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ANNOTATION

This book constitutes the first attempt in the
world literature to systematically consider the
extensive range of questions from different regions
of physics, physical chemistry and astrophysics with
which contemporary gas- and hydrodynamics deals. In
it there are expounded fundamentals of gas dynamics
and theory or shock waves, transport theory of radia-
tion. The:e are studied thermodynamic and optical
properties of substances at high temperatures and
pressures, kinetics of dissociation, ionization and
other non-equilibrium processes, phenomena connected
with radiation of light and radiant heat transfer in
shock waves and during explosions, problems of prop-
agation of shock waves in solid bodies, etec, To the
authors of the monograph there belong a large number
of original works in the considered region of science,
which have been reflected in this book.

The book will serve as a valuable practical aid

for wide groups of physicists, mechanicians and engi-
neers studying applied physics and new technology.
It will be useful to students and post graduates in
the corresponding specialties, and also to all phys-
izists and mechanicians wishing to become acquainted
with contemporary state of science of shock waves.
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PREFACE

Problems of contemporary technology have demanded from science
penetration into the region of "high parameters" of state of a
substance: high concentrations of energy, high temperatures and

pressures, high velocities. In practice such conditions are realized

in strong shock waves, during explosions, during‘very fast supersonic

motions of bodlics in the atmosphere, in powerful electrical discharges,

etc,

At high temperatures in gasses there occur various physical and
ﬁ physicochemical processes: excitation of molecular vibrations, disso-
ciation, chemical reactions, ionization, radiation of liglt. These
processes affect thermodynamic properties of gases, and during

L sufficiently fast motions and sufficiently fast changes of state of

a substance, motion is influenced by kinetics of these processes,

An especially important rol= at very high temperatures is played hy

processes connected with em.ssion and absorption of radiation and

radiant heat transfer. Above-mentioned processes frequently present
interest not only from the pcint of view of their energy influence on
motion of gas: they cause change of composition of gas, of its

electrical properties, lead to luminescence of gas and appearance of




maeny optical effects, etc, A considerable part of this book 1s

dedicated to the study of all these problems-——to all that composes

the content of the newly appearing branch of science, "physical~gas
dynamics."
Great scientific and practical interest is presented by study

of strong shock waves in solid bodies, Recent achievements which

have made it possible with the help of shock waves to compress solid
bodies up to miliions of atmospheres have opened new ways of investi-

gation of state of solid matter at super-high pressures. To these

questions there also is given considerable attention in this §§§§;
In the described area there are closely interconnected /branches
- of science: gas dynamics, theory of shock waves, thermodynamics and
statistical physics, molecular physics, physical and chemical kinetics,
physical chemistry, spectroscopy, theory of radiation, elements of
astrophysics, solid state physics, and others, Many of the physical
phenomena and processes considered here have different character and
in no way are connected with each other, A result of such hetero-
geneity of the material was the absence of continuity in contents of
the book, Certain chapters have an independent character, pertain
to absolutely different regions of physics or mechanics, and not all
chapters are related to each other. Therefore, for the reader
interested only in one or more particular topics, it is sufficient
to become acquainted only with the corresponding chapters.
In examining the most diverse questions, even those of a
; mathematical character, we tried first of all to explain physical

3 essence of phenomena with the help of simple mathematical means,

] while widely using estimates and semiqualitative analysis., At the

same time, we tried to help those physicists, mechanicians, and




engineers who work in the corresponding regions of applied physics
and technology, and to give to them practical means for independent
analysis of complicated and diverse physical phenomena,

With this goal, consideration of majority of phenomena is
carried through to numerical results; formulas for calculaticn and
estimates of different quantities are written in form which is
convenient for practical work; there are presented many useful
experimental data and information of reference type, etc.

This book has a theoretical character, and description of
experimental installations and methods is reduced to a minimum,
However, the account of results of experiment and ccmparison of them
with results of theoretical calculations and estimates has been given
proper attention,

Periodic literature on "physical gas dynamics" is huge. However,
as far as we know, neither in Soviet nor in foreign literature have
there yet been made attempts to systematize, generalize, and expound
from a single point of view in one book the material pertaining to
this new region of sclence, Apparently, this book constitutes the
first attempt in this direction.

The book was written during 1960-19641, which determines the
basic level of the literature used, However, in sections concerning
areas whose ‘deas are being developed at an especially fast rate,
there later have been introduced short supplements and references to

the latest literature. This pertains basically to Chapters V, VI,

© VII.

Variety of phenomena and extensiveness of material forced us to
be limited to consideration of not nearly all questions which have a

relation to the studied region. We do not consider the mathematical

]
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side_of hydrodynamics, of such a problem as supersonic flow around

bodies; we almost do not touch upon electromagnetic phenomena;

absolutely do not concern ourselves with questions of thermonuclear {

fusion, behavior of plasma in magnetic field, all that pertains to

ORI S

magnetohydrodynamics and magnetogasdynamics, problems of combustion
and detonation and so forth, On all these topics there already are
a great number of books,

Selection of material of this book to a certain extent is
subjective., An important place is allotted to consideration of
phenomena which the authors investigated in their own works, Thus,
on original works are aimost completely based Chapters VIII and IX;
to a great extent also VII, X, XII, and partially Chapter XI. Chapter
I conctitutes the result of basic revision of an early book of one
of the authors: "Theory of Shock Waves and Introduction to Gas
Dynamics", which was published in 1946 in Publishing House of Academy
of Sciences of USSR,

We would like to express special thanks to A, S. Kompaneyets,
who is responsible for development of a number of questions discussed
in this book, for many useful discussions and remarks made during
reading of the manuscript, We are thankful to L. B, Al'tshuler and
S, B. Kormer, on whose works to a considerable degree is based Chapter
XI of the book, for remarks made during reading of the manuscript of
this chapter., We are thankful also to M, A, Yeltyashevich, who

attentively read the manuscript and made valuable remarks.
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CHAPTER I

ELEMENTS OF GAS DYNAMICS AND CLASSICAL THEORY OF SHOCK WAVES

1. Continuous Flow of an Inviscid and
Non-Thermally-Conducting Gas

§ 1. Equations of Gas Dynamics

For high compression of liquids (and solid bodies) there are
needed pressures of hundreds of thousands of atmospheres and above.
Therefore, under usual conditions a liquid can be conslidered as an
incompressible medium, Velocities of flow of liquid during small
changes of density are much less than speed of sound, which is the
scale of velocity characterizing a continious medium., During small
changes of density and motions which are slow as compared to speed
of sound, gas also can be considered to be incompressible, and its
motion can be described with the help of hydrodynamics of an incom-
pressible fluld. However, large changes of density and velocity of
flow comparable with speed of sound in gasses, in distinction from
liquids, are attained comparatively easily: at pressure drops of
order of magnitude of the actual pressure, i.e., at &p ~ 1 atm, if
initial pressure of gas is atmospheric. Unde ' such conditions it 1s
necessary to consider compressibility of the substance, Equations

of gas dynamics thus differ from equations of hydrodynamics of an
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incompressible fluid in that in them there is considered possibility

of large changes of density of the substance,

State of moving ges with known thermodynamic properties is i
determined by specifying speed, density, and pressure as functions
of coordinates and time, For finding these functions there serves
the system of equations of gas dynamics, which 1s‘composed, in

differential form, of the general laws of conservation of mass,

momentum and energy of a substance,

Let us write these equatlions without derivation, which can be
found, for instance, in book of L., D, Landau and Ye. M. Lifshits [1].
We will disregard action of body forces (gravity), and also viscosity
and thermal conduction of substance.* Let us designate by 9/0t
partial derivative with respect to time referred to a giver. point of
space, the local derivative, and by d/dt the particle derivative,
which characterizes change in time of some quantity, connected with
a given moving varticle of substance., If u is velocity vector of

particle with components u, uy, u, or u, » where 1 = 1, 2, 3, then

3=+ (w). (1.1)

rirst equation is continuity equation; it indicates conservation
of mass of the substance, i.e., to the fact that change of density

p in given element of volume occurs due to inflow (or outflow) of

substance into this element:

R+ divew =0. (1.2)

¥Equations of gas dynamics taking into account viscosity and
thermal concduction will be considered below, in § 20,
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With help of definition (1.1), continuity equation can be written
in the form

do . ..
3-§+quu=o. (1.3)
In the particular case of an incompressible liquid, when
p = const, continulity equation is simplified: '
divﬂao. (1024)
Second equation expresses Newton'!s law and does not differ from
equation of motion of an incompressible liquid (p is pressure):
du
0gr ™= —VP (1.5)
or, in the form of Euler's equation,
ou - 1
7 T(wy)u=—2vp. (1.6)
As 1t 1s easy to verify by means of direct calculation, equation
of motion together with continuity equation is eduivalent to law of

conservation of momentum, written in a form analogous to equation

(1.2),

= - (1.7)
where IIik is tensor of momentum flux density
My = Quyur + pdy. (1.8)
Equation (1.7) expresses the fact that change of i-th component
of momentum at given point of space is connected with outflow (inflow)
of momentum together with mass (first term in (1.8)) and work of
forces of pressure (second term), =
Third equation is essentially new as compared to hydrodynamics
of an incompressible liquid and is equivalent to first law of

¥In the right side of formula (1.7) there is produced summation
over the twice met index k(k = 1, 2, 3); by = 1 when i = k and 5, =
= 0 when 1 # k.




thermodynamics — the law of conservation of energy. It 1s possible
to read it thus: change of specific internal energy € of a given
particle of substance occurs due to work of compression, which is
produced on it by its surrounding medium, and also due to energy

release from outside sourcess
S+rg =0 (1.9)
Here V = 1/p 1s specific volume, and Q ic energy release per second
per gram of substance from external sources (Q can also be negative
if there are nonmechanical losses of energy, for instance due to
radiation). |
With help of continulty equation and equation of motion, the

energy equation also can be reduced to a form similar to (1.2), (1.7):

g—(qe-g-ng):—div[qu (e-{--"zl)-{—pu]-i—qo. (1.10)

Physical meaning of this equation is that change of total energy
of unit of volume at given point of space occurs due to outflow
(inflow) of energy during motion of the sut:tance, work of forces of
pressure and energy release from external sources,

Equations continuity, motion and energy form a system of the
five equations (equation of motion is a vector equation and equivalent
to three coordinate equations) in five unknown functions of coordinates
and time: p, U, uy, u,, P. External sources of energy Q are
considered to be given, and internal energy € can be expressed in
terms of density and pressure, inasmuch as thermodynamic properties
of substance are assumed to be known: € =¢ (p, p).

If energy, as this frequently happens, is xnown not as a function
of vressure and density, but as a function of temperature T and density

or temperature and pressure, then to this system we should add the




equétion of state of substance p = £ (T, p). Equation of state of
iGeal gas has the form
pV=AT, p=AcT, (1.11)
where A is gas constant calculated for 1 gram,*
Energy equation (1.9) has general significance and is valid even
when substance is not in thermodynamic equilibrium. In that particular
case, which is most important in practice, when substance is in

thermodynamic equilibrium, it is possible to write it in different

form with help of the second law of thermodynamics

TdS=ds+pdV, (1.12)

where S is specific entropy. In absence of external sources of heat,
third equation of gas dynamics is equivalent to equation of constancy

of entropy of a particle, i.e., to condition of adiabaticity of motion

as
any (1.13)

In an ideal gas with constant heat capacity, entropy is especially
simply expressed in terms of pressure and density (specific volume)

&= cy In pV¥+ const, (1.1%)
where v is adiabatic index, equal to specific heat ratio at constant
pressure and constant volume 7y = cp/cV =1 + A/cv. In this case
adiabatic equation (1.13) (or energy equation) can be directly written
in form of differential equation relating pressure and density

(pressure and volume),

idp dvgo.' (1.15)

1
Jat¥ra
To this system of differential equations of gas dynamics there

are added corresponding initial and boundary conditions.

*A = R/, where R is universal gas constant, and p is molecular
welght,
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§ 2. Lagrange Coordinates
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Equations in which gas~-dynamic quantities are considered as
functions of spatial coordinates and time are called equations in
Euler form or equations in Euler coordinates.

In the case of one-dimensional movions, i.e., plane, cylindrical
and spherically symmetric, we frequently use other, Lagrange
coordinates, In distinction from an Euler coordinate, a Lagrange
coordinate is connected not with a fixed point of space, but with a
definite particle of substance., Gas-dynamic quantities expressed as
functions of Lagrange coordinates characterize changes of density,
pressure and velocity of every particle of substance with flow of
time, Lagrange coordinates are especially convenient in examining
internal processes occurring in a substance which do not go beyond
the bounds of a given particle: let us say a chemical reaction, the
flow of which with passage of time depends on change of temperature
and density of the particle, Introduction of Lagrange coordinates
in a number of cases permits us to more briefly and easily find
exact solutions of equations of gas dynamics, or makes numerical
integration of the latter more convenient.

Time derivative in Legrange coordinates is equivalent simply to
particle derivative d/dt. Particle can be characterized by mass of
substance, which distinguishes it from some other fixed particle, or
by its coordinate at initial moment of time,

Introduction of Lagrange coordinates is especially simple in the
plane case, when motion depends only on one Cartesian coordinate x.
Let us designate current Euler coordinate of considered particle by
X, and coordinate of some fixed particle by X4 (as the fixed particle

there may be, for instance, selected a particle near a solid wall or

10
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near boundary between gas and vacuum, if such exist in the problem),

Then the mass of a column of unit cross section between considered

particle and fixed particle is equal to

. = o
- m={qdr, (1.16)
5 .
and increment of mass upon transition from the particle to a
neighboring one is
dm=qdz. (1.17)
Quantity m can be selected as a Lagrange coordinate,
If at initial moment, as this frequently happens, gas 1s at rest,
and its density is constant, p (x, 0) = Po» then as Lagrange coordinate

it is convenient to take initial coordinate of particle measured from

point X,5 we will designate it by a. Then

(-

x
=\L — 5
a §Qodz, da=2 ds. (1.18)

Equatione of plane motion of gas in Lagrange coordinates acquire
simple form, Equation of continuity, written with respect to specific

volume V = 1/p and unique x-th component of velocity u is

o _gu oy AV _u
%" om Voot os (1.19)

Here, as and in subsequent equations, time derivative 1is particle

derivative d/dt, but it is better to write it in the form of partial

derivative 0/dt, in order to stress that it is taken at m and a =

= const, i.e,, for a given particle with definite Lagrange coordinate

m or a, Equation of motion in Lagrange coordinates has the form

F
%= —3 Or w= Vs (1.20)
Regarding, however, equation of energy written in form (1.9) or in
form of condition of adisbaticity (1.13) (in the absence of external

sources of heat and dissipative processes — viscosity and thermal

O il




conduction), they retain their form; it is necessary only to replace
designation d/dt by d/0t. In an ideal gas with constant heat capacity,
condition of adiabaticity (1.13) gives

pY ={1S (m)], (1.21)
where function f depends only on entropy of given particle m, In
so-called isentropic motion, when entropies of all particles are
identical and do not change in time, f = const, where equation pVy =
= const is valid in Lagrange as well as in Euler coordinates.

It is essential that in the plane case, Euler coordinate x in
explicit form is not contained in equation., After Lagrange equations
are solved and there is found function V(m, t), it is possible to
go over to dependence of gas-dynamic quantities on Euler coordinate

with help of quadrature, by integr-ting equation (1.17),

dzmV(m, ) dm, z(m, )=\ V(m,0)dm-ta,(0). (1.22)
o 0 o

In cylindrical and sphericalacéses, equations of gas dynamics
in Lagrange coordinates are somewhat more complicated than in the
plane case, since now in the equations there 1s contained in explicit
form the Euler coordinate, and in the system of equatlions there is
included an additional equation relating Lagrange and Euler coordi-
nates, For instance, in spherical case, Lagrange coordinate can be
defined as mass included inside spherical volume near center of
symmetry:

mns.&v'odr. dm = inrigdr. (1.23)

If at initlal moment, density of gas 1s constant, it is possible

to take as Lagrange coordinate initial radius r. of the "particle."

0]
consicdered as an elementary spherical shell:

.,
szsio.-SWer, drocgo—o'dr. (1.24)

i2




Equation of continulty in spherical Lagrange coordinates is

& 9 tov_1 9
3‘—-5;4“?’“ or —V_;-a-igﬁ'a.f_or’u. (1'25)

Equation of motion

s % du tr83dp _
W= -wam OT = —Grtor" (1.26)

Energy equation or adiabatic equation remain the same as in
the plane case,

As an additional equation, in the system there is included
differential (or integral) relationship (1.23) or (1.24), which

relates m and r or rO and r,

E NG e e e G e R A R B L R R A

Equations for cylindrical case are formed fully analogously to
the spherical case.

It is necessary to -.ote that in two-dimensional and three-
dimensional flows, transition to Lagrange coordinates, as a rule, is

not advantageous, since equations are then greatly complicated.
§ 3. Sound Waves

4 Speed of sound is included in equations of gas dynamics as the
J speed of propagation of small perturbations. In the limiting case,
when change of density and pressure Ap and Ap during motion of sub-
stance are very small as compared to mean values of density and
pressure p, and Pge and velocitles are small as compared to speed of
sound ¢, equations of gas dynamics are transformed into equations of

acoustics and describe propagation of sound waves,

A e i b L

§ Let us write density and pressure in the form p = p, + Lp, P =
‘ = Py + Op and consider quantities Ap, Ap, and also velocity u as
small quantities. Disregarding quantities of second order of smallness,

we will transform Euler equations of continuity and motion for tn@
’

o




plane case, Equation of continuity gives

2™ Qg | (1.27)

/s oz ° (1.28)

In the last transformation it is taken into account that motion in

BRSBTS T b I S T S

sound wave 1s adiabatic, Therefore, small change of pressure is

associsgted with small change of density through the adiabatic

derivative: Ap = (Bp/Bp)SAp. This derivative constitutes, as we

will now see, the square of the speed of sound

=(E) (1.29)

and corresponds to unperturbed state of substance,

v
2
" 3
q
A
]
4

Differentiating the first of the written equations with respect

L

to time, and the second with respect to coordinate, we will eliminate

mixed derivative o u/Bt d0x., Let us obtain wave equation for change

of density

1 Mg 43
] -1 (1.30)

The same equation is satisfied by the magnitude of change of pressure
Ap, which 1s proportional to Ap = chp, and also by velocity u and
all other parameters of the substance, for instance, temperature,*

Wave equation of type (1.30) admits two groups of solutions:

Ag=Aq(z—¢ct), Ap=Ap(z—cl), u=u(z—ct) (1.31)

A= AQ(z+ct), Ap=Ap(z+ct), umu(z+ct) (1 32)

(by ¢ we mean the positive root e = + V{3p/dg)s)-

] *In order to obtain wave equation for velocity, we will differ-
3 e(sntigt)‘.e equation (1.30) with respect to time and use equations (1.27),
. 1.2 o alAQ o0 22 9 du

= —Qg =~ Mg g
whence 3%u/dt° = ceaeu/ax + £(t). Noticing that before the wave in
unperturbed substance u = 0, we will find that f(t) = O,

vstrinn 7
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First group describes perturbation propagating in the direction
of positive x axis, and the second describes perturbation propagating
in the opposite direction. In the first case, for instance, given
value of denslty corresponds to a definite value of the argument
Xx - ct, 1.e., with flow of time it goes in the direction of positive
X with velocity c¢. Thus, ¢ is velocity of propagation of sound waves.

Noticing that du(z Fect)/oz = F (1/c)au (z F ct)/at, and taking into
account the fact that in undisturbed gas before the wave u = 0, Ap = O
(see footnote), we will find with help of equation (1.27) the relation
between mass velocity of gas u and changes of density or pressure:

u=ﬂ:-&AQ=i%§, Ag == c*Ag= = gocut.

