlons and recombinations In 1 cm^ In 1 sec. But photo- 

recomblnatlon does not depend on density of radiation (induced recom- 

bination Is Immaterial), and photo-lonlzatlon proceeds more Intensely 

than In the case when density of radiation corresponds to temperature 

of the actual particle. In the particle Is bias lighting from with- 

out, relgnltlon from an outside source — radiation, proceeding from 

high-temperature layers (Fig. 8.15). Therefore, even the "stationary" 

level of lonlzatlon should be higher than this follows from the laws 

of thermodynamlc equilibrium. 

FOOTNOTE CONTINUED PROM PRECEDING PAGE 

whence follows given formula. 
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^» Condensation of Vapor During Adlabatlc Expansion 

§ 10. Saturation of Vapor and Appearance of 
Centers of Condensation 

If the vapor of any substance Is adlabatlcally expanded and 

cooled, then It, at a certain moment, becomes saturated and then 

supersaturated, after which condensation starts. It Is known that 

condensation Is strongly facilitated in the presence of ions, dust 

motes, alien particles, which become centers of condensation and 

around which are formed drops of liquid. Ions and dust motes create 

even more favorable conditions for the fastest formation of centers 

of condensation, but their presence Is not at all obligatory. In 

pure supersaturated vapor, centers of condensation appear as a result 

of the adhesion of molecules Into molecular complexes. After the 

achievement of so-called critical sizes complexes become stable, do 

not disintegrate and reveal a tendency toward further growth and 

transformation Into drops of liquid. 

The phenomenon of condensation of vapor during adlabatlc expan- 

sion Is encountered In technology. In the laboratory, and In nature. 

It lies In the basis of the work of a cloud chamber, widely used in 

nuclear physics for registration of fast charged particles. A cloud 

chamber is a vessel filled by vapors of water, alcohol, or other 

liquids. The needed supersaturation is created thanks to t ,e expan- 

sion of vapor during fast movement of a piston. Vapor is condensed 

on ions, which are formed along the trajectory of a fast particle, 

and drops of liquid are registered by optical methods. 

Condensation of water vapor contained in air frequently is ob- 

served during the expansion of air in wind tunnels. Condensation cf 

water vapor contained in atmosphere and gases passing from the Jets 
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of Jet engines leads to the formation of a characteristic trace dur- 

ing the motion of Jet aircraft. 

The fact that during adiabatic expansion of vapor at a certain 

moment condensation should start is easy to explain with the help 

of a temperature — specific volume diagram. As is known from thermo- 

dynamics, the pressure of saturated vapor, being in equilibrium with 

liquid, obeys the equation of Clapeyron — Clausius (see, for instance, 

[18]). If it is possible to consider vapor as ideal gas, then this 

equation leads to the following connection between specific volume 

of saturated vapor Vvap and temperature*: 

V„9~Ne^   T~!L(\xZff)-\ (8.33) 

where U is heat of evaporation, R is gas constant, and B is coeffi- 

cient which it is possible to consider approximately constant. 

Prom this formula it is clear that temperature of saturation 

depends on volume of vapor very weakly, by logarithmic law. On the 

other hand, adiabat of Poisson for vapor constitutes a curve of ex- 

ponential type T ~ V"^ ', which must intersect curve of saturation 

(Fig. 8.14). At the point of intersection 0, earlier unsaturated 

expanded vapor becomes saturated. 

Let us trace movement of process in time. If vapor is always 

expanded, then specific volume monotonically grows with the passage 

of time. Instead of considering change of temperature in time T(t), 

it is possible to consider change of temperature with Increase of 

volume T(V) - T[V(t)], using diagram T(V) (see Pig. 8.14). 

Crossing into state of saturation, vapor continues to be ex- ' 

panded, following adiabat of Poisson, and becomes supersaturated 

♦This follows from formulas p - const e ^•, pV «= RT, where p is 
pressure of saturated vapor. 
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(supercooled). Speed of formation of centers of condensation very 

sharply depends on degree of supersaturatlon. Therefore, during 

further Increase of degree of supersaturatlon the number of nuclei 

of liquid phase fast Increases. Soon after passage of the state of 

saturation the speed of condensation attains such a magnitude that 

emanation of latent heat stops the growth of supersaturatlon (if, of 

course, expansion occurs not too fast), 

Condensation Is accelerated even during a constant number of 

centers due to Increase of surface of drops, to which adhere molecules 

of vapor. Accelerated condensation not only stops growth of super- 

saturation but leads even to a decrease In degree of supersaturatlon. 

Formation of new nuclei, which. In the highest degree. Is sensitive 

to the magnitude of supersaturatlon. Immediately ceases and subse- 

quently condensation proceeds by means of the adhesion of molecules 

to drops already available. Thus, all centers of condensation, as a 

rule, are engendered In the actual beginning of the process of con- 

densation, as scon as there Is attained a sufficiently large super- 

saturation. 

During worlt with a cloud chamber vapor Is quickly expanded to 

a defined volume so that In it Is created known initial supersatura- 

tlon. This supersaturatlon Is chosen so large that all Ions became 

centers of condensation and by the number of drops It Is possible to 

count number of Ions.» Thus, a question about the number of centers 

of condensation does not appear here. 

It Is another matter In gas-dynamic processes, such as expan- 

sion of gas In wind tunnels, expiration from Jets, or the scattering 

of a gas cloud formed as a result of heating and evaporation of Ini- 

tially solid matter, for Instance metal. Here speed of expansion 

♦At the same time nuclei not containing ions virtually are not 
formed, 
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is determined by the general dynamics of the process, and the number 

of centers of condensation. I.e., in the end the number of drops of 

condensate. Is unknown and depends on speed of expansion. Even If 

In the gas there are Ions (which does not always occur, of course), 

during sufficiently slow expansion they do not all become centers of 

condensation by far. In virtue of 

the above-stated causes, supersatura- 

tlon In the system due to intensely 

proceeding condensation can fall af- 

ter only part of the ions are turned 

into centers of condensation. All 

the more unknown Is the number of 

centers In pure vapor In the absence 

of outside particles. The number of 

centers of condensation depends on 

the maximum accessible supersatura- 

tlon (supercooling) and Is determined 

by the play of opposite Influences; 

cooling of vapor owing to the accom- 

plishment of the work of expansion 

and the heating of it due to emanation 

of latent heat during condensation. 

In § 12 It will be shown how It Is possible to calculate number 

of centers of condensation, knowing speed of expansion and cooling 

of vapor. 

Pig. 8.14. T, V-dlagram 
for condensation process 
during adiabatic expan- 
sion of vapor. P) adla- 
bat of Polsson for vaporj 
NP) curve of saturated 
vapor; 0) point of satu- 
ration; DR; adlabat of an 
equilibrium, two-phase, 
vapor-llquld system; PA) 
actual adlabat of vapor- 
llquld drops system, 
taking Into account ki- 
netics of condensation. 

§ 11, Thermodynamics and Kinetics of the 
Condensation Process 

Let us consider the process of condensation In an adiabatlcally 
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expanded substance from a purely thermodynamlc point of view. I.e., 

assuming that at every moment of time there Is thermodynamlc equili- 

brium. Up to the moment of saturation vapor was expanded, following 

adlabat of Polsson. After achievement of a state of saturation and 

the beginning of condensation, substance constitutes already a two- 

phase vapor-llquld system, and equation of adlabat Is complicated 

both due to transformation of part of gas phase Into liquid with dif- 

ferent thermodynamlc properties and because of emanation of latent 

heat. Equation of adlabat of a two-phase system It Is possible to 

record In the following fomu 

lel{l-x) + etx]dT + RT{l-x)Y-[U-{c2-ct)Tldx~0. (8.34) 

Here c^ Is heat capacity of vapor during constant volumej c« Is 

heat capacity of llquldj x Is degree of condensation, defined as the 

ratio of the number of molecules In liquid phase to the total number 

of molecules In a given mass of matter; V Is specific volume of mat- 

ter, which Is less than specific volume of vapor with respect to 1 - 

- xi V ■ V  (l - x) .* In this equation we disregarded surface 

energy of drops of liquid, which is very small as compared to latent 

heat, if drops contain many molecules. Equation of adlabat (8.54) is 

accurate even in the absence of thermodynamlc equllibriunu If the 

state is nonequilibrium, the degree of condensation x is determined 

by kinetics of condensation. In conditions of thermodynamlc equili- 

brium, i.e., "infinitely" slow expansion, vapor at each moment is in 

equilibrium with liquid, i.e., is saturated. The state of matter 

changes along curve of saturation (8.33)* which, if one were to 

♦Specific volume of two-pliase system V « Vllqx + Vva_(l - x), 
where Vi4Q  Is specific volume of liquid phase. Inasmuch as density 
of liquid is much higher than vapor density, at a degree of conden- 
sation not too close to unity, the first member It is possible to 
disregard: V "• VVon(l - x). Heat capacities of liquid and vapor 
eg, c4 in formula (8.34) are assumed constant. 
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replace specific volume of vapor by specific volume of matter, ob- 

tains the form ^ 

i^*^- (8.35) 

If we exclude from the two equations (8,34) and (8.35) degree of 

condensation x, we will obtain a differential equation, which de- 

scribes the adiabatic process in a two-phase system in variables T, 

V, Solution of this equation gives adiabat T('V), Constant of inte- 

gration in the common solution is determined by entropy of matter. 

It is possible to express by temperature and volume at point of sat- 

uration 0, since adiabat, obviously, passes through this point. We 

will not here write out the solution but will depict adiabat in 

Pig, 8.14. It is spread somewhat lower than the curve of saturation, 

which is clear from comparison of formulas (8.33) and (8.35), if one 

were to consider that x > 0,1 - x < 1. During snail degree of con- 

densation, when x « i, adiabat of a two-phase system almost coin- 

cides with curve of saturation. Divergence of both curves determines 

degree of condensation xi 

VmpiT)' 

Degree of condensation monotonically increases along adiabat 

with increase of volume. 

It is curious to note that during adiabatic expansion of matter 

ad infinitum, V-» » (and cooling to zero of temperature, T-+ 0), de- 

gree of condensation along a thermodynamically equilibrium adiabat 

aspires to unityi x -> 1, 

In other words, during unlimited expansion of matter, according 

to the laws of thermodynamics vapor should be completely condensed. 

During adiabatic expansion to a defined volume is condensed only a 

defined part of vapor. 
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In reality, of course, the state of matter In the process of 

condensation never can exactly follow equilibrium adlabatj It only 

more or less nears equilibrium, with which the nearer to equilibrium 

the more slowly external conditions change, i.e., the more slowly 

expansion occurs. 

Above it has already been noted that centers of condensation 

are engendered basically immediately after the passage of the state 

of saturation, at the time of achievement of maximum supersaturation. 

After that, if only expansion does not occxr too fa^t, accelerated 

condensation restricts growth of supersaturation and new nuclei do 

not appear. The state of matter passing through maximum deviation 

from equilibrium adiabat (D. R.) (Pig. 8.14, maximum supercooling), 

nears equilibrium. 

However, degree of supercooling does not drop to zero and actual 

adiabat (P. A.) never attains thermodynamic equilibrium (D, R.), pas- 

sing always lower than the latter. Condensation now proceeds be- 

cause of growth of drops. Simultaneously two processes occun 

direct — the adhesion of molecules of vapor to drops — and the re- 

verse — the evaporation of drops. Speed of growth of drops (i.e., 

speed of condensation) is determined by the difference in speeds of 

direct and inverse processes, with which the greater it is the higher 

the degree of supersaturation. In saturated vapor, i.e., on equili- 

brium adiabat, adhesion and evaporation accurately compensate one 

another and growth of drops is lacking.* 

♦A thermodynamically equilibrium adiabat, strictly speaking, 
corresponds to the state of saturation with respect to a flat surface 
of liquid, l.e,, with respect to drops of "infinitely large" radius. 
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In the course of condensation degree of supersaturatlon, regu- 

lating the balance between adhesion and evaporation, automatically Is 

adjusted to the process In such a way that there exists a surplus of 

adhesion over evaporation and that speed of condensation "follows" 

after expansion of substance. In the system Is maintained a state 

close to equilibrium, i.e., to saturation. 

Considerable deflection from thermodynamic equilibrium can occur 

only during very strong expansion, when acts of adhesion become too 

rare. 

Thus, during the scattering of vapor into a vacuum, the speed 

of adhesion, which is proportional to vapor density, i.e., t"', from 

a certain moment is no longer in a state to follow expansion] con- 

densation ceases, and the remainder of the vapor scatters to infinity, 

again following Poisson's adiabat of gas (Pig. 8.14). There occurs 

hardening, i.e., into infinity matter scatters, not completely con- 

densed as the laws of thermodynamics require but partially in the 

form of gas and partially in the form of drops of condensate (for 

greater detail about this see the following paragraph), 

During fast expansion of matter, condensation carnot "follow" 

expansion, and from the very beginning the state considerably devi- 

ates from thermodynamic equilibrium. During very fast expansion to 

a defined volume, as takes place in a cloud chamber, condensation 

cannot occur during the time of expansion and starts only after ex- 

pansion ceases. During very fast expansion into a vacuum, condensa- 

tion does not occur at all and matter scatters into infinity in the 

gas phase. This corresponds to the biggest deflection from thermo- 

dynamic equilibrium and maximum hardening. 
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§ 12, Condensation In a Cloud of Evaporated Matter, 
Scattering into a Vacuum 

In this paragraph more specifically is considered the process of 

condensation during the expansion of vapor; there will appear basic 

ways of quantitative calculation, and numerical results are presented. 

Let us observe how condensation proceeds in a cloud of evaporated 

matter expanding into a vacuum. We will consider the phenomenon of 

"explosion" of large meteorites during an impact against the surface 

of a planet (deprived of atmosphere) or during collisions with aster- 

oids, about which was mentioned in the beginning of § 6. We are in- 

terested in the question, in what form does evaporated matter of the 

ground of a planet and the body of a meteorite scatter into interplan- 

etary space: in the form of pure gas or in the form of ultimate par- 

ticles and what are the dimensions of the latter? The aoT •tlon  of 

this problem was obtained in the work of one of the authors [19] ,* 

All numerical results will refer to the condensation of the va- 

por of iron, in reference to the case of the evaporation of the body 

of iron meteorites. Let us observe when a state of saturation is 

attained during expansion of iron vapor. Below, in the table, are 

represented calculated temperature T^ and density (number of atoms in 

i cnr nJ of vapor at the time of saturation for several values of 

entropy of vapor S, Assuming that the process of expansion proceeds 

adiabatically, it is possible to say that the very same entropy is 

possessed by "solid" iron at the time of heating. In the table are 

represented magnitudes of initial heating e0 and temperature TQ of 

iron during normal density of solid metal, corresponding to these 

♦Certain qualitative remarks about the phenomenon of condensa- 
tion of an evaporated substance were done in the work of the authors 
[20], 
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values of entropy. These magnitudes were calculated with the help of 

the method presented In § 14, Ch. Ill (considered are both the nuclear 

and the electron part of heat capacity). In the last column stand 

the average speeds of scattering of a gas sphere of iron atoms, esti- 

mated by the formula u « /5e^ (see § 6), i.e., on the assumption that 

by the moment of condensation, vapor was already strongly cooled and 

all initial energy of heating was turned into kinetic energy of scat- 

tering. 

Let us estimate the number of centers of condensation, i.e., 

number of particles of condensate in final state. The theory of for- 

mation of nuclei of liquid phase in pure supersaturated vapor was 

well-developed by a number of authors: Pol'mer, Bering, and Derlng, 

Parkash, Ya. B. Zel'dovlch, Ya. I. Prenkel». A detailed account of 

it with references to original works can be found in a book of Ya. 

I. Prenkel» [21] (see also [22]). We will remember here only basic 

positions of this theory. 

u   Tf To. ev 
' mole»d«g 

T?. «K 
1 

om0 
km 

atom "• see 

25,6 
71,9 
138 
222 

5 
10 
15 
20 

48,3 
60,8 
71,5 
81.3 

3100 
2130 
1700 
1430 

8,01-101» 
7,15-101« 
2,86-101* 
1,43-10« 

9.2 
15,5 
21,4 
27.2 

 K 

. fc.-.- 

In vapor phase;, from time to time,, occur fluctuations, at 

which molecules of vapor cohere, forming molecular complexes — nuclei 

of liquid phase. In unsaturated vapor, when gas phase is stable, 

complexes are unstable and soon disintegrate (are evaporated). In 

supersaturated vapor only complexes of very small dimensions are un- 

stable. Increase of the smallest complexes because of adhesion of 

new molecules Is unprofitable with respect to power because of 
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growth of surface energy on the boundary between liquid and gas phases, 

Growth of complexes of sufficiently large dimensions Is profitable 

with respect to power since favorable volume energy effect (emana- 

tion of latent heat) during sufficiently large dimensions becomes 

larger than unfavorable surface. During every degree of supersatura- 

tlon there exist defined, critical sizes of complexes. Supercritical 

nuclei (with radius larger than critical) are stable, "viable" and 

reveal a tendency toward further growth and transformation into drops 

of liquid. Speed of formation of viable nuclei of centers of conden- 

sation is proportional to the probability of the appearance of com- 

plexes of critical sizes« For the formation of such complexes there 

should be expended some energy A*  i it is necessary to surmount 

the potential barrier, therefore, the probability of such fluctua- 

tions, according to the law of Boltzmann, is proportional to exp 

Magnitude of potential barrier A*   or activation energy de- 

pends on critical radius of the complex and is simply connected with 

the degree of supersaturatlon, which it is possible to characterize, 

for Instance, as a magnitude of supercooling 

ö"—ä . 

Here T is vapor temperature, saturated at a given density, and T is 

actual vapor temperature. 

Speed of formation of viable nuclei, i.e,, the number of centers 

of condensation from calculation per one molecule of vapor, appearing 

in 1 sec. in stationary conditions, when in the system there is main- 

tained constant supersaturatlon (supercooling), and supercritical 

nuclei depart from the system with replacement by an equivalent 

quantity of vapor, is equal to 

/-cri (8.56) 
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where 

■x — 
Here n Is the number of molecules of vapor In 1 cur j v Is their 

thermal velocltyj a Is surface tenslonj cu is volume In liquid, hap- 

pening per one molecule.» q ■ U/R Is expressed In degrees of heat of 

evaporation. Critical radius r* of a nuclei is connected with degree 

of supercooling by the formula 

It is possible to generalize a theory in the case of electri- 

cally charged nuclei inside which is an ion (see [19]). Speed of 

formation of nuclei, as before, is described by formula (8.36)1 only 

constant b decreases. 

Let us compose an equation of the kinetics of condensation. Let 

us make a basic assumption about the fact that the process of expan- 

sion of vapor occurs so slowly that the process of formation of nuclei 

it Is possible to consider quasi-stationary. Speed of formation 

moreover at each moment of time coincides with stationary speed 

(8»36), corresponding to actual supercooling 0, which exists in the 

system at a given moment. 

If l(t0 is the number of centers of condensation appearing in 

1 sec. at moment t' (from calculation on one molecule of vapor), and 

g(ttO is the number of molecules at moment t In a drop of liquid 

which grew from the nuclei appearing at time t*, then the degree of 

condensation by moment t x(t) it is possible to record in the form 

Integration with respect to time here is conducted from the mo- 

ment of saturation, i.e., from the moment when nuclei started to ap- 

pear. 
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The speed of growth of a drop of supercritical dimensions Is 

equal to the difference In the speeds of adhesion of vapor molecules 

to the surface of a drop and the evaporation of the drop. It can be 

approximately recorded In the form (see [19, 21]) 

-g- = 4«rW(l-rr)f (8.38) 
o _ 

where kirv    Is magnitude of surface of drop; nv Is flux of molecules 

of vapor. The factor In parentheses Is proportional to the difference 

of speeds of adhesion and evaporation. In the state of saturation, 

when 9-0, adhesion and evaporation compensate one another and speed 

of growth Is equal to zero.* In supersaturated vapor 6 > 0 and a 

drop on the average grows, dg/dt > Oj In unsaturated vapor — 0 < 0 

and a drop on the average evaporates, dg/dt < 0. 

Equations (8.37), (8.58), (8.36), together with equation of adl- 

abat of a two-phase system (8,34), by the formula of saturated vapor 

(8.33) and law of expansion of matter, which In the case of scatter- 

ing Into a vacuum Is given by expression (8.25), form a full system 

of equations for calculating the kinetics of condensation. 

In accordance with the qualitative picture presented In preced- 

ing paragraphs, the solution of this system It Is possible to divide 

Into two Independent stages. The first stage Is the consideration 

of the small Interval of time Immediately after achievement of a 

state of saturation, when supercooling at first grows, and then, 

parsing through maximum, drops due to starting condensation. In this • 

short stage muclel appear. Calculation of their quantity, equal to 

V"» 

ll 

♦Here will be disregarded the influence of curvature of drop. 
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gives the full number of particles of condensate (from calculation 

on one initial molecule) , Actually integration with respect to time 

here spreads not to t « «, but to a very short interval of time, 

since in virtue of formula (8.36) speed I very sharply drops. Just 

as supercooling, passing through maximum, starts to decrease. 

The second stage is the consideration of the growth of the al- 

ready known number of drops during all the subsequent stage, up to 

t -* «t 

A strict solution of the system of equations presents, of course, 

great difficulties. In work [19] is an approximate solution. The 

approximate consideration of the first stage is based on the extra- 

ordinarily sharp dependence of 1(6), in virtue of which it is possible 

to consider that practically all nuclei are formed during a very 

short time near the moment when supercooling is maximum (solution in- 

deed leads to an extreme form of dependence of 0(t)). 

Referring, for details of the solution, to work [191, we will 

give results of calculation for a concrete example. 

Let us consider a sphere of atoms of iron with a mass of 35*000 

m, which was heated and turned into dense gas, let us say, during 

the impact of a huge iron meteorite against the surface of the Moon. 

Let us assume that speed of impact was such that initial heating of 

iron ax; normal density composed e0 » 72 ev/atom. Initial tempera- 

ture was T0 - 10 ev « 116,000° K. In the stage of strong cooling by 

the moment of saturation vapor scatters practically inertially, with 

average speed u ■ 15.5 km/sec. Vapor becomes saturated at time t. - 

—2 ■ 6.8 • 10~ sec from the beginning of scattering during expansion 

to a radius of 1050 m. With this T1 - 2150° K, ^ - 7.15 • 10l6 cm5. 

In § 8 it was shown that during the scattering of initially 

hlgh-ionlzed gas into a vacuum, there remains In It, even in the 
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stage of strong cooling, residual lonlzatlon, which is much higher 

than thermodynamlc equilibrium. In our example the residual degree 

-IJ. , 
of lonlzatlon Is equal to approximately 2.1 • 10  (equilibrium lonl- 

-8 
zatlon by the moment of saturation would be equal to 4 • 10" ) . It 

Is possible to trust that centers of condensation under conditions 

of such considerable lonlzatlon will contain Ions, As calculations 

show, the number of centers of condensation very weakly depends on 

whether they are charged or not, so that the assumption about the 

fact that condensation proceeds on Ions Is not essential. 

Maximum accessible supercooling in our example turns out to be 

equal to 9        » 0.0765 {b/0wQv » 45.1). A nucleus of critical dimen- 

slons, with such supercooling, contains 46 atoms. The number of cen- 

-11 
ters of condensation v « 4 • 10 ' per atom, i.e., much less than the 

/      -4^ 
number of ions per atom (2.1 • 10 j, in distinction from the process 

in a cloud chamber, where all ions become centers of condensation. 
_5 

Only an insignificant fraction of nuclei of the order of 10  is not 

charged. 

Consideration of the second stage, growth of drops, shows that 

during a prolonged time condensation "follows" expansion of matter, 

and in the system there is supported a state close to saturation. 

Only by moment t« ^ 2,5 sec during the scattering of a sphere to 

40 km, does density of matter become so small that further growth of 

drops ceases and hardening sets in. By this moment, and this means, 

only then, is condensed approximately half of iron vapor. By knowing 

the degree of condensation x^ and the number of particles of conden- 

sate, can be found also their dimensions (number of atoms In a par- 

ticle is equal to x^w"1).  In our example, to infinity scatter iron 

-5 21 
particles 2,1 • 10 ^ cm in radlusj all of them r5 . 10 . 
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Approximately half of the matter departs to infinity in the form of 

gas. 

Theory permits eßtablishing approximate laws of similarity for 

transition to other initial conditions. It turns out that during 

conditions of sufficient slowness of expansion, when initial assump- 

tions are accurate^ the degree of condensation of a given substance 

during scattering to infinity does not depend on initial conditions, 

but dimensions of particles of condensate are proportional to initial 

linear dimensions of an evaporated body (to the cube root of mass) 

and fast decrease with growth of initial heating, 

§ 13. Concerning the Question of the Mechanism of Formation of 
Space Dust. Remarks About Laboratory 

Investigation of Condensation 

It Is necessary to realize that, considered in the preceding 

paragraph, the process of condensation of an evaporated substance 

during scattering into vacuum is one of the mechanisms of formation 

of space dust in the solar system (this assumption was expressed in 

work [19]). In interplanetary space there are little particles of 

various dimensions, which we call space dust. Sometimes these par- 

ticles fall on Earth in the form of meteoric rain» During their 

revolution around the Sun, particles experience a certain braking 

under the effect of aberrational component of light pressure.* The 

♦Light pressure itself basically acts in a radial direction. 
The force of pressure is inversely proportional to the square of the 
distance of a particle to the Sun, and its action is equivalent to 
only a small decrease of gravity force, i.e., the radial component 
of light pressure influences only the radius of orbit. Braking is 
caused only by a (tangent to orbit) component of light pressure, ap- 
pearing due to aberration of light. For greater detail about this, 
see book of V, G. Fesenkov [25] . 

i 
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6      h 
smallest particles with dimensions of the order of 10" - 10 ^ cm fall 

on the Sun and disappear (see about this in [2J]) . Consequently, in 

the solar system there must exist a source making up reserves of 

minute particles of space dust. 

It was noted (in particular, by K. P. Stanyukovich) that such 

a source can be the mechanical breaking up of matter during collisions 

of small bodies of the solar system — asteroids — or during impacts 

of meteorites against the surface of a planet deprived of atmosphere 

when particles, obtaining considerable speed, burst from the field 

of attraction and, not being braked in the atmosphere, depart into 

space. 

It is possible to think that the above-described phenomenon of 

condensation of evaporated matter of the ground of planets, meteo- 

rites, or asteroids also is a supplier of minute particles. 

During energetic collisions of asteroids, when kinetic energy 

of the impact is sufficient for the full evaporation of both colli- 

ding bodies, the mechanical effect of the breaking up of solid matter, 

in general, is absent since all mass is completely evaporated. In 

this case, for the formation of minute particles there is only the 

mechanism of condensation. 

Liquid drops, growing during condensation, gradually cool thanks 

to losses of energy on thermal radiation and harden. It is possible 

to show that the process of cooling by radiation proceeds much faster 

than evaporation of heated particles, which is very sharply delayed 

according to cooling. Thus, once born, particles of condensate will 

continue their existence in the form of hard dust motes. Inasmuch 

as in the cosmos there occur collisions of bodies of the most vai-led 

dimensions and speeds, there are born particles of condensate also 
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of the most varied dlmenslonB, 

The phenomenon of condensation of evaporated matter during gas- 

dynamic expansion It Is possible to use also for laboratory study 

of condensation of the vapor of metals or other solid (and liquid) 

substances and the study of optical properties of minute particles. 

Dimensions of particles of condensate depend on Initial condl- 

tlons| therefore, by means of corresponding selection of these con- 

ditions It Is possible to obtain. In the laboratory, particles of 

desirable dimensions. Let us give results of a rough estimate for 

conditions close to laboratory conditions. If one were to quickly 

evaporate 1 g Iron, having Imparted to It, by any means. Initial 

energy of e0 = 13 ev/atom corresponding to Initial temperature (dur- 

ing density of hard metal) T0 ■ 55,000° K, then condensation of vapor 

during scattering Into a vacuum (in an evacuated vessel) Is finished 

-5 
by moment t - 5 • 10  sec during the scattering of a small cloud 

~k 
50 cm. Particles of condensate have dimensions of the order of 10 ' 

cm. 

Calculations of kinetics of condensation are easily transposed 

also to other possible laws of expansion of matter, which take place, 

let us say. In a wind tunnel or during expiration from a Jet. These 

calculations do not contain anything new In principle, as compared 

to the case of scattering Into a vacuum, and we will not pause on 

them. Let us note that If degree of condensation of vapor Is small 

or total energy of vapor Is much larger than heat of evaporation, 

condensation shows little on gas dynamics of the process. Kinetics 

of condensation It Is possible to calculate on the basis of the known 

gas-dynamic solution found In the first approximation, without taking 

Into account condensation. Just as we did In the preceding paragraph. 
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CHAPTER  IX 

LIGHT PHENOMENA IN SHOCK WAVES AND DURING STRONG 
EXPLOSION IN AIR 

1. Brightness of Front of Shock Waves of Great 
Amplitude In Gases 

§ 1, Qualitative Dependence of Luminance Temperature 
on True Temperature after the Front 

Optical measurements have great value for determination of 

temperature of highly heated bodies and. In general, for investigation 

of high-temperature processes. The usual method consists of measuring, 

in some manner, the brightness of the surface of a luminescent body 

(by photographic means, with the help of photocells, electron-optical 

multipliers). Then by the brightness find the effective temperature 

of radiation, which, by definition, coincides with the temperatare of 

an ideal black radiator sending from the surface precisely the same 

luminous flux as the investigated object (see § 8, Chapter II), 

Especially wide-spread are photographic methods of determining 

brightness and effective temperature,   nded on a comparison of 

degrees of blackening, which produce on photographic film light 

emanating from the body and light from a standard source with known 

temperature and spectrum, let us say, from the sun. For greater 

accuracy we pf^otograph usually in a narrow spectrum section, since the 
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studied object and the standard source, possessing different temper- 

atures, send different spectra of radiation, and furthermore, on the 

wave length of the light depends sensitivity of photographic material, 

which creates difficulty during recalculation of degree of blackening 

by temperature. 

Optical (In particular, photographic) methods are widely applied 

also during the study of shock waves, Qas, heated In a strong shock 

wave to high temperature, radiates, and the surface of the front of 

the wave gleams. The brightness of the glow depends on the amplitude 

of the shock wave and the dimensions of the heated region after the 

front. So that effective or actual luminance temperature, measured 

during the experiment, can be Judged relative to true temperature of 

substance after the front of the wave, confidence is necessary in the 

fact that a luminescent object radiates as an ideal black body. 

If the front of the shock wave constitutes a "classical" Jump 

and after it spreads a quite extended, optically thick region with 

more or less constant temperature equal to the temperature after the 

front, then heated matter, limited by the surface of the front, radi- 

ates from the surface as an ideal black body.» Measuring the bright- 

ness of the surface of the front, it Is possible in such a case to 

*If the region of heated gas after the "classical" Jump is 
optically thin (for Instance, the shock wave departs only a small 
distance from the piston creating it, inserted In the gas), the gas 
emits light as a volume radiator. Luminous flux, outgoing from the 
surface of the optically thin layer in the direction of normal to the 
surface, is equal, as was shown in § 7, Chapter II, to: S « S 

[1 - exp (-H^d)], where SVT3 is flux corresponding to an ideal black body 

of the same temperature, >t^ is the coefficient of absorption, and d is 

the thickness of layer heated by shock wave. During small optical 

thickness >^d « 1, Sv = S x^d « S . In a limit of H^d » 1 flux 

aspires to Planckian Sv ■ S , As was noted in § 21, Chapter V, while 

studying the build-up of brightness S^ in time t ■ d/D (D Is speed of 
wave), I, Sh. Model' measured the coefficients of absorption of red 
light in a shock wave [1], 
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determine directly the temperatures after the front of a shock wave. 

I.e., amplitude of wave, which Is Important not only for experimental 

Investigations hut, also. It has great practical value. Experience 

shows that in a certain range of amplitudes (and, of course, during 

sufficiently great thickness of heated region after the front) the 

front of a shock wave. Indeed, radiates as a black body. This Is 

confirmed by the fact that luminance temperature coincides with 

temperature after the front, calculated on the basis of shock rela- 

tionships and equation of state along one of the other experimentally 

determined parameters of the front, let us say, by speed of propagation 

of the shock wave. 

However, experiments and theoretical consideration show that such 

coincidence cannot be observed at any amplitudes. Luminance temper- 

ature of a sufficiently strong shock wave becomes less than true 

temperature after the front, where starting from a certain amplitude, 

it drops very fast during growth of amplitude; it attains a limiting, 

comparatively low value and, subsequently, hardly changes during any 

amount of large increase of amplitude. Typical dependence of luminance 

temperature of the front of a shock wave on true temperature after the 

front is depicted in Pig. 9.1* where is represented a curve, obtained 

on the basis of theoretical appraisals (made in the following para- 

graphs), of effective temperature of red light for a shock wave in 

air of normal density. Fig, 9.1 testifies to the existence of the 

effect of "saturation" of brightness. However strongly gas is heated 

by a shock wave, even up to a million degrees, nevertheless it is 

impossible to "see" a temperature higher than hundreds of thousands 

of degrees; there exists an upper limit of temperature after the front 

of a shock wave, which it is possible to "see". 
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This effect can be easily explained on the basis of concepts 

about the structure of the front of a shock wave, taking Into account 

the radiation presented In § 3,  Chapter VII. The question on bright- 

ness of front of shock waves of great amplitude was considered In the 

works of authors [2-4], 

We will consider that after the front of a flat shock wave there 

spreads a sufficiently extended, optically thick region with a constant 

high temperature, and we will observe what kind of flux of visible 

radiation, which emerges from the surface of the front of the wave 

and Is recorded by an Instrument, Is located far from the front, at 

"Infinity", 

Let us consider at first a 

shock wave not too great in amplitude, 

in which the role of radiation is 

Insignificant and there is no heating 

of gas before compression shock.  If 

one were to digress from the change 

of temperature in the front, connected 

with relaxation processes in gas. 

Fig. 9.1. Dependence 
of luminance temperature 
of the surface of the 
front of a shock wave 
in the air on true temper- 
ature after the front (for 
red light). 

then the distribution of temperature 

in the shock wave constitutes the "clastiical" Jump, shown in Fig. 9.2a. 

Thickness of Jump, together with relaxation layer, usually is much 

less than range of radiation; therefore, we have a typical example of 

an ideal black radiator: an optically thick layer of heated (to 

constant temperature T,) matter is limited by a surface with a very 

sharp Jump of temperature. If cold gas is before the front, as usually 

occurs, it is transparent in the visible part of the spectrum (is 

colorless); the instrument will register luminous flux, corresponding 
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to Plancklan radiation of temperature T.; the effective temperature 

of radiation will be equal to the true temperature of gas after the 

front. 

Let us consider now a shock wave of great amplitude, let us say, 

with temperature after the front of T. « 65,000oK.  Prom the surface 

of shock discontinuity, basically, there are radiated quanta with 

energies of the order of ten or several tens of ev.  (Maximum of 

Plancklan spectrum at a temperature of T = 65,000 K was apportioned 

to quanta hv  « 2,8 kT « 16 ev), Such quanta exceed lonlzatlon 

potentials of atoms and molecules, are very strongly absorbed In cold 

gas before shock discontinuity, and heat It, Before the shock dis- 

continuity there will be formed a heated layer, and the profile of 

temperature In the shock wave obtains the form depicted In Pig, 9.2b 

(In air, for Instance, during T. = 65,000 K maximum temperature of 

heating before the actual shock Is T ■ 9000OK). 

In distinction from cold, heated 

gas always absorbs little quanta of 

visible light (hv ~ 2-5 ev), In 

monatomic gases, quanta smaller than 

lonlzatlon potential of atoms I, are 

absorbed by excited atoms, whose 

excitation energy exceeds 1 — hv } 

in accordance with the law of 

Boltzmann, concentration of excited 

I - hv 

a)     r.      ^| 
— r, 

^ r h 

C)      -TZ 
K_ T, 

Fig. 9.2. Concerning the 
question of glow of a shock 
wave. 

atoms is proportional to exp [ — kT •], so that coefficient of 

absorption very sharply, by Boltzmann law, increases with increase of 

temperature ^ ~ exp ( - I ^T 
V )» In molecular gases, such as air, 

there is still a number of other mechanisms of absorption of visible 
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light; in any case the coefficient of absorption of visible light is 

always very sensitive to temperature and grows fast during heating. 

Now the quanta of visible light, which are radiated from the 

surface of the shock discontinuity and whose flux for the actual shock 

corresponds, roughly speaking, to temperature T,,* before getting on 

the recording instrument located at "infinity", have to penetrate 

through heated layer. They are partially absorbed in this layer. 

Therefore, the effective temperature of visible radiation of the front 

of the shock wave will be .less than true temperature after the front: 

the heated layer, as it were, shields the highly heated gas after the 

front of the shock wave. Shielding and, consequently, deflection of 

T - from T. is stronger, the greater the optical thickness of the 

heated layer for visible light TV,** i.e., the higher the temperature 

of heating and the higher the amplitude of the wave. 

While optical thickness TV « 1, shielding is insignificant, and 

deflection of T f from T. is very small; -ehe front gleams as a black 

body of temperature T., Because of the clear dependence of absorption 

of visible light on temperature and, in turn, the rather sharp depend- 

ence of temperature of heating on amplitude of wave (see § 16, Chapter 

VII), the beginning of strong shielding, corresponding to the achieve- 

ment of optical thickness TV of a magnitude of the order of unity, 

very clearly sets in during growth in amplitude of wave. In air strong 

*In reality the flux of quanta is somewhat larger, since directly 
after the discontinuity the temperature is higher than the temperature 
after the front (see Fig, 9.2b), 

**It is emphasized that optical thickness of the heated layer for 
visible radiation T has nothing in common with (averaged over the 

spectrum) optical thickness of the layer corresponding to the large 
quanta "controlling" the heating. As was shown in § 16, Chapter VII, 
temperature in the heated layer drops approximately exponentially with 
respect to averaged optical thickness T = T_exp (—T5|T|) (at T_< T.), 

so that averaged thickness of the layer is of the order of unity, 
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shielding starts at a temperature after the front of near T. = 

= 90,000OK (Bee § ;3). 

In a shock wave of still larger amplitude, optical thickness of 

heated layer for visible light is larger than unity, and the layer is 

almost absolutely opaque for visible quanta radiated by highly heated 

gas after the front of the wavet shielding of this region is almost 

full. Thus, with increase of amplitude of wave, effective temperature 

of visible light in the beginning coincides with temperature after the 

front, then starts to lag behind it, passes through a clearly expressed 

maximum ("saturation" of brightness) and fast drops. 

The appearance of strong shielding by the heated shell does not 

signify, however, that the brightness of the front of a shock wave of 

very great amplitude drops to zero and the wave ceases to gleam. 

Heated gas before a shock discontinuity not only absorbs but radiates 

visible light itself. While the temperature of heating is not very 

high and the shell is transparent, intrinsic emission of it is lost 

against the background of passing visible radiation, emitted by the 

much more strongly heated gas after the front. When the heated layer 

absolutely ceases to pass the high-temperature light, to the first 

plane comes forward its intrinsic radiation. 

In order to obtain an idea on the brightness of this intrinsic 

radiation of the heated layer, let us note that the temperature in it 

monotonically Increases, starting from "zero," more exactly, from the 

temperature of the cold gas before the front. Due to sharp temperature 

dependence of absorption of visible light in the most forward layers of 

the zone of heating, where the temperature is low, light is not 

absorbed and is not radiated. In deeper layers during high temperature 

visible quanta are Intensely emitted, but right here again they are 
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absorbed, being not In a state to emerge outside In virtue of opacity 

of gas. To "infinity" from the surface of the front there emerge 

quanta, generated In a certain Intermediate, radiating shell of the 

heating zone, distant from "infinity" at an optical distance (corre- 

sponding to frequencies of visible light) of the order of unity. In 

Fig. 9.2c radiating layer Is shaded. Obviously, effective temperature 

of radiation coincides with average temperature of radiating layer. 

The position of the layer Is determined only by the profile of the 

temperature of gas T (x) and by temperature dependence of absorption 

n    (T) on the condition that the layer will stand from the cold gas 

at an optical distance of the order of unity. As was shown In § 17, 

Chapter VII, profile of temperature on the front edge of the heated 

zone in shock waves of great amplitude hardly depends on amplitude of 

wave. Consequently, also not dependent on amplitude is Intrinsic 

radiation of the heated layer, i.e., effective temperatures of a very 

strong shock wave. In air of normal density this limiting luminance 

temperature in red light is equal approximately to 20,000^ (see § 'i). 

The effect of shielding and the sharp understating of luminance 

temperature of the front of the shock wave, as compared to true temper- 

ature after the front, was observed experimentally by I, Sh. Model' 

[1]. In his experiments, by photographic means was measured luminance 

temperature of the front of shock waves in heavy inert gases — xenon, 

krypton, and argon — in which it is possible to obtain high temperatures 

in a shock wave. Speed of the front in these experiments was equal to 

17 km/sec. Optical thickness of the heated region after the front of 

the shock wave was known to be great, so that in the absence of 

shielding the front had to radiate as a black body. However, by 

experiment was observed a luminance temperature of 30*000-35J000 K, 
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which was several times lower than the temperatures after the front 

T., calculated by speed of front and shock relationships (in Xe — T. ~ 

^ 110,000%,  in Kr - 1^ « 90,000oK, In Ar - ^ « 60,000OK).  If one 

were to consider that the accuracy of experimental determination of 

effective temperature of visible (red) light was not less than ±20^, 

then the shown divergence must be attributed, namely, to the shielding 

by the heated layer. Unfortunately, in experiments of I. Sh, Model' 

there was recorded only one point with respect to amplitude of wave 

that does not give the possibility of tracing the character of the 

entire curve of dependence of luminance temperature on true temper- 

ature after the front. 

It is necessary to note that the phenomenon of "saturation" of 

brightness during high temperatures was observed by many authors in 

spark discharge.* It is known that increase of entering speed of 

energy into channel of spark discharge, starting from a certain speed, 

does not lead to increase of luminance temperature higher than 

~ij5,000 K in air.   Also limited is the temperature of glow and 

during discharge in argon, xenon (during discharge in capillaries 

higher temperature is observed — near 90,000oK in air). 

At present it is still Impossible with confidence to Judge the 

nature of this effect of saturation: whether it is connected with 

shielding of high temperatures in the channel, in what measure is 

there similar shielding in a shock wave, and whether true temperature 

is limited in the channel at the expense of losses on radiation, etc. 

♦Source material can be found in the survey of M. P. Vanyukov and 
A. A. Mak [5] about strobe lights of high brightness, and also in the 
work I. Sh. Model' [1]. 
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§ 2. Absorption of Light Quanta in Gold Air 

Of especially great practical Interest is the question on 

brightness of strong shock waves In air of normal density, which we 

will consider more specifically. It Is necessary to determine the 

upper boundary of amplitude Interval In which the front of a shock 

wave radiates visible light as an Ideal black body and to estimate 

maximum and limiting luminance temperature. The problem leads, 

obviously, to an appraisal of the optical thickness of heated layer 

for visible radiation, which determines degree of shielding of highly 

heated region after the front, and to finding t;ie intrinsic radiation 

of the heated layer. 
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For this it is necessary, first of 

all, to deflnltize the geometric thickness 

of the heated layer and the distribution 

of temperature in it with respect to 

geometrical coordinate, which, in turn, 

depends on how there are absorbed in the 

air comparatively large quanta with 

energies of the order of tens to hundreds 

of ev, responsible for heating of gas 

before the shock discontinuity. Let us 

summarize data known from literature 

about the absorption of such quanta in 

cold air. 

Above we have repeatedly noted the well-known fact that cold air 

Is absolutely transparent for visible light. Noticeable absorption 

starts in the ultraviolet region of the spectrum at wave length 

am   m   m   m.  am 
Wave length *•* 

Fig. 9.3. Coefficient of 
absorption of ultraviolet 
radiation in cold air. 
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o 
X = i860 A (hv =  6.7 ev).* For absorption Is responsible a system of 

o 
Schuman-Runge bands of oxygen molecule, which at X = ,1760 A (hv = 

=7.05 ev) passes Into continuum, connected with dissociation of molecule 

during absorption of light. Absorption fast increases with increase 
0 -1 

of energy of quanta (at X = i860 A H^ = 0.0044 cm ), and at hv « 8 ev 

attains a magnitude of the order of nv  « 100 cm . The experimental 

curve of the dependence of the coefficient of absorption on wave length 

in this region of the spectrum is shown in Fig. 9.5.** Quanta exceeding 

ionization potentials of molecules of oxygen and nitrogen I0p = 

= 12,1 ev, Iw »15.6 ev, experience strong photoelectric absorption. 

Effective absorption cross sections from basic level of molecules 

weakly depend on frequency in the range of energies from hv ^ I  and 

-18  2 
hv ~  25 ev and are equal approximately to a0 = 5.10   cm , a« = 

-18  2 -1 
» 5.10   cm , which gives coefficient of absorption K^ « 120 cm , 

During further increase of frequency, coefficient of absorption should 

experience Jumps connected with successive inclusion in the absorption 

of different electrons filling L-shell of atoms of nitrogen and oxygen. 

Levels in the L-shell, apparently, will be not too far from each other, 

so that Jumps, probably, lie in the region of energies hv from 13 to 

30-40 ev (experimental data about Jumps, as far as we know, are 

lacking). 

After that, the coefficient of absorption monotonically drops 

with increase of frequency up to energy of quanta bv. = 410 ev, equal 

K-binding energy of nitrogen atom (for oxygen boundary of K-absorption 

♦Strong absorption of close ultraviolet solar radiation in the 
o 

region \ ~ 2000-3000 A is connected with the existence of an ozone 
layer at a height of ~ 25 km. Oxygen and nitrogen do not absorb in 
this part of the spectrum; therefore, talking about shock waves in air 
near the surface of Earth, one should establish upper boundary of 

transparency of air for X ~ l8ö0 A. 
»♦The curve is taken from the work Schneider [6], 
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hv^ = 530 ev). During energy hv^ - 410 ev absorption coefficient 

sharply Increases, since quanta larger than hvk are able to knock out 

K-electrons from atoms of nitrogen, but then monotonlcally drops to 

hv^ » 530 ev, when In absorption are Included K-electrons of oxygen. 

Coefficients of absorption of quanta hv    » 410 ev before and after 

Jump of K-absorptlon In nitrogen, calculated according to [7, 8], are 

—1       —1 
equal to 1,6 cm  and 35 cm , Experimental material on absorption 

of air In the Intermediate region of frequencies from tens to hundreds 

of ev Is extraordinarily scantyt measurements, as far as we know, 

were done only for two lines, hv » ±82  ev [9] and hv - 280 ev [10], 

On the basis of all this fragmentary Information Is composed a 

table which gives a more or less graphic presentation about coeffi- 

cients of absorption and mean free paths of quanta In tens and hundreds 

of ev In cold air of normal density. 

Table 9,1 

fcyi   3V 8 13-25 182 280 .   410 
Before 
Junp 

410 
After 
Junp 

Xv. wr» |     100 -120 12 5.3            1,6 35 

/„. CM     |   0,01 0,0063 0,083 0,19    |    0,63 0,029 

i- 

§ 3. Maximum Luminance Temperature for Air 
m 

In § 16, Chapter VII It was shown that If amplitude of the shock 

wave is less than critical (and In air of normal density, critical 

amplitude corresponds to temperature after front of T, « 285,000%), 

then the transfer of radiation from the highly heated region after 

the front to layers located before the shock discontinuity does not 

have diffusion character. The air In them Is heated to temperatures 

much lower than the temperature after the front, and emission of 

radiation In the zone of heating Introduces practically no contribution 
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to the passing radiation flux, generated after the discontinuity. Air 

Is heated simple In virtue of the absorption of passing quanta at 

distances of the order of mean free paths for absorption, and thickness 

of zone of heating Ax In order of magnitude Is equal to the mean free 

path of I  those quanta which carry the basic energy of the spectrum. 

Mathematically this Is expressed by formula (7.55)* determining 

exponential drop of heating with respect to averaged optical thickness 

T, corresponding to a certain coefficient of absorption n = l/l, 

averaged over the spectnmu 

X 

e^e.e-^M, T=Jxrfx* (9.1) 
o 

This formula showu that effective optical thickness of heated 

layer Is of the order of unity. I.e., geometric thickness Is of the 

order of Ax ^ 1/K  » I, 

Prom the table In the preceding paragraph it follows that mean 

free paths of quanta with energies of the order of 10-100 ev In cold 

-2    -1 
air change from 10  to 10  cm» 

It Is easy to see that the mean free paths of these quanta are 

such approximately even In not too strongly heated air In the zone of 

heating. 

Let us consider, for Instance, a shock wave with a temperature 

after the front of T. ■ 65,000°^  Maximian of Plancklan spectrum was 

apportioned to quanta hv  ■ 16 ev, i.e., a considerable part of the 

energy of the spectrum Is concentrated In an energy band from quanta 

exceeding lonlzatlon potentials of atoms and molecules hy > I «< 13 ev. 

♦Formula (7.55) Is recorded not for specific Internal energy but 
for temperature. Formula (9.1} Is more general; It Is accurate even 
In those cases when heat capacity depends on temperature, as takes 
place In air. 
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The biggest temperature of heating, as Table 7.2 shows Is 

T_ » 9000oK,  With such a temperature degree of lonlzatlon and 

excitation of atoms is small, i.e., quanta hv  » I are absorbed 

practically the same as in cold air. If one were to take a more 

powerful shock wave, let us say, with a temperature after the front 

of T. « 100,000oKJ then maximum of the spectrum corresponds to quanta 

hv  a 24 ev and basic energy of the spectrum is concentrated in the 

region of higher energies of quanta, of the order of several tens of 

ev. 

At a temperature of heating T_ « 25,000oK, first ionization of 

atoms is noticeable, but second is virtually lacking. Quanta with 

energies of several tens of ev knock out from atoms, mainly, not the 

external., optical electrons, but the more deeply lying electrons, 

which at a temperature of ~ 25,000oK still are not touched by thermal 

ionization and excitation. Thus, in this case, quanta carrying out 

heating are absorbed approximately the same as in cold air. 

Hence there can be made the conclusion that the thickness of the 

zone of heating before a shock discontinuity in waves of subcritical 

amplitude (T. < 285,000oK) has the order of the mean free paths of 

-2 
ten - one hundred electron volt quanta in cold air, i.e.. Ax ^ 10  — 

-1 
— 10  cm. With this Ax is increased in shown limits, if one were to 

pass to waves of even greater amplitude in a range of temperatures 

after the front from tens of thousand of degrees to T. ~ 200,000^ 

which corresponds to a shift in the characteristic energies of quanta 

from hv ~ 10-30 ev to hv •- 30-100 ev. 

We will consider now how far visible light shields the heating 

zone. In Table 9.2 are given coefficients of absorption and mean free 

731 



paths of red light X « 6500 A in air of normal density at different 

temperatures. 

Table 9#2 

r-io-vK 15 17 20 30 50 100 
K, em-* 4,1 13,5 60 290 350 2000 

t,CM 0,25 7,4-10-« 1,66-10-» 3,45-10-» 2,85-10-» 5-10-« 

Noticeable shielding sets in when mean free path I  ,  fast 

decreasing with temperature rise, becomes comparable with the thickness 

of the zone of heating, i.e., with the mean free path of heating 

radiation I  (average -over the spectrum). Let us introduce for conven- 

ience the idea of "temperature of transparency" T*, which we will 

define as condition 

Mf)-/. (9.2) 

The meaning of this idea is obviousr temperature of transparency 

differentiates two temperature ranges in a shock wave. At T < T* lv > 

> Ax and air in the zone of heating is transparent for visible light. 

At T > T* Zv < Ax and air is opaque. 

Inasmuch as absorption of visible light very sharply depends on 

temperature, and averaged mean free path changes comparatively little 

(only by one order), defined by equality (9.2), the temperature of 

transparency is included in quite narrow limits, namelyi T* « 

« 17,000-20,u00oK. It is possible to estimate optical thickness of 

the zone of heating for visible light, assigning for simplicity 

Boltzmann temperature dependence of the absorption coefficient of 

visible light H^ » const»exp ( =ra ■—) and considering average 

coefficient of absorption H to be constant. Considering that internal 

energy of air at normal density and temperatures of the order of tens 
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* 

t±LdT 

1 ij. of thousands of degrees, rci^hly speaking, is proportional to e ^ T '^ 

with the help of formula (9.1) we will find approximately the optical 

thickness in the heated zone from "infinity" (i.e., from the region 

of cold air) to a point with temperature Tr TV (T)(full optical 

thickness of the zone of heating is iv  (T^)) 

In a shock wave with T. = 90,000°^ in which temperature before 

discontinuity is equal to temperature of transparency T__ « T» » 

« 20,000OK,  optical thickness of the zone of heating is equal. In 

accordance with determination of temperature of transparency (9.2), 

to TV « 0,81 Y~ • •   « 0,12 (I « 14 ev, hv «* 2 ev). 

Consequently, if one were to look at the surface of the front of 

a shock wave in a direction normal to surface, flux of visible radi- 

ation, outgoing from the surface of shock discontinuity, will be 

weakened by the heated layer approximately 12^, and effective temper- 

atures, instead of 90,000°^ will be equal to approximately 80,000^ 

(with such temperatures little visible quanta lie 5.n the Rayleigh-Jeans 

part of the spectrum, and their intensity is proportional to first 

degree of temperature; therefore, effective temperature is simply 

proportional to brightness). 

During further increase of amplitude of wave the optical thickness 

of the layer grows and brightness dropsj for instance, with increase 

of temperature after the front by only 10,0C0\ at T1 - 100,000\, 

T_ - 25,000%  TV (Tj «* 0.37, Taf - Tje"
0,37 - 67,000%  i.e., 

effective temperature is already less than 80,000°, 
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Maximum of brightness corresponds to temperature after the front 

near T, « 90,000 K,  and maximum elfactive temperature is equal 

approximately to T -.    = 80,000°^:.*  At a temperature after the 

front of T, » 140,000°^,  T « 50,000^,  T (T ) « 1.5, and shielding 

is almost complete, 

§ k.    Limiting Brightness of a Very Strong Wave in Air 

We will estimate the intrinsic radiation of the heated layer In 

a wave of great amplitude, determining the limiting brightness of the 

front of the shock wave. Let us consider a shock wave of supercritical 

amplitude with a temperature after the front much higher than critical, 

equal to 285,000OK.  In § 17, Chapter VII it was shown that distri- 

bution of temperature in the front of a wave with respect to averaged 

optical thickness t  has the form depicted in Fig. 9.4. The temper- 

ature of heating before the actual shock discontinuity coincides with 

the temperature after the front T.. Temperature in the heated layer 

monotonlcally drops to temperature of cold air, where averaged optical 

thickness of all the zone of heating can be very great; it is even 

greater the higher the amplitude of the wave. The main part of the 

zone  of heating is composed of a region with temperatures from T_ = T. 

and up to temperature of the order of critical T. » 300,000OK.  This 

part of the zone, inherently, will be expanded with increase of ampli- 

tude (see Fig. 9.4). 

On the front edge of the zone, where the temperature is lower 

thar, j500,000 K,  distribution of temperature, Just as In the 

*We emphasize that all th?se values are estimates since coefficients 
of absorption of visible light in heated air, calculated by the formula 
Cramer, cannot be recognized as fully reliable. 
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sübcritical zone, has an exponential character and hardly depends on 

amplitude: ^ 

(see § 17, Chapter VII, formula (7.64), and also Fig, 9.4; optical 

coordinate x, pertains to a point where temperature is equal approxi- 

mately to T « Tk « 500,000
OK). 

At the end of § 1 it was noted how 

a body with similar distribution of 

temperature radiates visible light. At 

low temperatures the air is transparent 
jh,   Mssmt 

tmeaji,__ ^ and ^gg not radiate; at high — it is 

Fig. 9.4. Position of   absolutely opaque and does not "release" 
a radiating layer 
(shaded) in a shock    outside visible quanta. The radiating 
wave of very great 
amplitude. layer, which sends basically flux of 

visible light to "infinity," in cold air, 

lies somewhere between transparent and opaque regions (it is shaded 

in Fig, 9.4). The temperature in the radiating layer, obviously, is 

close to the temperature of transparency of air, defined by equality 

(9.2), where I is the mean free path, average over the spectrum, in 

the region where lies the radiating layer. Luminance temperature of 

visible radiation also approximately coincides with temperature of 

transparency. If the average mean free path, as before, is included 
-2    -1 in the interval 10  — 10  cm, then limiting luminance temperature 

should be equal to 17,000-20,000OK (see Table 9.2). 

Let us be convinced of the fact that this appraisal is indeed 

accurate, in other words, of the fact that heating on the front edge 

of the zone of heating in a very strong shock wave is carried out by 

quanta which have namely such a mean free path. For this, let us note 
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that at temperatures higher than critical In the zone of heating 

local equilibrium takes place, but at lower temperatures radiation Is 

nonequlllbrlum just as In the heated layer of a subcrlti^al shock wave. 

Approximately, one may assume that from a surface where temper- 

ature Is equal to Tk « 300,000
OK, to the left (see Fig. 9.4) goes out 

Planckian spectrum of radiation of such a temperature. Independently 

of how high temperature rises after this surface. 

The general tendency of absorption of large quanta corresponding 

to a spectrum with temperature of 300,000 K (maximum of spectrim was 

apportioned to quanta hv  « 70 ev), is such that coefficient of absorp- 

tion x drops with growth of frequency. As can be seen from Table 9.1, 

in energy band of quanta in hundreds, electron volt n   monotonically 

deci ases with increase of frequency. Therefore, when moving in the 

direction of a temperature decrease from a surface where T = 300,000OK, 

in the beginning small quanta are absorbed, then more energetic quanta. 

As it moves toward a region of low temperatures the spectrum becomes 

harder and harder. Calculation made in work [4] shows that into the 

region of temperatures of the order of transparency temperatures, where, 

as we expect, lies radiating layer, penetrate only very hard quanta 

with energies hv «* 200 ev. In Table 9.3 are presented energies of 

quanta "conducting" heating in the region of low temperatures on the 

front edge of the zone of heating. In the same place are shown also 

mean free paths corresponding to these quanta, exactly equal to mean 

free paths approximately averaged over the spectrum. 

We see that in the region of temperatures T ^ 20,000oK the 
_i 

average mean free path is Z ~ 10  cm, i.e., temperature of trans- 

parency is faster closer to 17,000 K. 
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Table 9.3 

T* K Av. ev I,  CM X, CM'1 

50 (MO 
20000 
15 000 
lOtJOÜ 

140 
200 
•JJO 

225 

0.95-10-1 
1,02-10-1 
1,1610-1 

10.5 
M 
8.6 

Thus, the limiting luminance 

temperature of a very strong shock 

wave Is equal approximately to 

17,000°^  Independent of amplitude. 

The general dependency of luminance 

temperature (in red light) on temper- 

ature after the front is shown in Pig, 9,1. It is necessary to note 

that coefficients of absorption in the visible region of the spectrum 

rather weakly depend on frequency; therefore, estimated values of 

luminance temperatures approximately pertain not only to red, but, in 

general, to all the visible region of the spectrum. 

2, Optical Phenomena, Observed During Strong Explosion, 
and Cooling of Air by Radiation 

§ 5. General Description of Light Phenomena 

During an atomic explosion in air there are obtained a powerful 

shock wave and very high temperatures. Temperature after the front 

of the wave passes through a continuous series of values in a wide 

range from hundreds of thousand of degrees to normal. During explosion 

there is observed a series of interesting and very unique optical 

phenomena. Below is presented the general description of the physical 

process of development of an explosion in air, near the surface of the 

earth (i.e., in air of normal density). This description is completely 

borrowed from the American book "The Effects of Atomic Weapons" [11], 

issued in 1950.* 

*¥e quote points 2.1; 2.6-2,22; 6,2; 6,19; 6,20 of the second and 
sixth chapters of the book and also present photograph 2 and Pigs. 6.6; 
6.18; 6.20. In 1957 in the United States there appealed a second pub- 
lication of this book, which was translated into the Russian language 
[12], The second putlication was revised, as compared to the first. 
In it are considerably expanded divisions concerning the destructive 
action of the explosion, but divisions dedicated to the description of 
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During nuclear fission of uranium or plutonlum, in an atomic bomb 

there occurs emanation of huge energy content In minute Initial volume 

during a very short interval of time. Subsequently we will consider 

that energy liberated during explosion of the bomb is approximately 

equivalent to energy liberated during an explosion of 20,000 tons of 

21 ?0 
trotyl, which is nearly 10  erg (more exactly, 8.V10  erg). Such 

a bomb is called a nominal atomic bomb. As a result of the extraor- 

dinarily high concentration of energy, the temperature of fissionable 

material attains a million degrees. Inasmuch as the explosion occurs 

in the limited volume occupied by the bomb, pressure sharply Increases 

and attains several hundreds of thousands of atmospheres. 

When heating up a substance to extraordinarily high temperature, 

there occurs energy release in the form of electromagnetic radiation, 

whose spectrum embraces a wide range of wave lengths spreading from 

infrared (thermal) rays through the visible region of the spectrum to 

the region of ultraviolet rays and emerges beyond its limits. A large 

part of the radiation is absorbed in layers of air directly adjoining 

the bomb, as a result of which air is heated to a glow. Thus, several 

microseconds after the explosion the exploding bomb obtains the form 

of a luminescent sphere, called a fiery sphere. 

According to propagation radiant energy heats ambient air; as a 

result the fiery sphere is increased in dimension, but temperature, 

pressure, and brightness correspondingly decrease. Upon expiration of 

"    [FOOTNOTE C0NT»D FROM PRECEDING PAGE]. 
the physical phenomena in the fiery sphere are shortened. Inasmuch as 
we here are Interested in namely these last questions, we will borrow 
the description of the physics of the explosion from the first pub- 
lication. All lengths measured in feet, yards, and miles, we trans- 
lated into meters. 
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0.1 millisecond* the radius of the fiery sphere becomes equal approxi- 

mately to 14 m, and temperature of its surface is approximately equal 

o 
to 300,000 K.  At this instant illuminance, observable at a distance 

of 10,000 m, is approximately 100 times more than the illuminance of 

the surface of earth by the sun. 

During the above-described conditions, in the whole volume of the 

fiery sphere is maintained almost identical temperature; inasmuch as 

radiant energy can quickly spread between any two points Inside the 

sphere, there is not created considerable temperature gradients. Since 

the temperature Inside the fiery sphere everywhere is identical, it is 

possible to identify it with an isothermal sphere, which in a given 

stage is identical with a fiery sphere. 

As the fiery sphere expands in air there appears a shock wave; in 

the beginning the front of the shock wave coincides with the surface 

of an isothermal sphere. After lowering temperature approximately to 

o 
300,000 K speed of shock wave becomes larger than speed of expansion 

of an isothermal sphere. In other words, transfer of energy by shock 

wave starts to occur faster than by means of radiation. Nevertheless 

the luminescent sphere continues to be increased in dimension, inasmuch 

as strong ecompresion of air, caused by passage of shock wave, causes 

an Increase of temperature sufficient to bring sphere to a glow. 

In this stage isothermal sphere is a zone of high temperature 

inside a fiery sphere, large in dimensions, formed by the sharply 

outlined front of the shock wave. Interface between the core of this 

sphere, possessing very high temperature, and the somewhat "colder" 

air heated by the shock wave, is called the front of radiation. 

*i millisecond « 10 ^ sec. -3 
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The above-described phenomena are schematically represented In a 

series of photographs of the fiery sphere (Pig. 9.5)* corresponding 

to different moments of time after an explosion of an atomic bomb; 

qualitative temperature gradients are shown on the left, gradients of 

pressure on the right. In the beginning, temperature is identical 

within the limits of the entire fiery sphere, which at this time is 

also an isothermal sphere; then there appear two different temperature 

zones; at this instant the fiery sphere becomes larger than the 

Isothermal sphere remaining Inside, The Isothermal sphere ceases to 

be visible since it is covered by the brightly luminescent front of 

the shock wave. By this moment pressure is Increased to maximum, but 

then already on the surface of the fiery sphere it is sharply lowered, 

which witnesses to the identity of the fiery sphere with the front of 

the shock wave. 

The fiery sphere continues rapidly to increase in dimensions 

during approximately 15 milliseconds; during that time its radius 

attains approximately 90 m, and temperature of surface is lowered 

approximately to 5000 JC,  although inside the fiery sphere it is 

considerably higher. Temperature and pressure of shock wave are 4 

lowered so much that the air through which the shock wave passes 

ceases to gleam. Weakly visible, the front of the shock wave continues 

to move ahead of the fiery sphere; this phenomenon is called breaking 

away of the shock wave from the luminescent sphere. Speed of propa- 

gation of the shock wave in this period is equal to approximately 

4500 m/sec. 

In spite of the gradual decrease with time of propagation rate 

of the front of the shock wave, it always remains larger than speed 

of expansion of the fiery sphere. In 1 sec the fiery sphere attains 
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GRAPHIC NOT 
Its maximum radius of 140 m, and the 

front of the shock wave by this time goes 

forward approximately l80 m. In 10 sec^ 

when the fiery sphere rises approximately 

450 m, the shock wave departs from place 

of explosion approximately 3700 m and 

exceeds the hounds of the zone of Its 

maximum destroying action. 

The essential peculiarity of an 

atomic explosion In air Is the special 

effect which Is observed at the time of 

breakaway of the front of the shock wave 

from the luminescent sphere. The temper- 

ature of the surface of the luminescent 

region drops approximately to 2000oK and 

then starts anew to be Increased, attaining 

a second maximum near 7000oK.  Minimum 

temperature Is attained approximately 

15 milliseconds after explosion, and 

after approximately 0,3 sec again is 

increased to maximum. Subsequently there 

occurs a continuous lowering of the temperature of the fiery sphere 

due to its expansion and occurring loss of energy. 

It is interesting to note that the radiation of the larger part 

of the radiant energy of an atomic explosion occurs after the brightness 

of the fiery sphere becomes minimum. Up to this time there is radiated 

only nearly l- of total endtgy,  in spite of the fact that temperature 

of surface in this period is very high. This is explained by the fact 

Fig. 9.5. Qualitative 
picture of the change 
of temperature and 
pressure in the fiery 
sphere. Energy of the 
explosion is nearly 

21 
10  erg « 16 kilograms 
of uranium --» 20,000 m 
of trotyl, 
KEY: (a) Milllsecondsj 
(b) Temperature; (c) 
Pressure. 
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that the duration of this period 15 milliseconds is extremely small as 

compared to the time during which radiation occurs after achievement 

of minimum brightness. 

As was mentioned above, the fiery sphere very quickly, less than 

1 sec after the explosion, attains a maximum radius of 140 m. Conse- 

quently, if the bomb explodes at a height less than 140 m, the fiery 

sphere should touch the surface of earth; this was observed during the 

test "Trinity" at Alamogordo (New Mexico), 

In view of its small density, the fiery sphere floats upward like 

a balloon. Several seconds after beginning of motion, speed of sphere 

attains maximum magnitude, equal to 90 m/sec. 

The direct effects of the atomic explosion can be considered 

completed after approximately 10 sec, when the fiery sphere almost 

ceases to gleam and the excess pressure of the shock wave decreases 

to practically safe values. 

As was shown earlier, the density of substances inside the fiery 

sphere is very small since they possess high temperature; therefore, 

the sphere rises above the place of the explosion of the bomb; as it 

rises the fiery sphere is cooled. Cooling approximately to ISOO^EC 

occurs mainly because of loss of energy due to luminous emittance; 

then lowering of temperature occurs as a result of adiabatic expansion 

of gases and mixing of them with ambient air because of turbulent 

convection. After cessation of glow it is possible to consider the 

fiery sphere as a great bubble of heated gases, the temperature of 

which decreases as the "bubble" rises. 

The very important distinction between an atomic and an ordinary 

explosion consists of the fact that in the first case the quantity of 

liberated energy per unit of mass is immeasurably larger. As a result, 
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there is created a higher temperature, and consequently, a larger part 

of the energy liberated at the time of the explosion is emitted in the 

form of luminous emittance. For instance, nearly 1/3 of all energy 

liberated during an atomic explosion is emitted in the form of luminous 

emittance. For a nominal atomic bomb this composes approximately 

6.7«1012 cal, which is equivalent to 2.8»1020 erg. 

The amount of energy passing through the whole spherical surface 

of the fiery sphere, i.e., through solid angle kir,  is equal to 

a  T'«4TR , where R is radius of sphare, and T is temperature of surface 

(dependences of R and T on time are shown in Pig, 9.6). Inasmuch as 

into the air penetrates only part of energy f0,» the quantity of 

radiant energy reaching all points on a spherical surface located at 

a moderate dlstanco from point of explosion will be equal to 

f0a T »JiirR . Hence flux of radiant energy q> per unit of area at 

distance D is obtained by means of dividing this expression by surface 
2 

area of sphere KTD  , i,e,. 

From this formula it is possible to calculate flux of radiant 

energy at a given point at distance D for different moments of time 

after an atomic explosion, using values R and T from Pig, 9«6* and 

f0 from Fig. 9.7. In order not to construct curve for different 

distances, magnitude «pD , equal to f0aT^R , is given in Pig, 9.8 as 
o 

a function of tlmej energy flow is measured in cal/cm »sec and 

distance in m. By the curve it is possible to easily determine energy 

flow at any given distance at any moment. 

^ »It is considered that air passes only wave lengths exceeding 

X- ■ i860 A so that f0 is the fraction of energy of Planckian spectrum 
of temperature T, included in the wave length range frcai K. * i860 A 
to X ■ oo. Function f0 (T) is shown in Pig. 9,7. 
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Fig, 9«6. Dependence of 
radius of the fiery- 
sphere (curve 1) and 
temperature (curve 2) 
on time, starting from 
the moment of explosion. 

Pig. 9.7. The fraction 
of equilibrium radiation 
included in wave length 

range from X = i860 A to 
X « oo depending upon 
temperature 

In order to obtain some 

idea about the magnitude of 

illuminance it is expedient to 

introduce tne unit "sun," which 

is defined as energy flow equal 
p 

to 0,032 cal/cm sec and is 

assumed equal to solar energy 

Incident on the upper boundary 

of the atmosphere. The right 

ordinate in Fig, 9.8 gives 
2 

value 9D , where 9 is expressed 

in suns, and D in meters, 

2 
During minimum brightness, magnitude of (pD is equal approximately 

to 6,8»10 sun'm , so that at this instant the fiery sphere, observed 

at a distance of 2600 m, should seem approximately as bright as the 

sun. In reality it will be somewhat less bright depending upon 

cleanness of air, and also due to absorption of radiation in the 

atmosphere,11 
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Fig, 9.8, Dependence of energy flow 
emitted by the fiery sphere on time 
past after the explosion. 



On this we finish the description borrowed from the book [11]. 

As long as the front of the shock wave does not break away from 

the boundary of the luminescent body and the latter simple coincides 

with the front of the shock wave, the law of propagation of the fiery 

sphere is very well described by formula R «^ t ' , which follows from 

the solution of the problem about strong explosion, considered in § 25, 

Chapter I, By the moment of breakaway, temperature on the front of 

the shock wave is equal to approximately 2000oK, which corresponds to 

a pressure of p- » 50 atm. This pressure is considerably higher than 

atmospheric, i.e., initial assumptions lying in the basis of solution 

(pf » P0)^ are executed. 

Comparison of theoretical law R ~ t ' with experimental data is 

done in the book of L, I, Sedov [!>]. 

In the book is plotted a graph of straight line 5/2 log R 

depending upon log t, on which are marked experimental points relating 

to the explosion of the atomic bomb in New Mexico in 1945. Experimental 

points lie very well on a theoretical straight line. According to 

formula (1,110) slope of the straight line Is connected with energy 

of explosion Et 

R - [a (7) ~-]1/5t2/5j 5/2 log R = | log (a I-   )a £- + log t. 
PQ r     PO 

Here a ■ ^, where ?0 is coefficient in formula (1,110). 

During air density p0 ■ 1.25,10~-5g/cm-5 magnitude of aE is obtained 
20 

equal to 8.45*10  erg. Dependence of coefficient a on adiabatlc index 

7 is presented in the book of L, I. Sedov [15], 

If one were to assume 7 - 1.4, as L, I. Sedov did, then o « 1.175 
20 and E ■ 7.19*10  erg. In reality, the effective adiabatlc index Is 

somewhat less since at high temperature air is strongly dissociated 

and ionized; coefficient a with this Is larger and energy of exploBlon 
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turns out to be smaller, Thu£, for Instance, if one were to take 
Of) 

7 » 1.32, there Is obtained a = 1,3 and E = 6,3*10      erg. 

§ 6. Breaking Away of the Front of a Shock Wave 
from the Boundary of the Fiery Sphere 

We will observe what the nature of the glow of the fiery sphere 

is at temperatures after the front of the shock wave of an order of 

several thousands of degrees, and we will clarify the causes of the 

phenomena of breakaway of a front of a shock wave from the boundary 

of a luminescent body and the minimum brightness of the fiery sphere. 

These questions were considered in the works of one of the authors 

[14, 15]. 

In the absorption (and emission) of visible light in heated air 

there participates a whole series of mechanisms: the photoionization 

of highly excited atoms and molecules of oxygen and nitrogen and 

molecules of nitric oxide, the knocking out of weakly bound electrons 

from negative ions of oxygen, the molecular absorption (without 

breakaway of electrons) by molecules of Op, Np, NO remaining in excited 

states, and finally, the molecular absorption by molecules of NOp 

present in small quantity in heated air. Coefficients of absorption, 

connected with all these mechanisms, were estimated in Chapter V. The 

comparative role of different mechanisms of absorption and the absolute 

value of coefficients strongly change depending upon temperature and 

air density. At temperatures higher than "- 12,000-15,000^ basically 

there occurs photoionization of molecules and atoms of oxygen and 

nitrogen. During air density approximately 10 times more than normal, 

which takes place after the front of a shock wave, and temperatures 

'- 12,000-15*000°^ the mean free path of visible quanta turns out to 

be of the order of millimeters. The mean free path sharply decreises 

during temperature Increase. 
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In the region of lower temperatures, ~6000-6000oK, on the first 

plan there Bets in photoionlzatlon of NO molecules, absorption by 

negative Ions of oxygen, and molecular absorption by molecules of 0«, 

Np, and NO. The mean free paths of visible light in this interval of 

temperatures also strongly depend on temperature and have an order of 

10-100 cm (during tenfold compression in the shock wave). At still 

lower temperatures, lower than ^5000^, all mechanisms lead to 

extraordinarily weak absorption rapidly decreasing with lowering of 

temperature. Practically the only mechanism of absorption of visible 

light in air at T < 5000oK is absorption by molecules of nitrogen 

peroxide NOg. In spite of the small concentration, nitrogen peroxide 

rather strongly absorbs visible light, ensuring mean free paths 

measured in meters. Thus, at a temperature of T • JOOO0!^   and density 

five times more than normal, concentration of dioxide is equal to 

cN0 «■ 1,6.10 ,♦ and the mean free path of red light, calculated 

with absorption cross section aN0 « 2,15 x 10 ^ cm , is lv  - 220 cm. 

It is known that after the front of the shock wave of a strong 

explosion, temperature increases from front to center (see § 25, 

Chapter I), If one were to consider that stage of explosion when the 

temperature on the front is equal to several thousand degrees, then 
21 

during nominal energy of explosion E ■ 10  erg (corresponding approxi- 

mately to 20,000 m of trotyl) the blast wave embraces a sphere with a 

radius of the order of hundreds of meters, and temperature after the 

front noticeably Increases during removal from front to center at a 

distance of the order of meters. 

In this stage radiant heating of air before the shock discontinuity 

and shielding of the surface of the front, considered In § 1 and 5, 

»Concentration c. Is defined as the ratio of the number of 1-th 

particles to the initial number of molecules in cold air. 

ii fiiii riiftiiiiiiiiiiiliMfiiirtif imiifir5'jMa 



temperatures lower than '«SOüC^K  time, necessary for the formation of 

any noticeable quantity of oxide. It turns out to be extraordinarily 

large as compared to the time of existence of heated particles In the 

shock, wave, and reaction does not manage to occur. 

Thus, In layers of air heated by the front of the shock wave to a 

temperature lower than ^OOC^K,  nitrogen peroxide, the only absorbing 

agent, will never be formed; these layers are absolutely transparent 

for visible light and by themselves do not gleam. 

At the time when temperature on the front Tf Is less than 2000 K, 

we will say when Tf «■ 1000°^, from afar will be seen a luminescent 

disk, the radius of which Is less thai! the radius of the front of the 

shock wave. The horizontal section of the blast wave Is depicted In 

Pig. 9.9. Beams of type B Intersect layers of air heated by the shock 

wave to a temperature lower than ~2000oK  and, therefore, nonlumlnous. 

9X9 

Fig. 9.9. Diagram 
of the glow of a 
fiery sphere after 
breakaway. Internal 
circle - 0, Sh, — is 
the boundary of the 
luminescent body, the 
fiery sphere; external 
circle - P. U. V. - is 
the front of the shock 
wave. 

••if 

Fig, 9.10, Lines of 
front of shock wave 
(F, U, V,) and boundary 
of fiery sphere (0, Sh,) 
on diagram R, t. 

The fiery sphere is limited by 

beams A going out from center 0 

exactly to distance RQ Sh , corre- 

sponding to the radius of those 

layers of air at a given moment, 

which earlier were heated by the 

749 
j^sf^MmMitaias 

^«.Hte»i»^iiwt^-Jid^fefa^äiattai^M.^i%&a,v.jMiiW. *^i£^*,Ji^i**Mfi*ilMtd£ 



front to a temperature of ~20üüoK  and in which a quantity of nitrogen 

peroxide is necessary for a noticeable flow. Inasmuch as particles of 

air in the blast wave scatter from the center (actually, more slowly 

than the front itself moves), the radius of the fiery sphere FL, ov  is U , oil, 

increased. The fiery sphere is expanded as long as pressure in the 

blast wave does not drop to atmospheric and motion does not cease,* 

The nonluminous front of the shock wave, detaching from the fiery 

sphere when the temperature on it is ~2000oK,  departs far forward. 

(The trajectory of the front and the fiery sphere are schematically 

depicted in Pig. 9.10), 

§ 7. The Ef-ect of Minimum Brightness of the Fiery Sphere 

We will observe how, with the passage of time, brightness and 

effective temperature of the surface of the fiery sphere change in the 

stage of breakaway of the shock wave from the boundary of the lumi- 

nescent body. When temperature of the front drops below ~5000oK, 

the mean free path of visible light grows, to a magnitude of the order 

of a meter and the fiery sphere ceases to radiate as an ideal black 

body. The effective temperature in these conditions one should 

calculate by the general formula (2,52) in accordance with distributions 

of temperature and coefficient of absorption along the radius after 

♦During adiabatlc expansion to atmospheric pressure of particles of 
air with initial temperature Tf « 200G

O
K corresponding to pressure on 

front pf « 50 atm, particles cool to T ^ 800^, " Probably, with the 
passage of time the boundary of the luminescent region somewhat shifts 
deep into layers with temperatures closer to 2000^,  since radiating 
ability proportional to exp(-r.v/kT), very rapidly decreases with 
lowering of temperature even during constant coefficient of absorption 
(hv » kT at hv «* 2 ev, T ~ 2000-:l000oK).  More exactly, the boundary 
of the fiery sphere is determined by the sensitivity of the recording 
Instrument, 
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the front of the waves.* 

We will consider, for example, moment of time t = 1,3*10     sec 

when radius of the front Is R « I07 m and temperature on front Is 

Tf « jüOOO
0^ (all calculations pertain to an explosion with energy 

21 
E - 10  erg). In Pig, 9.11 Is shown the distribution of the coeffl- 

0 
clent of absorption of red light X - 65OO A along the radius after the 

front of a shock wave (coordinate x Is counted off from the front to 

the depth of the sphere). In the same place are shown temperature and 

relative air densities (compression T]  ■ P/PQ) a'fc several points. Dis- 

tributions of temperature and density after the front are taken from 

the solution of the problem about a strong explosion; concentrations 

of nitrogen peroxide were calculated as presented in § 5* Chapter VIII. 

Inasmuch as the exact values of the 

effective absorption cross sections 

of red light by excited molecules of 

NOg are unknown, for tentative 

calculations were accepted the 

following, apparently, probable 

values of sections (see § 21, Chapter 

Y)t 

Pig. 9.11. Distri- 
bution of the 
absorption of red 
light after the front 
of a shock wave at a 
temperature of T^. - 
» 3000 K for an explo- 
sion with E - 1021 erg. 
There are shown values 
of temperatures and 
densities at several 
points. Adlabatic index 
7 - 1.25. 

^•K         4000 3000 2000 2000 
«NO, «". «•«    S,0 2.15 1.8 0.84 

♦Radiating layer has a thickness of the order of tens of meters, 
which is considerably less than the radius of the sphere RQ Sh ~100 m. 

Therefore, curvature of the layer it is possible to disregard and to 
consider it flat, i.e., to use formula (2.52), Let us note that formula 
(2.52), into which enters integral exponential, appearing as a result 
of the calculation of slanting rays, gives a luminance temperature 
averaged over the disk. If one were to be interested by the brightness 
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Prom Fig, 9.i-L it is clear that at temperatures higher than 

600O-7000oK, absorption connected with the many mechanisms enumerated 

above grows very greatly and rapidly during removal from the front, 

when temperature is increased. In region T ^ 6000 K absorption 

weakens and passes through minimum, since with such temperature all 

these mechanisms give very small coefficient, but concentration of 

dioxide is still small (equilibriim of reaction NO + -^ 02 *- N02 at 

such high temperatures is shifted to the side of disintegration of 

dioxide). Concentration of dioxide increases at lower temperatures 

—4000-5000 K,  which also leads to increase of absorbing ability near 

front of wave. 

Essentially, layers of air with temperatures higher than 

~6000-7000oK turn out to be absolutely opaque and from internal "hot" 

sphere with such a temperature on the surface there emerges outside 

a flux of Planclc radiation. External layer of air, containing dioxide, 

plays a double role. On the one hand, it absorbs this high-temperature 

radiation, outgoing from surface of "hot" sphere, but on the other 

hand it radiates light itself. Formally it is possible to describe 

this position by breaking down the integral with respect to T in 

formula (2,51) into two parts» one with respect to external layer of 

dioxide with optical thickness x*,  and the other with respect to 

internal nhotw region x*   < TV < 00: 

>% (T*) - 2 \ S^ (Tv) dt, = 2 $ ^vp^i (tv) rfTv + 2 J 5VJ,£2 (TV) dTv. 

[FOOTNOTE CONOMD PROM PRECEDING PAGE], 
in the center of the disk, then instead of integral exponential 
EP (^ ) one should write usual exp(-^/), where x^  is optical thickness, 
counted off along the radius from the surface of the front to the 
depth of the sphere. Subsequently, there is calculated average 
luminance temperature. 

752 
c—_ 



In distinction from formula (2.51) we here, instead of density 

of radiation, write flux, which is all the same« 

In the second integral it is possible to carry out certain mean 

value S*. corresponding to effective temperature of "hot" sphere 

T# (T* ~ TOOC^K), and, using properties of integral exponentials, to 

record» 

The first member gives intrinsic emission of layer of dioxide, and in 

the second, factor E, (T*) considers the shielding by this layer of 

"high-temperature" radiation of "hot" sphere. Calculations show that 

with passage of time the relative role of the second member increases, 

and intrinsic radiation of dioxide becomes small, i.e., the role of 

dioxide leads basically to shielding of high-temperature radiation. 

In considered example Tf ■ 35000^ optical thickness of layer of 

dioxide T* = 2,42, and effective temperature of fiery sphere is equal 

to Tef - moV 

r'isim 

9 

Another typical picture of 

distribution of coefficient of 

absorption along the radius appears 

when temperature on front of shock 

wave drops lower than 2000^. 

Absorption starts not at once after 

front but somewhat deeper, since in 

layers close to front and heated 

during passage of front to a temper- 

Pig. 9.i2. Distribution of 
absorption of red light after 
front of shock wave at a 
temperature on front of T- ■ 
» löOO^ for explosion with 

E - 10  erg. There are shown ature lower than 2000%, dioxide is 
values of temperatures and 
densities at several points.   lacking, and these layers do not 
Adiabatic index 7 «= i,30. 
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absorb light. Such a picture Is depicted In Pig, 9,12 (t - 

- 2,64'10"2 sec, R = 138 m, Tf - l600
oK). 

Let us trace how effective temperature of radiation changes with 

the passage of time, While temperature on front of shock wave Is 

higher than ~2C00oKJ  In layers of air again seized by the front will 

be formed dioxidej full optical thickness of layer of dioxide Increases 

and brightness drops. Luminance temperature at T- 4    5000OK exceeds 

temperature of front, since layer of dioxide does not completely 

shield high-temperature radiation (with T* ~ 7000OK),    proceeding from 

depth. When temperature of front becomes lower than 2000OK^ In layers 

of air seized again, dioxide no longer will be formed. Even If full 

quantity of molecules NCu, available by this moment In air, remained 

constant, optical thickness of shielding layer of dioxide, all the 

same, would decrease with passage of time, since due to scattering of 

air the same number of molecules NOp would be distributed along 

spherical layer of a larger and larger radius. It is easy to see that 

optical thickness of layer of dioxide is 
jt 

where IU-Q , number of molecules NO« in 1 cm", decreases during constant 

full number « « 
Nact" { Anr'nsotdr * 4«/?» j| nsotdr' 

-2        -h/3 
roughly speaking, it is proportional to R  ^ t ' , 

In reality, full quantity of dioxide, after its formation ceases, 

even somewhat drops due to disintegration of molecules N02 (see § 5* 

Chapter VIII), which leads to a still faster fall of optical thickness 

T» • 
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Thus, starting from the noment when temperature on front becomes 

l^ss than ~2000oK, shielding by layer of dioxide decreases and grad- 

ually internal hot region Is "bared," Effective temperature of fiery 

sphere, passing through minimum, is increased; sphere, as it were, 

again inflames, which is observed by experiment. 

The presented concepts about the nature of minimum brightness are 

illustrated in Table 9,4, in which are presented results of calculation 

21 
of effective temperatures for explosion with energy of E = 10  erg, 

T f passes through minimum equal to 3600 K,     and T* passes through 

maximum at a temperature of front Tf - 2600
oK, close to temperature 

of breakaway Tf » 2000
oK. 

It is Interesting to trace what occurs with minimum of brightness 

during transition from one energy of explosion to another. All times 

and dimensions in a strong blast wave are changed similarly, propor- 

tionally to E ' ^ (thanks to approximate accuracy of self-simulating 

solution of problem about a strong explosion), Roughly speaking, 

optical thicknesses at corresponding moments of time (during identical 

temperature of front), also change as L '  (since concentration of 

dioxide in basic region Is equilibrium and depends mainly on tempera- 

ture and density of particle, but not on time of existence of it in a 

heated state). It follows from this that shielding by layer of dioxide 

decreases with decrease of energy of explosion, but excess of T - over 

Tf increases: minimum becomes less deep. As an example in Table 9.4 

are given results of calculation T - (T_) for energy of explosion 

20 
E - 10  erg. Position of minimum was not changed, and minimum 

brightness became highen T f ^ « 4800oK. 

In the limit of very small energies of explosion minimum should, 

in general, disappear. Conversely, in the limit of very high energies 
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of explosion all dimensions and optical thicknesses become large; 

radiation of fiery sphere more and more nears radiation of black body 

and T _ nears Tf until the moment when Tf becomes equal approximately 

to 2000° K, I.e., minimum becomes deeper Tef min « 2000
0K.  Lower 

than 2000OK luminance temperature Is not able to fall since even 

during very high energies of explosion and long times of process, 

dioxide, all the same, will not be formed at T < 2000oK, and air 

heated In shock wave to temperature T~ < 2000 K Is transparent and 

does not radiate. 

Table 9.4. Calculated In Work [15], 
Values of Luminance Temperature of a 

o 
Fiery Sphere in Red Light X = bpOO A 
in the Stage of Minimum of Brightness. 

|.|0t sec n,M Tf K If'K K 
B^iQUerg 

0,75 
1,05 
1.50 
1.81 
1,85 
2.25 
2.39 
2.64 
2.94 

82 5000 5930 
93 4000 4810 
107 3000 4110 
109 2000 3600 
112 2300 4150 
128 2000 4520 
132 1800 4S10 
138 1000 5400 
143 1400 5600 

1,06 
1.96 
2.42 
3.23 
2.16 
1.80 
1.61 
1.15 
1.11 

B~tO* erg 

0.43 40 5000 6380 0.61 
0.61 S3 4000 5560 1.16 
0.72 58 3000 5000 1.42 
0,82 60  . 2600 4800 1,77 
0,95 65 2300 5390 1.18 
l.Oi % 2000 5850 0.96 
Lie 70 1800 6050 0.88 
1.38 73 1600 6510 0.71 
1.41 75 1400 6900 0.54 
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§ 8, Cooling of Air by Radiation 

We will present that gas-dynamic process during strong explosion 
pi 

in air wluh energy E ^ iO  erg occurs adiabatically, as is described 

in § 25t  Chapter I, Scattering of air enveloped by blast wave is 

strongly delayed until the moment when pressure in it drops to a 

magnitude of the order of atmospheric. Subsequently shock wave 

gradually weakens, is turned into acoustic and removes with itself 

far forward a large fraction of total energy of explosion. In central 

regions after achievement of atmospheric pressure and cessation of 

motion there remains a large mass of air, irreversibly heated by the 

shock wave. In it is concentrated "residual" energy of explosion, 

which composes a very considerable (of the order of tens of percents) 

fraction of total energy of explosion. The air turns out to be heated 

to very high temperatures. Thus, for instance, layers of air through 

which front of shock wave passed with amplitude p~ » 750 atm heating 

them to temperature Tf = 11,000 K, after expansion to atmospheric 

pressure remain heated to temperature of the order of 2000 K.* 

The layers closer to center, initially heated by front of shock 

wave to several hundreds of thousands of degrees (pressure on front 

of the order of hundreds of thousands of atmospheres), remain heated 

to tens of thousands degrees, etc. 

Thus, after explosion will be formed huge volume of air with 

radius of the order of hundreds of meters, heated to high temperatures. 

In central regions temperature attains hundreds of thousands of degrees) 

toward periphery it gradually drops to thousand degrees and lower, to 

standard atmosphere temperature. 

"""  »Residual temperature, roughly speaking, is equal to T   •• Tf 
(1 atm/pf atm)'^~ '/^, For appraisal it is possible to take effective. 

value of adiaba-ic index y »  1,3, 
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Let us set up the question: what is further fate of residual 

energy of air, irreversibly heated by blast wave, and how does this 

air cool? This question was considered in works of A, S, Kompaneyets 

and authors [lb, 17], 

It is clear that resorption of energy by means of molecular 

thermal conduction does not play a role. During coefficient of diffu- 

sion of heat (temperature transfer) of air of the order of 1 cm /sec 

volume with radius of ~10 cm would cool in a year. Convection rise 

of heated sphere because of difference in densities of cold and hot 

air at identical atmospheric pressure and (connected with the rise) 

the mixing of hot gas with surrounding masses of cold are more essen- 

tial. However, in the first 2-3 sec after explosion rise is small, 
2 

Rise cannot exceed magnitude of gt /2, where g is acceleration due to 

gravity, which composes 5 ni for 1 sec, 20 m for 2 sec, and 45 m for 

3 sec. Therefore, being Interested in the first several seconds after 

the moment of explosion, it is possible not to consider convection. 

The basic process leading to cooling of air and energy dissipation 

of irreversible heating in space is luminous emittance. Actual possi- 

bility of radiant cooling is a corollary of the fact that cold air is 

transparent in a certain spectrum "window": in the visible part of 

the spectrum and adjacent regions of ultraviolet and Infrared radiation. 

Thanks to the existence of /hist such a "window" of transparency, corre- 

sponding quanta, radiated by heated gas, can freely depart to great 

distances, removing with themselves energy from the heated volume, 

A characteristic peculiarity of the process of de-excitation of 

energy from heated air is its non-stationary nature. In this respect 

there is a fundamental distinction from the similar, at first glance, 

process of radiation of stars (xn particular the sun, feeding by 
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illuminated energy our planet). In stars the loss of energy because 

of raliation from the surface is compensated by flow of energy from 

within, liberated due to nuclear reactions occurring in central parts 

(see Chapter II, § 14). As a result conditions are established, in 

which each element of volume obtains as much radiant energy as it 

emits, and dfstribution of temperature along the radius of a star has 

an established, stationary (during the period of visible times) 

character. 

In the considered case there are no sources of energy; initial 

distribution of temperature is determined by the preceding history of 

the phenomenon and by the gas dynamics of the process of propagation 

of a blast wave, and the air gradually cools because of the fact that 

energy is carried away by radiation. 

Our problem consists of clarifying how the process of cooling 

takes place, how temperature changes at different places in the heated 

volume and, finally,- the most essential, what are the radiant cooling 

rate and the radiation flux from the surface of a heated body, 

§ 9. Appearance of Temperature Step — Cooling Wave 

The basic factor determining uniqueness of the process is the 

extremely sharp temperature dependence of transparency of air, about 

which we have already spoken repeatedly above. If we consider tempera- 

ture dependence of the mean free path of certain radiation averaged 

over the spectrum, characteristic for a given temperature, let us say, 

the mean free path of quanta hv, >-5 times exceeding kT,# end to 

consider that during constant pressure, close to atmospheric, air 

x 

*We are reminded that maximur of Planck spectrum with respect to 
frequency was apportioned to quanta hv «2,8 kTj maximum of weighing 
function during Rosseland method of averaging mean free path lies in 
the region hv  « i4kT, 
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density decreases with grovrth of its temperature, then we will come 

to the following conclusions. The mean free path of quanta changes 

from kilometers at temperatures of the order of 6000 K to a hundred 

meters at T ~ 8000°^  tens of meters at T ~ 10,000^.,     and ten 

centimeters at T ^ 15,000^. 

Obviously, radiation flux outgoing from the heated volume with 

smooth distribution of temperature is determined by the temperature 

of that layer (radiating) in which the mean free path has the order 

of characteristic dimensions of the problem, the order of ten meters, 

I     External, less heated layers are transparent and by themselves virtually 

do not radiate light. The deeper ones are opaque and quanta generated 

in them are not in a state to depart a considerable distance. We have 

already encountered such a position when examining radiation of heated 

zone of air before discontinuity in a very strong shock wave. By 

analogy it is possible also to introduce Into this problem the idea 

of transparency temperature T«, as such a temperature at which the 

mean free path of light has the order of characteristic distance 

where temperature noticeably changes. In distinction from the problem 

-2  -1 
about glow of heated layer, where dimensions '>rere 10 -10  cm and 

temperature of transparency ~20,C00oK,  here scale is of the order 

of 10 meters and temperature of transparency T2 ~ 10,000
oK. 

We will present now a spherical volume of motionless air with 

smooth (at initial moment) distribution of temperature, changing along 

radius from ^100,OOO0^     in the center to several thousand »legrees on 

the periphery, and we will see how this distribution changes with the 

passage of time (we will disregard motion of air, which could appear 

because of gradients of pressure). 

In accordance with the above said, it is possible to expect that 

the layer begins to radiate and to be cooled with a temperature of the 



order of transparency temperature (T2 ~ 10,000%); at the following 

moment in smooth (in the beginning) distribution of temperature there 

will be formed a "recess", as shown in Fig, 9.i3» Subsequently this 

"recess" obtains the form of a temperature step, which spreads to the 

depth of the heated sphere, to the center. One after another layers 

of air are cooled from initial temperature to a temperature of the 

order of 10,000%, after which they become transparent and practically 

cease to radiate. Internal layers hardly change their temperature 

until they approach a step, since in these layers the mean free path 

of light is very smalls and emitted quanta right here are absorbed 

inversely. 

K-WOOOQ't 

S^!Nes,^ •■*7,WK 

Fig. 9.15. Appearance 
of step (wave of cooling) 
from continuous distri- 
bution of temperature and 
Its propagation in air at 

rest; t0 < t' < t" < t"" 

Lagrangian coordinate 

Fig, 9,1k*  Appearance and 
propagation of wave of cooling 
in scattering and adibatically 

cooled air; tn < t" < t" < t" 

Thus, air is cooled as a result of propagation by it of some kind 

of narrow temperature step, which it is possible to call "wave of 

cooling." Temperature in wave of cooling sharply (as compared to 

initial smooth distribution) drops from initial value T^, equal to 

temperature in that place toward which at a given moment the upper 

boundary of the wave approached, to a lower value — the temperature 

of transparency T2 at which air practically ceases to radiate. 
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Depicting consecutive changes of distribution of temperature In 

Pig, 9»i3> we were distracted from change of temperature because of 

gas-dynamic motion, considering air to be motionless. In reality 

step will be formed until air pressure drops to atmospheric and motion 

is ceased, and namely, when speed of cooling by radiation of layer 

with temperature ~10,0ü0oK  becomes comparable with speed of adiabatic 

cooling connected with scattering and expansion of air in blast wave. 

In the earlier stage of explosion speed of adiabatic cooling is great, 

and air does not manage to de-excite its energies, since region of 

temperatures ^lO^OOO^  at which step could be formed is "skipped" 

very fast and air becomes transparent, never managing to lose noticeable 

energy conteni on radiation. Subsequently, when adiabatic cooling 

decreases as pressure falls and scattering declerates, in the first 

plan there sets in cooling by radiation. Appraisals show that during 

21 
explosion with energy E = 10  erg the step after the front of the 

shock wave starts to be revealed in layer with T ~ 10,000 K at time 

t ~ 10" sec when temperature on the front is of the order of 2000OK 

and pressure is of the order of 50 etm (pressure in a blast wave little 

changes from front to center, see § 25, Chapter I), 

Taking into account adiabatic cooling, the picture of distri- 

butions of temperature in air through which spreads wave of cooling 

is depicted in Fig, 9»lk,    Along the axis of abscissas there is 

located not a Euler but a Lagrange coordinate, i.e., Pig. 9,1k  shows 

how temperature of given particles of air changes and how a cooling 

wave spreads not through space but through a "mass" of gas. 
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§ 10» Energy Balance and Speed of Propagation 
of a Cooling Wave 

Wave of cooling runs through air practically undisturbed by 

radiation. Temperature of gas by the moment of approach of upper 

boundary of step is determined only by preceding history of the process 

and hydrodynamic motion (if such exists). This is explained by the 

fact that at temperatures of the order of tens of thousands of degrees 

and gradients of temperature of the order of a thousand degrees per 

meter, which take place in initial distribution, radiant thermal 

conduction is too small to create any noticeable energy flow in opaque 

region to which the wave of cooling still has not come. Radiant 

thermal conduction, coefficient of which is proportional to Rosseland 

mean free path Z (T) and cube of temperature,* fast Increases with 

Increase of temperature and becomes essential only in the region of 

temperatures of the order of hundreds of thousands of degrees, near 

the center of the explosion. It limits rise of temperature in the 

center by a magnitude of such an order and levels temperature near 

the center. 

Coefficient of thermal conduction becomes again large in region 

of temperatures lower than lö,000 K, where mean free path, sharply 

increasing with decrease of temperature, becomes very great,** However, 

this does not mean that at low temperatures radiant thermal conduction 

also levels temperature, since in, this region heated air becomes 

»We are reminded that energy flow, trarsferable by means of radiant 
thermal conduction, S = -w öT/ör, where coefficient of radiant thermal 

conduction is x = l6al   (T)T'/3 (see § 12, Chapter II). 

**l(T) passes through minimum at T ~ 50,000oK, and coefficient of 

radiant thermal conduction, proportional to l(T)T , at T ~ IGjOOO0!^. 

JM. -^-w: ^AAUati* 
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transparent and the idea of thermal conduction, in general, loses its 

meaning — transfer of radiation obtains essentially another character, 

in particular, leading to the formation of a wave of cooling. 

Thus, thanks to small thermal conduction on upper edge of wave 

of cooling, energy flow of radiation, proceeding in the wave from 

within, is clor  to zero and cannot Influence properties of the wave. 

The entire radiation flux, discharging energy of particles of air 

which are cooled in the wave, is generated inside the actual wave. 

Definition of this flux, which we will designate Sp, composes a basic 

problem of theory (to the solution of it will be dedicated § 3 of this 

Chapter), This problem is nontrivlal since inside the wave is a very 

sharp distribution of temperature. It is clear only that flux is 

included in limits of aTT' > S2 > aT^ since radiating layer in the 

wave lies at temperatures lower than the upper T^, at which air is 

absolutely opaque, but above lower Tp, lower than which air is trans- 

parent; i* does not radiate and is not cooled because of de-excitation 

of energy. 

If flux Sp is known, then speed u of propagation of wave of 

cooling through mass, on which in the end depends time of cooling of 

heated volume, can be found from condition of energy balance. The 

fact is that, according to appraisals, the wave of cooling spreads 

along air undisturbed by radiation with a speed less than the speed 

of sound. Pressure during the extent of the thin layer — the "front" 

of the wave — manages to level out and turns out to be practically 

constant. Density of gas is automatically "tuned" to change of 

temperature so that, while passing through wave and being cooled, a 

particle of air is compressed proportionally to 1/T (if it is con- 

sidered that pressure p ~ pT). This is illustrated in Fig, 9.15. 
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s. 
r. 

± ) 

r'       ^N Process of cooling air in the 

wave occurs at constant pressure, 

_teX       If P^ is initial air density at the 

time of the approach of the wave, 

then quantity of air flowing through 
p 

—*       1 cm of surface of front in 1 sec 

is equal to p.u. Change of its 

energy during cooling from tempera- 

ture T. to T2 is (during constant 

heat capacity) P-jUC (T^ - T2), 

This change is equal, obviously, to the energy drawn off from the 

surface of the front of the wave by radiation, i.e., equal to flux S2» 

Thus, we obtain the fundamental equation of energy balance on a 

wave of cooling, which we consider here as a discontinuity» 

Pig. 9.15. Schematic 
illustration of profiles 
of temperatur- and den- 
sity of gas i   e front 
of a cooling wave. Pointer 
u shows direction of air- 
speed, flowing in wave. 

S2 = PiUC (T,- T2) (9.5) 

If we consider that heat capacity c is not constant, then we 

will obtain more general equation: 

(9.6) S2 » p^^ - w2), 

where w is specific enthalpy of air. 

If 7 is effective adiabatic index, then w ■ • • j- -r -2- and speed 

of wave is equal to 

—^K1-?)- (9-r) 

In the third section of the chapter it will be shown that 

radiation, outgoing from the surface of the wave of cooling, always 

is generated on the lower edge of the step, independently of "amplitude" 

of wivve, which it is possible to characterize by ratio T^Tg or w^/w2, 

i.e., during any amount of high temperatures of initial gas T^, temper- 

ature of outgoing radiation is close to T2. 
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Flow value Sp is determined basically by temperature of trans- 

parency and approximately Is equal to 

S2 « 2aT^ (9.8) 

Actual temperature of transparency Is not a magnitude strictly 

defined. As was already mentioned above, it tentatively differentiates 

transparent and opaque temperature ranges and is found from the con- 

dition that average (over the spectrum) mean free path of radiation 

at a temperature equal to the temperature of transparency is of the 

order of characteristic scale of problem d, for instance the distance 

at which temperature of air drops from Tp to a sufficiently small 

magnitude, let us say, 2000 K. 

Table 9»5. u, km/sec at p ■ 1 atm 

\TI.K 
10780 9700 0300 

VK^V 

20000 2,7 2,1 1.7 
50000 1,8 1,4 1.1 

100000 1.6 1.2 1,0 

When wave spreads along 

expanded air, this scale is 

determined by hydrodynamic of 

the process on the whole; it 

is less the larger the speed 

of adiabatic cooling. If one 

were to approximately describe coefficient of absorption of air by 

Boltzmann dependence x •- exp (-I/kT) with a certain effective value 

of "ionizatlon potential,"* then temperature of transparency turns 

out to be only weakly, logarithmically depending on scale d. Just as 

on air density, which enters only into pre-exponential factor: 

t 
I(T1,)-const««*-(*:   T^~L(\aJL.y,. 

* V    const/ 
(9.9) 

*In reality, n  Is the sum of members of type e / , where I Is 
loni-ation potential for components corresponding to photoelectric 
absorption, and excitation energy for components of molecular absorp- 
tion. All values of I are of the order of 5-10 ev; if one were to 
consider a not very great temperature range, then always it is possible 
to Interpolate >t(T) by dependence of the type exp (-I/kT). 
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Above it has already been said that IL ~ 10,000oK at d ^ 10 m 

and atmospheric pressure (at d ^ 100 m T* ~  8000 Kj at d ^ 1 m T2 ~ 

~ 12,000 K).  Thus, flow value S2 « 20T2 changes in rather narrow 

llmita and, if we consider strong waves of cooling with large temper- 

ature gradient (T^ » T2, w^ » w2), then it will appear that speed 

of propagation of wave along initial gss depends basically only on 

pressure of gas p, independently of upper temperature 3L: 

o^.y-lzll at ^»Kij. 

For illustration of numerical values in Table 9,5 are given 

speeds of u for atmospheric pressure and several magnitudes of T^ and 

T2, Prom the table it is clear that speed of wave of cooling is of 

the order of 1 km sec, 

§ 11, Contraction of Cooling Wave Toward Center 

Character of cooling and dependence of time of cooling on 

dimensions of heated volume in the considered case are essentially 

different than those which would take place during spreading of heat 

by the mechanism of the usual thermal conduction. During usual themal 

conduction there gradually occurs similar lowering of temperature of 

all the mass of a body, and time of cooling of body with radius R is 
o 

proportional to square of radius t ~ R^c p/v,, where H  is coefficient 

of thermal conduction. During cooling by radiation along the body 

runs the wave, and time is proportional to first degree of radius 

t ~ R/u. 

If dimensions of a heated body have the order of R ~ 100 m and 

pressure of the order of atmospheric, then during speed of wave of 

cooling u ~ 1 km/sec it contracts from the periphery to the center 

during the time t ~ 0.1 sec. During that time air is cooled from 
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high temperatures of the order of tens and hundred thousands of 

degrees to temperature of transparency T2 ~ 10,000 K. 

Lines of propagation of cooling wave together with lines of 

front of shock wave and boundary of fiery sphere on radius — time 

diagram are depicted schematically in Pig. 9.16. 

Wave appears at the moment of 

time when temperature on the front 

is of the order of 2000°K.*  Step 

will be formed in the layer with 

T ~ 10,000°K, which will be approx- 

imately 10 m from the surface of the 

front. In the beginning, while 

pressure is still high (p ~ 50 atm 

at the moment of onset of step), 

speed of propagation of the wave 

along the mass is small and in spite 

Fig. 9.16.-Lines of front 
of shock wave (F. U. V.), 
boundary of fiery sphere 
(0. Sh.), and front of 
wave of cooling (V. 0.) 
on diagram r, t. Approx- 
imate scales pertain to 
energy of explosion 
E « lO^1 erg. 

of the fact that along the mass the 

wave runs deep, toward the center, in space it moves forward, being 

attracted by fast scattering air. Gradually the wave is delayed (in 

space), then turns back and "collapses" in the center. 

The point of turn, determining maximum radius of surface of front 

of cooling wave, corresponds to zero speed of wave in space, i.e., to 

equality of (directed oppositely to speed of gas-dynamic scattering) 

particles of air and speed of propagation of wave through mass. 

*In spite of the approximate coincidence of moments of appearance 
of cooling wave and breakaway of front of shock wave from boundary of 
fiery sphere, direct physical connection between these two absolutely 
different phenomena is lacking. 
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After passage of a wave of cooling through air heated by explosion. 

Its temperature everywhere turns out to be lower than ~lo,0000K, and 

the whole volume becomes more or less transparent. Subsequently, 

cooling by radiation proceeds considerably slower and has volume 

character. I.e., every particle emits light In accordance with its 

radiating ability, and this light, almost without absorption, departs 

from place of explosion to great distances. Certainly, volume is not 

completely transparent and some fraction of radiation sticks on the 

way in external layers, i.e., there occurs a certain transfer of energy 

from central regions to peripheral. In particular, this promotes 

nitrogen peroxide, which is contained in external layers with temper- 

atures ~3000-1000 K  (which earlier in the shock wave were heated to 

a temperature higher than 2000 K). 

Similar transfer of energy occurs during passage of wave of 

cooling, since radiation flux, outgoing from surface of wave, partially 

is absorbed in "transparent" (and in reality not fully transparent) 

peripheral layers. In ultraviolet region of spectrum, in general, 

abborption is strong and ultraviolet quanta are absorbed near front 

of wave. This, however, does not introduce essential changes in all 

the above-described qualitative picture of cooling of air by the wave, 

founded on an assumption about high degree of transparency at temper- 

atures lower than T , since in region of strong absorption with wave 
o 

lengths X < 2000 A there is contained less than ],%  of the energy of 

the spectrum, corresponding to a temperature of 10,000OK. 

One should not think that after the moment of "collapse" of the 

wave of cooling in the center cooled air ceases to gleam and that the 

surface of the wave of cooling at that stage, when it still exists, 

also is the boundary of the fiery sphere. Air, after passing through 
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wave of cooling, radiates fully sufficiently in order to brightly 

gleam even when energy effect of emission becomes small and further 

cooling ceases. 

Wave Is Inside fiery sphere and collapses toward the center, 

leaving behind It still sufficiently strongly heated and brightly 

luminescent air. The boundary of the fiery sphere (I.e., boundary 

of glow) Is composed of, at a later stage of explosion, layers with 

temperatures of the order of 2000-3000 K,    which are cooled by radi- 

ation very slowly. After pressure becomes equal to atmospheric and 

motion practically ceases, these layers turn out to be practically 

motionless. The boundary of the fiery sphere at first moves forward 

from the center together with scattering air, but then Is braked and 

remains as Is shown In Pig. 9.16. 

The approach of the wave of cooling to center Is accompanied by 

a certain draining of mass of air from periphery to center, since wave 

leaves behind Itself sharply cooled particles, and cooling during 

constant pressure Is accompanied by compression. For Instance, if in 

the beginning in the center temperature was 100,000oK and after 

"collapse" of wave became i0,000oK, where pressure at the time of 

collapse was not changed (remained equal to atmospheric), then air 

density in center is increased moreover several tens of times, which 

occurs because of draining of masses to center. This draining, however, 

does not show on far from center layers with comparatively low temper- 

atures of the order of 2000 -3000oK,  so that the position of the 

boundary of the fiery sphere remains constant. 

On this we will end consideration of the process of cooling of 

air on the whole, regularities of propagation of the wave of cooling 

and the glow of the fiery sphere, i.e., consideration of the 

"macroscopic" picture. 
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i. 

In subsequent paragraphs we will study the internal structure 

of the wave of cooling; just as in gas dynamics, along with the study 

of general flows of gas with shock waves, it is studied by investigation 

of the "microscopic" picture — the internal structure of the front of 

a shock wave. Namely consideration of internal structure of wave of 

cooling permits finding the most important characteristic of a wave — 

radiation flux from surface of wave, 

3. Structure of Front of Wave of Cooling 

§ 12. Formulation of the Problem 

Till now, when speaking of wave of cooling, we have considered 

it as some kind of a discontinuity in which temperature of gas endures 

a sharp jump. There was indicated the condition of energy balance, 

equivalent to a relationship describing the preservation of total 

flux of energy during flow of gas through a discontinuity, as is the 

case In examining shock waves. In distinction from shock waves, here 

it was sufficient to formulate only one energy relationship, since 

motion in a wave of cooling is subsonic and it is possible to disregard 

change of pressure during transition through front of wave (in this 

respect wave of cooling is similar to front of slow burning). Such 

"macroscopic" consideration does not permit making conclusions rela- 

tive to the most important magnitude determining speed of wave, radi- 

ation flux S-, which departs from front of wave to "infinity." For 

finding flux S2 it is necessary to investigate internal structure of 

transition layer of front of wave, i.e., find continuous solution of 

equations describing transfer of radiation in wave. This was done in 

al. ady quoted works [16, 17], 

Being distracted from concrete dimensions and form of cooled 

mass of gas, we will look for solution of non-stationary equations of 
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radiant heat exchange in the form T(x - ut), corresponding to plane 

wave, which spreads with constant speed u along gas with assigned 

values of temperature and density T., p.. 

Speed u should be found from equations, like determination of 

speed of flame in a burning mixture. 

In fact equations do not have exact solution of form T(x - ut). 

According to propagation of wave thickness is increased of layer of 

cooled gas, in which absorption of light although small is still 

different than zero;, and temperature of transparency, defined by 

relationship z(T2) = d, where under d it is possible to imply thick- 

ness of cooled layer, decreases with passage of time. 

In an unlimited medium during Inverse relation of mean free path 

on temperature the temperature of transparency, in general, turns out 

to be equal to zero, since layer of gas cooled to any amount of low 

temperatures, because of its infinite extent turns out to be absolutely 

opaque even during huge mean free path of radiation; radiation flux 

from front of wave ia equal to zero and conditions of a cooling wave, 

in the strict sense of the word, in general, do not exist, A situation, 

to a certain degree analogous, takes place in the theory of stationary 

propagation of flame. If we do not assume that chemical reaction rate 

in an unbumed mixture is identically equal to zero, in spite of the 

fact that in reality speed is final, although it is vanishingly 

minute, mixture will bum before it approaches flame front. 

This moment, fundamental in the case of an unlimited medium 

creates only apparent difficulty in real conditions. After all, 

actually a heated, and consequently cooled by wave, region always 

is limited; temperature of transparency only logarithmically depends 

on dimensions of cooled region, i.e., weakly changes with increase of 
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distance passed by wave, being for real bodies in very narrow limits. 

Additional, very slow dependence of solution on time T(x - ut, t) 

appears only one the lowest, strongly stretched edge of the wave, in 

a region of already cooled, almost transparent gas. The existence 

of adiabatic cooling in a case when the wave spreads along expanded 

gas makes this additional dependence still less essential, since air, 

after passing through the wave, is cooled because of expansion to low 

temperatures and fast "skips" the temperature range in which it is 

still not fully transparent. 

Additional, slow dependence on time T(x - ut, t) will exist 

only in the region of purely adiabatic cooling and will hardly affect 

profile of temperature in the actual wave. 

In order to find distribution of temperature inside front of 

wave of cooling, with which in turn is determined flux Sp, one should, 

as is usually done in the theory of conditions illustrated in Chapter 

VII in an example of a shock wave, consider a flat stationary process 

in the system of coordinates connected with the front. 

In order to be free of the above-indicated difficulty and to 

make the problem stationary, i,e., to cross from true solution 

T(x - ut, t) to idealized T(x - ut) (in the laboratory system of 

coordinates), it is possible to use one of two formally artificial, 

but in virtue of what was said physically absolutely Justified methods, 

responding to the real position of things. 

It is possible, first, to introduce ~:to  energy equation an 

additional constant member A playing the roa.? of adiabatic cooling. 

Magnitude A assigns constant scale d, determining temperature of 

transparency T0, and limits absorption in region cooled by radiation, 

making optical thickness of this region final. 
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It Is possible, secondly, not to consider adlabatlc cooling, but 

then from the very beginning to Introduce temperature of transparency 

T2 on the basis of appraisal of type (9«9)> and to assume formally 

that at T < Tp the medium absolutely Is transparent (mean free path 

I = oo), Then gas will be cooled only to temperature Tp, after which 

emission, proportional to H = l/l, and further cooling will cease. 

Inasmuch as motion of gas In wave of cooling Is subsonic 

(appraisals have attested to this), kinetic energy of gas flow It Is 

possible to disregard as compared to thermal. Equation of energy at 

current point x Inside the wave is recorded In general taking into 

account additional member describing adlabatlc cooling In the form 

"f^p i-+ lr •-A' A>0- (9.10) 

If one were to not assume heat capacity constant, this equation 

Is conveniently recorded through specific enthalpy of gasi 

^ii- + i-"-A- (5.U) 

Here S Is energy flow of radiation at point x of wave (in virtue of 

preservation of flux of mass pu(x) - p.u, where u is speed of wave, 

equal to speed of gas Influx into wave, p^ is initial density of gas, 

and p and u(x) are magnitudes at current point x. 

Directions of flow, of axis x, and of speed are shown In Fig. 

9.15* where schematically is depicted temperature gradient in front 

of wave. Gas flows Into wave from the left to the right; wave spreads 

along undisturbed gas from the right to the left. Before wave, at 

x =» -GO, temperature has the given value T = T,, and flow S = 0, in 

accordance with remark made in § 10 about the fact that radiant 

thermal conduction in highly heated gas is immaterial and flow in 

this region is small. Radiation flux S changes during growth of 
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x from -oo to +co from zero to magnitude Sp, equal to flux departing 

from front of wave to "infinity," 

If one were to not consider adlabatlc cooling, but to assume 

temperature of transparency Tp assigned (second method), then equation 

of energy (9.11) gives integral 

S - Vip1  (w1 - w). (9.12) 

Here constant of integration is expressed through enthalpy of initial 

gas w. ■ w (T.), in accordance with boundary condition x « -oo, T « T^, 

S » 0, Being applied to lower part of wave, where T » Tp and flux is 

equal to flux departing to Infinity S « Sp, Integral of energy (9.12) 

leads, as one should have expected, to equation of energy balance 

(9.6), connecting value of magnitudes on both sides of front of wave, 

if the latter is considered as a discontinuity. 

To equation of energy it is necessary to Join equation of transfer 

of radiation with which is determined flux S, Let us, as when exam- 

ining structure of front of shock wave taking into account radiation 

(see Chapter VII, § 3)* describe transfer of radiation in diffusion 

app roximat1on, 

Furthermore, we will introduce, as earlier, a certain mean free 

path, averaged over 'lie spectrum, of quanta I,    Equations of diffusion 

approximation are written then in the form 

^-^. (9.1?) 

S--$§. (9.11.) 

where U is true density of radiation, and U is equilibrium density, 

lioT 
corresponding to temperature of substance at point xt U » -:—^—. 

AB will be shown below, density of radiation in a considerable 

part of the wave is close to equilibrium. In these conditions, as It 
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Is known (see § 12, Chapter II), spectral mean free path lv  is averaged 

according to Rosseland, In the region of strongly cooled air there 

is no local equilibrium and the Rosseland method of averaging does 

not fit. The method of averaging, however, cannot introduce quali- 

tative changes in the results of consideration, since exponential 

Boltzmann factor of type e '  , effectively describing basic tempera- 

ture dependence of mean free path, is kept during any averaging, and 

on the pre-exponential factor, which, of course, changes durin? change 

of method of averaging, all effects in the wave depend very weakly, 

logarithmically, as temperature of transparency Tp, Therefore, for 

simplicity, we will imply always under l (T) Rosseland mean free path. 

In equations (9»13)* (9.14) it is convenient to cross to optical 

coordinate T, which we will count off from point x = -fco, where gas 

is transparent and I » oo (axis T is directed oppositely to axis x)i 

x      +oo:' 

Equations (9,15) and (9.14) take the forci 

S-i%- (9.16) 

To equations of transfer of radiation it is necessary to join 

boundary conditions. On the upper edge of the wave during T = oo, as 

already was mentioned above, 

t-oo, «y-O, T~tt. (9.17) 

On the lower edge of the wave, which is the boundary between 

absorbing and absolutely transparent media (vacuum), one should 

subordinate flux and density of radiation to known diffusion condition 
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on the boundary of a medium with vacuum (see formula (2,66))» 

,-0. S.-Q. (9.18) 

Equation of transfer of radiation together with equation of 

energy and boundary conditions completely determine structure of front 

of wave, flux S2, and speed u, 

§ 1J>,    Radiation Plux from Surface of Front of Wave 

Practical interest is presented mainly by strong waves of cooling. 

In which gas being cooled from initial temperature T^ to temperature 

of transparency T2 de-excites a considerable fraction of its own 

energy: T. » Tp. Weak waves, where the difference between T. and T2 

is small,* are Interesting basically from the methodical point of view, 

inasmuch as in this case it is possible to obtain exact analytical 

solution of equations. It is clear that in weak wave radiation flux 
h. ]i 

from front Sp, Included in interval crT7 > Sp > oT^, is determined 

quite exactly in virtue of proximity of extreme values; therefore, 

question about flux, which is the main one, actually does not appear: 
h ii 

Sp «* aTp » aT7, Analytic solution for a weak wave can be found in 

work [16]: here we will not pause on it and will cross directly to 

the consideration of a strong wave of cooling,    " 

In the preceding paragraph it was shown that for finding steady- 

state operation it is necessary to use one of the two methods: either 

to introduce into energy equation a constant member of adiabatic 

cooling, or, from the very beginning, to determine temperature of 

♦With this, however, in spite of proximity of 1' and Tp, it is 

assumed that temperature dependence of mean free path I (T) is so 
sharp that i(T.) « l(Tp).  The latter is a condition of the actual 

existence of a wave of cooling. 

y  - Hi"*7-^,^^^iiiiniri--'»^M^i^iM'tiiir"'^'"A-j^-^" 
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transparency Tp, end  to consider that at T < Tp gas is absolutely- 

transparent {l  =00), thereby excluding from consideration region 

already cooled by radiation, which absorbs light very weakly. The 

first method gives a more complete picture of distribution of temper- 

ature, since it permits investigating movement of temperature in 

cooled air and to consider weak absorption in it. However, it leads 

to unnecessary mathematical complications in examining profile of 

temperature inside the actual wave (at temperatures higher than temper- 

ature of transparency) and in determining flow departing from front 

of wave to infinity. Meanwhile inside the wave adiabatic cooling is 

small compared to cooling because of radiation; therefore, it is more 

preferable to investigate the internal structure of the wave, using 

the second method. In § 15 there will be noted certain peculiarities 

of conditions, connected with the existence of adiabatic cooling. 

In the absence of adiabatic cooling the Integral of energy 

equation is given by formula (9.12), which we will copy, while con- 

sidering, for simplicity, heat capacity to be constant: 

S = up1cp(T1 - T), (9,19) 

The problem consists of the solution of system of equations 

(9.15)* (9.16), (9.19) together with boundary conditions (9.1?)* 

(9.18). 

Before we investigate this system, we will try to estimate radi- 

ation flux S2, departing from front, based on the most general physical 

considerations. This consideration will tell us the approximation 

which can be made during solution of the system of equations and 

finding the profile of temperature in the wave. 

Owing to the actual formulation of the problem, the temperature 

at no point of the wave can be lower than temperature of transparency 
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Tpi since gas, after being cooled to temperature Tp, ceases to absorb 

and to emit radiation^ and further cooling is ceased. Consequently, 

T2 is minimum temperature in the wave and near the lower edge of the 

wave temperature grows according to distance from boundary with 

"vacuum" — with absolutely transparent region, where T = Tp and I - CD, 

dT 
Thus, on the lower edge at T = 0 dr > 0* Prom energy eqii«,tion (9.19) 

it follows that flux, during removal from lower edge to depth of wave, 

decreases, i.e., at T = 0 dS/dT < 0. Equation of "continuit;/" of 

radiation (9.15) indicates that with this, density of radiation on the 

lower edge of the wave is not higher than equilibrium density 

4aT^ 
Up < U 2 =  | (divergence of flux dS/dx is not negative; matter 

is not heated by radiation). In diffusion approximation is flow 

boundary of medium with vacuum is connected with radiation density 

by condition (9.i8)i S2 - cU2/2. Noticing that ü2 < U 2, we will 

ji 
find that flux S2 is limited from above by magnitude 2CTT2, Actually, 

On the other hand, effective temperature of radiation T -, 

determined by equality S2 » ^If*  coincides with a certain average 

temperature of radiating layer and, consequently, cannot be lower than 

Tp since temperature of substance in radiating layer, as also at any 

other point of wave, is always higher than T2, It follows from this 

that S2 > crT2, and flux S2, departing from^ront of wave to infinity, 

turns out to be included in very narrow limitst 

aT^ < S2 < 2oT^, (9.20) 

T2 < Tef < /2T2. (9.21) 

779 



Thus, independently of amplitude of wave, at any amount of high 

initial temperatures T. the lowest edge of wave always radiates, and 

radiation flux from surface of front of wave corresponds to temper- 

ature close to Tp. In no case should one think that here some role 

is played by the (accepted by us for description of transfer of radi- 

ation) diffusion approximation leading to boundary condition (9,18), 

Really, diffusion condition (9.18) corresponds to the assumption that 

quanta going out from a medium in a vacuum, are distributed on Iso- 

tropie angles, and from the vacuum into the medium quantum do not 

proceed (in the vacuum there are no sources of light). 

Even if we took another border assumption about the fact that 

there is sharply expressed anisotropy of radiation on a boundary with 

a vacuum and all quanta emerge from the medium normally to its surface, 

diffusion condition (9.18) would be changed by condition S0 = cU0, 

which would lead to Inequalities aT^ < S2 < hal^,  T2 < Tef  < ATp, 

differing from (9.20), (9.21) by an immaterial numerical factor. 

In reality limitation of flux Sp < 2aT2 Is connected with 

stationarlness of conditions of cooling, because of which profile of 

temperature, completely determining flux, cannot be arbitrary and is 

established fully by determination in accordance with equations of 

conditions. 

From inequality (9.21) there ensues an important corollary, 

AiixCii   pcxmx i/S    ouxvxiig    UüC   CüUXAO   ^/XWUXCIU   auuuo    ouxuCouic   Ox    xiuiit, 

described by nonlinear equations, by the simplest method. Radiation 

of a heated body adjoining a transparent medium (or vacuum) is gen- 

erated basically in the layer near the surface of a body having 

optical thickness of the order of unity or several units (quanta 

generated in deeper layers are not in a state to emerge outside, 
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almost completely being absorbed along the path). Effective tempera- 

ture of radiation coincides with a certain average temperature of 

this radiating layer. But because of inequality (9.21) effective 

temperature is very close to temperature of lower edge of wave Tp, 

This means, temperature of matter after point T - 0, where T « Tp, 

changes very little at an optical distance of the order of several 

units in depth of wave. This permits making the following conclusion. 

In a strong wave of cooling in which T. » Tp, radiation flux 

on lower edge of wave, in radiating layer, changes little and is 

almost constant. Really, during change of temperature AT < T0 flux 

changes to magnitude 

|AS| ~ uPjCpAT ^ up1cpT2, 

sind at T. » Tp flux at point T = 0, T = Tp is equal approximately 

to S «* uPicnTi (f5ee (9»i9)). Consequently, 

^-&-<i. 

Inasmuch as flux on lower edge of a strong wave is almost constant, 

situation is fully analogous to position in photospheres of stationary 

stars, where radiation flux is strictly constant. Thus, problem 

determining connection of flux Sp with temperature of transparency Tp 

(temperature on boundary of a medium with a vacuum) in the limit of 

a strong wave is equivalent to known problem of Milne (see § 13, 

Chapter II), It has exact solution during strict calculation of 

angular distribution of radiation 

only somewhat differing from solution in diffusion approximation» 

St~Wy (9.23) 
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Hence, one should mention. It Is clear that In the framework of 

the diffusion approximation flow value S2 In the limit of a strong 

wave coincides with upper boundary of Inequality (9.20). 

§ 14. Distribution of Temperature In the Front of a Strong Wave 

The fact that temperature only slightly changes during the extent 

of a radiating layer with optical thickness of the order of several 

units testifies to the existence of local equilibrium of radiation 

with matter. Relative deviation of density of radiation on lower 

edge of wave from equilibrium is less the stronger the wave. I.e., 

the larger the ratio T^j/Tg. Actually, from equation (9.15) It follows 

that 

But because of the above said 

I IT I, ÄT-^^TT"  »rT' 

since |AS| ^ S« To/Ti ^Q  change of flux during the period of optical 

distance AT ~ 1. Consequently, relative deviation of density of 

radiation from equilibrium in strong wave is 

It is possible to show that during removal in depth of wave from 

its lower edge, relative deviation, i.e., degree of nonequilibrium of 

radiation, only decreases, so that if wave is sufficiently strong and 

deviation on lower edge is small, then condition of local equilibrium 

is executed on the entire extent of the wave.* Thus, equations 

"^ *Thl8 proves, by the way, that in the case of a strong wave, as 
mean free path of radiation It is possible to use Rosseland average. 
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describing structure of the front of a strong wave of cooling are 

possible to solve In an approximation of radiant thermal conduction, 

considering 

Combining this equation with expression (9.19), we will obtain 

equation for function T(T), which Is Integrated In quadratures. 

On lower edge of wave we ottaln approximate form of solution, 

which, naturally, coincides with diffusion solution of problem of 

Milne, since flux S » const (see § 15, Chapter II)j 

Asymptotic profile of temperature on upper edge of a strong wave 

has the form 

r-r,(!-«"'»). T>t*, (9.25) 

where magnitude x,, which can be considered as effective optical 

thickness of wave, depends only on amplitude of waver 

Optical thickness of wave sharply Increases with increase in ratio 

T^/Tg, We will not Introduce here general expression for profile 

T(T), which on lower and upper edges is simplified, obtaining the 

form (9.24), (9.25) (see [17])* but we will depict profile of temper- 

ature on graph. Pig, 9.17 pertains to case 1^/Tp = 5, T - 1670, 

Knowing profile T(T) and mean free path depending upon temper- 

ature, it is easy to find distribution of temperature with respect to 

geometric coordinate with the help of determination —x - {l  (T) dt.* 

"*  *Inasmuch as in fact l (T«) ^ CD, temperature on lower edge aspires 
to magnitude Tp not asymptotically, but with slope different than zero. 
Therefore, origin of coordinates x - 0 it is possible to place at 
point where i « 0, T - T«. 

783 



«*, 

I 

es 

Pig. 9.17. Distribution 
of temperature with 
respect to optical coor- 
dinate in wave of cooling 
with T2/T1 - 5; Tk - 1670. 

r,' 

rt 

le* 

Pig. 9.19. Profile 
of temperature in 
wave of cooling. 

-.o^ 

#    43   V   v      n* 
Pig. 9.18. Distri- 
bution of temperature 
with respect to geo- 
metric coordinate on 
lower edge of wave of 
cooling; T2 « 10,000 K. 

In Pig. 9.18 is presented distri- 

bution temperature T(X) on lower edge 

of wave for case of Boltzmann dependence 

Z(T)  = const exp (l/kT). As scale of 

length is accepted magnitude l2 « 
l(Tp); 

temperature of transparency is taken as 

equal to T2 - 10,000
UK,  Pig. 9.18 shows that wave has the form of a 

step. In fact, Boltzmann dependence l(T), ensuring sharp step of 

temperature in wave, takes place only below temperature ~50,üOO- 

-40,000*!, until multiple ionization of gas starts. At higher 

temperatures mean free path passes through minimum and starts to grow 

with temperature increase, therefore, upper edge of sufficiently 

strong wave with T^ ~ 50,000-100,000 K is strongly stretched (at 

I « const profile T(x) on upper edge would coincide with profile 

T(T)) by the formula (9.25). Approximate distribution of tempera- 

ture in wave with T1 = 40,000^ is shown in Pig. 9.19. 

If one were to be distracted from the lervjthiness of the upper 

edge of the wave, which unessentially shows on cooling conditions of 
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air (since flux and divergence of flux, determining cooling on upper 

edge, are very small), then geometric width of the step will compose, 

as one may see from Pig, 9.18, several tenths of mean free path ^(T,,). 

o 
At Tp ~ 10,000 K and Z2 ~ 10 m width of wave turns out to be of the 

order of several meters, i.e., wave of cooling, spreading through a 

large volume of air with a radius of a hundred meters, is indeed 

narrow and can be considered as a discontinuity of temperature and 

density of substance (but not pressure, which changes only slightly 

during the period of the wave). 

§ 15. Calculation of Adiabatic Cooling 

In preceding paragraphs by means of artificial cutting of 

absorption at a temperature of transparency Tp (l - oo at T < Tp) 

there was excluded from consideration the region of cooled air with 

temperatures lower than the temperature of transparency. In reality 

in this region absorption although small is still certain, therefore, 

it Is natural to inquire how temperature behaves in the zone of cooled 

gas, which occurs with radiation flux outgoing from front of wave. 

Process In this region is essentially nonstatlonary; it depends on 

concrete conditions: dimensions, hydrodynamic motion, mechanisms of 

absorption of light. We will consider here that practically important 

case, when wave of cooling spreads not along motionless, and along 

expanded air, and air cooled by radiation continues to be cooled 

adiabatlcally. Adiabatic cooling quickly brings air to a temperature 

^one of total transmlttance, which does not render influence on con- 

ditions of cooling wave. During a period of comparatively small 

time, while adiabatlcally cooled air still to some amount noticeably 

absorbs light, speed of adiabatic cooling changes only slightly. 

fcfc^.i^Tr;rt-Vl^f.'^#irt^,l^^^^ •|ir---r-- I r nn-JV -| '■- ! -■•^■■-^^--^■^■^^^^■™^^^-'-ifta» 



Therefore, process with adlabatic cooling it is possible approximately 

to consider stationary and to describe it by energy equation (9;10) 

with constant member A, Integral of this equation is: 

up1c T + S = -Ax + const. (9.26) 

Constant of Integration here is arbitrary, since it is determined 

simply by selection of the beginning of reading of coordinate x; it 

is possible to assume that it is equal to zero. 

On the upper edge of wave at x -* —x flux S -♦ 0. It can appear 

that this artificially imposed condition contradicts the fact of the 

existence of a gradient of temperature, connected with presence of 

adlabatic cooling. However, it is assumed that mean free path Z(T) 

so fast decreases with temperature rise that product S ~ —i(T) T -r- 

aspires to zero ac T -* oo, which is physically justified, since flux 

of radiant thermal conduction from within, from the zone of burning 

air is very small. On the lower edge of the wave at x-♦-KD flux 

aspires to constant S0—flux departing to infinity.* Therefore temper- 

ature in wave at x -* ±co asymptotically aspires to two straight lines: 

up^c T « —Ax at x -*-CD, 

up1c T « —Ax — S0 at x -♦ +GO. 

These straight lines are shifted along an ordinate to magnitude 

S0 (in Fig, 9.20 they are shifted to segment SQ/\xp.c  ), The problem 

consists in determining this magnitude SQ,    We will not expound here 

the mathematical solution (see [IT]); we will be limited by qualitative 

consideration of the course of the process. 

♦This flux, as we will see below, is somewhat different than flux 
S2 departing from effectively defined surface of front of wave. 
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Pig. 9.20. Profile of 
temperature in a wave 
of cooling during the 
calculation of adiabatic 
cooling. 

Let us trace the consecutive 

change of the state of a particle 

of gas, entering into the wave of 

cooling, i.e., we will advance from 

-co in a positive direction to axis 

x (Pig. 9.20). At first, at very- 

high temperatures, radiant thermal 

conduction is insignificant, and 

the particle is cooled purely 

adiabatically; the temperature of 

it drops along the upper straight line. Then the particle starts even 

more and more to be cooled by radiation and the temperature of it 

descends below the upper straight line. Density of radiation in the 

particle with this is less than equilibrium (the particle emits more 

light than it absorbs), and the radiation flux in it grows. 

In this stage speed of radiant cooling is considerably larger 

than speed of adiabatic, and temperahure steeply drops (particle 

passes through wave of cooling). Thus it continues until particle 

is cooled to so low a temperature that speed of radiant heat exchange 

becomes less than speed of adiabatic cooling. 

Due to an extraordinarily sharp fall of absorption (and emission) 

with lowering of temperature, the already small adiabatic cooling after 

thai moment makes the particle quite transparent, and radiant heat 

exchange ceases altogether. 

Density of radiation, which is determined by flux being generated 

in more heated layers and passing through particles, remains almost 

constant. Equilibrium density of radiation, proportional to T , fast 

decreases. Therefore, in "transparent" region, in distinction from 
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"opaque", density of radiation is higher than equilibrium, absorption 

exceeds emission, and the particle is heated by radiation; radiation 

flux is weakened, as is shown in Pig. 9,21,* 

s Consequently, on axis x there exists 

^V^^,  »       such a point x = x2 (corresponding to it, 

temperature and flux we will designate 

by Tg, Sg), which divides region of 

"*' J      "opaque" air, intensely cooled by radi- 
Fig» 9.21. Flux dis- 
tributlon'of radiation    ation, and almost transparent air, weakly 
in wave of cooling       ^    *. * ^        *,   *.* .^ J., . 
during calculation of    heated by radiation. At this point 
adiabatic cooling.       ^  ..i  .»  ^ ^  .. 0        density of radiation is accurately equal 

to equilibrium U2 = U 2; divergence of flux is equal to zero and flux 

is maximum S,„0„ » S,». max   2 

Naturally this point, at which cooling of air by radiation is 

ceased, is considered the lower boundary of the wave of cooling; 

temperature in it is Tg — temperature of transparency — and flow Sp 

is flow going out from the surface of the front of the wave. Absorp- 

tion of this flow in "transparent" zone is small, so that to infinity 

departs flow SQ, only somewhat smaller than Sp. 

Profiles of temperature and flow T(x), S(x), answering the 

described picture, are depicted in Figs. 9.20, 9.21. At low tempera- 

tures curve T(x) is spread below lower asymptotic straight line, 

nearing it from below, since gas is heated by radiation: maximum of 

flow lies at the point where temperature strongest of all deviates 

from a straight line downward (this follows from equation (9.26)). 

*This situation somewhat reminds us of the position in the front 
of a shock wave radiation: after shock discontinuity density of radi- 
ation is less than equilibrium; gas is cooled by radiation and sends 
flow into region before discontinuity, where flow is absorbed, density 
of radiation is higher than equilibrium, and gas is heated. 
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It is possible to show that flux Sp 1? connected with temperature 

of transparency by the same relationship as in a wave without adiabatic 

cooling Sp = 2aTp. Regarding the actual temperature of transparency, 

it is possible to estimate it from the condition that at a temperature 

close to Tp speed of radiant cooling is comparable with speed of 

adiabatic cooling A by which approximately is determined lower edge 

of wave. 