(1.33)

Upper sign pertains to wave travelling in the direction of
positive x, and the lower pertains to wave travelling in the direction
of negative Xx.

In both cases mass velocity is in the direction of propagation
of' the wave where the substance 1s compressed, and in the opposit=z
direction, where it is rarefied,

General solution of wave equations for Ap and u is composed of
two particular solutions, which correspond to waves travelling in
positive and negative directions of the x axis. According to (1.31),
(1.32), (1.33), solutions for density and velocity can be written in

the following form:

Aq-?lg(z—ct)+°—:f,(z+ct), (1.34)
u-f,(z—ct)—i,(z-i-‘ct), (1.35)
where Xy and f2 are arbltrary functions of their arguments which are
determined by initial distributions of density and #elocity:
h= [l O)+u(z 0)],
h=1 [t 0-u 0)].
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For instance, if at initial moment there is a rectangular
perturbation of density, and gas everywhere is motionless, then to
the right and to the left there begin to travel rectangular pertur-
bations, as shown in Fig, 1.1.

If at initial moment, distributions of density and velocity have
C_
Po 2
rectangular pulses will travel only in one direction. (Such a

the form depicted in Fig. 1.2, where u = Ap, so that f, = O, then
perturbation can be created by a piston which at initial moment starts
to be thrust into gas at rest with constant velocity u, and after a
certain time is "instantaneously" stopped. If length of rectangular
pulse is equal to L, then, obviously, time of action of piston

t, =L/c).

Special importance for acoustics is presented by monochromatic
sound waves, in which all quantities are periodic functions of time
of the type

[
j=Acos(-c- z—(ot),

or, in complex form,
[=Aexp[ —lo (t—%)] :

v = w/2m is frequency of sound, and A = c/v is wave length, Any
perturbation can be expanded in a Fourier integral, i.e., can be
represented in the form of a set of monochromatic waves with different
frequencies,

Sounds perceived by human ear have frequency v from 20 to
20,000 cps (oscillations per second) and wave lengths corresponding to

speed of sound in atmospheric air c = 330 m/sec,* from 15 m to 1.5 cm,

*Adiabatic index of air under normal conditions
y=1,4, em(9p/oQ)*= (yPy/oe)'/t=(yAT,)'/s

(since for S = const p ~ p').

]
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For an idea of the numerical values

of different quantities in a sound wave,

we will indicate that for the strongest

z sound, which 1s 105 times more intense*

than the fortissimo of an orchestra,

v # 6 amplitude of change of air density in
h;]F=] T wave is 0.4% of normal density;
Y:f=’1____1f=1— amplitude of change of pressure is
v 3% 0.56% of atmospheric; amplitude of
= J.r?:1‘ velocity is 0.4% of velocity of sound,
géiéigﬁiéf rop i.e., 1.3 m/sac. Amplitude of dis-

guiar pulse of

density and pressure
along one coordinate
in linear acoustics.

placement of particles of air is of the
order of Ax =~ u/2mv = (u/c) (r/27) =~
~ 6:10"% X (Ax ~ 0.036 cm for v = 500

4 l—* l cps).

z Let us find energy connected with

l" I small a perturbation which is propagated

through a gas at rest. Increase of
specific internal energy of perturbed
substance with accuracy up to terms of the second order of smallness

with respect to Ap (or Ap, or u) is:

t=to= (s b0+ 7 (53, (0

*As will be shown below, energy or intensity of sound is propor-
tional to square of amplitude of changes of pressure or density.
Loudness of scund is measured in decibels, in logarithmic scale., As
zero 1s taken average threshold of sensitivity of the human ear.
Increase of loudness by n decibels signifies increase of energy of

sound by 1On/10 times., Increase of loudness from rustle of leaves
or whisper (~40 db) to orchestra fortissimc (~80 db) corresponds to

increase of energy of sound by 107 times.




P ' By virtue of adiabaticity of motion,

7"4NVVVVVVVVVV“ derivatives are taken at constant

14

) entropy. It 1s possible to calculate

Fig. 1.3. Distribution
of density in a wave them with help of thermodynamic P

REEGE relationship: de=TdS—pdV=1p/o" de.
We will obtain
s—eo=2 Ao+ 55 (A0)*— 22 (A0
Increase of internal energy in 1 cm3 with the same accuracy is equal

to
08 —oto = (00 + AQ) (¢ —t0) + £ A = (eo-+ £ ) Ao + - (AQ)* = wsle + 5 (A0)°
. ® /T 2 20"
where w = € + p/p 1s specific enthalpy.
Density of internal energy connected with the perturbation, in
the first approximation is proportional to Ap. Density of kinetic

energy pu2/2 ~ pou2/2 is a quantity of the second crder of smallness.

From relationship (1.33), which holds for a plane travelling wave,
it 1s clear that the term of the second order in internal energy
density and the kinetic energy are exactly equal to each other, so

that total energy density of perturbation is
E‘%AQ+%(AQ)'+&;:=%AQ+QW'. (1.36)
Term of first order of smallness in energy 1s connected with
change of volume of &ll of the gas which occurred as a result of the
perturbation, If perturbation was created in such a way that volume
of gas on the whole was not changed, then energy of perturbation of
all of the gas is a quantity of the second order with respect to Ap,

since during integration over volume, the term proportional to Ap

vanishes,




' Such, for instance, is the situation in a wave packet which
propagates through gas occupying an infinite space, where at infinity
the gas is not perturbed (Fig. 1.3). Changes of density in regions
of compression, with accuracy up to terms of the second order are
compensated by changes in reglons of rarefaction.

Thus, energy of sound 1s a quantity §f the second order of
smallness which is proportional to square of amplitude:*

E3p= o' (1.37)

If perturbation was created in such a way that volume of gas
was changed, then in energy of perturbation there remains a term
which is proportional to first power of Ap., However, this main
fraction of energy, which is proportional to Ap, may be "returned by
the gas," if source of perturhation returns to i1ts own initial
position, Energy then remaining in the perturbed gas will constitute
only a quantity of the second order of smallness, Let us explain
this situation in a simple example,

Let us assume that at the

=0
w— " initial moment, into the gas at
£
:: rest there began to be thrust a
vl ’. "t'
24 &, piston with constant velocity u
0 ) ‘
= €, oo (much smaller than speed of sound
d N < At time t,, the piston
O Ftew . ® u << e). b g0 P
Fig. 1.4. Propagation of "{nstantaneously" stops. Through
impulse of compression
from piston which was thrust the gas will travel a pulse of
into gas.

¥*Expression (1.37) should be averaged over time or space:

B (@~ 3G~ pm0, While P~ ~Gn' >0
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compression of length (c = u) t1 ~ Ccty, whose energy is equal to work
expended by the external force which pushed the piston in, put1 =
= (py + Ap) ut, ~ pyut, (this case was considered above and is |
illustrated by Fig. 1.4). Energy in first approximation is propor-
tional to "amplitude" of wave u, Ap, Ap and time of compression (i.e.,
length of the perturbation), Let us ﬁow give the gas the possibility
to return the piston to its place in such a way that at time tl’
velocity of piston u "instantaneously" changes to the opposite,

(—u), and at the time t2 = 2t1, the piston, which has returned to

the initial position, "instantaneously" stops. Perturbation will now
have the form depicted in Fig. 1.5, where there are shown states at
moments t = 0, tl, t2 and t > te. It is easy to verify by direct
calculation that in the second period, from t1 to t2, the gas per-
formed on the piston work which in first approximation is exactly
equal to work which was accomplished by piston on the gas in the

first period from zero to ti. Lengths of positive and negative
regions of the pulse in first approximation are also identical and

are equal to ct1 = c(t2 - t1)- Thus, if we sum the energles in com-
pressed and rarefied regions of the pulse, then terms of first order
will cancel out, If we carry out all calculations taking into account
terms of following order,* then in the energy there will remain term
of the second order, where perturbation energy density will be

exprassed by general formula (1.37).

*In particular, lengths of pulses of compression and rarefaction
will differ by the amount 2ut, (for t, - ty = t,).
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P
u=0 t=0

WAL
-~ ,’
t=L,

>,

Fig, 1.5. Propagation

of pulses of compression
and rarefaction from a
piston which was first
thrust into gas, and then
returned to its original
place,

§ 4., Spherical Sound Waves

In absence of absorption (i.e., without taking into account
viscosity and thermal conduction; see § 22), amplitude and density
of energy of plane waves do not decrease with flow of time., For
instance, pulses depicted in Fig, 4.4 and 1,5 depart to "infinity,"
without changing their shape and amplitude,

In spherical wave this is n. longer so. By linearizing equation

of continuity in the spherically symmetric case, we will obtain

Hence, as in the plane case, we will obtain wave equation for 4p,
solution of which, which describes the wave going out from the center,
is

Ag=1=D, (1.38)
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If we consider short pulses, of length much less than r, then

e ot s A A M ot

it 1s possible to say that shape of pulse given by function f(r ~ ct)
does not change, and amplitude of wave decreases proportionally to
1/r. This is fully natural, Let us assume that from the center there
proceeds a pulse of finite width Ar. With propagation of the pulse,
the mass of substance involved in motion, which 1s equal approximately
to pokvrzAr, increases proportionally to r?. Acoustical energy of unit
of volume is proportional to (Ap)g. Inasmuch as it is conserved,
then (Ap)2r2 = const, i,e,, amplitude should decrease as Ap ~ 1/r,

Spherical wave differs from a plane wave in yet one more respect.
Let us substitute solution (1.38) in equation of motion:

% g’_[f'(r—ct)_ I(r—-ct)l] )

— T w—
r r3

at Q
and integrate obtained expression over time. We will obtain solution

for velocity:

.. re=ct
u"b%[”r:d)- z’(ﬁ)dE]=6§_[AQ_2L”_:ﬂ], (1.39)

which differs from formula for plane case (1.33) by the presence in

it of an additional term, In the plane wave in region of perturbation,
the substance can be orly compressed, as this occurs in the case
depicted in Fig, 1.4, In a spherical wave this 1is impossible: behind
the region of compression there necessarlly follows a region of
rarefaction,

Indeed, behind the region of perturbation, Ap and u become zero.
In the plane case, in virtue of proportionality u ~ Ap, this condition
is satisfied automatically, independently of shape of pulse, In
spherical wave, for this it is necessary that behind region of per-
turbation ¢ (r - ct) = 0, i.e., that integral over entire region of

perturbation is equal to zero
or—ctym= {1 @) k= | r Aodr=0.

Y
(]




"Hence it is clear that Ap in spherical wave changes sign, i.e.,
behind region of compression there follows a region of rarefaction,

Additional quantity of substance contained in wave is equal to
IAp-hvrgdr. But Ap ~ 1/r; therefore additional mass in compressional
wave increases as wave goes out from the center., The quantity cf
compressed substances increasing in process of propagations causes
the appearance of a wave of lowered dsnsity following behind the wave
of raised density.

Change of pressure in spherical wave is proportional to change
of density, as in the plane wave. Velocity, as can be seen from
formula (1.39), is not proportional to Ap or Ap., In particular,
velocity and change of density change sign at various points, so that

in a wave propagating from the center, profiles of density and speed

have the form depicted in Fig, 1.6.

§ 5. Characteristics

d =,
— \/ In § 3 it was shown that if at
= initial moment to at some point X of
« motionless gas whose density and pressure
\c/’ﬂ>\- - everywhere are ldentical, we create

Fig, 1.6, Distribution earbitrary small perturbations of velocity

of density and velocity

in spherical sound wave, &and pressure (or density*), then from
this point in both directions with speed
of socund there travel two waves carrying
the perturbations, In the wave propa-

gating in the direction of positive x,

*In virtue of isentropic character of flow, changes of density
and pressure are not independent, but always are related to each

other by the thermodynamic relationship Ap = c™4p.
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to the right, small changes of all quantities are related with each
other by the relationships:
A,u-;‘o-:‘!-%A.q=f(z_5-ct) ¥
In wave, propagating to the left:
A= -%;-"- — = b= —h(z+ct).
Arbitrary perturbations Au and Ap, which appear at initial moment,
can always be broken-up into two components: Au = Aiu + Azu, Ap =
= Aip + A2p, which obey these relationships, so that, in general,
initial perturbation is propagated in different directions in the
form of two waves.

If initial perturbations Au, Ap are not arbitrary, but already
are related to each other by one of the relationships, then the
perturbation travels in one of the directions (this corresponds to
vanishing of one of the functions f1 or fe).

If gas is not at rest, but moves as a whole with constant
velocity‘u, then the picture does not change, with only the exception
that now the waves are carried by the flow, so that velocities of
thelr propagation relative to a motionless observer become equal to
u + c (to the right) and u - ¢ {"to the left"**), This can easily
be verified if we go over in equations of gas dynamics to a new
system of coordinates moving together with the gas at velocity u.

Let us assume now that in arbitrary plane isentropic flow of
gas, described by functions u(x, t), p(x, t) (or p(x, t), see first

footnote on page 23), at the time to at point Xq there appeared

*We write here Au instead of u for the purpose of consistency of
designations.

*¥We enclose the word "to the left" in quotes: if u > c, then the
wave also travels to the right, but, of course, slower than the first,




arbifrary small perturbations of velocity and pressure., Considering
small region near point X and small intervals of time (small
neighborhood of point Xqs to on x, t plane), it is possible in first
approximation to disregard changes of unperturbed functions u(x, t),
p(x, t), and consequently, p(x, t) and c(x, t) in this neighborhood,
and to consider them to be constant and equal to values at point Xqs
to. The entire above described picture of propagation of perturbations
can be transferred to this case., If perturbations Au(xg, to),

Ap(xo, to) are arbitrary, then they also are broken up into two
components, one of which will start to propagate to the right with

velocity u. + ¢., and the other "to the left" with velocity u

o™ o’ o~ %o’
wherehy U, and o here one should understand local values of these

quantities at point Xq? to.

Inasmuch as u and ¢ change from
point to point, then for a long period

of time, paths of propagation of

perturbations on x, t-plane, which are

£ —
Fig. 1.7. Network described by equations dx/dt = u + ¢ and

of two families of
characteristics in
the 1sentropic case,

dx/dt = u - ¢ will be curved, These
lines on x, t-plane along which small
perturbations propagate are called characteristics. During plane
isentropic flow of gas, as we can see, there exlst two families of
characteristics, which are described by equations
%-u-}-c. %-u—c,

and are called respectively C - and C_-characteristics.

Through every point on the x, t-plane it is possible to draw
two characteristics, which belong to C - and C_-families. In

general, characteristics are curvilinear, as is shown in Pig. 1.7.

oD




In region of constant flow, where u, p, c, p are constant in space
and time, characteristics of both families are straight lines.

If flow is not isentropic, but only adiabatic, i.e., if entropies
of different particles of gas do not change in time, but differ from
each other, there are possible perturbations of entropy. In virtue
of adiabatic character of motion, dS/dt = 0, i.e., any perturbation
of entropy not accompanied by perturbations of other quantities
(p, p, u) remains localized in the particle and moves together with
the particle along the flow line, Flow lines, consequently, in case
of non-isentropic flow also are characteristics., They are described

by equation dx/dt = u and are called Co-characteristics,

In non~isentropic flow, through
every point x, t there pass three
characteristics, and the x, t-plane is

covered with a network of three families

of characteristics C, C_, Cy (Fig. 1.8).

£

Fig. 1.8. Network Till now we have spoken about
of three families

of characteristics characteristics as lines on the x, t-
in the non-isentropic

case, plane along which small perturbations

propagate, However, this does not exhaust the significance of

characteristics.,

Equations of gas dynamics can be transformed to such a form that
they contain derivatives of gas-dynamic quantities only along

characteristics. As will be shown in the following section, in

isentropic flow, along characteristics there move not only small

perturbations, but also definite combinations of gas-dynamic quantities,

~
+o
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" As it is known, a function of two variables f(x, t) can be
differentiated with respect to time along a definite curve x = o¢(t)
on the x, t-plane, Time derivative of function f(x, t) along
arbitrary curve x = ¢(t) is determined by slope of tangent to curve

at given point dx/dt = @' and is equal to

af of dz
F) m+hm +

We are already acqualnted with two particular cases of differentiation

6[,

along a curve: these are the partial derivative with respect to time
0/0t (along curve x = const, @' = 0) and particle derivative

d/dt = 9/0t + u 0/0x (along path of motion of particle or along flow
line: dx/dt = ¢! = u).

Let us transform equations of plane adiabatic motion to a form
such that they contain derivatives of gas-dynamic quantities only
along characteristics. For this we will eliminate from equation of
continuity ,

2 oz =0
the derivative of density, replacing it by derivative of pressure,
Inasmuch as density is thermodynamically related to pressure and
entropy p = p(p, S), and dS/dt = O, we have
£-C5 B84
By substituting this expression into the continuity equation and

multiplying the equation by c/p, we will find

1 Op
r Qc'az+c3— =0.

We will add this equation with the equation of motion

I'*' 5;+10p 0.

We obtain
[Fre+an]+a [F+etazz]=0

s




By subtracting one equation from the other, we will find

analogously
du du 1r9 p
[Frw-ag]-s[F+e-ag] =0

The first of these equations contains derivatives only along

C+-characteristics, and the second — only along C_-characteristics.

Noticing that adiabatic equation dS/dt = O can be considered as an %

equation along Co-characteristics, we will write equations of gas

St S ke ki L S A

dynamics in the form

du+i—dp=0 along C,::—:—’=u+c, (1.40)
1 Ldz

da—Ldp=0 along ¢:Z=u—c, (1.41)
dS=0 along C'o=,d7f-=u. (1.42)

In Lagrange coordinates, equations of characteristics take the
form
:d-i-:—c; C.,:%“;:O.
Equations along characteristics do not differ from equations (1.40)
to (1.42).

In spherically symmetric flow, equations of characteristics in
4 Euler coordinates are the same as in the plane case (only coordinate
x must be replaced by radius r)., Equations along characteristics
1 C, contain additional terms depending on the functions themselves,
7 end not on their derivatives

dut dpm T2 dt along Cy:fmuzte

In a number of cases, equations of gas dynamics written in character-

istic form are more convenient for numerical integration than usual

equations.




el

e

s i p b Lo R S S 2 S L

§ 6. Plane Isentropic Flow, Riemann Invariants

In isentropic flow, entropy, which is constant in space and time,
ir. general drops out of equations. All flow is described by two
furctions: by velocity u(x, t) and by some cne of the thermodynamic
variables: p(x, t), p(x, t) or c¢(x, t). The latter are uniquely
related with each other at every point by purely thermodynamic
relationships: p = p(p), ¢ = c(p) or p = p(p), ¢ = c(p); c? = dp/dp.

Diffevential expressiors du + dp/pc and du - dp/pc now constitute

total differentials of quantities

J.o=u+ %=u+scg§" ]

J_=-.u—S%%.=g_S¢§:_' (1.43)

which are called Riemann inveriants.* With the help of thermodynamic
relationships, integral quaat .*.es (-dp/pc =.f c dg/p in principle
can be expressed in terms <I vne of the thermodynamic variables, let
us say, the speed of sound c¢. Yor instan~=, in an ldeal gas with

constant heat capacity
p=constQY, ¢¥.=y constyy-!

and
2 .
Jemvt e (1.44)
Riemann invariants are determined with accuracy up to the
arbitrary constant, which in those cases when 1t iz convenient can be

completely omitted, as this is done in formula (1.44).

*During non-isentropic flow, p and c depend on two variatles:
p and S, and the expressions du * dp/p¢ no longer are total
differentials. Combinations (1.43) in this case do not have a
definite meaning,

29




Equations (1.40), (1.41) indicate that in isentropic flow,
Riemann invariants are constant along characteristics

d
gJ,=0, J, =const along C.i-d—‘t=u+c;
(1.45)

This situation can be considered as generalization of relationships
which are accurate for the case of propagation of acoustic waves
through a gas with constant velocity, density and pressure. The
latter are obtained from general equations as a first approximation,

If we assume that u = uy + Au, p = Py t+ Ap, then in first approxi-

mation

J,=ug+As + S-&%=Aai£——f—o+éonst. (1.46)

Equations of characteristics in first approximation are written

in the form

% =y + ¢, zy=(u¢:tc°)t+const.
Thus, along path x = (u.o + co)t + const fhere is kept the quantity
du + Ap/poco, from which it is clear that it can be represented in
the form of a function of the constant in equation x = (uy + cy)t +

+ const:
E Auf%%fz;. [z—(uo-l-c?) t].

Along path x = (u.o - co)t + const there is kept the quantity
Bu— 22 m —2fy [z~ (uo— )],

Changes of velocity and pressure are represented in the form of

superposition of two waves f1 and fa, which travel in opposite
directions: Au = £y - £ou Op = poco(f1 + fa), where in each of them
quantities are related to each other by relationships already known

to us:?

Alu-:_."i-lh A:“"-'—L":.; =~ f5.
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Riemann invariants J+ and J_ can be considered as new functions

describing motion of gas in exchange for old variables: velocity of

gas u and one of thermodynamic quantitieg, for instance, speed of

e a e 1o

sound ¢, They are uniquely related to variables u and c by equations
(12.43). By solving these equations for u and c, it is possible to
return from functions J+, J_ to functions u and c¢. For instance,
for an ideal gas with constant heat capacity, by formulas (1.44)
T A —1
u:——t;;—-; 08?4—(].‘.-]—)-

Considering invariants as functions of independent variables

x and t, equations of characteristics can be written in the form

CoGp=Fslls I C2T=F-(Js, L), (1.47)
where F_ and F_ are known functlons, whose form is determined only i
by thermodynamic properties of the substance,
In an id:al gas with constant heat capacity
Fo=Y0 43000, padliy vy
As can be seen from equations (1.45), characteristics have the
property to transfer constant values of one of the invariants.
Inasmuch as along a definite C+-characteristic J+ = const, change of %
slope of characteristic is determined by change of only one quantity
— the invariant J_. In exactly the same way, along the C_-character-
istic J_ 1s constant, and change of slope during transition from one
point of the x, t-plane to another is determined by change of invariant
Iy e
Equations written in characteristic form make the casual
relationship of phenomena in gas dynamics very graphic, Let us
consider any plane isentropic flow of gas in an infinite space, Let

us assume that st initial moment t = O there are given distributions

of gas-dynamic quantities over coordinate x: u(x, 0); c(x, 0), or,

|
1
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which is equivalent, there are given distributions of invariants

S

I, (x, 0); J_ (x, O). On the plane of x, t (Fig., 1.9) there exists

a network of C+- and C_-characteristica, which go out from different
points of the x-axisf* Values of gas~-dynamic quantities at any point
D(x, t) (at coordinate point x at the moment of time t) are determined
only by values of quantities at initial points A(xi, 0) and B(x2, 0):

Jo(2, t)mTi(2y, 0); Jo(z, )mT_ (25 0).
4 For instance, for an ideal gas with
i constant heat capacity, by solving
% these equations for u and ¢, it is
« Ae0N Bl = . possible to write physical variables
= Fig. 1.9. x— t- at point D in explicit form:
! e foriTssadeite: wie, =ttt 2 aon oy
1.4

c(s.'.‘!):',-ﬂ?ﬂ'!:z"u%h '

where u,, ¢, are values at polnt A(xi, 0), and u,, ¢, are values at
point B(x,, 0).

It 1s impossible, of course, to say that state of gas at point
D depends on assignment of initial conditions only at tko initial
points A and B, since the actual position of point D, as the place
where C+- and C_-characteristics, going out from points A and B
intersect, depends on path of these characteristics, These paths
are determined by assignment of initlial conditions on all of segment
AB of axis x, For instance, slope of C+-characteristic AD at
; intermediate point N (see Fig, 1.9) is determined not only by in-
variant J_ (A), but also by value of invariant J_ (M), which is

transferred to N from intermediate point M of segment AB,

1 *]t i1s possible to construct this network after there is found
: the solution of the problem,
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But state of gas at D is completely determined by assignment of
initial conditions on segment AB of axis X, and absolutely does not
depend on initial values of quantities outside of this segment, If,
let .3 say, we somewhat change initial values at point Q, then this
in no way will affect state of gas at D, simply because perturbation

due to this change will not succeed in reaching coordinate point x

by the moment t. Tt will arrive at this coordinate point later (at

point P along C -characteristic QP).

Analogously, initial state of gas
on segment AB of axls x affects state
of gas at subsequent moments of time

only at those points which are located

Y] 8 x inside region bounded by C_-character-
Flg, 1.10, X — t-
diigram illustrating istic AP and C+—character1stic BQ

region of influence. (Fig. 1.10). It does not affect state

M o

at M, since "signals" from initial conditions on segment AB will not

succeed in reaching coordinate point Xy by moment tM‘

. We will stress that the presented

Jext) considerations about causal relationship

of phenomena are valid only under the

A& 30 z
Fig. 1.11. Straightening conditlion that characteristics of one

Zﬁaiﬁagﬁgﬁfgi:?ics on family do not intersect with each other,
For instance, if C+-characteristic from
Q (see Fig. 1.9) went along dotted path QE, then state of gas at Q
would influence state at D. But in region of continuous flow,
characteristics belonging to one family indeed never intersect.
Intersection would lead to non-single-valuedness of gas-dynamic

quantities. Indeed, at point of intersection of two C+-character-

istics x, t, invariants J+ would have two different values,
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ccrresponding to each of the two characteristics., Meanwhile, to
every point of plane x, t there belongs only one value each of J+ and
J_, which are related with the unique values of veloclty of gas and
speed of sound at this point. As we will see below, lntersection of
characteristics of one family leads to disturbance of continuity of
flow and appearance of discontinuities of gas-dynamic quantities,
i.e., shock waves,

It 1s possible to draw lines of characteristics on all of plane
X, t only il we know solution of gas-dynamic problem. If solution
is unknown, then it is impossible to indlcate exactly the position of
point D in Fig. 1.5 at which characteristics going out from A and B
intersect,

However, it 18 possible approximately to find place of inter-
section by replacing true curvilinear paths AD and BD by straight

lines whose slopes correspond to initlal values of U Cy3 usc at

2
points A and B (or J (A), J_ (B)) (Fig. 1.11). Selecting points A
and B sufficlently close to each other in such a manner that error
due to replacement of true paths of characteristics by straight
lines is small, we find position of point of intersection from
equations

E—ym(Bte)t, T—zym=(uy—ey)t.
Values of u and ¢ at place of intersection are determined by formulas
(1.48). Such an operation, in essence, constitutes the simplest
scheme of numerical integration of equations (1.45). Covering plane
X, t by a network of triangles analogous to ADB, it is possible
successlvely, step by step, to advance solution of equations forward
in time, proceeding from initial conditions u(x, 0), c(x, O) or
Je (x, 0), J_ (x, 0).
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§ 7. Plane Isentropic Flow of Ges in a Bounded Space

Let us considér some plane isentropic flow of gas in a bounded
space. Let us assume that the gas occupies space between two plane
surfaces — pistons, which move according to given laws Xy =9, (t),
Xy = ¥, (t), where at initial moment t = O coordinates of piétons are
equal to X410 and X50e At initial moment there are given distributions
of veloclty u and thermodynamic variable ¢ over coordinate x on
segment x,5 < X < Xyq! u(x, 0), c(x, 0) or, which is equivalent,
there are given distributions of invariants I, (x, 0), J_ (x, 0).

Let us draw on plane x, t a network of characteristics and lines
of pistons (Fig. 1.12), Points of type F, through which there pass
C+— and C_-characteristics going out from points lying inside segment
0102 of axis x do not at all differ from points during motion of gas
in unbounded space. Just as there,to these points there are trans-

ferred initial wvalues of invariants J+ and J_.
We will consider a point lying on

line of piston, for definiteness, point

D of the left piston.

To point D from the "past" there

50 “
XXX
LXK

is transferred only one invariant J_;

it is transferred along the C_-char-

Zy A 8 Hzipn <
Fig. 1.12. Scheme of acteriscic coming from point A of
characteristics for plane
isentropic flow of gas initial segment 0,0, so that J_(D) =

between two pistons.
= J_(A). Second invariant J, is not

brought to D, since C+-characteristic does not arrive at D (from the
"past"). C,-characteristic only goes out from D (into the "future"),

taking with it the value of invariant J+ "formed" at this point.
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State of gas at point D is determined by value of introduced invariant
J_ and a second quantity — velocity u, which in virtue of boundary
condition coincides with known velocity of piston at point D: ul(D).
This pair of quantities J_(D) = J_(A) and u = u, (D) replaces now the
pair of quantities J+, J_, which arrive at polnts of gas, which do

not touch the pistons. Second invariant J+ is composed in D of
quantities J_(D) and u, (D): J+(D) = 2u,(D) — J_(D), and is transferred
by the C+—characteristic. For instance, to point E arrives C_-char-
acteristic going out from point B of initial segment of x-axis and
carrying invariant J_(B): J_(E) = J_(B). C, -characteristic arrives
from line of piston, from D, and brings invariant J+, which is equal

to J (D): J (E) = J (D).

N

State of gas at E depends on initial conditions on segment C,B

1
of axis x and veloclties of left piston cn segment OiD of line of

piston.

Thus, during flow in bounded space, state of gas at any point
may depend not only on initial conditions, but also on boundary
conditions,

In general, the state at arbitrary point of plane x, t is
determined by assignment orf values of u and c or J,, J_ on segment of
arbitrar& curve cut off by C+— and C_-characteristics passsing
through the considered point. For instance, state at Q is determined
by state on segment MN of curve S (see Fig, 1,12).

Analogousiy to the preceding, onto the right piston from the
"past" along C,-characteristics are transferred invariants J , and
C_-characteristics themselves start from points of line of piston and
carry into the "future" invariants J_, which are composed of the

introduced invariants J+ and values of velocity of piston u,, with

2:




which velocities of layer of gas adjacent to piston coincide.
Pressure on piston is uniquely determined by the one introduced

invariant and velocity of piston. Let us consider for example point

D on left piston, Let us assume that gas is ideal with constant
heat capacity. Let us designate by Uys Cp initial velocity cf gas
and speed of sound at point A, and by Up velocity of piston at point
D. We have for speeds of gas and sound at D

2 2
Wp=Uyn, J——up*—.-'Y:'—i‘CD=uA—§:—1-CA,

whence

—1
¢D=¢A+(ueo—“4)?—‘2""

or in terms of the invariant

eo=l—J- (4)) 17+ .

Pressure on piston Pp is related with speed of sound Cp purely

? thermodynamically, Pp = const CD27/(7—1).

; Presented considerations permit us to give graphic physical
{ meaning to Riemann invariants,

E Let us take the following experiment: Let us introduce at a

definite moment t at point x a flat plate parallel to surface of
piston. Let us assume that on one, the left side of the plate there
is a pressure indicator, which reacts to precsure of gas on the left
of the plate,

By moment t at x from the left onto the indicator there arrives
invariant J+ = u + j‘dp/pc = u + w(p), where u and p are velocity and
pressure of gas unperturbed by the plate (w(p) is function of pressure,
1 depending only on thermodynamic properties of gas and its entropy).

At the .ime t, gas i1s decelerated near plate and stops, inasmuch as

the plate is at rest. New pressure on the left of the plate corre-

sponding to the stopped gas (u = 0) we will designate by Py Then




J+ =u + w(p) = w(pi). Indicator will register pressure of
repulsion-p1. _Inasmuch as function w is known, scale of indicator
can be callbrated in such a manner that reading of indicator directly
gives magnitude of invariant J+. Analogously, pressure indicator
piaced on right side of plate measures invariant J_ arriving from

the right.

If we place a very thin plate berpendicular to surfaces of
pistons, parallel to velocity of flow, in such a manner that gas
freely flows around the plate without changing velocity, the indicator
will register pressure of unperturbed flow p. Since 1t is calibrated

to directly give magnitude of w(p), the indicator will measure

combination of invariant

w(p)a-;—(.h—l.).
§ 8, Simple Waves

From formula (1.46) for Riemann invariants, which pertains to
case of propagation of small perturbations, acoustic waves, through
gas it 1s clear that 1f wave propagates only in one direction, then

one of invariants is constant in space and time, Thus, if wave

+

travels to the right and Au (x, t) = 8p (x, t)/pycy = £, [x — (v,

+ cy) t], then Inveriant J_ is constant:

J-wm Au— (%‘E + cons? = const.
If, however, the wave travels to the left, then invariant J+ is
constant,

We wlll show that possibllity of evistence of waves travelling
in one direction 1s not limited by the assumption of smallness of
amplitude, where in the general case of a travelling wave there
remains constant one of the Riemann invariants, First of all we will

indicate how it is possible to realize in practice constancy of one
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of the invariants, for instance J_. If gas occupies an infinite
space, then for this it is sufficlent to assign initial distributions
u(x, 0), c(x, 0) in such a way that at initial moment we had

J_ (x, 0) = const, Inasmuch as this constant value of J_ is trans-
ferred along C_-characteristics going out from all points of axis x,
then at subsequent moments of time invariant J_ will remain constant:
J_ (x, t) = const.

Let us assume that gas occupies a half-space bounded on the
left by piston moving according to the law x, = wi(t). If at initial
moment J_ (x, 0) = const in all of the region occupied by gas,

X > Xiol(xio is initial coordinate of piston), then at subsequent
moments J_ also will remain constant in the whole space bounded by
the piston x > X, = wi (t). Actually, left piston, as was shown in
preceding paragraph, "excites" only C,-characteristics; C_-character-
istics arrive at line of piston from "past", and on this "finish
their existence", so that piston sends into the "future" only
J+-invariants, but not J_.

Values of J_-invariants in all that part of plane x, t which
corresponds to gas (this part is bounded by line of piston Xy =
=¥, (t)) are determined by initial values of J_ on axis X, i.e.,
are constant.

Conversely, if gas occupies half-space bounded cn the right by
piston (line of piston x, = ¥, (t), xog =79, (0)), and at initial
moment J__ (x, 0) = const for x < x,y, then in the whole physical
part of plane x, t, x < X, = ¥, (t), invariant J, 1is constant.

Thus, we will return to problem at hand and will assume for

definiteness that J_ (x, t) = const.




From equation of characteristics written in form (1.47), it
follows thgs that C+-characteristics constitute a family of straight
lines (F+ % const, since J+ = const along the characteristic, and
J_ = const in general). Integrating equation for C+—characteristics,

we will write
z=F,(Js, J)t+@(Js),
(1.49)

where 9 (J 1s constant of integration, which it 1s possible to

)
consider as function of that value of J+ which 1s transferred along
the characteristic, It 1s determined hy initlal and boundary con-
ditions of the problem, For instance, 1f given characteristic emerges
from initial segment of axls x, then ¢ 1s coordinate of that point
of axis x from which there emerges the characteristic and on which
there 1s assigned value of J+ standing as the argument in ¢,

Formula (1.49), Jointly with condition imposed on one of the
unknown functions, |

J.(z, ¢)=const, (1.50)

constitutes general solution of equations of gas dynamics for the
consldered case, It determines 1in implicit form the other unknown
function J (x, t). (We recall that function F+ is known, inasmuch
as there are known the thermodynamic properties of the substance).

Solution (1.49), (1.50) can be written in the form of formulas
for usual gas-dynamic variables: velocity of gas and speed of sound.
From equation (1.50,

J-=u—§ & mconst

it foliows that speed of sound or any otner thermodynamic variable,
let us say pressure, are functions of velocity n which do not contain

in explicit form independent variables x and t: c¢ = c(u), p = p(u).
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Equation (1.49) is equivalent to equation
z=[u+c(u)]t+¢(u) (1.51)
where constant of integration ¢ is expressed as a function of u.
This equation determines in implicit form u in dependence upon X and
t. 4

From formula (1.51) it is clear that given values of u and c(u)
are transferred through the gas along axis x with constant velocity
u + c(u). In other words, the solution constitutes a wave travelling
to the right:

u=f{z—(8+ec(u)lt})c=g{z—[utc@)t},
where form of functions f and g is determined by initial and boundary
conditions of the problem,

However, in distinction from travelling wave of small amplitude,
different values of velocity of gas and thermodynamic wvariables are
transferred with different velocitles, so that initlal profiles
u(x, 0), c(x, O) are distorted with flow of time., This is a result
of the nonlinearity of equations of gas dynamics,

The obtalned solution in the form of a travelling wave is called
a simple wave.

In an analogous way there can be obtained a simple wave travelling
in the other direction, In it invariant J+ is constant, and C_-char-

acteristics are straight lines. #General solution in this case has

the form

Jymconst, zmF.(Jy, I)t+(J-)

or

Jomut §Poconst,  zefu—c(u)t+eiu),
wmf{z+[c (u)—u]}}. cog, {z+[c(u)—ult).




Let us note that solution for simple wave is particular solution
of equations of one-dimensional isentropic flow., There can be found
also the general sc¢lution of these equations for arbitrary flow (see

[1]). Singular solution is not contained directly in the general

solution.

§ 9. Distortion of Profiles in Travelling Wave of Finite
Amplitude. Certain Properties of Simple Waves

We will use obtained solution for a simple wave and will clarify
what occurs with a wave of acoustic type if we do not limit ourselves
to first approximation, as this was done in § 3, but start from the
exact equations of gas dynamics. We will not give here an analytic
solution, but will clarify qualitative character of phenomena with
the help of graphic construction. Gas will be considered to be ideal
with constant heat capacity.

Let us assume that initial prcfiles of veloclity and speed of
sound u(x, 0), c(x, 0) have form depicted in Fig. 1.13, where these
functions are related in such a way that J_ (x, O) = const (we
consider a wave travelling to the right). By formula (1.44) we have
c = —I%E- u + Cgs where constant value of invariant J_ is selected

in accordance with the condition that in unperturbed gas u = 0,
¢ = cy. Inasmuch as p ~ c2/(y—1)’ p ~ c27/(y—1) (for ¢ = Cys P = D
p = po), profiles of pressure and density in qualitative sense are
fully analogous to profile of speed of sound.

Being constant at initial moment, invariant J_ (x, t) is constant
also at all subsequent moments of time, so that motion constitutes a

simple wave travelling to the right. Characteristics of C+-family
are straight lines dx/dt = u+c = (v + 1) w/2 + c,. They are




depiﬁted in Fig. 1.13. From points AO, BO and DO’ where u = 0, they
emerge parallel to each other: dx/dt = o (and parallel to C,-char-
acteristics going out from points of axis x which correspond to
unperturbed region of gas). In order not to complicate Fir. 1.13,
we will draw, furthermore, only two more C+-characteristics,-from
points EO and FO, which correspond to minima and maxima of initial

distributions u(x, 0) and c(x, 0)

Let us construct profiles of

u(r.0)
N u and ¢ at moment t,: u(x, ty)s
M~ : c(x, t,). Inasmuch as alon
catf | | >l &
* #%\L,f’r\h— = C,-characteristics there are trans-
%4.;!.56.5411. x

ferred constant values of u and c,

)

magnitudes of u and c at points

L Ai’ Ei’ etc., are equal to corre-

sponding magnitudes at points A

O’

P S T R
[
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|
-- Qr-. - conea

EO, etec,

By performing the construction

)
(]
(1
1
4
]

\ 'z
(zt,) ;E E as shown in Fig. 1.13, we will find
Al profiles of u and ¢ at time ti'
£ ( [
cats T We see that "head" (D) and "tail"

o (A) of the wave, which touch
“' Eo é' ’:bc a4
Fig. 1.13. Propagation

regions of constant flow, where

of travelling wave to u =0, and ¢ = c,, were displaced
the right. Construction
allowi%g us to determine along axls x by segments equal to

distortion of profiles

T O Abovg — profiles coty (they were propagated along
of velocity and speed of

sound at initial moment. characteristics DyD,, AjA; on

Below — distorted profiles

at time t,. In the middie  Pplane x, t). Heights of maxima
— scheme of C+-character- and minima of u and ¢ were not
istics,
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changed, but relative positions of maxima and minima became different:
profiles were distorted,

In acoustic theory, wr-re equations of gas dynamics are lih-
earized, such distortion does not occur: profiles shift in the form
of a "frozen" picture. Distortion of profiles is result of nonlin-
earity of equations of gas dynamics. Physical cause of distortion
is that wave crests travel relatively faster due to high speed of
their propagation through substance (high speed of sound), as well
as due to faster drift forward together with the substance (high

speed of gas)., Conversely, wave troughs travel relatively slower,

since both speeds in them are less.