Temperature Tp depends on arbitrarily assigned magnitude A only 

logarithmically in virtue of exponential dependence X(T), just as 

earlier it logarithmically depended on arbitrarily assigned character- 

istic scale of length d ^according to condition i(Tp) = d). In this 

case the characteristic scale is the distance at which temperature 

drops due to adiabatic cooling from magnitude Tp to zero, which, 

incidentally, also determines position of lower edge of wave, i.e., 

coordinate Xp. Actually for determination of temperature of trans- 

parency there remains condition ^(Tp) « d, only now there is assigned 

no actual magnitude d, and magnitude A, with which scale d is connected. 
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CHAPTER 

THEEMAL WAVES 

§ 1. Thermal Conduction of a Substance 

If a body is heated nonunlformly or in It there occurs energy 

release, there appears a heat flux transferable by means of thermal 

conduction. Thermal conduction promotes propagation of energy and 

thermal balance. Along with gradients of temperature, in general, 

there also appear gradients of pressure, owing to which the substance 

is set into motion.  In many cases hydrodynamic transfer of energy 

predominates over thermal conduction. However, frequently the motion 

and hydrodynamic transfer of energy are immaterial and heat from 

sources spreads only by means of thermal conduction.  At low tempera- 

tures the mechanism of heat transfer is the ordinary thermal conduc- 

tion of the substance. 

In the ordinary thermal conduction, thermal perturbations are 

propagated In the medium comparatively slowly (subsequently this will 

be shown in the example of a gas),  Small perturbations of pressure 

spread with transonic speed at the expense of a certain redistribu- 

tion of density, and pressure is balanced much faster than temperature, 

If changes of temperature in the medium are small, the speed of the 

substance is much less than the speed of sound and in the study of 

propagation of heat by means of thermal conduction the motion of the 
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substance can frequently be disregarded, considering that the process 

occurs at constant pressure. 

Equation of energy balance then has the form 

VPTT^-üVS+W. (10.1) 

where pis the density which can approximately be considered as con- 

stant, c is the specific heat capacity at constant pressure, S Is 

the vector of heat flux, and W is the energy release in 1 cnr per sec 

from outside sources. 

Thermal conduction of heat flux in first approximation is pro- 

portional to the gradient of temperature: 

iS=-j«gradr, (10.2) 

where H is the coefficient of thermal conduction, depending on the 

properties of the substance. Putting expression (10,2) in the equa- 

tion of energy balance (10,1), we obtain a general heat-conduction 

equation which describes the temperature of the medium depending upon 

coordinates and time: 

«V3r-div0t«radr>+w'- (10.5) 

In a not too large range of temperatures the coefficient of thermal 

conduction and heat capacity of the substance hardly change and are 

practically constant. Heat-conduction equation (10,3) Is then linear 

(with the exception of cases when energy release W depends on tempera- 

ture in nonlinear form), 

When n - const, we have 

Qc,^--xAr + W. (10.4) 

If one were to divide the heat-conduction equation (10,4) by 

pc , it takes on the form in which the properties of the substance 

are characterized by only one parameter» the coefficient of heat 

transfer x " x/pcDi 
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In gases the coefficient of heat transfer Is approximately equal 

to the coefficient of diffusion of moleculest 

where lQ Is the range of molecules, and "v Is their average thermal a 
o 

speed) for Instance, In air under normal conditions x ^ 0,205 cm /sec. 

In liquids and solids the mechanisms of thermal conduction are more 

complicated» We will not remain on this question here. Let us indl- 

cate that in water at room temperature x - 1.5»10 ^ cm /sec. 

To the heat-conduction equation one should add initial and boun- 

dary conditions. At the initial moment there sets-ln distribution of 

temperature in the medium: 
7(1, y, z, 0) = 7'o(x, y, z). (10,6) 

On the boundaries of two media 1 and 2 with different properties 

the heat flux is continuous 

(xgrad7-)i=:(xgradr)2. (10.7) 

On the boundaries of the considered body there are given, as 

functions of time, the temperature or flux of heat or, in general, 

the bond between them. 

Mathematical theory of linear thermal conduction, which is con- 

cerned with the solution of equation (10.5) in reference to different 

specific problems, is well developed and is widely applied in the most 

diverse regions of physics and technology, 

§ 2.  Nonlinear (Radiant) Thermal Conduction 

At high temperatures of the order of tens and hundreds of thou- 

sands of degrees there appears a completely different mechanism of heat 

transfer, i.e., radiant thermal conduction. We became acquainted in 

detail with the process of radiant thenral conduction in Chapter II, 

and also in Chapters VII and IX, where we considered problems about 
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the structure of the front of a very Intense shock wave and about 

cooling of air by radiation. 

An essential distinction of radiant thermal conduction from the 

ordinary consists In that the coefficient of radiant thermal conduc- 

tion strongly depends on temperature, owing to which the heat-conduc- 

tion equation Is nonlinear. 

The heat flux transferable by the mechanism of radiant thermal 

conduction Is equal to (see formula (2.76))t 

Ä.-^d^-Igmdif4. (10.8) 

where Ü » 4aT /c Is the density of energy of equilibrium radiation, 

and I  is the Rosseland path of light.* Energy flow (10.8) can be 

recorded through the gradient of temperature In the form of (10,2), 

If one determines the coefficient of radiant thermal conduction by 

the formula 

.M- 3 dT = 3  ' (10.9) 

Coefficient of radiant thermal conduction depends on temperature 

both due to the proportionality of heat capacity of radiation c ^ « 
raa 

■ dU /dT - T^, and also due to the dependence on temperature of the 

radiation path I, 

In the radiant mechanism of thermal conduction the energy can 

spread with a speed much larger than the speed of sound in the sub- 

stance. This is connected with the fact that the speed of light at 

non-relativistic temperatures is many times greater than the speed of 

sound. If in a body there takes place energy release and the substance 

is heated to a sufficiently high temperature, this energy in the 

•Let us recall that transfer of radiation has the character of 
thermal conduction if the density of energy of radiation in every 
poln4-. of the medium is close to equilibrium. For this it is necessary, 
that i:he dimensions of the heated region considerably exceed the range 
of radiation. 
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beginning spreads quickly by means of radiant thermal conduction. 

Although the speed of propagation of heat Is much larger than the 

speed of sound, the substance does not succeed to come Into motion, 

the pressure In It does not succeed In being balanced, and the heat 

spreads through the motionless substance» Subsequently there will be 

given an appraisal of the conditions at which there appears motion. 

We will consider here the propagation of heat by means of radiant 

thermal conduction only In a motionless medium, the density of which 

does not change with the passage of time. 

Energy balance, as before. Is described by equation (10.1) or 

(10.3) (but not (10.4), since >t ■£  const), with the only difference 

that Instead of heat capacity at constant pressure c , In the equation 

one should put heat capacity at constant volume c,,.  It Is then 

assumed that the density of energy of radiation TJ can be disregarded 
P 

as compared to the density of energy of the substance pe(T). 

If one approximately considers heat capacity c as a magnitude, 

not depending on temperature, and divides the heat-conduction equation 

by pc , we obtain the equation 

ir = diy(XgradrHg, (lO.lO) 

corresponding to equation (10.5). Coefficient of radiant thermal 

transfer X is equal to 

«T ~ » 8*v ' (10.11) 
W 3= __ =- _ SB* 

There is a deep parallel between this magnitude and the coefficient 

of ordinary thermal conduction of a gas x ■ ^J*/^»    This coincides 

with the coefficient of diffusion of molecules which are heat carriers. 

In radiant thermal conduction the substance is heated and cooled^ and 

the energy carrier is the radiation, which plays the role of an 

"intermediary." Therefore, the coefficient of radiant heat transfer 
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is not simply equal to the coefficient of diffusion of radiation 

lc/5, but is still proportional to the ratio of heat capacities of 

radiation and the substance« 

In many cases the range of light I can be approximately considered 

as an exponential function of temperature (density of the medium is 

considered to be constant)» 
l-AT*,   m>0. (10.12) 

In a completely ionized gas^ where the mechanism of radiation 

and absorption of light is purely a braking mechanism, m ■ 7/2. In 

the region of multiple ionizatlon of gases m "* 1.5-2.5. 

At exponential law (10.12) the coefficient of radiant heat 

transfer is also on exponential function: 

M«i6«dj«„5r», n = jn + 3t (10.15) 

where index n •* 4*5-5#5 in the region of multiple ionizatlon. In the 

approximation in which the heat capacity of a gas is considered to be 

constant, we arrive at equation (10.10) with coefficient of radiant 

heat transfer, equal to 

9cv      VvJ       al  ' (10.14) 

Equation of nonlinear thermal conduction has the form 

^-odiv(r»grad7) + 9. (10.15) 

Usually at high temperatures in the region of multiple ioniza- 

tlon the specific heat capacity and internal energy of a gas can be 

approximated by exponential functions of temperature» 

• -a7**», «v--^—(*+l)ar*, 

where a is a constant, and k is a magnitude equal approximately to 

0.5 (see § 8, Chapter III). In the root law of heat capacity 

the heat-conduction equation can also be reduced to the form of 

(10,15). Let us Introduce, instead of temperature, as an unknown 
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function, the Internal energy of a unit of volume 

We obtain 

■^~a'diy(£»'grad£) + ,'. (10.16) 

where 

««j-^. a» s^j-, q ~W. 
(A+lMoa)^ (10.17) 

Equation (10.16) does not differ from equation (10.15)j their 

solutions also coincide. In order to cross from the solution of 

equation (10.15) T » ^x, j,  z, t) for any specific problem, to the 

solution of equation (10,16) E - E(x, y, z,  t) for the same problem, 

one should only replace constants a and n by a' and n, and also replace 

the function of the source q by q' » W =« qpcy.  Let us note that when 

n » 5> k « 0,5, and n' » 5. 

Subsequently for convenience of comparing the conclusions of 

theories of nonlinear and linear thermal conduction, we will orig- 

inate from equation (10.15) for temperature. We will then consider 

that the found solution of any specific problem can be immediately 

recorded for the case of exponential dependence of heat capacity on 

temperature. 

Besides radiant thermal conduction, which presents the biggest 

interest, there exists one more example of nonlinear thermal conduc- 

tion. This is electron thermal conduction in plasma, which we were 

concerned with In § 12 of Chapter VII.  (ionic thermal conduction 

of plasma also strongly depends on temperature, but it plays a 

considerably smaller role than electron thermal conduction.) Coeffi- 

cient of electron heat transfer is Y 
^e   e ^e * 

It Is Interesting that a nonlinear heat-conduction equation of 

the type (10.15) describes a completely different process, namely the 
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motion of a polytropic gas (pressure and density of which are connected 

by the equation p ■ const p n ) In a porous medium. Density of gas p 

satisfies the equation» 

-^*6div(c"grad8). 

where n Is the polytropic exponent, and b Is a constant which Is 

determined by the porosity and permeability of the medium and proper- 

ties of the filtering gas. 

Specific problems of nonlinear thermal conduction correspond to 

the same problems of the theory of filtration. 

Processes of nonlinear thermal conduction for the first time 

were considered by Ya, B, Zel'dovich and A. S. Kompaneyets [1], who, 

in particular, found the exact solution of the problem about propaga- 

tion of heat from an Instantaneous plane source. Corresponding 

questions of the theory of filtration were independently investigated 

by Q, I,- Barenblatt [2], He obtained the same solution for the case 

of an instantaneous lumped source, and also solved a number of other 

specific problems. 

§ 5. Peculiarities of Propagation of Heat During 
Linear and Nonlinear Thermal Conduction 

The basic features of the process of nonlinear thermal conduction 

and the peculiarities distinguishing it from the process of linear 

thermal conduction, are best of all clarified in an example of the 

problem about propagation, in an unlimited initially cold medium, of 

heat from an instantaneous plane source of energy. Let us assume that 

at Initial moment t ■ 0 in plane x ■ 0, there was released energy I 

per 1 cm of surface ( I in erg/cm ). In subsequent moments the heat 

spreads to both sides from plane x - 0. 
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The heat-conduction equation (10,10) for the considered problem 

has the form 
dT       d     dT 
'W'to'l-W (10.18) 

where the distribution of temperature In space obeys the condition 

of conservation of energy 

\ Tdx=Q. 
-- (10.19) 

Magnitude Q is equal to S/pc if the process occurs at constant 

pressure, and i/pcv if specific volume is constant. 

In this case two equations, (10.18) and (10.19), are equivalent 

to one heat-conduction equation (10,10) with a delta-shaped source 

(both with respect to time and coordinate)« 

9(x, l) = <?ö(x)ö(0. 

At initial moment t « 0 the temperature of the medium is considered 

to be identically equal to zero everywhere except the point where the 

energy release took placet 

n*. o)~wx). 
Solution of the problem on hand in the case of linear thermal 

conduction x = const is well-known. It is given by the expression 

A characteristic property of linear thermal conduction consists in 

that the heat is concentrated at the point of energy release only in 

Initial moment t » 0 (when x «■ 0, T-» « as t~ ' ), In subsequent 

moments of time the heat instantly spreads to all the space and the 

temperature tends to zero for infinity, when x-> ioo, only asymptot- 

ically, Basic energy content is concentrated in the region with di- 

mensions of the order x ~ /4xt, which grows with the passage of time 

in proportion to /t. Correspondingly, as 1//E" and temperature drops, 

the full quantity of heat, proportional to / T dx ~ Tx "ffi'St  - 1* 
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Pig. 10.1. Propagation 
of heat from an Instan- 
taneous plane source 
during linear thermal 
conduction. 

remains constant« Distribution of temperature in consecutive moments 

of time are shown In Pig. 10.1, 

The asymptotic character of decrease 

of temperature to Infinity and the instan- 

taneous character of propagation of heat 

to an unlimited distance within the 

scope of the thermal conduction theory 

is connected with the finite character 

of the coefficient of thermal conduction 

at zeco  temperature. 

Practically, of course, at a large 

distance to a given moment of time there penetrates only an insignifi- 

cantly small quantity of heat; the law of drop of temperature to in- 

finity is extremely sharp, Gaussian; however, in principle, at any, 

no matter how long, but finite distance from the source, the tempera- 

ture immediately after the moment of energy release is finite. It is 

necessary to note that the Gaussian law of temperature dropping to 

infinity is connected with the approximate description of propagation 

of heat within the scope of the thermal conduction theory. In reality, 

at long distances the temperature is determined not by the diffusion 

of "hot" molecules from a heated region (in a gas), but by direct, 

"straight-through" molecules, falling from a heated region at long 

distances, not experiencing any collisions. Therefore, in reality, 

to infinity the law of drop of temperature is not Gaussian (10.20), 

-rA but only exponential, T ^ e ' a, where lQ is the range of a molecule. 

It is clear that with any preexponential factor, in a given moment 

of time, the simple exponential exp(-x/l ) finally will become larger 

than the Gaussian exponential exp(-x2/4xt) (x " lo^/j). However, in 
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this region at large distances there is such an insignificant quantity 

of heat that consideration of it does not present any interest. 

We shall check the assumption on the possibility of disregarding 

the motion of the substance. 

If the medium is gas^ from the place of energy release (in this 

case from plane x « 0) there spreads a corapressional wave (or shock 

wave). The speed of its propagation through an undisturbed substance 

is of order of the speed of sound in a heated region., i.e., of the 

order of the thermal velocity of heated molecules v. Speed of propaga- 

tion of heat by means of thermal conduction 

Üä      dt ' *■       V   *       »   « 

i.e., as soon as the heat spreads to a distance longer than the mean 

path of the molecules, the speed of thermal conduction becomes less 

than the speed of hydrodynamic conduction. Inasmuch as in general 

there is no meaning to consider distances less than the path of mole- 

cules, one may assume that the heat spreads always with subsonic 

speed. If the quantity of released energy is small and the compres- 

sional wave weak, the speed of the substance is small as compared to 

the speed of sound. It Is possible to consider, as this was noted 

from the very beginning, that the role of hydrodynamics reduces simply 

to the equalization of pressure, and the process of propagation of 

heat occurs at constant pressure. 

If, however, the energy release is great and the compressional 

wave, going a considerable distance from the place of energy release, 

is a shock wave, then we are dealing with a purely hydrodynamic pro- 

cess of a severe explosion, which was considered in § 25 of 

Chapter Ij the role of thermal conduction of the substance in the 

propagation of energy turns out to be immaterial. 
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L £ J JU 
Pig. 10.2. Propaga- 
tion of a thermal wave 
from an Instantaneous 
plane source. 

Let us now assume that the coefficient of thermal conduction 

depends on temperature, where by It decreases with the drop of tem- 

perature and turns Into zero at zero temperature, like this takes 

place during radiant thermal conduction. 

In this case the heat cannot Instantly 

penetrate to any great distances, but 

spreads from the source with terminal 

velocity in such a way that there exixts 

a clear boundary separating the heated 

region from the cold, to which thermal 

perturbation did not yet arrive. Heat spreads from the source In the 

form of a wave, the front of which is the shown boundary surface. 

Such a wave is called thermal. Distribution of temperature in a 

thermal wave in consecutive moments of time is schematically shown In 

Pig. 10.2. 

In a cold undisturbed medium the temperature and flux of heat 

are equal to zero, inasmuch as the coefficient of thermal conduction 

reverts to zero. By virtue of continuity, the flow on the front of 

the wave also turns into zero. In linear thermal conduction, when 

x ■ const, the return to zero of the heat flux can be connected only 

with the disappearance of gradient of temperature. In nonlinear 

thermal conduction with coefficient diminishing to zero when T-* i, 

the flux can alsoNdisappear when the gradient of temperature differs 

from zero, only at the expense of return of the thermal conduction 

coefficient to zero. This circumstance In particular is also 

connected with the appearance of a sharp front of a thermal wave. 
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In order to explain what has been said, we will consider the 

layer near the front of a wave. If we limited ourselves to short 

periods of times, during which the wave spreads at distances that are 

small as compared to the size of the region enveloped by the wave. I.e., 

with coordinate of front xf (see Pig. 10.2), during such time the speed 

of the front can approximately be considered as constant. 

Distribution of temperature near the front can be found In the 

form of a stationary wave T « T(x - vt), where v Is the speed of the 

front. Profile of temperature near the front Is quasi-stationary In 

the system of coordinates connected with the front. 

Putting In equation (10,18) the solution In the form of T - 

» T(x - vt), we obtain, for the profile of temperature near the front, 

the equation 

~0 &- dsxax • (10,21) 

Considering x ■ aTn(n > 0) and integrating this equation twice with 

boundary condition T ■» 0 when x - x~, we obtain the profile of tem- 

perature» 
i 

T=[^\**-*\]\ dO.22) 

it is also shown schematically in Pig, 10,2, 

Coordinate of front xf and speed of front v « ^^ in this formula 

are indefinite functions of time. They are found by means of solution 

of the entire problem for the whole space. 

The fact that the temperature returns to zero according to law 

(10.22) also confirms the accuracy of the affirmation about the exis- 

tance of the sharp boundary of the heated region, i.e., the front of 

the thermal wave. If index n * 0, the coefficient of heat transfer 

X*   does not return to zero when T » 0, and equation (10,21) does not 

have solutions returning to zero at a finite distance, which 



oorresponds to the Instantaneous character of propagation of heat at 

any large distances. 

Prom formula (10,22) It follows that the gradient of temperature 

near the front of a thermal wave Is proportional to dT/dx ~ 

- lxf - x|n 

If n > 1, the gradient of temperature on the front (when x « x~) 

returns to infinity, i.e., the front is steep. If n < 1, (dT/dx) 

» 0. The flux Is always equal to zero when x - xfz S ~ TndT/dx ~ 

1 
~ lxf - xj  -> 0 nL°n  n > 0, 

In §§ 12 and 17 of Chapter VII, in examining the structure 

of the front of a shock wave, taking into account the electron and 

radiant thermal conduction, it was shown, as in front of a shock wave 

which is spreading through a gas, there breaks loose a "tongue" of 

heat due to thermal conduction. 

Profile of temperature in front of the shock is described by 

formula (10.22) (if motion of gas in front of shook can be disre- 

garded) , where speed v is the speed of the front of the shock wave. 

The profile has the form shown in Fig, 10.3a. A "tongue" breaks 

loose at a fully defined, finite distance Ax - xf - x^ (Pig. 10,3a), 

which depends on the temperature on the shock wave T^ 

1 V •  y      'w  *»  «* 

In the case of linear thermal conduction x ■ const, the "tongue" 

of heat spreads an infinltum, although its effective width is finite 

and is constant (at constant speed of shock wave). Solution of 

equation (10.21) when x m  const has in this case the form 

r-r,«"»?1. Ax'-i. 

Profile of temperature in a heated layer is shown in Pig. 10.3b. 

As was already noted, the temperature returns to zero only at infinity. 
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Pig, 10.3. Thermal con- 
duction heating In front 
of a shock wave, 
a) during nonlinear ther- 
mal conduction; b) during 
linear thermal conduction. 

In molecular thermal conduction 

the law of drop of temperature to 

Infinity due to the "straight- 

through" molecules differs from that 

which Is dictated by the thermal 

conduction theory, not taking Into 

account the motion of separate mole- 

cules. Similar to this, during 

heat transfer by radiation, the pro- 

file of the thermal wave near Its 

boundary has the form of (10,22) only within the scope of the approxi- 

mation of radiant thermal conduction. If we consider the existence 

of "straight-through" quanta, l,e,, nonequlllbrlum of radiation of 

front edge of wave, we will arrive at the exponential law of drop of 

temperature on the front edge of a thermal wave: T - e~x'   ,  where I 

Is the range of radiation. This effect was studied in detail in 

§ 5 of Chapter VII in examining the structure of the front of 

a shock wave taking into account the transfer of radiation. 

Till now we considered propagation of heat in a medium with 

zero initial temperature. If TQ / 0, the coefficient of nonlinear 

thermal conduction in an undisturbed substance is finite and the law 

of drop of temperature is different than (10.22)j however, practically, 

at small initial temperatures the coefficient of radiant thermal con- 

duction when T » T0 is so small that this effect can be disregarded. 

Much more essential is the above-noted nonequlllbrlum of radiation 

on the front edge of a thermal wave, which leads to an exponential 

decrease of temperature T ~ e~x'    instead of root law (10,22), 

J^ 
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Let us note one more essential distinction of nonlinear thermal 

conduction from linear. In the linear case there Is the principle of 

superposition. If there Is a totality of sources of energy, the heat 

from each of them spreads In an absolutely Independent form.  Solu- 

tion of the equation of thermal conduction In the presence of extended 

sources Is possible to present In the form of an Integral "with respect 

to sources" from solutions corresponding to concentrated sources. In 

nonlinear thermal conduction the principle of superposition Is Incor- 

rect, Propagation of heat from one source depends on the temperature 

to which the medium Is heated at the expense of thermal perturbation 

coming from another source. In the general case of extended sources 

the solution Is Impossible to present In the form of an Integral with 

respect to sources. 

§ 4, Law of Propagation of a Thermal Wave from an 
Instantaneous Plane Source 

The law of propagation of heat from a source Is easy to obtain 

even without an exact solution of the equation by means of estimating 

the order of the magnitude of characteristic dimension of the heated 

region, or from dimension considerations.  Problems about the propaga- 

tion of heat from an Instantaneous source (flat, point, filamentary) 

are solved exactly (see below). However, similar semiqualitative 

appraisals make the physical meaning of regularities veiy graphic 

and, furthermore, frequently are useful in the consideration of more 

complicated problems, for which exact solutions cannot be found. 

Let us consider the propagation of heat from a plane instantane- 

ous source. Results for the case of linear thermal conduction were 

already oresented in the preceding paragraph, where an exact solution 

of the problem was given. In order to demonstrate the general trend 

of semiqualltative reasonings, we will repeat these results again, 
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Let us aßsume that the coefficient of thermal conduction Is constant. 

In equation (10,18) there enters one unique parameter, l»e,,  the 

coefficient of temperature transfer x* era /sec. The other measured 

parameter Is energy per 1 cm ; », erg/cm of surface or magnitude Q, 

deg'cnu If x Is the width of the region In which the basic quantity 

of heat Is concentrated to moment t, from considerations of size It 

is clear that x2 ~ xt, x ~ /x*. Speed of propagation of heat ^ ~ 

~y-X.~X~ x  Average temperature in the heated region Is of the order 

T - ~ "^f*    These simple results, which coincide in order of magni- 

tude with the one that gives an exact solution of the problem (10,20), 

can be obtained directly from equation (10,18). Replacing in it the 

derivatives ÖT/ät, öT/5x by ratlos T/t, T/x, equal to them in order 

of magnitude, and replacing '§7 X "5^" ^y XT/X »  we will arrive directly 

at the same regularities. 

Let us now turn to the case of propagation of a nonlinear ther- 

mal wave. For the coefficient heat transfer we will take the exponen- 

tial dependence x ■ aTn, at which the heat-conduction equation has 

the form 

*~aa*1  S?' (10.23) 

In the equation there enters one parameter a cm /sec»degn. The other 

measured parameter is Q deg.cm. Prom them it is possible to compose 

one (independent) measured combination containing only length and 

n  n+2   —^ 
timet aQ cm   sec , It follows from this the law of motion of 

the front of a thermal wave» 

4,'   « • 

Speed of propagation of a thermal wave is of the order 

i  i 
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It Is clear that with a large Index n, the thermal wave Iß very 

quickly slowed down with respect to propagation. This is connected 

with the fact that during the propagation of heat the temperature 

drops and the coefficient of heat transfer decreases very sharply. 

Considering that average temperature in a thermal wave is of the order 

T ~ Q/xf, and the mean coefficient of heat transfer X " aT
n - aQn/x~, 

it is possible to write out the law of propagation of a thermal wave 

in a form corresponding to the linear theoryi x- ~ /xt". Here one 

should consider that the mean coefficient of heat transfer Itself in 

this formula depends on time according to the law 

The law of propagation of a thermal wave can also be obtained 

from the heat-conduction equation, replacing the derivatives approxi- 

mately by ratios of magnitudes: ÖT/ät-♦ T/tj §~-» T/xf; sr Tn ^~--» 

T"^
1 2    n -*    £2  '» We then obtain x^ ~ aT t - xtj using the relationship T ~ 

•** QAf.» we arrive at the already found laws, 

§ 5. Self-Similar Thermal Wave from an 
Instantaneous Plane Source 

Let us find an exact solution of a two-dimensional problem about 

the propagation of a thermal wave in an unlimited medium during instan- 

taneous energy release at the time t « 0 in plane x - 0. The process 

is described by a nonlinear heat-conduction equation (10.25), where 

the solution satisfies the law of conservation of energy (10.19). 

Prom the size considerations presented in the preceding para- 

graph, it is clear that the solution of the problem on hand is 
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self-similar.» Really, the only dlmenslonless combination which can 

be composed from coordinate x, time t, and parameters of problem a 

and Q, is j«—L_. 

W«)»*1 (10.24) 

Magnitude of dimension of temperature is Q/(aQnt)"^» CQ2/at)  • 

Therefore, the solution of T(x, t) should be found in the formi 

*<£f'm. do.25) 
where f(£) is a new unknown function. 

Putting expression (10.25) in equation (10.23) and passing to 

differentiation with respect to self-similar variable, with the help 

of formulas 

it »4-2 dl t '     dx~ t rff 

we obtain an ordinary differential equation for function fi 

<»+2'i(^) + ^+'-0- do.26) 

Solution of this equation should satisfy the conditions which 

follow from the physical conditions of the problem» T ■ 0 when x ■ 

•■ ±<» on T •« 0 when x ■ <» and "f^T ■ 0 when x - 0 (by virtue of symme- 

try with respect to plane x ■ 0) ♦ Hence 

/(Ü-0 «her. 5=oo; ^ = 0 «hen 6 = 0. (10.27) 

Solution of equation (10,26), satisfying conditions (10.27), was 

found in [1, 2] . It has the form 

/ß)-[2l^)(i:-r)]-»[^)5:]"[i-(^,]"1^nE<5.. 
/(5) = 0 wh.« ^g,,   (10.28) 

♦The concept of self-similarity, see Sections 11 and 25 in Chapter 
I.  See also Chapter XII. 
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where ^0 is the constant of integration. Constant Cn is found from 

the equation of conservation of energy (10,19), which takes on the 

form 

J/«)^- \ m)dg = i. (10.29) 

Calculation gives 

[(«+2)l^,•,,2,-" r,,(T+T)T+ 

(4) J " (10.30) 
Law of motion of front of thermal wave ^ - ^0 is 

i 

»♦-5o(«WrfI. (10.31) 

It, as one should have expected, with an accuracy of numerical coef- 

ficient £0, coincides with the law found in the preceding paragraph 

from semiqualitative considerations. 

Temperature in a plane thermal wave is conveniently expressed in 

the form 
i 

where xi.(t) is the coordinate of the front, determined depending upon 

time by formulas (10,31) and (10.30), and T is the temperature in 

plane x • 0. It can be expressed through avenge temperature in the 

wave (average with respect to heated volume): 

f.-j. (10.33) 

where 

\) 

For instance, when n ■ 5, 40 " 0.77 and T « 1.12Y, 

In the calculation of variability of heat capacity the profile 

of temperature differs from (10,32) only very little. Actually, the 

profile of energy is t 
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But E ~ T1+k, n' - (n - k)/(k + 1), whence 

Inasmuch as n ~ 5 and k ~ 0,5, this expression scarcely differs 

from (10.32) (in the first case the index 1/n » l/5j In the second, 

1 
n - k » 1/4.5) . The new constant ^(n») also hardly differs In the 

law of propagation of a thermal wave. The law of propagation Itself 

changes more. When n =■ 5, k « 0 (constant heat capacity) xf ~ t ''j 

when n - 5, k = 0.5 (i.e., cv ~ T
0,5), xf - t^

1^ - t1/5. 

Profile of temperature T/T depending upon x/x^. Is depicted In 

Fig, 10,4a, for the case of n » 5. For a thermal wave with coeffi- 

cient of thermal conduction strongly depending on temperature, the 

existence of a "plateau" of temperature is characteristic:  temperature 

Is almost constant and is equalized by thermal conduction in all the 

heated region, with the exception of the comparatively thin layer 

near the front, where it quickly drops to zero» Such a tendency is 

expressed more sharply the larger the index of nonlinearity n. Flux 

coordinate distribution is given by the expression 

Flux grows almost linearly from the beginning of x - 0 to the very 

edge of the wave and quickly drops to zero only near the edge, as 

shown in Fig, 10.4b. Divergence of flux ös/5x is almost constant 

in all the region of the plateau. The main region of heated gas is 

cooled almost uniformly and only near the edge of the wave is the gas 

heated by the heat released from the main mass of gas (see Fig. 10,4c). 
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a) 

b) 

c) 

Vh 

C_L 
\s I **• 

rt 
I x/x. 

Cooling 

Heating t JC/X9 

The process of propagation of heat 

goes In such a way that the volume of 

heated gas Is almost uniformly cooled and 

the energy lost by it is absorbed near the 

front of the wave, due to which the wave 

seizes all the new layers of cold gas. 

Near the front the distribution of 

temperature can approximately be expressed 

in the form 

which was already found earlier (see for- 

mula (10.22)). 

We shall direct in solutions (10.25), (10.28), and (10.50) the 

index n to the limit n-> 0, which corresponds to the transition to 

linear thermal conduction (constant a in equation (10.23) in the 

limit n - 0 plays the role of a constant coefficient of heat transfer 

X - const). 

When n -* 0, ^0 -» 2//n 

Pig. 10.4. Pro- 
files of temperature, 
flux, and divergence 
of flux in a thermal 
wave. 

r-^^iL [(.-£)-"] 
n-*0 

Q 
/4iul 

IST 

I.e., we arrive at the known solution of the linear heat-conduction 

equation (10,20). 

In the conclusion of this paragraph let us note that a nonlinear 

second order equation (10.26) allows a transformation group, leaving 

the equation invariant. Actually, it is easy to check by direct sub- 

stitution that if we introduce, instead of ^ and f, a new independent 

variable %x  and f by the formulas 

\'~C*\,   /'-C7, C-const. 
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In variables I» and f the new equation will have the same form as 

(10.26). According to the Lie theorem, the order of an ordinary dif- 

ferential equation, allowing a one-parameter transformation group, 

can be lowered to one. For lowering the order it is convenient to 

introduce new variables: 

In these variables the new equation contains z only under the 

sign of the differential, so that it is possible to introduce a new 

variable p ■ dy/dz and exclude z, obtaining a first order equation in 

variables p and y: 

Consequently, the problem of solution of an equation of the 

second order (10.26) reduces to solution of an equation of the first 

order and a quadrature. Such a position is characteristic for many 

self-similar problems of the theory of nonlinear thermal conduction.* 

§ 6.  Propagation of Heat from an 
Instantaneous Point Source 

Let us consider a spherically-symmetric problem. Let us assume 

that at the time t •• 0 at point r » 0 energy t erg was released. The 

heat-conduction equation in this case has the form 

Law of conservation of energy gives 

TAiu*dr~ — = Q deg-c*». 

Solution of the problem for linear thermal conduction x ■ const is 

known: Ä   * 

'■ (W (10.35) 

I 

♦And also for self-similar problems of gas dynamics. For details 
see Chapter XII. 



Heat spreads so that the basic energy Is concentrated In a sphere^ 

the radius of which Is on the order of 

analogous to the plane case when x ~ Axt» Temperature In the center 

drops as T - Q/ir ~ Q/(xt)^. 

These regularities follow directly from considerations of slzej 

they can also be obtained by means of estimating from equations (10,34) 

and (10,35)* If one were to replace the derivatives by ratios of mag- 

nitudes (see § 4)* 

Let us now consider the case of nonlinear thermal conduction 

with X " aTn and n > 0. The equation takes on the form 

£-**(«•"£)• (10.36) 

Let us find the law of motion of the front of a thermal wave. Just 

as in the plane case. We have 

where x is the coefficient of heat transfer, corresponding to the 

average temperature of the heated region at the time t. But 

r—FJ-. (10.37) 

so that r^ ~ aTnt <- aQnrf"
5n t, whence 

r#~(«?l)15T,«5Jrfi. (10.38) 

Speed of the front of the thermal wave is proportional to 
i 

|i5?i-  '• (10.39) 

It extraordinarily sharply decreases with respect to propagation of 

the wave. For instance, when n ■ 5, drf/dt *» l/r . The exact solu- 

tion of the heat-conduction equation is found in self-similar form 

i 

(10.40) 

where self-similar variable i  is defined as 
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i—-S-. 
wt)***2 (lo.i'i) 

Putting (10,40) In equation (10,36), we obtain an ordinary equa- 

tion for function y(i)t  somewhat differing from equation (10.26) for 

the plane case. This equation was "solved by S, Z, Belen'kly (de- 

ceased  and Independently by G. I, Barenblatt [2] .♦ 

The final solution can be written In a form similar to (10.32), 

where radius of the front 

0-^) (10,42) 

1 

r^hWtf**. (10.43) 

Constant ^,  Is equal to 
i 

"O+TMIJ 
Temperature In center T Is equal to 

i 

^•"TKUIJM^] 
^• (10.44) 

where 
'491 

Is the average volume temperature at the time when the front of the 

i«rave reached radius r». 

For instance, when n - 5, l1 - 0,79, and Tc - 1,28T, With 

variable of heat capacity cv ~ T
0*5(k  ),.5) 

♦Propagation of a thermal wave, close to spherical, was considered 
by E, I. Andriankin and 0, S, Ryzhov [3] . E. I. Andrlankin [4] con- 
siders a spherical thermal wave taking into account the energy of 
radiation. 
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as also In the plane case. In the law of propagation of a thermal 

wave, Instead of rf ~ t
1/'5"^ we obtain rf ^ t

1/^n,+2^ . When 

1/17    drf   -16 
n - 5, k - 0, rf ^ t 

/■L,,  and -^  ~ r^ j when n « 5,, k - 0,5, n' - 

- 4.5, and rf - t
1/15*5, -^ - rj14*5. 

Distribution of temperature along the radius In a spherical case 

Is precisely the same as In the plane case. The flux In almost all 

the region from the center and to the front grows linearly along the 

radius and only near the very front drops to zero» 

Divergence of the flux Is almost constant In all the sphere with the 

exception of the thin layer near the front: volume of gas Is cooled 

comparatively uniformly, sending energy which Is absorbed near the 

front, and heating all the new layers of the substance. 

Let us Imagine that In a small volume of gas there occurred very 

fast release of a large energy content, as a result of which the sub- 

stance was heated to a very high temperature. Prom the place of 

energy release through the surrounding gas spreads the thermal wave. 

Speed of propagation of the thennal wave, according to formula 

(10.39)* decreases with respect to distribution and drop of tempera- 

ture of a heated sphere according to the law» dr-/dt - aQn/r£  , 

But rf - (Q/T)
1 # so that drf/dt - aT

1^1^ Q"1^5. During radiant 

thennal conduction n - 5 and drf/dt ~ T ', Speed of sound In a 

heated gas, roughly speaking. Is proportional to /T". Consequently, 

If In the beginning the temperature Is very high (is "infinite") the 

speed of propagation of thermal waves is certainly greater than the 

816 

........ ...... .,.-^-- ^aaaaaMB^I^^g*--''"^^-«-*^* ' rmmmmimmwmMr Tti t y-rm     * I'm ,-^nf „.-itfinM^-  m. 



speed of sound. During propagation of a wave though a motionless 

cold gas of constant density, the pressure in it increases. Roughly 

speaking, the pressure behind the front of a thermal wave is propor- 

tional to temperature p ~ pT, so that the profile of pressure approxi- 

mately coincides with the profile of temperature. The existence of 

a pressure gradient in the wave permits the gas to accelerate, 

scattering from center; its mass is redistributed, attempting to con- 

centrate near the periphery, at the front of the thermal wave.  Per- 

turbations spread through the gas with the speed of sound. Therefore, 

in the beginning, while the thermal wave moves much faster, the sub- 

stance behind it does not succeed to move noticeably. As we have 

seen, the thermal wave, with respect to propagation, is extraordinar- 

ily quickly slowed down.  After a certain time its speed drops to a 

magnitude of the order of the speed of sound and then becomes less 

than It. ?rom this moment the thermal conduction wave no longer 

overtakes the sound perturbations, the substance moves and there will 

form a shock wave which bursts forward, spreading in front of the 

thermal wave with a speed in order of magnitude coinciding with the 

speed of sound in the heated gas behind it. Gradually the process 

emerges into the conditions described by the solution of the problem 

about the powerful explosion (see § 25 of Chapter l) . Thus, the 

moment of formation of the shock wave and its equalization in 

front of the thermal wave approximately coincides with the moment 

when the speed of the thermal wave drops to the speed of sound in the 

heated gas. 

An estimate shows that in air of normal density this ociurs when 

the temperature in the heated sphere drops to a magnitude of order of 

300,000° K, If initial temperature of air at the time of energy 
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release is much greater than this magnitude, there exists a clearly 

expressed stage on which the energy spreads through the motionless 

air by means of radiant thermal conduction In the form of a thermal 

wave. When temperature In the expanded heated sphere drops to 

r500,000o K, there will form and burst forward a shock wave, and the 

role of radiant thermal conduction reduces exclusively to temperature 

balance In the central region. 

If, however, concentration of energy In the beginning Is such 

that the temperature of air Is lower than 500,000° K, a thermal wave 

In general does not appear, and energy from the very beginning spreads 

by hydrohynamlc means due to the shock wave» 

At the end of § 5 we noted that the profile of temperature 

on the lower edge of a thermal wave coincides with the profile of 

temperature In the heating zone of a very strong shock wave (in a very 

strong shock wave ahead of the shock there bursts a "tongue" of heating 

by radiant thermal conduction) • In particular, on the very front 

edge of the thennal wave radiation is unbalanced by the "straight- 

through quanta" and temperature drops to zero by exponential law 

depending upon the optical coordinate. This means that the visible 

surface brightness of the front of a thermal wave coincides with the 

surface brightness of the front of a very strong shock wave. In 

§ 4 of Chapter IX we showed that this limiting brightness In air 

of normal density corresponds to effective temperature in the visible 

part of the spectrum, approximately 17,000° K. The same effective 

temperature is also possessed by the surface of the front of a ther- 

mal wave. Thus, observing a thermal wave from afar, spreading through 

air, we will "see" a temperature of the order of 17,000 , In spite of 
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the fact that in the central regions of the wave the temperature can 

reach many hundreds of thousand degrees« 

§ 7.  Certain Self-Similar Two-Dlmenslonal Problems 

Let us consider several self-similar problems» Two of them we 

shall Investigate by the semlqualltatlve method presented In § 4« 

For one we will obtain an exact solution. 

Constant Temperature on Boundary 

Let us assume that on the boundary of a plane half-space x » 0 

with zero Initial temperature there Is maintained constant temperature 

TQ» From the boundary Inside the medium there spreads a thermal 

wave as shown In Fig, 10,5» Inasmuch as there Is a scale of tempera- 

ture TQ, the coefficient of heat transfer In order of magnitude Is 

equal to x ^ ^Q»  
an^ the front of the thermal wave Is propagated 

according to the law 
i 

The value of the numerical coefficient In this formula. Just as 

the profile of temperature, which ob- 

viously. Is self-similar, can be found 

by means of numerical Integration of an 

ordinary differential equation for di- 

menslonless function f(0* Pig, 10,5. Propagation 
of a thermal wave at 
assigned temperature on 
the boundary. (•ryi) 

under boundary conditions f(0) » 1, f(«>) » 0. 

The heat flux through the boundary decreases with the passage of 

time according to the law» 

V -m«r •''o+,  «r"+1  «^r.1 

•      f    i 
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How the energy content In a thermal wave changes In time can be esti- 

mated by any of two methodsi 
8# 1 t t        I 

Constant Flux on Boundary 

Let us assume that on the boundary there Is assigned a constant 

heat flux S0, proceeding to the boly from the outsldei 

*•- -x (sDo " -W2"* ©o=BC0,18t ^ x = 0* 
The law of propagation of a thermal wave and change of tempera- 

ture In the wave In time will be found by replacing the derivatives 

with ratios of the magnitudes. 

The flux In the zone of a thermal wave varies from S0 to zero. 

Average temperature In the wave In order of magnitude Is given by this 

relationship; 

S9~evQ--r-. 

But from the heat-conduction equation It follows that In order of 

magnitude 

Prom these two approximate equations we will find the law of propaga- 

tion of a thermal wave and the law of change of temperature In tlmei 

dx. 
vf - u  # * ~ u   ' Af * "dt 

The speed of a thermal wave decreases very slowly and average 

When n « 5 x~ - t6^, T ~ t1^ ~ xj/6, -rf ~ t"1^. 

temperature slowly Increases. Temperature Increase Is explained by 

the fact that with respect to propagation of the wave the gradient of 

temperature decreases, and In order to support constancy of flux, the 

coefficient of thermal conduction should Increase. Propagation of a 

wave Is shown In Pig. 10.6. 
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Solution of the Dipole Type 

Let us assume that near the plane boundary of a half-space In 

some layer there occurred an energy release» Let us assume that the 

heat spreads in the body so fast that the temperature on the boundary 

drops very quickly to a small magnitude, practically to zero. In 

spite of the fact that the temperature on the boundary is very small, 

the heat flux through the boundary remains finite (the gradient of 

temperature is correspondingly very great), so that energy flows from 

the body. In the problem there exists no integral of energy. 

We Idealize the problem on hand in order to exclude from it the 

dimensional parameters of length (for instance, thickness of layer, 

where the energy release occurred, or its distance from the boundary), 

We shall consider that the energy release happened instantly in an 

infinitely thin layer on the surface of the body x ■» 0, whereby In 

the limit, when the thickness of the layer of energy release tends to 

zero and the layer itself approaches the surface x - 0, there re- 

mains the final "moment" of temperature, 
oa 

{xT{X,0)dx<(O   when r(x, 0)-*0(l). 
0 

It Is easy to show that in this case under the condition that 

temperature on the boundary is equal to zero, instead of an Integral 

of energy, as in the problem about the plane instantaneous source, 

there is an Integral of "moment"i the moment of temperature is kept 

in time. This position was ertabllshed by Q, I. Barenblatt [5] , 

We shall multiply by x the heat-conduct ion equation (10,2:5) and 

integrate from 0 to «, taking into account that there iß no flux at 

infinity. Integrating by parts, we find 

0 
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If on the boundary T(0, t) - 0, the moment 

Is kept in time, and the "dlpole moment" 

of temperature is retained: 
as 

jj*r(j,f )<**-/>-const.    (10.45) 

The problem is then self-similar, 

since there are only two dimensional param- 

2       2   -1  -n 
eters, P deg»cm and a cm sec deg . It 

was solved by G. I. Barenblatt and Ya. B. 

Zel'dovich [6] in reference to the process of gas filtration. The 

front of a thermal wave spreads according to the law: 
i 

Temperature can be presented in the form 
1 I n+i    1 

where numerical constants ZQ  and M are equal to 

Pig. 10.6. Propaga- 
tion of a thermal 
wave with a given 
flux on the boundary. 

& = (n + 2)^fl)"f<^n"
f<^2f<^[Ä(l+l,^+l)]"

,?;rflT, 
1 § ' 

Here B(p, q) is the so-called beta function, for which there exist 

tables. 

When n « 5 the function of temperature has the form 

i T I 

r 

and the front rereads according to the law 

, #n **•    i  i 
*♦—* • ■3r~-n-~nT- 

Propagation of a thermal wave is shown in Pig, 10.7. 

It is easy to see that the flux through boundary x ■ 0 is dif- 

ferent than zero, i.e., energy flows from the medium. Actually, when 
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x/x^ s 1 

Flg. 10.7. Solution of the 
dipole type. 

*~^S~^'~ÄU)*0- (10.47) 
In his work [2] 0. I. Barenblatt 

investigated a whole class of self- 

similar solutions of two-dimensional 

problems with very general conditions 

on the boundary of half-space» 

or 
«J =» const/«,  q>0. 

(temperature of flux on boundary in- 

They also considered problems with ci ase in time by root law) , 

cylindrical and spherical symmetries. 

§ 8. Remarks on the Penetration of Heat into a 
Medium in the Calculation of Motion 

Above it was noted that the possibility of disregarding the 

motion of a medium in examining thermal waves Is connected with the 

fact that at an early stage of propagation of a thermal wave from a 

source, at a very high temperature, the speed of propagation is much 

greater than the speed of sound and the substance simply will not 

"shift from place." 

In certain cases, however, the motion of a medium turns out to 

be essential from the very beginning. 

Let us assume that the temperature on the boundary of a medium 

grows with the passage of time by root law T0 » const tq(q > 0), 

The distance at which the heat penetrates the medium by the me- 

chanism of radiant thermal conduction is proportional to 

N I M+l 
»#~/3tt^r,<I~i« , (x~n. (10.48) 
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Speed of propagation of a thermal wave Is proportional to 

£*♦ *♦ rr- 
— iT ««v — *%*  I      _ 

A shock wave from an energy source on the boundary of a medium 

spreads in the depth of the medium with a speed of order of the speed 

of sound in a heated substance» 
« 

Let us compare the speeds of propagation of thermal and shock 

dx 
waves -rr- and D. If -23^— < •§> q < n _ ±»  in the beginning of the 

process, when t -♦ 0, the speed of the thermal wave is always greater 

than the speed of the shock wave, and the thermal wave overtakes the 

shock wave. In this stage the motion of the medium can be disregarded, 

as this was done above. Only starting from a certain moment t», when 

dx- 
speed D becomes greater than -rr-, the shock wave will burst forward, 

overtake the thermal wave, and the substance in the region of the 

thermal wave will move (of course, a clear time boundary t' does not 

exist, and the process of "acceleration" of the substance occurs 

gradually; t' constitutes an effective boundary between the two 

stages) . 

If ^g"— > ▼!> q > ■■ _ », the position is the reverse: when 

dxf 
t -> 0, D > -Tr-> the shock wave overtakes the thermal wave, and the 

thermal wave from the very beginning of the process spreads through 

the moving substance. Starting from a certain "effective" moment t»', 

the thermal wave bursts in front of the shock wave and spreads through 

the motionless medium. The mass of substance, enveloped by motion, 

which is proportional to Dt ~ t*^   (per 1 cm of surface), then 

composes an ever smaller fraction from the mass heated by the thermal 
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nq+l 
wave, which Is proportional to x- ~ t 2 . 

In an Intermediate case n5 " . » ^, q *«  _ J, the speeds of 

propagation of thermal and shock waves grow with the passage of time 

by Identical law. In general, there do not exist clearly expressed 

stages, when energy penetrates the medium only by one method (either 

by hydrodynamlc means, or by means of thermal conduction), as In 

s      ± 
extreme cases q ^  ■_ J. The substance Is heated by thermal conduc- 

tion and moves almost simultaneously. 

It Is remarkable that In the particular case of n » 6 (when the 

range of radiation Is I ~ T-5) the equations of hydrodynamics, taking 

Into account radiant thermal conduction (but without taking Into ac- 

count energy and radiation pressure), allow a self-similar solution. 

This solution corresponds to the law of build-up of temperature on 

the boundary of a medium TQ ^ t ' (the existence of such a self- 

similar solution is shown by Marshak [7]). Scale of density is con- 

stant in this case and is equal to the initial density of the medium 

p0, pressure p ~ pT ~ t ' , and speed of the substance u ~ /p/p ~ 

The boundary coordinate of the perturbed region (front of a 

thermal or shock wave) grows with the passage of time according to 

the law 

*~ut'>*yxi'^yTrt~tu. (10.49) 
A self-similar variable is the combination £ ■ const xt  ' , 

so that the solution of the equations is in the form of 

r = con8t<*/1(5), u = consu,0/i(6) and etc. 

It is essential that the self-similar solution be possible with 

an arbitrary law of dependence of thermal conduction (range of 
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radiation) on density: x " f(p)T (since the scale of density does 

not depend on time) * 

The fact that the equations of gas dynamics, taking into account 

radiant thermal conduction, indeed allow the shown self-similar solu- 

tion, can easily be checked by means of direct consideration of these 

equations.* 

The character of the self-similar mode depends on which is 

greater:  the speed of sound c ~ /f"or the speed of propagation of 

perturbations by means of thermal conduction x ^ /yt.    Both magnitudes 

grow in time by identical law t '  and their relationship is deter- 

mined by proportionality factors« Therefore the character of the 

process depends on the numerical value of the coefficient in the law 

of build-up of temperature on the boundary of a medium with the passage 

1/5 
of time T0 ~ t ' , Such a mode is possible in which through an un- 

distrubed substance there runs a forward shock wave, and behind it 

through a heated and compressed substance follows a therroal wave, A 

mods is possible when the boundary between undisturbed and disturbed 

regions is the front of a thermal wave, behind which the substance 

is set into motion. 

Let us note the work of I. V, Nemchinov [8], in which he considers 

certain problems of heat transfer by radiation taking into account 

the motion of the medium. 

§ 9. Self-Similar Solution as a Limiting Solution of a 
Nonself-Similar Problem 

Self-similar solutions are interesting not so much as particular 

solutions of separate narrow classes of problems, but mainly as limits. 

♦Let us recall that the equations of continuity and motion in the 
calculation of radiant thermal conduction do not change, and in the 
equation of energy there is introduced an additional energy flow 
(10.8) (see § 9 of Chapter II). 
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toward which the solutions of more general problems not self-similar 

in their formulation asymptotically tend. This question was investi- 

gated by Ya. B. Zel'dovich and G. I. Barenblatt [9] in reference to 

a Cauchy problem for a nonlinear heat-conduction equation in a one- 

dimensional plane case (10.25) . 

The basic physical peculiarities of asymptotic behavior of a 

solution is most conveniently explained in an example of linear ther- 

mal conduction, when the solution is especially simple. Let us assume 

that at initial moment t » 0 there is assigned a distribution of 

temperature along axis xt T(x, 0) ■ T0(x)^ whare the temperature is 

different than zero only on the final segment of axis x.* 

As Is known, the solution of the equation of thermal conduction 

(10,18) in this case has the form (x ■ const): 

VtllX*i. (10.50) 

It constitutes a generalization of solution (10,20) in the case 

of a distributed source. 

Let us consider the behavior of temperature when t -> » at large 

distances from the place where the heat was concentrated in the initial 

moment, i.e., when x » y. Expanding the nucleus of the integrand 

expression in a series with respect to powers of small magnitude y/x, 

we obtain 

to es 

+ Vtt S ^J^y+^r S 7'o(y)ysdy+...].     (10.51) 

♦Such an Initial condition is set up in reference to the problem 
about nonlinear thermal conduction. In the linear case the more gen- 
eral condition of sufficiently fast decrease of temperature to Infin- 
ity is permissible. 
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6 TW- 
The solution Is In the form of the sum of self-similar terms. 

In which the time exponents each time Increase by 1/2, and the coeffi- 

cients' are expressed through consecutive moments of the function of 

Initial distribution of temperature. In the limit t -* » the first 

member remains In the bracket, corresponding to solution (10.18) for 

a lumped source, where the following member of the expansion, which 

characterizes the distinction of the true solution from the limiting 

one. Is on the order of ±/t  ™ with respect to the main onei 

r-r.p„[n-^+...]. (10.51») 

Owing to the fact that equation (10.18) allows arbitrariness in the 

selection of origins coordinate and time reading and the scale of 

temperature (allows transformation groups x» • x - x0, t» ■ t + T, 

T' - kT) , equation (10.18) is satisfied more generally than (10.20), 

a self-similar solution of the form 

This solution corresponds to the Instantaneous release of a defined 

quantity of heat E - OtrpQ at point x - XQ at the time t ■ -T. 

It is easy to check that by means of corresponding selection of 

parameters XQ, T, and Q it is possible to achieve that a self-similar 

solution of the type (10.52) better describs the exact solution (10,51) 

than self-similar solution (10,20), in which XQ - 0, T «■ 0, 

Actually, we will expand function (10.52) in powers of small 

magnitudes XQ/X an^1 r/t (in the limit t-» «, x-♦ «•), By means of 

comparison of the expansion with exact solution (10.51) we see that 

If we select the values of Q, x0, and T equal to 
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£os 

Q**] T9{y)äy, 

—o»      

J T*{y)dy 

(10.55) 

X J T0(y)dy 
—to 

the members of the order of t    ^  and t" in brackets (10,51) disap- 

pear, so that 

r(x.o~Wx-x„ <+T,(?)[I+4+...]. 
!» (10.54) 

The second member In brackets Is of a higher order of smallness 

when t-♦ « than In expression {i0.51t) . 

The physical cause of the best coincidence of self-similar solu- 

tion (10.52) with the exact solution consists In that, the self-simi- 

lar solution (10.52) corresponds to Instantaneous release of the very- 

same quantity of heat at point x0, which Is the "center of gravity" 

x of the Initial distribution of temperature T0(x). The moment of 

release exactly corresponds to the time, necessary for the heat to 

spread by means of thermal conduction from point x « 0 to the "center 

of gravity" x - x0.  "Effective" quantity of heat E - o^)Q In the 

Improved self-similar solution (10.52) turned out to be exactly equal 

00 

to the actual quantity of heat CD / T0(x)dx. 

Analogously we can find a self-similar solution which In the 

best form nears the exact solution with distributed sources of heat 

In the case of nonlinear thermal conduction. 

The self-similar solution of equation (10,23)* corresponding to 

Instantaneous liberation of heat at point x ■ 0 at the time t ■ 0, 
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as described In § 5 (formulas (10.52), (10.33), (10.31), and (10.30)). 

In t9]»  in which it is possible to become familiar with the mathe- 

matical side of the investigation, it is shown that by means of a cor- 

responding coordinate and time shift, i.e., selection of XQ and x, it 

is possible that the self-similar solution T(x - XQ, t + T, Q) will 

differ from the exact one T(x, t, Q) by members of a higher order than 

gn+3 

§ 10. Concerning Heat Transfer by Unbalanced Radiation 

Let us imagine that in rarefied air there was formed a spherical 

region with very high temperature T, so high that the mean path of 

radiation l(T) is much greater than the radius of the sphere R and 

the heated sphere is transparent for radiation .♦ Highly-heated air 

radiates like a volume radiator. Light quanta almost freely exceed 

the bounds of the sphere and are absorbed in the surrounding layer 

of colder opaque air. Air in the sphere is cooled by the emission 

of light, and the surrounding cold layers are heated. The heated 

sphere is expanded, and the temperature in it drops: the process is 

very similar to the process of propagation of a thermal wave with the 

only difference that the radiation which transfers the energy is now 

essentially unbalanced. 

There appears the question about with what speed is the heated 

sphere expanded. Such a problem was considered by A. S, Kompaneyets 

and Ye. Ya. Lantsburg [10]. Let us assume that the air in the sphere 

is heated to temperature T. If the sphere is transparent, the density 

of radiation in it in order of magnitude is equal to 

♦Let us recall that range l(T) quickly Increases with increase of 
temperaturet see § 2, 
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where U (T) - 4oT /c is the equilibrium density of radiation. 

Effective temperature of radiation 

in the sphere, determined by formula IL - 

U^T f) , is less than the temperature 

of gasi Tef - TER/ZCT)]
1
/
4
. At the 

boundary of the sphere the temperature 

drops to zero (Pig, 10,8)« Consequently, 

there exists a spherical surface where, 

decreasing with the drop of temperature. Fig. 10.8. Distribution 
of gas temperature and 
l^ll^ ^merature  of of radlatlori beComes comparable radiation in an unbal- 

with radius IU Let us designate tempera- anced thermal wave, 

ture in this point TQ: 
l(T0}*R, (10.56) 

A surface with temperature TQ can be considered as the boundary 

between the internal, transparent region and the opaque external 

layer. On the boundary of transparency the density of radiation is 

still of the order U^. However, it is higher than equilibrium density 

U (T0) Just as in the outer-most layers: here the air absorbs radia- 

tion and Is heated. Distribution of temperature and effective tem- 

perature, characterizing the density of radiation, is schematically 

shown in Pig. 10.8. Thickness of the layer, in which there occurs 

absorption of radiation and in which the temperature drops from the 

temperature of transparency T0 to 0, is much less than radius R, 

since the range decreases quickly with lowering of temperature. This 

layer can be considered as plane and the state In it. In the system 

of coordinates connected with the layer, as quasi-stationary. For 

detecting the speed of propagation of the layer — the "front" of a 

thermal wave — one should consider the plane stationary mode, as done 
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in Chapter IX In finding the speed of an air cooling wave by radia- 

tion. Speed of the wave v should depend only on the density of radia- 

tion IL, supporting the propagation of the wave (or its effective 

temperature, which we for brevity will designate T^) and temperature 

of transparency TQ (T, > TJ. These magnitudes are determined by 

formulas {±0*53)   and (lO«56), 

Let us direct axle x in the direction of propagation of the 

wave and write out a system of equations« The equation of energy, 

on the assumption that heat capacity of gas is constant, has the 

The equation of radiation balance 

dS       Up{T)-U      rT      iaT* 
&"*     1{T)      ' "* = —• 

In diffusion approximation 

c   UdU 
,Sa=—3*7' 

The system of course is fully analogous to the system describing 

i. cooling wave (see Chapter IX) . In front of the wave, in the area 

of cold air, T ■ 0, U »• 0, S ■« 0, Behind the wave a condition Is 

placed on the boundary of transparency» when T ■ TQ, U - XL. 

The system easily reduces to a nonlinear equation of the type 

dS/dU - f(S> U). The value of speed v is determined from the condi- 

tion that the unknown Integral curve passes through two end-points 

(S = 0, U » 0, and S - S0 = vpcvT0, U ■= l^j see Chapters IX, VII) . 

In [10] there are approximate expressions .: jr  speed in certain 

limiting cases, 

1)   If T1 - T0 « T1,   then 

P    «    VWTRV   T,   J • 
where v « U (T0)/pcvT0 is the density ratio of radiation and gas 

energy at the temperature of transparency, 
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2) If T1 » T0, then 

awt'LGSJ_Jh_ 
p  « ^ yineyTo' 

By looking at this formula it can appear that at very large 

densities of unbalanced radiation the speed of a wave can increase 

without limit and even exceed the speed of light. In reality of 

course, such a situation is impossible. In a more exact description 

of equations of radiation transfer in diffusion approximation, tak- 

ing into account the finiteness of the speed of light, the solution 

of the equation leads to the limited value of speed [11] , 

After we find the speed of the wave front v(T,, TJ, i.e., 

'TL, T0), we can find the law of expansion of the sphere R(t), solv- 

ing the system of equations 

Jointly with conditions (10,55) and (10.56), determining TL and TQ. 

Here E is the total energy of heated air, which obviously is con- 

stant. 
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CHAPTER XI 

SHOCK WAVES IN SOLIDS 

§ 1, Introduction 

The study of the laws of propagation of shock waves In a con- 

densed substance, l.e«. In metals, water, etc, has a large theoret- 

ical and practical value. In particular, it is necessary for under- 

standing and calculating explosive phenomena. Theoretical treatment 

of materials of these investigations gives us information about the 

equation of state of solids and liquids in the region of high pres- 

sures, which is very important for the solution of a large number of 

problems of geophysics, astrophysics, and other divisions of science, 

For a description of hydrodynamic processes it is necessary to 

know the thermodynamic properties of the substance. 

If for gases the calculations of thermodynamic functions do not 

cause large difficulties, the theoretical description of the thermo- 

dynamic properties of solids and liquids, at the high pressures 

which are developed in powerful shock waves, constitutes a very com- 

plicated problem, at present very far from its final solution. 

Therefore a special role is being obtained by experimental methods 

of investigation of a condensed substance in compressed state. 
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Until recently, phyeleiB of high pressures was limited to the 

study of a substance compressed in static conditions in piezometers 

of various design. In such a way, however, it is impossible, with- 

out the construction of huge installations, to compress a substance 

to pressures above a hundred thousand atmospheres and most of all, 

to ensure conditions for reliable measurements, since at higher 

pressures there starts to show up deformation of piezometric bombs, 

disturbing the carrying out of exact measurements of physical param- 

eters. Meanwhile, contemporary science and technology is interested 

in pressures of hundreds of thousands and millions of atmospheres. 

In the postwar years in the USSR and abroad there were offered 

completely different, dynamic methods of realization of high pres- 

sures and compressions, founded on the utilization of powerful shock 

waves. Shock waves were obtained and investigated in metals and 

other condensed bodies with pressures of hundreds of thousands and 

millions of atmospheres. In the USSR new methods were developed by 

L. V. Al'tshuler, S. B, Kormer, K, K, Krupnikov, B. N, Ledenev, 

A. A. Bakanova, M. V. Sinitsyn, A, I, Funtikov, V. I. Zhuchikhin, 

et al, [1-5]>  and in the United States by Walsh, Christian, Mallory, 

Goranson, Bankroft, McQueen, Marsh et al, [22-26], 

Especially large successes in this direction were attained by 

Soviet scientists, who obtained record-breaking pressures of five 

million atmospheres (American authors studied shock waves of smaller 

intensity; work on the highest pressures attained by them, to two 

million atmospheres, were published later than the works of Soviet 

authors). 

For the first time in human practice a solid was compressed 

two and more times; till now, so solid a substance could be 
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"encountered" only in central regions of the globe and other cosmic 

bodies. These outstanding achievements in the area of obtaining 

high pressures and densities of solids permitted us to make a large 

number of extremely interesting conclusions concerning the thermo- 

dynamic behavior of a substance in such unusual conditions, and by 

semi-empirical means permitted the determination of important ther- 

modynamic characteristics of strongly compressed metals. 

The extraordinarily small duration of impact loads demanded the 

search for new methods of measurement, allowing the determination of 

physical parameters in conditions of a high-speed process, and the 

creation of appropiate instruments. A great contribution in this 

direction was made by Soviet researchers V. A, Tsukerman, G, L, 

Shnirman, A. S, Dubovik, P. V. Kevlishvili, Ye, K, Zavoyskiy et al, 

[6-12], 

A basic characteristic feature, distinguishing a condensed state 

from a gaseous state and determining the behavior of solids and 

liquids during their compression by shock waves, is the strong inter- 

action of atoms (or molecules) of the bodies with each other. The 

range of action of Interatomic forces is very limited.  It is on the 

order of the dimensions of the atoms and molecules themselves, i,e,, 

-S on the order of 10  cm. In a sufficiently rarefied gas, where the 

average distances between particles are much greater than the dimen- 

sions of the particles, the interaction appears basically only at 

collisions, at the time of close approach of atmos or molecules. 

Pressure in a gas has a thermal originj it is connected with 

transfer of momentum by particles participating in thermal motion 

and always in proportion to temperature: p = nkT. 
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In order to strongly compress a gas, comparatively small pres- 

sures are required. The limiting compression of atmospheric gas in 

a shock wave of such amplitude can he considered Just as strong. 

Otherwise, a condensed substance behaves with respect to com- 

pression. In solids and liquids the atoms or molecules are at close 

distances from each other and strongly interact. This interaction 

in particular holds the atoms in the body. Forces of interaction 

have a double character. On the one hand, the particles, separated 

by a sufficiently large distance, are attracted to one another; on 

the other hand, upon closer approach, as a result of penetration of 

electron shells into each other, the atoms are repulsed. Equilibrium 

distances, at which the atoms of a solid are found in the absence of 

external pressure, correspond to the mutual compensation of attrac- 

tive and repulsive forces, i.e., a minimum of potential energy of 

interaction. In order to separate atoms at large distances, it is 

necessary to surmount the adhesive forces and expend energy equal 

to binding energy, which for metals has an order of several tens or 

hundreds of kcal/mole (on the order of several ev/atom).  In order 

to compress a substance, it is necessary to surmount the repulsive 

forces which extraordinarily quickly Increase with the approach of 

atoms. Compressibility of metals is equal by definition HQ - 

1  ÖY 
=• -y • -gr-, and has under normal conditions an order of 

# 
Adhesive forces in solids are of various origin. In accord- 

ance with their nature, solids are usually subdivided into five 
groups: 1) Ionic crystals, for instance NaCl, binding energy U - 
» 180 kcal/mole; 2) crystals with covalent bond, for instance dia- 
mond, U - 170 kcal/mole; 5) metals, U ~ 50-200 kcal/mole; 4) mole- 
cular crystals connected by Vanderwaals forces, weak bond, for 
Instance in CHj. U « 2,4 kcal/mole; 5) crystals with hydrogen bonds, 

for Instance ice, U - 12 kcal/icole. Here we will be basically 
.interested in metals. 
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10   er. /d ~ 10" atm" .  I.i order to compress a cold metal by 10^ 

it is necessary to apply to It an external pressure of the order of 

10 atm; compressibility usually decreases with the increase of pres- 

sure; for double compression of metals, pressures of the order of 

several million atmospheres are required. 

Thus, during strong compression of a condensed substance, in 

it there is developed a colossal internal pressure, even in the 

absence of any heating, only by means of repulsion of atoms from 

each other. The existence of this pressure of a nonthermal origin, 

absolutely not peculiar to gases, and determines the basic peculiar- 

ities of behavior of solids and liquids during their compression by 

shock waves. In shock wavep of very great amplitude, as we will see 

below, there also occurs strong heating of the substance, leading to 

the appearance of pressure, connected with thermal agitation of atoms 

(and electrons), which is called "thermal" in distinction from elas- 

tic, or "cold" pressure caused by repulsive forces.  In principle, 

if the amplitude of a shock wave tends to Infinity, the relative 

role of thermal pressure increases and in the limit the elastic 

pressure becomes small in comparison with thermal pressure; in waves 

of extraordinarily great amplitude solid matter initially behaves 

like a gas, Hov.'ever, in shock waves with pressures of a million 

atmospheres, obtained in laboratory conditions, pressures of both 

types are comparable with each other. In less strong waves, with 

pressure of the order of hundreds of thousands of atmospheres and 

below, elastic pressure predominates.  The thermal energy of the 

substance compressed by the shock wave is also small in this case. 

All internal energy obtained by substance in the wave is expended in 

overcoming repulsive forces during compression of the body and is 
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concentrated in the form of potential, elastic energy. The speed of 

propagation of small perturbations in a condensed substance, in dis- 

tinction from gases, in no way is connected wlt-h temperature. It 

Is determined by the elastic compressibility of the substance. 

The numerical characteristic of "force" of the shock wave also 

changes. In gases, a measure of "force" of a wave is the ratio of 

pressures on both sides of the front, A limiting compression of 

several tens is attained when this ratio is equal to several tens or 

one hundred. The speed of propagation of the shock wave then con- 

siderably exceeds the speed of sound in the initial gas and the gas 

behind the front accelerates to speeds close to the speed of the 

shock wave. If the gas in the beginning was at atmospheric pressure, 

a shock wave with an amplitude of one hundred atmospheres is already 

"strong." 

In a solid or liquid substance a shock wave with an amplitude 

of even one hundred thousand atmospheres is "weak," Such a wave 

hardly differs from an acoustic wave; it spreads with a speed close 

to the speed of sound, compresses the substance a total of several 

or tens of percent and Imparts to it a speed behind the front, ten 

times less than the speed of propagation of the actual wave. 