With flow of time profiles are distorted more and more strongly,
as is shown in Fig, 1.14, If we formally continue the analytic
solution to sufficiently long times, then there will occur
"overlapping" of the wave, as shown in Fig, 1.14d. This, the last,
picture is physically senseless, since in it the solution is not
single-valued, For instaﬂce, at point x = x!' in the same moment of
time there are three values of velocity u: u = 0, u, and Uy
Appearance of such ambiguity is mathematically connected with inter-
section of characteristics of one family (C+), the tendency to which
it is possible to perceive in Fig, 1.13. In fact, "overlapping"
certainly does not occur, and when front and rear parts of profiles
become very steep, there are formed discontinulties — shock waves,
as shown in Fig. 1.1ke (about this we will be concerned below).

Thus, solution in the form of simple wave in this case is valid
only for a limited time, up to moment of formation of discontinuities.
Solution never loses validity only in that case when wave everywhere

has character of a wave of rarefaction, l.e,, does not contain

sections where velocity of gas, pressure, and density decrease in
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direction of propagation of wave.

Fig. 1.13 constitute compressional

)N
;\_j E I-Cot

.
C/ WEColy Z-€,l

&
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Flg, 1.14, Diagram
illustrating build-up

of steepness and
"overlapping”" of wave

of finite amplitude in
nonlinear theory. There
are shown proflles of
velocity in consecutive
moments of time. In order
to combine waves at dif-
ferent moments of time,
along the axis of abscissas
is plotted the combination

x-cot. Profile d) corre-

sponds to the physically
unreal state, In fact, at
time t3 the profile has the

form e) with discontinuities,

are discontinuous 1s called weak.

Such sections (AE and FD) in
waves,

Simple rarefaction wave will
be considered in the following
section.

Let us note one important
property of the simple wave which
is illustrated by the considered
example, Head of simple wave
always is propagated along the
characteristic (in our example
along characteristic DyD,). On
the leadlng edge of the simple
wave, at point U, the actual
quantities u and c are continuous,
but their derivatives with respect
to coordinate x undergo a dis-
continuity (this one may see from
Fig. 1.13, where profliles of u and
¢ undergo a break). Such a
singularity, in which quantilties
are continuous but thelr derivatives

Weak singuiarity can be imagined

as a small perturbation with respect to continuous variation of

gas-dynamic quantities. This 1s shown in Fig. 1.15, in which there

are depicted two profiles, one smoothed, and the other with dis-

continuity of derivative., The shaded section can be considered as a

small perturbation.




But we know that small perturbations are propagated through a
substance with speed'of sound. Therefore, weak singularities always
are propagated along the characteristics,
ja If isentropic flow borders with
region of constant flow, then this

flow necessarily is a simple wave, and,

conversely, with region of constant

Fig. 1.15. Con~ flow there can border only a simple
cerning the question
of a weak singularity. wave, Actually, in region of constant

flow C,- end C_-characteristics

constitute families of parallel lines, and invariants Iy (x, t) and
J_ (x, t) are constant. As boundary of contact of region of some
isentropic flow I with region of constant flow II (Fig. 1.16) serves
one of characteristics, let us say, the C+—characteristic. Then
C_-characteristics continuing from region II into region I transfer
constant value of J_, so that in region I J_ (x, t) = const. Conse-
quently, this region is a simple wave travelling to the right. In
Fig. 1.16 there are drawn characteristics for case of a pulse with

length of one "wave length", which was considered above as an example,
:

&
Fig. 1.16, Diagram of two
families of characteristics
for the wave depicted in
Fig. 1.13.




§ 10. Rarefaction Wave

Let us consider motion of gas under action of a withdrawing
piston. Let us assume that in the beginning a motionless gas with
constant density, pressure, and speed of sound Pos Pg» So occupies
half-space x > 0, on the left bounded by motionless piston, initial
coordinate of wﬁich is x = 0, At the time t = O, piston starts to
move to the left, gradually being accelerated from zero spced to a
certain constant speed, which we will designate by -U. Law of motion
of piston is x = X(t). When speed of piston becomes constant, line
X(t) becomes a straight line X(t) = ~Ut + const.

As was shown in the preceding section, motion of gas for t > O
constitutes a simple wave travelling to the right. Head of wave,
i.e., initial perturbation from piston, propagates to the right with
speed of sound along C -characterlstic OA; x = cyt (Fig. 1.17). Let
us draw on this figure curve of motion of piston X(t) and character-
istics of C,- and C_-families. In region I between axis x and
C+-characteristic OA, gas 1s undisturbed: characteristics in this
region are straight lines with slopes (dx/dt), = cy; (dx/dt)_ = -c.
After intersecting straight line OA, C_-characteristics continue up
to line of piston and on it end their existence. For clarity of
reasoning, we will consider gas to be ideal with constant heat
capacity; however, we will stress that in a qualitative sense the
entire picture of motion remains valid also for gas with different
thermodynamic properties. J_-invariant is constant in the entire
physical part of plane x, t and is equal

J.-u—;{-‘-c- —?%‘c..

Hence,




On boundary with piston,
velocity of gas coincides with
velocity of piston w(t), which
is negative, Therefore, speed
of sound, and also pressure

and density of gas at the

plston are less than initial,
Fig, 1.17. x, t-diegram with

diagram of characteristics for and the faster the piston
rarefaction wave appearing under

action of piston which is with- travels, the lower they are.
drawn from gas, first accelerated,

and then with constant speed, C+-character1stics, which are

straight lines, emerge from line of piston with slopes
d
@) mute=atlfume-14l .

Inasmuch as plston only is accelerated, but not decelerated,
C+-characteristics starting on line of piston only diverge, but
nowhere converge, as 18 shown in Fig, 1.17. C+-characteristics going
out from that sectlion of line of piston on which speed of piston is
already constant have ldentical slopes (dz/dt), = c,—-"—"z-'it! and go in
parallel with each other, Let us assume that, for instance, speed
of piston becomes strictly constant and equal to w = -U (U > 0),
starting from moment t, (point B on line of piston), In region III
on plane x, t, which is contained between line of piston and C+-char-
acteristic BD, all gas-dynamic quantities are constant: u = -U,

¢ = cy=L52 U =c,*). Indeed, in this region J_ = const in virtue

“#For valldity of these formulas it is necessary that cy be a
positive quantity, which puts a limitation on final velocity of

piston: U < [2/(y - 1)] cy. The case when U >-——%7I cy Will bve
considered in § 11. v
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of general constancy, and J+ = const inasmuch as velocities of gas

on line of piston, from which there emerge all C+-ﬁharacteristics,

are 1dentical:

-’-1-=“+v

¥ —1

2
1 c=—_Tco+2u=T2—~co—2U.

In region II, which is contained between C+-characteristics OA and BD

and section OB of line of piston, gas-dynamic quantities depend on x

and t in accordance with solution for simple wave. C,-characteristics

+

going out from section OB of line of piston at all later moments of

time carry smaller and smaller values of velocities of sound and gas

(greater and greater velocities of gas in absolute value), Therefore,

disvribution of*u and ¢ over the gas at some definite moment of time

tiK ti, which corresponds to horizontal line t = const = t! on plane

X, t, has the form depicted in Fig. 1.48a.

In virtue of direct dependence of p, p and ¢, distributions of

density and pressure in a qualitative sense are similar to distribution

of speed of sound,

v | A~ *

Fig. 1.18, Profiles of
speed of sound and
velocity in rarefaction
wave appearing under
action of piston (see
Fig. 1.17): a) up to
moment when speed of
plston became constant,

tt <ty b) after moment

when speed of piston

became onstant, t" > ty.

Distributions of gas-dynamic
quantities at later moment t" > t,
(straight line t = const = t" on plane
X, t) are shown in Fig. 1.18b, 1In this
case to the piston is adjoined region
of constant flow u = -U, ¢ = Cye Coor-
dinate of point dividing regions of
constant and variable flows III and
II corresponds to point E of character-
istic BD: Xge

By assigning a specific law of

motion to the piston, we can find
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g solution of problem in analytic form., Let us assume, for example,
;
3

that speed of piston with flow of tim: changes smoothly according to

:. the law:
ﬁ w--U(i-c-:-), t>0
3 and tends to constant -U asymptotically as t = ®, Line of motion of
piston is described by equation
4 X(¢)=$waz=-Ur[{--(i—e'?')].
g It asymptotically passes into sﬁraight line X = —U (¢t — x).
For finding the unknown solution we will subject the general
E solution (1.51) to boundary condition: u = w (t) when x = X (t).
Eg This condition determines arbitrary function ¢ (u):
F | @) =X(t)—[w+c@)t,
; where
c(w)=co+1'2;i-w and w=w().
LE Substituting here X (t) and expressing time in terms of w with
3 help of law of motion of piston t = -7 1n ( 1 + %—), we will find
form of function ¢:
k Q(w)=—wt-i-_t(co+y‘;—iw+ll)ln (1+7"]’-).
Distributions of velocity over coordinate at different moments
% of time are given by implicit function:
: :-(c.+1"'2-'—"u)l—ur+t(c.+3—'§—iu+0) ln(i+5—).
’ which holds in the interval X (f) < z < cot.
i Let us assume again that velocity of piston becomes strictly
f constant at definite moment ti' Let us take the constant value of
E final velocity of the piston -U and assume that initial accelerations
é of piston become greater and greater and constant velocity is attained

more and more rapldly (t, = 0). Section OB of line of piston, where

speed of piston is variable, becomes smaller and smaller (see Fig.




1.17). Points B and 0, from which C,-characteristics BD and OA,
between which is contained the region of variable flow II, go out,
thus come closer together, In the limit t1 = 0, when points B and 0
colncide, which corresponds to instantaneous attainment by piston of
constant velocity w = -U, both characteristics BD and 0OA emerge from
one point: from the origin of coordinates x = 0, t = O on plane

x, t. All C+—characteristics filling the region of variasble flow II

also emerge from origin O in the form of a fan. Thus, in the limiting

case, when piston at time t = O starts to move with constant speed

w = -U, the picture on plane x, t acquires the form depicted in Fig.
1.19.

¢ All characteristic lines: 1line
of "head" of rarefaction wave OA, line

D
./'
/j- of "tail" of wave OD, behind which

parameters of gas take constant finite

values, and line of piston emerge from

;0 .
Fig. 1.19., x, t-dlagram
with diagram of character- there emerge all C+—characteristics
istics for centered rare-

faction wave, located between C+-characteristics OA

"eenter" 0. From the same "center"

and OD,

Such a wave 1s called a centered simple wave. Inasmuch as all
C+—characteristics in centered simple wave, i.e., in region of variable
flow II, emerge from point x = O, t = 0, function ¢ (u) in solution
(1.51); which is at the same time the equation of these character-

istics, becomes zero. Solution for centered wave has the form
z=[u4clu)]t. . (1.52)
Formally this solution can be obtained by means of passage to

the 1imit 7 = 0 in the example, considered above. Function ¢ is

proportional to T, so that as 1= 0 ¢ (u) = 0.

. aa




Let us write in explicit form the solution for centered rare-
faction wave for case of ideal gas with constant heat capacity.
Relation of thermodynamic variables with velocity of gas u 1s given

by the already known formula following from condition of constancy

of invarliant J_:

cmco—Y31 u], u<O. (1.53)
Inasmuch as p = po (@/Q0)Y: ¢ = yp/e =ic} (@/Q0)*~*,
: P

e (50
2y

p=n [t G (£.55)

In order to obtain dependence of these quantitles on x and t,

it is necessary to substitute here ]u], which 1s found from solution

of (1.52) and (1.53):

=gk (am ) (1-50)

Velocity of gas in centered rare-

, .
pe
g,.__,,/’//F--_——- faction wave depends on coordinate x

e F by a linear law, Head of wave, where
z
_,//’/' : u = 0, moves along line x = c4t; tail
Fig. 1.20. Profiles of wave, where u = w = -U, moves along
of density and veloclty _ _ _ - + 1
in centered rarefaction line x = (ci U)t = (co 2 u) t.

NEvE. Profiles of density and velocity

are shown in Fig. 1,20,

§ 11. Centered Rarefaction Wave as an
Exemple of Self-Similar Motion of Gas

One-dimensional plane motion of gas consldered in preceding
sectlon, which eppears during withdrawal of piston with constant
velocity, possesses one characteristic peculiarity. All gas-dynamic
quantities describing motion, u (x, t), ¢ (x, t), p (x, t), p (x, t),
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depend not separately on coordinate and time, but only in combination
x/t. For region II, where quantities are varlable, this may be seen
directly from formulas (1.53) — (1.56). Regions of constant flow I
and III, however, are bounded in plane x, t by straight lines x/t =
= ¢, = const (region I) and x/t = w = const, x/t = w + c, = const
(region III), which are described by equations containing x and t
only in combination x/t. In other words, with flow of time, dis-
tributions of all quantities over coordinate x, which are depicted in
Fig. 1.20, only are extended in space, without changing their shape,
i.e., they remain similar to themselves, If we depict distributions
of u, ¢, p, p, plotting along the axis of abscissas not x, but the
ratio x/t (or one of the dimensionless quantities x/c,t, x/wt), then
we will obtaln a "frozen" picture, which is constant in time. Such
motion, in which profiles of gas-dynamic quantities with flow of time
remaln similar to themselves, changing only due to change of scales
of quantities (in this case of scale of length cot or wt), is called
self-similar. In § 25 we met with a more complicated example of
self-similar motion, in which not only scales of length change, but
also scales of gas-dynamic quantities themselves, where self-similar
variable £ has the more general form £ = xta, where a = const, The
above considered centered rarefaction wave constitutes simplest case
of self-similar motion, in which a = -1, £ = x/t, and scales of
gas-dynamic quantities remain constant: with flow of time thelr
profiles u (x, t), ¢ (x, t) self-simlilarly are extended only along
the axis of abscissas, but are not changed along the axlis of ordinates
(scales of u, ¢, p, p remain constant).

Physical cause of self-similar character of centered rarefactlon

wave can be explained by using dimension considerations.
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If we disregard dissipative processes of viscoslity and thermal
conductlion, then equations of gas dynamics, Just as formulas,
describing thermodynamic propertlies of a substance, do not contain
any characterlistic lengths and times. The only scales of length and
time for a gas are the mean free path and mean free time of molecules,
with which there are connecfed the coefficlients of viscosity and
thermal conductivity. However these scales can characterize only
microprocesses occurring at distances and during times corresponding
to mean free path and timé of molecules, but not macroscopic motions,
Matter possesses the dimenslonal parameter speed of sound, which 1s
contalned along with veloclty of substance 1n description of gas-
dynamic flows, Thus, if 1nitial and boundary conditions of problem
do not contain characteristic lengths and times, motion can depend on
coordinate and time taken only in combination, x/t, which has the
dimension of velocity.

Such is the consldered problem about rarefaction wave appearing
under action of piston withdrawn from gas with constant veloclty w.
Initial and boundary conditions introduce only scales of velocity:
co and w (and, of course, scales of density Po and pressure Pos but

not scales of length or time)*.

¥If velocity of plston 1s not constant, but depends on time, then
immediately there appear scales of time or length, Thus the proolem
about rarefaction wave ceases to be self-similar: mathematically this
follows from formula (1.51): if ¢ (u) # O, then u depends on x and t
separately. However, 1f veloclty of piston with flow of time becomes
constant, as in the example considered 1n the preceding section, then
true solution asymptotically tends to self-similar, For t >> 1 (t/1 —
— ®) function 9 (u) ~ 1 in the solution can be omitted. Physically
thls corresponds to a case in which for t >> 1 parameter T becomes
small as compared to characteristic time of problem t, and its role
becomes less and less important. For greater detail about asymptotic

tendency of true solutions to self-similar solutions (see Chapters
X and XIT).
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‘Self-similar motions have large importance for gas dynamics,
Inasmuch as in this case, gas-dynamic quantities do not depend on
coordinates and time separately, but depend only on definite combina-
tions of them, this decreases by one the number of independent
variables in the system of equations. In particular, during one-
dimensional motions, instead of two variables x and t (or r and t in
case of spherical or cylindrical symmetry) there appears one inde-
pendent variable (£ = x/t in our problem), Flow is described not by
partial differential equations, but by ordinary differential equations,
which to a huge degree simplifies problem from the mathematical point
of view,

In view of fundamental importance of self-similar flow which
constitutes a centered simple wave, we once again will find solution
of problem about the piston, starting from general equations of gas
dynamics and using the presented considerations about decrease of
number of independent variables., We transform Euler equations of
gas dynamics to new independent variable £ = x/t., If f (x, t) is a
certaln function of x and t depending only on a combination of these

quantities £ = x/t, then by means of direct calculation we will obtain

af sdf t df
= TAGET T raE

df _9f of _u—¢df
a=atla =T a-
Let us transform equations of continuity, motion and adiabatic
equation, written for the plane case, with help of these formulas:

d ou d d
F=—em—E-bF=—0g,

. 1 L]
03-—%—NP4M%=-%. (2.57)

g-o»(u—E){‘-‘g=0.
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As we should have expected, actual quantities x and t were
:liminated from the equations., Written equations admit first of all
the trivial solution u = conet, p = const, p = const, S = const,
which corresponds to motion of homogeneous gas as a whole. For
obtaining non=trivial solutlon we will eliminate from first pair of
equations du/df¢, and note that third equation gives S = const,* i,e.,
that self-similar motion 1s isentropilc.

Replacing in the second of equations (1.57) the derivative of
pressure by the derivative of density, dp/dé¢ = (dp/dp) (dp/d¢) =
= ¢ dp/d¢ (inasmuch as motlon 1s isentropic dp/dp = (ap/ap)s - @)
we will obtaln

(-t -1 =0,
whence

B—¢=tc, E=—:—=u:;:c. (1.58)

Substituting this relationship in equations (1.57), we will find
% _ gy + 9P
dute = .dh;toc 0
or

Ji=ut i’-’-’=const.
Ve (1.59)

We have arrived, thus, to solution of problem about centered
rarefaction wave which was already found in preceding section, For
wave travelling to the right, we should take lower sign in formulas
(1.58), (1.59), and for wave travelling to the left — the upper sign.

As before, the whole picture of flow can be constructed with
help of solutions (1.58), (1.59) and trivial solutions u = const,

¢ = const, which also satisfy self-simllar equations. Thus 1t 1s

*The assumption about the fact that not dS/d¢ = 0, but u - £ =0
contradicts the first of equations (1.57).
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neceésary to combine these solutions in such a manner that there 1s
satlsfied boundary condition u = w at the piston.