If we characterize the "force"' of a shock wave by the ratio of 

its speed to the speed of sound in an undisturbed substance or by 

the proximity of compression to limiting compression, then for con- 

densed bodies the "strong" waves are the ones with pressures not 

less then tens or hundreds of million atmospheres. 

In this chapter we shall consider in detail the physical 

peculiarities of behavior of solids at high pressures and densities, 

we shall familiarize ourselves with the properties of shock 
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compreb.sion, describe the experimental methods of the study of shock 

waves spreading In solids, and discuss the results obtained by these 

methods. We shall consider certain physical phenomena observed dur- 

ing the propagation of shock waves In metals and other bodies, and 

also during unloading of a substance after the exit of a shock wave 

to a free surface, 

!• Thermodynamlc Properties of Solids 
at High Pressures and Temperatures 

§ 2, Compression of a Cold Substance 

Pressure p and specific internal energy e of solid matter can 

be divided into two parts. One of them, elastic components p , e is 
X   x 

connected exclusively with the forces of interaction effective 
♦ 

between atoms of the body and absolutely does r.ot depend on tem- 

perature. The other, thermal components, is connected with heating 

of the body, i,e., with temperature. Elastic components p and e 

depend only on density of the substance p or specific volume V « 1/p 

and are equal to total pressure and specific internal energy at 

absolute zero temperature; that is why they are sometimes called 

"cold" pressure and energy. 

In this paragraph we shall consider only the elastic lu«^.  

pressure and energy. Therefore we will assume that the body 4 - -•*■ 

absolute zero temperature. 

* 
Here we will be basically concerned with metals which do 

do consist not of molecules, but atoms. 
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Mechanically., an equilibrium state of a solid at zero tempera- 

ture and zero pressure is characterized by mutual compensation of 

interatomic attractive and repulsive forces and a minimum of poten- 

tial elastic energy, which can "be taken as the origin of its read- 

ing ev - 0. 

We shall designate the specific volume of bodies in this state 

(p = 0, T - 0) through V0 . This volume is somewhat less than volume 

V0 under normal conditions (p =» 0 or 1 atm, or all the same, T0 « 

w 300° K), since during heating of a substance from absolute zero to 

room temperature T0 there occurs thermal expansion, which we will 

discuss in the following paragraph. Normal volume of metals V« is 

usually larger than volume V0 , which we will call zero, by 1-2$. 

In many cases this small distinction of volumes VQ and VQ can be 

disregarOed. 

Considering here the behavior of solid matter during change of 

volume, we will bear in mind the inclusive compression (and expan- 

sion) of the body, detaching ourselves from the effects connected 

with anisotropy of elastic properties, deformation of shift, strength, 

etc, which appear at comparatively small pressures and compressions. 

The curve of potential energy of a body, depending upon its 

specific volume V, qualitatively has the same character as the curve 

* 
Atmospheric pressure is insignificantly small as compared to 

the pressures appearing even at extraordinarily small changes of 
volume. Therefore it makes absolutely no difference whether the 
body is in a vacuum (p ■ 0) or at atmospheric pressure (p « 1 atm), 

*« 
At absolute zero temperature the atoms accomplish so-called 

zevo-polnt oscillations, with which is connected energy hv/2 per one 
normal frequency oscillation v. This energy can be included in 
potential energy ev.(V), so that e is counted off from the level of 

zero-polnc oscillations in equilibrium state of the body when p •■ 0, 
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of potential energy of interaction of two atoms in a molecule 

depending upon the distance between nuclei. This curve is sche- 

matically depicted in Fig. 11,1. If volume V is greater than zero 

V0cJ the attractive forces predominate. The forces of interaction 

decrease quickly upon removal of atoms from each other; therefore 

with increase of volume, i.e., with dilution of atoms, the poten- 

tial energy, increasing asymptotically, tends to a constant value 

of U, equal to the binding energy of atoms in the body. 

U is the energy which must be expended in order to dilute all 

atoms of one gram of 'substance to "infinity"; it is approximately 

equal to the heat of evaporation of bodies 

(strictly speaking, it is equal to the heat of 

evaporation at absolute zero temperature). 

Heats of evaporation of metals usually have the 

Pig. 11,1. Curves 
of potential en- 
ergy and elastic 
pressure of a 
body depending 
upon specific vol- 
ume. 

order of several tens or hundreds of kcal/mole, 
# 

i.e., several electron volts per atom.  Adhe- 

sive forces weaken at distances of order of 

the dimensions of an atomic cell, so that curve 

efV) nears its asymptote ev(V) •» U upon expan- 

sion of the body to an order (with a double 

increase of the interatomic distance). 

During compression of a body a predominant role is played by 

the repulsive forces which sharply increase as they approach the 

atoms; therefore at volumes less than zero the potential energy 

e (V) rapidly increases. In order to imagine the speed of growth 

*For instance, in iron - 94 kcal/mole =4.1 ev/atom = 

6.96*10  erg/g. In aluminum - 55 kcal/mole =2.4 ev/atom 

8.45.J010 erg/g. 
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and order of magnitudes of energy, we will indicate that according 

to [1] the energy of cold campression of iron by 75^ is 6Y - 
g 

= 5.25 • 10 erg/g ■ 0.03 ev/atom, and in compression one and a half 

times it is (VQ/V » 1.5) - ex = 2.^2 • i010 erg/g « i.4 ev/atom (pres- 

sures here are equal to p ■ i,3i • ±Qr  atm and p - 1,?6 • 10 atm, 

respectively)• 

Elastic pressure is connected with potential energy "by the 

relationship 

P*~~W* (li.i) 

which has a natural mechanical meaning (increase of energy is equal 

to the work of compression) and can be considered as an equation of 

the isotherm or adiabat of cold compression« Really, formula (ll,i) 

follows from the general thermodynamic relationship T dS « de + pdV, 

if we consider that temperature T is equal to zero* But when T » 0 

entropy S by the Nemst theorem is also equal to zero, i.e., it 

remains constant. Therefore isotherm T « 0 is simultaneously adiabat 

s « 0« 

Pressure curve PX(V) also is schematically depicted in Fig, li.l. 

At point V - VQP the elastic pressure is equal to zeroj during com- 

pression the pressure rapidly increases, and during expansion it 

formally becomes negative. 

Negative sign of pressure describes the physical fact that for 

expansion of a body from zero volume, responding to mechanical equi- 

librium when T ■ 0 and p » 0, to the body it is necessary to apply 

a tensile force. This force should surmount the adhesive forces 

that try to return the body to equilibrium volume V0 , 

In an experiment it is impossible to directly investigate the 

trend of the curve of cold expansion PX(V) when V > Y0^ since it is 
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Impossible to practically carry out strong extensive extension of 

a metal. The magnitude of negative pressures can "be  judged by the 

heat of evaporation of the substance. By definition, the area of 

the curve of cold expansion of a body from zero volume to infinity 

is equal to 

DE* 

5 pt(V)dV~-U. 
'OK (11.2) 

If the adhesive forces noticeably weaken during expansion of 

a body by approximately 10 times (increase of interatomic distance 

twice), the maximum magnitude of negative pressure has the order of 

~ 6 • 10 
max ~ U/10Yn , which in iron for instance, is p. ^  > 

'0c max oar = 

6 • 10 atm. 

The slope of the curve of elastic pres- 

sure at the point where pressure is equal to 

zero, corresponds to the compressibility of 

the substance determined in usual conditions 

(adiabatic compressibility only slightly 

differs from isothermal; when T = 0 they 

strictly coincide). Compressibility of iron 

-1 

whenc e 

FIP,. 11.2. Elastic 
pressure p and 

energy e of iron 

(according to [1]). 

x«=-r«G7X = 5'9-10'1,bar' 

-^iwX^i'7'10* bar- 
Slope of the curve of cold compression 

determines the speed of ]. i opagation of elastic 

This magnitude is much greater than the ultimate tensile 
strength of iron, which is usually on the order of ±0)9  bar - 10? atm. 
The small magnitude of tensile strength is connected with the one- 
sided character of extension, with the existence of cracks in real 
metal, polycrystalline structure, etc. 
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waves in the body, i.e#, the speed of "sound," Subsequently It will 

be shown that in a solid there exist several speeds of "sound»" 

Meanwhile let us note that the speed of sound, defined by the usual 

method through compressibility co»v|Jfl/''l is equal in iron at normal 

conditions to 5.85 lon/flec. 

Theoretical calculations of curves of cold compression p (V) or 

e (V) in a practically accessible range of compressions and pressures 

are based on a quantum-mechanical consideration of interatomic inter- 

action. In a number of cases it is then possible to obtain satis- 

factory agreement with experimental data on compressibility, in 

particular for alkali and alkali earth metals at small pressures. 

A detailed account of these calculations and a comparison with the 

experimental data of Bridgeman on static compression of substances 

to several tens of thousand atmospheres can be found in Gombash's 

book [i3]j in the same place he gives literature references. 

Detailed data on curves of cold compression of a number of 

metals (and also sodium chloride) up to pressures of several million 

atmospheres and densities, approximately two times greater than 

normal, were obtained by L, Y, AlHshuler, K, K, Krupnikov, S, B, 

Kormerj T, A, Bakanova, R, P, Trunin, M, N, Pavlovskiy, L, V, 

Kuleshova, and V, D, Urlin [i-5* i4, i5]* on the basis of theoreti- 

cal treatment of the results of experiments on shock compression. 

The account of these experiments will go even further; here 

for illustration we will give curves pv(V) and e (Y) for iron (Pig, 

ii.2). 

Theoretically it is possible to establish a limiting law for 

cold compression of a substance at very large pressures and densi- 

ties. Under condtiions of very strong compression electron shells 
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Fig. 11.3, Elastic pressure 
p of iron. p^ - experi- 

mental curve; T. F, ~ ana- 
lytical curve of Thomas and 
Fermi; T. F. D. - Thomas, 
Fermi, and Dirac, Dotted 
line — extrapolation of p . 

Along the axis of abseist as 
compression V0/V is plotted. 

densities the pressure of cold 

of atoms in some measure lose their 

individual structure. The state of 

the substance in this case can be 

approximately described with the help 

of the statistical model of an atom 

of Thomas and Fermi, or, slightly more 

exact, with the help of the model of 

Thomas, Fermi, and Dirac (this one 

considers exchange energy.  The equa- 

tion of state of a substance in the 

model of Thomas and Fermi was dis- 

cussed in § 13 of Chapter III. In 

the limit of very large pressures and 

compression is 

p.-c1-^3. (11.3) 

This lav; is also limiting for the most statistical model of an 

atom, since ct not too large compressions the model leads to another 

dependence r (V). In order to compare the actual curvss of elastic 
" x  ' 

pressure with the curves obtained in the statistical model, we shall 

present a graph from [1], which depicts in logarithmic scale the 

empirical curve for iron and curves calculated by the methods of 

Thomas and Fermi and Thomas, Fermi, and Dirac (Fig. 11.3). 

From the n^ure it is clear that at compressions 1,2 to 1.8 

Calculations by the Thomas, Fermi, and Dirac method have real 
meaning only in those cases when the exchange correction is shall. 
They essentially Indicate the limits of applicability of the method 
of Thomas and Fermi. If the exchange correction turns out to be 
great, this means that the method of Thomas.. Fermi, and Dirac no 
longer has force. 
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times, carried out by experiment, the statistical models give 

extremely oversized values of pressure. Quantum-mechanical calcu- 

lations of the curve of cold compression of iron in a wide range 

of pressures were conducted by Q# M, Qandel'man [37]« 

§ 3* Thermal Motion of Atoms 

During heating the atoms of a substance are set into motion. 

Thermal motion of atoms is connected with defined energy and pres- 

sure. At temperature of the order of ten thousand degrees and 

higher an essential role is played by thermal excitation of electrons. 

As was already noted in the preceding paragraph, total energy 

and pressure can be presented in the form of the sum of elastic and 

thermal components. In turn, the thennal members will be separated 

into two parts: terms corresponding to thermal motion of atoms 

(nuclei) — e+, p , and terms responding to thermal excitation of 

electrons — e ,  p , Specific internal energy and pressure of a 
6    6 

solid will then be written in the form 

»-«.+«.+«„ (ii.4) 
P-P*+Pt+p* (11.5) 

We shall take up the electron members later on. At temperatures 

approximately below ten thousand degrees the electron members are 

small and in expressions (11.4) and (11.5) it is possible to limit 

ourselves only to the first two terms. 

Let us consider thermal motion of atoms. Here we will not 

make a distinction between a solid and a liquid and will not remain 

on the effect of melting. Thermal motion in a liquid hardly differs 

at all from thermal motion of at «as in a solid. Energetically, 
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melting hardly shows up in the thermodynamic functions of a imo- 

stance at high temperatures of the order of ten thousand degrees 

and above, since melting heat is comparatively small. For instance, 

in lead at normal pressure the melting point is T -. * 600 K, and 

melting heat is U -,. = 1*3 kcal/mole, which corresponds to 65O1 K 

if we divide this magnitude "by the gas constant R = 2 cal/mole^deg; 

in iron Tmelt = l8o8
0K, U lt = 3.86 kcal/mole, and ^meltA<  = i^C^K. 

If the temperature is not too high, the atoms of a solid (and 

liquid) accomplish small oscillations near the positions of equilib- 

rium (nodes of the crystal lattice in a solid). The oscillations are 

harmonic as long as their amplitude is much less than the inter- 

atomic distancej in other words, until the energy of oscillations, 

which on the order of kT per atom, is considerably less than the 

height of the potential barrier for jumps of atoms from nodes of the 

lattice to the internodes or to other free nodes. At normal density 

of a solid the height of the barriers has the order of one or 

several electron volts, i«e,, the magnitude kT is compared with the 

height of the potential barrier at temperatures of the order of ten 

or several tens of thousand degrees. At higher temperatures the 

atoms can almost freely move along the body» Thermal motion then 

loses its oscillatory character and more quickly approaches a 

chaotic character, like a gasi the substance is turned into a dense 

gas from the strongly interacting atoms. 

The situation changes however, if simultaneously with heating 

the substance is compressed. During compression the height of the 

* 
This is a magnitude equal approximately to the activation 

energy for self-diffusion of atoms in a body AU, It is usually 
somewhat less than binding energy, but of the same order as the 
latter, AU ^ (0.5-0.?) U. 
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potential "barrier very sharply increases, which the atom must over- 

come in order to depart from its cell (from its node of the crystal 

lattice). Free movements of atoms in the "body in this instance are 

strongly hampered and the motion of the atom remains limited to the 

space of its cell. This is explained in Fig, ii»4. 

In some rough approximation the thermal motion of atoms in a 

compressed substance can "be considered as small oscillations near 

equilibrium positions even at the maximum temperatures of 20,000- 

30,0000K, which are attained in the most powerful shock waves invest- 

igated in experiment. 

At temperatures above several hundreds of 

degrees Kelvin the quantum effects in oscil- 

A A A A       lations do not play a role, and the heat 

capacity of a body, whose atoms accomplish 

harmonic oscillations, is equal to its classi- 

explalnl^ til*™       Cftl value of 5 k per i atom or cv - 5Nk per 

of^teStial^r-   1 g' where N lB the number of RtomB per 6ram* 

a^olirduSSTcä-  Taking int0 account the distinction of heat 
press on, capacity from this value at low temperatures 

in a quantum region, we will write an expression for thermal energy, 

connected with oscillations of atoms, in the form 

*   Tr 

where e0 = \ev{T)dT   is the thermal energy at room temperature TQ, 
o 

which can be taken from the appropriate table. 

At temperatures T, considerably exceeding T0, it is possible 

to disregard the distinction of cvT0 from e0, since both of these 

magnitudes are small as compared to c^J, In this instance. 
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9T = CVT,   cvs=3Nk. (11-7) 

Heat capacity is equal to j> k per atom only when the thermal 

motion of atoms has an oscillatory character. At sufficiently high 

temperatures the atoms freely move through the hodyj heat capacity 

corresponds only to forward degrees of freedom of atoms and is equal 

to £ k per atom, as in a monatomic gas. Transition from oscillatory 

motion of atoms to forward and the decrease of heat capacity con- 

nected with it occurs gradually in the region of such temperatures 

at which the kinetic energy of am atom £ kT on the order of the 

height of the potential barrier for movements of atoms in the body 

AU/N. An effective boundary, separating the regions with limiting 

3 
values of heat capacity 3 k and £ k, can be temperaturei 

T*~iu" (11.8) 

At high temperatures T » T, the thermal energy of one atom 

can bs presented in the form of the sum of the kinetic energy of 

forward motion ~ kT and the mean value of potential energy, which 

in the case of small oscillations also was equal to <& kT, and now 

is on the order of AU/k, 

This Is in accordance with the effective determination of heat 

capacity by a discontinuous formula: 

cv « 5AA when T<Tk;   cy = ^ Nk  when T > Tk. 

If T > T,, the energy is then equal to 
T Tk T 

•    *     V (11.9) 
For an example we will indicate that in iron of normal density 

^ « 2,5ev ar.df» ■* 20000* K. 
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During compression of a tody the 

height of the potential barrier Increases 

and threshold temperature T^ rises, so 

that curves of the dependence of thermal 

energy on temperature at various densi- 

ties (volumes) have the form schemati- 

cally depicted In Plg# 11.5. 

In a limiting case T » T^ when the 

thermal motion of atoms (more exact, 

nuclei) does not differ from gas motion, the thermal pressure con- 

nected with this motion Is equal, as usual, to 

PT " ntcT ** -y- = JY - 

Fig. 11^5« Dependence of 
thermal energy on tem- 
perature at different 
densities (volumes)» 

§ 4. Equation of State of a Body Whose Atoms 
Accomplish Small Oscillations 

We shall consider that the atoms of a body accomplish small 

oscjllatlons near equilibrium positions, and will find the magnitude 

of thermal pressure pT(V, T), responding to these oscillations. If 

temperature Is not too high and electron excitation can be disre- 

garded, the equation of state and internal energy of the body can 

then be written in the form 

P.-P*(V) + PT{V,T), 

•-«.(V)+3^ikr. 
(11.10) 

(il.il) 

Temperature dependence of thermal pressure can be immediately 

established with the help of a general thermodynamic identity! 

$),-'«?),->■ (11.12) 
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Elastic members. In accordance with equation (ii.i), satisfy 

this relationship automatically. Noting that heat capacity c « 

■ JNk does not depend on volume, we will obtain from formula (ii,i2) 

that thermal pressure ia proportional to temperature« pT » <p(V)T, 

where cp(V) is a certain function of volume♦ 

Let us rewrite this formula in the form 

Magnitude Q, characterizing the ratio of thermal pressure to 

thermal lattice energy, is called the Grueneisen coefficient» The 

Qrueneisen coefficient at normal volume of bodies GQ - ö(vo) ls con" 

nected with the other parameters of the substance by a known ther- 

modynamic relationship (see for instance [i6])» 

GrXWpCSX" -1- (ii.i4) 

Inasmuch as FG*} "^ is the iso"fcharmal canpressibility of 

a substance at normal conditions, and y-(ff) = a is the coefficient 

of volume thermal expansion* we obtain 

r „Ü! = -5_e=2fl 
' «v^t «^vN <v (ii.i5) 

(c_ is the speed of sound determined by compressibility). 

The parameters of several metals at normal conditions are 

given in Table 11,1, taken from [j5]. 

The Grueneisen coefficient G corresponds to the adiabatic expo- 

nent decreased per unit in the case of an ideal gas with constant 

The fact that ß0 is such will be discussed In the following 
paragraph. 
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heat capacity (let us recall the equation of state of a gas p 

« (7- i) f). 

Table 11«1, Certain Characteristics of Metals at Normal Conditions 

P0i g/cm- 

c • 10" , erg/g'deg 

KQ • iO12, cm2/d 

a . 10^, deg 

c0, km/sec 

^-8 
e0 * 10" , erg/g 

ß0> erg/g.deg
2 

2.71 8.93 11.54 

8.96 5.82 1.29 

1.57 0.75 2.42 

2.?i 1.65 2.9 

2.09 1.98 2.46 

5.2 5.95 1.91 

16.1 7.71 5.25 

500 110 144 

By virtue of the condition adopted in the derivation of formula 

(11,15) that heat capacity cv does not depend on volume, the 

Grueneisen coefficient turned out to be not depending on temperature. 

In reality, in the limit of very high temperatures, when thermal 

motion of atoms (nuclei) becomes chaotic, equation (11,15) should be 

turned into the equation of state of a monatomic gas, i.e., 

G —■ v when T -► oo. If we imagine that the atoms of the body are dis- 

connected and diverge at large distances by an external force 

(volume increases) the substance Is turned into a gas even at low 

temperature, so that formally when V -♦ oo, G -♦ -r. As can be seen 

from the table, in normal conditions the Grueneisen coefficients 

of metals are close to two. 
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In order to clarify the physical meaning of the arbitrary func- 

tion, i.e., the Grueneisen coefficient G(V), which appeared formally 

as .a resul": of integration of thermodynamic identity (il.i2), one 

should turn to the expression known from statistical physics for 

free energy of a body whose atoms accomplish harmonic oscillations. 

At high temperatures, when kT is much greater than the energy of 

oscillatory quanta hv, the specific free energy is equal to (see 

[16]) 

F-AVHZNkT\n§, (11#16) 

where 17 is a certain average frequency of oscillations, which is con- 

—   -1/5 
nected with Debye temperature Ö by the relationship hv - e '^kfl ■ 

- 0.715 ke (for instance, in iron 9 » 420oK), The first member in 

(11,16) constitutes the potential energy of interaction of atoms, 

coinciding with the energy of a cold body. The second member des- 

cribes the thermal part of free energy. From formula (11.16) with 

the help of general thermodynamic relationships it is easy to find 

the specific internal energy and pressure of the bodyi 

(we natural?.y arrived at formula (11.11)) and 

The first term gives the elastic pressure already known to us, 

and the second gives the thermal pressure. Taking into account the 

determination of the Grueneisen coefficient (11.13), we find 

nn-.-JS). (11.17) 
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The Oruenelsen coefficient can be connected with the function 

of cold compression by means of the following simple reasoning. 

Average frequency of the spectrum of elastic lattice oscillations 

v,  Is obviously close to maximum frequency. Maximum frequency In 

order of magnitude is equal to the ratio of speed of propagation of 

elastic waves of volume compression c« to minimum wave length, which 

in turn is on the order of the Interatomic distance r0, so that 

T ~ CQAQ, But speed of sound c0 - (^—vt^y,i,  and r0 ~ V '*,  whence 

»~^(-»J' 

Talcing the logarithmic derivative from this expression, we 

obtain 

This formula was obtained by Slatter [17] and L. D. Landau and 

K. P. Stanyukovich [18]. 

Experience shows that Oruenelsen coefficients decrease somewhat 

during compression (with decrease of specific volume V). 

In order to Imagine the order of magnitude of thexnal pressure 

(11.1?), we shall indicate that if, for instance, we heat aluminum 

at a constant volume equal to normal, to a temperature of lOOO^, 

the pressure in it drops to the magnitude pT - 51«000 atm. 

During heating of a solid in usual conditions, i.e., at constant 

atmospheric pressure, the body is expanded. The cause of thermal 

expansion of bodies is absolutely clear; one only has to glance at 

the formula for pressure (11,10). During heating the positive ther- 

mal pressure pT Increases. So that total pressure remains constant, 

elastic pressure pY must become negative, i.e., the body must expand 
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as long as there are adhesive forces holding the atoms in the lat- 

tice, or the negative pressure will not balance the repulsive action 

of positive thermal pressure» Hence, the relation "becomes clear 

"between the Grueneisen coefficients, thermal expansion, and compres - 

sibility, which is expressed by formula (11.15), Actually, small 

expansion at constant pressure is connected with small heating by 

the condition 

whereupon there follow the relationships (11,14) and (11,15). 

Let us estimate, for example, how much aluminum expands, if we 

heat it at constant pressure (zero or atmospheric, it makes no dif- 

ference) from absolute zero to room temperature T « iJOO'^K, Using 

the constants given in Table 1,1, we find bV/V **  G0p?xoAr<*» 

<*r 2% (Af = 300° K). 

Moreover, in the state with T0 » 500
oK the thermal pressure is 

the same as the absolute value of elastic pressure, equal to PTQ - 

» 17,000 atm. Hence it is clear that atmospheric pressure can 

always be considered to be equal to zero, since it is insignificant 

in comparison with both components of pressure even at room temper- 

ature. 

If we know function G(V), it is easy to find the entropy of the 

substance. Considering a state, slightly differing in density from 

normal, it is possible to consider G as constant and equal to its 

normal value of C-0, For entropy we then obtain the equation 

dS-'±W_ä*r^ = eväT+ritev dV 

¥e consider only a substance with normal properties, expanding 
during heating. 
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whence the specific entropy is equal to 

S-'vtoi(n)r'+^ (11.19) 
where S0 is entropy at normal conditions TQ and VQ, which can 

usually "tie  found in tables» The adiabatic bond of temperature and 

volume is given by the equation 

£-(£r (".so) 
Expressing temperature through pressure with the help of the 

equation of state 

P'P-m+r.tf, (11#21) 

we find the adiabatic bond of pressure and volume» 

M-fty*. (ii.22)   , 

where PmQ a ^Q
C
V^C/^O  

is ^^  thermal component of pressure at normal 

conditions«   In small compressions which nonetheless are accom- 

panied by an abrupt increase of pressure (as compared to atmospheric, 

but not with Pmn)* the adiabat p('V) srireads at an almost constant dis- 

tance from the curve of cold compression pv(V)» 

During relatively large compressions (i*5-2 times) p » PTQ 

and the relative deviation of the adiabat from the curve ol cold 

compression [p - p (V)]/p (V) becomes small. 

Compare with the adiabatic bond of T and V in a gas with con- 
stant heat capacity T ~ V v'  'J G corresponds to 7 - a.. 

The isotherm is ü> —M^l/fr,= VP- At small changes of volume 
the isotherm almost coincides with the adiabat (change of pressure 
is great). 
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§ 5. Thermal Excitation of Electrons 

In the simplest models of metallic bodies the external valence 

electrons of atoms of the metal are torn from their places in the 

atoms and all together form a free electron gas, completely filling 

a crystal body, in the nodes of which there are ions or atomic 

remainders«  The electron gas follows the quantum statistics of 

Fermi and Dirac, the elements of which were presented in § 12 of 

Chapter III. 

At absolute zero temperature the electron gas is completely 

degenerated; in accordance with the Pauli principle the electrons 

occupy the lowest energy states and possess kinetic energy not 

exceeding the end-point energy of Fermi (5,88): 

(n is the number of free electrons per 1 cur, m is the mass of an 

electron). 

Energy E- in metals usually has an order of several electron- 

volts, and the temperature of degeneration corresponding to it, 

T = EoA* is ^n the order of several tens of thousand degrees« 

Kinetic energy of the completely degenerated electron gas, 

which is on the order of E0 per electron, is Included in the elas- 

tic energy of the body and is not related to thermal energy. In 

exactly the same way, the "kinetic" pressure corresponding to it 

is Included in elastic pressure along with the "potential" pressure 

« 
We shall limit ourselves here to elementary presentations, not 

concerning the contemporary electron theory of metals. 

**For instance in Na, T* - 37*000oK, in K - 24,000% in Ag - 
64,OOOOK, and in Cu - 82i000

oK. 
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caused by the electrostatic interaction of electrons and ions» In 

summary, this total pressure of nonthermal origin is equal to zero, 

if the body is in a vacuum at absolute zero temperature. 

With increase of temperature the electrons partially pass into 

higher energy states, exceeding Fermi end-point energy, and the 

energy of the electron gas is increased. 

If temperature T is much less than Fermi temperature T*, then 

roughly speaking, from the initial Fermi sphere in the space of 

momentum there burst electrons, removed from the Fermi level at an 

energy distance of the order kT, The number of excited electrons 

is a fraction on the order of kT/E0 of the total number of electrons, 

Each of them obtains additional energy of order kT, Thus, thermal 

energy per electron in order of magnitude is equal to (kT/E-OkT and 

is proportional to V^'% (since E0 ~ rrj' ~ V"2/'), Taking into 

account the numerical coefficient the thermal energy of electrons, 

calculated per g of metal when T « T*, turns out to be equal to 

(see for example [16]) 

••-TP7,,• (11.2?) 

where coefficient ß depends on the density of the substance and is 

equal to 

(3a«)1 (11.24) 

(N is the number of free electrons per g of metalj V0 is the 

normal specific volume of the metal). Specific heat capacity at 

constant volume is proportional to temperature and is equal to 

ev.-pr. (11.25) 

860 

l^MJL^uM^sJM^i &gtgsemmmtim*mmiiämuiimeitmM 



Knowing the number of free electrons per atom of metal. It Is 

possible by formula (11,24) to calculate coefficient ß0 and find 

electron heat capacity at a given temperature. In an experiment 

the electron heat capacity is measured at very low temperatures, at 

which lattice heat capacity obeys quantum laws and is proportional 

to T . At sufficiently low temperatures electron heat capacity pre- 

dominates, is proportional only to the first power of T, and it can be 

measured. At room temperature the electron heat capacity is usually 

tens and even one hundred times less than lattice heat capacity, 

which in these conditions is constant and is equal to its classical 

magnitude c = 3Nk. 

Experimental values of coefficients of electron heat capacity 

ß0 for several metals are given in Table 11.i. 

If we compare the values of heat capacities of electrons and 

lattice at different temperatures, it is possible to see that already 

at a temperature of the order of 10,000 K the electron heat capac- 

ity becomes very noticeable, and, let us say, at 50,000 K it is even 

greater than lattice heat capacity. It should be considered, how- 

ever, that dependence (11,25) is valid only as long as the tempera- 

ture is less than Fermi temperature. 

When T » T* the free electron gas with constant number of 

electrons is not degenerated, and its heat capacity is equal to the 
-*. 

classic value of c  « •£■ N k. In reality, at high temperatures the 
ve 

actual number of "free" electrons increases, and the electron heat 

capacity of the substance is not described by simple formulas. The 

question about the electron heat capacity of a dense gas at high 

They coincide in order of magnitude with those calculated 
with formula (11.24), 
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temperatures was discussed in detail in § l^f of Chapter III. 

At temperatures of order of 10,000-20,000*^, which had been 

attained in experiments on shock compression of metals, we are still 

far from this situation, and heat capacity of electrons can be 

approximately considered to he proportional to temperature, as follows 

from formula (11,25)♦ It is necessary to say that temperature of 

degeneration T* increases during compression of metal (T* ~ V '^}, 
p 

so that the temperature range in which the approximation of e ^ T and 

cv ^ T is valid, in a compressed substance is greater than at 
e 

normal density. 

According to the equation of sta-e for a free electron gas (both 

degenerated and also nondegenerated), the thermal part of pressure of 

electrons is equal to 

P-TT-TfiT-1*7"- (11.26) 

If we determine the "coefficient of Orueneisen" for electrons 

G by a relationship analogous to (11«15), 

for a free electron gas it will be equal to ?/j5, 

S. B. Kormer [3] conducted a detailed analysis of the thermal 

behavior of electrons on the basis of statistical models of an atomic 

cell according to Thomas and Fermi and Thomas, Fermi, and Dirac (see 

§ 12 to § 14 of Chapter III). He took the approximate calculations 

of Qilvarry [191* who considered the thermal members as a correction 

with respect to the model of a cold atom by Thomas and Fermi, the 

calculations of Latter [20], which were discussed in § 14 of Chapter 

III, and experimental data. This analycis showed that up to 
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temperatures of the order of 30,000-50,000oK the heat capacity of 

electrons, as also in the model of free electrons, is proportional 
p 

to temperature; cv ^ T, se ^ T , where with the growth of density 
e 

such regularity is kept to all higher temperatures. 

Regarding, however, thermal pressure, the coefficient G turns 

out to be equal to 2/3 only in limiting cases of very high tempera- 

tures or very large densities, when the kinetic energy of electrons 

is much greater than Coulomb energy. In the region of temperatures 

and densities realized in the experiments on shock compression the 

magnitude G is somewhat less; it is equal approximately to 0,5"0,6, 

As a result it turned out that it is possible with a sufficient de- 

gree of accuracy to take G = const » 1/2. 

In order to avoid contradiction in this case with thermodynamic 

identity (il.2), together with the change of coefficient G it is 

necessary to simultaneously change the exponent in the dependence of 
2/5 2 energy on volume connected with it; namely, instead of e ~ V / T 

i/p p 
the dependence eQ ~ V ' T should be taken.* 

Considering the coefficient of electron heat capacity at normal 

volume to be equal to its experimental value, it is possible accord- 

ing to S. B. Kormer to write approximately, when T < 30,000-50,000oK: 

...|pr«t P = Po(^)5. i (11.28) 

P.=4T-- (11-29) 

It is easy to check that in the dependence e ** v^T and 
equation of state p - G e /V with G - const, the thermodynamic 
identity is satisfied only when k = G ♦ 
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§ 6, Trinomial Equation of State 

Let us briefly suamarlze the results of §§ 2-5. The specific 

Internal energy and pressure of a solid or liquid may bb presented 

in the form of the sums of three components which describe the elas- 

tic properties of a cold body, the thermal motion of atoms (nuclei), 

and thermal excitation of electrons« Considering not too high tem- 

peratures, no higher than several tens of thousand degrees (and large 

compressions), it is possible In order of approximation to consider 

that atoms accomplish small oscillations and that their heat capac- 

ity is equal to c^ » JNTs. Electron members with such temperatures 

are described by approximate formulas (11,28) and (11,29)• Thus, 

energy and pressure are equal toi 

where 
*~t,(V) + ZT + e„   P = P*iV) + pT + p„ 

•«(F)= J p,{V)dV, 

(ilOO) 

T Is room temperature] s^- is the thermal energy of an atomic lattice 

at room temperature, which is taken from tables. The coefficient of 

electron heat capacity at normal volume ß0 is taken fron experiments 

on the measurement of heat capacity at very low temperatures. 

The Gruenelsen coefficient Q(V) Is connected with the function 

Pv(v) ky differential relationship (11,18), There remains only one 

unknown magnitude, i,e,, elastic pressure as a function of volume 

Pv(v)* which should be found experimentally. 

864 

• ■mm"!'*"-' '   ■■■'Hiinainttft rMifiiiiriiMinit«tr,aa-'a- mnnn 



2. Shock Adla^at 

§ 7» Shock Adiabat of a Condensed Substance 

The laws of preservation of flows of mass, momentum, and energy 

on the front of a shock wave (1,61)-(1,65) have an absolutely general 

value, irrelevant to the aggregate state of a substance through which 

a wave is spreading. Inasmuch as even in very weak shock waves pres- 

sures are measured in thousands of atmospheres, initial atmospheric 

pressure can always be disregarded, considering it to be equal to 

zero. Let us designate, as usual through D, the speed of propagation 

of a shock wave through undisturbed substance, and through u, the 

Jump of mass speed in the front, equal to the speed of the substance 

behind the front (in a laboratory system of coordinates), if the sub- 

stances rests in front of the front. Omitting index for magnitudes 

behind the front, we shall write the laws of conservation of mass and 

momentum in the form 

Du 
P~-V;' (11.52) 

Excluding from these equations speed u, we obtain 

/,"^"(1~^)' (11.53) 

As the third, energy relationship, we shall take the equation 

of shock adiabat (1.71) with p0 = 0: 

•-«•-yP(F,-F). (11.54) 

Total energy, obtained by 1 g of substance as a result of shock 

compression p("V0 - V), is distributed equally between kinetic u /2 

and internal e - EQ energies (in the system of coordinates where the 
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Fig. li.6. p and V- 
diagram for shock ocm- 
pression of a cold 
substance, pjj — shock 
adiabat, p — curve of 

cold compression. 

undisturbed substance rests). Change of Internal energy in turn is 

composed of changes of elastic and thermal energy. 

We shall consider at first a shock wave spreading through a 

body with zero temperatureI T0 » 0, EQ - 0, V - Y0 • On a diagram 

of p and V (Pig. 11,6) we draw the adlabat 

of cold compression px(V) and shock adlabat 

PH(V) which is naturally higher, since total 

pressure behind the front is composed of 

elastic and thermal pressure. The elastic 

energy ex obtained by the substance is numeri- 

cally equal to the area of curvilinear trl- 

angle OBC, shaded horizontally (Bx~\pxdV). 

Total internal energy e,  according to 

(11.54), is equal to the area of triangle 

OAC; the difference of areas, shaded vertically, also composes the 

thermal energy of the substance, which was subjected to shock com- 

pression. As can be seen from Pig. 11.6, 

the area of OAC is certainly greater than 

the area of OBC, only if the curve of cold 

compression is convex with respect to the 

axis of volumes (■5^r>0)» which usually always 

occurs. Therefore, in the shock wave the 

substance is always heated and its entropy 

is Increased. This absolutely general posi- 

tion, graphically demonstrated In Chapter I 

in the specific example of an ideal gas with 

constant heat capacity, with no less clarity 

in the case of a solid follows from the 

Fig. 11.7. P and V- 
diagram for shock com- 
pression of a solid 
body heated to room 
temperature. p„ — 

shock adlabat, ps — 

isentrope, p„ — cold 

compression curve. 
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I 

elastic properties of the substance. 

We shall now consider shock compression of a body initially 

located at normal conditions V0 and TQ. The initial elastic pres- 

sure in this instance is negative, and curve p (V) is located as 

depicted in Fig. 11.7. 'The usual adiahat or isentrope Pg(V, S0), 

passing through the initial state, with decrease of volume deviates 

somewhat upwards from the curve of cold compression. 

At small compressions the electron pressure is insignificantly 

small; the Grueneisen coefficient may be considered constant and 

adiabat PS(V, SQ) is described by equation (11.22). 

As we know (Chapter I, § 18), the shock adiabat Pp(V) at the 

initial point has a second order tangency with the usual adiabat 

ps(V), so that the shock adiabat proceeds as shown in Fig. 11.7. 

Figure 11.7 is carried out in such scales, in order to make graphic 

the mutual location of all three curves p , p«, and p^ in a range 

cf comparatively small pressures to a magnitude of the order of a 

hundred thousand atmospheres.  If we consider a wide range of pres- 

sures to a million atmospheres, the distinction between V0 and V0 , 

the same as the deviation of the usual adiabat from the curve of cold 

compression, almost does not show up, and the deviation of shock 

adiabat from isentrope p,. or from curve p becomes considerable due 

to amplification of the role of the thermal components of energy 

and pressure, or the very same, due to a noticeable rise of entropy. 

The picture Iz  then the same as in Fig, 11,6, where it is possible 

to consider V % = V- and adiabat p„ to be coinciding with the 

curve r-r  cold compression. 

In shock waves with pressures of the order of a million atmos- 

pheres, the thermal energy connected with the increase of entropy 

"'- '-L- mumm i i i iiitiMillllimM^ 



of the substance is comparalale with total energy. In exactly the 

same way, the thermal pressure Is comparable with total pressure. 

This is illustrated in Pig. il.8, taken from [J], which represents 

experimental shock adiabats of copper and 

lead to pressures of the order of 4 * 10 

atm and, obtained on the basis of experi- 

ments by means of calculation, curves of 

cold compression (along the axis of 

abscissas we do not plot volume, but mag- 

nitude of compression, JL = ^), 

Considering Table 11.2, we can obtain 

a presentation about the relative role of 

all components of pressure and energy at Pig. 11.8. Shock adia- 
bats and curves of cold 
compression of copper 
and lead. different pressures of shock compression. 

*« 

Table 11.2. Parameters Behind the Pront of a Shock 
Wave in Lead 

p 
9 ** »T ** •-«, •* eyiT-T«) «• 

i T.'K 
M in 101C «IM2 « 13 

4 
atm in 10f er«/« 

1.3 25,0 21.6 3,35 0,051 25,4 15,3 9,6 0,69 1.9 1045 
1.5 65,5 51,0 13.9 0,63 96,3 46.7 42,3 7.4 1.77 3580 
1.7 133,0 95.3 34,0 3.8 242,0 95,8 107.0 39.4 1,60 8600 
1.9 225,5 156,0 56.0 12,7 471,0 163.2 191,0 118.0 1,35 15100 
2.1 335,5 233,0 73,0 29.0 775.0 248.0 284.0 243,0 1.07 22300 
2.2 401,0 277,0 93,0 41,5 965,0 297.0 337,0 332,0 0,98 26400 

These experiments and the method of obtaining the experimental 
curve of cold compressibility can be seen in §§ 12 and IJ. 

#« 
The table is taken from [j5]. To complete the picture we have 

added certain magnitudes to it. These magnitudes were calculated 
with the help of the constants given in [5], 
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From table it follows that during the shock compression of 

lead 2,2 times, the substance behind the front is heated to a tem- 

perature of 26,000oKj in this instance the thermal pressure com- 

poses 52^ of the total, and thermal energy is 69^ of the total, where 

half of the thermal energy belongs to the electrons, and half to the 

oscillations of atoms. Thermal pressure of electrons composes Jkfi 

of total thermal pressure. 

In the qualitative aspect the behavior of all other investigated 

metals, upon increase of wave amplitude, was equal. Quantitative 

data can be found in [j5]j we will not give them here. 

The greater the amplitude of a shocy wave, even greater will be 

the role played by the thermal components of pressure and energy. 

At very high pressures of the order of hundreds of million atmos- 

pheres and higher, the role of "elastic" components becomes small 

and the substance behaves practically as an ideal gas (ideal in the 

sense of the absence of interaction between particles). Correspond- 

ingly, the shock adiabat in these conditions in principle does not 

differ from the shock adiabat of an ideal gas (taking into account 

the processes of "ionizationh; see Chapter III), i.e., and for a 

solid there exists a limiting compression in the shock wave. In the 

limit p - ao the temperature also tends to infinity, the atoms are 

completely ionized, and the substance is turned into an ideal, classic 

electron-nuclear gds with adiabatic exponent 7 = 5/j>t  which corres- 

ponds to limiting compression squal to 4 (if we disregard the effects 

connected with radiation; see Chapter III). 
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§ 8, Analytic Presentations of Shock Adlabat 

With the help of thermodynamic functions p(W T) and c(T, V) 

in principle we can find in evident form the equation of shock adla- 

bat PH(V, VQ). Actually this is impossible to do, since the theo- 

retical dependence of elastic pressure on volume is unknown, i»e,, 

the function pv(V)« It is useful, however, to write the equation 

of shock adiabat, leaving in it the unknown function pv(V), We shall 

consider shock waves of not too great amplitude, in which it is 

possible to disregard the electron components of pressure and energy 

and consider the Grueneisen coefficient Q to be constant and equal 

to its value at normal conditions GQ. 

At the same time we shall consider that the wave is not too 

weak, so thet it is possible to disregard the initial energy of un- 

disturbed substance e0« Actually this corresponds to the fact that 

we consider initial temperature üO be equal to zero and do not make 

a distinction between normal volume V0 and zero volume V0 . 

Let us place in the equation of shock adlabat (11,54) energy 

e - e + eT, expressing its thermal part e™ through pressure by for- 

mula (11.21)t 

Solving the obtained equation with respect to p, we find the 

equation of shock adlabat in the form 

*■" T^/F • ««- \ MK)oK«      (U.^) 

where h designates the magnitude h - 2/Q0 + 1. 

If we formally extend formula (11,35) to shock waves of very 

great amplitude, we will obtain th..*- in the limit p„ -♦ a), VQ/7 - h, 
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i»e», h formally constitutes "limiting compression" in the shock 

wave» The position here is fully analogous to what takes place in 

an ideal gas with constant heat capacity. Let us remamber that the 

index of Grueneisen G corresponds to the adiabatic exponent 7 de- 

creased by one. Hence "limiting compression" h corresponds to megnltude 

(7 + i)/(7 - 1)* i.e., limiting compression for gases« 

The formal analogy with gases is connected with the fact that 

in the limit Ptj -♦• co the thermal pressure plays a basic role (pT - 

^ Pu ~ PV -'■ OO* when p„(V) -+ const) and the equation of state in this 

case does not differ from that of a gas. 

Sometimes it is convenient to present shock adiabat in analytic 

form, using some interpolation formula. Experience shows that in a 

wide range of amplitudes of shock waves the dependence between speed 

of front and speed of substances behind the front (with respect to 

undisturbed) is linear! 

D**A + Bu. (li.36) 

Thus, for instance, for iron A » 3,8 km/sec, B ■ i.58).  With 

the help of relationship (11.36) by formula (11.54) and (11.32) it 

is easy to find the equation of shock adiabat1 

Pn' A»(V0-V) 

(B.Vv*[£^f (11.37) 

Shock adiabat PH(V, V0) can be interpolated by polynomials of 

the type 

kmt 

Formula (11.36) cannot be extrapolated to small amplitudes 
p -»• 0, u -♦• 0, so that constant A is not the speed of sound in a 
normal state. 
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by determining the constant coefficients partially from the results 

of experiments on shock compression, and partially through the 

parameters of the substance in normal state. 

§ 9. Shock Waves of Weak Intensity 

A region of pressures of the order of several tens and hundreds 

of thousand atmospheres has a large value for practice. These are 

the typical pressures which are developed in the detonation of 

explosives, in explosions in water, upon impact of detonation pro- 

ducts against metal barriers, etc* In the region of isentropic flow 

we frequently use an empirical equation of state of a condensed sub- 

stance of the type 

'-^ [(£)"-»]• (11.38) 

In which index n is considered to be constant, and coefficient A 

depends on entropy; actually it is also alwayp considered constant. 

Constants A and n are connected together by a relationship which 

includes compressibility of the substance at normal conditions (speed 

of sound) 

<>-nCwX-W- (ii.59) 

F. A, Eb,um, K. P. Stanyukovich, and B. I. Shekhter [21], in 

accordance with Jensen^ data, took for metals index n equal to 4 

and calculated by formula (li.59) constants A for a number of metals 

through the experimental values of compressibility. 

In a number of cases there was obtained good coincidence with 

values of A, which were determined by the same authors experimentally 
r. 

Thus, for instance, for iron A , » 5 • 10 atm, which is 11%  greater 

872 



than experimental. For copper A , - 2,5 • ICr atm, which is 6^ 

greater than experimentalj for duralumin A , » 2,05 • 10 atm and 

practically coincides with the experimental value. For water we 

usually take n » 7-8 and A « 3000 atm. 

During calculations of flows with shock waves in the region of 

shown pressures it is possil^e in the first approximation to disre- 

gard the change of entropy in the shock wave and to use the adia- 

batic equation of state (ii.38) with A « const for the bond of pres- 

sure and compression in the front of the wave. With this speed D 

and u are found from the first two relationships on the front of the 

shock wave (11.31) and (ii.32), or (11.31) and (ii.33). Energy 

equation (ii,34) can then "be used so that in the following approxi- 

mation we may estimate the increase of internal energy connected 

with the irreversiMlity of shock compression. Actually, if we con- 

sider (11,38) as an isentrope equation, the internal energy depend- 

ing upon V can be found by using the equation TdS « de + pdV = Ot 

Vo 

Equation of energy (11,34) on the front of a shock wave with 

this value of energy and the value of pressure according to (11,38) 

naturally is not satisfied. The difference 

A« = -L p (Vc _ F) - \ (p dV)a.wt. 

by definition is equal to the increase of internal energy connected 

with the growth of entropy in the shock wave. The smallness of this 

magnitude as compared to full increase of energy in the shock wave 

e - e0 is also a condition of validity of the approximation of 

"adlabaticness" of shock compression, 
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Calculation of the ratio AE/(e - e0) with index n = 4 shows 

that when "VQ/V = 1.1 this ratio is equal to 4.5^ and when V0/V = 

» 1,2 jt is equal to 17.5^ (ratio does not depend on A). Compres- 

sion 1,1 times corresponds to pressures of order of 100,000 atm (for 

aluminum — 90,000 atn^ for iron — 210,000 atm). Thus, at pressures 

of ~vy  atm the approximation of "adiabaticness" of shock compression 

gives an error of no more than 5^ with respect to energy (even less 

with respect to pressure), which permits us to consider the shock 

wave as acoustic in many practical calculations, 

§ 10. Shock Compression of a Porous Substance 

Unique peculiarities are possessed by the process of shock com- 

pression of porous bodies. Experimental study of shock compression 

of the same substance at different initial densities permits the 

obtainment of considerably more complete information about the 

thermodynamic properties of a substance at high pressures and tem- 

peratures. Porous bodies can have the most diverse nature and 

structure (powders, bodies with internal vacuums, fibrous bodies, 

etc.). All of them are characterized by the presence of more or 

less big particles or sections of solid substance with normal dens- 

ity PQ = 1/VQ and empty sections, owing to which the average speci- 

fic volume VQQ is greater than normal V0 (and average density p00 

is less than normal PQ). Let us imagine that a porous body is sub- 

jected to slow compression from all sides. At first the work of 

forces of external pressure is expended only for "closing" the 

vacuums, for sealing the substance, and reducing of it to normal 

volume. This work is connected with surmounting the forces of 

friction between particles, with breaking of particles, with crumpling 
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Pig, 11.9. Isentrope 
of compression of a 
porous substance. 

of fibers, etc. 

For accomplishment of this work there 

are required comparatively small pressures, 

the scale of which is the ultimate strength 

of materials, i.e., for metals, pressures of 

the order of a thousand atmospheres, and for 

many substances much smaller. If we 

considered compression in a range of prep^ures 

measured in hundreds of thousand atmospheres, 

then practically in that section of the 

adiabat where there occurs sealing of the substance to normal volume, 

pressure may be considered to be equal to zero, and adiabat passing 

from point V00 can be presented in the form of a segment of the axis 

of abscissas from V00 to V» (p - 0), and 

then during compression above normal dens- 

ity, in the form of an isentrope of solid 

substance (Fig, ii,9). 

We shall now consider shock compression 

of a porous body. For simplicity let us con- 

sider shock compression to high pressures 

measured in hundreds of thousand and million 

atmospheres, so that the usual adiabat of 

solid substance may be considered as coin- 

ciding with the curve of cold compression. 

Here we shall disregard the effects con- 

nected with strength and the distinction 

Pig, 11.10, p and V- 
UAX\#WAV      V WJUA- 

pression of a porous 
substance, p^,, — por 
shock adiabat of a 
porous body, PBO1 - 

shock adiabat of a 
solid body, p — curve 

of cold compression of 
a solid body. 

of initial temperature T0 « 500 from zero. 
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We shall consider that in the final state "behind the front of 

a shock wave the suhstance is solid and uniform. From the laws of 

preservation on the front of the shock wave and the equation of 

state of the substance it follows that the shock adiabat has the 

form depicted in Fig. 11,10 (this will be clarified below). The 

point corresponding to normal volume Yc  and zero pressure p = 0 

lies on the shock adiabat. The internal energy obtained by the sub- 

stance in the shock wave e = (V'2)p (V00 - V), is equal to the area of 

the triangle shaded horizontally. Its elastic part is equal to the 

area of the curvilinear triangle limited by curve p (V) and covered 

in Fig. 11,10 by thick shading« The greater the initial volume V00, 

i.e., the higher the porosity of the substance, the bigger the ini- 

tial difference in areas, responding to part of the energy during 

compression of a porous substance to the same final volume (elastic 

energy at the given volume remains constant, and total energy grows). 

But the greater the thermal energy, the higher the thermal 

pressure. Therefore, the higher the porosity, the higher the shock 

adiabat. In particular, the shock adiabat of a porous substance 

passes above the shock adiabat of a solid, as shown in Fig. 11,10, 

In order to compress a porous substance to the very same volume 

as the solid, higher pressures are needed, whereby all the higher, 

the higher the degree of porosity. 

The picture does not change in a qualitative aspect, if we 

consider initial temperature (and entropy) to be different from 

zero. 

In order to obtain a presentation about how sharply the thermal 

components of pressure and energy increase during shock compression 

of a porous body as compared to compression of a solid, we will give 
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Pig, il.ii. Shock 
adiabats of solid 
(p.) and porous 

(p2) of iron. px 

— curve of cold 
compression. 

experimental curves of shock adiabats of iron 

with normal density and porous iron with dens- 

ity lowered 1,4 times (V00 » 1,412 VQ). These 

curves (Pig» 11.11) were taken from [1] (on the 

axis of abscissas we do not plot volume, but 

compression with respect to normal density VQ/V)* 

For instance, during compression with respect to 

normal volume VQ/V = 1.22, which corresponds to 

a decrease of volume of porous iron by 1,74 times 

(VQQ/V « 1.74)j pressure in the case of porous 

iron turns out to be 2.63 times more than pres- 

sure for solid iron, and energy, in 8,64 times 

more* 

Large heating during shock compression of porous bodies can 

lead to sharp anomalies in the trend of the shock adiabat. Namely, 

upon compression to a given pressure of a substance with high 

porosity, the relative role of thermal pres- 

sure turns out to be so great that the dens- 

ity in the final state at high pressure 

turns out to be less than normal (V > VQ)* 

The volume with the growth of pressure does 

not decrease in this case, as usual, but 

increases, and the shock adiabat has the 

anomalous behavior depicted in Fig. 11.12. 

In order to explain the origin of this curious effect, we will 

use the equation of shock adiabat concluded on the assumption that 

electron pressure and energy is low the Grueneisen coefficient is 

constant, and initial energy of the substance can be disregarded. 

Pig. 11,12. Anomalous 
behavior of shock 
adiabat at high por- 
osity of a substance. 
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This is equation (ll»?5)i in which under initial volume V0 we under- 

stand the initial volume of a porous sutstance V00 (in the deriva- 

tion of equation (il#35) nowhere is it mentioned that the substance 

in initial state is solid)I 

/»H(F.FW) = —p^ -. A-^ + l.    (ijL#4o) 

Equation (ii,40) describes a famil;/- of shock adiabats corres- 

ponding to different initial volumes VQQ# i*e#, different degrees 

of porosity, which can be characterized by the coefficient k « 

» 700Ao 
k !••    W^1611 k « i and V00 » V0 we have the shock adiabat of 

a solid substance. Point V » YQ and pH - 0 satisfies equation 

(li.40) at any initial volume Y00 (since PX(V0) - 0, ex(V0) - 0), 

so that the family of adiabats is a cluster of curves originating 

from this point» By formula (11,40) when Y00/7-► h, Pjr-♦■ oo, i.e., 

limiting volume is Y-w » ^oo^1*    If 'tllis magnitude is less than 

^0' Vlim " V00'^h ^ ^0' vili-cii  "takes place at small porosity k < h, 

the shock adiabats have a normal trend, whereby they are higher, 

the greater the initial volume. If, however, Y-,, > YQ (which occurs 

at high porosity, when k > h), the trend of the curves is anomalous: 

upon growth of pressure the final volume increases. The family of 

shock adiabats, corresponding to different coefficients of porosity, 

is shown in Fig. ii.ij. 

Let us emphasize once again that equation (11.40) describes 

only the initial trend of shock adiabats, in the region of small 

pressures. In reality, at large pressures the role of the electron 

members is essential, and the Gruenelsen coefficient is not constant. 

But this does not disturb the validity of the qualitative conclusion 

concerning the possibility of anomalous behavior of the shock adiabat 

of an extremely porous substance. 
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Fig, 11,15. Shock adia- 
bats at different de- 
grees of porosity: 
*4>*3>A: Ä>*2>*1>1. 

§ 11, Emergence of a not Very 
Strong Shock Wave on the 
Free Surface of a Body 

In the experimental determination of 

shock adiabat of a solid, which will be con- 

sidered in the following paragraph, we have 

widely used the so-called rule of doubling 

of speeds in an unloading wave. 

When a shock wave, spreading through a solid, emerges on the 

free surface, the compressed substance is expanded, or, so to speak, 

is unloaded practically to zero pressure. The unloading wave 

(rarefaction wave) runs back through the substance with the speed of 

sound, corresponding to the state behind the front of a shock wave, 

and the unloaded substance itself obtains additional speed in the 
* 

direction of the initial motion of the shock wave. 

In this paragraph we will consider only not very strong shock 

waves, which impart to the solid matter an energy insufficient for 

its melting, and all the more so for evaporation,  so that the final 

It the body does not border with a vacuum, but with air, the 
moving boundary of the unloaded substance plays, with respect to 
the air, the role of a piston and "pushes" the air shock wave before 
it. Therefore, strictly speaking, the substance is unloaded not to 
zero pressure, but to the pressure in the air shock wave. However 
this pressure, which as compared to atmospheric can be larger, is 
so small as compared to the Initial pressure in the solid compreBsed 
by the shock wave, that it can always be disregarded, and one may 
consider that unloading in air does not differ from unloading in a 
vacuum. The amplitude of a shock wave in air is then determined by 
the speed of the "piston," i.e., the speed of the unloaded solid 
matter, 

*» 
The evaporation of a solid that is initially compressed by 

a powerful shock wave will be discussed in §§ 21 and 22, 
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state of the substance after unloading will be assumed to be solid. 

The final volume of the unloaded substance V1 in this case hardly dif- 

fers from the normal volume of a solid V«. 

At the same time we will consider a shock wave that is not too 

weak, in such a manner so that it would be possible to disregard the 
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Fig. 11.14. Profiles of 
density, pressure, and 
speed at emergence of a 
weak shock wave on a 
free surface, a) before 
moment of emergence t < 
< 0; b) after moment of 
emergence t > 0. 

effects connected with the strength of 

the solid. The pressure in a body com- 

pressed by a shock wave is assumed to be 

Isotropie, as in a gas or liquid« This 

is valid when the pressure is great as 

compared to ultimate strength, critical 

shift stress, etc. Speed of sound is 

then determined by the compressibility of 

the substance and the modulus of total 

compression, exactly as in a gas and 

liquid. Otherwise unloading is described 

by formulas of the theory of elasticity, 

which will be discussed subsequently. 

Let us assume that through the solid 

there spreads a plane shock wave of con- 

stant amplitude (pressure p, mass sp^ed 

u, volume V, which is only somewhat less 

than normal volume VQ). In a defined 

moment of time the wave emerges on the free surface, which is con- 

sidered the surface of the front of the shock wave. A not too strong 

shock wave, in which compression is small, VQ - V « VQ, does not 

differ from an acoustic campressional wave and is described by for- 

mulas of acoustics. It spreads through the body with the speed of 
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sound CQ, The pressure in it is connected with the mass speed by 

the relationship p ■ PQCQU (p0 = VVQ)» Starting from moment t ■ 0 

the emergence of the shock wave on the free surface, through the 

body there spreads an unloading wave backwards, which is also acous- 

tic. It runs through the substance with the speed of sound (scarcely 

differing from the speed of sound in normal conditions c0). Pressure 

in the wave drops from initial p to zero, and substance obtains speed 

u1, connected with change of pressure Ap =■ -p by the acoustic for- 

mula u*- ■ --—P- ■ ■ —rr- (Fig. ii»!^; density decreases somewhat« 
Poco Poco 

final density p^ scarcely differs from normal density of a solidi 

V^ - YQ  « V0), Prom comparison of formulas p - Pocou and ul " 

■ p/Poco' ^ is clear that the additional speed obtained by the sub- 

stance during unloading u1, is equal to the mass speed in the shock 

wave u, i.e., upon emergence of a not too strong shock wave on the 

free surface the speed of the substance doubles« u* ■ u + u1 » 2u, 

The rule of doubling of speeds can be also obtained from general 

equations for a shock wave and a wave of rarefaction, if we turn In 

them to the limiting case of small amplitudes of waves. 

From gas dynamics we know (see § iO, Chapter I) that the addi- 

tional speed obtained by a substance during unloading, frcm initial 

pressure p to final p^ ■ 0, is equal toi 

where the derivatives by virtue of the adiabaticness of the process 

of unloading are taken at constant entropy equal to entropy in the 

front of a shock wave. Initial mass speed of the substance in a 

shock wave by virtue of tie laws of preservation (11,31) and (11,32) 

is equal toi 1  

.   8S1 
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In a shock wave of small amplitude, where the change of entropy 

is small, the compression is also small; in the first approximation 

the increase of volume can be presented In the form 

'-'-(£>• 
implying by S the entropy of the initial state of the substance un- 

til compression by the shock wave» Then mass speed in the shock wave 

is equal to 
t 

«-(-£).'-£ 
In that same approximation it is possible to disregard the 

change of adiabatic compressibility in the range of pressures from 

0 to p and in the formula for u1 to consider the derivative as con- 

stant» We obtain 

-•-M)-"-c-£)i'-£- 
Walsh and Christian [22], from very general considerations, 

established the upper and lower limits for possible variations of 

the magnitude of additional speed u* and found that at pressures 

p ^ 4 • ICr atm for a large number of metals the rule of doubling 

of speeds is valid with an accuracy of 2^» As an experimental check 

showed, conducted by the authors of [5]# the rule of doubling of 

speeds for iron is executed approximately up to very high pressures 

'«i.S • 10 atm. In general^ deviation from the rule of doubling of 

speeds is greater, the higher the amplitude of the shock wave. 

We shall now take into account that a shock wave, even a weak 

one, is not acoustic, and the entropy in it is increased. Moreover, 

in first approximation, as before, we shall consider that the 
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additional speed after unloading u1 Is equal 

to u, and density and temperature In final 

state will "be considered In the following 

approximation« 

During adlatatlc unloading of a body to 

Initial, zero pressure. It turns out to be 

heated and expanded as compared to the Initial 

state, until compression by the shock wave. 

It Is easy to find the energy of Irreversible 

heating and final temperature of an unloaded substance T^, If we 

know the thermodynamlc functions and Initial state in the shock wave« 

For this we must use the equation of unloading adlabat de + pdV - 0, 

according to which the final energy e^ is equal toi 

v. v. 

Pig. 11.15. P and V- 
diagram for shock 
compression and un- 
loading of a solid. 

«!-« -s (pwh (11.41) 

Inasmuch as the energy in a shock wave is e = «« + jp (Vo — V)i the 

Irreversible Increase of energy after unloading is equal tot 

•l-•o--JP(v•-K)-(o'dF,8• (11.42) 

The magnitude of this energy is depicted by the difference of 

areas of curvilinear triangle DBCS and triangle ABC In Fig. 11.13« 

in which curve H constitutes the shock adlabat, and curve S is the 

adiabat of unloading. Numerically this energy is equal to the 

difference of areas of the upper and lower shaded figures. 

We shall assume that the amplitude of the shock wave is small, 

so that all three volumes V, V0, and V^ hardly differ from each 

other and the coefficient of (irueneisen may be considered constant 

8S3 
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and equal to Its normal value GL, In this case the adiabatic bond 

of temperature and volume Is given by formula (11,20), so that final 

temperature TJ is connected with the temperature in the shock wave 

T by the relationship 

MrT' (11.45) 

On the other hand, considering the process of thermal expansion 

of a body at constant, zero pressure from initial volume V0 to volume 

V^j we can write 

F»-F,-V,a(7'l-r,), (11.44) 

where a is the coefficient of volume thermal expansion. Irreversible 

increase of energy (11.42) is expressed through the increase of tem- 

perature by the formula 

where c is heat capacity of a body at constant pressure. 

If we know the volume and temperature in a shock wave V and T, 

from the system of two equations (11.43) and (11.44) it is possible 

to calculate volume and temperature in final state. 

As an example we shall give the results for aluminum, obtained 

in [231« During shock compression of aluminum to pressure p - 

- 2.5 • 10^ atm the volume decreased to the magnitude V - 0,82 V0, 

and temperature increased to T - T0 - 33i
0K (initial temperature 

Tn was equal to 300
oK). After unloading the residual heating 

« 
In solids in a small range of changes of temperature it 

practically does not differ from heat capacity at constant volume 

V 
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composed Ti - T0 « i^K. 

When p = 5.5 • 105 atm, V = O.78 YQt  T - T0 - 522
0K and T± -  TQ« 

- 2160K. 

Naturally, the stronger the wave, the greater the entropy It 

Imparts to the substance and the higher the residual heating. 

If through a flat plate there spreads a shock wave, behind the 

front of which the pressure and speed are not constant, and there 

is a drop, for instance, of compression pulse of triangular from 

(Pig. il.i6), after the emergence of such a wave on the free surface 

of the body there can occur break-away. The phenomenon of break- 

yi away consists in the following. After reflection of 

^_. 1   t  a compressional wave from the free surface the pro- 

Pig. il.i6.    fiie 0f pressure in the body will form as a result 
Compression 
pulse of tri-  of the combination of two wavest incident — corn- 
angular form. 

pressional waves, and reflected — unloading waves. 

In the acoustic approximation (see § 5 of Chapter I) 

where function f^ describes the incident wave which spreads with 

the speed of sound to the right, and f- is the reflected wave which 

spreads to the left. In this case the function f^ corresponds to 

the triangular profile of pressure shown in Pig. 11.16. Function 

f can be established by proceeding from the boundary condition, 

i.e., the equality to zero of pressure on the free surface. 

Functions f^ and f2, and also the distributions of pressure 

# 
Residual temperature In [23] was calculated more exactly than 

given by fonmila (11#45), taking into account the small change of 
the Grueneisen coefficient during change of volume! for this we inte- 
grated the "exact" equation of adlabat with variable Q(V). 
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Fig. 11,17. Reflection of 
an acoustic compresslonal 
wave of triangular profile 
from a free surface, a) 
t - t^ pertains to the 

moment of emergence of the 
leading front of the wave 
on the free surface; b) 
t - t2, and c) t >» t, per- 

tains to subsequent moments. 

material and It Is separated 

ccattposed from them, in the body at 

the time of emergence of the shock 

wave on the free surface and in two 

subsequent moments of time, are 

depicted In Fig. 11.17• If the 

coordinate of free surface is xi 

(Fig. 11.17)# the region x > x1 is 

empty and determination of functions 

f^ and fg in region x > xi is purely 

formal. Physically, the real values 

are only the values of f^ and fg., 

and pressures when x < x^, i.e., in 

the body. In order to emphasize 

this circumstance, functions f^ and 

f2 when x > xi In Fig. 11.17 are 

shown by the dotted line. 

From Fig» 11.17 it is clear that 

after reflection of a c«mpresslonal 

wave from the free surface in the 

body there appear negative pressures, 

i.e., the body experiences a tensile 

force. If tensile stress exceeds 

ultimate tensile strength of the sub- 

stance, in the corresponding place of 

the body there occurs a break, the 

"break-away" i from the surface of 

the body there separates a plate of 

from the remaining body, departing frwa 
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the surface with a defined speed. Thus, for instance, steel during 
o 

pulse loads is destroyed by forces of order of 50,000 kg/cm • 

§ 12, Experimental Methods of Detecting 
the Shock Adiabat of Solids 

The laws of conservation of mass and momentum (ii.jji) and (ii#52) 

connect between themselves the four parameters of the front of a 

shock wave:  speed of propagation of a shock wave through an undis- 

turbed substance D, jump of mass speed u, equal to the speed of a 

compressed substance with respect to an undisturbed one, pressure p, 

and specific volume Y (or density p « l/V")« If we measure during the 

experiment the speeds D and u, by formulas (ii.^i) and (ii,;52) we can 

find pressure and volume, and then, using the equation of energy 

(11,34), we can calculate specific internal energy e. 

Thus, the problem of detecting all mechanical parameters of the 

front of a shock wave reduces to experimental determination of any 

two of them, in particular those most accessible for measurement of 

kinematic parameters: speeds D and u. 

Speed of front D can be measured by experiment comparatively 

■simply, recording the moments of passage of the front: of the shock 

wave through known coordinate points, spaced from each other at an 

alssigned distance. Measurement of the Jump of mass speed u by such 

a direct form from the experimental point of view is much more 

difficult; therefore, for finding the second parameter we revert to 

various indirect methods, using for this purpose certain mechanical 

considerations. 

The experimental methods described below on the investigation 

of compressibility of solids with the help of powerful shock waves 
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Metal 

and measurement of front parameters were proposed and developed by L, 

Y* Altshuler, K, K. Krupnlkov, B» N* Ledenev, and A« A« Bakanova 

[1-5], and also by the American authors Walsh and Christian et al* 

[22-26] (the latter did not include the method 

of "braking"; see below). However, Soviet 

scientists investigated a much wider range of 

pressures, to 4 million atmospheres» 

The concept of the use of the measurement 

of kinematic parameters for the purpose of 

studying shock adiabat, independent of previous 

researchers, was developed by F« A» Bauma, K» P, 

Stanyukovich, and B, !♦ Shekhter [2i], who con- 

ducted measurements with comparatively weak 

shock waves« 

In [i-5] there are described three methods 

of measurement of parameters of a shock wave, the essence of which 

we shall now expound, 

i. Method of "break-away»" It is based on the measurement of 

speed of the free surface of a body that is unloading after emergence 

at the surface of a shock wave, and on the 

application of the rule of doubling of speeds, 

according to which the mass speed u is approxi- 

mately equal to half the speed of the free sur- 

face u^« This method has a limited application, 

since at very large pressures there begin 

noticeable deviations from the rule of doubling, 

which leads to experimental errors in the determination of u« A 

fundamental diagram of the experiment consists in the following» 

Pig» 11.18. Dia- 
gram of an exper- 
iment with the 
method of "break- 
away. " 

Lxpl Metal 

Pig. 11.19. x, t- 
diagram for "break- 
away" experiment» 

SS8 
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The explosive charge touches the flat plate of Investigated 

material, as shown In Fig, 11,18 (a corresponding diagram of motion 

on planes x and t Is depicted In Pig, 11.19), When the detonatlonal 

wave emerges from the W on the "boundary with the metal, there occurs 

disintegration of discontinuity; through the metal with speed D passes 

a shock wave (line AB), the speed of the contact 'boundary between W 

and the metal (line AE) is equal to the mass speed of the metal u 

(through W spreads reflected wave AC), After emergence of shock 

wave on free surface (point B) there again occurs disintegration of 

discontinuity, unloading wave BF runs back through the sample, and 

the boundary of the metal picks up doubled speed u^ « 2u (line BH), 

For measurement of speed of front D in [1-5] at defined distances 

Inside a sample, as shown in Fig, 11,18, there were placed electro- 

mechanical transducers, which closed at moments of passage of the 

front of the wave and sent a pulse that was recorded with the help 

of a special electrical circuit and oscillograph. 