We will dwell on certain peculiarities of rarefaction wave.
Character of solution 1ndicates that for its valldity it is not at
all necessary that the gas extend from the piston to infinitly x — o,
Until head of rarefaction wave, which travels through unperturbed gas
to the right with the speed of sound Cq» reaches the boundary of gas,
X =% >0, 1.e., up to the moment t1 = xi/CO’ presence of boundary
in no way affects the motion.* Therefore, the obtalned solution
always describes initial stage of motion of gas during withdrawal

of piston, even 1f the gas occuplies a bounded region.

\\t We will see what happens to a
y 4
_ definite particle of gas whose initial
Fi p coordinate was, let us say, Xqe Up to
{ . the moment t = to = xo/co, until head
Lo / of rarefaction wave approaches it,

0 z z <

s particle is at rest. Then 1t starts
Fig, 1,21, Paths of

particles on x, t- to move to the left, with acceleration,
diagram for centered

rarefaction wave; OA and thus 1s expanded, When density in
is head of wave, OD

is tail of wave. it falls to a final value Pys and

velocity becomes equal to velocity of
piston w, further acceleration and expansion wiil be ceased, and
particle will start to move with constant velocity w. Paths of
several particles on plane x, t are depicted in Fig. 1.21. Equations

of these lines in region of rarefaction II are easy to obtain by

integrating equation for flow line —%%— =y = §_§L?'(CO - %}0 with
X0
initial condition x = x, for t = t, = —,
0 0 Co

*[le" us remember the reasoning in § 6 about the region of
influence,




Let us now see what occurs i1f we go over to motions with greater
and greater absolute velocitles of piston |w|. From formulas
(1.53) — (1.56) 1t 1s clear that the greater |w| is, the lower the
speed of sound, density, pressure, and temperature (T~Ve) of the
gas in the final state (c1 =c¢ (W), Py =P (w) etc.) are. Finally,

at a certain velocity of the piston |w| =2 ¢ys final values of

Yy -1
Cys Pys Py become zero, If piston is withdrawn still faster, then
formally solutions (1.53) — (1.56) become senseless, since for
ul > |w|m c,s Pys D4 are negative.

Actually this means that for |w| > |w| , between piston and left
boundary of gas there will be formed a regilon of vacuum, ?1ow
proceeds as 1f piston at initial moment t = O were completely
"removed", and the gas flows into a vacuum, Thus gas 1s expanded

to zero density, pressure, and temperature (speed of sound), and its
boundary moves to the left with velocity
2 2
Yo =700 |Ulmax=5= 6 (1.60)
Profiles of velocity and density during non-steady outflow

into vecuum are depicted in Fig. 1.22. For instance, for alr at
usual temperatures y = 7/5 and lu]max = 5co. This magnitude is
almost twice as large as veloclty of steady outflow into vacuum from
a large reservoir, when Bernoulli equation h + u2/2 =hy = cg/(y - 1)
is valid, and w = l/yt-!t% ~2,2 ¢, for v = 1.4 (here by h we
designated specific enthalpy h = € = p/p). During steady outflow,

particle obtains kinetic energy of u2

max/2 per gram only due to its

initial heat content ho. During non-steady outflow into vacuum,
kinetic energy is larger than its initial heat content ho (by more
than 4 times at y = 1.4),




Additional kinetic energy is obtained due to heat removal from
; nelghboring particles: total energy, which is equal to sum of kinetic

and internal energies in reglon contained in rarefaction wave, is nat-

urally conserved and is equal to initial inertial energy of this regior

z Analogously to plane case, 1t is
a

possible to consider spherically or

;.4mmuz Z=Col 2 cylindrically symmetric rarefaction
yu

-lm’u{/‘/ z waves, which are formed if "spherical”

or "eylindrical" pistons at initial
Fig. 1.22., Profiles

of density and velocity moment t = 0 start to be withdrawn
during plane non-steady
outflow of gas into a from the gas occupying space r > r,
: vacuum,
E or r < ry. Thus there also will be

formed a rarefaction wave whose head travels through the undisturbed
gas wlth speed of sound Coe However, in these cases there do not
exlst regions of constant flow between piston and tall of rarefaction
k wave. Let us nots that spherical and cylindrical rarefaction wave,

| in distinction from plane wave, are not self-similar: 1n the problem
there is a characteristic scale of length — the initial radius of the
pilston rye

§ 12, On the Impossibility of Existence of Centered
Compressional Wave

It would seem that solution of problem about piston moving with
constant speed would be applicable to an equal degree independently
of whether piston is withdrawn from gas or 1s thrust into gas, or
whether 1t produces rarefaction or compression. Both motiong are
self-similar, i.e., solution for them can be constructed from trivial

solutions corresponding to regions of constant flow, and nontrivial

] solutions corresponding to a simple centered wave., Let us try
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formally to construct a continuous solution for a self-similar
compressional wave which forms if at initial moment plston starts to
be thrust into gas with constant speed w > O (gas is on the right

of the plston). "Head" of wave travels through gas with speed of
sound o along line x = cot on plane x, t. To the piston 18 adjacent
the reglon of constant flow, where u = w, and ¢ = Cys where both
these regions of constant flow (I and ITI, according to terminology

used in the preceding sections) are divided by region of simple

_ _ 2 _ - 2
centered wave II, where J_ = u T -71¢= const = 7-T %o It
follows from this that ¢, = ¢y +-¥1ﬁ%—£- W, S0 that "tall" of wave

travels along line x = (w + ci) t = (1-5—1 w + co) t. Distribution

of veloclty over coordinate x in region II is described by solution

analogous to (1.56):

It 1s obtained that "taii" of wave

: S Y is propagated faster than "head":
A///; 1—%—3 w + Cq > co, and profiles of
1 * veloclty and density have form depicted
V4
_ > in Fig. 1.23,
2 A2
< This picture 1s physically

Flg. 1.23., Profiles of
velocity and density, meaningless; solution 1s not single-
corresponding to contin-
uous solution for self- valued in region IT., But the obtained
similar (centered) compres-
slonal wave, A — head of solution is the only continuous solution
wave, D — taill of wave,
Solution 1s not single- which follows from equations of gas
valued and i1s physically
meaningless, dynamics, Consequently, in this case

a continuous solution does not exist.
This difficulty historically was one of the starting points for
construction of discontinuous solutions of equations of gas dynamics,

i.e., for construction of theory of shock waves.




Let us note that if piston starts

2\ to be thrust into gas not with constant

velocity, but gradually, being accel-

.j,)
b)

) Z erated from state of rest, then there
C .

can be found continuous solution for

£
d) aj“:>'
- a simple (but no longer centered)

e)

compressional wave, which describes

E 9
Fig, 1.24, Gradual initial stage of motion. The situation
build-up of steepness
of profile of velocity in this case 1s fully analogous to that
in compressional wave
which propagates under which exist® in sound wave with ampli-
action of accelerated
piston. d) ~orresponds tude whicn is not small (see § 7).
to physically meaning-
less continuous solution Characteristics of C,-family (if piston
with "overlapping" of i
wave; e) shows actual 1s on the left of the gas) approach
profile with discontin-
uity after moment of each other and tend to intersect,

"overlapping."
steepness of profile of compressional

wave increases with flow of time (as shown in Fig. 1.24), and at a
certain moment there occurs "overlapping"; there appears non-single-
valuedness of solution analogous to that descrived in § 7 and in this
paragraph., In fact this means that there will be formed a discontin-

ulty — a shock wave,

2. Shock Waves

§ 13. Introduction of Concept of Shock Wave into Gas Dyaamics

Let us consider a gas at rest with constant density and pressure
Por Py bounded on the left by a plane piston and assume that at
initial moment the piston starts tec compress gas with constant veloc-
ity, which we will now designate by u.

As was shown in the preceding paragraph, an attempt to find

continuous solution for this problem leads to a physically meaningless

G1
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result, Inasmuch as problem is self-simlilar (does not contain any
characteristic scales of length and time), the only solutions
satlisfylng equations of gas dynamics are the trlvial solutlon, in
which all quantities u, p, p are constant, and a solutlon of the type
of a centered simple wave., Thus, there remalns only one posslbllity
to construct a solution satlsfying boundary conditions of the problem
in an unperturbed gas u = 0, p = Pos P = Pgs in region of gas adjacent
to piston, speed of gas 1s equa’ to speed of piston; thls 1s to dls-
card the physically meaningless rezlon II and to directly Jjoln reglons
of constant flow I and IXII, assuming that at point of Joining, gas-

dynamic quantities undergo a discontinulty, as shewn in Flg. 1.25.

po In general, laws of conservation
%"ﬁ u=l of mass, momentum and energy, which
[/ z
. are assumed cn the bacls of equations
>0 —, of dynamics of inviscid and non-
g« Bt r thermally-conducting gas, do not
Z
>0 = stipulate necessary continulty of gas-
u~) - dynamic quantities. These laws were
Fig. 1.25. Profiles formulated earlier in the form of
of density and veloc-
ity in shock wave. differential equatlons simply because
Wave appears under
action of piston, which from the very beginning there was
at initial moment starts
to be thrust into gas assumed continuity of flow., But these
with constant velocity.
On upper figure appears laws can be applied also tc regions in

the initial state.
which gas-dynamic quantities experience

a discontinuity. From the mathematical point of view, 1t 1s possible
to consider discontinulty as the limiting case of very large gradientus
of gas-dynamic quantities, when thickness of layer in which there

occurs finite change of these magnitudes tends to zero, Inasmuch as




in dynamics of inviscid and non-thermally-conducting gas, i.e., under
the condition that we disregard ~olecular structure of the substance,
there are no characteristic lengths, and possibilities of existence
of as many thin transition layers as desired are not limited. In
the 1limit they reduce to a discontinuity. These discontinuities
constitute shock waves.

Let us find the unknown quantities: density and pressure of
gas in compressed region Pqs Pys and also velocity of propagation of

shock through undisturbed substance D, by proceeding from general laws

¢f conservation of mass, momentum, and energy, whose validity we will ;
nct subdect to doubt. Parameters of undisturbed gas Pos Py and
velocity of piston u, which coincides with speed of gas, will be
considered to be known. By moment t, in a column with section of
1 cmz, the motion involves a mass of gas equal to pODt. This mass
occupies volume (D - u) t, i.e., density of compressed gas Py

satisfies the condition:
Ql(D—'u)‘BQoDl.
Mass pth acquires momentum pODt-u, which by Newton's law is

equal to the impulse of forces of pressure, The resultant force
acting on compressed gas is equal to difference between pressures
on the sicde of the piston and on the side of the undisturbed substance,

10e0’

Qo Dut ={py—po) .
Finally, the increase of sum of internal and kinetic energies

of compressed gas 18 equal to work of external force pushing the
piston plut: g
’ 3

o Dt (81—50 +%) = pjut, ‘

Cancelling out time t in these equalities, we will obtain a system of

three algebraic equations for determination of three unknown quantities :

3
ﬁ




Pys» P4» D In terms of known quantities u, py, P, (thermodynamic
relation ¢ (p, p), of course, is assumed to be known).

Let us transform these equations in such a way that in the right
sides of equalities there are only quantities pertaining to region
before the shock, and in the left sides, parameters of gas behind the
shock, For thls let us note that i1f D 1s speed of propagation of
shock through the motionless gas, then Uy = ~-D is the speed with
which undisturbed gas flows into the shock, and D - u 1s speed of
propagation of the shock relative to gas moving after it, 1i.e.,

u = - (D - u) is the speed with which gas flows out of the shock.
Introducing these designations into the equations, we will write law

of conservation of mass:

QsUs = Qollo. (1.61)
Law of conservation of momentum with help of (1.61) acquires the form

P.t+Qt“:=Po+Qou':~ (1.62)

Law of conservation of energy with help of equations (1.61) and
(1.62) will be transformed to the form

Bt 244, (1.63)

By introducing specific enthalpy w = € + p/p, we can rewrite it
differently:
"”“"!i!"‘""*‘!ii‘ (1.64)

The obtained equations constitute relatic:iships between gas-
dynamic quantities on surface of the discontinuity, into which gas
flows in the direction normal to the actual surface, written in the
most general form.

It 1s noteworthy that they do not contain any assumptions about
properties of substance and are expressions only of general laws of

conservation of mass, momentum, and energy.

G4




Equations (1.61) — (1.63) can be derived directly, by considering

the shock in the system of coordinates in which it 1s at rest.

1 | Inasmuch as the shock is infinltely thin, inside it there does not
occur accumulation of mass, momentum, and energy. Consequently,
fluxes of these quantities on the side of the undisturbed gas are
;' equal to fluxes on the other side of the shock, If into the shock,

normal to the surface, there flows gas with density Po and speed

% Ugs then flux of mass 1s pyugs 1t is equal to the mass flowing out

%I through 1 cm® in 1 sec on the other side of the shock, 1.e., p,u,.

?_ Thus, we obtain equation (1.61). Mass Polg flowing through 1 cm2 in
g'i 1 sec has momentum Pl Uo- Increase of momentum during transitlon
4

through the shock piui - poug is equal to impulse of forges of

i

pr ssure for 1 sec Py - Py OT, which is the same, fluxes of momentum
. p + pu2 on both sides of the shock are equal to each other (the fact

that quantity p + pu2 is momentum flux density during plane motion is

[k X E i i

4 clear from formulas (1.7), (1.8)). Thus there is ohtained equation
(1.62),

Increase of total (internal and kinetic) energy of gas flowing

in 41 sec through 1 cm2 of surface of shock Qouo[<81+'—‘2}-)—(go+%3)], is
3 equal to work of forces of pressure accomplished in 1 sec from
calculation on 1 cm2 of surface. This work is equal to Poly = P4Uy-
In order to explain the origin of this last quantity, we will imagine
a plpe through which gas flows from the right to the left through

the shock, which is somewhere in between (Fig. 1.26). On the right

and on the left in the pipe there are placed pistons, which move

b om ) ail% g

with speeds Uq and Uy in such a way that surface of discontinuity is

at rest., Right piston, to which there 1s applied pressure Pg? drives

the gas through the pipe, accomplishing work Polo in 1 sec on 1 cme.

5o
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On the left piston gas accomplishes work

Gbr | labs p,u, (piston "accomplishes" on the gas

negative work - piui). Thus, the total
Fig. 1.26. Experiment
explaining derivation work accomplished on the gas is equal
of expression for work,

to PgUg = PqUy- Equating 1t to the

increase of energy of gas, we will obtain equation (1.63). It is
possible to interpret it differently: total fluxes of energy on

2
follows from energy equation written in form (1.10), are equal to

2
both sides of the shock pu (e + 2 +-§L), the expression for which

each other,

Formally relationships (1.61) — (1.63), which indicate equality
of fluxes of mass, momentum, and energy through surface of the dis-
continuity, can also be obtained from differential equations (1.2),
(1.7), (1.10), which are an expression of the same laws. Let us
write these equations for the plane case:

X 5 (o),

2 ()= — 5 (Pt ), (1.65)
22 [e(54D)]

We will at first formally consider the shock as some thin layer
with large gradients of all qurntities and will integrate equations

over this layer from X to X, For instance,

x3

\%Q")dz-—-—g.,—i—(pwu')dx.
 xe ze

Now we will carry out passage to the limit, letting thickness of layer
Xy = Xg approach zero. Integrals in left sides, which are proportional
to Xy = X~ 0, vanish (which corresponds to absence of accumulation

of mass, momentum, and energy in the shock). Integrals in right

sldes give difference of fluxes of corresponding quantities on both

G6
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sides of the shock, 1.e., we arrive at equations (1.61) — (1.63).

It 1s necessary to stress the formal character of the last
derivation of relationships on the shock wave (1.61) — (1.63)., It
indicates only that expressions for fluxes of mass, momentum, and
energy standing under divergence signs in differential equations are
absolutely general, independently of whether the flow is continuous
or not, If we consider the shock no: as a mathematical surface, but
as a thin layer of finite thickness, where gas-dynamic quantities
change very sharply, but continuously, then it is impossible to apply
to this layer equations (1.65), in which there are not considered
viscosity and thermal conduction. Below we will see that entropies
of gas on both sides of the shock are different, while in differential
equations (1.65) there is imposed the condition of constancy of
entropy (adiabatic character of motion). Let us note the external
similarity of the energy relationship on the shock wave (1.64) with
Bernoulli integral for steady flow

w+§=mmn

which is valid along the flow line,
§ 14, Shock Adiabat

Equations (1.61) — (1.63), which relate parameters of gas on
both sldes of the shock, constltute a system of three algebraic
equations in six quantities: uy, Pgys Pgys U5 Pys Py (thermodynamic
properties of suﬁstance, i.e., functions ¢ (p, p) or w (p, p) are
assumed to be known)., Knowing thermodynamic parameters of gas before
the shock po, Ty and taking one of the quantities which characterize
amplitude of shock wave, for instance, pressure after the front of
the wave p, or speed of "piston" creating the wave |u| = uy - U, 1t

is possible to calculate all remaining unknown quantities, Let us

-
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write out certain general relationships which follow from laws of
conservation (1.61) — (1,63). Let us introduce in place of densities

specific volumes V, = 1/po, v, = 1/p1. From equation (1.61) we will

obtaliln
VQ ==Ilo

Vi et

(1.66)
By eliminating from first two equations (1.61) — (1.62) at first one,
and then the other velocity, we will find

=V:;::§': (1.67)
u=V =, (1.68)

If shock wave 1s created 1n gas at rest by motion of piston, for
the velocity of compressed gas relative to undisturbed gas, which 1is

equal to velocity of the "piston", we will obtain formula

] == thg — g =V (py— po) (Vo — V). (1.69)
We will note a useful formula for difference of kinetlc energles

of gas on both sides of the shock In system of coordinates in which

shock 1s at rest:

1 o
7 =8 =5 (i~ po) (Vo + V). (1.70)
By substituting expressions for squares of velocities (1.67), (1.68)

in energy equation (1.63), we will obtain relationship relating

pressure and speclfic volume on both sides of the shock:

&4 (PiV1) — &0 (Vo) =3 (P1 + Po) (Vo= V). (1.71)

Replacing specific Internal energles by specifilc enthalpiles

according to the formula w = € + pV, we will rewrite this formula

in different form:

W—Wo= (ps— Po) (Vo + V). (1.72)

G8
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By analogy with the relationship relating initial and final pressures
and volumes during adlabatic compression of a substance, expressions
(1.71) or (4.72) have the name shock adiabat or Hugoniot adiabat.

Shock adlabat is represented by function

Pu=B T B Vol (1.73)
which in a number of specific cases, when thermodynamic relatlons
€ = € (p, V) are expressed by simple formulas, may be found in explicit
form,

Shock adlabat has an essentlal difference from the usual adlabat
(Poisson adiabat in ideal gas with constant heat capacity). Whereas
the latter is a one-parameter family of curves p = P (V, S), where
as the parameter there serves only the value of entropy S, Hugoniot
adiabat depends on two parameters: pressure and volume in initial
state pOVO. In order to eshaust all curves p = P (V, 8), it 1is
sufficient to go through a one-dlmensional series of values of entropy
S. In order to exhaust all curves p = H (V, pOVO), it 1s necessary
to construct an "infinity squared" of curves corresponding to all
possible Py and Vo.

§ 15. Shock Waves in Ideal Gas wlth Constant Heat Capacity

Especially simple form is acquired by formulas for shock wave
in case of an ideal gas with constant heat capacity., In thls example
it is conveneient to clarify all basic laws of change of quantitiles
in a shock wave, Let us substitute in equations of shock adlabat

(1.71) or (1.72) the relationships

i
3=WT=F;PV; W=c,,T=;_—I—‘- V. (1.74)
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This gives us the possibility to find in explicit form the equation
of shock adiabet:
Py YA ) Ve—(y—1)V
P (v+j;‘t) V"._J—(v—‘“‘n A (1.75)
For ratio of volumes we will obtain formula:
?g(—”ﬂ+(+”h

o. GHDPt+G—Dp” (1.76)

Ratio of temperatures 1s equal to
Dt (1.77)

o Po¥s’

With help of (1.76), ve.ocities by the formulas (1.67) and (1.68),

can be represented in terms of pressures and initial volume:

ud =22 [y~ 1) po+ (v + 1) pil, (1.78)
Vo lly+1) Po-+(¥—1) pil?
= =D At GF DAl " (1.79)

We will clarify in the example of an ideal gas with constant
heat capacity certaln principles for shock waves. Shock adiabat is
a curve on the p, V-plane which passes through point of initlal state
Pg» VO.
P . This curve i1s depicted in Fig.
1.27. In principle, formula (1.75) can
also be catended to pressures lower than
initial Py < Py As we will see below
in § 17, this part of curve corresponds

to physically unrealizable states,

T L LR TR o i
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Therefore, 1t is drawn in Fig. 1.27 in
Fig., 1.27. Shock the form of a dotted line, From
adiabat.

formula (1.76), it is clear that in
case of shock wave of very high amplitude, when pressure after front
i1s much larger than initial pressure, density of gas during increase

cf amplitude 1s increased not without limit, but tends to a definite
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value. This limiting compression in shock wave depends only on

adiabatic index and is equal to

& _Yo_yi! (1.80)

For a monatomic gas with vy = 5/3, limiting compression is equal
to 4, For a diatomic gas, on the assumption that vibrations are not !
excited, vy = 7/5, and limiting compression is equal to 6; if it is
considered that vibrations are excited, vy = 9/7 and comprescion |
equals 8. In reality, at high pressures and temperatures, heat ‘
capacity and adiabatic index in gases no longer are constants, since
in the gas there occur dissociation of molecules and lonization of
atoms, Shock adiabat, with consideration of these processes, will be
considered in Chapter III. However, even in this case magnitude of
compression always remeins bounded and does not exceed 11-13, Com-
pression of gas in shock wave at given large pressure ratio 1s stronger,
the higher the heest capacity and the smaller the adiabatic index are.

Inasmuch as at high pressures Pys density increases very slowly
with increase of pressure, temperature of compressed gas increases
proportionally to pressure (see formula (1.77) for v, = const). In
the limit of a strong wave, when pl/pO >> 1 and Vi/VO ~ (v - 1)/(y + 1)

p=lnh. (1.81)

Velocities in the 1limit as pi/po-ﬂ-m increase proportionally to
the square root of pressure, As can be seen from formulas (1,67) and
(1.68), at p, >> pys

T ‘/bfi—’:”' =V e - (1.82)
Very important results can be obtained by comparing velocities of gas
on both sides of shock with corresponding speeds of sound. In ideal

gas with constant heat capacity,
d
(), =vEmwr
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We will form ratlos of velocities of gas relative to the shock to

speeds of sound:
- L}
/v n=(v i)+(v+1)p.
e 2y : (1.83)
(,'_a_)‘,___ (r—9)+(y+1) 2o
= .

(1.8%)

In the limiting case of a shock wave of small amplitude, when
pressures on both sldes of shock are close to one another, Py = Pgs
(py - Py)/Py << 1, according to the formula (1.76), compression of
gas 1s also small: V1 ~ Vo; speeds of sound are also close to one
another ¢, ~ c¢y. From formulas (1.83) and (1.84), it is clear that
in thls case Ug ™ Co ™ Cy = Uy But U 1s velocity of propagation
of shock through undisturbed gas., Thus, weak shock wave travels
through g&as with speed very close to speed of sound, i.e.,, practically
does not differ from an acoustic compressional wave. This 1s not
surprising, since for a snall difference of Py from Pgs We are
dealing with a small perturbation.

Further, from formulas (1.83) and (1.84), it 1s clear that in a
shock wave in which there occurs compression of gas (V1 < VO, Py > po),
gas flows into shock with supersonic velocity U, > Cys and flows out
of it with subsonic velocity u, < ¢4 {the fact that V, < Vgs Py > Pg
at p, > py follows from general formulas (1.67), (1.68)). It ic
possible to say this differently: a shock wave propagates through
undisturbed gas with supersonic veloclty, and through compressed gas
located behind it, it propagates wlith subsonic velocity. The greater
the amplitude of a shock wave, 1.e,, the greater the ratio pi/po, the
higher the speed of the wave front Uq 1s as compared to speed of
sound in undlsturbed gas c,. Ratio ui/c1 in 1imit of a strong wave
p, > P, tends to & constant ule,— Vi =12y < 1.
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We will consider what occurs with entropy of gas during com-
pression of 1t by a shock wave., Entropy of ideal gas with constant
heat capacity with accuracy up to the constant is equal to S =
= Gy i pVW. Difference between entropies on each side of shock wave

front wilth help of formula (1.76) can be represented in the form

’PI

St—Soﬂc‘/lnM =Cv.ln —[

=024+ |
Pe
41 % +(y—-1)

( ]

pe¥l |Po (1.85)

In 1limiting case of a weak wave (p1 ~ po), expression 1n braces
1s close to unity, and S1 ~ SO‘ During growth of amplitude of the
wave, 1l.e,, with increase of ratio pi/po, starting from unity,
expression in braces, as 1t 1s easy to verify, monotonically increases,
approaching infinlty as pi/pO — ©, Thus, entropy of gas experiencing
shock compression increases — more strongly the higher the amplitude
of the shock wave, Growth of entropy indicates that in shock wave
there ocecur 1lrreversible, dlsslpative processes, which are connected
wilth existence of viscosity and thermal conduction of the substance,

A theory in which these processes are not considered naturally cannot
describe the actual mechanism of shock compression; 1t cannot deseribe
the structure of that thin, but in reality finlte layer, in which
there occurs transition of gas from initial state to final state.
Therefore, in the theory in which viscosity and thermal conduction
are not teken Into account, a shock 1s a mathematical surface wilth
zero thickness. As was noted above, 1n such a theory there 1is no
characteristlic length which could serve as a scale for thickness of
the shock. With consideration of molecular structure of the gas,
i.e., processes of viscosity and thermal conduction, such a scale
appears, This 1s the mean free path of molecules, to which coeffi-

clents of viscosity and thermal conduction are proportional, and
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which, in reality, serves as a measure of the actual wldth of the
shock,

It is most significant, however that the actual magnitude of
increase of entropy during shock compression absolutely does not
depend on mechanism of dissipation, but is determined exclusively by
laws of conservation of mass, momentum, and energy. On the mechanlsm
of dissipation depends only width of the shock, i.e., the rate with
which irreversible heating of the gas experlencing shock compression
occurs. Thus, a glass of hot water must cool to a fully definite
room temperature, absolutely lndependently of the mechanism of heat
exchange with 1ts enviromnment, which determines only rate of cooling.

On the mechanism of dissipation there depend values of gradients
of gas-dynamic quantlties in the transition layer, but not the Jjumps
of these quantlties between final and initial states, which are de-
termined only by laws of conservation. For instance, if Ap = P, = Py
is the pressure Jump in a shock wave, and Ax 1s width of transition
layer, then during change of coefficients of viscosity and thermal
conduction Ax and dp/dx ~ Ap/Ax change, but product Ax %ﬁ— ~ Ap
remains constant. In the limit as coefficlents of viscosity and
thermal conductivity tend to zero, Ax — 0, and dp/dx ~-E%—--m,
gradients become infinite, whilch corresponds to a shock wave,

Differential equations of gas dynamics, without taking into
account viscosity and thermal conduction, only admit the possibility
of exlistence of shocks, but cannot describe contiuously the transition
from initial to final state, since in equations there automatically
is imposed the condition of adiabaticity of the process, dS/dt = 0,
which 1s equivalent to the equation of energy. Differential equations

contain four conservation laws: of mass, momentum, energy, and
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entropy, while in a shock wave there are satisfied only i. ee of
them: all besides the law of conservation of entropy.

To the problem of thickness of front of shock wave, which can be
solved only with conasideration of the molecular structure of the
substance, i.e., with "microscopic" consideration of process of shock
compression, we will return below, in § 23. Now we will continue a
"macroscopic" description cf phenomenon of shock compression using

only the laws of conservation of mass, momentum, and energy.

§ 16. Geometric Interpretation of Characteristics
of Shock Compression

For best understanding of different features of the theorv of a
shock wave and properties of the shock adiabat, the graphic construc-
tions in the p, V diagram are very useful, Let us draw on plane of
p, V through point A of the initial state of the substance oo VO
a shock adiabat HH (Fig. 1.28). We will consider that character of
this curve is analogous to shock adiabat of ideal gas with constant
heat capacity, i.e., that the curve everywhere is convex downwards:
second derivative dgp/dV2 at every point is positive. For the
purpose of clarity we will illustrate certain ideas by concrete
calculations in the example of an ideal gas with constant heat
capacity; however, it is possible to show that these ideas are
general and are valid for substances with different thermodynamic
properties, The only condition which is imposed on these properties
is the condition that shock adiabat at all points be convex downwards,
Let us assume that the substance after shock compression passes into
state B (p,, V,) from state A (pg, Vo).  B(pys Vi) is depicted by

point B lying on shock adiabat.

7O
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By formula (1.67), the velocity of propagation of shock wave

through undisturbed substance 1s glven by 9xpression
D =ui=Vy Ppe
Graphically this ve19city is determined by slope of straight line
AB, which is drawn from initial 3itate to final state ((p1 - po)/ (Vo -
-Vi) is equal to tangent of angle of slope of the straight line).
From Fig. 1.28 it 1s clear that the higher the final pressure 1s
(the stronger the shock wave is), the greater the slope of the straight
line and the higher the veloclty of the wave are. (For illustration,

in Fig. 1.28 there are drawn two straight lines, AB and AC).

Let us see what determines initial slope of shock adiabat at
point A. Let us calculate derivative dp,/dV, with help of formula

(1.75) for an ideal gas with constant heat capacity:

dp (=02 ply N Ve—(y—=1) Vil (y+1)
W, T G FN—G—0V, @DV —G—DVaf

Taking derivative at point A, 1i.e.,

setting V, = VO’ we will obtain

1
(dp,/dV, )y = - Ypo/Vy- But this
quantity 1s nothing else but slope of
Poisson adiabat p ~ V ! passing through

point A: (Bp/BV)S = - yp/V. Thus, at

point A the shock adiabat touches

F . 1.28. - | .
H;% Hugoniotp;dYagzz%rg%\ Poisson adiabat which passes through
Poisson adiabat; KK)

Tangent to both adiabats

+ )
:“($Oin§ ?f LAl Sidiol corresponds to initial entropy of gas
0’ *o0’°

this point. Usual adiabat P, which

sl s (pOVO), also is drawn in Fig.

0
1.28, Contact of adiabats at initial point is illustrated also by
ger-eral formula (1.67) for velocity of shock wave, In the limit of

a weak wave, when (p1 - po)/po- 0, shock wave does not differ from
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e sound wave, change of entropy tends to zero, and velocity of wave

coincides with speed of sound:

D’—V:;f::;o* -V AP) — ¢l

In general, slope of straight line AB is always greater than slope

of tangent to adiabat at point A, so that we always have D =‘uO > o
Initial slope of shock adiabat is determined by speed of sound

in initial state. This will be strictly proven for general case of

an arbitrary substance in § 18, By direct calculation by the formulas

for an ideal gas with constant heat capacity, we can make certain

that at point A there coincide not only the first, but also the
é i second derivatives of Hugoniot and Poisson adiabats, i1.e., at point
v A there occurs contact of the second order. This statement also is
general (see § 18).

Hugoniot acdlabat everywhere passes above the usual adliabat
drawn from the initial point, as shown in Fig. 1.28. During shock
compression from volume VO to volume V1 < VO’ entropy is increased,

and during adiabatic compression it remains constant. But, for

R TRi o aday

identical volume, pressure is higher, the greater the entropy.

4 rY Increat: of specific internal
8 c
; energy during shock compression from
o p .
3 \ F state A to state B, e, - g,, as can be
: ) .
5 A seen from expression (1.71) for the
1 2N\
; 4 shock adiabat, is numerically equal to
: = y
3 - n° v area of trapezoid MABN, which 1s covered

Fig. 1.29. Geometric
interpretation of in-
crease of energy in

shock wave, H) shock If gas is compressed adiabatically

3 adiabat; P) Poisson
3 adisbat. from state A to the very same volume V1

in Fig. 1.29 by horizontal shading.

(to stage Q), then for this it is

7




necessary to accomplish work which 1s numerically equal to area of
figure MAQN, which is bounded above by usual adiabat P and shaded
vertically. This area gives increase of internal energy of gas

& —g = —‘i‘pdv (integration is conducted at S = S;). In order to
bring gas'%o final state B, 1t 1s necessary to heat it further at
constant volume Vi’ thereby giving to it a quantity of heat numerically
equal to difference between the areas shaded horizontally and verti-
cally, i.e., equal to the area of figure ABQ. This area determines
increase of entropy of gas during shock compression, It 1s equal to
gy — ¢ =s T dS = T (S;—S), where T is a certain average temperature on
segment of straight line GB (at V = V, = const).

In system of coordinates in which initial gas is at rest, after
compression it obtains kinetic energy (per gram) equal, according to
g neral formula (1.69),to .

=ttt L o p) (V- V).
This energy is numerically equal to area of trlangle ABC in Fig. 1.29,
which ~ompletes trapezoid MABN, whose area corresponds to €4 = Eqo
to form rectangle MCBN,

Area of this rectangle Py (VO - Vi) is total energy given by
"piston" to 1 gram of gas initially at rest, In a strong shock wave,
when Py >> Pgs it is equally divided between increases of internal
and kinetic energy: area MABN =~ area ABC:

R X AR )

We will analyze on p, V-dlagram the relationship between veloc-
ities of gas and sound in final state (Fig. 1.30). We will draw
through point B on adiabat HA, which corresponds to initial state A,
a new adiabat HB’ for which point B is initial, From the symmetry

of equation of adiabat relative to "O" and "1", it follows that if
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Py =H (Vi’ | Vo), then p, = H (Vo, Pys Vi)’ In other words,
adlabat HB, if formally continued in the direction of pressures
smaller than initial, intersects adisbat HA at point A. The relative
location of adiabats HA and HB is Just as shown in Fig. 1,30, which
can be easily checked in the example of an ideal gas with constant
heat capacity.* Velocity of propagation of wave relative to compressed
gas 1s determined by formula (1,68)
u=V s
Square of speed of sound in compressed gas at point B 1s equal to
a=-N (g_VP 8
First quantity is proportional to
tangent of angle of inclination of
straight line BA, and the second
quantity is proporticnal to tangent

of angle of inclination of tangent line

of shock adiabat Hy at point B (shock

/ adiabat HB and Poisson adiabat which
Fig. 1.30, p, V-diagram
clarifying relationship passes through B are tangent to one
between velocities of gas
and sound in shock wave, another), Relative location of straight

line BA and adiabat HB corresponds to
the case in which uy < ci.
At the end of § 12 it was noted that, in distinction from

: Polsson adiabat, Hugoniot adiabat depends on iwo parameters., Because
3 *The fact that adiabat HB passes to the left of HA at pressures
higher than Py can be explained in the following way: If point B

corresponds to compression of gas from state A by a very strong shock

wave, then adiabat HA at p > Py goes almost vertically, corresponding

to limiting compression to & volume equal to [y - 1)/(y + 1)] Vao

E* At the same time, by passing a second shock wave through the gas from
3 state B, we can compress it to the volume

ly—1Vly+ 91 Vam[(y—tiy+ )PV,

AT
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of this, it is impossible by means of compression of gas by several
shock waves, proceeding from given initial state, to arrive at the
very same final state as by means of compression by one wave,

Thus, for instance, if we pass a strong shock wave through a
monatomic gas, the gas will be compressed by four times, but if we
pass two strong waves through, one after the other, leaving final
pressure unchanged, we will obtailn compressicn by 16 times,

At the same time, by breaking up the adiabatic process into as
many stages as desired, we willl arrive at the same density, if final
pressure is given,

This situation 1is illustrated by p, V-diagram of Fig. 1.31,
where there are depicted Polsson adiabat and several Hugoniot adiabats,

which correspond to compression of gas by successive shock waves,

§ 17. Impossibility of Existence of
Rarefaction Shock Wave in Substance

hr with Normal Properties

In § 13 there were written

formulas for calculation of d4if-

Pe ; ferent quantities connected with a
v

_ Z shock wave for the case of an ideal
Fig. 1.31. Concerning the
question of single and gas with constant heat capacity.
multiple shock and adiabatic
compressions of gas to iden- From these formulas 1t directly
tical pressure p,. H,, Hy,
HC are shock adiabats for followed that in a shock wave in
which points A, B, C are which there occurs compression of
initial, P 1s Poisson
adiebat, substance, there are satisfied the

following inequalities:
PL>Pn 1>0n Vi<V, 4 >co, (1.86)

Uy < ¢y S¢> 8.
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Simultaneously wlth compression of substince and increase of

1ts pressure, entropy lncreases; wave propagates through undisturbed

gas with supersonic speed, but through compressed gas behind it with

subsonic speed. Thls set of conditions is schematically depicted in
Fig. 1.32a. We will now extend exprecsions (1.75) for shock adiabat
to pressures lower than initlal, and assume that there exist shocks
in which there occurs not compression, but rarefaction of the gas:

V1 > VO’ Py < Pge Laws of conservation of mass, momentum, and energy,

with the help of which there were obtained formulas relating velocity, %

density, and pressure on both sider of'the shock, in no way limit the

possibllity of exlstence of such shocks. From formulas (1.83) — (1.84)

1t 1s clear that in this case uy < eys & Uy >c,. Formula (1.85) for

Jump of entropy in the shock indicates that entropy of gas thus

decreases (expression in braces is less than unity at p, < po).

218S
) u<e, , U> e,
PepsSs
_PoPeSs
b) Uy>¢,
e Uy<Cy

Fig. 1.32. Schematic
representations of
compressive shock waves
(2) and rarefaction
shock waves (b). Gas
flows Into shock from
the right to the left,

one presented in § 16, is

We arrive, thus, to the reglime of
a rarefaction shock wave, in which there
simultaneously are satlsfied the follow-
ing inequalities:
Pi<pPn <Qn Vi>Vo u<ep ui>e,

S1< Sa, (1.87)
and which schematically 1s depicted in
Fig. 1.32b.

Geometric interpretation of these
inequalities, which 1is similar to the

represented in Fig. 1.33, Slope of straight

line AB 1s less than slope of tangent to shock adlabat HA at point of

initial state A (u, < co)

and greater than slope of tangent to second

shock adlabat HB, which 1s drawn through point of final state

. a
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B (uy >c,).

Polsson adlabat P, which passes through point A in the region
Py < Poe drifts higher than shock adliabat H,. This explains decrease
of entropy during shock rarefaction. Durlng adiabatic rarefaction
to the same volume Vi’ pressure p! 1s higher than final Py In order
to come from Q to B, 1t is necessary to cool gas at constant volume,
i1.e., to decrease 1lts entropy.