Dividing distance d by time. It was possible to find the average 

speed of the front on the "base" of measurement of d (d bases were 

on the order of 5-8 nun, speed D ~ 5-10 km/sec, time ~10 sec. This 

demanded the development of special methods of registration of such 

short times). Likewise, with the help of elec- 

tromechanical transducers there were also mea- 
BB 0 

Fie 11 20 Dia-   sured moments of passage through assigned coor- 

ment wittTthe      dinate points of the boundary of an unloaded 

method of braking.  subatance* (see Fig. 1^18). The electrocontact 

* 
For protection from closing of transducers by the air shock 

wave which "chases" the boundary of the metal, the transducers were 
equipped with protective caps. 
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method of measurement of speeds was proposed 

by 7« A. Tsukerman and K» K. Krupnlkov» Shock 

adlabat of iron was measured In this way to 

— pressures of p ^ i,5 • 10 atm (D ** J*5 Ion/sec, 

Pig. il*2l» x, t- 'u*^ 2,4 km/sec), 
diagram for the 
experiment with       The method of "break-away" is not suitable 
braking* 

for the inrestigation of porous materials> since 

in this case the additional speed u1 during unloading is considerably 

less than speed u and the rule of doubling does not apply* 

2* Method of "braking*" For the study of more powerful shock 

waves, for which the rule of doubling of speeds introduces a notice- 

able error, the authors of [1] used another method which they called 

the method of "braking*" 

This method in principle is absolutely exact and useful for the 

study of any materials, including porous* 

In this method with the help of a charge the W accelerates to 

speed w of a plate made from the investigated material. The plate 

(striker) strikes another, stationary plate (target) made from, the 

very same material, A diagram of the experiment is shown in Pig, 

li.20, and diagram x, t in Pig, il.2l* At the moment of impact there 

appear two shock waves that spread through both bodies (AB and AC on 

diagram x, t). Pressures p and mass speeds u on both sides of the 

contact boundary between bodies are identical and are equal to the 

same magnitudes on the front of both shock waves as long as the 

latter do not reach the other boundaries of the samples.  The same 

See § 24 in Chapter I, 
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speed u is also possessed by the contact boundary Itself (line AE), 

Profiles of pressures and speeds after impact are depicted in Fig* 

ii,22. 

By virtue of the identity of materials both shock waves are 

aleo identical, i.e., the jumps of mass speeds in both waves are 

equal» For the target, the speed Jump also coincides with the speed 

of the compressed substance u, inasmuch as the target was initially 

at rest. Regarding the striker^ however, in front of the shock wave 

the substance moves with the speed of flight of the striker w, and 

behind the wave, with speed u, so that the Jump of speed in absolute 

value is equal to w - u# Consequently, w - u = u and u = w/2. Thus, 

the problem reduces to the measurement of front speed D in the tar- 

get and the speed of flight of the striker w. This problem is ex- 

perimentally solved the same as in the method of "break-away," with 

the help of a system of electromechanical transducers. 

By the method of braking in [1] the shock adiabat of i:ron was 
c 

taken up to pressures p ~ 5 • 10 atm (D ~ 12 km/sec, u ~ 5 km/sec, 

VQ/V ~ i#75)« Also investigated was porous iron with a density 1.4 

times less than normal. 

The braking method can also be extended to the case when the in- 

vestigated target and striker are made from different materials; how- 
P 

ever, the material of the striker in this instance 

must have a known shock adiabat. In a number of 

cases this turns out to be more expedient than 
w 
    u to make the striker form the investigated material, 

"i  since by means of corresponding selection of the 
Pig, ii,22. Pro- 
files of pressure  striker material it is possible from the same VY 
and speed after 
impact in the     charge to obtain a more powerful shock wave in 
method of braking. the investigated substance. 
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If the materials of the striker and target are different, then 

in spite of the equality of pressures in both shock waves, the Jumps 

of speeds are no longer identical, so that w - u / u« 

However, if the shock adiabat of the striker is known, the 

dependence of pressure on Jump of mass speed is known, i.e., function 

p - f(w - u). On the other hand, pressure p Is connected with Jump 

of mass speed in the target, equal to the speed of contact boundary 

u, by formula (11,52)J p - DU/VQ. 

Measuring, as we did earlier, the speed of the shock wave in 

the target and the speed of the striker w, we can find speed u from 

the equation 

/(w-u). Da 
• (11.45) 

For this purpose it is very convenient to use the graphic method 

based on the utilization of the pressure — speed diagram (see § 24, 

Chapter I), These diagrams are widely applied in examining different 

processes with shock waves, in which there 

participate two contacting media, since on 

the contact boundary between media the pres- 

sures and speeds are identical. 

We shall consider the collision of a 

striker and target with the help of diagram 

p, u, where u is the mass speed of the sub- 

stance in the laboratory system of coordi- 

nates, in this case in the system in which 

the target is stationary in the beginning. 

In Fig. 11.25 the initial states of the target (p ■ 0, u ■ 0) and the 

flying striker p ■ 0, u - w are depicted by points 0 and A. If the 

Fig. 11.25. P, u- 
diagram for the ex- 
periment with braking. 
HBA — shock adiabat 
of striker.  OEM - 
locus of target states 
after Impact. 
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measured speed of the shock wave on the target is D, the locus of 

states of the target material in the shock wave is line p - v?- u 
v0 

with known slope D/VQ, Let us depict the shock adiabat of the 

1 
^       A 

P 

8 

"'          l_ r A \' 

Fig. li,24a. Profiles 
of pressure and speed 
and x, t-diagram for 
the experiment with 
reflection. The case 
when the reflected wave 
is a shock wave, OC — 
shock wave in A, CM — 
shock wave in B, CN — 
reflected shock wave in 
A, KCK - line of con- 
tact A and B, 

A B 1 

"JC 

8 
u 

«'     A 

f'ig. 11.24,b, Profiles 
of pressure and speed 
and x, t-diagram for 
the experiment with 
reflection. The case 
when the reflected wave 
is a wave of rarefac- 
tion, OC — shock wave 
in A, CM — shock wave in 
B, CN — head of rarefac- 
tion wave, CT — tail of 
rarefaction wave, KCK — 
line of contact A and B, 

substance of the striker, considering the dependence of pressure 

not on volume, but on the jump of speed, equal in this case to w - ui 

p - f(w - u). The point of intersection B of both lines, according 

to equation (11.45) also determines the state (pressure and mass 

speed) in both shock waves. If the striker and target are made from 

one material, then as we already know, the point of intersection 

lies exactly in the middle between the abscissas of points 0 and A 

(u - w/2). 
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5. Method of "reflection»" This method uses the regularltlei , 

followed by the process of disintegration of MI arbitrary dlscontlnu4 

ity appearing during the reflection of a shock wave from the boundary 

of two media (see § 24 in Chapter I)* It possesses the advantage« 

as compared to the preceding method, that it does not require the 

measurement of mass speeds« which in the experimental aspect Is much 

more complicated than the measurement of speed of the front of a 

shock wave. However, for this method it is necessary to have a 

standard substance with a known equation of state* The method was 

developed by the authors of [2] Jointly with (K M* Gandel'man, 

Let us consider the transition of a strong shock wave from 

medium A to medium B, Through substance B there always passes shock 

wave and the reflected wave in A can be either a shock wave, if sub- 

stance B is "harder" than A, or a .wave of rarefaction, if B is 

"softer" than A (this is the simplest of all to represent, if we con«» 

sider these limiting casest A — gas, B — solid, and A — solid, B — 

gas). 

Profiles of speeds and pressures in both cases are depicted xu 

Fig. li.24a end b.  In the isat place there are given corresponding 

diagrams x, t* The notations made in Fig« 11,24 need no explanation« 

Let us consider this process with the help of the diagram pres- 

sure — speed (in the initial state both substances, A and B, are 

stationary in the laboratory system of coordinates). 

Let us assume that the equation of state of substance A is known. 

Let us depict on the p, u-dlagram (Fig. 11,25) the shock adlabat of 

substance A, PA(U), for the first shock wave spreading through the 

undisturbed material. If we measure in the experiment the speed of 

the front of the initial shock wave D^, the state in it will ba 
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depicted by the intersecting point of line p «= DJUAQA with shock 

adiabat PA(u) (point a (Pa
u
a))» 

After the reflection of this shock wave from the boundary be- 

tween media A and  B in substance A there appears a new state. If 

the reflected wave is a shock wave, the state lies on the shock 

adiabat of secondary compression, for 

which state a(p , V . n) is initial; 

this shock adiabat is depicted by curve 

PH which passes upwards from point a, 

1$ however, the reflected wave is an 

adiabatic wave of rarefaction, the new 

state lies on the isentrope of rarefac- 

tion, proceeding downwards from point a 

Fig, 11,25,  P, u-diagram 
for the experiment with 
reflection. 

(curve Ps)» Inasmuch as the equation of 

state of substance A is assumed to be 

known, both the shock adiabat of secondary compression Ptj(V, V&,  pa), 

and also the isentrope of rarefaction with entropy equal to S_ = 

- s(Pa
J ^n)* can k6 converted in such a manner so that instead of 

the volume, speed enters as the argument. In the first case this is 

done by means of the use of the relationships on the front of the 

shock wave, and in the second with the help of Lhe relationships that 

are valid for the rarefaction wave (see § 10 in Chapter I), 

If we also measure in the experiment the speed of the shock wave 

in medium B - D, the locus of states in this wave is line p - DU/VQB« 

Point of intersection b of this line with curve PHap is the locus 

of possible states in substance A after reflection of the shock wavc; 

and it determines the pressure and speed in the shock wave at B, 

equal to the pressure pnd speed of the contact boundary of A and B 

(see Pig. 11.24), 

G95 
tiijiiisaiSStlkt -• •riiifiiiriiiiiiiiHiiiii MiM^ta^fc. -      ■ ■J~: — ■'  a msm m 



Diagram p, u In Fig« 11.25 dtplcte a second ease whoa during 

reflection there appears a wave of rarefaction. In the first cast 

the line p - DUAQB P*BBes ^-«^ ^"^  lint P * D1UAOA IIÄd the 

point of Intersection b lies higher than point a on the shock adlabat 

of secondary compression of substance A, which Is described toy the 

curve apH* 

Thus, the method of "reflection" consists of the folloirlng. 

In the plate from material A with a known equation of state there Is 

created a shock wave either directly from the W charge, or by means 

of Impact of the other plate, preliminarily accelerated by the YY 

to a high speed* This wave emerges in staples of Investigated 

materials B, which also Includes the sample from material A (diagram 

of the experiment Is shown In Pig« 11.26)« By recording the moments 

of closing of the electremechanlcal transducers located in the places 

shown In Fig. 11.26 by the arrows, we determine the spttds of tht 

front Dj^ and D. Constructing the shock tAabat pA(u) on the p, u- 

diagram and drawing line p - DJU/VQ^, we find point a. I.e., the 

state In the shock wave In A» We then draw the shock ftdlabat of 

  secondary ceaprtsslon through point a upwards, 
* 1 

—njTOTTTZ]— "^d downwards we draw the usual adlabat and 

I I I 1 I    plot line p ■• DUAQB' ^•'•ty* determining the 
Fig. 11.26. Diagram ' unknown state b(p, u) In the shock wave In the 
of the experiment 
with reflection*    Investigated staple. 

Hence, incidentally, one may set what magnitude Is character- 
ized by the "hardness" of the substance. Let us assume that tbe 
shock waves are not very strong and their spttds art close to speeds 
of soundi /> * ea,j>( * «4- Substance B Is harder than A, and the reflected 
wave is a shock wave If «8/Ft>^/K4 or p*B> prtc 3 1 

Magnitude pc is sometimes called aetustie Impedance. It deter-' 
mines the connection of pressure and sfttd in an acoottie or weak 1 
shock wavet p ■ pcu, ______o.__J 
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Actually (in the experiment) the changes of pressure between 

states a and "b always were small. In these conditions, as shown "by 

calculations curve PtrC-Po with great accuracy can be represented as 

a mirror transformation of shock adiabat of primary compression at 

point a. Let us note that the slope of curve Ptiö-Pg &^  point a is 

determined by the speed of sound behind the front of the primary 

shock wave in A« Actually, in a wave of rarefaction. Just as in a 

weak compressional wave, dp » ± pc du (see formula (1,59)), i.e., 

i dp ■ c the slope of curve Ptjaps at point a is  |-?rr|  ■ pc ■ w, where c and 

V is the speed of sound and volume in substance A, compressed by 

the first shock wave. Methods of experimental determination of the 

speed of sound behind the front of a shock wave will be considered 

below. 

By the method of reflection in the work of L, V, Al-Hshuler, 

K, K, Krupnikov, and M, I, Brazhnik [2] shock adiabats of a large 

number of metals (Cu, Zn, Pb, and others) were taken. The method 

was used for the study of compressibility of sodium chloride in [5]^, 

and also was applied in many works of foreign scientists. Most 

frequently the materials of shield A were iron, aluminum, or brass. 

§ 13. Extraction of a Curve of Cold Compression 
from the Results of Experiments 

on Shock Compression 

One of the most valuable results of experiments on shock com- 

pression of solids is the determination of curves of cold compression 

of the substance p (V^ which characterize the repulsive forces 

between atoms of the body. Functions p (V) and e (V) are found by 
•A. A 

means of theoretical treatment of experimental data on the shock 

adlabat of the substance. For finding the curve of cold compresiülon 

. 897 
^r- i  iiininiirmiiiitY^^^ 



In a wide range of ccnpreeslons and prtiiurts in [3]  thert wart used | 

trinomial presentations of thermodynaale function! p(y> T) and     , 

e(y, T) (il#50)» Electron menlaer pÄ and t. were notattd on the    ' 

basis of purely theoretical considerations (see §§ 3 and 6),  uhere 

for the coefficients of electron heat capacity ß0 known experimental 

values were taken« 

Taking experimental dependences p(v) and 8(7} along the shock 

adlabat* relationship (ii^O) may he considered as two equations 

with respect to three unknowi functions P_.(V)* 3(V% and T(Y), where 

T(V) is the dependence of temperature on volume along the shock adiat 

bat» 

As the third, missing equation it is possible to use the con- 

nection between the Qruenelsen coefficient Q(Y) and the curve of 

cold compressibility pv(V), which Is given by the Slatter-Landau 
# 

formula (11,18)*  The numerical solution of this system of equations 

gives the curve of cold compression p_(V)i function 0(7), and tern- 

perature in the shock wave T, The data in Table 11,2 and on the 

graphs In Fig, 11.8 (§ 7) were also obtained in this way. 

Specific results for other metals under investigation can be 

found in the tables of [3], 

If we know from experiment the shock adiabats for porous and 

solid substances, it is possible to do without the use of the con- 

nection between functions 0(7) and Px(7)« Namely, considering not 

too high temperatures and disregarding electron meabers p and e , 

In a number of cases a somewhat different connection was used . 
between functions 0(7) and pJ7), which la fclvin by the Dugdale- 1 

McDonald formula [27]. •-  x J 

? 

% 
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it is possible to writet 

i. - AgT. _ 1 «qoP.CT (K)- eenaon, {V) 
P VtPT     I'A»p■cT(^')-/»e^«olIl(»^), 

where the magnitudes in the right part are the experimental values 

on shock adiahats of a solid and porous substance during their com- 

pression to the same volume. The elastic components of pressure and 

energy in "both cases are identical^ so that the differences of e and 

p are equal to the excesses of purely thermal energy and pressure in 

the compressed porous substance as compared to the compressed solid 

substance. 

In this way in [i] there was obtained the curve of cold com- 

pressibility of iron (it is depicted in Pig, 11,2 in § 2), 

In [5] there was found the curve of cold compression of sodium 

chloride. Comparison with expressions for repulsive forces in ionic 

crystals permitted the determination of the parameters entering 

these formulas, characterizing the force of interaction. 

The method of calculation of temperature of shock adiabat in 

waves of comparatively low amplitude, when thermal members are small 

as compared to elastic, and shock adiabat closely coincides with the 

curve of cold compression, is described in [22] (electron members 

naturally are not considered here). 

For an analytic description of shock adiabat and curve of cold 

compression of a suvstance p (V) they frequently use interpolation 

formulas of a different type. For this, functions of a defined form 

are given, containing several parameters, which are determined with 

the help of some experimental data. An example could be the widely 

used formula p » A[(V0/V) - i], containing two parameters, A and 

n. In [5] during the investigation of sodium chloride, curve pv(V) 
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was obtained in analytic form by mtant of the us« of a power or 

exponential presentation for repulsive forces In Ionic crystals. 

The constants entering the expression were determined by means of 

comparison with data on dynamic compressibility* 

S. V. Kormer and V* D* Urlin [14] constructed an Interpolation 

formula for the curve of cold compression In the form 

i 

*-s*(£)  • 
Coefficients a were determined without the use of experimental 

data on shock compression only from the conditions of the connection 

of the coefficients with known parameters of normal state (compress- 

Iblllty, Gruenelsen coefficient, and others) and the condition that ! 

at large pressure^ the curve is closed with the dependence following i 
I 

from the model of Thomas, Fermi, and Dirac, A good coincidence was 

obtained with curves p (V), extracted from the experiment, 

5. Acoustic Waves and Splitting of Wavea 

§ 14. static Deformation of a Solid 

Above, during the study of shook compression of solids. It al-' 
i 

ways was assumed that pressure In a ooüpressed substance Is isotroploj 

and has a hydrostatic character, as In a liquid or gas. Increase of 

density was considered as the result of manifold compression of the 

substance. Correspondingly, the elastic properties of the substance 

In the future S, B, Komer, Y. D, Urlln, and L. T. Popov [15_] 
Improved this method, adding to the series one more member wltlf the 
use of one experimental point on shock adiabat» Very good ooind-—{ 
dence with experimental curves was obtained« 2 i 

i 1 
 o J 
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were characterized only one magnitude, compressibility K = -i G^js' 

which determined the speed of "sound"» 

Thus It Is possible to proceed only when pressures are sufficiently 

great, and the effects, connected with the strength of solids and the 

existence of shear strains and stresses, do not play a part. If loads 

are small, it is necessary to take into account the elasticity pro- 

perties of the solid, distlngusihing it from a liquid. This essentially 

affects the character of dynamic processes and in particular the pro- 

pagation of elastic compresslonal and rarefaction waves. Thus, it 

turns out that In a solid, acoustic waves can spread with different 

speeds, depending upon the specific conditions. Before we consider 

these dynamic phenomena, let us see how a solid behaves during static 

loads. Let us consider that deformations and loads are small, so 

that the linear theory of elasticity is valid. 

The state of the deformed body Is described by two tensorst 

tensor of deformations and tensor of stresaes. Subsequently we shall 

mention only a few simple cases of uniform deformations (when each ele- 

ment of the body Is deformed in an Identical manner), which are char- 

acterized by simple and graphic magnitudes. Therefore we shall not 

introduce the tensor of deformation in the common form.* 

The component of the tensor of stresses a.. , where indices 1 and 

k designate coordinate directions x, y, z,  constitutes a projection on 

the i-th axis of the force which acts on a single spot in the body with 

the direction of the normal along axis k.  Components a
xxt   ayy> a

zz 

constitute normal stresses, and o , a , a  are tangential or shear 

*See, for example, the book by L, D. Landau and Ye. M. Lifshits 
[28]. 
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(Flg. 11.27).   Tensor alk la symmetric. I.e., oxz - a^,  ayz - ozy, 

0     *  0    . xy   yx 

Let us consider several examples | 

of deformations. 
1« Let ui Imagine a oyllndrlcal 

rod of length L and diameter d, to the 

ends of which there la applied a com- 

pressing foroe^ l*e«, pressure p. Axis 

z will be directed along the axis of 

the rod, as shown In Fig« 11,28. 

Lateral surface of rod Is assumed to 

be free. Under the action of a load the rod Is shortened to length 

AL and Is thickened (diameter Is Increased to Ad). 

In this case only the normal stress In axl^l 

■Pig. li«27» Diagram 
Illustrating the meaning 
of components of tensor 
of stresses. 

H 
p direction a 'Is different than zeroj It Is equal 

to external pressure a__ 

In transverse directions a. 

Fig. 11.28, Dia- 
gram of compres- 
sion of a rod. 

xx 

Normal stresses 

, 0_y are absent. 

xy' xz* yz 

since the lateral surface of the rod Is free 

and nothing prevents the rod from expanding in 

this direction. Tangents or shear stresses   , 

in the selected system of coordinates also are equal to 

zero, which is obvious. 

According toHooke's law during small deformations, relative 

shortening of a rod is proportional to the applied forces 

TT-i-^. (11.^6) 

where E Is Young's modulus (this is the definition of Young's modulus). 

Relative thickening of the rod is proportional to relative 

shorteningi A 
_Iil.i7jJ 
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where a is Polsson's ratio. 

Poisson's ratio is always positive and leas than 1/2. This 

follows from the fact that during compression of the rod the latter 

becomes thicker, where by its volume can then only be reduced, but 

not increased (at constant volume d L » const, Ad/d « -l/2 Al/L, 

o = 1/2). 

2. Let us assume that the lateral surface of a rod is pressed 

in such a manner that during axial compression the rod cannot be de- 

formed in transverse direction (rod is placed in a case with hard 

walls). There then appear normal stresses in transverse direction 

cr  = a , which exactly balance the external lateral force on the xx   yy 
walls of the case. 

Normal axial stress a , as before, is equal to external com- 

pressing pressure p. The theory of elasticity proves that relative 

shortening of a rod, during axial deformation from all sides. Is 

connected with external pressure by a relationship analogous to (1.46): 

A£  p      Ott 
~rm"Erm'-Er' (11.48) 

where 

«»_ *(«-«) (11.49) 
Ä~(l+0)(l-2ar 

Magnitude E' is always greater than Young's modulus Ej in order 

to shorten a rod, pressed on the side Just as a free one, it is neces- 

sary to apply to it a large compressing force. Normal stresses in 

transverse directions are equal to 

^-<^rV«-=^P. (11-50) 

Tangential stresses in the selected system of coordinates are 
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absent« All relationships In tht %ne conii4«x»ftd txaagples art also  j 

valid in case of extension of ths rod« 

?, During manifold oonprosslon (and expansion) the body ehanges 
i 

volume, preserving Its form, l»e., reaains slnllar to Itself« In order 
i 

to carry out manifold compression, to the surface of the body It Is 

necessary to apply constant pressure« The stress tensor during manl-: 

fold compression is diagonal (o xy xz vjz 0)i  all three normal 

components are Identical and are equal to pressure. This takes place 

with any selection of the system of coordinates« "Pressure11 in the 

body in this case Is "Isotropie11 and has a hydrostatic character, as 

in a liquid« 

During small deformatiL ons the relative change of volume« is 

proportionate to pressurei 

AV 
'—»P--X (11.5^) 

where H is compressibility, and the reciprocal K - l/n is the modulus' 

of manifold compression« ! 

4« Let us further consider the deformation of pure non-dllata-t 

tlonal strain in one direction, as shown In Pig, 11«29* During pure I 

I 
—tf, XM 

Fig« 11«29* De- 
formation of pure 
non-dilatatlonal 
strain in one di- 
rection. 

non-dilatatlonal strain the body only changes 
i 

its form, but does not change volume. In the  i 

example shown In Pig. li«29j only one tangential 

stress o^ Is different than zero« All reaalnlijg 

oomponents of the tensor of stresses are equal I 

to zero. According to Hooke' s law the ang:igs-or 

strain is proportional to shearing force T (per 

«The sum of diagonal components of a strain tensor Is equal to 
uxx + uyy +zz - A^»* Wlth multilateral compression ii  - u^£ "^^xc 

ir'Vf 
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unit of area), which is equal to stress at 

e*.tge-4=^. (ii.52) 

where Q is the shear modulus. 

As we know (see [28]), arbitrary strain can be presented In 

the form of the sum of shearing strains and multilateral compression 

(expansion)» Owing to such an internal bond of strains of unilateral 

compression of the rod and elementary strains of multilateral compress 

slon and shear, the four characteristics of the material E, a,  K, Q, 

are not Independent, and are connected together by two relationships. 

It is possible to show (see for example [28]) that 

and conversely. 

t._ 9KO        _  13g-2C fll 53) 

G-^y  '-aw' (11-54) 

Thus, Hooke's law for unilateral strain of a rod pressed from 

the sides (11,48) can be written thrugh moduli K and Q  In the form 

'%-£,   E-~K+*G. (".-55) 

For orientation In the numerical values of the parameters of 

the material we shall indicate that for iron (treated with 1^ carbon) 

E-2^.i0, I«/«2 , C*0,82.10« kc/o«z , 
A^MMO'te/«2 , c^0.28. 

During multilateral compression or extension of a body in any 

coordinate system the stress tensor is diagonal and all three of its 

components are Identical, Luring other strains the stress tensor is 

^uaM^jH^Mdiuii& 

♦Prom the formula it Is clear that a < l/2, since K > 0, 
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diagonal and tangential strtsaea ara abstnt only in certain aptolallyj 

selected coordinate systems* An exanplt of this is the aboTt-oonsldeiW 

compresslve strain or a rodt free and pressed on the side» Inaqualit^ 

of diagonal elenents of the stress tensor is connected with the fact 

that in reality the strain Is not Multilateral compression (extension) 

and contains a shear element. This appears in evident form, if we 

change to another system of coordinates or, the same, consider the 

forces acting on an area slanted to the axis of the rod. It immedia- 

tely becomes clear that slanted areas experienoe tangential stresses, 

which testifies to the existence of shearing strains. 

We shall calculate tangential stress acting on an area that 

Is inclined towards the direction of action of external pressure at 

an angle of ^3° (?ig* ii.^O). For simplicity we shall consider not a; 
i 
I 

cylindrical rod, but a flat layer, infinite in I 
i 

direction y and pressed on the side so that in 
i 

direction x there are no displacements* In the: 

system of coordinates x, y, z there are tension^ 

a  and a a__ , In order to find the tan- 

gential stress acting on plane AB we shall intro- 

duce a new system of coordinates x1 y* z1, in- i 

clined with respeet to the old system along axi4 

3 (axis y and y' coincide). By the rule of 

conversion of tensors or turn of systsa of coordinates we find 

Fig, il,30. Con- 
cerning the ques- 
tion of nondlago- 
nallty of a stress 
tensor. 

cr,V - »« eoi« ^ - oM cos« 45° - -j {en - cÄ). 

This Is the tangential stress in the direction of axis x1 on area AB, 
3 j 

the normal to which is directed along axis z», 2 1 

-- o J 
■:-(•> -tut 
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§ 15. Transition of a Solid to a Fluid State 

One of the characteristic properites of a solid, distinguishing 

it from a fluid, is the form stability of the solid and shear resist- 

ance. A fluid has no shear resistance and takes on any form with ease 

as long as its volume {density) is not changed. Tangential shearing 

stresses in a fluid are absent in static state.* 

A fluid is characterized by zero shear modulus a = 0. Formally, 

when G - 0 Polsson's ratio; according to formula (11.5?)* is equal to 

a = l/2. The stress tensor in any system of coordinates is diagonal 

where all three of its normal components are identical and are equal 

to "hydrostatic" pressure, which is "Isotropie." Elastic properties 

of a fluid are characterized only by its compressibility or modulus of 

multilateral compression. 

It is known that during sufficiently large loads, not leading 

to multilateral compression, a solid changes its elastic properties 

and becomes plastic, fluid, and in a certain respect similar to a fluid. 

Fluid state of a solid is characterized not by the complete 

absence of tangential stresses, as in a fluid, but by the absence of 

growth of tangential stresses with the growth of shearing strains. 

Starting from certain critical shear strains and tensions, a solid 

ceases to resist further increase of shear. 

Above, the shear modulus G was defined as a proportionality 

factor between tangential stress during pure strain and shearing strain 

(see formula (li.52)). By virtue of the linearity of the dependence 

of tension and strain the increases of strain and tension simultaneously 

are also proportional1 

~~ »They appear only at the time of change of form and depend not on 
the strains themselves, but on the speed of their change. 
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Flg. ll.Jl.    Tangen- 
tial stresa-ahear angle 
diagram. 

(during pure etrain at angle 6, as shown  i 

In Fig. 11.29). | 

In the fluid «täte of a solid, after I 

strain 8  and tension a  beoones greater 

than orltloal 0orlt# ^rlt* 
tvapiihw growth : 

of tension with Increase of strain Is ceased 

(or Is sharply retarded). This Is Illus- 

trated by the diagram of o  (ö) In Pig. 

11.51. If we fornally define shear modulus 

In this state as the proportionality factor 

between Increases of dcj  and d0, but not xz     ' 
between the magnitudes a  and 6  themselves. It should be put equal xz 
to zero. [   ■ 

Let us consider unilateral compression of a non-fluid and flul4 

body. Let us assume that a body of cylindrical form Is placed In a  ' 
i 

cylindrical vessel with rigid walls and Is compressed by a piston alor|g 

Its axis (Fig. 11.32)• Let us depict soheaatloally how the atomic 

arrangement of the body changes (71g« 11,33)). 

We shall eenal4er the lattice for slmpllcltly 

to be cubic. If the body Is non-fluid, the 

Interatomic distances In direction of the 

axis are reduced, and In transverse direc- 

tions they remain constant; the atoms then l 

i 

remain at "their places«" This Is shown In 

Fig. 11.33b. r'     - 

If, however, the body Is fluid, all 
3 1 

interatomic distances are reduced» there ooeurs reconstruction ^_the-| 

lattice, and such redistribution of atoms that the lattice even 1A & I 
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Fig. 11.32. Diagram 
of unilateral compres- 
sion of a rod. 
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compressed state remains cubic (Fig. 11.33c),   For clarity, the 

"atoms" In Fig. 11.35 are renumbered.* 

The first case (Fig. 11.33b)  contains the strain element. 

Actually, In an unstrained state (Fig. 11.33a) the projection of atom 

2 on slanted plane AB, passing through atoms 

1-6 of two adjacent horizontal rows, descends 

to point C, located In the middle of segment 

AB, During strain of a non-fluid body 

(pig. 11.33b) point C shifts nearer to 

point B. Slanted rows of atoms shift with 

respect to one another: upper row 2-7-12 

shifts with respect to lower row 1-6-11 to 

the right and downwards. 

During strain of a fluid body the lat- 

tice Is cubic as before, and the projection 

of atom 5 on slanted plane AB passes through 

atoms 1-13; point C, as also In the un- 

strained rtate, lies In the middle of seg- 

ment AB. Slanted rows of atoms 5-10 and 

1-13 do not shift with respect to one 

another, as also In the unstrained state. 

During strain the body obtains elastic energy due to the work 

of the external forces producing the strain. If the body Is non-fluid 

this energy Is connected both with change of volume and also with shear. 

At a given volume the elastic energy Is minimum, is compression is 

multilateral and there are no shearing strains. Therefore, during 

1^   A^    J    .6 J\ 

r ;0 \0    ? 4 •    u B \       \ \        \ 
•     .     »     » i 1 

cl 

Fig, 11.33. Diagram 
illustrating the strain 
of a non-fluid (b) and 
fluid (c) body; a-un- 
strained state. 

♦It does not follow, of course, to think that shift of the de- 
fined atoms occurs precisely as shown in Pig. 11,33. 
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unilateral cooppMAlon of a non-fluid body to a giro yolua« tho body j 

is in a nonequllibplum atato» Squillbrlua statt at given TOIUM woul^ 

correspond to «ultllattpal co^Maaioo^ !#••! a rteonstruettd oryatal' 

lattice, l 
I 

Por lattloe reeonstruotlon there Is needed an "actlTatlen energy" 

and the atoas must surmount the potential baxviera.*  During ^aall 

loads reeonstruotlon does not occur and the solid behavea, with res- < 

pact to strain« as a non-fluid body« i 

However, duMng sufficiently large loads a hard body loses its ' 

"hardness" and fluidity, and assimilates to a fluid, i*e*, it aequire« 
i 

the ability to bej<fconstructed in such a way that its energy at a 

given volume is minimum« 

In particular, during unilateral compression of a body, this 

happens when the tangential stress in a plane, inclined at am angle  { 

of 43° to the direction of the compressing force axtzi(see end of 

preceding paragraph), exceeds the limit, i«e«, critical shear strain , 

acrlf f 

Noting that 
wi? • y ICi«—cw " y 13« e« ■ y fz* P» 

we find the critical compressing load Pcr4*.# above which there occurs 

transition of the body into fluid statei 

Ae-CTr«" (11.56) 
In distinction from the thermodynamic constants of the substance 

(Young's modulus or compressibility), critical shear strain, as a 

magnitude characterizing strength, strongly depends on the treatment 

of the metal, impurities, etc. For iron approximately oCpit - 600 

crit Wem2, p,,^. - 1900 Wem2* 

♦Possibly, reconstruction is connected with macroscopic breaking 
of particles of the body. 

910 

-- yie^e^aiemmmmtimmmmmmmmmmmmimmmmmsm 



Let us consider unilateral compression of a body In direction 

z under the action of compressing force p. In transverse directions 

x, y there are no strains (rod Is pressed from the side). We shall 

formally write out the transition from non-fluid to fluid state, con- 

sidering, In the law of proportionality between Increases of tension 

and strain, the shear modulus to be equal to zero during loads exceeding 

critical. By formulas (11,48) and (11,55) when p = a     < Pcrlt 

.„-(if+Ac)^, -^.JT+'C. 

By formulas (11.50) and (11.5?) 

After the load attains Its critical magnitude, we put 0 « 0 In 

the formulas for the derivatives from stresses (but,not In formulas 

for the stresses themselves). When p > PCI,lt» we obtain« 

datt «to,,       dart. (11.57) 

Normal stresses a    ,  a    ,  a      now grow equally In accordance 

with the modulus of multilateral compression (during unilateral com- 

pression Al/L » Av/v), Tangential stress In the slanted plane remains 

constant and equal to ü , , « o .. (critical strain is equal to 

VWcrit = ~^")* A stI,ess-straln diagran.   depicted in Pig. 11,54, 

During loads less than critical and on the order of critical 

o  / o  "pressure" has an essentially nonhydrostatlc character. In 
ZZ JLA 

the limit when loads are sufficiently great, p » Pcrit# the relative 
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A,  

Hg»  11,3^. Stress- 
strain diagram for 
unilateral compres- 
sion of a body. 

difference (a2Z - o^/a^ - 2acrlt/azz-♦ 

-t 0, I.e., all three normal streeeee becomi 

almost identical« Tangential strees o,^, I« 
i 

« o it becomes small as compared to normal 

It remains constant or slowly increases,  | 

much aloMer than before. 

§ 16. Speed of Propagation of Acoustic 
Waves 

We shall transfer the results of the 

preceding paragraphs to the case of dynamic loads and shall find the | 

speed of propagation of acoustic waves of volume compression (and 
i 

rarefaction) in different conditions, | 

Let us assume that to the end of a thin rod with a free lateraj 

surface at the initial moment there Is applied a constant compressing| 

force. I.e., pressure p.* I 
i 

Through the body there will run a compreesional wave« We shall 

designate the speed of its propagation as c^. The substance between , 

the front of wave and the end is strained, as in exampla 1 of § 

14, and obtains constant speed u in the direction of action of the  I 

force along the axis« As can be seen from Pig. 11,35# unit shortening 

of the rod in the compressed region | 
i 

is equal to I<i<-(ei-«)<I/ci<-i*/<i.      i 
• * 

If we consider small loads and  i 
I 

strains, according to Hoolce's l^w  

(U.46) .-- -J 

H 

e,t 

ut -(c.-uit- 

Fig. 11,55. Diagram illus- 
trating the propagation of 
an acoustic compressional 
wave. 

cone 
•Such formulation of the problem is analogous to the ppobljm_ 

erning a piston, considered in gaa dynamics (see Chapter I). 

-r.-i STOP HtK. 
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^•). (11.56) 

During the time t the mass of the substance, enveloped by the 

wave pc^t (per unit of cross section of the rod), obtains momentum 

pcj^tu, which according to Newton's law Is equal to pt, so that 

i>«C"ci (11.59) 

This formula Is fully analogous to a corresponding formula In 

gas dynamics. Prom relationships (11.58) and (11.59) follows the ex- 

pression for speed of propagation of corapresslonal waves through a 

rod (speed of "sound")i 

c«»l/| (11.60) 

With the same speed a wave of extension or wave of unloading 

Is also propagated. If the compressing load Is removed from the com- 

pressed rod. 

Let us now Imagine that the rod Is pressed from Its lateral 

face, as In example 2 of § 14, i.e., in the compresslonal wave 

the substance is not strained in the plane perpendicular to the direc- 

tion of propagation of the wave.** 

#In a dynamic process, which is adiabatic. Young's modulus differs 
somewhat from the one used in statics and corresponding to Isothermal 
conditions. This distinction is usually insignificantly small (see 
[28J). The same also pertains to Poisson's ratio and the modulus of 
multilateral-compression. Adiabatic and Isothermal shear moduli do 
not differ from each other, since shear is not accompanied by change 
of volume of the body. 

**The rod may be considered free, but the time is considered In 
which the compresslonal wave passes a distance considerably less than 
the diameter. The wave of unloading from the lateral surface spreads 
to the axis with terminal velocity, so that to the considered time It 
embraces only the peripheral layer. In the central regions, close 
to the axis, there will still be no transverse displacements, and the 
strain of these layers will be unilateral. 
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case from normal stress with respect to volume. In the fluid state 

this derivative Is proportional to the modulus of multilateral com- 

pression as If the shear modulus was equal to zero. Therefore^the 

speed of propagation of sufficiently strong acoustic compresslonal 

waves and rarefaction was Is determined only by the compressibility 

of the material: 

Speed c. Is sometimes called the speed of elastic waves, and 

speed c , the speed of plastic waves; c Is always less than c,; for 

Instance, In Iron c, « 6.8 km/sec and c0 = 5.7 km/sec. The speed of 

propagation of strong compresslonal waves (shock waves) depends on 

the amplitude of the wave. It Is always greater than c or close to 

this magnitude. The speed of propagation of weak perturbations Is 

always equal toe,. Independent of amplitude. Inasmuch as perturbations 

spread with this speed only when they are small. 

Questions of propagation of waves of rarefaction and compression 

in an elasto-plastlc medium with a nonlinear dependence between stress 

and strain, similar to the dependence a (AI/L), which is shown in 

Pig. 11,54, was investigated in detail by Kh. A. Rakhmatullln. Refer- 

ences to original works in this area may be found in the survey by 

Kh, A, Rakhmatullln and G. S. Shapiro [29], 

In following paragraph we shall consider a simple case of propaga- 

tion of waves with the shown properties of substance. 

§ 17. Splitting of Compresslonal 
and Unloading Waves 

Let us see what partlcally occurs, if to the surface of a flat 

body at the Initial moment we apply constant pressure p. Let us con- 

sider pressure to be sufficiently small so that strain linearly 

915 
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Repeating the preceding reaioninga and using formula (11.33)« 

we shall find the speed of "sound" for this cases 

r-l/f.|/fHf. (11.61) 

Speed c, is nothing but the "longitudinal" speed of sound# i.e.> 

the speed of propagation of longitudinal waves in an unlimited elastic! 

medium.* 

Actually« when a compressional wave is propagated through an 

unbounded medium, there are no displacements in the plane perpendicular 

to the direction of propagation, and the phenomenon occurs Just as in 

the case of a rod pressed from the side. 

Speed c, is always greater than the speed of the wave in a free 

rod, since E» > E (see § 14). ' 

With speed c. there spread only rather weak compressional waves 

(and rarefaction waves), in which "pressure,1! or more exact, normal  I 

stress, acting on the plane perpendicular to the direction of pro-   [ 

pagation, is quite small, less than critical, and determined by formula 

(11.36). If the wave spreads through an already stressed substance  | 

let us say, a wave of unloading), the absolute value of the stress 
i 

drop should be less than critical (see in greater detail in § 17).. 

If, however, the dynamic load is great and larger than critical, the I 

compressed solid matter, as shown in the preceding paragraph, passes 

into a fluid state, similar to a liquid» 
i 

The speed of propagation of waves, as we know, is determined  , 

by the derivative of "pressure" with respect to volume, and in this 

»Speed of propagation of transverse waves, in which the displace- 
ments of particles are perpendicular to the direetion of propagation ! 

of the wave and in which there occurs only shear strain, without* ee«—! 
pression and rarefaction, is equal tot «,«-i^Rft * < «i.  i 

 o J 

914 



is. 

case from normal stress with respect to volume. In the fluid state 

this derivative is proportional to the modulus of multilateral com- 

pression as If the shear modulus was equal to zero. Therefore^the 

speed of propagation of sufficiently strong acoustic compresslonal 

waves and rarefaction was Is determined only by the compressibility 

of the material: 

'o=/|=/^. (11.62) 

Speed c, is sometimes called the speed of elastic waves, and 

speed c , the speed of plastic wavesj c is always less than c,; for 

instance, in  iron c, *= 6.8 km/sec and c0 = 5.7 km/sec. The speed of 

propagation of strong compresslonal waves (shock waves) depends on 

the amplitude of the wave. It is always greater than c or close to 

this magnitude. The speed of propagation of weak perturbations is 

always equal to c,, independent of amplitude, inasmuch as perturbations 

spread with this speed only when they are small. 

Questions of propagation of waves of rarefaction and compression 

in an elasto-plastlc medium with a nonlinear dependence between stress 

and strain, similar to the dependence a (Al/L), which is shown in 

Fig. ll.jJ^, was investigated in detail by Kh. A. Rakhmatullln. Refer- 

ences to original works in this area may be found in the survey by 

Kh. A. Rakhmatullln and G. S. Shapiro [29]. 

In following paragraph we shall consider a simple case of propaga- 

tion of waves with the shown properties of substance. 

§ 17. Splitting of Compresslonal 
and Unloading Waves 

Let us see what partlcally occurs, if to the surface of a flat 

body at the initial moment we apply constant pressure p. Let us con- 

sider pressure to be sufficiently small so that strain linearly 
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depends on pressure, i.e., follows Hooks's law. Let us depict the f 

diagram of p and 7 for the state of a compressed substance behind the , 

front of a wave. Considering the "anlsotropy" of pressure In the   ' 

case of weak strains« Instead of pressure we will operate with the 
I 

normal component of stress, which affects the area parallel to the 

surface of the front of the wave, azz.  If the wave spreads along axis 

z.    Along the axis of abscissas we will plot the specific volume of 

the body. During small strains and pressures the state Is described 

by Hooka's law In the form of (11.33)» which according to definition 

(11.61), can be rewritten In the form 

When pressure exceeds critical Porit» and change of volume ex- 

ceeds AV  t/v » Pcrit'P
cl' the body beccHnea fluid and the slope of < 

line a__(A7) changes. By formulas (11.37) and (11,62) we have In thld zz 
region 

AT 
C«i - -|r 9cJ+ COMt, o« > p^. 

The diagram of a„_  and V Is depicted In Fig. 11.56. zz 

If external pressure p < Pcr4t# through 

the body there will run one "elastic1* com- '' 

presslonal wave with speed Cj (Fig. 11.27a; 

state 1 on diagram o„ and V, Fig. 11,36). 

If, however, the applied pressure p > Pc2,itj* 

then In the body there finally Is attained 
4 - 

state 2 on diagram cr  and V. However, In 
ZZ 3-= 1 

v,     v 
Pig. 11.36. Stress 
(pressure)-volume 
diagram (explana- 
tion In text). 

this case through the body there runs no longer one, but two wai^si 1 

nelastic" with aaplltude porlt and the state behind the front 1%\  and 

STL- "f 
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after it "plastic" with state behind front 2 (see Fig. 11.37b). 

Inasmuch as c0 < c,, the plastic wave does not overtake the elastic, 

so that the combination of the two waves Is stable.*  The plastic 

wave runs through the slightly compressed substance, which moves with 

speed ucrlt = 
icrlt 

PC7. 
This speed Is extremely low; for Instances, In 

AY 'crlt      -4 
iron the compression in the elastic wave is equal to —  = 5.10 , 

and speed u ±t - 3,6 m/aec.  Mass speed In the plastic wave is equal 

to u« = 
P - P crlt 

a) w* f ■*-ct 

pc with respect to the 
0 

b) w* 2 -^■ff9 

u*u -rf' ■Ct 

Pig, HOT. Two cases of 
propagation of an acoustic 
wave of corapressloni a) 
one elastic wave; b) sys- 
tem of plastic and elastic 
waves. 

substance moving in the elastic wave, 

and u' + u lt — with respect to an 

undisturbed substance. 

If we consider a compresslonal 

wave of great amplitude, and all the 

more so shock waves with pressures of 

hundreds of thousand atmospheres and 

above, the effects of preliminary 

compression of the substance by an elastic wave to one or two thousand 

atmospheres and acceleration of it to a speed of the order of several 

meters per second may be disregared, considering that a plastic wave 

spreads through a motionless undisturbed substance with a speed corres- 

ponding to compressibility cQ. 

Shock waves of sufficiently great amplitude spread with a speed 

noticeably exceeding c . If the speed of the shock wave D > c^, 

splitting of "aves in general does not occurt the shock wave as if 

from the very beginning runs faster than the elastic wave and is uni- 

fied with it into one wave. 

*The effect of the existence of a combination of elastic and 
plastic compresslonal waves was noted by Bancroft [30] and others, de- 
voted to phase transition in iron (see § 19). 
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a 

Splitting of waYts into elastic j 

flrv^ga t—»g. and plaitio alao ooours in th« case of 

sufficiently strong unloading of a pr4- 

^   aZSül I 

* 

eF^pif liadnarily oonpressed substance«   Let i 

'■f                          us assume that the substance is un- 
         >            . ' : 

' " ^       loaded from pressure p , to pressure 

Pig, ii.jjS, Two cases of     p (for instance, at first through the 
propagation of an unload- 
ing acoustic wave: a) one     body by means of its compression by a, 
elastic wavej b) system 
of plastic and elastic       piston a compressional wave was trig- ' 
waves« 

gered with pressure p , and then after 

a certain time the pressure on the piston drops to magnitude p). If 

PQ ~ P < Pcrit 't'lirouSh the compressed substance there runs one elastic 

wave of unfading with speed c,. If, however, p0 - p > Popit an elas«* 

tic wave of unloading runs ahead, in which pressure drops from p0 to \ 

P0 - Pcrit' 
and ^ter it ■,rit'11 smaller speed spreads a plastic wave of i 

1 unloading. In which pressure drops to magnitude p, equal to pressure 

on the "piston" (in particular, if the piston in general is "retracted, 

p can be equal to zero). These two cases are shown in Fig. Ü.38,   ' 

The phenomenon of splitting of a wave of unloading into two  ' 

waves was observed experimentally in {4] which will be described in 1 

the following paragraph. The authors of this work gave the observed | 

phenomena the above-described explanation. 
1 

§ 18« Measurement of Speed ef Sound in a Substance 
Compressed by a Shock Wave 

Of great interest is the experimental determination of sp'eedT 

of sound behind the front of a shock wave* With this speed are pro- 

pagated the disturbances overtaking the shook jrave and af f eetins-^te—{ 

N 

STOP  'ItRE 
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amplitude.*  The speed of sound (or adlabatlc compressibility) deter- 

mlnea the slope of the usual adlabat on diagram p, V, which passes 

through the point describing the state behind the front of the shock 

wave, I.e., It Is determined by the initial behavior of the compressed 

substance during unloading and its behavior In a weak secondary shock 

wave, A knowledge of the speed of sound is Important for the estab- 

lishment of the equation of state of the substance and for correct 

formulation of experiments on shock compression. Finally, the values 

of the speed of sound in solid matter at high pressures are also of 

Interest -for a number of problems of geophysics. 

The method of measurement of the speed of sound behind the front 

of a shock wave was developed by L. V. Al'tshuler and S. V. Kormer 

Jointly with M. P. Speranskaya, L. A, Vladimirov, A, I. Puntlkov, and 

M. I, Brazhnik BJ.  One of the methods (the method of lateral unload- 

ing) consists of the following.  Shock compression is applied to a 

cylindrical sample of stepped form (Fig. 11.59).  After passage of 

angle 0 by the front of the wave, lateral unloading begins.  Perturba- 

tions from unloading overtake :;he front and weaken the shock wave. On 

the weakened peripheral sect Ion ;:' ::ne Gurface of the front, the speed 

o/ the front decreases and the  .-urfaoes is distorted, as shown in Fig. 

11,39, the central section o:1 "he aurface, up to which the perturbations 

to a given moment of time mil" aid no-; succeed in overtaking, remains 

flat, and the speed of the shock wave on it is as before.  The point 

where weakening of the shock wave begin? Is easy to find from simple 

geometric considerations. In 'Inn: :: from moment of passage of angle 0 

*Let us recall that a shock wave spreads through a substance 
behind its front with subsonic speed. 



by the front, the front departs to dlitano^ 

St, The substanoef earlier located near j 

the angle, drifts forward to distance ut, 

and the earliest perturbations, whloh were 

pp^luoed at the tine of passage of the 

angle and which spread through the substance 

with the speed of sound c, to this moaent 

reach a sphere of radius ct, described fro« 

point A, so that weakening of the shook wate 

starts at point B (see Fig« 11«39}« Considering triangles OH? and 

AW,  it Is possible to connect the speed of sound with speeds D, u an4 

the tangent of Nangle of unloading" at 

Pig. 11.59. aeo- 
metrlc construction 
In an experiment 
with lateral un- 
loading. 

«-o/of^+X^^]1. 
The problem reduces to the determination of speed of front J> 

and angle a (shock adlabat of substance Is assumed to be known, so 

that mass speed u may be calculated). Sxperlmentally* It Is solved 

thus. Upon emergence of shock wave on free surface, the latter files 

forward with a defined speed. On the central (nonweakened) section 

of  surface of the front this speed everywhere Is Identical, and on 

the peripheral (weakened) Section It Is less, as shown by the arrows 

In Pig. 11.^0. 

In the experiment we record the moments of arrival of the free 

surface to plexlglas plate P (by photographic means with time scanning). 

On the film there Is obtained the picture depleted In Fig. 11.40 ( .t 

the time of Impact of the substance against the plexlglas there appears 
3 j 

an Illumination which puts the curve on film). Through the fllj^Ma—-J 

determine point B and, knowing the geometry of the experiment, we   i 

J 

? 't 
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know the angle of unloading a. 

It turned out that for water the bound- 

ary of the weakened and undisturbed regions 

*|[ I I I M 
11 |MMM ' 

^c j 

^LZI^ 

Fig. 11.4o, Diagram 
of an experiment with 
lateral unloading. 

Fig. 11.^1. Pressure - 
density diagram, H — 
shock adlabat. s — 
Isentrope of unloadingi 
KK — tangent to Isen- 
trope at the point cor- 
responding to the state 
in the shock wave. 

of surface of the front Is sharp and the 
p 

modulus of compression PQC , calculated 

with respect to the speed of sound c, is 

less than the slope of shock adlabat 

Pö3^ ^in variables P» P/PQ) at fche Po;1-nt 

corresponding to the state behind the front, 

which is in full consent with the mutual 

location of shock adlabat and isentrope, 

shown in Pig. 11.4l. 

For metals (iron and copper) the curves 

on the film have a rounded form without a 

clearly expressed boundary, as if the per- 

ipheral sections of the surface of the front 

were unloaded strongly, and closer to the 

center (to the axis of the sample), very 

weakly, 
p 

Modulus of compression PQC , calculated 

by the point of origin of weak distortion 

of surface of the front, turned out to be 

greater than the c©responding slope of shock adlabat p0dp/dp by approxi- 

mately 1,5 times. Experimental data are given in Table 11,5, taken 

from [4J. 

This phenomenon was explained by the authors on the basis of 

presentations about the existence of two speeds of sound in a solid, 

which was mentioned in § 15 and 16, Weak perturbations of 



Table il.3>. 

Subitaao« «.dtg > te/oB, 
* t«Mb«r 

Ooppw . . . 
Iron        . . 

47,& 

i;iJ 
1.82 ' 
0 81 
0,88- 

t 

8.8 
8,88 
7 18 

81,4 
8878 
401,8 

84,2 
2888 
288.2 if 

rarefaction spread through a oonqpreseed eubstance with the speed of 

elastic waves Cj (In a substance conpressed by a strong shook wave« 

the pressure Is "Isotropie"). This Increased "elastic" speed of 

sound also corresponds to the beginning of weak distortion of surface 
o 

of the front; the modulus of compression p0c, corresponding to It turns 

out to be too large, larger than the slope of shook adlabat |p0||i 
r 

since the speed of the shock wave corresponds to the smaller, "plastlo" 

speed of sound. Through the somewhat unloaded substance there runs a 

"plastic" wave with decreased "plastic" speed of sound. With this  { 

speed there spread considerable perturbations, rendering an essential , 

weakening Influence on the front of the shock wave. The speed of 

a plastic wave Is determined only by compressibility and namely with It 

there should be compared the slope of shock adlabat• Modulus of com- | 

pression PQCQ, calculated with "plastic" speed of sound CQ# turns out i 

to be for metals, as also for water, less than slope Pri&r»  In full 

conformity with the theory of shock adlabat (water, as a liquid, pos- 

sesses only one, plastic, speed of sound CQ), The existence of two 

speeds of sound strongly hampers the exact determination of the boundary 

of "plastic" unloading, which also presents basic Interest since It 

namely determines the compressibility of the substance. In order to 

be free from the Influence of this effect, the authors of [k]  deHlopdl 
2 \ 

another method (method of overtaking unloading, which In Its Initial ■ 

form was offered by Ye. !• ZababakhlA» This method conaldera. thi. J 
' ■ rc-P hgffF. 



Flg. 11.42, x, t-dlagram 
for experiment with over- 
taking unloading. 

collision of a dispersed plate and sample made from the same Investi- 

gated material with known shock adlabat. The x and t-dlagram of the 

process Is shown In Fig. 11,42. 

From the point of collision 0 

through both bodies there spread shock 

waves OA and OB. After the shock wave 

In the striker reaches free boundary 

B,  the unloading begins there» and 

the wave of rarefaction runs through 

the substance, overtaking the front 

of the shock wave In the sample at 

point A. From this moment the amplitude of the shock wave Is weakened 

and the trajectory of the front bends, as shown In Fig. 11,42. 

Determining, In an experiment, the trajectory of the front of 

a shock wave In the stage of noticeable weakening AE and considering 

the process of propagation of rarefaction perturbations, we can find 

the speed of sound In the compressed substance behind the front. In- 

asmuch as we are considering a stage of strong weakening of a shock 

wave, which Is only the result of a plastic wave, but not an elastic 

one, carrying weak perturbation, the speed of sound determined in the 

experiment Is a "plastic" speed, connected with the compressibility 

of the substance (details of this method see [4J). 

For an illustration of the numerical values in Table 11,4 we 

shall present certain results of measurements. For comparison in the 

same place there are shown the speeds of sound (plastic)c0 at normal 

conditions. 
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Table 11,4. speeds of Sound at High PraiBurtf 
Heasupad In Sxparlaant 

!M«t«l| p. 10» \>w V^r «►!■/••• («t noiMd 
MBditieaf} 

Al IN,» 
MM i,70t 

tt,14 
11.» :».» 

• 
l».8 
an»?   : ;,. ,1,». .. •,4i M . 

I*-'' SM3 
aMf9 

1.6S0 MS «.1 

§ 19* Phase Transition» and Splitting of Shook Waves 
i 

Many solids can, under various conditions, remain in different 

crystal modifications« At certain values of temperatures and pressures, 

connected by a determined dependence, there are possible transitions ; 

from one modification to another. These transitions are accompanied 

by change of volume and liberation (or absorption) of latent heat, 

which Is in first-order phase transitions* Similar transitions are 

frequently called polymorphous transformations of a substance.» 

An example of a substance that is able to experience a poly- 

morphous transformation is iron. At atmospheric pressure and tempera-i 

ture 910° C iron is transformed from a-phase Into 7-phasej transition 

is accompanied by a 2.5JI decrease In volume and absorption of latent 

heat 20? cal mole. Polymorphous transformations frequently ooeur at 

high pressures« In particular, the shown transition in iron, at a 

temperature slightly exceeding normal, occurs at a pressure of 130,000 

atm. 

  3 1 
•In waves of sufficiently large amplitude there occurs me3M»ftH 

of the solid substance, which also la a first order phase transition« 
Problems of melting in shook waves presently are not being studlW 
experimentally oar theoretically» • 0 J 

■<t*i 
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Unique phenomena appear during ahock compression of a substance 

that is able to experience polymorph«..^ transformations at high pres- 

sures. These phenomena were considered theoretically (mainly quali- 

tatively) by Bancroft, Peterson, and Minshall [?0j. Duff and Minshall 

[31]»  and Drummond [32]. Experimentally, shock waves in the presence 

of polymorphous transformations were studied in the first two works 

(in the first - in iron, in the second - in bismuth); in the works of 

A, N, Dremin and Q.  A, Adadurov [25] (marble), and A, N. Dremin [^4] 

(paraffin). 

In a certain range of pressures through a body that is able to 

experience polymorphous transformations, there spread not one, but 

two shock waves, following one after the other. Such shock wave split- 

ting is connected with the anomalous behavior of the shock adiabat 

of the substance in the region of phase transition. At not too large 

pressures in the shock wave there occurs an insignificant increase of 

entropy; therefore, the shock adiabat is close to the isentrope and in 

examining the shown phenomenon it is possible to originate from the 

usual adiabat. 

The adiabat of a substance experiencing polymorphous transfor- 

mation is schematically depicted in Fig. 11.^J, 

During compression from normal volume until achievement of a 

certain state A there starts a transition from phase I to phase II. 

The crystal lattice is reconstructed in such a way that the new equili- 

brium positions of atoms correspond to the smaller interatomic dis- 

tances; therefore, reduction of volume in the region of transition 

requires a much smaller Increase of pressure than in initial phase I 

(at absolute zero temperature the phase transition I-II occurs at 

constant pressure and section AB of the adiabat S « 0 -r this is a 

straight horizontal line, as shown in Fig. 11.43b).  If there was no 

ÜMüE mmmiammim 



Flg. 11.45, Isentrop« 
(usual adlabat) or a 
substance experiencing 
polymorphous transfor- 
mation: a) at tem- 
perature T > 0 dif- 
ferent from zeroi b) 
at absolute zero 
T - 0, 

reconstruction« the pressure curve would | 

continue from point A upwards as shown in 

Pig, 11.4^ by the dotted line. In region ' 

AB the substance Is In a two-phase state. 

Full reconstruction of the lattice and full 

transformation of the substance from phase 

I Into phase II terminates at »(went B, 

after which the adlabat of the second phasq 
1 

again steeply goes upwards. Coppresslblllty 

of a substance In various phase are differ-» 

ent, so that the slopes of curves corres- 

ponding to single-phase state In points A 

and B In general are different. 

Let us now Imagine a body that has a shock adlabat of the des- 

cribed type, and let us assume that in the Initial moment to Its sur- 

face there Is applied a constant pressure p (we shall consider a one- 

dlmenslonal plane case). We shall consider that this pressure Is suf* 

flolently great so that It Is possible to disregard the effects of 

strength and consider the pressure to be hydrostatic. I.e., we shall ' 

disregard the possible existence of an "elastic n wave (see § 

17), considering that the shook wave Is "plastic." 

If pressure p is lower than pressure pA, at which the phase 

transition begins, through the body there runs the usual shook wave, , 

the state of the substance In which corresponds to the point lying on' 

the shock adlabat (point C In Pig. 11«44); the speed of propagatlo»- 

of shock wave D Is determined, as It Is known, by the slope draWh" frö^ 

the point of Initial state 0 to the point of final state on the shock 
2  

adlabat. 
DmV%}ff=Jjfr. 

i 
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0      V 
Pig, 11.44, pv diagram 
Illustrating different 
cases of propagation of 
a shock wave during poly- 
morphous transformation 
of a substance (explana- 
tion In text). 

If pressure p Is greater than 

magnitude p«, which corresponds to line 

OE touching the shock adlabat in Inter 

mediate point A, for Instnace, equal 

to Pp, than through the body there also 

runs one shock wave, behind the front 

of which there Is attained state F. 

However, In this case the substance 

behind the front Is In another phase. 

I.e., II. Transition from phase I to 

phase II occurs In the front of the 

shock wave. Usually the phase transi- 

tion requires much more time than necessary for establishment of ther- 

modynamlc equilibrium In an ordinary single-phase substance. The 

situation in this case in many respects Is analogous to that which takes 

place in a shock wave that is spreading through a gas with retarded 

excitation of certain degrees of freedom (for Instance, through a 

dissociating gas). Direct shock compression leads to Intermediate 

state M, which lies on the extrapolated shock adlabat of phase I, res- 

ponding to the absence of phase transition (this corresponds to the 

viscous shock in a gas). Then the phase transition begins and the 

width of the front is determined by the rela -atlon time of the transi- 

tion. Just as the width of the front of a shock wave in a gas is deter- 

mined by the dissociation time. The profile of pressure In a shook 

wave has the form depicted in Fig, 11,^5, and is completely analogous 

to the profile of pressure in a dissociating gas. The point describing 

the state In the expanded zone of the front of a wave then passes 

through a segment of line MF in Fig, 11,44, 
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Flg. 11.45. Profile of 
pressure In a shock wave 
with "relaxation" of 
phase transition. 

ßs ^ Let us now consider an Intermediate 

case when the pressure applied to the body 

Is between p. and pE, let us say, and Is 

equal to p» (point N on shock adlabat. Flg. 

11.44). 

Speed of a shock wave, determined by 

the slope of line 0N# Is now less than the speed of a shock wave of 

smaller pressure P., corresponding to point A, which Is determined 

by the slope of steeper line OA. Therefore, a wave with pressure p. 

overtakes a shock wave with pressure Pjj* (Let us note that line ON 

three times Intersects the shock adlabat. I.e., to the same wave speed 

corretcond the three values of pressure and volume. It Is clear that 

such ambiguity Is physically unreal.) 

At Intermediate value of pressure pE > p > p. there occurs 

splitting of the shock wave Into two Independent waves, which follow 

one after the other (this case Is specially shown In Fig. 11»46). In 

the first shock wave the substance Is compressed from Initial state 

0 to state A, corresponding to the beginning of phase transition, 

where the speed of propagation of the first shook wave through an un- 

disturbed substance Is determined by the slope of line OA In accordance 

with the formula» 

"•-"•/^i 
Behind the first wave there follows a second shook wave. In 

which the substance Is compressed from state A to final state N. Speed 

of propagation of this second wave through a compressed and moving 

substance, remaining In state A, is determined by the slope of line AN 

and Is equal to 

: ■-^^^s^iii^^l^^^! 



Flg. 11.46. pV 
diagram illustrating 
the splitting of a 
shock wave. 

Speed of propagation of the second 

shock wave with respect to a motionless 

parent substance is equal to the sum of 

speed Dg and mass speed of the substance in 

the first shock wave uA: A 

It is easy to see that the second wave 

does not overtake the first, i.e., the combination of the two shock 

waves is stable. Actually, the speed of propagation of the first wave 

with respect to the substance behind it is equal to 

Inasmuch as the slope of line OA by definition (p„ < pE) is 

greater than the slope of line AN, we have (pA - PQ)/^ - VA) > 

> (PN - PA)/(
V
A " V,D1 > D2' 1*e•, the first wave runs thl,ough the 

substance faster than the second with respect to the very same sub- 

stance. 

In the front of the second shock wave there occurs a phase 

transition: in initial state A the substance is in the first phase, and 

in final N it is either in the second, if pN > p-., or in a two-phase 

state, if p.. < pB (transition in this last case is incomplete). By 

virtue of deceleration of phase transition the front of the second 

shock wave turns out to be strongly eroded, in distinction from the 

thin front of the first wave. The profile of pressure in the case 

of a system of two waves is schematically depicted in Pig. 11.47, With 

the passage of time the distance between fronts of both waves is in- 

creased. Inasmuch as their speeds are different} distribution of 

pressure in the second wave is stationary, and the profile In the 

BZB 
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^X^H4 second if»vt is propagated as a whole, | 

•v*'*^        I * 9f\ The coablnatlon of two shook wav^s 

 j        in the presence of phase transition lA 

Fig» 11,47« Profile of     o*^ respects Is analogous to the coa* 
pressure in the case of > 
splitting a shook ware      blaatlon of two coaipresslonal waves t i 
Into two parts* «    «   H     « 

"elastic" and "plastic/ which was 

considered In § 17. The cause of the appearance of two waves In 

both cases Is the anomalous behavior of the adlabat and shook adiabat* 

at which there exists a region on the adlabat where the latter is 

turned with convexity upwards. 

In Chapter I it was shown that on the sign of the second deri-j 

vatlve ö p/dlr depends whether entropy increases or decreases in the j 
1 

shock wave, i.e., the sign stipulates purely thermodynamic conclusions. 

Here we are convinced in the fact that the anomalous behavior of the j 

shock adlabat leads to anomalous klneaiatlo consequences, l.e,, split- 

ting of the shock wave in two. The limiting condition P > P« for unifi- 

cation of two waves into one corresponds to the position in the case ; 

of combination of shock and plastic waves, when the speed of the plastic 

wave, due to deviation of the adlabat from Hooka's law, becomes great«? 
I 

than the speed of the elastic wave, so that the second wave overtakes 

the first and merges with it. 1 
1 

As was already mentioned above, the phenomenon of splitting of 

a shook wave in substances experiencing polymorphous transformations, 

was observed experimentally. For an Illustration, Fig. 11.4^ shows the 

shock adlabat of iron in the region of phase transition, found experi- 

mentally in DO]» Lot us note that in bismuth the phase transition 

occurs at a pressure of «*28,500 atm, where by the relaxation tjpa | 

for the transition at 420C turned out to be less, than 1 milliaecondH 

V 
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HS M / v* 
Flg. 11,48, Shock adla- 
bat of iron In the 
region of phase transi- 
tion. A — according 
to [241, o — according 
to DO], 

)0S¥ Alder and Christian [553 revealed a 

^ phase transition of the first kind in iodine 

J2 (crystals of iodine are molecular) at a 

pressure of p « 7»lCr atm and relative 

volume V/VQ « 0,55, Transition was fixed 

by changing the slope in the linear depend- 

ence of speed of the front of the shock 

wave on mass speed. Calculations show that 

temperature in the wave at the point of 

phase transition T «* i ev. It is comparable with the dissociation 

energy of iodine molecules 1,55 ev. It is assumed that phase transition 

is connected with transformation of a molecular diatomic crystal into 

a monatomic metallic state. 

It is interesting that the anomalies in the curve of cold com- 

pression of metals, and consequently also in the shock adiabat, similar 

to the ones that appear in the presence of polymorphous transformations, 

can also appear In the absence of reconstruction of the atomic lattice 

due to change of structure of electron zones and the covering of 

separate zones during compression. The possibility of change of pro- 

perties of metals upon change of zonal structure is noted by I, M. 

Lifshits [56]. The influence of these changes on the curve of cold 

compression of metals and the appearance of sections of anomalous be- 

havior of the curve, where ä p/öv < 0, was studied by 0, M. Qandel'man 

[57]. 

§ 20, Shock Wave of Rarefaction in a Medium 
Experiencing Phase Transition 

According to the general theory presented in § 17, 18 

and 19, Chapter I, during anomalous adlabatic behavior, when there 

»• 531 
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are sections wher« the adlabat Is turned with Its convexity upwards | 

(d p/d^r < 0), there Is the possible appearanoe of rarefaction shocksJ 

The adlabat of a solid which Is experiencing phase transition exactly' 
i 

gives such a posslbllllty. This was noted In [32] • Reglaes with shock 

waves of rarefaction In a metal In the presence of phase transforoatl^ns 

were studied by A* a. Ivanov, S. A» Novlkov, and Yu# P. Tarasor [38], 

who were the first to give clear experlHental proof of the existence I 

of rarefaction shocks In Iron (steel). j 

On the adlabat of a substance which Is experiencing polTttorphoüs 

transformation» In the region of the point of break A (Fig« HA})  th^ 

movement of the adlabat Is anomalous« Although In all points where I 

the adlabat does not have peculiarities, the second derivative h%/hln 

Is positive« nonetheless there Is a section In the region of point A ' 
I 

where the chord connecting any two points 1 and 2,  wholly lies below i 

the adlabat (Pig« 11«49), This Is the consequence of negativity of I 

the mean value of the second derivative on § 1-21 ' 

<*>1.-[,(n-(*).l/(^»-F'><o•,• 
As It Is known from the general theory,  | 

namely such a position also leads to anomalies 
1 

In hydrodynamlo regularities. i 

Propagation of shock waves of compression ' 

in a similar substance was considered in the  i 

preceding paragraph. ! 
! 

Let us now consider the unloading of jaub- ! 

stance that is preliminarily compressed bs»* 1 
Shock wave. Let us assume that at the time t •« 0 in a body thatehae—| 

~~ «In all points of § 1-2, besides point of break A, öS/äV2 > 0,but 
in point A itself, d2p/dv2 - -», so that th» MMIL value an.&JLr8 is 
negative all the same. 

aas 

Fig, 11«49, Anoma- 
lous section of 
adlabat. 

J 

B I 
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earlier been conpressed by a shock wave to state 1 (p., y,), there Is 

a region of rarefaction In which pressure and volume change smoothly 

to the values of p2, V2 (state 2j p2 < p^ Vg > V^^). Initial distri- 

bution of pressure with respect to coordinate Is shown In Fig, 11.50. 

We assume that the points of Ini- 

tial and final states 1 and 2, 

and also all Intermediate points 

In smooth distribution lie on the 

Isentrope and the process Is 

adlabatic.*  Some of the corres- 

ponding points are designated In 

Pig, 11,50, Concerning the 
question on evolution of a 
region of rarefactlonj Initial 
profile of pressure. 

Pig, 11.50 and In the adlabate In Pig, 11,51 by Identical letters and 

figures. 

Let us consider a simple rarefaction wave 

(see § 8, Chapter l), spreading to the 

right through a compressed substance. In order 

for the wave to be simple, it is necessary that 

the initial distributions of pressure and speed 

with respect to coordinate p(x, 0), u(x, 0) 

satisfy the condition of constancy of Riemann 

invariant J-(x, 0) « const.  Then, and in sub- 

sequent moments of time, J_(x, t) - const. 

We shall assume that this condition is carried 

out. As it is known (see § 8, Chapter I), 

in a simple wave, spreading to the right, the 

Pig, 11,51, Con- 
cerning the question 
on evolution of a 
region of rarefac- 
tloni states on p, 
V diagram corres- 
ponding to the 
profile depicted 
in Pig. 11,50. 

*We consider only small pressures at which the thermal effects 
are small and the shook adlabat practically coincides with the isen- 
trope. Furthermore, we consider that phase transitions occur suffici- 
ently fast Min8tantly,,, so that the states of the substance never de- 
viate from the thermodynamloally equilibrium adlabat. 
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Cj.-oharacterlstlos «re lima on plan« x,  t| along thai ara plotted thf 

constant values of pressure and other aagnltudes. 

Let us consider what will oeour with our Initial profile of  < 
i 

pressure In subsequent nonents of time. For this, on plane^x, t In 
i 

Fig. 11.32 we shall plot the C+-charaoterlaticsj straight Unas with 

slopes 3I •' u + c. The speeds of propagation of perturbations ("speeds 

of sound") in different points of Initial distribution are determined! 

by the slopes of tangents to the adlabat In corresponding points. In 

two points of break A and B the speed 

of sound experiences a jump (dependence 

of speed of sound on volume Is shown In 

Fig. 11.5?}. Speed of the substance, 

equal by virtue of condition J ■ const, 
}u " -/ c 0 + const, Is continuous in 

polpts A and B, so that the slopes of 

the characteristics intermittently 

change together with Jumps of the speed 
of sound# 

FTes the "nmm&l*  point of break 

B there emerfe two C.-oharaoterlstlos < 

with different slopes having identical values of pressure, but dlf- 
1 

ferent values of speed of sound. These speeds of sound oerrsspond to; 

the values on both sides of the break en the adlabat, whereby slightly 

i   If   i     ii» * 

Fig* 11.52. x, t, diagram 
illustrating the evolution 
of initial rarefaction in 
a substance with anomalous 
adlabat. 

\ k 
»i 

Fig. 11,55,   Depend- 
ence of speed of sound 
on volume, corresponding 
to the adlabat depicted 
in Fig. 11.51« 

the larger value of pressure PB + e 

(e is infinitesimal) spreads faster 

than the slightly smaller pB - t*   ! 

Another position is in the r —J 

"anomalous" point of break A. Hope~ ■ 
3 j 

from point A there also «marge liediy 

ately two oharaoteristloa, but tjhe- 
greaver^n« -ppeeoj^^^ 

Jl 
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slower, the smaller pA - e. The characteristics drawn from points 

adjacent to A tend to Intersect (see Pig. 11.52), and the limiting 

characteristics, emerging from point A Itself, as If was Intersected 

already from the very beginning. This means that In the Initial 

distribution of pressure at point A from the very beginning there will 

form a little break (in limit t -4 0 It is infinitesimal), which grows 

with the passage of time.* 

Propagation of the rarefaction wave and pressure profile In 

consecutive moments of time are depicted schematically in Pig. 11.54. . 

The "plateau" pressure pB Is "limited" by the characteristics emerging 

from point B In Pig« 11.52, 

The Jump — a shock wave of 

rarefaction appearing at point 

A — grows in accordance with the 

* intersection of characteristics. 
Pig, 11,54. Evolution of 
pressure profile In a rare-       The Jump grows. I.e., the upper, 
faction wavej formation of a 
shock wave of rarefaction,       initial, pressure is Increased, 
t = 0, t», t", .t"» - consecu- 
tive moments of time, and the lower, final, drops as 

long as the peak of the jump runs 

through the substance In front of the Jump with supersonic speed, and 

the lower one runs through the substance behind the Jump with subsonic 

speed« The upper boundary of the Jump as If "consumes" sections of 

the smooth Increasing distribution of pressure, and perturbations of 

rarefaction from below behind the Jump overtake the Jump, strengthening 

#The situation in the smooth origin of a compresslonal wave with 
| normal properties Is somewhat different. The characteristic curves in 
f     this case do not Immediately Intersect (see § 9 and 12, Chapter: 

1), the curvature of the pressure profile gradually Increases, and 
the discontinuity -* the shook wave - Is not immediately formed. Here 
the discontinuity - a rarefaction shock wave - originates from the very 
beginning, and the amplitude cf Its growth Is proportional to time. 
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the discontinuity. The prootss of gpmrth of the jtap stops when the j 

upper pressure attains the pressure In the plateau, and the speed of { 

propagation of the lower boundary through the substanoe behind the I 

Jump becomes sonic. { 

The steady-state position of discontinuity (points l'-a» on 

the adlabat. Fig. 11«51) and the pressure profile In a rarefaction 

wave are shown In Fig. 11.55. As we know (see § 14, Chapter I), 

the speeds of propagation of discontinuity l«-2» through the substancq 

In front of It u^ and through the substance behind It Ug are determined 

by the slope of Xlnel,-2,i 

t—Pv * 
■»'-^•fi:^:» <-*!'%=% 

From Fig. 11.51 It Is clear that point 2* Is determined by the | 

condition of contact of line l»-2f 'with the adlabat, since with this i 
i 

Ug " Cg|. The speed of propagation of 
i 

a discontinuity throügli the substance! 
i 

in front of It u^ Is less than the 

upper speed of sound at the point of 

discontinuity B, but greater than the. 

lower speedt line I1-2' Is more sloping 

and steeper than the corresponding 

tangents to the adlabat at point B, 

In practice, a wave of rarefaction usually appears when a shocli 
i 

wave emerges on the free surface of a body. The regime Is then self- ■ 

similar, all C.-characterlstlcs on plane x and t emerge fvom one' point 

»These formulas follow from the laws of conservation of aaoA. 

Fig. 11,55. Character 
of final distribution of 
pressure In a wave of 
rarefaction. Distribu- 
tion extends with the 
passage of time, not 
changing Its form. 

and momentun In a discontinuity and are equally valid both for jfcmps 
of compression and also for Jumps of rarefaction. ^  

o. ._J 
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and the whole "fateady-state" pressure profile, depicted In Pig, 11.55f 

will form from the very beginning, as in the usual self-similar wave 

of rarefaction (see § 11, Chapter l). Thus, the wave of rare- 

faction has a complicated profile consisting of two sections of smooth 

lowering of pressure, a plateau of pressure (all three of these sections 

extend with the passage time in accordance with the self-similarity 

of the regime) and the J.ump of the shock wave of rarefaction (if the 

surface of the body is free, point 2 of final state corresponds to 

zero pressure). The x, t-diagram for  a centered wave of rarefaction 

is shown in Pig. 11.56. 

In experiments described in [38], 

there were revealed unusual break-away 

phenomena during blasting of explosive 

charges on the surface of iron and 

steel samples. The break-away surface 

was extraordinarily smooth. This 

phenomenon was interpreted as the re- 

sult of the collision of two shock waves 

of rarefaction, when on a certain sur- 

face there appears an intermittent 

change of pressure from positive to 

negative values. Usually during smooth 

unloading the zone of tensile stresses 

provoking the break-away is blurred, and the break-away surface is 

rough, which is connected with the microheterogeneity of the material 

in the extended zone of tensile stresses. Analysis of the complicated 

picture of motion under the conditions of the experiment allowed the 

authors of D8] to conclude that the observed phenomena are connected 

Pig. 11.56. x, t-dia- 
gram for a self-similar 
rarefaction wave formed 
upon emergence of a 
shock wave on the surface. 
I — line of free surface, 
II — tail of rarefaction 
wave. III — line of rare- 
faction wave, IV — begin- 
ning of plateau of pres- 
sure, V — head of rare- 
faction wave. 
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with the existence of shook waves of rarefaction. Another aonflmitlqn 

Is the circumstance that In other aaterlals, besides Iron and steei# 

In which there are no phase transitions In the Investigated region of I 
i 

pressures, there were no unusual splittings. i 
I 

4. Phenoaena Upon Baergenoe of a Powerful Shock 
Wave on the Free Surface of a Body 

§ 21. Limiting Cases of Solid and aaseous 
States of an Unloaded Substance 

Section Ü considered the process of unloading of a solid that 

was initially compressed by a shock wave, after the wave emerges on the 

free surface. It was considered that the shock wave is not. very strong, 

the temperature behind the front is conqparatively small and, unloadedi 
i 

to zero pressure, the substance remains solid. 

It is clear that if a shock'wave is very powerful and the in- I 

ternal energy of the heated substance e^ many times exceeds the binding 

energy of atoms U (equal to the heat of evaporation at zero temper»? 

ture), then upon expansion of the substance to a low (zero) pressure j 

after the emergence of the shock wave on the free surface, the substance 

is completely evaporated and behaves as a gas during unloading.* In • 

particular, during unloading in a vacuum, i.e., to strictly zero    \ 

♦Sometimes we speak of the "evaporation" of a substance in the ■ 
shock wave Itself. Such an affirmation is incorrect, if by "evapora-. 
tlon" we understand a phase transition in the usual thermodynamic 
meaning. To call a solid substance a "liquid" or "gas" is possible j 
only in a conditional sense, depending upon the relationship between ■ 
kinetic energy of thermal motion of atoms and the potential energy of 
their interaction. Transition from "liquid" to "gas," if one heats ' 
the substance at constant volume, is carried out continuously, «-ja  
general, it is necessary to remember that at pressures and temperatures 
higher than critical, the entire substance is uniform and separation H 
of phases does not occur. It is necessary to note that the afffranatlyi 
about the fact that in a sufficiently strong shock wave the substance, 
ceases to be solid, has a fully real physical meaning (solid matftS* ' 
malts). j 1 

STOP Ht'RE 
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pressure, the density and temperature on the front edge of the substance 

are also equal to zero. 

Distributions of density, speed,md pressure In an unloading 

wave have qualitatively the same character as also in a wave of rare- 

faction in a gas (see § 10 and 11, Chapter l). They are depicted 

in Fig. 11.57. 

The hydrodynamic solution for a self- 

similar unloading wave may be written in 

general form independently of the thermo- 

dynamic properties of the substance. It is 

expressed by the formulas 

h 
\. 

0 
"i 

** 

*t 

h *JB 

Pi 

h *X 

•j-ii-e. 

Fig. 11.57. Profiles 
of density, speed, and 
pressure after the 
emergence of a very 
strong shock wave on a 
free surface. 

(11,65) 

,,+ JÄ-COIMI (11.64) 

for a wave running to the left, as shown In 

Pig. 11.57. 

Integration is conducted at constant 

entropy S, since the process of unloading 

is adiabatic. In this case the entropy is equal to the entropy of 

the substance behind the front of the shock wave. It is possible to 

express the constant through the parameters of the substance In the 

front of the shock wave (which we mark by Index "l"). Formula (11.64) 

then obtains the form 

—*+$£• (11.65) 

Speed of the front edge of an unloaded substance (speed of 

free surface) is equal to 

i-»i+vjE. (11.66) 
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Vt h4¥© already uaad foraula (11.66) in § 11 In order     | 

to obtain the la« of doubling of speed«• Distribution of hydrodynaal^ 

magnitudes in an unloading wave can be found if we know the therso~ l 

dynajBic functions of the substance (l»e,, functions p {p, a),  c {p, s), 

are known, with the help of which it is possible to calculate the In» 
r 

tegral (ii.65)). Corresponding forarulas for gas with constant heat 

capacity were written out in § 10, Chapter I. ; 

In the case of unloading of solids of interest to us this    , 

cannot be done, since for description of the thermodynanic functions ' 

of the substance in the region of densities somewhat less than the 

normal density of a solid» there is presently no satisfactory theory 
1 

{consider the intermediate temperatures at which the substance can be 

considered neither a solid, nor an ideal gas). Therefore, here we  ' 

shall limit ourselves to the description of the qualitative picture j 

and rough estimates. ' 
i 

For simplicity we shall assume that until compression of the (' 
i 

shock wave the solid was at aero temperature «id zero volume VQj(, and 1 

also that unloading occurs in a vacuum (to zero pressure)• Further- j 

«... ,. ^1 not «.. . «.tinouon ^ «1« «* U^ ,t.t.J 

Melting heat usually is much less than the heat of evaporation* (the 

change of volume during melting is also slight)| therefore, considering 

phenomena of such energy scales in which the substance is completely 

evaporated, the effect of fusion may be disregarded. 

Let us trace the process of unloading of a given particle of 

substance on a p and V-diagram. Zn Fig. 11.58 there are curves sof— 

elastic pressure p extended also to the region of negative pre^ures, 
x 3  

«For instance, *6 times less in lead, and In aluminum, 22 limes 
less« I » 1 
 „ S._J 
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shock adlabat pH, and curve OKA dividing the region of one-phase and 

two-phase states. Branch OK to critical point K constitutes the boiling 

curve (beginning of vaporization), and branch KÄ is the curve of 

saturated vapor (beginning of condensation). Furthermore, several 

adiabats S are drawn, passing through different states in the shook 

wave, 
*   . 

Let us consider the simplest limiting oases. Let us assume that 

the wave is weak (state I on shock adiabat). The compressed substance 

is unloaded along adlabat S^, pressure drops to point B^ where the 

adiabat intersects the boiling curve, after which the solid (or liquid) 

in principle should boll. However, for the formation of nuclei of a 

new phase, i.e., vapor bubbles, there is required a rather considerable 

activation energy necessary for breaking the continuity of the substance 

and for forming a surface of bubbles; the speed of this process is 

so insignificant at low temperatures of the order of hundreds and even 

a thousand degrees (for metals) that the solid practically continues 

to expand and cool to zero pressure on the adiabat of the "overheated 

liquid," shown in Fig, 11,58 by the dotted line. In final state the 

substance has volume Vg* which somewhat exceeds zero volume VQK, and 

turns out to be heated to temperature Tg, connected with the difference 

of volumes v2 - V0K by the law of thermal expansion (see § 11). 

Even if one disregards the questions of the kinetics of volume vapori- 

zation, a fraction of evaporated substance could not exceed a magnitude 

of the order cJP^/ü, which is very small at temperatures Tg^ of the 

order of hundreds of degrees (for metals ü/c«. •* 10 0K),   We dealt 

«In distinction from the designations in § 11, here all 
magnitudes in final, unloaded state are marked by index "2", index 
"1" will be added to magnitudes in the shook wave front. 
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Fig« 11«58, Adiabate of 
unloading on p and 7-dla- 
graa. 

with this case of unloading in §11, | 
"     I 

m anoth«? lifting cast, whan   | 
tht shook wavt is v«?y pontFful (stati 

4)# tht adiabat of unloading S$ pass«» 

much high«? than critical point K,  Info 

a purely gas vsglon, and the substance 
1 

Is expanded as a gas to Infinite volume. 

In general, the adlahat at sose ament 

will Intersect the curve of saturated 

vapor (point B^}, after which conden- 

sation should begin*. However, if thf 

time of divergence of vapor is limited, 

as this usually occurs in laboratory 

conditions, condensation practically does not occur, and the substancS 

continues to expand with respect to the adiabat of superoeoled vapor , 

(dotted line In Fig. 11,58). , 
i 

§ 22,   Criterion«of Full Evaporation of a Substance 
During tbloading I 

I 
We shall establish a quantitative criterion of full evaporation 

of a substance during unloading which is More definite than the con- > 

ditlon of very large excess of energy in a shook wave above the heat 

of evaporation «^ » U, which causes no doubts. 
1 

Vie shall speak of full evaporation, if an unloaded substance, t 

following the laws of themodynanlcs, passes through a stage of'irarely 

gaseou. atat. (.. do not ^flr. that th. fln^ .ft. 1, .1« ^Aiy^ 

•The process of condensation during vapor expansion in a laeuufri 
was considered in detail in Chapter TCZZ.  i 

^ neue 
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r 

gaseous, since In principle during expansion to an Infinite volume, 

condensation certainly should begin. 

Let us consider the range of anplltudes of shock waves which Is 

Inteimedlate between two limiting cases, when the wave Is weak and the 

unloaded substance Is knowingly solid, and when the wave Is very power- 

ful, and substance during unloading knowingly behaves as a gas. 

Internal energy of compressed substance In the shock wave con~ 

slsts of elastic e^ and thermal e. (in the latter we will not dis- 

tinguish atomic and electron). During expansion of the compressed 

substance to zero volume V ,, the elastic energy earlier obtained 
UK 

during compression completely "comes backj" It changes Into the kinetic 

energy of the substance accelerated during unloading». 

Part of the Initial thermal energy €., expended In the accora- 

pllshment of work of expansion and equal to Cp, iyt also changes Into 

kinetic energy. Let us designate the thermal energy remaining in the 

substance to the moment of its expansion to zero volume VU^ through 

e«.  It coincides with the full internal energy at this instant. It 

is absolutely clear that for full evaporation in the process of sub- 

sequent expansion it is necessary for this energy e' to exceed binding 
t 

energy U» 

The whole question consists in what should this excess be. 

During expansion to volumes greater than zero, the reserve of energy 

•But does not remain concentrated in the very same particle like 
this occurs during stationary expiration, when Bernoulli's law is validi 
see § 11 Chapter I, 
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El la eaqpeadtd p«afti«lly fir thft«o««9lli}aumt of work of tsytoilon 

(this part of tho «norKT ohttogoi Into tho klaotlo mmegy of Hyirodjnia^ie 

motion)# «nd partiAlly for auraountlng tho AdhoiiT« ferotf doioribod  i 
, , i 

by nogativ« praasurt px (thia part of tha aoaspgy ohangaa Into potan- 

tlaX enargy), I 

Let ua aaauia that anargy a|, auffioaa in ordar to ao^lataly ' 

evaporate the aubatanoa» i«a#f ao that praaaura p ■ p 4« p » pt - |p^| 

does not drop to zero before the substanoe expanda to infinite voluaeJ 

From the adiabatio equation da + p dV - 0# by virtue of the datarBina^ 

tion of dex + px dV ■ 0 it followa that da^ •»• pt dV - 0. Integrating 

this equation fron zero volume 7^ to infinite, at which the thermal i 

energy turns into zero, we obtain 
I 
j 

The first member conatitutea that part of the reserve of energ^ 
i 

which goes for the aooompliahment of work of eacpanaion «ad the second, 
i 

Is the energy expended for breaking the bonds of the atoma.       j 

Let us depict on the diagram p, 7 the pressures p, ty,  px (see I 
• I 

Fig. 11,59). In the same place are shown the energies numerically 

equal to corresponding areaa« i 

On the limit of full evaporation the pressure in that stage of ! 

expansion when the adhesive forces weaken (V > V^y), cloae to zero  j 

(the thermal praaaura la enough to surmount tha adhaaive foroeat 

Pt * |PXI)* However, at an earlier stage, when ?0K < V < V^, -pcaa^ 

sure p is great, and themal praaaura la noticeably greater thai* aflastilc 

j> > |PX|« Thia la dear from the fact that in tha atate with 

7 - 70R, P» - pj -r ^ >r^L9 ymtm r la the affaatlve (jrueiylaan | 

■ '            ^       .^LJ .__. o j 
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Pig. ii.59. Concern- 
ing the question about 
evaporation of a con- 
densed substance during 
expansion (see expla- 
nation In text). 

coefficientw which is of order of unity 

(|px| max - ü/VAK)» Thermal pressure during 

expansion drops more or less monotonically 

(energy et decreases, volume V grows). 

Therefore curve Pt(V) has exactly the form, 

that is. depicted in Pig. 11.59. Prom Pig. 

11.39 it is clear that the vertical shaded 

area, equal to the work of expansion 

is of the same order as the area 

corresponding to potential energy U, i.e.. 

at the liBJit of full evaporation the reserve of energy c^ should once 

every two times exceed binding energy u. 

In order to encircle these especially qualitiative considerations 

in quantitative form, it is necessary to know the thermodynamic pro- 

perties of the substance in the region of volumes greater than the 

normal volume of condensed state, when the adhesive forces are essen- 

tial, unfortunately, this range of volumes V0K < V ^. 5V0K has been 

investigated the wotst of all both theoretically and experimentally. 

It is possible to approach the appraisal of Intensity of a shock wave, 

which divides the region of complete and incomplete evaporation during 

unloading, somewhat differently, by characterizing the boundary of full 

evaporation not by the magnitude of energy tj, but by the value of 

entropy. 

Prom Pig. 11.53 it is clear that the effective boundary between 

complete and incomplete evaporation during adiabatic unloading is such 

a state in the shock wave K , in which entropy is equal to the entropy 

of the critical point Scrit. i.e., when the expanded substance goes into 

critical point K. The fact that with entropy larger than Scplt, the 
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substance &t soa« moioent starts to b« oondsnssd (st&te 5, adlabat &*,., 

point of oondsnsfttion Bj), and this Btans that just before this all ; 

Interatomic bonds were broken, l,e*, the substance beoaae a gas* Coni 

versely, if entropy Is less than S^^  (state 2, adiabat Sg, bdling 

point E^), the thermal energy is not enough to bring vaporization 

to an end. At entropies close to critical and from either side, the 

substance in unloading is in a two-phase state, i.e., in the form of 

vapor and liquid drops. Here an essential role is played by the kine-. 

tics of phase transitions. These very interesting questions still 

have not been considered theoretically^ and have not been studied ex- 

perimentally. 

The entropy criterion, in spite of all its conventionality, 

has an advantage, as compared to the energy criterion, that permits 

us to approach an estimate of boundary, critical entropy S rlt. from 

the "gas side1* poorly passing the investigated region of volumes, two 

or three times exceeding the normal volume of the solid*« 

In order to illustrate the presented qualitative consideration^, 

we shall make an appraisal for lead. We shall compute the entropy of 

lead at the critical point, using the general formula for the entropy ^ 

of a monatomic ideal gas (4.16), as are lead vapors. For the appraisal 

we shall use critical temperature equal to Tarlt - 4200
0K, and volume 

^crit " ^Qjt** (usually the critical volume is one to three times 

greater than normal volume of liquid ). Statistical weight of atoms ■ 

•Here, of course, there also exists an uncertainty connected with 
the fact that the critical parameters of metallic liquids, as a rule» 
are unknown. 

••Magnitude T03pit was estimated in {39Jj by the formula of $imi^~~' 
der-waals, critical pressures PCpit ■■ 2/8»nepltkTf.rlt <• 2400 atiü"~ | 

•! r hi us 
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of lead is equal to gQ «■ 9« Calculation with these parameters gives 
s it »42.8 cal/mole-deg*. 

Entropy in the shock wave may be calculated by using the thermo- 

dynamic functions e(T, V) and p(T, V) described in § 6. it is 

simplest of all to find entropy in state T and V by integrating the 

thermodynamic equation 

4?' *+>*?.- **+*** 

at first at constant teiaperature equal to normal TQ, from normal volume 

V0 to V,  and then when V «■ const, with temperature from TQ to T. In 

the first integral it is then possible to disregard the electron mem- 

bers« which are insignificantly small at T0 « 300
0
K* Considering, for 

appraisal, the (Jrueneisen coefficient to be equal to r(v) « r0 X- , 

where index m for lead according to Table 11.2 is approximately equal 

to m w 1, we obtain as a result of integration 

i 

jCf.n-^+cvia^+pt^V-^-^frr-rcF)! ••>.  (11.67) 

Here SQ is the entropy of metallic lead under normal conditions 

T«, VQ, e^, which according to source material [40] is equal to 

SQ » 15.5 cal/mole x deg. Putting in formula (11.67) the parameters 

of the shock wave from Table 11.2 we find entropy in the wave. Entropy, 

close to critical S07^, is attained at the following shock wave 

•Use of the Tfcn-der-Vaals equation for calculation of nonidealit^ 
of a gas leads to very samll correction for entropy AS^^^ - R In 2/} ■ 
• -0,8 cal/mole »deg (at the same volume at which S Ideal is calculated). 
This correction is introduced into the value of S j*. 

♦♦The last member« which depends on r, plays a small role, so that 
the error connected with the approximate interpolation of r(V) by ex- 
ponential formula is not essential. 
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parAffleteni y^ • U9, Px - 2.25*10
6 at», ^ - ISiOOO0«, t^ «    ! 

- ^.Ti'iO erg/g*(»ope txaot, with these parftnete?« S^ « 44.5 cft2/»ol^»    ; i 

•deg). Energy «1 during adltbatlo escpanslon to sero voluae VQlt turns ' 

out to be equal to 1.9*10  erg/g. I.e., twice as auch as binding 

energy U - 0.94«10  erg/g, whloh fully corresponds to the expected 

magnitude, as this was mentioned above (T' - 9$000K, pi * P1 w 5'tCr 

atai), 

Thus, one should expect that In more powerful shock waves during 

unloading there will occur full evaporation of lead. Let us give for 

an example certain results of calculation for the most powerful shock 

waves In lead that were Investigated during the experiment. Namely, 

when p^ * 4'icr2 at;a# VQ/V^ « 2*2 entropy S1 - 51.7 caa/mole»deg, and 

energy at the moment of expansion to normal volume •£ « 2.57*1('  erg/k. 

I.e., 3*6 times more than binding energy U(Tr » IS^OOO0«). In this 

case, obviously full evaporation during unloading has already occurred1. 

In conclusion, let us emphasize that In an unloading wave, 

spreading through a body after emergence of a shock wave on a free 

surface, from the very beginning there are particles of the substance 

In the most diverse states, starting from pressure p4 (in the head of ' 

a action ..«, «a to «« (on *.. .„r.,.,. Xn . .... «.„.  ' 

are represented all states, through which there passes a given particle 

In the process of evolution from pressure p^ to zero. Let us also 

note that the pressure In particles close to the free surface drops 

so quickly to zero, which In case of full vaporization in this region 

is strongly supersaturated, although by the conditions of thermodynaaic 

3—1 
•It is curios to note that the energy in a shock wave, at which 

only full evaporation begins is five times more than the bindinr ' 
•ner&F. i 1 
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equilibrium the substance had to be in a two-phase state. 

§ 23, Experimental Determination of Temperature 
and Entropy in a Powerful Shock Wave by Means 
of Investigation of an Unloaded Substance 

in aas Phase 

Several paragraphs in this chapter were dedicated to the study 

of the thermodynamic properties of solids at high pressures and tem- 

peratures and the description of methods of experimental investigation 

of these properties by means of measurements of parameters of shock 

compression of a substance. The general feature of these methods con- 

sists which way there can be found only the mechanical parameters of 

the substance: pressure« density, and full internal energy. Measure- 

ment of kinematic parameters of a shook wave - speed of propagation of 

front and mass speed together with the use of relationships on the front 

of the shock wave — does not give the possibility to directly determine 

such Important thermodynamic characteristics as temperature and entropy. 

For finding temperature and entropy according to mechanical measurements 

it is necessary to have some theoretical diagrams for description of 

thermodynamic functions. Above we used the trinomial presentation of 

pressure and energy, where certain parameters, such as heat capacity 

of atomic lattice, coefficients of electron heat capacity, and electron 

pressure were determined theoretically. 

Meanwhile it would be very interesting and Important to find 

some ways of direct experimental establishment of temperature or 

entropy in a shook wave, as far as possible reducing the number of 

theoretical parameters. Unfortunately, in this way it is necessary 

to meet with large difficulties, both of an experimental and fundamental 

character. One of the most Important methods of measurement of high 

temperatures, optical, can I used only in the case when the body is 

transparent, and when the overwhelming majority of solids and in 
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particular* metals, presenting the biggest interest, are non-trans- 

parent . 

Temperature behind the front of a shock wave was measured by 

otical means in plexlglas (Ya. B, Zel'dovlch, S. B. Kormer, M. V. 

Sinltsyn, and A. I. iCuryapin [41]). in these experiments they measured 

the surface brightness of the front of a powerful shock wave that was 

spreading In a transparent substance, l,e., plexlglas. Then the bright- 

ness was re-computed for temperature on the assumption that the heated 

region, limited by the surface of the front, radiates as an absolute 

black body. Brightness was measured in the red and blue parts of the 

spectrum, where there were not only located brightness, but also color 

temperature (see § 8, Chapter II), In a shock wave with pres-- 

6 ö 
sure p «* 2*10 atm and compression -Sj •» 2.7 the temperature turned 

out to be equal to T « 10,000-11,OOO0!^ Appraisal of temperature 

according to the Internal energy known from mechanical measurements 

in reasonable assumptions on energy balance (here the dissociation 

of molecules of plexlglas is essential) testifies to the likelihood 

of the measured value of temperature. 

It would have been possible to try to measure, by optical 

means, the temperature at the time of emergence of she shock wave on 

the free surface. However, so that the measured temperature would 

coincide with the actual temperature in the shook wave, it is necessary 

to present to the experiment absolutely incredible requirements. In 

actuality, metals are opaque for visible light in very thin layers 

~i0~^ cm. At speed of shock wave of the order 10 km/sec the wave 
-11 

passes a layer of such thickness during the time «»10  sec. Even if 

it were possible to eomstruct a recording light Instrument with colos- 

sal resolving power with tine «»10 ^ to 10 ^ sec. In order to catch 
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the moment of emergence of the wave on the surface/ when from the sur- 

face of the substance the wave is separated by a transparent layer 

vLO" to 10"' cm, all the same It would be Impossible to ensure simul- 

taneity of emergence of the shock wave on the free surface in differ- 

ent points with the required accuracy. In other words, it is impos- 

sible to ensure parallelism of surface of front and free surface with 

a precision of «vlO  cm. 

If, however, we measure surface glow in a practically accep- 
-8 table time «-10  sec after the moment of emergence of the shock wave, 

then glow of the substance will not be registered in the front of the 
) -8 wave, but in an unloading wave, since during the time yLO  sec the 

unloading wave optically envelopes a very thick layer of the order 

\ of 10u cm/sec x 10" sec « 10  cmi this layer is absolutely opaque 
r 

for the light produced in the unloaded region whose temperature is of 

interest to us, (Question about surface glow of an unloading wave will 

be considered in detail in the following paragraph). 

Fundamental possibilities of experimental determination of 

temperature (and entropy) in a shock wave were shown in the work of 

one of the authors in [42]. Let us assume that the shook wave is so 

strong that after emergence of the wave on the free surface, the sub- 

stance during unloading is completely evaporated. Then on the front 

edge of the expanded substance the latter is in gas phase. If by 

some method we measure in gas phase the mechanical magnitudest den- 

sity and pressure, or temperature, then entropy can be calculated 

theoretically, since the thermodynamlc functions of gases are calcu- 

lated coBflparatlvely simply (see Chapter III). Bit by virtue of the 

adlabatlcness of the process of unloading the entropy of the substance 

in a shock wave is exactly equal to the entropy in gas phase during 
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unlojsuilng« Thus, knowing the entropy In gas phase, we yiereby know 

it also in the shook wave. 

In [42j it is shown how it is possible to calculate tenperature 

along the entire adiahat of unloading, if we know the specific inter- 

nal energy as a function of pressure and density along the adiabat 

and one value of temperature in any point of the adiabat« Actually, 

from the thernodynamic identity 

^-Ä^-T^rfp+Ky+p)«^. 

and the condition that entropy is a function of state, aid dS is the 

total differential, if follows that 

Producing differentiation, we obtain, after reductions, a 

partial differential equation for function T(p, V)t 

(11.68) 

The characteristics of this equation are the lines, the dif- 

ferential equation of which statess 

#—(£+/)/(£)• 
Bit this is the equation of adiabat. Along the characteristics, 

i.e., along the adiabat, according to (11,68} 

.(^)« Tl(jt) • 

whence 

f-r.«p(-J^ir)-r..x,(|^_j. 

where the integrals are selected along the adiabat. This formula also 

proves the affirmation that was made. 
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Let u» note that knowing the value of entropy In two shock waves 

similar In aajplitucie (even not absolute values of entropy, but only 

their difference). It Is easy to calculate the temperature In the 

shock wave by using the thermodynamlc relationship 

AS • 

inasmuch as As, p and AV are known from mechanical measurements. 

Exactly so, knowing the values of temperature along the shock adiabat, 

we can also find the absolute values of entropy by integrating the 

thermodynamlc relationship 

r 

along the shock adiabat and attaching the constant of integration to 

the tabular value of entropy of the substance at normal conditions. 

§ 24. vapor alow of a Metal During Unloading 

In the preceding paragraph we noted that an attempt to "see" 

the high-temperature glow of the front of a powerful shock wave that 

is spreading through a solid at the time of its emergence on the free 

surface is doomed to failure. Let us consider in greater detail what 

should be observed here, what kind of glow will be registered by an 

instrument directed to the free surface, and how will surface bright- 

ness depend on time. Corresponding experiments were set up by S. B. 

Kormer, M. V. Sinltsyn, and A. I. Kuryapin, and the theory of the 

phenomenon was given in the work of the authors [4j5]. 

Let us assume that a powerful shock wave with temperature in 

front T^ on the order of several tens of thousand degrees at the time 

t - 0 emerges on a plane free surface of metal, bordering on a vacuum 

[surface of the front of the wave la assumed to be strictly parallel 
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to th# fi»ee iurfaoe of the body). The body should be placed in a 

vacuumj* otherwise the unloading substance will push the shock wave 

ahead of Itself in the air, where the temperature of the air will be 

very high and Instead of the metal glow under consideration we will 

see a glow of high-heated air. The shock wave will be considered so 

powerful that during unloading the metal is completely evaporated 

and is expanded in gas phase. Profiles of temperature in initial 

moment t » 0 and in any subsequent moment of time are depicted in 

Fig. 11.60. To moment t the wave of rarefaction envelopes a layer of 

substance with thickness c^t, where c^ is the speed of sound in a 

compressed substance behind the front of a shock wave. 

Inasmuch as the substance itself moves 

in a laboratory system of coordinates with 

speed u^, the coordinate of the head of a 

rarefaction wave at the time t is x ■ (u^ - 

- ci)t (to the initial position of free 

surface we will add the coordinate x « 0). 

The front edge of the expanding metal vapors 

flies forward with speed Ug, which is given 

by formula (11.66). Inasmuch as the sub- 

stance in an unloading wave is in gas phase, 

the temperature on the boundary with the 

vacuum is equal to zero. Just as density 

f 

t'0 ÜL 

(Ut-G^L 0 ««M Uft 

Pig. 11.60. Distri- 
butions of tempera- 
ture at the time of 
emergence of a shock 
wave on a free sur- 
face t ■> 0 and in a 
certain time, when 
t > 0. Radiating 
layer is shaded. II — 
instrument that re- 
cords light. 

and pressure. 

In the preceding paragraph we said that metals are opaque in 

very thin layers -10" cm. This means that already at the moment of 

tl»e t ~ to"
11 sec (at speed =1 . D . 10« o«/.«) the layer of «n- 

load metal almost completely shields the high-temperature radiation of 

g^iSgM^ä^^a^ifeäw^*^^^ 
f j^ir^^^^^^^i-a^fe^fia illtfiiiiima^BSii^'^- ^fc 

ii^hSai'itt^¥a^^liaUJ^fi^^*i&^ 
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temperaljure T^and the metal, preliminarily heated by the shock wave, 

becomes iGVlslble, 

Let ws see how the siarface of a substance glows In a contlmiotts 

spectrum and what kind of radiation enters a recording Instrument that 

Is directed to a plane free surface. Vapors of the metal constitute 

a monato ''c gas, the optical properties of which In the continuous 

spectrum were studied In detail In Chapter V. The coefficient of 

absorption of visible light extraordinarily rarely depends on tempera- 

ture. It Increases rapidly with Increase of temperature, whereby 

the cold vapors are absolutely transparent In the ccaitlnuous spectrum, 

Qlow of a layer with distribution of temperature similar to that de- 

pleted In Pig, 11,60 was already considered In Chapter IX. The 

phenomenon Is absolutely analogous to the glow of air In the heating 

layer that forms In front of the compression shock in a strong (super- 

critical) shock wave. At low temperatures on the boundary with a 

vacuum the vapors are.transparent and radiate very weakly. Conversely, 

in deeper layers, where the temperature is high, the vapors are abso- 

lutely non-transparent for visible light and "do not re]ease" the 

quanta produced in these layers. To "infinity,, from the surface of 

the substance depart the quanta that will be produced in a certain in- 

termediate, radiating layer far from the boundary on the vacuum at an 

optical distance xv  on the order of unity (the radiating layer is 

shaded in Fig. 11,60), 

Knowing the distributions of temprature and density on the 

coordinate and coefficient H of light absorption of a given frequency 

v as a function of temperature and density, it is possible to calculate 

the effective temperature of radiation of this frequency by general 

formula (2,52), 
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It is possible, however, to proceed In a simpler mariner, noting 

that effective temperature coincides with temperature of radiating 

layer (geometric thickness of radiating layer Is small and the tempera- 

ture in it hardly changes), i.e., we can compose an expression for 

optical thickness, counted off from the boundary on the vacuum, and 

equate It to unityi 

«.--. J M«)^-l. (11.69) 

Passing to the variable of Integration, I.e., temperature, we 

write 
- ^**(T)%riT-i. (il#70) 

This Is also an equation for determination of effective tempera- 

ture. For calculation of the derivative from the distribution of 

temperature we shall use the general solution for a rarefaction wave 

(11,65) and (11.64). 

Inasmuch as the substance on the front edge, near the boundary 

on the vacuum, i.e., exactly in the region where the radiating layer 

lies, is in gas phase, then, assigning the effective adiabatic exponent 

of gas 7, we can find the approximate distribution of all magnitudes 

in this region in clear form. For this we must Integrate equation 

(11.64) not on the side of the compressed substance, as this was done 

in the derivation of formula (11.65), but on the side of the boundary 

with the vacuum 

mtUmmm »-IH-\ £-»«-} «^ (11.7i) 

and use the adiabatic bound c(p, s). 

The solution will contain, as parameters, the speed of the 

boundary Ug and entropy s. We shall not write out this solution^ but 
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will find the derivative directly from equation (11,65) and differen- 

tial relationship du - -c dp/pjs 

7.w~w~(w\—'(-W.-Clr)^ 

or 
im 
it '~^{(^)«-(3w)«}*-;'5|pij--?-- 

Here we used the relationship tf-^VT, and also the adlabatlc 

bond T ~ p^" . 

Equation (11,70) now takes on the formt 

-^rfr-i. (11.72) 

Hence It Is clear that with the passage of time, the Integral 

an consequently, also the effective temperature of radiation decrease. 

The physical cause of this consists In that with the passage 

of time, when the unloading wave envelopes an even greater and larger 

mass of substance, the geometric and optical thicknesses of the layer 

between the boundary on the vacuum and the point with given temperature 

continuously Increase, Therefore,, the radiating layer, distance from 

the boundary at an assigned optical distance on the order of unity, 

moves Into a region of even lower temperatures (Fig. 11.61) 

It Is remarkable that from equation (11,72) for the dependence 

Tef(t) the speed of the boundary u« fell», which to us Is unknown, 

since It Is determined by the thermodynamlc functions of the substance 

along the entire adlabat of unloading. Including the unexplored region 

where density is somewhat less than the normal density of a solid. As 

•Since In expression (11.70) coordinate x does not enter In 

clear form, but only derivative ||£. 
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a parameter In equation (ll,72) there enters only entropy S, owing to 

the dependence of the coefficient of absorption HV on density (number 

of atoms per cm' - n), nhtch is connected with ten^erature by the 

adiabatic equations 

where B(S) is the entropy constant. 

t, Im 

Pig. 11,61. Shift of 
radiating layer (shaded) 
in an unloading wave with 
the passage of time. 

If the basic mechanism of absorp- 

tion of visible light in vapors of 

metals is photoelectric absorption by 

highly excited atoms (and also decele- 

ration absorption in the field of 

ions), the coefficient of absorption 

H can be approximately calculated by 

formula (5,W)t 

where a is a constant depending on frequencyi (a -» v"^); I is the 

lonlzation potential. 

There are indications of the fact that in dense vapors of heavy 

atoms an essential role is played by deceleration absorption in the 

field of neutral atoms. In the work of L. M. Biberman and V, Ye. 

Romanov [44J it is shown that in mercury tubes of high pressure, evi- 

dently, this mechanism of light absorption is the main one (see % 7) 

Chapter V). In this case the coefficient of absorption M^ is propor- 

tional to the number of free electrons nÄ, i.e., the degree of ienlza- 
O ■ * 

tlon, and the basic temperature dependence of the coefficient of 
i 

absorption also has a Boltzmarm character, but with another   o 
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exponential Index 

% «-j«, - M' »^I^. (11.75) 

4r- 

where bv weakly depends on temperature (as lr*   ], 

At present It la difficult to say which of the mechanisms of ab- 

sorption plays a larger role, in any case, the general character of 

the temperature dependence of Hy in both cases is Identical H. ^ ^W^ 

where E ■ I - hv in the first case and E « l/2 in the second, it should 

be mentioned that numerically both values of E do not differ much for 

metals (when I •» 6-8 ev, hv « 2-3 ev). 

Let us approximately calculate the integral in formula (11.72) 

taking into account that the basic 

dependence of the integrand expression 

on temperature is included In the ex- 

ponential factor. Considering all 

slowly changing exponential temperature . 

factors to be constant, we shall obtain 

te-A/kref m conat^ i#e## we obtain the 

logarithmic drop of effective tempera- 

ture of radiation in time (Fig. 11.62): 

^•♦"lai+eoa»»' • 

Specific calculations show that for metals. Independently of 

the assumption on any of enumerated mechanisms of absorption, the 

effective temperature is of the order of 7000-4000oK In momenta 

t -v 10"f - 10" sec» (in this time the free surface departs notice- 

ably to 10  - 1cm at speeds -»10 km./sec). 

Fig. 11.62. Dependence 
of effective (brightness) 
temperature of the sur- 
face of an unloading wave 
on time. 

t  i »Whereas in a shock wave the temperature T1 can be tens of 
thousand degrees« 
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§ 23. Remarks on the Fundamental Possibility 
of Measurement of Entropy in a Shook Wave 

According to alow During ühloading 

Equation (ü.72) contains only one parameter that characterises 

the shock wave, i,e,# entropy s. If we know the optical properties 

of the substance. I.e., function H^T» p), then, experimentally taking 

the curve of glow Tef(t), we can find the absolute value of entropy 

In the shock wave. Conversely, assigning values of entropy from other 

considerations (calculating it with the help of thermodynamic functions 

of compressed solid matter and measured parameters of the shock wave), 

it is possible, from the experiment on glow of an unloading surfaoe, 

to extract data on the optical properties of vapors of metals, and 

namely, to determine the preexponentlal factor In the expression for 

coefficient of absorption. It is curious to not that on the assumption 

that there exists only one mechanism of absorption and H^ is expressed 

either by formula (11,7^) or (11,75), in the final equation for func- 

tion Tef(t), which Is obtained upon integration of (11.72), there 

enters only the product of unknown parameters a B(S) in the case of 

(11.7^) and \)^2{S)  In the case of (11.75) (since In (11.7^) H,, «v 

^ avn ~ V3, and In (11,75) % ^ \^2 ** \1?'2).    Entropy constant 

B in adiabatlc equation (11.75) depends on the absolute value of en- 

tropy S as B -* e'*5'11 (R is the gas constant). 

This means that by taking curves of glow in two experiments 

with somewhat differing amplitudes of shock waves and determining the 

parameters, let us say, the product avB, we thereby find the difference 

of entropies in shock waves, even not knowing the optical constant 

) 
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wherö one prinie and two primes pertain to the first and second ex- 

periments. By the difference of entropies, as was noted in the pre- 

ceding paragraph, we can also find the temperature in a shock wave. 

The described experiment can serve as the specific embodiment 

of the considerations expressed in the preceding paragraph about the 

use of measurements in gas phase in an unloading wave for the experi- 

mental determination of entropy and temperature in a shock wave, 

5» Some Other Phenomena 

§ 26, Electrical Conductivity of Nonmetallic 
Bodies in Shock Waves 

Under uaual conditions gases are good insulators. In suffi- 

ciently strong shock waves they become conductors. Something similar 

also occurs with solid dielectrics, which in strong shock waves conduct 

electrical current. 

However, if in gases the approach of conductivity is connected 

simply with thermal lonizatlon, which takes place at high temperatures 

of the order of ten thousand degrees and above, obtainable in a shock 

wave, the physical cause of transformation of solid dielectrics into 

conductors in shock waves is considerably more complicated. Is con- 

nected more quickly with compression than with Increase of temperature, 

and in many respects Is still not clear. 

Electrical conductivity of condensed substances in a shock wave 

was studied by several authors, A. A. Brish, M, S. Tarasov, and V,  A. 

Tsukerman developed a method and measured the conductivity of products 

of detonation of condensed explosives [^5J, and also water, organic 

glass, and paraffin [46],* in strong shock waves with pressures up 

♦The conductivity of air was also studied in this work. 
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to ft million atmospheres. Conductivity of an ionic crystal of sodium | 

chloride at pressures up to a million atmospheres was studied in the 

above-cited work [3]* Weaker shock waves (to 230,000 atm)  were 

worked with by Alder and Christian who measured electrical conductivity 

of ionic and raolaoular crystals of CsJ, Jg, CsBr, LiAlIfy, and others 

The essence of the basic electric-contact method, described in 

article [45], with the help of which were measured conductances in 

[45, 46, and 3]* consists of the following. In a body, throt^h which 

there spreads a shock wave, there are introduced electrodes (contacts) 

K, united by shunting resistor Rsh (Fig. 11,65). Uhtil the shock wave 

not approaches the contacts, the resistance of the substance, i.e., 

the dielectric, is practically infinite.  After the shock wave reaches 

the contacts the dielectric becomes a conductor, and the unknown 

resistor Rx is parallel connected to resistor Rsh. 

shMkHtsr* Shortly before the approach of the 

shock wave to the contacts, through the 

high-voltage resistor Rhv and contactsj capa- 

citor C discharges. The capacitor is pre- 

liminarily charged to a high voltage of 

several kllovolts (this is done with the 

help of the starting thyratron). Resistor 

Kjiv ^ ^sh* so tlMlt the cia,pent in t'he net;" 

work is determined only by resistor R^^. 

The potential difference on contacts Is pro- 

portional to the resistance between contacts. 

The latter is equal to R^ until approach of the shock wave and R ■ 

* RshR3/^R8h + R )  after the shock wave reaches the contacts (resis- 

tor Rßh is selected In such a manner so that it is of the order of Rx). 

.   B6Z 

H eenncstioa 
systM 

Fig, 11.63, Diagram of 
an experliient on the 
measurement of electri- 
cal conductivity in a 
shock wave. 
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If ügjj, äfid tJx cornespond to the potential difference on the contacts, 

then üBh/Ux « RghA » (Rsh + ^x)/^»    Voltages tJ^ and üx are measured 

by an oscillograph} Rsh Is knownj unknown resistance Rx Is calcualted 

with the help of this formula. 

For transition from measured resistance R to conductivity of 

the substance electrolytic simulation Is applied. For this the 

electrodes» under the exact observance of geometry of the experience, 

are dipped Into an electrolytic bath. By changing the density of the 

electrolyte we obtain a resistance equal to that measured In the ex- 

periment. The unknown conductivity Is equal to the known conductivity 

of the electrolyte (for other methods of measurement of conductivity 

of substance in a shock wave see [45,5]), 

Experiments [46] showed that electrical conductivity of dielec- 

trics In a shock wave Is Increased by many orders. If Initial con- 

ductivity of distilled water composed a *- 10"^ ohm" cm , then at 

pressure p « ICr atm there would be obtained c ■ 0,2 oh«  cm . 

Conductivity In tae shock wave absolutely did not depend on initial 

conductivity of the water, connected with impurities. The same value 

of o in a shook wave was also obtained for ordinary water with con- 

duotlvlty cr ^ 10 ^ ohm  cm . 

Such perfect dielectrics as paraffin (o - 10  ohm"1 cm"1) 

and organic glass (o ~ 10 * ohm" cm ) at pressures of the order of 

10 atm were transformed into fair conductors with conductivity 

o ♦* 1 to 2*10 ohm  cm" .* 

In paraffin a noticeable increase of conductivity is observed 

at pressures «<6-7-iO^ atm and upon further Increase of pressure o 

♦For comparison with metallic conductivity let us Indicate that 
In copper o «* 106 oha" cm" , In iron o <• 10^ ohm" cm , and in »er- 

cury c *• 10 ohm"~ cm" • 
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grows rapidly. In organic glass there occurs an extraordinarily sharp 

growth of conductivity at pressure Q»lCr atm, "% 

Change of electrical conductivity of organic glass and paraffin 

In a shock wave by 13-20 orders confirms the Mmetalllzatlon', of these 

dielectrics during compression to pressures of the order of a million 

atmospheres.* 

The phenomenon Is Impossible to explain by thermal lonlzatlon. 

It is connected with change of structure of the electron zones of a 

solid during compression. During compression, the zones draw near, 

and the distances between them decrease, thereby facilitating the 

electron transitions leading to the appearance of free electrons and 

metallic conductivity in the substance earlier than in the former 

dielectric.*♦ 

Qualitative considerations concerning the metallization of any 

substance during sufficiently strong compression were discussed by 

Ya, B. Zel'dovich and L. D. Landau [48], where they considered the 

transition of metals from solid in gaseous state (metallization of 

hydrogen at large densities was studied A. A. Abrlkosov [^9]). 

It should be said that the components of the mechanism of metal- 

lization of dielectrics in a shock wave are still not fully clear, and 

this phenomenon requires further theoretical and experimental study. 

In particular, it is interesting to separately establish the roles of 

«In the experiments of Alder and Christian [^j]  they measured 
considerably smaller electrical conductivities. The phenomenon of 
"metallization11 in those comparatively weak waves which these authors 
worked with, was expressed much weaker. 

••Influence of pressure on electrical conductivity of dielectrics 
was studied earlier {in the region of comparatively small pressures). 
Thus, BPldgeman [30] established that yellow phosphorus, which is a 
dielectric, at pressures 1.2-1,^.10 atm and temperature 200oC changes 
into a new modification, i.e., black phosphorus, which has metallic 
conductivity. The density of black phosphorus is 1.4 times «ore than 
that of yellow. 
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temperatu*«© and cqmpr^sslon In the increase of conductivity. 

Experiments [5J with sodium chloride« which under normal condi- 

tions possesses small ionic conductivity, permit the consideration 

that a basic role in the increase of electrical conductivity with in- 

crease of amplitude of shock wave, in distinction from the preceding. 

Is played by temperature» Curve of the dependence o(T) has a Boltzmann 

character o ^ e"^^ with activation energy £ « 1,2 ev, which obviously 

also confirms the ionic nature of conductivity of NaCl in a shock 

wave. 

Numerically, on the boundaries of the investigated interval 

of amplitudes when p - 105 atm, T - Ho0^ ^2 - 1.26, a » 2.10~5 

ohm'1 cm"1! when p - 7.9#105 atm, T » 6i500K, ^ » 1,85, and a » 5.26 

ohm  cm , 

§ 27 Measurement of the Refraction Index of a Substance 
Compressed in a Shock Wave 

The width of the front of a shook wave In solids and liquids 

is comparable with the interatomic distances and much less than the 

wavelengths of visible light X -* 4000-7300 A, Theref ore^ t.  light, 

passing through a transparent undisturbed substance and falling on 

the surface of the front of a shock wave, which separates the undis- 

turbed substance from the compressed, is reflected also, as from the 

usual boundary of two different media. Reflection of light from the 

surface of the front of a shock wave in transparent bodies, water, 

and plexiglas was investigated in experiments set up by Ya. B, Zel'- 

dovich, S, B. Kormer, M. V, Sinitsyn, and K, B, lUshko [511. 

Knowing the refraction index of an undisturbed substance and 

the angle of incidence, au: measuring the reflectivity, it is then 

possible by known Fresnel formulas (see, far instance [52$ to calculate 
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the refraction ihäex n of a substance cca^ressecl by1 a shock wave«* 

This method In general Is also applicable when the substance 

compressed by the shook wave is not transparent. If the range for 

absorption Is comparable with the wavelength of light, when in princi- 

ple it is possible to also measure the real and imagifmry parts of 

the refraction index. For this it is necessary to determine the de- 

pendence of reflectivity on the angle of incidence and polarization 

of reflected light [54]. 

In a sufficiently strong shock wave that is transparent in un- 

disturbed state the substance becomes non-transparent. Disturbing 

of transparency at high pressures can occur for various reasonsi due 

to cracking of the substance, because of phase transitions, and owing 

to rearrangement of electron levels., in particular during "metalliza- 

tion" of dielectrics, which was mentioned in the preceding paragraph. 

A fundamental diagram of experiments [5i] on the study of re- 

flection of light from the front of a shock wave in water is shown 

in Fig. ii.64. 

The plane surfaoe of the end of the explosive charge touches 

a plexlglas plane on which there has been applied a layer of water. 

Over the water there is placed a plexiglas prism. Movement of the 

beams before the explosion is shown in Fig. 11.64a. On the prism there 

*In gases the width of the front of a shock wave, i.e., the 
thickness of the transition layer between undisturbed and compressed 
substances, is of the order of the wavelength of light; therefore 
the Fresnel formulas are inapplicable heret However, in gases the 
refraction index at various densities is known. Study of reflection 
of light in these conditions permits the determination of width of the 
front of a shock wave. Such measurements were made by Hornig and Cowan 
i53i  for shock waves of weak intensity (see Chapter IV). 
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drops beap 1 from the soir09 of light and from it there emerge beams 

reflected from two surfaces of water II and III. 

Movement of beams after esplosion and 

emergence of the shock wave into the water 

is shown in Pig, il.64b. Reflection from 

the surface of the front of the shock wave 

Is given by beam IV and reflection from the 

moving boundary between the plexlglas sub- 

layer and compressed water by beam V. Beam 

V now replaces beam III. Reflected beams 

are recorded by photographic means with 

time scanning. A diagram of the photograph 

is shown In Pig. 11.65. Before blasting, 

beams II and III give straight light lines 

on moving film. At the time t^ of emergence 

of the shook wavo into the water there ap- 

pear two lines, from beams IV and V, where 

line V now replaces completed line III. Line II continues, remaining 

constant up to emergence of the shock wave on the upper surface of 

water (moment tg). As can be seen from Pig, 11.64b, according to 

approach of the front of the wave to the upper boundary of water, the 

distance between beams IV and II decreases. At the time of emergence 

tg beams IV and II coincidej line IV in Pig. li.65 reaches line II. 

The distance between beams II and III in nature were approxi- 
6 

mately 20 ram, and the difference of times tg - t^ *■ 4«10  sec. 

Speed of the front of the shock wave in water was measured by 

the slope of line IV. Knowing the shock adiabat of water, one can 

determine density and other parameters behind the front. Reflectivity 

Pig. 11.64. Diagram of 
an experiment on the 
measurement of reflec- 
tion of light from the 
front of a shock wavet 
a) before exploslonj 
b) in the process of 
propagation of the 
shock wave through 
water, 
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«ras coinput«ä by tsfe© ratio of Intensities of incident aM reflected 

beams; intensities were determined by photometric means» 

The refraction index of compressed 

water was determined by two methodsi geo- 

metric (by the distances between reflected 

beams) and by reflectivity. The average 

values in several experiments, calculated 

by this and another method, turned out to 
Fig. il.65. Diagram of 
photochronogram, 

be close to one another. 

Within the limits of change of density of water from p/pQ « 

« 1,47 to p/pQ " i«8i# which corresponds to pressures from 50 to 150 

thousand atm, the refraction index almost does not change and is 

equal to n » ±A9 + O.OJ (by geometric method) and n - 1.46 + 0.0^ 

(by reflection). In water of normal density n ■ n« » 1.555. Experi- 

mental results of other authors on the measurement of the refraction 

index of water at small pressures are quite well described by the 

linear dependence n » 1 + 0,554 p ,* where p is the density in g/cm . 

This formula will agree with the data for steam and also the index 

of refraction of ice at 0oC and p ■ 0,92, equal to 1,511. 

The value of the indices which are obtained for water compres- 

sed in a shock wave are noticeably lower than the values dictated by 

the given formula. 

In all probability, the divergence should be blamed on the 

effect of temperature (during compression by shock wave to density 

p - 1,8 p0 water was heated to 1100
0c). The mechanism of the influence 

•The Lorenze — Lorentz formula gives much worst agreement with 
the experiment. 
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of temperature (the higher the temperature, the lower the refraction 

Index) still remains unclarlfled. 

Investigations of reflection of light from the front of a shock 

wave showed that the surface of the front Is smooth (otherwise reflec- 

tion would be diffuse, and not mirror). 
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CHAPTER  XII 

CERTAIN SELF-SIMILAR PROCESSES IN GAS DYNAMICS 

1. Introduction 

§ 1. Transformation Groups Alloyed by Equations of Gas Dynamics 

In Chapter I we already became familiar with several examples 

of self-similar motions (with the self-similar wave of rarefaction, 

with the problem about the powerful explosion.* In this chapter we 

will study in detail the self-similar motion of one of two basic types. 

In the introductory section of the chapter, we will show how in 

.equations of gas dynamics the possibility of existence of self-similar 

solutions is expressed and we will give the common characteristics, of 

self-similar motions. It is expedient preliminarily to become familiar 

with the common group properties of equations of gas dynamics. 

We will consider one-dimensional adiabatic motions of an ideal 

gas with constant heat capacity, i.e., motions possessing plane, 

cylindrical, or spherical symmetries. Let us write out a system of 

equations for these types of motions. In continuity equation (1.2) 

we open the sign of divergence and present the equation in a single 

#In Chapter X we considered self-similar problems of the theory 
of propagation of heat by the mechanism of thermal conduction in a 
motionless substance. 
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form, common for all three forms of symmetry; furthermore, we will 

divide the entire equation by density p. In adiabatic equation (1.13) 

we place the expression for entropy (1.14) (replacing specific volume 

by density). Equation of motion (1.6) will remain without changes. 

Let us obtain the following system of equations for density, pressure, 

and speed as coordinate and time functions; 

Number v  in the continuity equation is equal to v * 1,2,3  for 

plane, cylindrical, and spherical cases correspondingly. Variable 

r plays the role of coordinate x in the plane case and radius in the 

cylindrical and spherical cases. 

Equations (12.1) allow several transformation groups which we 

will now enumerate. It is assumed that simultaneously with the trans- 

formations in the equations analogous transformations are made both 

in the Initial and boundary conditions of the problem. 

1) Time t enters the equations only under the sign of the dif- 

ferential, and consequently, the time shift, accomplished by means of 

introduction of the new variable t1 ■« t + t0, does not change the 

equations. The possibility of a time shift is connected with the 

arbitrariness In selection of the beginning of the time reading. 

2) In the plane case (v ■ 1) the coordinate also enters the 

equations only under the sign of the differential. Therefore In the 

plane case there is also possible a coordinate shift connected with 

the arbitrariness in selection of the beginning of the coordinate 

reading. Introduction of variable x' ■ x + XQ does not change the 

equations. 

974 
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In the spherical and cylindrical cases this is impossible, since 

the radius enters the continuity equation not only under the sign of 

the differential. 

Equations of gas dynamics contain five dimensional magnitudes: 

p, p, u, r, t, from which three possess independent dimension. For 

instance, if one were to select as the basic dimensional magnitudes 

density, coordinate, and time, the dimensions of speed and pressure 

are In the form of [u] « [r]/[t3j [p] » [p3[r ]/[t ]. In accordance 

with the existence of three independent dimensional magnitudes the 

equations permit three independent transformation groups of similarity, 

which are connected with the arbitrariness in selection of units of 

measurement of the basic dimensional magnitudes. 

1) Let us assume that functions p - f^r, t), p ■ fp(r, t), and 

u » f'zCr, t) constitute the solution of equations for a certain defined 

motion. Let us change the scale of density, not changing the scales 

of coordinate and time, for which we introduce new variables p' ■ kp, 

p' ■ kp, leaving the rest without change. The equations will not be 

changed. If we simultaneously change in the same form the intial and 

boundary conditions, increasing density and pressure k times, the new 

motion will be described by the functions 

«'-*A(M), p'-Ä/,(M). u-Z^r.O. 

The new motion is like the old, differing only by scales of density 

and pressure. 

2) Let us change the scale of length, not changing the scales of 

density and time. The  equations do not change, if we cross in them 

2 
to new variables} r' ■ mr, u1 ■ mu, p' ■ m p, leaving the others, 

p and t, without change: p1 ■ p, t1 ■ t. This means that if some 

motion is described by functions p - f^Cr, t), p » tni*»  t). 
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u « f-«(r, t), by means of simple change of scales It Is also possible 

to describe the new motion, in which the distances and speeds are        - / 

increased m times, and pressure is increased m times (density nsaains 

constant). The solution for the new motion are the functions: 

5) Finally, we will change the scale of time, not changing the 

scales of length and density. The equations allow this transformation; 

I'-n«, u'—J. p'—jj-, Q'-Q, V-r. 

This means that if in initial and boundary conditions the speeds 
p 

are decreased n times and pressure n times, leaving density constant, 

the new process will be like the old one, but will only be n times 

slower. 

By means of consecutive application of three transformation groups 

of similarity one can obtain solutions for an infinite number of new 

motions with modified scales of density, length, and time. In par- 

ticular, if we simultaneously extend length and time an identical 

number of times r! « ir,  t' ■ it, the solution will remain constant. 

Such transformation is equivalent to consecutive application of 

transformations 2) and 3)  with m - n « i. In symbolic form this is 

possible to record soi 

»(f, t)-*tu(lr, |)-*-}..«»(//". lt)~u(lr. It) 

and analogously for other functions, p and p. 

§ 2. Self-Similar Motions 

In the preceding paragraph it was shown that equations of gas 

dynamics allow similarity transformations, i.e., there are possible 

different motions which are similar to each other and can be obtained       , 

fro» one another by meens of change of the main scales of length. 
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time, and density. Regarding, however, the given motion, it can be 

described by the most diverse functions of two variables r and t: 

p(r, t), p(r, t), u(r, t), including also the parameters which enter 

the initial and boundary conditions of the problem (and adlabatic 

exponent 7). 

There exist, however, such motions, the distinctive property of 

which is the similarity conserved in the actual motion. Such motions 

are called self-similar. Distribution of any of gas-dynamic magnitudes 

with respect to coordinate, let us say, pressure p, in self-similar 

motion evolves in time in such a way that are changed only the scale 

of pressure P(t) and coordinate scale of the region enveloped by the 

motion R(t), but the shape of the profile of pressure remains constant. 

By means of extension and reduction of scales P and R it Is possible 

to reach exact coincidence of curves p(r), responding to different 

moments of time t. Function p(r, t) can be presented in the form of 

p(r, t) « P(t)7r(r/R), where the dimensional scales P and R somehow 

depend on time, and dimensionless ration p/P « TT{T/R)  is a "universal" 

(in the sense of independence on time) function of the new dimensionless 

coordinate ? = r/R. 

By extending and reducing scales P and R in accordance with their 

dependence on time, it is possible from the "universal" function Tr(|) 

to obtain a true curve of pressure distribution with respect to 

coordinate p(r) for any moment of time t. Likewise expressed are the 

other gas-dynamic magnitudes: density and speed. 

For self-similar motions the system of equations of gas dynamics 

in partial derivatives reduces to a system of ordinary differential 

equations with respect to new unknown functions of self-similar 

variables | ■ r/R. 
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We shall work out these equations. For this we shall present 

the solution of partial differential equations (12.1) In the form of 

the produots of scale functions by new unknown functions of the new 

{   self-similar variable |s 
I 

I 5—jp, Ä-i?(<). (12.?) 
i ' 
! 
I       Scales of pressure, oensity, speed, and length are not all inde- 
I 

pendent upon one another. If one were to select as the main scales 

of length R and density p0, as the scale of speed it is possible to 
dR P 

take the magnitude -^ s R, and as the scale of pressure,p0R. This 

does not disturb coramunity and the scale is determined with an accuracy 

of the numerical coefficient, which is always possible to include in 

the new unknown function. We shall find the solution in the form 

where TT, g, and v are new, dimensionless functions of self-similar 

variable f, for which one should compose differential equations. Kiese 

functions are sometimes called representatives of pressure, density, 

and speed, correspondingly. Scales of R, p0, and R somehow depend on 

time, although In an unknown manner. 

We shall place expression (12,3) in equation (12.1), take into 

account the determination of self-similar variable (12.2), and shall 

use the rules of differentiation of the type: 

W" M 

(differentiation of scales in time is designated by the dot, and 

differentiation of representatives with respect to self-similar 

variable, by the prime). 

As a result, after simple transformations we obtain the equations: 
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■j+TT I/+ («'-öOöf)' + (v-l) f] -0. 

JP • 
a * 

(12.4) 

j J(ü»C'-»ä»)+(»-5) (iii«r-*)'-o. 

So that presentation (12.3) is meaningful and it is possible to 

write differential equations for new unknown functions 7r(|), g(C)# and 

v(^), it is necessary to divide variables t and t in equations (12.4). 

For this, in the second equation one should put RR/R2 - const, whence 

(when const ^  1) 

R~At*. (12.5) 

Here A and a are certain constants (A - dimensional, a - number). 

In the first equation of (12.4) it is necessary to put -^ « 

const p which gives 
PO 

fc-A*. (12.6) 

where B and ß are also constants. The  first member in the third 

equation of (12.4) then is turned into a constant automatically. 

Thus, all scales in self-similar motion depend on time according 

to root laws, and the self-similar variable has the form» 

l-y»^ (12.7) 

Equations (12.4) are now transformed into a systum of three ordi- 

nary differential equations with respect to three unknown functions 

*■(!)* &ii)» &n& v(0« ^e system contains exponentsi constant 

numbers a and ß. In an analogous way the initial and boundary condi- 

tions of the problem, will be converted to dimensionless form. They 

•As noted by K, P# Stanyukovich 11} 9  in addition to root »elf- 
aisillarity, exponential self-siaiil&rlty Is also poaaible, in whloh 

R - A'e11*, p0 - B»e
nt, and | - re"1116/^», whsre A», B«, % and n are 

constants« Ttm eaponsntial soiuticm satisfies the «ouatioa 1^^ « 
- const lÄJan const ■ 1# In the »a4a?lty of practically lnt«?est3jag 
problems, self-siallatlon has an exponantial charaetar. 
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i j are converted into conditions for functions TT, g, and v. 

I j     Here we shall write out the system of equations In the conmon. 

«I 
j j form. Hie equations will be written subsequently In reference to 

j i specific problems. In many motions the scale of density pQ is constant 

; : (exponent ß « 0). This takes place, for instance, in all cases when 

| j a shock wave (or wave of rarefaction) spreads through an initial gas 

of constant density. 
■ I  ' .■■■... 

I j     Exponent ß usually differs from zero in those problems in which 

i ( the density of initial gas is distributed in space by root law of the 
i '    '. ft 

! | .type PQO " const r . In these cases exponent ß is determined through 

j ; known exponent 5 and a (when 5 » 0, ß - 0). Thus, in the system of 

h       equations for function TT, g, and v (and in boundary conditions) there 

j ! enters only one new parameters the exponent of self-similarity a. 