But, by the second law of thermodynamics, entropy of a substance
cannot decrease due to only internal processes, without heat removal
to the outslide. From this fellows the impossibllity of propagation
of a rarefaction wave in the form of a shock and of the two conditlons
whose existence 1s allowed by the laws of conservation of mass,
momentum, and energy, the requirement of growth of entropy selects
only one — the compressive shock wave., This statement has an
absolutely general character and 1s known under the name of Cemplen
theorem., In the followlng section 1t will be shown that in waves of
weak intensity, under the condition of positivity of second derivative
(ng/BV2)8> 0, the sets of inequalities (1.86) or (1.f7) are satisfied
simultaneously, absolutely Iindependently of specific thermodynamic
properties of the substance., Thls theorem can also be proven for
waves which are not of small amplitude and for an arpitrary substance,.
The only condition which 1s imposed on propertlies of substance 1s the
conditlion that shock adlabat at all points 1s convex downwards:
(aep/aVQ)H > 0, Just as thils occurs for an ideal gas with constant
heat capacity. Overwhelming majority of real substances possess
namely such properties, so that the statement about impossibility of
existence of rarefactlon shock waves has a very general character

(pelow we will discuss certain exceptions).
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Fig. 1.33. Concerning
geometric interpretation
of inequallties in a
"rarefaction shock wave."
HA is shock adiabat; P is

Polsson adiabat passing
through point A of initial
state; HB i1s shock adiabat

drawn from point of final
state B.

Impossibility of existence of
rarefaction shock wave can be explained
in the followlng way: Such a wave
would propagate through undisturbed
gas with subsonic speed u, < cb. This
means that 1f at some moment of time
there appeared a state similar to the
one depicted in Fig. 1.32b, then the
perturbation from jump of dgnsity and
pressure would travel to the right with
speed of sound Cos outstripping the
"shock wave"; after a certain time, the

rarefaction would involve the gas before

the "shock" and the shock would simply be diffused. In other words,

the rarefaction shock wave 1s mechanically unstable, Conversely,

compressive shock wave propagates through undisturbed gas with super-

sonlc speed Us > o3 state behind this wave front in no way can

influence state of gas before wave, and the shock remains stable,

Relative to the compressed gas, compressive shock wave propagates

with subsonlic speed Uy < Cy3 therefore, gas-dynamic conditions behind

shock front affects amplitude of wave.

If, let us say, we heat or compress gas behind the shock front,

then the shock wave will be strengthened; and conversely, if behind

the shock front there occurs cooling or rafefaction of the gas, then

perturbations carrying the rarefaction overtake the shock wave and

weaken 1t.

In a rarefaction shock wave, the situation would be the opposite:

inasmuch as it would propagate through rarefied gas with supersonic
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speed, it would not be subject to the influence of any processes
occurring behind it — it would be "uncontrolled."

It is very significant that the condition of mechanical
stability of a shock wave coincides with the thermodynamic condition
of Increase of entropy. Mechanical stability can exist only 1f wave
propagates through undisturbed substance with supersonic speed;
otherwise, perturbation caused by the shock wave would penetrate into
the initial gas with speed of sound, and would outstrip the shock
wave, thereby diffusing the sharp front of the wave, At the same
time, with the condition of increase of entropy there coincides a
condition which allows us to imagine the causal relationship of
phenomena, Namely, during increase of entropy, compressive shock
wave propagates through the gas which has undergone transformaticn
with subsonic speed, i.e., external factors such, for instance, as
the piston thrust in‘o the gas, can cause appearance of shock wave
and subsequently influence its propagation.

Thus, in a substance with normal thermodynamic properties, when
(ng/avg)s > 0, compressive shock waves, which correspond tc increase
of entropy, turn out to be mechanically stable and subject to the
influence of external factors, Appearance of rarefaction shock wave
is impossible from thermodynamic point of view, as well as from the
point of view of stablility: a once appearing steep rarefaction front
would diffuse with flow of time,

Let us give 1. the conclusion of this section a table illustrating

possibility of realization of different regimes:
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Compressional wave Rarefaction wave

Shock Possible; entropy Impossible; entropy
increases; mechan- decreases; mechan-
ical stability; ical instability

Smooth dis-[mpossible; unlimitedPossible; cistribu-
tribution | build-up of steep- tions become with

ness of front, flow of time
which becomes smoother and
"overlapping" smoother

§ 18. Shock Waves of Weak Intensity

Let us consider a shock wave of weak intensity, in which Jumps
of all gas-dynamic parameters can be considered as small quantities,
We will not for now make any assumptions about thermodynamic properties
of the substance; we start only with laws of conservation,

Considering internal energy as a function of entropy and specific
volume, we will write increment of energy in shock wave in the form

of an expanslon in small increments of independent variables near
point of initial state:
a=t=( 5 )y S1=50+ (3 ) Vi=Va+ 5 (5 Jg Ve~ Vol +
+5 (@) v
All derivatives in this expansion are taken at point of initial
state VOSO. As we now will see, increment of entropy in wave S, - S

1
is a quantity of third order of smallness, if we consider Jncrement

0

V1 - V., as a small quantity of first order. Therefore, 1f we are
limited to expansion of internal energy up to quantities of third
order, we can omit terms which are proportional to (S1 - SO) (V1 - VO),

(S1 - SO)E, etc, According to thermodynamic iZentity de = T dS - p 4V,

@)=t (=
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Therefore,
8y —8q= To(Sy—So) — po (Vi — Vo)-
(g;) (Vi—Vo)' - ay.) (Vi—Vo)

We will substitute this expression in equation of Hugonlct
adiabat (1.71) and expand in its right side pressure p,. Inasmuch
as left side of equality can be expande¢d up to quantitlies of third
order, in expansion of pressure it 1s sufficient to be limited to
terms of the second order witl. respect to difference V1 - Vo, and to
omit the term containing increment of entropy, since it willl give in
the right side a term proportional to (S, - SO) (V4 = Vg), which is

a quantity of higher order of smallness than (V1 - Vo

P=p+(57), Vi=Vo+3 (55 ), V1= Vo
After cancelling out 1n equation of Hugoniot adiabat with the
substituted expansions, we will obtaln the relation of increment of

entropy to increment volume:
T‘(Sl—SQ)"z( ) (V.-V!) (1'88)
If we start with equation of Hugoniot adiabat written in form

(1.72), where in place of internal energy there stands enthalpy, we

will obtaln in an analogous way

To(Si—So) = (355 ) (Pr— P (1.89)

It is easy to verify the identity of both formulas by substituting

2xpansion (p1 - po) - (ap/aV)s (v1 -V
noticing that

351535~ b5 Caow ) =0 (sion ) soon = — (30 )" (&

Formula: (1.88) and (1.89) show that increment of entropy in

o) into formula (1.83) and

shock wave of weak intensity is a quantity of third order of esmallness
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witﬁ respect to increments P, = Pg Or Vo - Vi’ which characterize
emplitude of wave,

From formulas (1.88) and (1.89) it is clear that sign of
increment of entropy in shock wave 1s determined by signs of second
derivatives (Bep/bve)s or (BQV/BpQ)S. If adiabatic compressibility
of substance - (BV/Bp)S decreases with 1acrease of pressure, i,e,,
(2%/3p®) > 0 and (3%/3V°) 4 > 0, the usual adisbat on plane of p,
V 15 depicted by a curve which 1s convex downwards (as in an ideal
gas with constant heat capacity). In this case entropy increases
(S1 > So) in compressive shock wave, when p1 > Pgs Vi < Vo, and
decreases in rarefaction shock wave, If, however, (bev/bpe)s < 0,
(bep/bve)s < 0, the situation is reversed: entropy increases in the
rarefaction shock wave, when 17 < Pg» V1 > Vo, and decreases in the
compressive shock wave. Inasmuch as for the overwhelming majority of
real substances (BQV/Bpa)S > 0, then from condition of impossibility
of decrease of entropy there follows the impossibility of existence of
rarefaction shock waves, This theorem has already been formulated
above and demonstrated in the concrete example of an ideal gas with
constant heat capacity.

Let us write the expansion of pressure p = p (S, V) near initial
point SO,IVO up- to terms of third order with respect to V1 - V. and

0

of first order with respect to S1 - S.¢

0]
& :
== (35) V1=V +3 (Fh )y Vs=Var + |
(BB, =+ (%), i 50
We will describe by this expansion initial sections of the shock

adiabat and usual adiabat which are drawn through point SO’ Vo.
Terms of first and second orders of smallness with respect to Vi - Vo

for both adiabats coincide, i.e.,. shock and usual adiabate have at




initial point common tangents and common centers of curvature (there
exists contact of the second order)., Terms of third order of suallness

differ for the adiabats, Third term in the vright side of the expansion

for both adiabats is common., The last term — the fourth — for usual

adisbat vanishes, since S, - S, = 0 (S = const), and for the shock
adiabat, according to (1.88), it is equal to

(g% v(S:-—;.)* _“ﬁ%‘(%)v (g—;%)s (Vi— Vo) |

For all normal substances, pressure with increase of entropy at
constant volume (during heating at constant volume) is increased,
i.e., (Bp/as)v > 0; (sz/ave)s also 1s positive., Consequently, for
V1 > VO’ the last term i1s negative, and for V1 < Vo it 1s positive:
for V1 > Vo the shock adiabat passes below the usual one, and for
v, <V, it passes above the usual one. Thus, at the initial point
fer both adiabats there occurs contact of the second order with
intersection,

Relative location of shock adiabat H and usual adiabat P is
shown in Fig. 1.34. For clarity let us note that segment CD is a
quantity of first order of smalilness with respect to VU - Vi, DE 1s
of second order, and EF 1s of third order.

Let us return to geometric interpretation of increase of entropy
in shock wave (Fig. 1.35). As was shown in § 16, quantity T AS is
depicted by area of figure AFBCEA., Let us break it by a straight
line AC into two parts: segment ACEA and triangle ABC, Area of
triangle ABC is equal to half of product of base BC and height
VO - Vi. Line segment BC during small changes of all quantities, 1i,e.,
in a wave of weak intensity, 1s equal to (—%%—)v AS, 1.e., to

TAS- gefu'*’. "f (g)y.(vr- Vi AS,
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where Fsegm is area of segment ACEA, Hence

ASm 0D G = L (%) (v, V).

T—a

For small changes of volume a = 0 and T AS — Fsegm’ i.e., correction

for area of triangle is small. And, indeed, 1t 1s of higher order

of smallness than area of the segment, which has order of T AS.

Forming expression for area of segment

r v. ‘
TAS =BEE v, v) - | (pdV)ses,
Vi C

and substituting expansions for weak waves, we will arrive, as we

should have expected, at formula (1.88).

¥ov.
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Fig. 1.34, Relative location Fig. 1.35. Geometric
of shock H and usual P adlabats. Interpretation of incre-
LK is tangent to =sdiabats at ment, of entropy in shock
point of initial state A, 7Jn wave,

shock wave of weak intensivcy,
line segment CD is & quantity
of first order of smallness;
DE is of second and EF 1s of
third order of smallness,

Thus, from the geometric construction it 1s clear that sign of
AS depends on sign of area of segment, 1.e., on whether secant AC
passes above or below usual adlabat, or, which is the same, whether
adlabat is convex dovnwards or upwards.

Let us compare velocities Uns Uy with speeds of sound Cos Cqe

As we know, ratio uo/cO is determined by ratio of slopes of straight

c9
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line AB (see Fig. 1.28) and tangent to Poisson adiabat at point A,
Ratio ul/c1 is determined by ratio of slopes of straight line AB and
tangent to Poisson adiabat drawn through B. Let us write expressions

for slopes of all three straight lines:

-h -
pp e (av otz (7% )5, (Vi—Ve) — straight line AB;

P - .
(37)3‘ =,.=‘(57 " tangent to adiabat at point A;

)’. (W - av,)s.(V. Vo) — tangent to adiabat at point B,

The last formula follows from that fact that adiabat S1 = const
up to terms of third order with respect to V1 - VO i1s parallel to
adiabat SO = const, Noticing that

p
(35)6,<0(F8)s,> 0 V2 — Vo< 0,

we see that stralght line AB 1s steeper than tangent at point A, but
not as steep as tangent at point B, whence Uq > Cos Wy < Cye This
one may directly see froﬁ Fig. 1.30,

The inherent relation between conditions of increase of entropy
and the condition of mechanical stability of a shock v, > < is most
important. Botn conditions directly ensue from that fact thet the
adlabats with decrease of volume, starting from A, become steeper
and steeper.

Thus, from consideration of shock waves of weak intensity in
substance with arbitrary thermodynamic pgoperties, we have obtained
all those results from laws of conservation which were demonstrated
above in the particular example of an 1deal gas wlth constant heat

capacity. The only condition which was required by us was positivity
of second derivative (aep/avz)s.

0




§ 49. Shock Waves in Substance with Anomalous
Thermodynamic Properties

Let us now imagine a substance with anomalous thermodynamic
properties, such that second derivative (Bep/BVE)S at least in a
certain part of the adiabat is negative. Usual adliabat of such a
substance in corresponding region of pressures and volumes is convex
upwards, as shown in Fig. 1.36.

From consideration of preceding paragraph it follows that during
small changes of pressure, the Hugonict adiabat almost coincides with
Poisson adisbat (with accuracy up to small terms of third order with
respect to V, -~ V, or p, - po).

In this case, area of figure APBMNA,
which is bounded above by Poisson adiabat,
is larger than area of trapezoid AEBMNA,

which is bounded abcve by secant AEB, i,e.,

entropy in compressive shock wave decreases

(this may be seen from formuls (1,.88)),

: . At the same time, due to the fact that
Fig. 1,36, Poisson !

adiabat of supstance
with anomalous prop-
erties and geometric
interpretation of
relationships for
shock waves of com-
pression and rare-
faction,

glope of secant is less than slope of

e S s a s e i ke S e oo i Al b i s

tangent at point A, speed of propagation
of shock wave through undisturbed gas is
less then speed of sound, but inasmuch as
slope of secant AEB 1s larger thanu slope
of tangent at point B, speed behind shock

is supersonic,

Conversely, ir rarefaction shock wave entropy increases (see
formula (1,88))., As can be seen from comparison of slopes of secant
AC and tengents at points A and C, speed before sho.« is supersonic,
and behind shock is subsonic,
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Thus, even in a substance with anomalous properties, condition

of increase of entropy coincides with condition of mechanical

stability Uy > o and condition which allows causal relationship

between external factors and propagation of wave: uy < Cyq. In an

anomalous substance compressive shock waves are impossible, but shock

waves of rarefaction are possible., Compression caused by motion of

piston in suc’ a substance will propagate in the form of a wave,

which gradually expands like rarefaction waves in a usual gas, Shock

in general will not appear and motion will be adiabatic, Rarefaction

wave will propagate in the form of a steep front, which will not

expand with flow of time, and thickness of which will be determined

by values of viscosity and thermal conductivity,

Under usual conditions, all substances — gaseous, solid, and

1iquid — possess normal properties: their adiabatic compressibility

decreases with increase of pressure.

L1 z
Va6 a2
Fig, 1.37. Adiabat with
anomalous convexity in
Vander Wsals gas with
heat capeacity Cy = 40

cal/degemole. Shaded
region of two-phase
systems, Curve II bounds
region of states with
anomalous convexity of
adiabats, Under curve II

(Bap/BV2)8<O.

Anomalous behavior of a substance
may be expected near the liquid—gas
critical point, Actually, still long
before the critical point is reached,
isotherms of gas have an inflection (at
the critical point, the inflection
becomes horizontal), For a substance
with sufficiently high molecular heat
capacity, for which adiabatic index is
close to unity, adiabats and isotherms
little diifer, and 1t is possible tc
expect that outside of the region of

two-phase states adiabats also will

R




have an inflection, i.e., will have a region with anomalous sign of
second derivative, as this is shown in Fig. 1.37, taken from book
of Ya, B, Zel'dovich [2].

Curve I on this figure bounds region of two-phase system, and
curve II is locus of noints of inflection of adiabats (62p/6V2)S = 0,
It separates region in which (62p/6V2)S < 0, In Fig. 1.37 there is
drawn also one adiabat possessing anomaly. Curves are calculated
with help of model equation of state of Vander Waals for case of heat

capacity c_ = 40 cal/deg-mole.

i

The connection between sign of increase of entropy and inequal-
ities concerning speeds of gas and sound, which correspond to
obligatory coincidence of condition of growth of entropy with con-
dition of mechanical stabllity, can be disturbed only in the case
when in the considered interval of change of pressure there are
realized both signs of an/aVQ, so that Poisson adiabat has more than
two points of intersection with the secant. Thus there can appear
complicated regimes with simultaneous existence of both shocks and
diffuse waves adjacent to them,

One more case of anomalous behavior of a substance will be
considered in Chapter XI; anomalies in this case are connected with
polymorphous transformations (phase transitions) of solid bodies at

those high pressures which are attained in shock waves., In the same

place there will be considered also the indicated complicated regimes.

3, Viscosity and Thermal Conduction in Gas Dynamics

§ 20. Equations of One-Dimensional Motion of Gas

Dissipative processes —~ viscosity (internal friction) and

thermal conduction — are connected with existence of molecular
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structure of substance, They create additional, non-hydrodynamic
transfer of momentum and energy and lead to non-adiabatic character
of motion and to thermodynamlcally irreversible transformation of
mechanical energy into heat. Viscosity and thermal conduction appear
only in the presence of large gradients of hydrodynamic quantities,
which occur, for instance, in boundary layer during flow around
bodies or inside the shock front., In this book viscosity and thermal
conduction will interest us basically from the point of view of their
influence on internal structure of shock fronts in gases. During the
study of thls structure, flow can be considered.to depend on one
coordinate x (plane), since thickness of front of shock wave always
1s considerably less than radius of curvature of 1ts surface., There-
fore, we will not dwell on derivation of general equation of motion
of a viscous liquid (gas), which can be found, for instance, in book
of L. D, Landau and E, M, Lifshits [41], but will explain only how

there can be obtalned equation for one-dimensional, plane case.

We will write equation of conser-

vation of momentum for an lnvisgcid gas

. (1.7) in the plane case, when all

~1:Fz* o
: quantities depend only on one coordinate

L X, and velocity has only one x-th
Fig. 1.38. Diagram
explaining derivation
of formula for molec- » S :
ular transfer of ()= —==, Ho=ptqu'
momentum,

component of u

We vill take into accournt now the
fact that gas consists of molecules colliding with each other. Let
us imagine an element of unit cross section perpeniicular to axls x.
This element from both sides is plerced by molecules flying in

definite directions after they have experienced thelr last collisions.
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Moleéules emerge after last collision from layers of thickness of the
order of mean free path of molecules 1, which border the element on
both sides (Fig. 1.38). If n is number of molecules in 1 cm’, and

Vv 1s their average thermal velocity, then in 1 sec the element is
intersected from the left to the right by on the order of nv molecules.
Each of them transfers through the element hydrodynamic momentum mu,
where m 1s mass of a molecule, 1.e,, flux density of hydrodynamic
momentum from the left to the right 1n order of magnitude is equal
to nv . mu., Analogously, flux of hydrodynamic momentum from the
right to the left is equal approximately to nvm (u + Au), where Au
is increment of hydrodynamic velocity during transition from left
layer to right: Au = %%— t. Flux density of x-th component of
momentum in X-direction connected with molecular transfer 1s equal
to difference between fluxes from the left to the right and from the
right to the left, i.e., - nvml %J‘;— This quantity corresponds to
additional transfer of momentum due to internal friction; it must be
added to momentum flux density IIxx =p + pu2.

More rigorous treatment, based on study of three-dimensional
motion, shows that into the written expression there should be
introduced a numerical coefficlent of the order of unity. Namely,
equation of conservation of momentum, taking into account viscosity,

in the plane case has the form

4 d P
5 ()=, Nompior—o, o=

@]
1k

Nazs (1_90)
where 7 18 coefficient of viscosity, which for gases (in the absence

of relaxation processes; see below) in order of magnitude is equal to

0~ numl = gul.