The exponents in scale functions in a simple manner are connected 

with exponents a and ß (i.e., a and 5). For instance, when the scale 

of density is constant (ß - 0, p0 - const), R ~ t
a, R ~ t " , P - 

«■ PQR ^ t *■  '. 

Inasmuch as the scale of length R in a simple manner is connected 

with time, the scales of speed, deneIty,, and pressure can be considered 

as functions not of time, but of scale of length R; with help of the 

relationship R ~ ta we find; 

From expressions for scale of density PQ ~ ^ '- R^'a and the 
Pi 

law of distribution of initial density in space PQQ » const r, it is 

clear that p0 ■ PQQC^)^ for instance, as the scale of density p0 

serves the initial density of gas at the point where the shock wave 

'■^MMI^^^^^^^^^^^ 4^Äfe 



is at the time t(R Is the coordinate of the front of the shock wave). 

From this follows the above-mentioned connection of exponents ß and 6: 

ß = a5. 

When ß = 0, and pQ » const, functions p, p, and u hy formulas 

(12.3) can be written in any of the equivalent forms: 

f~coiistf'(«-<te(£)»cöi*t/r* «d), 

ii-eonst<«-«i;(6) = constÄ * aß), 
C» const f(g). 

(12.8) 

§ 3. Conditions of Self-Similarity of Motion 

It is natural to pose the question: what requirements must be 

satisfied by the conditions of a problem so that motion is self-similar? 

For the answer to this question it follows to draw-on considerations 

of dimension. 

Equations of gas dynamics (12.1) besides variables of functions 

p, p, and u, and independent variables r and t, do not contain any 

dimensional parameters (the only parameter, 7, is dimenslonless). 

Dimensional parameters enter the initial and boundary conditions of 

the problem. This also gives the possibility to construct functions 

p(r, t) and p(r, t), since all five variables, p, p, u, r, and t, have 

different dimensions, whereby three of them are independent. Inasmuch 

as the dimensions of pressure and density contain the symbol of mass, 

at least one of the parameters of the problem also should contain the 

symbol of mass. 

In many cases this is the constant initial density of gas PQ in 

g'cm . In a number of problems the initial density is distributed 

in space by root law PQ0 « br . Then this is parameter b, with 

dimension [b] » g*cm y . Let us designate the parameter containing 

the symbol of mass through a. In the most common case its dimension 
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is [a] - g*oa sec . Considering of the dimensions of functions! [p] • 
''"' ' ' 1 '' * 2  '        ••'5 «»I 

» g-cm" sec , [p] * g*ca ^, [u] ■* cm*sec , it is possible« not dis- 

Iturbing conBttunlty, to present then in the form proposed by L. I. Sedov 

[2]: 

'■■;*5H•^• *m'&S!!0* »-TK» (12.9) 

where P, Q,  and V are dimensionless functions of independent variables« 

which depend on dimensionless combinations containing r and t and 

;parameters of the problem. 

In the general case there are two dimensionless variables! r/r0 

and t/t0, where r0 and t0 are parameters with dimensions of length and 

time« either directly enter the conditions of the problem« or can be 

composed by means of combination of parameters of another dimension. 

Functions P, G« V then depend on r and t separately and the problem 

ils not self-similar. 

It is possible to give a great number of examples of similar 

motions. Let us refer to onet the problem about a wave of rarefaction 

which appears when a piston is advanced from a gas with variable speed 

M^ - U(l - e 'r) (see § 10, Chapter I). In this example the role of 

parameter a is played by the constant initial density of the gas p0. 

Furthermore« the problem contains dimensional parameters [T] « secj 

[U] - cm*sec « and initial speed of sound [CQ] « cm»sec" (or initial 
2   pCK 

ipressure p0; CQ - 7r-)> Dimensionless variables can be« for instance« 

It/x and T/CQT« or r/üx (r0 » c0t or UT). 

If from the parameters of the problem it is Impossible to compose 

jcales of length and time« xhe variables r and t cannot enter functions 
i 

[P« 0« and V separately! the functions can depend only on a dimensien^ 

iless combination composed from r and t« £ » r/Ata« where A is a2 

'"".JrfVH--'  "    --.-.—-_—      ^      . 



-a certain parameter of dimension [A] =» cm« sec    .    Expressions (12.9) 

obtain the form 

P~-&&ZP(to   *~-£?G®;   »-TF«)- (12.10) 

In this case the problem is self-similar and expressions (12.10) 

are equivalent to expressions (12.3)* differing from the latter only 

by the form of representative functions. 

We shall demonstrate this in an example of self-similar motions 

with constant scale of density. With this, a ■ p0, k = -3$  s « 0, 

so that expressions (12.10) take on this form: 

^••■S-^(6).«-«pC(g), i»«7F<5), (12.11) 

Putting here r « ^R and noticing that R - aR/t,  we find that 

formul&s (12.11) and (12,5) are equivalent if 

*(S)-a«iyBL; C(S)-f(|); F«)~al3L.        (12,12) 

Study of self-similar motions presents great interest. The pos- 

sibility of reduction of a system of partial differential equations 

to a system of ordinary differential equations for new representative 

functions, extraordinarily simplifies the problem from the mathematical 

standpoint and in a number of cases permits the finding of exact 

analytic solutions. 

Furthermore, frequently self-similar solutions constitute the 

limits which the solutions of nonself-similar problems asymptotically 

tend to. Subsequently this position will be clarified in the examina- 

tion of specific problems. 

§ k.    Two Types of Self-Similar Solutions 

There exist two sharply different types of self-similar solutions. 

Solutions of the first type type possess the property that the index 
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I of self-similar a, and together with it,  the exponents at t or H in 

' all scales, are determined from considerations of dimension or from 

' laws of conservation. The exponents are then fractions with integral 

numerators and denominators. In problems of this type there always 

are two parameters with independent dimension. From these parameters 

[ there is composed a parameter whose dimension contains the symbol of 

mass and (see formula (12.10)), and another parameter A, which contains 

only symbols of length and time. With the help of the second parameter 

IA it is also possible to construct a dimensionless combination, i.e., 

, self-similar variable | - r/At , Bxe dimension of parameter A - 

cm«sec~a is determined by the index of self-similarity a. Two motions 

of such type were considered in Chapter Ii the problem about the self- 

similar wave of rarefaction (§ 11) and the problem about the strong 

explosion (§25). In the first case the two independent dimensional 

'parameters are initial density and pressure of gas p0 and p0. Prom 

|them it is possible to compose a dimensional parameter not containing 

the symbol of mass? the initial speed of sound c0 ■ (7PQ/PO)  • 

The role of parameter A is played by the speed of sound CQ. 

1 Correspondingly, 

:    In the problem concerning the strong explosion, the parameters 
-^ 2   -2 

are initial gas density p0 g«cm -' and energy of explosion E g»cm .sec , 

iwhich is always equal to total energy of gas enveloped by motion, 

owing to which in the problem there appears an integral of energy. 

(Let us recall that in the problem about the strong explosion the 

Initial pressure and speed of sound p0, c0 are assumed to be equal to 
r- •     
LZLSTOJ i.e., these magnitudes are not parameters of the problem)». . 

[from parameters p0 and I there is fomposed a parameter not containing 
L_.. c     _..,   ..j , .   .       o J 

     _ . ss* 
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.V5 cm« sec -2/5 mass A =» (E/PQ) 

i  - r/CE/po)1/^2/5; a - |. 

so that the self-similar variable is 

In an intense explosion in a medium with variable initial density 

p00 =» br , the parameters are the energy of the explosion E g*cm «sec" 

and coefficient b g«cm ^ . 

From them it is possible to compose parameter A, not containing 

mass. 

The self-similar variable has the form 

» t 
2 

5+* * 

(A self-similar problem about an explosion in a medium with variable 

density was considered by L. I. Sedov [2]). A self-similar problem 

of the same type is the one about propagation of a thermal wave from 

the place where a definite amount of energy was released (see Chapter 

X). 

As was shown in § 2, the index of self-similarity enters the 

system of differential equations for representatives as a parameter. 

Inasmuch as in self-similar problems of the considered type the number 

a is immediately found from considerations of dimension (or laws of 

conservation), the matter reduces to integration of the system of 

equations with known boundary conditions. 

In self-similar problems of the second type, exponent a is 

impossible to find from considerations of dimension or laws of con- 

servation without solution of equations. In this case the actual 

determination of the index of self-similarity requires integration 

of ordinary differential equations for representative functions. It 

turns out that the index is found from the condition that the integral 
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curve passes through a singular point« without which it is not possible 
cv -^ ■ ,■■■■ 

to satisfy the boundary conditions. 

Exsmples of self-similar motions of the second type can be the 

known problems about convergence of a shock wave to the center or about 

a brief impact, which will be discussed below. 

Consideration of solutions of specific problems, belonging to the 

{second type, shows that in all these cases in initial conditions of 

the problem there is only one dimensional parameter containing the 

I symbol of mass, tnd there Is no second one, with help of which it would 

have been possible to form parameter A. This also deprives us of the 

ipossibllity to establish number a with respect to dimension of param- 

Ieter A. In fact, the problem of course is peculiar to a certain 

dimensional parameter A cm. sec"; otherwise it would have been lapos- 

'sible to compose the dimenslonless pomblnation | - r/Ata. However, 

the dimension of this parameter (i.e., number a) is not dictated by 

|the initial conditions of the problem, but is found from solution of 

the equation. The numerical value of parameter A is impossible to 

iflnd from equations of self-similar motion. It can be determined only 

'by knowing how the given motion appeared. Thus, for Instance, if the 

self-similar motion appeared as a result of some nonself-simllar flow, 

iwhlch asyratotically went into a self-similar regime, the magnitude 

A can be found only be means of numerical solution of the full, n .1- 

self-similar problem, when the process of transition of nonself-simllar 

motion to self-similar has been traced. In greater detail these 

positions will be explained in the examination of specific problems. 

Self-similar motions of the first type, in which the index of 

1^-,^™ U  ..t.^.. ,«. oon.ia.«ti0n8 o, ^.ion, tn 

iSifitall were investigated by L. I. J^edov. Inasmuch as there is ^Iready 

~Vffv-' ■-"       " '  — — -■■•      -     ^ .....— -.. .. 
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the book of L. I. Sedov [2], in which he gives an exhausting descrip- 

tion of these motions and the solution of a number of specific prob- 

lems, in this chapter we will not remain on self-similar motions of 

the first type and will be occupied with the study of motions of only 

the second type. 

2. Convergence to the Center of a Spherical Shock 
Wave and Collapse of Bubbles in a Fluid 

§ 5. Formulation of Problem About Convergent Shock Wave 

Let us imagine a spherically-symmetric motion in which through a 

gas of constant initial density p0 and zero pressure to the center of 

symmetry there goes a strong shock wave. We shall not be concerned 

with the causes of the appearance of the shock wave. The wave could 

be created, for instance, by the "spherical piston" which pushed the 

gas inside, imparting to it some of its energy content. With the 

convergence of the shock wave to the center there occurs a concentra- 

tion of energy on the front (cumulation), and the wave is intensified. 

We shall concern ourselves with the motion of gas at small distances 

from the center (let us say, small as compared to the initial radius 

of the "piston"). In moments close to the moment of focusing, and at 

small radii, the motion, we must assume, to a considerable extent 

(to what extent will be mentioned below) "forgets" about the initial 

conditions and emerges into a certain limiting regime which must be 

found. 

In the problem there are no characteristic parameters of length 

or time. The initial radius of the "piston" cannot serve as the scale 

for the limiting motion in a region, the dimensions of which are very 

small as compared to it. The only scale of length is the radius itself 

of the front of the shock wave R, which is variable in time. The 

rriTIM'iif^''^"^-**"'*^'^ 
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scale of speed is the speed of the front || fi R a D, which is variable 

in time. Therefore it is natural to assume that the limiting motion 

will loe self-similar. Earlier« there were no bases for the determi- 

nation of the index of self-similarity at. Besides initial density 

PQ, there are no other visible parameters! with the help of which it 

1 would have been possible to construct a self-similar variable. Cer- 

tainly, the energy of all the gas# equal to the energy imparted to 

the gas by the piston, has a fully defined value. However, in a self- 

|similar region, the dimensions of which are small (on the order of R) 

and decrease with flow of time with convergence of the wave to the 

center, concentrated only a small, and then decreasing in time, portion 

of total energy is concentrated.» As will be shown below, the energy 

in a self-similar region, the radius of which is on the order of R, 

and mass of the order p0R , decreases with the passage of time by 

root law. However, it decreases when R -♦ 0 slower than Ry due to 

amplification of the shock wave and growth of density of energy 

(pressure). Prom what was said it is clear that self-similar motion 

should belong to the second type. The solution will contain a certain 

parameter A, of earlier unknown dimension, connected with the index 

of self-similarity a([A] ■ cm«sec"0; see § 2). If the index of self- 

similarity, i.e., dimension A, is found from the most limiting solu- 
i 

tion, the numerical value of parameter A will remain indefinite. It 

depends on the initial conditions of the problem and on the motion of 

fall the gas on the whole. 

*The assumption about the equality to zero of initial pressure, 
vi«e., the fact that the wave is strong, also excludes from problem 
•the parameter of speed, i.e., the initial speed of sound CQ, which 
ptogcther with initial pressure is equal to zero. 2 — 
r  t~ 
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As was already mentioned, the limiting, self-simulating solution 

Is valid only In a region of small dimensions of the order of the 

radius of the front and then near the moment of focusing of the shock 

wave, when this radius Is small.     « 

If we numerically solve the problem about motion of the entire 

gas on the whole under certain Initial conditions ensuring the appear- 

ance of a convergent shock wave (the problem with the "spherical 

piston" accomplishing a shock inside), the true solution in the region 

with a radius which decreases proportionally to the radius of the 

front will be even closer to the limiting self-similar solution. 

The form of a limiting solution does not depend on the initial 

conditions and character of motion of the gas at long distances, in 

particular on the law of motion of the piston. 

However, a limiting solution does not completely "forget" about 

the initial conditions.  It "forgets" about the form of initial motion, 

but selects from all conclusive information, give by the initial 

conditions, a singular number A, which characterizes the "intensity" 

of the initial shock (a "stronger" shock corresponds to a large value 

by A). 

If the form of the limiting solution itself does not depend on 

the Initial conditions and motion of the gas at long distances from 

the center, the character of approximation of the true solution to 

the limiting one, of course, depends on the initial conditions. The 

nearer the initial motion is to limiting, the earlier the true motion 

near the front emerges Into a self-similar regime. However, this 

emergence sooner or latter will certainly occur, no matter what the 

initial conditions and the motion at long distances are. 

Thus, we shall find the self-similar solution of the problem about 
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Iconvergence to the center of a shock wave* This interesting and 

important problem was solved Independently by L. D. Landau and K. P. 

Staiiyukovich [1] and Ouderley [5], 

§ 6. Fundamental Equations 

For the beginning of the reading of time t • 0 we shall take the 

moment of focusing« when R « 0, Then the time to the moment of focusing 

.turns out to be negative. In connection with this« the determination 

!of the self-similar variable should be changed somewhat, putting 

ü-iM-fr. i-^.^. (12.13) 

!   Formally, the solution, that we are seeking envelopes all space, 

!up to infinity, so that the intervals of change of variables are such» 

-a><l<0: R<r<»;   !<{<« 

(actually a self-similar solution ^s valid only in a region with a 

'radius of the order of R, and at long distances is somehow connected 

jwith the solution of a full nonself-slmilar problem). 

On the front of the shock wave € •* 1. The speed of propagation 

iof the front is directed to the center, i.e., it is negative, D s 

!» R - oR/t - -aR/|t| < 0. 
i 

We shall place the solution in equations of gas dynsmics (12.1) 

lln self-similar form (12.3). 

The system reduces to equations (12.4), in which v - 3, in accord- 

ance with the spherical synmetry of motion. The scale of density in 

;the problem is constant, p0 « const (this rather evident affirmation 

convinces us in the examination of the boundary conditions on the front 

[of the shock wave). Therefore, the member PQ/PQ ^ t)ie 3E'ir8t equation 

of (12.4) disappears and the bracket returns to zero. The factors, 
h"— ■ z~-   . 
idependina on the scales, in equations (12,4) reduce to the following.. 

 1.    . aao 



constants: 
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We shall obtain a sy is tea of equations for ttie representatives: 

(o-OeHo-Ho-S^'+r1«'«*), (12.14) 

(o-5)(ln«r-v)'+^ («-1)«"* = 0. 

For the purpose of simplification of the system we shall make 

a series of transformation.«?. Let us turn to the new representative 

functions P, G, V, connected with the old ones TT, g, v by formulas 

(12.12) (it is possible of course from the very beginning to find the 

solution of dimensional equations (12.1) in the form of (12.11)). 

Further, we shall introduce, instead of pressure, a new unknown func- 

tion, the square of the speed of sound* and correspondingly let us 

turn to the representative of the square of the speed of sound. 

In dimensional variables c « 7p/p. In presentation (12.5) c » 

- -yR ir/g ■ R z, where representative z ■ 7Tr/g. 
2   r      T* 

In presentation (12.11), which we crossed to, c « TrgP/G m~gZt 

where representative Z » 7P/a. Formulas (12,12) give the connec- 

tion between representatives z and Z: 

*The system of equations of gas dynamics (12.1) can also be 
written with respect to functions p, u, c2 instead of p, u, ps 

9m ,     9m , & 9tmo , I  •«•    Ä (12.1») 
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After introduction of new variables« system (12.14) obtains the 

foxln 
- tvt ■1*1 

■Sf+cr-^'-tr. > 
' P^&+jTnsf+$TBf-~*-rir-K (12.15) 

This is a system of three ordinary first order differential aqua» 

tions with respect to three unknown functions V, Q, Z from Independent 

variable (|. 

I    Let us consider the boundary conditions. On the front of the 
1 
,shock wave the laws of conservation are carried out« which In a limit- 

ing case of a strong shock wave give known relationships between gas- 
i 
idynamic magnitudes behind the front and the speed of the front (see 

formulas in (1.111))t 
i 

fi-ii^i:? A—4T«•fl,; «N-^rA i-^Spjt*-    (i2.i6) 

'    Putting here the expressions of dimensional magnitudes through 

representatives of (12.11) and considering that on the front of the 

shock wave r - B, 1*1« and also taking into account that D ■ R ■ 
- aR/t, we obtain the boundary conditions for the representatives! 

when ^ - 1 
i 

.   Hence, one öiould mention« it is immediately clear that the scale 

s'of density does not depend on time or radius of the front. Otherwise 

it would have been impossible to satisfy the condition p^ ■■ j _ | pQ * 

^ const on the front of the shook wive. 

1 Bepresentatives also obey the;conditions to infinity. At %e, 

|44me-of focusing t • 0, speed, pressure, and speed of sound at soar--- 

STOP '<,»>?£ .   ^ 
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finite radius r are limited. But with t » 0 and finite r,  ^ ■ oo. So 

that with t ■ 0 and final r the magnitude u " fV» c " %Z are limited. 

It Is necessary that V and Z return to zero. Thus, we obtain another 

condition, which should satisfy the solution: when | ■ oo 

F(oo)-0; Z(«)-0. (12.18) 

In general, the boundary conditions of (12.17) are sufficient in 

order to begin integration of equations (12.15) from point | • 1 in 

the direction of ^ > 1, assigning some value of number a. 

However the Investigation of equations, which will be discussed 

in the following paragraph, shows that it is impossible to obtain a 

unique solution and arrive at point (12.18) with an arbitrary value 

of a. This turns out to be possible only with a certain selected 

value of a, which also determines the selection of the index of self- 

similarity. 

§ 7. Investigation of Equations 

We shall show how the index of self-similarity is found in the 

solution of equations (12.15). For this purpose it follows first of 

all to investigate the equations. We shall not adhere to tha mathe- 

matical strictness of foundations here and give detailed calculations. 

We shall only mention the most important fundamental moments, and 

we shall also outline the basic ways of solving the problem. We shall 

try to emphasize certain peculiarities of the problem, common either 

for all self-similar solutions, or for solutions of a second type. 

Below we shall trace the system of calculation proposed by N. A. Popov, 

to whom we are thankful for his valuable advice. 

Looking at system of equations (12.15) we Immediately see that 

variable In C, which can be considered as a new independent variable 
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instead of £, enters the system onjly In the form of differential d 
'IKS' : -K. ■ 

In |. Exactly so, only In the fort» of differential d In 0, enters.one 

of the unknown functions, i.e., 0. This property of equations (12.15), 

characteristic for any self-similar motions, permits the reduction of 

the sytem of three differential equations to one differential equation 

with respect to variables V and Z and two quadratures.* Actually, we 

I shall solve sytem (12.15) with respect to derivatives dV/d In |, 

''■ d In G/d In t, dZ/d In §. Instead of writing out the very bulky 
i 
i 

I expressions obtained, we shall write the result of the solution of the 

algebraic system in symbolic form, through the determinants 

•,4r   Aj. 4hkG     A.   jg   A. 
7iT■,T, 7SXm"rt  TEf-t' (12.19) 

where the determinant of system A is equal to 

I 

F-o 

F-o  0 

t  t 
0 (Y-l)Z -1 

~«+(F-e)«. (12.20) 

*The noted property is not random and is a consequence of the 
|dimensional structure of equations of gas dynamics, which do not con- 1 tain dimensional magnitudes, besides the variables themselves. The 
,fact that some magnitude enters under the differential sign of the 
!logarithm testifies to the arbitrariness in the selection of units for 
'the measurement of this magnitude. Regarding density p » PQO, this 
lean be directly seen from equations (12.lf), written for functions p, 
|u, c2 (see footnote on p. 991). If in general nonself-similar equations 
.we change to new independent variables, i.e., i  • r|Ata and TJ ■ r/r«, 
where A and TQ  are some externally introduced dimensional parameters, 

I then. Inasmuch as the selection of these parameters is not limited to 
(anything, they must be dropped from the equations. And indeed, the 
I transformation shows that the new variables enter the equations only 
in the form of d In | and d In T) (in the case of self-similar motions 
'all functions depend only on £ and do not depend on r\,  so that members 
d In T) disappear). 

,    pimenslonless values of V and Z are composed from the dimensional 
rvariables themselves» V - t/ru; Z{" tvr ö2 ■ ptS/r^yp, without the 
fpartielpatlon of any outside parameters; therefore, in the equatiene- 
ithey pnter in free form, not under!the sign of d In.   

L _Q  .  __  . .._ _..J _.., .  ..         0 j 

2f«f€k 
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Determinants A*, Ar,* A-, are obtained after replacement of corre- 

sponding columns In determinant (12.20) by the right parts of equa- 

tions (12.15). 

Coefficients with derivatives and right sides in equations (12.15) 

depend only on V and Z,  but do not depend on G and f, so that all 

magnitudes A, A^, A2, A-* are functions only of V and Z. Dividing the 

third and the first equation by (12.19) into each other, we obtain an 

ordinary first order differential equation: 

(12.21) 

After we find the solution of this equation Z('V), it can be placed 

in the first equation by (12.19) and by means of quadrature we can 

determine the function V(^), and then, putting V(^) and Z[V(^)] in the 

second equation, by means of quadrature we can find the function G(|). 

In fact, one quadrature is enough, since the system of equations 

(12.15) possesses one Integral, which is the algebraic relationship 

between all variables. The existence of this integral, the integral 

of adiabaticlty, is connected with the fulfillment of the law of con- 

servation of entropy in a gas particle.* In general, fulfillment 

*In order to derive the integral of adiabaticlty, we shall use 
the first and third equations of (12.15). The first (equation of 
continuity) will be divided by V - a and will be presented in the form 

The third (entropy) equation will be divided by Z and will be presented 
in the form 

Excluding d In t/(V - a) from these two equations and grouping all 
members to one side, we obtain an equation of the form d In (%,  G, V, 
Zl - 0, which gives integral [%,  G, V, Zl - const. The constant is 
determined with the help of boundary condition (12.17). 
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of laws of conservation always is accoapaniad by the existence of 
•(;;-■; 

corresponding integrals of self-similar equations. Thus« in the prob* 

lern' about the strong explosion (see § 25, Chapter 1) the equations 

possess an integral of energy. 

Thus, the basic problem reduces to the solution of equation (12.21) 

with boundary conditions (2.17) and (2.18). 

Let us consider how the unknown integral curve passes on plane 

VZ. On the front of a shock wave when § - 1, V - V(l) and Z ■ Z(l) 

(see formulas (2.1?)). Let us plot this point on a plane and designate 

it by the letter 9. To infinity, when £ - 

■ oo, V(oo) ■ 0 and Z(CD) - 0, i.e., integral 

curve Z(V) goes from point ♦ to the origin 

of coordinates 0 (Fig. 12.1). 

So .that the solution of equations of 

gas dynamics has a physical meaning, it 

should be simple. Ivery value of independ- 

ent variable 4 must correspond to the sin- 

gular values of V and Z. This means that 
i 

ifunctions | of V and | of Z or, all the same. In £ of V and In £ of Z, 

should not have extreme. Derivetites d In ^/dV - A/ä^ and d In ?/dZ * 

i- A/A, in the region of variation Of variable 1<£<OO, 0<ln4<oo 

.in a true solution nowhere should return to zero. 

I   But determinant A ■ - Z + (V - o) is equal to zero on parabola 
| p 
|Z ■ (V -a) , drawn on plane VZ (Fig, 12.1). It is easy to check by 

means of direct calculation that point $ lies higher than the parabola, 

hi,e.f the unknown integral curve along its path from point $ to point 

& k T 
Fig. 12.1. Shape of 
iintegral curve on 
plane V, Z. 

..4 tu'by means should intersect the parabola. So that the derivatives 

jd In |/dV and d In £/dZ do not retirn to zero, it is necessary that , 
!   ■■■ " i r • 

L o     , . .  i .„._,  .      o j 
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at the point of intersection the determinants A^ ancf A-, return to 

zero (it is possible to check that when A ■ 0, A^ and A, return to 

zero simultaneously). Thus, the point of intersection of the true 

!     integral curve Z(V) and the parabola is the singular point of equation 

i      (12.21) (A1 » 0, A5 = 0, dZ/dV « 0/0). 

[ If one were to assign some arbitrary value of the index of self- 

j     similarity a, and start to integrate equation (12.21) from point $, 

j     the Integral curve either in general will not intersect the parabola, 
i 

i     or will intersect it in some ordinary point, and this curve will not 
i 

I      respond to the true solution. 

Only at a special, selected value of a will the integral curve 

!      intersect the parabola, passing through the necessary singular point 

!      of equation (12.21), and tend to its final point 0.  This condition 
k 
f 

{     of obligatory passage of the true integral curve through a defined 
f 
I     singular point of equation (12.21) is also determined by index a. 
I 
I     Singular point B and the schematic trend of a true integral curve are 
i 

f     shown in Fig. 12.1 (it is possible to show that point B lies on the 
I 
}      left branch of the parabola). 

j In singular point B, through which there passes the true integral 
i 
I     curve Z(V), magnitudes Z and V take definite values that are connected, 

2 in addition, to the equation of the parabola Z = (V - a) . Inasmuch 

as V and Z are functions of £;, the singular point corresponds to the 

definite value of ^ - iQ.    In turn, the value of | » £0 corresponds 

to a certain line on plane r, t, the "^0-line." The equation of this 

line is r « R(t)£0 « A(-t)aC0, and the differential equation for it 

has the form of dr/dt » R40. 

{ The line of the front of a shock wave is:  4 » 1, r » R(t), 
i rlj.    • 

I dt" ~ R* Both lines are shown in Fig. 12.2 (let us note that axis r 
f 
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Is line | > oo). 

The gQ-llne possesses an Important property* 

it Is one of C—-characteristics. In order to 

be convinced In this« we shall turn In the 

dimensional equation for Cj-characterlstlcs dr/dt ■ 

■ u - c to self-similar variables. Here one 

should consider that the speed of sound c is a 

magnitude that is essentially positive. Its 

accepted scale R or r/t is negative. Consequently, 

Fig. 12.2. r, t- 
diagram for the 
iprocess of conver- 
jgence of a shock 
:wave to the center. 
I| - 1 - line of 
' front of shock wave# 
' * m in m  4o"llne*   ■, —jr Z one should put c - - rr 

ral character-   t^ x 

Thus, 
Sever« 

when extracting the root from expression c' 

,istics of the C+- 
'and C -sets have    ^ «       * ^ 
been plotted.      Äi-u^^TF+7t>/T',,"T8(F+l^'l)--?L(ir+!VT"|). 

i 

We shall be concerned with those O^-characteristics which pass 
i 
i 

I through the |0-line on plane r, t. For this we shall put § - 40 in the 

iequation of characteristics. But when § " §0 
i 

ia^«[F(lt)-ept |VZ15|-o-V(W 

■(since V < a. Actually, when 4 ■ 1V(1) ■  ~ ia < a; when § « a),V«Ojf 

; function V(0 is monotonic). IHierefore the considered C^-character- 

'istics in every point of the ^0-line have slope 4jr «■ -^ [V«Q) + 

1+ | yZ{i,0)\ ]  - Rt0, which coincides with the slope of the 40-line 
i 

itself. This means that the £0-llne either envelopes the set of C_- 

Icharacteristics, or simply coincides with one of them. It turns out 
i 
that the second statement is validi Co""11-11* coincides with the C_- 

:characteristic, i.e., it is the C^-characteristlc itself. 
L— - r 

! From this follows an important result, concerning the casual. 

relationship of phenomena. As it is known, in a region of contferaoroH 

flow the characteristics of one sei never Intersect. This mean^ thätT 
Cl 
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all those C^-characteristies which pass above the ?0-llne (see Fig. 

12.2) do not overtake the front of the shock wave until the moment of 

focusing.  (C^-characteristics, passing below the ^-line, overtake 

the front; C.-characteristics themselves emerge from the line of the 
T" 

front). 

Thus, the (-Q-llne limits the region of influence. The state of 

motion in a given moment of time in those points which lie to the 

right of the ^Q-llne, i.e., at distances r, greater than r0 « R(t)^0, 

in no way will influence the motion of the shock wave. 

The above-noted properties of the solution; passage of true 

integral curve through a singular point, possible only at a selected 

value of the index of self-similarity a (from where this value is also 

determined), and the existence of the ^0-line on plane r, t, which 

corresponds to a singular point, is a characteristic and limits the 

region of influence, i.e., are peculiar to all self-similar regimes 

of the second type. 

§ 8. Results of Solution 

Practically, the solution and index of self-similarity is found 

by the trial and error method. Assigning some value of a, we numer- 

ically integrate equation (12.21) from initial point <I> (g ■ 1) and 

check how the Integral curve proceeds. Correcting the value of a, by 

means of series approximations we try to obtain that the Integral 

curve intersects the parabola in the needed singular point and tends 

to final point 0. L. D. Landau and K. P. Stanyukovich [1] indicated 

a method of approximation with the help of which there can be found 

the value of a, very close to the actual value. This value was used 

for the first attempt and then definitized. After index a and function 

Z(V) are found, the finding of functions V(|), Z(|), G(£) is not 
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difficult. 
■ * 

In such a way in works [1,  5] there was found the value of the 

index of self-similarity a - O.717 for adlabatic exponent 7 - 7/5. 

Furthermore, in [1] it was found that a » O.638 for 7 - 3# and it was 

also established that in the limit of 7 -♦ 1, a -♦ 1. Laws of change 

of radius and speed of the front of a shock wave, and also pressure 

behind the front when 7 « 7/5 are such: 

Ä~i«rH/io-m. 

ttm-i} 

Distribution of speed u and pressure p along the radius in various 

moments of time when 7 « 7/5 are shcvm in Pig. 12,3, taken from the 

book by K. P. Stenyukovich [1], Speed behind the front mcnotonically 

drops, pressure it first increases somewhat, and then also drops.* 

Density behind the front mcnotonically increases, 

A shock wave continuously accelerates and amplifies upon conver- 

gence to the center. When t -♦ 0 and R -♦ 0 pressure and temperature 

on the front tend to infinityj gas density remains finite; on the front 

of wave it is constant and is equal to [7 + i)/(7 - 1)] p0. 

Upon convergence of the shock wave there occurs a concentration 

of energy near the front of the shock wave: temperature ani pressure 

Increase without limit. However, due to the fact that the «otual 

dimensions of a self-similar region decrease in time, the total energy 

concentrated in it also decreases. A self-similar solution is valid 

only in a certain sphere, whose radius decreases together with the 

♦Such a pressure trend is not commonj for instance, when 7 ■ 3 
the pressure, as also speed, monotonicelly decreases behind the front 
of a shock wave. 
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••.«* 

«.«w/sec 
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■t 

^t-C'AW'sec 

9 r.cm 
Fig. 12.5. Distribution 
of pressure in arbitrary- 
units (a) and speed (b) 
in various moments of 
time upon convergence of 
a shock wave to the center, 
7 » 7/5. Graphs are taken 
from book [1]. 

radius of the front, in proportion to 

R, i.e., the effective boundary of the 

self-similar region is a certain constant 

value of r/R = £ « £.,. The amount of 

energy enclosed in the self-similar region, 

i.e., in a sphere of variable radius r. = 

= (LR, is equal to: 

-«rfV!.«'U (^ i+f) {•«. 

The integral with respect to %  from 

1 to I* is a constant number, so that 

energy Eself - R
5R2 ~ R5"(2/a). 

For all real values of adiabatic 

exponent 7 the power of R is positive. 

For instance, when 7 » 7/5 a ■ O.7I7 

^»T^^'-^O wnen Ä->0. 

If one continues integration of f ad infinitum (^ - 00), the 

integral diverges. (This is clarified in the footnote on p.1002). 

Thus, the energy in the whole space within the confines of the self- 

similar solution is infinite. This in particular also confirms the 

inapplicability of the self-similar solution to large radii r (at 

given radius of front R). 

The amount of energy enclosed in a sphere of constant radius r 

can increase (but not infinitely); however, motion in all the region 

from R to r » const > R is not described by a self-similar solution. 

The self-similar solution pertains only to the entire decreasing 
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sphere r^ ~ R, ^ « const, whereas i * 3g-* co when r - const and R -♦ 0. 

The form of limiting distributions of gas-dynamic magnitudes 

with respect to radius at the time of focusing t ■ 0 can be established 

on the basis of considerations of dimension. At our disposal there is 

only one parameter A cm.sec'a, with the help of which it is possible 

to connect speed u and speed of sound c with radius r. 

This gives a limiting law at the time t « 0: 

n-^e-w^V "«i^r • 

Inasmuch as moment t « 0 and r ^ 0 corresponds to the value of 

i " CD, limiting density p ■ PQ^K
00

) 
is constant with respect to radius. 

Limiting distribution of pressure consequently is 
«   id-«) 

Limiting laws u(r), c(r), and p(r) naturally coincide with the 

laws on the front in the course of'the process of u^R), c<,(R), and 

P1(R) (with an accuracy of numerical coefficients).* 

The numerical coefficients in the limiting laws for u(r), c(r), 

and p(r). Just as the limiting value of density PijLmj_+ ■ PQ^00)* can 

♦Limiting laws can also be established analytically, proceeding 
from equations for representatives, if one finds the asymptotic solu- 
tion in the vicinity of point I ■ OD, 7 - 0, and Z - 0. We shall 
obtains V ~ ^-V», Z ~ S"2', which upon transition to dimensional 
magnitudes will also give the limiting laws described in the text. 
Magnitudes v2 and z » yir/g when £ -♦ oo according to determiration 

P      P p   p« 2 
(12.12) are proportional to v ~ z ~ ^ V ~ |  aj g(oo) ■ Gi») « const. 
Hence it is clear that the integral of energy diverges when 1^ -♦oo 

Jf (^T T+x) P-« " J«44^C*5 
-♦oo, 

and the energy In the whole space within the confines of the self- 
similar solution is Infinite in any moment of time. 
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be found only as a result of the solution of equations of self-similar 

motion. When 7 « 7/5 limiting density is equal to p,. ... « 21.6pf 

(density on the front of the shock wave is p^ « 6p0). The same value 

of p ■ 12.6p0 is possessed by density at large distances from -ehe 

front r -♦ 00 and up to the moment of focusing (since when R ^ 0 and r -♦ 

-* co,  P *  r/R -* 00) and -£- - G(^) -♦ G(oo). 
Po 

The energy of content, concentrated in a sphere of radius r at 

the time of focusing, is proportional to 

5-1 

j«0.*,(aTi+.*)-,,4 

(Just aaEself ~R 
a
; see eiove). 

The energy concentrated in a sphere of finite radius is finite, 

and when r -♦ 0 it also tends to zero. The greater the sphere, the 

greater the amount of energy Included in it (within the confines of 

the self-similar regime). 

After the moment of focusing, when t > 0, reflected from the 

center, the shock wave spreads through the gas, moving toward it, to 

the center. The motion in this stage is also self-similar and the 

index of self-similarity does not change. The  law of propagation of 

the front of a reflected shock wave when t > 0 is R ~ ta. 

Calculations show that when 7 - 7/5 the density of gas behind 

the front of a reflected shock wave is equal to p^  - ■ 137.?Po* an<ä 

it is 23 times more than the density behind the front of the incident 

wave, p^ • 6p0. The speed behind the front is positive, i.e., the gas 

scatters from the center, where the speed of scattering decreases In 

time, starting from Infinity, In acoordenoe with the laws R ~ t« and 
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~msTlm i jr>.r§ 9. Collapse of Bubbles. Raylelgh Problem ' 

I With the process of convergence of a shock wave to the center  I 
I ^ ! 

thejre is a large number of common lines In the process of collapse of, 

bubbles in a fluid (in water). In'a real fluid there frequently form I 

little bubbles filled by the vapor of the fluid and undissolved gasesj 

The phenomenon of formation of bubbles carries the name of cavitationi 
i 

In stationary conditions a bubble Is stable and gas pressure from    ] 

within balances the pressure in the fluid. When the fluid participates 

in the motion and goes from a region of low pressure to a region of 

higher, internal pressure in a bubble which was formed earlier, at 
i ■ 

I low pressure, and becomes less than the new high pressure in the fluid. 

•The fluid then runs to the center, collapsing the bubble. When col- i 
I « ^ 

|lapsing a bubble, as also when focusing a shock wave, there occurs 

'concentration of energy. The speeds of collapse and pressure grow 

I with the decrease of radius of the bubble and in the focusing stage 

attain very large values. After collapse, in the central region there 

will form a pressure peak and from the center spreads a shock wave. 

When a similar process occurs near solid surfaces, a shock wave ' 

*In tha work of one of the authors of [26] there is constructed ! 
a set of self-similar solutions for cylindrical motion in the acoustic 
approach. It is obtained by means of superposition of plane waves. 
The index of self-similarity is arbitrary and is selected according to 
|the initial conditions. For a convergent cylindrical ^ock wave (in 
the acoustic approach) pressure on the front p "- Itl"1/2, where radius 
of the front is R - c|tj, i 

It is interesting that in a reflected shock wave the pressure on" 
•4he-front is infinite when R ^ 0, The results for the shock wa¥e——« 
were obtained earlier by Ye, I. Zababakhin and M. N, Nechayev [Zf],  | 
Pressure on the front returns to infinity only within the confines 
ef %)» acoustic, which is explained in [26], 2 ! 
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can lead to damages to the material of the surfaces. It ts considered 

that this is one of the causes of fast wear of screw propellers and 

turbines, 

The problem about the motion of a fluid during the collapse of    I 
.1 

a bubble in an idealized setting was solved by Rayleigh [4]. The fluid | 
j 

was considered to be ideal (inviscid) and incompressible. The spher- I 

ically symmetric cavity was considered to be empty, i.e., pressure I 

inside and on the surface of the cavity was assumed equal to zero.*    \ 

Let us assume that in the initial moment there is a spherical 

cavity with radius R0 in a fluid. Pressure in the surrounding fluid 

is equal to p0, and the fluid rests. Distribution of speed along 

radius r, after the beginning of motion, will be found from a continuity 

equation when p - const: 

u-Ä m 
T . I' (12.22) 

where R(t) is the radius of the cavity and R is the boundary speed. 

Putting the expression for speed in the equation of motion and integra- 

ting it with respect to r from r to co, we obtain the distribution of 

pressure: 

(12.23) PmH+Q—i Q 

If we carry this equation to the boundary of the cavity | ■ 1, 

where p - 0, we shall obtain an equation for function R(t): 

O-^-f^Ä+l*)- (12.24) 

♦Obviously, in a real process on the last stage of collapse, the 
pressure of vapors Inside increases so much that it restrains the 
pressure of the fluid and forces it to recede. Owing to very fast 
compression, the vapor does not condense and its compression at the end 
occurs according to Poisson's adiabat. However, considering collapse 
up to not too small radii, vapor pressure can be disregarded. It is 
also possible to disregard surface tension on the fluid boundary. 
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Integrating the equation once with initial condition R ■ 0 when 
-' \ 

R ■ R0, we obtain the law of build-up of speed during collapse: % > 

«•-^■(•jl-l)*). (12.25) 

This equation can also be obtained directly from energy consider- 

ations. Let us take as zero the energy of the fluid without a bubble. 

Potential energy of the fluid, which has a bubble of radius R, is equal 

to the work expended in surmounting the forces of external pressure 

in a cavltation with volume 4TrRv3. This work is equal to PQ^TTRV?* 

Independently of distribution of pressure in the region of the bubble.** 

Kinetic energy of the fluid is equal to 

Total finergy, equal to the sum of  kinetic and potential, is 

retained! 

2«QÄW+Äj£.-£-.ö««fi. (12.26) 

Hence we obtain expression (12.25). 

With the help of relationship (12.24) the profile of prassure 

(12.23) can be presented in the form 

i»-A(«-D+1Jr(r--|r). l'i' 

♦Integration of equation (12.25) gives the collapse time of the 
Le T - 0.915 R/J^P/PQ. For instance, in water when p - 1 g/cm^, 
1 atm, RQ ■ 1 «M»* t ■ 0,915.10-4 sec, 

**It is possible to explain this cositic. i . the following way. 

PQ « 1 atm, RQ 

Let us Imagine a vessel with a fluid, located ander pressure PQ, closed 
by a moving piston with surface area S. If inside there ferms a cavity 
with volume 0, the fluid, by virtue of its incompressibility. Dresses 
the piston at distance l, such that IS • Ü. It then performs on the 
piston the work of pnSi ■ PQO, which is determined only by pressure 
PQ far off from the bubble and does not depend on distribution of 
pressure near the bubble. 
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(profiles of speed and pressure are schematically depicted In Pig. 

12.4.) 

From the formula for pressure it is clear that the problem is 

not self-similar (in spite of the "self-similar" form of speed (12.2^). 

This is understandable: the problem has characteristic scales of 

length R0 and speed VVQ/P • 

However, in the limit when the radius of the cavity tends to zero, 

R -► 0, and speed and pressure grow, tending to infinity, and the 

solution asymptotically takes on a self-similar character: 

The scale of length, the Initial radius, becomes too large, and 

the scale of pressure PQ becomes too small to characterize a ture proc- 

ess, for which the cavity radius R and boundary 

R now serve as the scales (R « RQJ R » 

» y^p; p ~ pR2 » p0). The motion as if 

"forgets" about the initial conditions. This 

in particular is seen in the fact that 

parameters p0 and R0 now enter the equation 

of motion of the boundary not separately, as 

earlier (see formula (12.25)), but only in 

a combination, proportional to the total 

energy of fluid E - 47rR^p0/5 (see formula (12.27)). 

As we see, self-similarity belongs to the first type, i.e., the 

energy is retained. The dimensional parameters in the self-similar 

flow are the same as in the problem about the strong explosion, i.e., 

energy and density. The law of boundary motion is given by equation 

(12.2?) R2 ~ --^t» and pressure p ~ E/fe5. Hence we immediately 

obtain R - (E/p)l/5(-t)2/5j R - (E/p)l/5(-t)-3/5, as in the problem 

Fig. 12.4. Profiles 
of speed and pressure 
in the Rayleigh prob- 
lem. 



about the strong explosion (the moiaent of focusing is taken as zero). 

Index of self-similarity is a - 2/5. vJ 

In the limit R -* 0 from formulas (12.22) and (12.2?) we obtain 
i 

Boundary speed tends to infinity, R ~ R"^' , but speed on finite 

radius r ^ 0 tends to zero. In the limit R -♦ 0 the potential energy 

PQ^TTRV? tends to zero, and all energy E, which is new kinetic, is 

concentrated at the point of origin of the coordinates. Energy density 

in it is Infinite. In distinction from speed, the pressure at the 

time of focusing is infinite at any finite radius r ^ 0 (energy is 

not connected with pressure in the model of incompressible fluid). 

This testifies to the imperfection of the model of incompressible 

fluid. As will be shown in the following paragraph, in the aalculation 

of compressibility the pressure at finite distances from the center 

is limited. 

§ 10. Collapse of Bubbles. Calculation 
of Compressibility and Viscosity 

Collapse of an empty cavity in water, taking into account com- 

pressibility (but without taking into account viscosity), was consid- 

ered by Hunter [5]. The equation of state was adopted in form of 

with 7-7. However, actually, in the limit of large pressures the 

unit was lowered, so that the equation of state had a form analogous 

to the gas type, p - B(P/PQ)7. Magnitude B was assumed to be constant, 

not depending on entropy (flow was considered to be isentroplc). It 

was taken that B - 3000 atm. 

Numerical solution of equations of hydrodynamics (in variables 

1006 



u, e) with properly selected Initial and boundary conditions showed 

that in the limit when the radius of the cavity becomes very little, 

and boundary speed is very great, the solution becomes self-similar. 

In accordance with this, we found the solution of the equations 

in self-similar form u => Rv(r/R), c =• R z(r/R), where the radius of 

the cavity is R =» A(-t)a.* Equations in self-similar -variables, their 

general properties, and the course of the investigation in many 

respects are analogous to what takes place in the problem about con- 

vergence of a shock wave to the center. As a result of numerical 

Integration the index of self-similarity a was equal to a - 0.555 

(for 7 - 7). 

The energy of the entire flow is infinite, as in the problem 

about focusing of a shock wave.  (Energy enclosed in a sphere with 

radius r at the time of focusing t ■ 0, R « 0, is proportional to 
1 13 

r ' ^). The absence of an Integral energy also refers the self-similar 

problem to the second type. Distributions of speed, square of the 

speed of sound, and density along the radius at the time of cdllapse 

of the cavity, when R « 0, have the form 

»-«»        ,«U-«) 8»-y        l(l-a)Y 

In distinction from the case of focusing a shock wave, when 

distributions u and c (c ~ £) have the same form, the limiting 

density here is variable. This is connected with the fact that from 

the very beginning the problem is considered to be isentropic. A 
p 

sharp increase of c and p is not connected with the growth of entropy. 

♦For investigation and solution of the equations it turned out to 
be more convenient to select as a self-similar variable iiot ^ - r/R ■ 
- r/A(-t)P, but the magnitude V  - -(R/r)Va - A1/« tr-V0 (on the 
boundary of the cavity r ■ R, t1 ■ -ij to infinity r » oo, £ ■ 0), 
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as In a shock wave, but with the growth of density. 

The self-similar solution in some measure describes the real 

process only in the region of very small radii, when the intial con- 

ditions are "forgotten." 

A comparison of the self-similar solution with the results of 

numerical integration of partial differential equations at initial 

conditions, corresponding to atmospheric pressure in water and initial 

radius R0 =» 0.5 cm, showed the following. At the time of full collapse 

t - 0, R =* 0 the self-similar solution is valid in the region with 

-2 
radius of the order 10  cm. Such a sphere contains approximately 

10-20^ of the fluid energy, and the pressure on its boundary is of the 

order of several tens of thousand atmospheres. In the work of Hunter 

there is also found a self-similar solution for a shock wave which 

spreads from the center after bubble collapse. 

The calculation of viscosity of a fluid leads to interesting 

regularities. The problem about collapse of an empty spherical cavity 

in an incompressible viscous fluid was solved by Ye. I. Zababakhin [6]. 

Investigation of equations indicate that the character of motion 

depends on Reynolds number Re « "~ f-A where v  ■ Vp is the kinematic 

viscosity. When Re > Re,* where Re* is a certain critical number 
« 

(low viscosity), the boundary speed of the cavity R increases without 

*   -3/2 
limit when R -♦ 0 by the same law as in the Rayleigh problem, R ~ R ^ , 

but with a smaller value of the proportionality factor (part of the 

energy is turned into heat at the expense of dissipation). When Re < 

< Re* (high viscosity) the viscosity strongly prevents acceleration 

of the fluid, and bubble collapse occurs slowly, in an infinite length 

of time. Cumulation of ener^, characteristic for the Rayleigh problem, 

is absent. In an intermediate case when Re ■ Re* the bubble collapses 
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in a finite length of time; speed R when R -» 0 grows without limit, 

but weaker than R , 

Numerical Integration of equations for critical Reynolds number 

gives the value of Re* - 8.4. For a given fluid, under a given pres- 

sure. I.e., at assigned p, v, p0. It Is possible to speak of the 

critical radius of the bubble Rt. When R0 < Rg cumulation Is completely- 

removed by viscosity. Practically, the critical radius Is extraordi- 

narily small; for Instance, In water (p » 1 g/cm , p0 » 1 atm, and 

v  » 0.01 cm /sec) R^ - 0.8«10~ cm. 

Consequently, viscosity weakly affects the collapse of bubbles 

with radius exceeding O.B-IO" cm. 

3. Emergence of a Shock Wave on the Surface of a Star 

§ 11. Propagation of a Shock Wave Following the Root 
Law of Decrease of Density 

We know (see for example [?]) that near the surface of a star 

the density of matter drops to zero approximately by root law 

9W-6X«. (12.28) 

where x Is the coordinate which Is counted off from the surface Inside 

the star, and b and 5 are constants. Such distribution of density 

Is established as a result of the Joint action of forces of gravitation 

and thermal pressure, whereby In the establishment of distribution 

of temperature, which Is proportional to the pressure of gas, an 

essential role Is played by radiant thermal conduction (see also 

§ 14, Chapter II). Exponent 5 In the distribution of density (12.28) 

Is connected with the constants entering the law of radiant thermal 

conduction! It Is usually on the order of 3. 

When In the central regions of a star there occur Internal 

perturbations accompanied by an Increase of pressure, there will form 
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a shock wave, which spreads from the central regions to the periphery 

and emerges on the surface. Propagation of the shock wave through 

gas with density falling to zero, as this takes place near the surface. 

Is accompanied by a concentration (cumulation) of energy, which is of 

great interest to astrophysics and to the problem of the appearance 

of cosmic rays (see following paragraph). 

There is a certain physical similarity between the processes of 

cumulation during propagation of a shock wave through a gas with 

density falling to zero and during convergence of a shock wave In the 

center. In both cases the energy is impart without limit to the 

decreasing mass of substance in such a way that the specific energy, 

i.e., the energy of a unit of mass, grows without limit. The distinc- 

tion consists of the causes of decrease of mass, to which the energy 

drops. In the first case the mass .decreases due to the decrease of 

density of the gas and in second, due to the decrease of volume. 

We shall be concerned with a limiting form 

of motion in that stage, when the front of the 

shock wave is close to the surface of a star. 

In these conditions it is possible to disregard 

the curvature of surfaces of the star and the 

front and to consider the motion to be plane. 

Inasmuch as the shock wave is strong, it is 

possible to disregard the forces of gravitation. 

Radiant thermal conduction plays an essential 

role In the establishment of stationary distributions of temperature 

of gas density. In the short time of passage of a very strong shock 

wave, it does not succeed in introducing noticeable changes at the 

expense of redistribution of heat; therefore, the process can 

r /'' 

Fig. 12.5. Dia- 
gram of emergence 
of a shock wave 
on the surface of 
a star. Density 
profile. 
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approximately be considered as adiabatic. 

In such a formulation the problem about the limiting form of 

motion was for the first time solved by G. M. Oandel'man and D. A. 

Prank-Kamenetskly [8], The  same problem was later considered by 

Sakural [9]* who found exactly the same solution, but for other numer- 

ical values of exponent 6 In law (12.28) and adlabat 7. A schematic 

representation of the process of propagation of a shock wave Is shown 

In Pig. 12.5. 

The single dimensional parameter In conditions of the problem 

Is constant b, which contains the symbol of mass. There are no other 

dimensional parameters. Therefore, It Is natural to find the self- 

slmllar solution of the problem, where self-slmllarlty should pertain 

to the second type. Let us present the solution in the form of (12.5), 

(12.5)-(12.7). In accordance with plane symmetry we shall designate 

the coordinate of the shock wave, counted off from the surface of the 

star x ■ 0, through X(t). 

As the scale of density p0 one should take the magnitude of den- 

sity of undisturbed gas in front of the shock wave front. Inasmuch 

as the wave spreads through a gas of variable density, this scale 

depends on time, or on the coordinate of the front X, which is all the 

same (see end of § 2). Namely, the scale of p0 is equal to 

«b-e^w-M*. (12.29) 

As also In the problem about the convergence of a shock wave to 

the center, we shall take the beginning of the reading of time t ■ 0 

as the moment of emergence of the shock wave on the surface, in 

accordance with which we shall change the sign of t in the self-similar 

law: 
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Thus, we find the solution In the form 

t-fcfft). P~Q&*®,   »-*e(ö. 

l-J. e.-6X*f j-ii(-o
-.  !]       {i2m30) 

Bfjuatlons (12.4) for representatives In this case take on the 

form (v - 1) 

(o-l)o-«o+(o-Oc»'+i!l-0, 

X-.2(a-l)o-V(\-l)«. 

(12.31) 

Boundary conditions on the front of a shock wave, which Is assumed 

to be strong, are expressed by formulas (2.16), whence follows the 

boundary condition for representatives, analogous to (2.17): when 

I - 1 

fW-^T» p(1)-^T. nW-yTi' (12-52) 

i. 
fcy&ifej 

At the time of emergence of the shock wave on the surface. I.e., 

when X - 0, for any value of x, different from zero, self-similar 

coordinate ? - oo. Qas-dynamlc magnitudes at any finite value of x 

at the time of emergence should be limited. This puts an additional 

boundary condition on the unknown functions when £ ■ oo. 

The procedure of the solution is fully analogous to the solution 

of the problem about focusing of a shock wave. We introduce new 

representatives: V, G, Z, and obtain a system corresponding to (12.15). 

The sytem is reduced to one first order differential equation with 

respect to V and Z and two quadratures; actually, instead of the two 

quadratures we obtain one quadrature and one algebraic relationship 

between variables, i.e., the Integral of adlabatlcity. The eigenvalue 

of the system of equations, exponent a is found by the method of 

trial-and-error, by means of numerical integration of the equation 
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for function Z(V), from the condition that the integral curve passes 

through the proper singular point. As also earlier, the singular 

point corresponds to the ^Q-line on plane x, t, which is the C__-char- 

acteristio and limits the region of influence on the motion of the 

front of the shock wave. 

In [8] the value of the index of self-similarity was found for 

the values of 5 » 13A = 3.25, 7 « 5/3, equal to a - 0.590. 

In work [9] the exponents a were found for a number of other 

values of 5 and 7. These results are given in Table 12.1. 

Table 12.1  The fact that the 

index of self-similarity 

a is always less than 

unity indicates that the 

shock wave is continuously 

accelerated: 
1-» 

X-H«!*. iXMif"""^ * ' l*l-*»whenX-*0. 

In accordance with this the temperature on the front increases 

without limit, which is proportional to the square of speed of the 

front of square of the speed of sound: T ^ |X| ~ X u   . Unlimited 

temperature increase, as mentioned above, is connected with the fact 

that a finite amount of energy is imparted without limit to the 

decreasing quantity of gas. Pressure on the front of the shock wave 

decreases with the approach of the front to the surface, in spite of 

the growth of speed, since the density before front decreases faster 

than the temperature increases (or square of speed): 

It is easy to check with the help of the data in Table 12.1 that the 

exponent of X in this formula is always positive, i.e.. 

N.     • 
s.ts a t 0.» 

t        >v 

•/« 0,560 0,098 0,816 0.877 
Vt 0.718 0,831 0.906 
•/ 0.7S2 0.855 0.920 
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Flg. 12.6. Profiles of 
density, pressure, and 
speed upon emergence of 
a shock wave on the sur- 
face of a star, t < 0 
— before emergence, 
t ■ 0 — moment of emer- 
gence, t > 0 — after 
emergence. 

£r-i>OwhenJr-*0. 
Limiting distributions of magnitudes 

with respect to coordinate x at the time 

of emergence of the shock wave on the 

surface t«0, X«0 (t»0, x^O corre- 

spond to | - OD), obviously coincide In 

form with the laws on the front of the 

shock wave. This, as also In the problem 

about the shock wave convergent to the 

center, follows simply from considerations 

of dimension. We obtain at the time t = 0: 

u~x' ■ ; T~ut~&~' x      • ; 

(Certainly, the same laws follow from 

equations in the limit | -♦ oo). Density 

in the final distribution is increased a 

determined number of times as compared to 

density in the initial state. 

Distributions of magnitudes with 

respect to coordinate x before emergence 

and at the moment of emergence of the wave on the surface are schemat- 

ically shown in Fig. 12.6. 

Energy of gas, when t ■ 0, enclosed in a layer from x « 0 to x in 
2 

a column with a cross section of 1 cm , is proportional to the magnitude 

When x -• oo the energy tends to infinity; there is no Integral of 

energy. Energy of a layer of finite thickness is finite and when 

x -♦ 0 it tends to zero. In distinction from the convergent shock 
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wave on the edge, when x -♦ 0, the density of energy proportional to 

pressure also tends to zero. Only temperature increases without limit, 

i.e., energy of a unit of mass. 

"Infinite" energy is Imparted to the vanishing small mass of gas. 

Certainly, in reality, temperature cannot grow ad infinitum, as this 

is obtained in the mathematical solution. Thus, for instance, when 

a shock wave approaches so close to the surface that the remaining 

small mass of the layer from x » 0 to x « X contains a small number of 

gas-kinetic paths, in general, the gas-dynamic consideration is mean- 

ingless. Infinite temperature rise can be limited by causes of physical 

character: losses of energy in the radiation of a highly heated 

substance. 

As also in the problem about convergence of a shock wave to the 

center, a self-similar solution is valid only in a limited region with 

dimensions of the order of the coordinate of the front X. Far from 

the front, when x » X, the solution is not self-similar and depends 

on the conditions of appearance of the shock wave. The nonself-similar 

solution changes into a self-similar one when x '- X. 

After emergence of the shock wave on the surface the gas passes 

into a vacuum, and the initial distributions of density, pressure, and 

speed are given by root laws when t - 0. As shown in [9], the solution 

in the stage of expiration is also self-similar, but, of course, has 

quite another character (flow is continuous, without shock waves). 

Approximate distribution of density in some moment t > 0 is shown 

In Fig. 12.6. 

§ 12. Concerning the Problem of Outbursts of Supernovae 
and the Origin of Cosmic Rays 

The thought has been stated that the origin of cosmic rays, i.e., 
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the protons and nuclei with colossal energy which are present in the 

universe and fall to the earth, is connected with outbursts of super- 

novae. Such a theory was developed by V. L. Qinzburg and I. S. 

Shklovskiy (see survey [10]). The process of "unlimited11 growth of 

amplitude of a shock wave and cumulation of energy during emergence 

of a shock wave from a depth to the surface of a star could also be 

a cause of acceleration of particles to colossal energies. This idea 

was used by Colgate and Johnson] they investigated similar process in 

detail [11] and showed on the basis of calculations that a certain 

quantity of substance, ejected from the surface during an outburst of 

supernova, obtains ultrarelativistic speeds and kinetic energies, 

corresponding to the energies of cosmic rays. {The  greatest energies 

of particles, which are presently observed in the spectrum of cosmic 

rays, have the order of 10 Bev « 10 ' evj 1 Bev ■ 10^ ev). Below 

we shall present the results of the work of Colgate and Johnson. In 

the center of Supernovae the temperatures reaches ~300-500 kilo-elec- 

tron-volts (~5'10^ 0K). With such temperature, nuclear fusion proceeds 

up to the formation of the stablest element, i.e., iron. The more 

external layers consist of lighter elements: carbon, nitrogen, oxygen; 

even nearer to the surface is helium; finally, the most external 

layers consist of hydrogen. Astronomical data Indicate that during 

an outburst a supernova ejects a mass of substance of the order of one 

tenth of all the mass of the star and of the order of the mass of the 

sun, equal to M« ■ 2'10-,^g„ 

Calculations of mechanical and radiation equilibriums of a star 

with a mass equal to 10 H^, give a picture of distribution of density 

and temperature along the radius, shown in Fig. 12.7 .* In the center 

•In conditions of radiation equilibrium, density depends on tem- 

perature according to the law p ~ T15'* - T5,25, Namely, proceeding from 
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Temperature, ev 
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of the star the density la higher than 10 g/cm , and on the surface 

it drops to zero. In any case, propagation of an ordinary shock wave 

is traced to layers with a density of p ~ 10 ^ g/cnr. 

It is considered that the power source of a shock wave is the 

so-called gravitational instability which takes place in the adiahatic 

equation of state with adiahatic exponent 7 < k/j>.    In the central 

regions of a star, at a temperature of 500 kilo-electron-volts, the 

nuclei strongly dissociate; in the process of dissociation, as it is 

known, the heat capacity of the substance is sharply increased and 

the adiabatic exponent decreases. As a result of gravitational insta- 

bility the perturbations, which appear once 

for any reason, are amplified. The appear- 

ing impulse of pressure spreads, and this 

leads to the formation of a shock wave, 

which heads from the central regions to 

the surface. The substance behind the 

shock wave scatters from the center, and 

the external layers, due to amplification 

of the wave, obtain very high speeds. 

Possessing great kinetic energy of 

scattering, the substance in the peripheral 

layers surmounts the gravity force and after 

emergence of the shock wave to the surface 

it is detached from the star; the star 

2   *   6  i  10 a 
Hftdiua x 10"a, c« 

Fig. 12.7. Distribu- 
tions of density and 
temperature before 
the outburst of a 
star, p ~ T-5«25 in 
accordance with the 
conditions of radia- 
tion equilibrium. 

[FOOTNOTE CONT'D PROM PRECEDINQ PAGE]. 

this there was selected in [8] a law of distribution of density at the 
3 25 

surface p ~ ar * , since in a certain layer near the surface the tem- 
perature weakly depends on coordinate x (on the surface of a star the 
tenperature is not equal to zero). Figure 12,7 notes the radius of the 
external layer« whose mass is equal to the mass of the sun» This layer, 
we must assume« is also ejected during the outburst. The zones, which 
contain those or other elements are noted approximately. 
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as if casts the shell from itself. This phenomenon is well-known 

in astrophysics. They consider that the Crab nebula was formed in 

this manner. An evaluation indicates that for surmounting the forces 

of gravitation during ejection of a mass equal to the mass of the sun, 

there is necessary an energy of the order of ICr erg. Such, conse- 

quently, is the energy that is liberated in the center of a star and 

goes for the formation of a shock wave. 

Hydrodynamic calculation of propagation of a shock wave from such 

a source gives the values of speed behind the front of a shock wave 

that are shown on curve I in Fig. 12.8. Along the axis of abscissas 

on this figure there is plotted the Initial density of the substance 

before the front. Curve II shows what speed the layer obtains with 

given density after emergence of the wave to the surface and expansion 

of the substance. Speed, after expansion increases approximately twice 

as compared to the speed at the time of passage of the front of the 

shock wave. 

From Fig. 12.8. it is clear thet the peripheral layers, where 

the density is approximately less than JO  g/cm^, obtain speeds in the 

amplified shock wave higher than 10  cm/sec , which is 1/3 of the 

velocity of light c. Therefore the calculation of motion of a shock 

wave through these peripheral layers requires calculation of relativ- 

istic effects. 

In work [11] there was made a numerical calculation of motion 

within the confines of relativistic gas dynamics, and there also was 

found an approximate analytic solution to the problem, founded on the 

use of equations in characteristics and relativistic analogs of 

Riemarm invariants. It is interesting to note that internal energy 

behind the front of such a powerful shock wave is almost wholly 
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concentrated In equilibrium thermal 

radiation. Approximate solution 

shows that the final kinetic energy 

per gram, which is obtained by a 

substance located in a layer with 

initial density pn g/cm , in order 
0 '^      '  -0.64 

of magnitude is equal to c (?J 
& & tf & n* to* & n' *>• to'1 

Density, ."/cm3 

Pig. 12.8. Speed of a substance 
depending upon its density in 
the initial moment before arrival erg/g. If we consider that in 
of a shock wave. Curve I — speed 
directly behind the front of the  hydrogen 1 erg/g corresponds to 
wave, curve II — speed after _.- 
expansion. approximately 10   ev/proton « 

oi 
- 10   Bev/proton, then we obtain that the kinetic energy of the order 

ii 
of 10 Bev is picked up by the particles that were earlier located in 

the layer with initial density p0 ~ 10""^ g/cm . Mass of the layer 

of a star, external with respect to a spherical surface with 

such Initial density, composes approximately 1 g/cm from the calcu- 

lation per unit of surface. So the thin layer is no longer in a state 

to hold or "lock" the thermal radiation, which in the more external 

layers Is unbalanced. Therefore, propagation of a shock wave through 

the more external layers no longer can occur as In equilibrium condi- 

tions. 

Further propagation of the shock wave through a gas of lower 

density, as the authors of [11] note, in an essential form is connected 

with the mechanism of plasma oscillations. The shock wave reaches 

such a surface, where the Debye length becomes comparable with the 

scale of length of the remaining external layer. Calculations show 
-IP 

that this occurs on a radius where the initial density is p0 ~ 10 

g/ca . Particles in a shock wave at such a radius are accelerated to 
g 

energies of '«lO Bev, coinciding with the highest observed energies 
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of cosmic rays. 

It is important to check if the quantity of particles accelerated 

during outburst of Supernovae is retained up to energies of cosmic rays 

in order to ensure an available "reserve" of cosmic rays in the Galaxy. 

Initial density of the substance, which after passage of the shock 

wave is accelerated to an energy of ~10 Bev, is equal to approximately 

1 g/cm . Mass of a star in a layer that is external with respect to 

the spherical surface, where p0 ~ 1 g/cnr composes ~10  g or 6*10 ^ 

protons. It is possible to say that during an outburst 6'10 ^ protons 

will obtain an energy exceeding 10 Bev. The "life" of an energy 

proton in the galaxy with average density of matter in the galaxy ~0.1 

/ "5 8 particle/cnr composes x ~ 5'-1.0 years. 
o 

This means that in ~5-10    years after the "beginning" of outbursts 

in the galaxy there will be established a statlonalry number of protons 

N. Outbursts of Supernovae occur approximately once every 100 years. 

Consequently, every year 6-10 -ylOO «6.10 ' protons are born, and 

N/T protons "die" each year. From the condition of stationarity, 

N/x »6-10 ' protons/year, follows N « J'lO-3 . The volume of the 

68 ""t 
Galaxy is V ^ 5*10  cm . Average density of energy protons is N/V ~ 

~ 6'10' J  cm~p, and flow is on the order "of Nc/V ~ 2'10" cm" 'sec" . 

This magnitude agrees with observations. For the creation of cosmic 

rays in the galaxy according to the presented theory, ~5.1Ö outbursts 

of Supernovae were demanded. 

4. Motion of a Gas Under the Action of a Brief Shock 

§ 1?. Formulation of Problem and General Character of Motion 

Let us imagine a half-space x > 0, occupied by an ideal gas with 

constant heat capacity, in  initial moment t » 0 the density of the 
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Fig. 12.9. Forms of initial 
pressure. 

gas is Identical everywhere and is 

equal to p0, while pressure, tempera- 

ture, and initial speed of sound are 

equal to zero. Half-space x < 0 is 

empty; surface x « 0 constitutes the 

boundary between the gas and vacuum. 

Let us assume that the external 

surface of the gas experiences a brief 

pulse of pressure (surface of gas is subjected to a shock). Various 

specific methods of realizing a brief shock are possible. 

1) During a shorttime T into the gas there is inserted a flat 

piston with constant speed IL, which creates in the gas a pressure P,,. 

With an accuracy of numerical coefficient of the order of unity 
2 

(depending on adiabatic exponent 7) P- « PrpA*    '^ie  sPeed of ^he  shock 

wave D is close to IL; it is created under the action of the piston. 

Upon the expiration of time x the piston is "instantly" retracted, and 

the gas, experiencing a brief shock, turns out to be left to itself 

(the pressure pulse is shown in Fig. 12.9a). 

2) On the surface of the gas a thin layer of explosive is deto- 

nated. If the mass thickness of the layer is equal to m g/cm , and 

caloricity, i.e., energy release per gram, is equal to Q erg/g, in the 

explosion there is released an ener^r of E ■ mQ erg/cm . The products 

of the explosion scatter with a speed of U^ « yfo,.    Inasmuch as the 

products scatter in both directions and everything was stationary up 

to the moment of the explosion, the total pulse is equal to zero; 

however the pulse of the products moving in one direction, in order 

of magnitude is equal to I «* ml^ « m yQ (per cm of surface). 

In the gas the products of explosion create a shock wave with 

.0%? 
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pressure of the order P^ •» Poui* Time of  ac*10" of pressure T IS 

determined from the condition that during the time T the energy and 

pulse are transmitted from the products of the explosion to the gas: 

During that time the shock wave in the gas will pass a distance of 

HJ^T ~ ^QT and will envelope a mass of ~p0 ^Qr ~ m, i. e., on the 

order of the mass of the explosive. 

3) On the surface of the gas, with speed IL, a thin plate runs 

with a small mass m g/cm . Under the action of the shock of the plate 

in the gas there will form a shock wave which spreads with speed D « 
p 

* U^. Pressure in the gas is then P^ «< PQU^« Initial momentum and 

mUr 
energy of the plate, I » mU^, E - g , are transmitted to the gas 

during the time of deceleration of the plate T, which is on the order 

of T « g T? ' w B— ^ ■ "" tf "• During that time the shock wave in the ges P1U1  Pl Poh 
passes a distance of U^T and envelopes a mass of PQU^T « m.       ^ 

Thus, in general we shall consider that on the surface of the 

gas there acts a pressure that drops rather quickly in time, as shown 

in Fig. 12.9b. The pressure curve can be presented in the form of 

p - P1f(t/T), where f is the function characterizing the form of 

the pressure pulse. Subsequently, for concreteness and convenience 

of the statements where the initial conditions will be discussed, we 

will operate on the "piston" concept, as in the first example. We 

shall then consider that all conclusions with equal success can also 

be transferred to any other methods of realizing a shock. 

The problem consists In finding the laws of motion of the gas, 

i.e., the functions p(x, t), p(x, t), u(x, t), upon the expiration 

of a time sufficiently large as compared to the time of the shock T. 
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I.e., we must find the asymptotic conditions when t/x » 1 for a given 

curve of action of external pressure. It can also be formulated 

somewhat differently. Preserving the form of the curve f(t/T), we 

shall direct time t to zero, and pressure P-, to infinity, and shall 

find the thus obtained limiting solution of equations of gas dynamics 

for finite times. The solution of problem should in particular answer 

the question of according to what law should pressure P. increase 

when T -♦ 0 in order to ensure the given finite pressure in the gas in 

the finite time t. For instance, if the solution contains the combi- 

nation P^r , this means that when x -* 0, P. should grow as x . 

The presented problem was set up and investigated in the work of 

one of the authors of [12], where he clarified the physical peculiar- 

ities of the appearing motion and the mathematical solution. Inves- 

tigation of equations and numerical integration was conducted by 

V. B. Adamskiy [13]. A. I. Zhukov and Ya. M. Kazhdan [Ik],  Häfele 

[15], and Hoerner [16] found an analytic solution for one particular 

case (7 ■ 7/5). The last two works are the development of an article 

by Weizsäcker [1?]* who posed the question about the limits of change 

of the index of self-similarity during plane motions. It is necessary 

to note that in [15, 16, 17] the physical meaning of the solution 

obtained by formal means was not clarified. 

The general character of the motion appearing under the action of 

a brief shock is illustrated Fig. 12.10. Through an undisturbed gas 

there spreads a shock wave, on the front of which there is attained 

limiting compression h - ^ ^ ^. From another direction the gas is 

freely expanded into a vacuum; on the boundary with the vacuum the 

density and pressure drop to zero. Behind the front of the shock wave 

the pressure, density, and speed decrease, whereby in a certain point 
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Pig. 12.10. Profiles 
of density, pressure, 
and speed in the prob- 
lem concerning a brief 
shock. 

the speed changes sign, since directly behind the front the gas moves 

to the right, and at the boundary it scatters into the vacuum to the 

left. Amplitude of the shock wave decreases in time. 

Solution of the problem about instanta- 

neous pressure pulse should give the answer 

to the question about maximum possible speed 

of decrease of amplitude of a plane shock 

wave during propagation through a gas with 

constant initial density. It is clear that 

if the action of pressure is extended in 

time, this only supports the shock wave and 

delays its damping. 

The character of the limiting solution 

does not depend on the specific form of 

pressure pulse, i.e., on the form of function f(t/T), if it only drops 

rather quickly. It was noted above that under the action of pressure 

P1 during a shock the gas obtains the speed U1 - f^. With the same 

speed in order of magnitude the boundary of the gas scatters into the 

vacuum. When we pass to the limit T -► 0, P1 -► oo, the speed of the 

boundary tends to infinity, so that distributions of p, p, and u in 

the limiting solution shown in Fig. 12.10 spread to the left to x - 

■ -CD. 

§ 14. Self-Similar Solution and Laws of Conservation 
of Energy and Momentum 

The motion which appears directly after the application of 

pressure momentum is of course not.self-similar. It is characterized 

by scales of time T and length x0 - ^T^TpJr and depends on the fom 

of the curve of applied pressure f(t/T). However, upon the expiration 
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of a sufficiently long time, in moments t » x, when the front of the 

shock wave departs to a distance of X » x0, the initial scales of T 

and x0, very small as compared to the natural scales of motion t and 

X, no longer will characterize the process. Limiting motion, corre- 

sponding to the stages t » T, X » x0, or, the same, corresponding to 

passage to the limit T -* 0, will be self-similar. The singular scale 

of length in this motion is the actual variable coordinate of the front 

of the shock wave X, and the scale of speed is the speed of the front 

X. Solution of the equations consequently, should be found in self- 

similar form; 

Q-oaiDi «-^(S); P=CO^«(5): ^T^-^' At» 
(12.35) 

Before we concern ourselves with the mathematical solution of 

the equations, we should solve the question of which of the two types 

does the self-similar motion belong to, and is it impossible to deter- 

mine the index of self-similarity a from considerations of dimension 

or laws of conservation. In distinction from the two problems consid- 

ered above; about the convergence of a shock wave to the center and 

about emergence of a shock wave to the surface of a star, in the 

considered problem in every moment of time t the motion involves a 

fully determined finite mass of gas p0X (per cm of surface). 

Inasmuch as after cessation of the action of the piston, which 

accomplished the shock through the surface of the gas, the gas is not 

affected very much by external forces (pressure on boundary with 

vacuum is equal to zero) and in the gas momentum and energy must be 

retained. Momentum of gas is equal to the momentum of pressure of 

the piston: 

/-j**-n.x]/(i)„(.i). 
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With an accuracy of numerical coefficient this magnitude Is equal to 

Energy of the gas Is equal to the work performed hy the piston 

during the time of action of pressure. To exactly calculate this 

work would demand the solution of equations of gas dynamics In the 
CD 

stage of action of the piston, since the work Is equal to / p udt, 
0  P P 

where u (t) Is the speed of the piston, which beforehand was unknown 

(only pressure curve p_(t) was assigned). 

However, with an accuracy of numerical coefficient, depending 

on the form of function f(t/T), this work Is equal to 

a  i 

E^ntftx^Hi /^-nftc," 

(IL Is the scale of speed of the piston). 

If we place pressure, speed, .and density In integral expressions 

for momentum and energy of the entire gas in self-similar form (12.3?) 

and consider that the Integrals in the cold, undisturbed region 

X < x < oo disappear, the laws of conservation of momentum and energy 

(per cm of surface) can be written in the form 
«• i 

/-J Qudt-QtXX J forfg»const. (12.34) 
—• —m 

Bm I («T+-Fr')<fo-e^ J (^+^Tn)d|-const.       (12.35) 

It would be natural to consider the dimensionless integrals to 

be constant. Then each of the two conditions taken separately would , 

give the possibility to determine the index of self-similarity a. 

Ther condition of conservation of momentum would give XX » const, 

whence X ~ t ' , a ■ 1/2,    From the condition of conservation of 

energy follows X X - const, where upon X ~ t ' 5 and a - 2/3. 
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But taken together, these conditions contradict each other, since j 

they lead to different indices of a. There appears a paradoxical 

situation in which the laws of conservation of momentum and energies, 

which are the "bases of the equations of gas dynamics, cannot he 

simultaneously carried out. This creates the impression that the 

problem does not have a self-similar solution, the substitution of 

which in conditions of conservation led to a contradiction. 

The solution of this contradiction, however, consists in another 

solution. The fact is that the self-similar solution, which exists 

and which will be found below, in reality belongs to the second type. 

The index of self-similarity a is not found from laws of conservation 

or considerations of dimension, but by means of the solution of equa- 

tion for representative functions, from the condition of passage of 

the true solution through a singular point. Just as in the problems 

considered in the preceding sections. 

In order to immediately solve the described paradox, let us note 

that at the value of adiabatic exponent 7 ■ 7/5, the index of self- 

similarity, as the solution shows, is equal to a =» 3/5.* It is included 

between the values of a, dictated by the conditions of conservation 

of momentum and energy l/2 < 3/5 < 2/3. It will be shown below that 

at any value of adiabatic exponent, 1 < 7 < 00, the index of self- 

similarity a is included in the shown limits:  1/2 < a < 2/3. 

The index of self-similarity a » 3/5 corresponds to the dimension 

of parameter A in the law X » Ata, equal to [A] » cm« sec"-5'■3. We 

already know (see § 5) that limiting self-similar motion does not 

♦In general, at an arbitrary value of 7 index a is not expressed 
in the form of a fraction with integral numerator and denominator. 
However, fortunately, when 7 •» 7/5 the solution of self-similar 
equations can be found in analytic form, and a is then equal to 3/5 
(see below). 



completely "forget" about the initial conditions, but from the exten- 

sive information included in the initial condition it "selects" and 

"remembers" one specific constant A, which somehow characterizes the 

initial "shock." In this case, from the information given by the 

pressure, curve on the piston, P^ " Pj* f(VV) (and magnitude of ini- 

tial density PQ), the limiting solution "selects" one parameter A, 

equal, in order of magnitude of the following combination from char- 

acteristic scales, toj 

The numerical coefficient in the law of proportionality is 

determined by the form of the pressure curve f(t/T). 

Hence, one may see accordiBg to 'Aet law should pressure on piston 

P. tend to infinity, if we direct T to zero so that in the limiting 

motion we obtain finite (not equal to 0 or CD) pressure at finite dis- 

tance. For the existence of a limiting solution It is necessary that 

parameter A has a finite value, i.e., it is necessary that the product 

of Fpx1-«, equal to T1/2^  in the case of 7 - 7/5, remains finite 

when t -♦ 0. Consequently, when T -♦ 0, P^ should grow as ?> ~ x' ^ "a^ 

Now it is possible to clarify the question about the fulfillment 

of the laws of conservation. The momentum which the piston Imparts 

to the gas, or the shock momentum, in order of magnitude are equal to 

I ^ P^T, i.e., are proportional to I ~ P^-r ^ x a" ~ x ' . When 

x -♦ 0, momentum I -► 0. Consequently, full momentum in limiting, self- 

similar motion is equal to zero (momentum of the gas moving with the 

shock wave to the right is accurately compensated by the momentum of 

the gas scattering into the vacuum to the left; see Fig. 12.10). The 

law of conservation of momentum is written in form 
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/-feXX J gvdl~t* J gvdt^O. 

If follows from this only the fact that the representative functions       i 
1 

have to satisfy the condition    / gv di- « 0.    As can be seen.  It Isimpcs- 
-oo ] 

m 

slble to consider the magnitude XX as constant and thus to determine  j 

the Index of self-slmllarlty a. i 

The energy which the piston imparts to the gas in order of mag- 

nitude is equal to E ~ P£' Tp0~ ' . It is proportional to E ~ P^' x ~ 

3a-2   -iA ~ T^  ~ T /^. When T -♦ 0, E -* oo. Total energy of gas in self-simi- 

lar motion turns out to be Infinite. Law of conservation of energy 

only indicates the divergence of the Integral from dimensionless func- 

tions, but says nothing about magnitude X X (from the law of conser- 

vation of energy It is also impossible to determine the index of self- 

similarity) . Infinity of energy and divergence of integral of energy 

are connected with the fact that in exact self-similar motion, which 

corresponds to limit T -♦ 0, the speed of scattering of the gas bound- 

ary into the vacuum is infinite (see end of § 13). The kinetic energy 

is also infinite on the boundary, since the square of "speed" v , when 

| -» -oo, tends to infinity faster than density g decreases. 

The  physical meaning of the infinity of energy in self-similar 

motion will be explained below. Let us note here only that the energy 

of gas, of course, is limited and is equal to the work accomplished 

by the piston. Simply, a self-similar solution inapplicable to a small 

mass at the gas boundary, which Introduces a divergence into the 

integral of energy. 

i. 
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§ 15. Solution of Equations 

The general method of finding a self-similar solution to the 

problem of a brief shock In principle does not differ from the method 

solving problems about a convergent shock wave or about propagation 

of a shock wave through a gas whose density decreases with distance. 

by root law (see §§2 and 3 of this chapter). As also earlier, we 

shall find the solution of equations of gas dynamics (12.1) in self- 

similar form (12.33) and obtain a system of ordinary differential 

equations for representatives ir, v, and g. 

These equations coincide with equations (12.31) If we put the 

number of 5 in them equal to zero (in accordance with constancy of the 

density scale): 

(»-'t) (laiv-v)'+2 (a - J) a"»» 0. 
(12.37) 

Boundary conditions on the front of the shock wave when | ■ 1 

were written out in § 11 (formulas (12.32)). On the boundary of the 

gas with the vacuum the pressure and density return to zero, and speed 

to (-00) j i.e., when i  « -cot ir(-cß)  » 0, g(-oo)» 0, V(-CD)« -00. 

After a series of transformations the equations are reduced, as 

usual, to one first order differential equation, one quadrature, and 

one algebraic relationship between all variables, i.e., the Integral 

of adiabaticlty. The index of self-similarity is determined from the 

condition that the sought solution of the differential equation passes 

through a singular point. 

Actually, in [13* 1^] the equations were written and were solver1 

not in Euler, but in Lagrange coordinates. In a one-dimensional 

plane case at constant initial density the Lagrange form of notation 
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leads to simpler and more convenient relationships. It Is clear that 

no principally new transition from Euler coordinates to Lagrange is 

introduced. The Lagrange coordinate is defined as the mass of gas 

(per cm of surface) which is counted off from the boundary with the 

vacuum 

»"■ J ci«, dm — Qttx. (12.58) 

Instead of time, into the scale functions it is convenient to 

introduce the Lagrange coordinate of the front of the shock wave M ■ 

■ PQX, i.e., the mass of the gas (per cm of surface), which is envel- 

oped by motion to moment t. The self-similar variable is the ratio 

i|—y-, (12.39) 

which varies from r\ ** 0  (on the boundary of the gas with vacuum) to 

T} ■ 1 (on the front of the shock wave). 

Thus, the solution is written in the form 

p~BQji-*f(i\),       u~VBM~fw(r\),      c-M(tl),      (12.40) 

where B is the parameter of the problem connected with parameter A in 

law X « Ata and replacing it in the new notation, f, w, and q are the 

new representatives. The new index of self-similarity n is simply 

connected with the old one, a. Actually, 

»  «« ■ 

Hence—<m/2 ■ o - 1 and 

i+j (12.41) 

From the mathematical side of the question, the sequence of 

transformations of the equations, their investigation, and specific 

methods of solution can be seen in articles [15, 14]. Let us stop 

here more specifically on the results for the particular case of 

7 - 7/5* for which it is possible to find an exact analytic solution 
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of the equations. 

In examining the analytic solution all the basic features of the 

process become especially clear. 

Indices a and n when 7 « 7/5 are equal tos a ■ 3/5; n - 4/3« 

The solution in Lagrange coordinate has the form 

/-H, •--4KT(I|*,
-3). f-Öi)1. (12.42) 

Distributions of pressure, density, and speed with respect to 

mass are shown in Pig. 12.11. Let us note that by definition f » p/p^, 

vy b/5 ■ u/u^ and q/6 ■ p/p^* where subscript "l" denotes the m®i?- 

nitude on the front of the shock wave. With the help of determinations 

of the Lagrange coordinate (12.38) and self-similar variable r\  (12.39) 

it is easy in solution (12.42) to transfer to 

Euler variable# f ■ x/X.    Actually, at the given 

moment t, i.e., when M ■ const! 

dmwQds;  -j^-»-^--^-,whence dt|«*9d&. 

Putting function q(q) in this equation by 

the formula (12.42) and integrating with boundary 

condition T) ■ 1 when | - 1 (on the front of the 

shock wave), we obtain 

^-(5-41)^. 6-|(5-A        (12.43) 

Depending upon the Euler variable, functions 

f, w, and q have the form 

. » 

f-ecS-H)"1. (12.44) 

Pig. 12.11. Pro-      Representatives f, w, and q are connected 
files of pressure, 
density, and speed with representatives ir, v, and g, which we dealt 
in the problem of 
brief shock (in   with earlier, by the relationships: 
Lagrange coordi- 
nates), 7 - 7/5. 
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«-j/, »-j/Iw, g*.g*). (12.45) 

Distribution of pressure, density, and speed according to the 

Euler coordinate are shown in Fig. 12.12. It is interesting that 

pressure in linear form is distributed through mass, and speed, in 

space. Speed returns to zero and changes direction at point ^ « 1/2. 

The mass, included between the initial position of the gas boundary 

x - 0 and front of the wave, in every moment of time composes 90^ of 

the whole mass set into motion. 10^ of the mass, as a result of shock 

compression and subsequent expansion, is ejected to the left of the 

gas boundary. 78$ of the mass moves to the right, and 225^, to the 

left. 

Asymptotic behavior of the solution in the region of smbll density, 

when § -♦ - oo and T] -♦ 0, is given by the expressions; 

/-(-O*1. w~5. q~(-lP,      /'-i|.>~t|'1, 9~if.        (12.46) 

The singular point through which there passes the solution of the 

differential equation of the problem corresponds to the values of 

self-similar variables T\0 - j~3'2  . 0.054 and §Q- -1/2. 

As also in the problem of convergence of a shock wave, the §Q-line 

on plane x, t (T)0-line on plane m, t or m, M) is the characteristic 

(dx/dt ■ u + c; dm/dt ■ pc) which separates the region of influence. 

In Figs. 12.13 and 12,14, depicting diagrams of x, t and m, M, we have 1 

plotted the line of the front of the shock wave | ■ 1 and TJ ■ 1,      j 

*We shall let the reader, by means of direct substitution of 
functions ¥, v, and g by formulas (12.45) and (12.44) in equations 
(12.57) with 7 • 7/5 and a - 3/5* check that they indeed satisfy 
the equations (and boundary conditions of (12.32)). 
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V*t 
ipeoial line f - t0 and r\ - ^0, and the char- 

aöteristlo curve of both sets.« The special line 

is the ^-characteristic. All characteristics 

of the C+-set «serge from the origin of coordi- 

**'$   nates, whereby those which go to the right of 

the special line overtake the front of the shock 

wave, and those which go to the left, never 

overtake it. Thus, the state of motion in a 

relatively small mass, included between a bound- 

ary with a vacuum and a special line, does not 

affect propagation of the front of a shock wave.** 

In [15, 16] by means of numerical integration 

of the equation they found the values of the 

exponents of self-similarity and for certain 

other adiabatic exponents 7. The results are 

given in Table 12.2. 

Profiles of pressure, density, and speed 

at different values of the adiabatic exponent 

in a qualitative aspect are similar to profiles in the case of 7 « 7/5 

(see Figs. 2.11 and 2.12). 

From the table it is clear that the shock wave attenuates slower. 

Fig. 12.12. Pro- 
files of pressure, 
density, and speed 
in th«? brief shock 
problem (in luler 
coordinates), 7 ■ 
- 7/5. 

•Let us note that axis M is the T) - 0-line, and axis t on plane 
x, t is the I • 0-line. Negative semi-axis x on plane x, t is the | ■ 
H -GO-line. 

♦*In particular, the gas can border not with the vacuum, but with 
the "piston," the pressure on which drops according to sufficiently 
fast root law. Distortion of the state of motion In the region between 
the boundary and the go-line, connected with the presence of the piston, 
does not affect motion to the right of the gn-line and the law of prop- 
agation of the shock wave, only if the pressure on the piston drops 
sufficiently fast. This is shown in the work of V. B. Adamskiy and 
N. A. Popov [18]. In this work, and also in the work of N. L. 
Krasheninnikova [19]« a self-similar problem was considered concerning 
the motion of a gas under the action of pressure on a piston that is 
variable according to root law. 
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Tatle 12.2 

» 1.1 Iß 5/3 2.8 
11 1,515 4/3 lt»5 1,045 
• 0.51 S/S 6,m 0.6% 

the larger the adlabatic exponent. However, attenuation is always 

faster than In case when the gas on the boundary does not scatter 

into a vacuum, hut is motionless, as in the problem about the violent 

plane explosion. 

If in plane x » 0 there occurs 

an instantaneous energy release E 

erg/cm , and the gas in plane x • 0 

is always motionless or occupies the 

space on both sides of the plane, or Is limited by a rigid wall), the 

energy is conserved and the shock wave attenuates according to the law 

s 

In the following paragraph it will be shown how the limitation 

n > 1 and a < 2/3 follows from the law of conservation of energy at 

an arbitrary value of 7. In the same place we shall see that the law 

of conservation of momentum puts an opposite limitation on the expo- 

nents; n < 2, and a > 1/2. 

t 
Pig. 12.15. x, t-diagram 
for the brief shock prob- 
lem. C " 1 — line of front 
of shock wave, C s |Q — 
special ^0-line. Charac- 
teristics of the C^- and 
C -sets have been plotted. 

Fig. 12.14. m, M-dia- 
gram for the brief shock 
problem, t) ■ 1 — line of 
front of shock wave, TJ « 
» T)0 — special T}0-line, 
Characteristics of the 
C.- and C -sets have 
been plotted. 
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§ 16, Mmitfttion of th« S«lf-Slall«rlty Ixponent by the 
Laws of Conservation of Moaefttua end Knergsr 

The character of notion which appears in a brief shook is such 

that soae portion of the gas is attracted by the shock wave to the 

right, and the remaining gas scatters to the left into a vacmm. 

there  exists point which differentiates the shown portions of 

gasj we shall call the coordinate of this point x*. At point ij* the 

mass speed of gas changes direction« i.e., is equal to zero, u* «• 

- u(x*) « 0. The actual boundary x* spreads in space and through mass 

to the right. In a self-similar solution, to the point of conversion 

of the sign of speed corresponds a certain defined value of the self- 

similar variable: § - |*; x* - ?*X. 

Let us consider a volume included between the surface of the front 

of a shock wave x - X and the surface of "division," x ■ x». This 

volume contains the mass (per cm of surface): 
■ • ■ -f     ■ • 
tf*~ I «fe-fcX { fdg.eoiist'fcX. 

It composes a fully determined portion of the total mass enveloped 

by motion M ■ PQX (when 7 « 7/5, U*/H «* O.78). The remaining mass 

M - M* scatters to the left. Mass M*, Just as total mass M, grows 

in time proportional to M* *- X ~ ta. 

Boundary x* spreads through the mass to the right, i.e., the gas 

flows through the surface of x» to the left. Let us write the expres- 

sion for momentum and energy of the gas which moves with the shock 

wave to the right: 

r-|liij»-ftl»r{JV4i.00I18i.ii.-if      (12.47) 

^-iC^r+^^-t^xj^+^äl-.«^.!«.  (12.48) 

Ji 
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Prom the right, through the surface of the front of the shock 

wave. In the considered volume x* < x < X, there flows an undisturbed 

gas with zero pressure and temperature. It does not introduce momentum 

or energy into the volume. From the left, through the surface of x*, 

the gas leaves the volume with zero speed, but with finite pressure 

p* (gas leaves the volume not by natural motion, but by the propagation 

of the surface which limits the volume). Momentum does not flow 

through the surface of x*. Change of momentum in the volume is equal 

to the pressure applied to its boundarys 

-*£-/»*>0. (12.^9) 

Momentum in the volume grows in time. From formula (12.47) it 

follows that 2a - 1 > 0, a > 1/2, and by formula (12.41) n < 2. 

Change of energy in the volume is determined only by the flow of 

internal energy through the left surface of x*. Kinetic energy does 

not flow, since the speed of gas u* and kinetic energy on boundary 

x* are equal to zero. Work of the forces of pressure on the surface 

of x*, p*u*dt, is also equal to zero. Consequently, 

^--TiTf«^--^TPn*i<o. (12.50) 

Ener^ in the volume decreases in time, and flows from it to the 

left together with the mass of gas, which changes the direction of 

speed and starts to scatter to the left, into the vacuum. Prom formula 

(12.48) it follows that 5a - 2 < 0, o < 2/3, and by formula (12.41) 

n < 1. Thus, we arrive at following limitations of the exponents of 

self-similarity: 

■5-<«<jf 2>II>1. (12.51) 

Extreme values of n « 1 and a - 2/3 correspond to the invariability 

of energy B* - const, and extreme values of n - 2 and o ■ 1/2 
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correspond to the invtritbility of moaentua I* ■ eon^t. 

§ 17. Saergence of Honself-Slmiltr Motion Into Limiting 
Conditions and the "Infinity" of Energy 

In « Self-Similar Solution 

A self-similar solution« strictly speaking, corresponds to Ideal- 

ized Initial conditions. In which the duration of the shock T IS 

Infinitely short, and pressure on the piston "during the shock" P. is 

infinitely long. Passage to the limit, T •♦ 0 and P^ -• 00, is accom- 

plished in such a way that the product P* T "a, which is proportional 

to parameter A (see formula (12.56)), remains finite. In accordance 

with limiting values of T -♦ 0 and P^ -• 00, the piston imparts to the 

gas an infinite energy: 

1 t 

j:* ^'^nft'«r-<,-,B>-»- 00, o < -J. (12.52) 

and zero momentum 

/*ntt^t»"-«-*.0, «>{. (12.53) 

Let us compare energy E» and momentum I* of that portion of gas 

which moves to the right, in the direction of propagation of the shock 

wave (see formulas (12.4?) and (12.48)) with energy E and momentum 

I of the entire gas on the whole. We have 

1 y<«<i' (12.5^) 

Energy E* of a gas moving with the shock wave to the right, suc- 

ceeds in decreasing to given moment t even a greater number of times 

as compared to initial energy B, the shorter the shock. Is not sur- 

prising that in the limit of vanishing short duration of shock T ^ 0, 

infinite work cf the piston is needed (infinite energy of gas E), so 

that, being reduced an infinite numer of times, the energy in a 

definite portion of mass remains finite. All this infinite energy 

is now concentrated in that portion of the »ass which »satters into 

■■*-,, 
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the vacuum; more exactly, on the very edge of the gas, which possesses 

infinite speed of scattering and infinite kinetic energy. 

Unilateral momentum I* in a given moment of time is greater than 

the momentum of the piston I, the shorter the shock. In the limit 

T -♦ 0 unilateral momenta of parts of the gas, which move to the right 

and to the left, compensate one another with an accuracy of vanishing 

low magnitude of I. 

Essentially, an idealized limiting solution corresponds not simply 

to zero duration of shock T, but to an infinitely large ratio t/xj 

t/t -• oo and E*/E ~* 0, I*/I -♦ CD. 

Above, in the interpretation of this condition, we considered 

finite times t, but vanishing short times of shock x, in accordance 

with which the work of the piston E was infinite, and momentum I was 

zero. 

Nearer to reality is another Interpretation of the limiting 

condition when not the duration of the shock tends to zero, but during 

an actually finite duration of shock and finite energy E there are 

considered times t that are large as compared to x (t/x -» oo not becauae 

x -• 0, but because t -♦ oo), 

In examining the limiting conditions from such a point of view 

there appears the question of in what way does asymptotic transformation 

occur of a true motion, nonself-similar by virtue of the finlteness 

of x, in limiting conditions? How does the infinity of energy of 

limiting motion agree with the actually finite work of the piston? 

The fact is that the approximation of a true solution to a self- 

similar one occurs nonuniformly in time. With the growth of time t and 

mass of gas enveloped by motion M " PQX, pressure and all other mag- 

nitudes approach values corresponding to a self-similar solution. 

lOäl 
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However, sueh an tpproaeh does not occur evsrywhere. 

In a certain IMSI m0 near a boundary which, during a shock, was 

subjected to the direct influence of a piston, the state never 

approaches the one which is dictated by the self-siiailar solutiohi 

in order of magnitude this mass is equal to the mass of gas through 

which the shock wave passes during the actual shock» m0 ~ PQÜLJT ~ 

The speed of scattering of this mass into a vacuum always remains 

finite and equal in order of magnitude to U^IL ~ tfKTpn)»  when in 

the self-similar solution the speed of scattering of the boundarj of 

gas is infinite (when t -♦ 0, P1 -♦ oo and l^ -♦ oo). Entropy of mass BIQ 

is also finite, and is equal, by virtue of the adiabatic nature of 

motion, to initial entropy. Actually, S • c In pp"^ + const. Mag- 

nitude pp"^ in mass IBQ in order of magnitude is equal to P-PQ"7, i.e., 

it is limited at finite T and P^. In a self-similar solution with 

7 - 7/5, by formulas (12.42), we have 

when »•-♦0. 

Thus, mass ISQ at the boundary forever 

k     ir k" **      carries the imprint of initial conditions 

Fig. 12.13. and its state is not described by a self- 

similar solution even in the limit t -* GO. 

This position does not at all contradict the general tendency of 

a true solution to transform into a self-similar one in the limit 

t -* oo. Mass IBQ in time composes a smaller and smaller portion of the 

entire mass of gas enveloped by motion (Fig. 12.15). In the limit 

t -* oo this small mass should not be considered in differential 

equations or in the convergent integral of momentum. 

J 
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However, in the calculation of the integral of energy, the 

replacement in small mass m0 of the true solution by a self-similar 

one leads to an essential change of the integral, and makes it diver- 

gent. In the self-similar solution the speed and kinetic energy of 

gas, during approach to the boundary m -♦ 0, tend to infinity, whereas 

in actuality, with finite pressure on piston P^ and duration T differ- 

ent from zero, the speed and kinetic energy of gas near the bound- 

aries are finite. 

In order to obtain finite energy of gas, actually responding to 

finite work of the piston, it is necessary, during the calculation of 

energy, with the help of the self-similar solution, to stop integration 

in that region where the self-similar solution is inapplicable. 

We shall calculate energy by using Lagrange coordinates. Then, 

during integration of specific energy through the mass of gas enveloped 

by motion, as the lower limit we shall take the mass coordinate, in 

order of magnitude equal to mass m0, which it is not described by the 

self-similar solution. 

Let us perform calculations for the case of 7 « 7/5. 

The main contribution to the integral is given by the region near 

the lower limit, where speed of gas and kinetic energy are very great 

(in limit m^H"* 0, v-♦ -00). Therefore, for calculation of the inte- 

gral we shall use the asymptotic expression for speed (12.46) (see 

also (12.45). 

We obtain £' 
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Let us express the variables in this formula through X: 

it i 
M»Q^; ir-A"1 (Since X«^. 

Considering the determination of A *» (P^/PQ) ^ x   (formula (12.36)) 

and m0 « (P^p^) ' t, we find that 

i« i t i 4 t« 

As can be seen, the energy of the entire mass of gas, with the 

exception of small mass au, to the self-similar solution which is 

inapplicable, is constant in time, is finite, and in order of magnitude 

is equal to the work of the piston. 

Energy of the same order is also included in relatively small mass 

m0. This mass flies into the vacuum with speed — U^, having kinetic 

energy of the order m^ «• PQUJT « Po(pi/Po^  T * Pl Po~  T * ^ 

Within the confines of the self-similar solution in mass m0 there is 

concentrated infinite energy, in spite of the fact that mass au in 

time composes a smaller and smaller portion of the entire mass of gas 

enveloped by motion M. 

It is essential that the region of gas, which is not described 

by the self-similar solution and which gives divergence in the inte- 

gral of energy, if the self-similar solution is extrapolated by it, 

lies beyond the limits of the sphere of influence, to the left of the 

singular line, and in no way affects propagation of the shock wave. 

Actually, the boundary of the nonself-similar region is described by 

the equation m •* m0, and singular line m « ?|QM (m » 0.054 M when 7 <■ 

■ 7/5). When t •* CD, M -♦ 00 and m^ « TIQM. 

In order to obtain a presentation of how nonself-slmilar motion 

emerges into limiting, self-similar conditions, the authors of [14] 

undertook the numerical calculation of equations of gas dynamics with 

n ^-i • ■ilTiirWi TU i'iirr-Tin" 
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7 ■ 7/5 during a square pulse of piston pressure, shown In Pig. 12.9. 

Pig. 12.16 shows curves of the öfp€*i*ence of p/p^j, u/u1, and p/pi on      (J 

self^similar variable x/X for several moments of time (p*, u^, p.. 

I.e., magnitudes of the front). 

In the same place curves are plotted of an exact self-similar 

solution. As can be seen from the graphs, already when t/r » 5 the 

true solution Is quite close to the self-similar one, and when t/x ■ 

- 15, It almost coincides with the self-similar solution. Thus, the 

emergence of motion Into self-similar conditions Is carried out very 

fast. From the solution of the nonself-similar problem there can be 

found a numerical coefficient In expression (12.36) for parameter A. 

It turns out to be equal to 1.715, so that A - I.TI^^PQ)
1
^

2
^^. 

The numerical coefficient characterizes the form of momentum of 

piston pressure. It is possible to say that a square pulse is pecul- 

iar to the number 1.715 (when 7 - 7/5). 

§ 18. Concentrated Shock Alcng the Surface of a Gas 
(Surface Explosion) 

Let us imagine a ,,8phericalw analog of plane motion of gas during 

a brief shock along its surface, (Incidentally, we shall also consider 

a ,,cyllndriC8l,, case). This question was considered in the work of 

one of the authors of [20], 

Let us assume that half-space s > 0 is occupied by an iJeal gas 

with adlabatic exponent 7. Density of gas p- is constant and pressure 

is equal to zero. On the other side ci plane z ■> 0, when z <: 0, the 

space Is empty. In initial moment t ■ 0 in a small mass of gas m, 

surrounding point 0 on boundary surface z ■ 0, a high energy £ is 

quickly released. This can occur as a result of explosion on the 
I 

surface or as a result of a "concentrated" shock along the surface        i 
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by a fast "projectile" If the latter does,not penetrate far Into the 

depth of the substance, but is sharply decelerated near the surface. 

The kinetic energy of its motion is quickly turned into heat, i.e., 

there occurs somethind similar to an explosion. 

Prom point 0 through the gas runs a shock wave. In the other 

direction the heated gas scatters into the vacuum. Initial speeds of 

gas both in the direction of propagation of the shock wave, and also 

in the direction of the vacuum are of the order UQ — yB/m.» 

The surface of the front of the shock wave, which is the surface 

of revolution around axis z, will form somethind like the "cup" shown 

in Fig. 12.17. Through the round !bpen- 

ing" of the cup (section in plane z ■ 

• 0) the gas, heated by the shock wave, 

flows from "cup" into the vacuum. Drain- 

ing of gas weakens the shock wave as 

compared to the case when the "opening" 

is closed by a fixed "lid." This case 

would correspond to an explosion in an 

unlimited medium. 

The  shock wave moves the fastest 

of all downwards and the slowest of all along the surface z - 0, where 

it is greatly weakened due to expansion of the gas into the vacuum. 

Therefore, the surface of the front extends downwards as compared to 

a hemisphere. Near the front the gas moves in the direction of propa- 

gation of the wave. Somewhere inside the "cup" there passes a surface 

Pig. 12.17. Field of 
speeds during concen- 
trated shock. 

•If the cause of motion was the impact of a "projectile," m is 
the order of mass of the "projectile," S is the order of its kinetic 
energy, and UQ is the order of impact speed. 
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on whleh the vertical component of speed changes direction. Above 

this surface, schematically shown in Fig. 12,17 by the dotted line, 

the gas moves in the direction of the vacuum (directions of speed are 

shown by arrows). With the departure from plane z - 0 in the earlier 

empty space z < 0 the speed of scattering Increases, which is schemat- 

ically shown in the figure by arrows of increasing length.* 

It is quite evident that in the limit when the shock wave seizes 

mass M » m, the motion is self-similar. The  surface of the front is 

then expanded, remaining similar to itself. The coordinate of any 

point of the front, let us say, point B, grows In time according to 

the law z. ~ t0. Pressure on the front (for Instance, in that same 

point B) decreases with Increase of mass M according to the law p^ ~ 

~ M"n, whereby constants n and a are connected together by the simple 
* 

relationship n - 2(1 - o)/3kx.*# 

During a concentrated shock, exponent n, just as in the plane 

case, is limited by the inequalityt 

l<»<2. (12.55) 

In order to be convinced of this, we shall consider the stage at 

which M » m and p "- M"11, and shall compose approximate expressions 

«Apparently, near the plane boundary of an undisturbed medium, 
the gas flowing from the "opening" moves along plane z » 0, and the 
pressure on the plane Itself is equal to zero. It is possible that at 
certain values of y  there occurs breaking away, so that near plane 
z ■» 0 outside the "opening" there will form an empty conical slot. 
Perhaps, at certain -y the pressure on plane z ■ 0 outside the opening 
Is finite, and near point A there appears a triple point. The front 
of the shock wave along plane z « 0 then spreads to infinity. 

3   ^a 
»♦M ^ zj ~ t"^*. Speed of gas behind the front is proportional to 

u '- 

,n ■ 
i— 

dz./dt ~ t«-1 ~ ^p ~ M-n/2 ~ fW2.    Hence: 

2(1 - a)/3a. 

- 1 • -]5on/2 or 

Jb?. 

^1 
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for energy and vertical z-component of the gas momentum contained in 

j the Mc\ip," Taking the dimensional parameters into account in the pro* 

portionality factor between p and M, but without taking into account 

the numerical coefficient the average pressure with respect to the 

volume of the McupH can be written in the form 

Here p0 ~ EpQ/m is the initial pressure at the time of impact ("explo- 

sion"). Average speed of gas in the "cup" in order of magnitude is 

equal to 

Ki)L-.(>)MiKir)T- («.57) 
Energy in the "cup" is of the order 

£.-*u«~^~£(£)n-,^£l,(£;p.        (12.58) 

where Ei0 is the initial energy in the "cup" which obviously is on the 

I       rrder of total energy E. Momentum in the "cup" is of the order 

/i-Afu- [**(■*■)*'* f-i^y**, (i2^9) 

where I^Q ~ (Em) ' is the initial momentum,* 

Energy flows from the "cup" through the "opening," since the 

speed of gas in the section of the "opening" is directed towards the 

vacuum. Consequently, ener^ Ei contained in the "cup" decreases in 

time (with the growth of mass M), and by formula (12.58) n > 1. 

■Hie momentum of the gas in the whole "cup" shall be compared with 

the momentum of the part of it which is included between the surface 

of the front of the shock wave and the dotted surface where the 

vertical component of speed changes sign, i.e., is equal to zero. 

*In the case of impact of a "projectile" I10 of order of the 
momentum of the striking body. 
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flümögh this surface the mcaieiituift does not flow In vertical direction 

end the pressure on it Is positive. Consequently, momentum grows with 

time, end by formula (12.59) n < 2. Vertical momentum of gas In the 

"cup" is balanced also by the Increasing, but oppositely directed 

momentum of gas flowing from the "cup" and scattering Into the vacuum. 

Thus, inequality (12,55) can be considered to be proven.* The value 

of n ■• 1 corresponds to conservation of energy in the "cup," I.e., an 

explosion In an unlimited medium. The value of n « 2 would correspond 

to the conservation of momentum. 

,    The same inequality (12.55) is also valid in the McyllndrlcalM 

case or during "filamentary11 Impact. The pattern of motion during a 

"filamentary" Impact (explosion) in the qualitative aspect is similar 

to the pattern, depicted in Pig. 12.17, Only now the explosion occurs 

not at point 0, but along a straight line passing through point 0 

perpendicular to the plane of the figure. All motion is symmetric 

with respect to the plane passing through this straight line and axis 

z. The surface of the front will not form a "cup" but an infinitely 

long "ditch" whose cross section is depicted in the figure. M is the 

imass arriving per unit of length of the "ditch." 

It is possible to establish an even narrower Interval for the 

exponent in the law of damping of a shock wave. Physically, it is 

clear that with the same adiabatic exponent in the case of a concen- 

trated shock, the wave is weakened witft the growth of mass slower than 
i 

in the plane case. 

Actually, the weakening action of draining of gas from the front 

W 

:    «Let us note that passage to the limit to self-similar conditions 
leorresponds to m <-* 0. So that pressure is finite, it is necessary 
tthat Sr1"1 * const, i.e,, that energy is infinite, I *- arC11-1) -• as, 
and Initial momentum is £ero: and 
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is expressed smaller, the relatively smaller the area through which 

the, gas flows into the vacuum. In the "spherical" case the area of 

the "opening" is much less than the surface area of the front of the 

shock wave (see.Pig. 12.17). In the plane case both areas are equal. 

The "cylindrical" case is intermediate in this respect. 

If we designate hy n., n2, and n, the exponents in the law of 

weakening of the shock wave p ~ M~n for plane, filamentary, and con- 

centrated shocks correspondingly, then by virtue of what has been said, 

at the same adiabatic exponent 

l<n«<iit<»ii<2. (12.60) 

For instance, when 7 » 7/5n1 - 4/3 and 1 < n, < k/j».    When 7 ■ 5/3, 

^ » 1.275 and 1 < n, < 1.275. 

Thus, a concentrated shock is more like a localized explosion in 

an unlimited medium than a plane shock is like a plane explosion. 

§ 19. Results of Simplified Consideration of Self-Similar 
Motion in Concentrated and Filamentary Impacts 

In order to determine exponent n(7) in the law of damping of a 

shock wave p ~ M"11, it is necessary, as in the plane case, to solve 

an equation of self-similar motion. However, "spherical" and "cylin- 

drical" problems are incommensurably more complicated, since they 

are two-dimensional and self-similar motion is not described by 

ordinary differential equations, but by equations in partial deriva- 

tives. The position is essentially complicated even more by the fact 

that the surface of the front of the shock wave, to which the boundary 

conditions are assigned, is unknown beforehand and should be found in 

the course of the solution. For this reason even numerical integration 

of equations of self-similar motion should be connected with consid- 

erable difficulties. 
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A certain presentation about the numerical values of the exponent 

and general characteristics of motion Is give by the simplified consld-     yl 

eratlon of the problem conducted In [20], An exact particular solution 

was constructed for differential equations of self-similar motion, 

which Is a generalization of the exact solution of a one-dlmenslonal 

problem (see § 15) and In certain respects correctly transmits the 

features of a two-dimensional process. The solution contains a series 

of unknown constants. It is clear that with the help of such a rather 

arbitrary particular solution of equations it is impossible to satisfy 

the boundary conditions on the front of a shock wave. Therefore, 

Instead of the conditions on the front the solution was subordinated 

to general relationships, expressing in integral form the balances of 

mass, energy, and components of momentum of the gas contained in ehe 

wcupn (in the "ditch"). The form of the surface of the front was then 

selected as the most simple one. The  "cup" was replaced by a circular 

cylinder with a "bottom" and the "ditch" with rounded shape by a 

"ditch" with a rectangular shape (Pig. 12.18). 

Just as In the one-dimensional case, an exact analytic solution 

exists only at one (selected) value of adiabatic exponent 7 (equal to 

7/5)j and also an approximate solution, which is a generalization of 

an exact one-dimensional one, is suitable only for one singular value 

of 7. This value together with the corresponding value of n Is found 

in the solving process. 

It turned out that in the case of concentrated impact n ■ 1.07 

when y - 1.205j the ratio of height of the "cylinder" h to diameter 

d is equal to 1.05J density of gas in the section of the "opening" is 

Popen * 0«0187po and from the "opening" flow only 1.6£ of the entire        . 

.mass enveloped by the shock wave. Density of gas on the "bottom" of 
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the cylinder is equal to p^^ «• 10.5, which is very close to the actual 

density on the front of the shock wave [(7 + i)/(7 - 1)] p0 - 10.7p0. 

The vertical component of speed changes direction at a depth of 0.846h 

from the "opening" and at a distance of 0.i5^h from the "bottom." 

In the case of filamentary impact n » 1.14 when 7 » 1.266, h/d « 

- 1.21 (h is the height of the "ditch" and d is the width), from the 

"ditch" flows 2^ of the entire mass. 

We see that exponents n turned out to he very close to unity, 

i.e., draining of gas from the front of the shock wave due to expansion 

of it into the vacuum only somewhat weakens the shock wave as compared 

to an explosion in an unlimited medium. This obviously is connected 

with the fact that beyond the limits of the "cup" ("ditch") a very 

small portion of the entire mass is ejected. The shape of the "cup" 

apparently essentially differs from hemispheric, which would corre- 

spond to an explosion in an unlimited medium. Height of the "cup," 

i.e., cylinder, is approximately equal to the diameter, whereas upon 

replacement of the hemisphere with an equivalent cylinder the height 

would be approximately two times less than the diameter. The same 

also pertains to a filamentary impact. 

Fortunately, the adiabatlc exponents 7 »■ 1.205 

and 7 » 1.266, for which approximate solutions are 

suitable, are close to the real values of effective 

adiabatlc exponents of gases at high temperatures, 

when the processes of dissociation and ionization 

are essential. Let us note that in the plane case 

the exponent n monotonically decreases with the 

growth of 7. If the same situation exists in 

Fig. 12.18. Re- 
placement of cup 
with an equiv- 
alent cylinder. 

two-dimensional cases, which is very probable, then for a concentrated 
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Impact 1 < n < 1.07 when 7 > 1.205, and for a filamentary impact 1 < 

< n < 1.14 when 7 > 1.266. In real processes, values of 7 that are 

essentially smaller than 1.205 or 1.266 can scarcely present any inter- 

est. It follows from this that in the majority of real processes, a 

model of which could be the problem about the concentrated (or fila- 

mentary) impact, the shock wave attenuates only somewhat faster than 

in an explosion in an unlimited medium. 

§ 20. The Impact After the Fall of a Very Fast Meteorite 
to the Surface of a Planet 

A characteristic example of the phenomenon of "concentrated 

impact" could be the process occuring when a meteorite strikes the 

surface of a planet with a speed of the order of several tens or one 

hundred km/sec (and above). It is meaningful to consider either 

planets deprived of atmospheres, such as the moon, or rather large 

meteorites. Small meteorites evaporate and "bum" along the way due 

to the friction against the atmosphere, and never reach the surface 

of the planet. 

When a meteorite strikes the ground there occurs a sharp decel- 

2 J 
eration and initial kinetic energy E ■ mv /2 (m is the mass of the 

meteorite, v is the rate of fall) in a considerable degree transfers 

into Internal energy, into heat. The depth of penetration of the 

meteorite body into the ground is usually on the order of the dimen- 

sions of the body itself, so that in the initial moment the energy 

release occurs in a mass of the order of m. From the place of energy 

release along the ground there spreads a shock wave.* 

#We do not consider Impacts with low speeds, when an essential 
role is played the deceleration process itself, and propagation of 
the shock wave through the body of the meteorite is shorter when the 
energy release cannot be considered instantaneous. 
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We shall concern ourselves with impacts only with very high 

speeds, when specific energy v /2 many times exceeds the binding energy 

of atoms of molecules of the substances of the meteorite and the 

ground (heat of evaporation). 

In this case there exists a stage when the shock wave envelopes 

a mass of ground M, considerably exceeding initial mass m, but the 

substance in the shock wave can be considered as a dense gas. The 

ground and the meteorite body during expansion are completely evapo- 

rated and scatter from the surface of the planet in a gaseous state. 

In the stage of not too strong expansion the pressure of the gas is 

much greater than atmospheric pressure and the existence of the atmos- 

phere (if there is one) may be disregarded. Vapors are expanded Just 

as into a vacuum. As can be seen, we are dealing with the typical 

picture of concentrated impact on the surface of the "gas" described 

in the preceding paragraph. 

Let us estimate what is needed for this rate of fall. The heat 

of evaporation of iron (meteorites are of iron and rock) is equal to 

94 kcal/mole » 7*10  erg/g. The heat of evaporation of rocks is 

in 
about 83 kcal/mole » 5.8'10  erg/g. This value pertains to silica 

SiOg, which is the basic component of different soils and rocks. If 

we consider also dissociation of SiOg molecules during evaporation, 

the binding energy will compose 203 kcal/mole - 1.4'10  erg/g. 

For the estimation we shall say that for full evaporation it is 

necessary that specific energy 10 times exceeds the heat of evaporation, 

for which we shall take the tentative value of U * 10  erg/g. For 

the minimum speed at which a mass of the order of the meteorite mass, 

is evaporated we obtain the value of v . « V2.10»1011 » 14 km/sec. 

In exactly the same way it is possible to say that during propagation 
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of a shock wave, completely evaporated during subsequent expansion 

are those layers of ground which the snoclc wave reached with specific      ; Jl 

internal energy e^ in the front of the order of g. ~ 10U ~ ,10  erg/g. 

Tenfold exceeding of e. above U is taken on the basis of estimates 

in § 22, Chapter XI, where it w!:s shown that full evaporation during 

unloading of a solid, compressed by a strong shock wave, is obtained 

if the energy in the front of the ^«vs is at least one to five times 

greater than the binding energy of a crystal lattice. 

In order to estimate the total mass of ground which is evaporated 

in the impact of a meteorite, it is necessary to use the law of damp- 

ing of a shock wave. Such an estimate for the first time was made by 

K. P. Stanyukovich [21], who studied the phenomenon of "explosion" 

in the impact of a meteorite on the surface of a planet as the cause 

of the formation of craters on the moon. K. P. Stanyukovich did not 

take into account the effect of vapor scattering into the vacuum, 

assuming that a shock wave spreads exactly the same as in a strong 

explosion in an unlimited medium, i.e., according to the law p. ~ M'1, 

e^^ ~ E/U. 

The consideration presented in the preceding paragraph are based 

on this assumption. Evaporated mass M^ in order of magnitude is 

determined by the relationship: e^ ~ E/tok, whence M^ ~ E/EJ. ~ ml—I ■ 

« m(v/vjc) , where v^, - tfe^~ 10 km/sec. For instance, wl'.h a 

meteorite speed of v <- 100 km/sec there is evaporated a mass ox" ground 

that 100 times exceeds the mass of the meteorite. 

When the energy in the shock wave becomes less than ~10  erg/g, 

the layers of the ground captured by the wave no longer are evaporated 

during unloading. However., the energy in the wave is still fully        -. 

sufficient for mechanical breaking of the substance. The limiting       " § 

1056 
^^»«afea^^i^fff^.»»^^ •i"i--|il'lff'l1tll-Hlliillirll'f: 



■HSillHffSSS livmzf' '■''''''i i'-^-V^^^'^'^-^^^-'V^^^W^;-?^-^-^^ -^ 

energy necessary for destruction is much less than the heat of evapo- 

ration. Therefore, the mass of a crushed substance many times exceeds 

the mass of an evaporated substance. The crushed substance is ejected 

upwards in the form of solid particles, and in this way there appears 

a crater. Questions about the dimensions of the crater after the 

impact of a meteorite, the role of gravity, which prevents remote 

scattering of the substance, and others, were considered by K. P. 

Stanyukovich [21]. 

Effects similar to an "explosion" in the impacts of fast meteor- 

ites also appear during motion in a rarefied atmosphere of body with 

very great speed. Impacts of molecules of air against the surface of 

the body are like the impacts of meteorites against the surface of 

planets. In every impact there occurs a "microexplosion" and from 

the surface of the body there is ejected a certain quantity of evapo- 

rated substance. The body obtains an additional impulse of recoil, 

which leads to an increase of the drag factor and an Increase of the 

speed of braking of the body in the atmosphere. This phenomenon is 

considered in the work of K. P. Stanyukovich [22], The impact of a 

fast body on a liquid surface, on assumption of its incompressibility, 

was considered by M. A. Lavrent'yev [23], 

§ 21. A Powerful Explosion in an unlimited Porous Medium 

In the work of A. S. Kompaneyets [24] the problem is solved for 

a powerful localized explosion in a plastic packing medium with con- 

tinuous packing on the front of the shock wave.* We shall consider 

here a simplified problem about the propagation of the shock wave of 

a localized explosion in a porous medium under the condition that the 

* In [25] the packing Is assumed to depend on the amplitude of 
the wave. 
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solid substance Is Inconpresslble (for instance, in sand with incom- 

pressible sand grains). Strength of the sand grains will be disre-        ^) 

garded# i.e., we shall consider that for adiabatlc compression of the 

material to the density of the solid substance (for full "selection" 

of vacuums) no expenditure of energy is required. In other words, 

the shock wave is considered to be powerful with respect to the strength 

of the material, but weak with respect to elasticity (compressibility 

of the solid substance). Initial pressure p0 is equal to zero. 

Let us designate average density of an undisturbed medium by p0, 

and density of the solid substance ("sand grains") by p^ pc » p1(l-k),. 

where k is the coefficient of porosity, which can vary from zero to 

one. 

Let us assume that at a certain point there occurs a strong 

"explosion"j the substance is given en intense initial shock, for 

instance; the spherical "piston" expanded and stopped quickly. Through 

the substance there will pass a shock wave in which the material will 

be compressed to the density of the solid substance with complete 

filling of vacuums. After that, the density of the substance no longer 

changes and remains equal to p^. The substance, seized by the shock 

wave, moves behind the front. Near the surface of the front there 

will form a spherical shell of constant density p^ and behind it an 

empty cavity, as shown in Fig. 12.19». 

If the radius of the front of the wave is B, and the radius of 

the internal surface of the layer is r0, the condition of conservation 

of mass givest 

or 

^-«•(l—*)-**. (12.61) 
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Fig. 12 19. Distributions of 
density (a) and speed (b) 
along the radius during an 
explosion in sand with incom- 
pressible sand grains. 

r, r*^ 

Fig. 12 20. Shock 
adiabat of sand 
with incompressible 
grains without tak- 
ing into account 
strength. 

Distributions of speed in the layer follows from the continuity 

equation for an incompressible fluid: div u - 0, 

»-^(T)'. ''.<'<«. (12.62) 

where u. is the mass speed behind the front of the shock wave (see 

Fig. 12.19b). It Is connected with the speed of the front D - dR/dt * 

by an evident relationship: 

■i-/)0-ji.)-fl*. (1265) 

The shock adiabat of the substance under the assumptions made in 

the beginning has the form shown in Fig. 12.20.* Let us assume that 

the "pressure" in the shock wave is equal to p^ (point B on the shock 

adiabat). As it is known (see § l6f Chapter I), the initially station- 

ary substance in a strong shock wave (p^ » p0) obtains identical 

kinetic and internal energy u^/2 per gram. Numerically these energies 

•For shock compression of porous material taking into account 
compressibility of solid substance see § 10, Chapter XI. 
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are equal to the area of triangle OAB In Fig. 12.20. Inasrauch as solid 

particles are assumed to be incompressible, the fate of tue internal 
I 
energy obtained by the substance in the shock wave does not interest 

us. Tills energy is turned into heat and constitutes simply a loss of 

mechanical energy of motion. Thus* a decrease of kinetic energy of 

the entire mass M during the time dt is equal to an Increase of inter- 

nal energy of mass dM, which is seized by the shock wave during the 

time dt: 

"P    2 sHere, u ■ ßu^. designates the mean square of speed of mass M. Coef- 

ficient ß is easy to calculate with the help of equations (12.62) and 

(12.6l)s ß - 3/(k + k2/5 + k1^). Integration equation (12.64), we 

find the law of damping of the shoqk wave: 

^-«wwt.jr^^^-coB^jr*. (12.65) 

Here, by analogy with the preceding sections, we designated the 

exponent of mass in the formula for specific energy byn : n - (1-fß)/^. 

Full kinetic energy of motion is proportional to Ek - ^- - M"^"
1^; 

•momentum is I '- Mu^ — M n' . Inasmuch as ß > 0, exponent n is always 

;Included in the limits of 1 < n < 2 (see results of | 18). In the 

limiting ease of a solid Incompressible medium k -♦ 0, ß -* oo, n -» 1, 

.energy is conserved, and momentum grows in time. In the limiting ease 

• of an extraordinarily porous substance (strongly "compressible" medium) 
I 
jk«* 1, ß -* 1, n -♦ 2, «Mentta is conserved, but energy decreases. In 

the general case of 0 < k < 1 energy decreases (passes Into heat) and 

^momentum grows. The position, as we can see, is the same as in the 

rimpact cm the surface of a pis (tee § IS). 

l__._^8 In the limiting case of a "localised" explosion, the initial 

 ion  
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energy is Infinite (if k ^ 0, n > 1, and E^ ^ M"'11"1^ -» oo when M -> 0),, 

§ 22.    Self-Similar Motion in a Nonhoaogeneous Atmosphere 
Caused by a Brief Plane Shock 

Let us assume that the density of a gas is distributed in space 

according to exponential (barometric) law 

«.-«V*. (12.66) \ 

where the scale of length A is constant. This  is the distribution of 

air density witn respect to height (axis x is directed downwards) on 

the assumption that temperature in the atmosphere is identical every- 

where. Distribution (12.66) possesses the property that the mass of 

gas, concentrated in a column of unitary section« from x ■ -a* where 

PQ ■ 0, and to x ■ X, is equal to the mass of gas in a column with 

lengtft A, if the density in it is equal to PQ(X) 
z 

Mm $*(*)*«-*(*)*. (12.67) 

Let us assume that at initial moment t ■ 0, somewhere in the 

region of very small density, when x « -oo, there is produced a brief 

plane shock. Through the gas in the direction of growth of density 

there will run a shock wave, but the heated gas will be expanded in 

the direction of the vacuum. 

We shall find limiting motion in the stage when the shock wave 

envelopes the mass of gas K, which is much larger than mass m^ in the 

region of small density, subjected to the intial action of the shock. 

Initial pressure of gas will be considered to be equal to zero. As 

can be seen, formulation of the problem is fully analogous to the 

formulation of the problem of the brief shock along the surface of a 

gas of constant densiv- bordering on a vacuum (see § 13). The 

problem of the brief shock in the case of a nonhoaogeneous atmosphere 

lO&L 
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wag formultted ted solved In the work of one of the authors [28]. 

(In the following paragraph it will be shown what real process It 

describes). 

It is clear that the limiting motion (M » m0) is self-similar. 

However, this self-similarity has a somewhat unusual character. The 

fact is that in distinction from all other considered self-similar 

motions, in conditions of the problem there is a scale of length A, 

but there is no parameter, the dimension of which would contain the 

spibol of mass (usually such a parameter exists in connection with the 

assignment of initial density of gas). Magnitude p» in (12.66) cannot 

serve as a parameter, since it is indefinite because of arbitrary 

character of selection of the beginning of reading of coordinate x).* 

Coordinate x is determined only with an accuracy of additive 

constanti therefore, motion can depend only on the difference of coor- 

dinates, but not on the actual coordinate x. The difference of coor- 

dinates is the distance counted off from the front of the shock wave, 

the coordinate of which will be designated as X, so that motion depends 

on the dimensionless distance 

l--2^. (12.68) 

This magnitude is also a self-similar variable, where, in dis- 

tinction from all other considered self-similar motions, the self-sim- 

ilar variable does not contain time. (Motion of course is peculiar 

to a certain parameter k,  characterizing "shock strength1*] however, 

due to the absence of another parameter, the dimension of which would 

contain the symbol of mass, from magnitudes It, A, and A it is impossible 

place to the right of the point with any density. 
*p* is the density at point x - 0, but the origin, x «■ 0, we       r I 
to thu Tlffht o^ thu nolnf. with mnv A»nait.ir. # * 
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to cc«B5)ose a combination of the dimension of time and, consequently^ 

from the Independent variables and parameters x, t. A, and A It Is 

lapossible to compose a dlmenslonless variable which could contain 

time t). 

After the remarks made about the dimension properties of the 

problem and the uncertainty of coordinate x it is easy to find the 

law of motion of the shock wave and to write general expressions for 

the unknown functions: speed, pressure, and density. 

Speed of the front of the of the shock wave is equal to 

/)«X=o-T, (12.69) 

where the numerical coefficient a depends only on adiabatic exponent 

7. The coordinate of the front X grows in time by logarithmic law: 

X«O.A1BI+const. (12.70) 

Expressions for speed, density, and pressure of gas behind the 

front of the shock wave have the foim 

»»«♦»-._|TO 7-«. 

(12.71) 

where the dlmenslonless representative functions u, p", and p depend 

on the self-similar variable |, i.e., the dlmenslonless distance 

counted off from the front of the shock wave, and 7. The represent- 

ative functions are determined in such a way, that on the front of the 

shock wave, when § - 0, they all become one 

J(0) -i(0) -^ (0)«1. (12.72) 

Another boundary condition consists of the fact that a "vacuum" 

when x ■ -co, ^ ■ oo, and P(CD) ■ 0. 

The density of the gas directly before the front of the shock 

Jä^fe**-*^ 



T 
^^gmm^is^^^^^^mm^^T 

wavs PQ(X) is expressed by the nass coordinate of the front H by for- 

mla (12.67). 

f&e mass of gas enveloped by the shock wave. In distinction from 

the geometric coordinate, as usual depends on time according to root 

law k ■ p0(X)k - id/A ■ Mot" , whence 

If-iW. (12.75) 

Here A is the constant of Integration, which is also the parameter 

characterizing the "shock strength," Its size is [A] « g«cm •sec~a. 

Thus, in formulas (12.71) it Is possible to place the evident 

dependence of PQ(X) on time 

MX).*-i^. (12.74) 

The motion, as already was noted above, possesses an unusual self- 

similarity; profiles of speed, density, and pressure as if are 

"attached" to the front of the shock wave and move together with the 

front, not extending with the passage of time (only the amplitudes of 

these magnitudes change). However, in Lagrange coordinates the motion 

is self-similar in the usual sense. Lagrange coordinate m is equal 

to 

••« t*(*)rfs-eoi»t.Ar tftftX. 

i.e., |, and consequently, u, p, and p are functions of self-similar 

variable TJ ■ m/& - m/Ata, 

Equations of self-similar motion are conveniently solved in 

Lagrange coordinates. Let us place expressicns (12.71) and (12.74) in 

corresponding equations of gas dynamics 

<|i 

v+'fc-«. -^-fe-0» Hn-nmh 
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U 
Let us obtain equations for representative functions u(ti)f P(TI), and 

tt4-ai)B'«ap': T+-(Ty 
9  •*  t 

V=T (12.75) 

Integrating the second equation and excluding from the system 

p and u, we obtain a fundamental equation of the problem 

i  a-« 

(12.76) -7_v+. liJTrOr^X^^ 
*l IT Y—1 ,-——-—t i——-. 

The solution of p(r)) should pass through two points p(l) « 1 and 

p(0) « 0, which also deteziaines exponent a. 

In the particular case of 7 = 2 it is possible to find an exact 

analytic solution of the problem. We have: 

(12.77) 

• 

In Euler coordinates the solution has the form: 

F-(H-2|)-,/«, Q-(I + 2|) ,-•/• « B-l-g. (12.78) 

An analytic solution is also possible when 7 - 1: a - 1, p » t), p1 ■ 

- TT, and u ■ 1. This case presents interest only from the point of 

view of limitation of the exponent of self-similarity a, since it 

corresponds to infinite compression of gas in the front of the wave, 

as a result of which in Euler coordinates p, p, and u become a 

*The solution in Lagrange coordinates is absolutely analogous 
to the analytic solution of the usual problem of a brief shock in the 
case of 7 » 7/5. (See (12.42)). 
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Inasmuch as the real values of 7 are Included In the range 1 < 7 < 

< 2, we must assume that the corresponding values of the exponent of 

self-similarity lie in the Interval ^ < a < |.» 

At an arbitrary value of 7 the iplution can be found by means of 

numerical integration of equation (iJ|76) by the trial-and-error 
%;,■* 

method. 

Fig. 12.21. Distri- 
butions of speed u, 
pressure p, and den- 
sity ft along the mass a shock wave, 
coordinate. 

Fig. 12.22. Distributions 
of speedju, pressure p, and 
density "p in the space behind 

Figs. 12.21 and 12.22 give the thus obtained distributions of 

speed, density, and pressure along the mass and in space for 7 « 1.25. 

Exponent a is equal to a ■ 1.545. 

§ 23. Propagation of a Shock Wave Downwards During an Explosion 
in a Nonhomogeneous Atmosphere 

Section 28, Chapter I considered how a shock wave is propagated 

during a strong explosion in a nonhomogeneous, exponential atmosphere. 

The law of motion of the shock wave was approximately found in the work 

•Consideration of balances of energy and impulse, analogous to 
that conducted in § 16, leads to the general limitation j < a < 2. 
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1 
I       of A» S. Kompaneyets [29] and was somewhat definltized in the work of 

1^ 

E. I. Andrlankin, A. M. Kogan, A. S. Kompaneyets, and V. P. Kraynov 

Do], 

The chief characteristic of motion consists in that the shock 

wave is weakened during motion in various directions unequally. During 

motion downwards, in the direction of increase of density, it is 

delayed the fastest of all. Conversely, during upward motion, in the 

direction of decrease of decrease of density, the wave even accelerates 

and in a finite period of time it departs upwards to an infinite dis- 

tance, as if "breaking through" the atmosphere. The surface of the 

front of the shock wave will form something like a "cup" and in the 

huge cavity limited by this surface the pressure drops to a very small 

magnitude. The method of approximation [29, 50] does not describe 

the process any further. 

In a strong explosion in a homogeneous atmosphere the pressure 

in the volume is equalized and is less than the pressure on the front 

of the shock wave by a total of two or three times (depending upon 

adiabatic exponent; see §§ 25 and 26, Chapter I). This internal 

pressure "supports" the shock wave and promotes the fact that the wave 

attenuates slower than in the absence of internal pressure. The role 

of internal pressure is especially distinct if we compare the motion 

during a plane explosion with the motion during a plane brief shock, 

when pressure behind the front of the shock wave decreases to isero and 

there is no internal pressure supporting the wave. The shock wave in 

this last case attenuates faster. 

But in an explosion in a nonhomogeneous atmosphere, due to the 

sharp fall of pressure in the cavity with the increase of its volume, 

the position in some measure is like what takes place in the problem 
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of the brief shock. Internal pressure no longer supports the shock 

wave spreading downwards, and the gas flows from the front, rushing 

upwards into the Hempty,, cavity. 

Thus, when pressure in the cavity pc becomes much less than the 

pressure on the front of the shock wave pf, the motion of the shock 

wave downwards obtains the features of motion described in the preced- 

ing paragraph (curvature of the front in order of first approximation 

can be disregarded). (Incidently, under the condition of Pj, » p 

the solution also loses force [29, JO], Numerical estimates show that 

pressure in the cavity becomes much less than the pressure on the front, 

when the speed of the front is still sufficiently great that in exam- 

ining the subsequent motion the counterpressure in the direction of 

undisturbed air still may be disregarded. 

We shall assume for definitiveness that the transition to a new 

regime occurs when Pf/pc « 10. According to [30] this value corre- 

sponds to the time from the moment of explosion t. - 19T, where x ■ 

■ (PooA A)   ■'■8 "fclie scale of *lme ■tha'b ls characteristic for an 

explosion in a nonhomogeneous atmosphere (PQQ is the air density at 

the height of the explosion, E is the energy of the explosion). To 

moment t^ the shock wave departs downwards from the point of explosion 

to distance z - 1.9Aj speed of the front is then equal to D^ - 2.5 x 

x 10  x A/T. 

We shall extrapolate the limiting laws of propagation of the shock 
i 

wave (12.69), (12.70) to the moment of "transition" to the new regime, 

where upon the coordinate and time will be counted off in such a way 

that the initial condition of D ■ D1 when X « 0 is fulfilled.* 

♦The process up to the moment of "transition" plays the role of 
the "brief shock." 
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Let us obtain an approximate dependence of the coordinate of the 

front on the speed of the front and on time (the coordinate is counted 

off downwards from the point of "transition" to the new regime): 
Dl      t X - cfAln-jj- « aAln-^. 

Parameters D. and 9 are determined through the parameters of the 

explosion hy expressions D1 « 2.5« 10 '"" — =« 2.5•10 
PC0A' 

0 » 40 OTJ a « 1.545 when 7 - 1.25. Impact parameter A in the same 

approximation is equal to A = e '^p Ae~a = 6.7p00A
,e"a. 

An estimate with the help of the real numerical values of param- 

eters shows that in the process of deceleration of the shock wave 

from "transition" speed D. to speed D « 1 km/sec, a few times exceed- 

ing the speed of sound in cold air, the shock wave covers a distance 

downwards of approximately (2 to 5)A. 

It is added to a distance of about 2A downwards from the center 

of the explosion, which follows from the theory in [29, 50]. Thus, 

in the process of deceleration of the shock wave of a strong explosion 

to a speed of the order of 1 km/sec, the wave covers a distance down- 

wards from the point of explosion of about (4 to 5)A. 

*The numerical values of parameters D,, and 0 weakly depend on the 
selection of the transition value of Pf/pct Thus, for instance, in 
the latter, calculated in [30], moment t - 23AT,  close to the moment 
of "breakthrough" of the atmosphere, z « 2A, D - 2.12«ID"2 A/T, Pf/Pc • 
» 22. 
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