Quantity o! constitutes the xx-component of tensor of viscous

2
5
A

. 8tresses, Appearance of it in formula for flux of momentum is

equivalent to appearance of additional "pressure", which is due to

forces of internal friction, From equation (1.90), with help of

% continulty equation, it 1s easy to go over to equation of motion
5= =5 (P-0). (1.91)
%%l— is force of internal friction calculated for 1 cm3 of gas,
§ In the presence of dissipative processes, additional terms also

pegicaaciss

appear in energy equation., With additional, "viscous" pressure there
is connected additional energy flow, To the expression of energy
current density, which stands under the sign of divergence in formula
(1.10), 1t is necessary to add the quantity - o'u, which is analogous
to pu. PFurthermore, into this expression there should be introduced

flow of energy which is transferred by mechanism of thermal conduction:

=%z (1.92)

where x is coefficient of thermal conductivity. Expression (1.92)

g is easy to obtain by the same means by which there was found viscous
flux of momentum, Thus it turns out that 1n gases, the coefficient
g of thermal conductivity in orde. of magnitude is equal to x ~ pcé?t.
Taking into account both dissipative terms, energy equation

(1.10), written for the plane case, acquires the form
9 u? L ut ’
37<Qs-§.-9-2—>=--a—x[Qu(s+-2—>-+-pu—-au-{-.l]T (1.93)

By transforming this equation with heip of continulty equation,
equation of motion and thermodynamic identify T dS = de + p dV, we

will obtain equation for rate of change of entropy of a particle of

the substance:
ds 0 & 4 du\? K6 I aT
Ti=om—m=3"(%) +&(*z)- (1.54)




First term in the right side of this equation constitutes
mechanical energy dissipated in 1 cm3 in 1 sec due to viscosity., It
is always positive, since n > 0 and (6u/5x)2 > 0; consequently, forcec
of internal friction lead to local increase of entropy of substance.
Second term corresponds to heating or cooling of substance due to
thermal conduction, It can be positive, as well as negative, since
thermal conduction leads to trancfer of heat from hotter regions into
cooler ones, However, entropy of all of the substance on the whole
due to thermal conduction only increases. Of this we can be convinced
if we divide equation (1.94) by T and integrate over tre entire
volume, Change of entropy of substance occupying volume bounded by

surfaces Xy and x, due to thermal conduction is equal to

32 (e () e

If substance is thermally insulated on boundaries Xy and x

Bewnl IO

2!
then fluxes of heat on boundaries disappear and there remains only

second term in the right side, which is always positive (x > 0).

Equations of gas dynamics, written taking into account viscosity
and thermal cocnduction, permit us to determine under what conditions
the role of these dissipative processes can become important,

Let us compare inertial ferces in equation of motion with
viscosity forces., If U is scale of velocity, and d are characteristic
dimensions of region involved in motion, then scale of time is of the
order of d/U, and inertial term p du/dt is of the order of pUe/d.
Viscosity term in equation %(-;— ng-%) is of the order of nU/d2

and the ratio of it to the inertial term is of the order of

Re “QUd"~ Ud

Q.I-
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Reciprocal of this ratio has the name Reynolds number (y===n/q~l?~lc
is kinematic viscosity, c ~ v is speed of sound). In an analogous
way, by comparing heat transfer by means of thermal conduction with
mechanical transfer of energy, we willl find that thelr ratlio is of

the order of

1_ % % i
Pe—qpUa Ua~dT"’

where Pe 1s Peclet number, which is close in gases to Reynolds number,
since coefficient of molecular thermal diffusivity X = n/pcp is close
to coefficient of kinematic viscosity v. (For instance, in air under
normal conditiocns v = X = 0,15 cme/sec).

Thus, viscosity and thermal conduction can be disregarded at
Re =~ Pe >> 1. If we consider motlon with velocities less than or
equal to speed of sownd, dimensions of system for this have to be
much larger than mean free path of molecules d/1 >> 1, This condition,
as we will see, 1s not satisfied, in particular, in region of shock
wave front, thickness of which is comparable with mean free path of
molecules, Therefore, inside shock wave front, dissipative processes
turn out to be essential, Namely they lead to increase of entropy

in the shock wave,
§ 21. Remarks about Second Viscosity

During writing of equations of gas dynamics and use of thermo-
dynamic relation between pressure and other thermodynamic character-
istics of substances, 1t was tacitly assumed that pressure p, which
determines forces in the moving gas, does not differ from static

pressure p measured in gas at rest under the same conditlons

stat
(1.e., with the same composition of gas, density of gas, internal

energy, temperature). Pressure 1s a scalar quantity which does not

.8



depend on selection of system of coordinates, on directions of
velocity, and gradient of velocity. Requirement of scalar character
of pressure, of its invariarice with respect to transformations of
coordinates, allows an assumption which is more general than the
assumption about dependence only on thermodynamic state of the
substance, Pressure, in general, can depend on a scalar — the
divergence of velocity. For small gradients, if we limit ourselves
to first terms of the expansion, as in the derivation of viscous
forces, we can write the general expression

P=Pper+Edivu, (1.95)
where coefficient £ characterizes dependence of forces acting in
the substance on the scalar div u, Coefficient £ is called second
viscosity. In distinction from it, coefficient 7n, the first viscos-
ity, characterizes forces depending on directions of velocity and its
gradlent, Coefficient of first viscosity in gas is connected with
translational thermal motion of molecules., If time of establishment
of statlc pressure is of the order of mean free time of molecules z/c,
€ has the same order as 7., In the plane case, both terms with first
and second viscosity thus are Joined together. In certaln cases,
however, € has anomalously large value., According to continulty
equation div u = - % %%, i.,e,, coefficient € characterizes dependence
of pressure on rate’ of change of density.

In the presence of internal, slowly excited degrees of freedom
in a substance (for instance, vibrations in molecules) and fast
changes of state of substance, pressure does not have time to “"follow"
change of density, and differs from a *nermodynamically equilibrium
quantity. Influence of this effect can be described with help oX
coefficient of second viscosity (see [1]), where the more difficult
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it 1s to excite Internal degrees of freedom, the greater the
"mismatching” of changes of pressﬁre and changes of density and
internal state of substance, and the greater the second viscosity.

Ii. very fast processes, when this "mismatching" (deviation from
thermodynamic equilibrium) is especially great, linear dependence
(1.95) may ve insufficient, and into the equations of gas dynamics

it is necessary to introduce in explicit form a description of relax-
ation processes — kinetics of excitation of internal degrees of
freedom, We will meet with thls phenomenon in Chapters VI, VII, VIII
during consideration of reluxatlon processes, their influence on

structure of fronts of shock waves and absorption of ultrasound,
§ 22. Remarks about Sound Absorption

As an example of the influence of vliscosity and thermal con-
duction on hydrodynamlic motion, we wlll consider process of prop-
agation of sound waves, taking into account these phenomena.

Presence of viscosity and thermal conduction leads to dissipation
of energy of sound waves, to irreversible transformation of it into
heat, i.e., to absorption of sound and decrease of its intensity.
Formally the coefficlent of sound absorption can be obtalned if we
seek the solution of one-dimenslional linearized equations of gas
dynamics, taking into account viscosity and thermal conduction, in
the form of a plane harmonic wave of type exp (i1 (kx - wt)], where
k is wave vector, Thus for k there ls obtalned a complex value, the
real part of which gives wave length, and the imaginary part of which
glves coefficlent of absorptiont k =k, + ik,; exp [ (kx - wt)] =

1
e'kexei(klx_wt). Coefficlent of absorption can be estimated also

from physical corsiderations., According to formula (1.94), energy

dissipated in 1 cm; in 1 sec 1s composed of two parts, which correspond




to viscosity and thermal conduction. In a sound wave with wave
length A, these quantities are of the order of nue/)x2 and nAT/Ae.
Here u 1 the amplitude of velocity, and AT is amplitude of changé
of temperature in wave (the latter is proportional to u). Energy of
sound in 1 cm3 is poue. Fraction of energy which is absorbed in

1 sec consists of two ternis, The term connected wlth viscosity is of
the order of (nu?/A%/geu® ~ n/QoeA? ~ nw%/c’p,. But in 1 sec sound traverses
distance c, so that coefficient of absorption per unit of length is
of the order of Yy~ nwz/CBpo. Coefficient of absorption per unit
of length which 1s connected with thermal conduction is of the order
of Yz”“ﬁﬁ%% (in case of gases this 1s easy to understand if we con-

sider that n/cp = 7N 11 virtue of spproximate equallity of kinematic
viscosity v = n/p and thermal diffusivity X = n/pcp; in gases

Yy = 72). These expressions are valid for small sound absorption,
when decrease of amplitude at distances of the order of the wave

length is small, i.e., YA << 1 (v = 1y + Y»). In gases this con-
ditlon means that

i.e,, expression for coefficient of absorption 1s valid for wave
lengthe considerably larger than mean free path of molecules, whlch
actually always 1s the case,

In a substance with delayed excitationlof internal degrees of
freedom (with large second viscosity) there appear additional,
anomalously large absorption, and also dispersion of sound (dependency

of speed of sound on frequency). Tris problem will be considered in

Chepter VIII,




§ 23. Structure and Width of Front of Shock
Wave of Weak Intenslty

Let us consider what are the internal structure and thickness
of that thin layer in a shock wave in which there occursg transition
of gas from initial state to flnal state and which 1s called the
front of the shock wave, In this layer there occur sharp compression
of substance, change of 1ts pressure, veloclty and, as calculations
showed, based only on appllcation of laws oi convervation of mass,
momentum, and energy, there occurs ilncrease of entropy. The latter
indicates that in treansition layer there occurs dissipatinn of
mechanical energy, lrreversible transformatiorn of 1t into heat.
Therefore, in order to understand how shock compression occurs, 1t
18 necessary to take into consideration dissipative processes — vis-
coelty and thermal conduction. .

Let us consider plane one-dimensional flow of a viscous and
heat-conducting gas in system of coordinates in which front of shock
wave 1s at rest, Width of front 1s very small as compared to
charccteristic scales of length for all cf the gas-dynamic process
on the whole, for instance, as compared to distance from front of
shock wave to piston pushing the gas and creating the wave,

Even if piston moves with variable speed and amplitude of shock
wave changes in time, for that small time At in which front passes
over distance of the order of its own width Ax, amplitude of wave
remains practically constant., Therefore, for the period of a certain
time, which is small as compared to total time scale of gas-dynamic
process, but large in comparison with At, the whole pattern of
distribution of gas-dynamic quantities in the wave front propagates

through the gas in "frozen" form as a whole, In other words, in a
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system of coordinates in which the front is at rest, flow of gas can
at every given moment be considered to be steady.

Let us write equations of continuity, momentum, and entropy,
taking into account viscosity and thermal conduction for the plane
steady case, Inasmuch as process is steady-state, partial derivative
with respect to time 0/0t can be omitted, and partial derivative with

respect to coordinate 0/0x can be replaced by total derivative d/dx:

d

z= (W) =0,
a 4 _du
;;(P+Q“’—'§7ld—;)=0,
a5 4 du\2?  d aT

With help of second law of thermodynamics T dS = dw - V dn and
equations of continuity and momentum, entropy equation can be writien

in form of energy equations:

A4 u? 4 d ar
w[w(o+ ) —gmg—xg]=0 (1.97)

We will subject solution of these

LI e g equations to boundary conditions,
a,
pe eccording to which gradients of all
quantities before the front, at x = -,
0 z
Fig; 1;39; Diagram and after the front, at x = +«» vanish,

illustrating formulation
of problem about structure
of front of shocx wave,

and the actual quantities take their

initial and final values, to which we
as before will assign indices "0" and
"1" (Fig. 1.39).

First integrals of system of equations of mass, momentum and

energy are obtained immediately:

er:.-= %o“o» ' (1.98)
Pt —Fng = Potow (1.95)
] 3
Qu (w+%)—%m§§—xg=owo (wo+%). (1.100)
453
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Constants of integration here are expressed in terme of initial
values of quantities p, p, T, u and are considered as functions of
current coordinate x,*

From equation (1,99) it is clear that due to presence of
viscosity, 1.e., term containing du/dx, distribution of quantities
over x in wave front should be continuous (otherwise gradient du/dx
would go to iInfinity, which is incompatible with finiteness of the
quantities themselves).

For the purpose of best understanding of roles of each of the
processes, viscoslty and thermal conduction, we will first consider
two particular cases of structure of front: 1) when there is no

vigcosity and there exists one thermal conduction; 2) when there

exists one only viscosity, but there is no thermal conductlion, We
will here not look for exact solutions of equations (this problem

will be considered in Chapter VII, which is speclally dedicated to
g study of structure of shock wave fronts). Let us limit ourselves

| only to clarifying qualitative picture of phenomenon and estimates
of width of front.

1) Thermal conduction exists, but there is no viscosity n = O.

This case 1is remarkable due to the fact that equation of momentum
3 (1.99) acquires the form

P+ Qu* = py + Quuy,
which is8 analogous to that form which connects final and initial
values of quantities., However now this equation describes all

: intermedliate states in wave front., With help of continuity‘equation

*At x = +® du/dx = 0, dT/dx = 0, p = ¥gr P = Py Mo Uy and

] we arrive at laws of conservation of mass, momentum, and energy on
3 the shock (1.61), (1.62), (1.64).
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(1.98), we will obtain
p=potoui(1-7,)- (1.101)
Thus, the point describing state of gas inside shock wave front
travels on p, V-plane from initial point A to final point B along
straight line AB, about which we already have said much during

investigation of shock adiabat,

We will draw through points of

initlal and final states on p, V-plane
Poisson adiasbats (Fig. 1.40; Hugoniot
adiabat is not shown on 1t). If we

plot on the plane & whole series of

Poisson adiabats with various values

of entropy, then we will see that one

Fig. 1.40. p, V-diagram of them is tangent to straight line
pertaining to problem

about structure of shock AB at a certaln point M, as shown in
wave front without taking

into account viscosity. Fig. 1.40, At this point entropy along
State in wave changes

along straight line AB, straight line AB is maximum

Segments Ai’ A2, A3 are
of first, second and
third orders of smeallness
with respect to amplitude

of wave,

(Sg < 84 < Sy). From equations (1.98)
and (1.101) 1t follows that velocity
of gas u at point of tangency Mils exactly
equal to local speed of sound (u = ¢ at point M; we recall that at
point A uy > ¢4, and at point B u, < ci).

Let us find magnitude of meximum of entropy smax from condition

of tangency of Poisson adiabat with S = S and straight line AB.,

max
As we will now see, quantity S -~ 8, is proportional to (V1 - VO)2

max
or (p1 - po)23 therefore, equations of family of adiabats p (V, S)
and straight line we will write in the form of expansion near point

A, omitting terms of third order of smallness (in such an approximation

LGS




adisbats S, and S1 coincide; see § 18). Equation of adiabat has the

form:

? P—Po"( ) (V-Vi)+5 ( ) (V-Vo)'+ ﬁ)v‘(s-—sd'

Equation of straight linet

p = P=F=R OV =(35), V=V + 5 (5 )y, V1=V 7 =Vo).

Condition of tangency is expressed by equality cggaédiab = (%%iir
2

which gives equation for determination of volume VM at point of tan-

gency M,
' Calculation shows that point M is found exactly in the middle
between points A and Bt Vy - Vo = = (V, = Vo). Substituting this
expression into equation of straight line, we will find pressure at
point M, and substituting then the found value of pressure Py and
% volume VM into equation of adiasbat and solving i1t for entropy, we

will obtain entropy at point M:

1 (p/oVDs,

2
CRETTHIN (Vi—Vo)*.

Su—Soe= Smax— o=

Thus, maximum change of entropy inside front of shock wave
during consideration of only thermal conduction is a magnitude of
the second order of smallness with respect to amplitude VO - V1 or

P4 = Pgs in distinection from total Jump of entropy S, - SO, which !s

1
of the third order of smallness with respect to amplitude, This is

clear from geometric considerationst the greatest distance of

straight line AB from Poisson adiabat S = SO on p, V-plane 1is
proporticnal to (V, - Vo)e

between pressures at point M and on adiabat S, (or SB) at the very

or (py - po)e. Thus, the difference

same volume Vﬁ is equal to

Pn(Vu)—Psd(Vu)*'%(g%—).‘ X (Va— Vo) (Vi — Vi) %%)8‘(;'._;'.)' (1.402)
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(difference of pressures between points on adiabats SB and 7, at

identical volume VM is a magnitude of third order of smallness).
Presence of maximum of entropy

inside the front indicates that profile

of temperature T (x) at point where

entropy is maximum has an inflection,

so that distributions of temperature

Fig. 1.41. Distri- and entropy in a weak shock wave with

butions of temperature
and entropy in weak
shock wave front without
taking into account vis-

cosity., Ax — effective
Widthyof front? from entropy equation (1.97), which in

only thermal conduction are deplcted by

curves shown in Fig. 1.41, This follows

absence of viscosity takes the form
ds 4 _dT aT (1.103)

bz T dr g =%

(in a weak wave the temperature changes little, so that coefficient of

QuT

thermal conductivity can be considered to be constant). Existence of
maximum of entropy is connected with the fact that thermal conduction
transfers heat from region with higher temperature to region with lower
temperature. Therefore, the gas flowing in a wave at first 1s heated
due to thermal conduction (with increase of entropy), and then is cooled
(with decrease of entropy). In the end, as compared to initial value,
entropy of course increases., This is illustrated by Fig. 1.41: advance
along exis x with velocity u (x) corresponds to following the change
of state of a given particle of gas with time.

L.et us now estimate width of wave front., For this we will
divide equation (1.103) by T and will integrate it over x from initial
state A (x = -m), Where dT/dx = O, to some point x in the wave (thus

we will use the fact that pu = pyuy = const)'

) { @T 1 dT dT 1
QB (S —S¢) = % S ——dz=x Fat+ dT}

-

(1.104)
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We will apply this equation to point of final state B (x = +m),

where dT/dx = O,
Thus the first term in brackets vanishes and
Qoo (54— So) = u‘sl—’-ﬂdr

We will determine effective width of shock wave front Ax, in the

E presence only of thermel conduction, by equality
Ty—T,_| 4T
] A; dz |max’

the geometric meaning of which is clear from Fig, 1..41,

Ax,

Considering for estimate of the integral that dT/dx ~ (T, - T,)

we will find

)
.
E

3
N
i
&
Y.
S

| ot (S4 = So) ~ g ST

Expressing temperature Jump in terms of pressure Jump, we will

obtains
T V
Tl—'T0= (3;)8 (P1—po)= —,;o (Ps— po)s

where e, is heat capacity at constant pressure; using formula (1.89)

for Jump of entropy, and considering approximate equalities for gases

( )'~-1,u-9w,km and also the fact that Uy ~ Cn, We will obtain from
(1.104) an estimate of width of front:

e Pt—Po (1'105)

Width of front i1s inversely proportional to amplitude of wave, where
as 1ts scale there serves mean free path of molecules 1.

From equation (1.404) it 1s also possible to estimate megnitude
of maximum increase of entropy. At point of maximum of entropy
d3/dx = 0, gradient dT/dx is maximum, Thus, the main role in braces
(1.104) 18 played by first term, which is proportional to AT/bx ~
~ Ap/bx ~'(Ap)2, while second term is proportional to (AT)Q/Ax ﬁ'(Ap)B.

= SO ~ (Ap)3

2
f Hence it is clear that Smax - SO ~ (&p)“~, while Sy

1
k . .. T T R




| Considering Internal structure of shock wave front, and taking
into account only thermal conduction, 1t 1s possible to say only that
temperature in wave changes contlinuously. Other quantities — denslty,
veloclity, pressure — In general can undergo a discontinulty. And
indeed, conslderation of structure of shock waves without taking into
account viscosity shows that at sufficlently large emplitude-it 1s
impossible to consiruct a continuous distribution for all quantitiles
in the wave, This difficulty was noted by Rayleigh (detail about
this see in § 3, Chapter VII). It indicates the fundamental role
of viscoslty in reallzation of irreversible shock compression of

\ substance in a wave,
-Let us consider now the second particular case.

2) Viscosity exists, but there is no thermal conduction: »n = O.

Then it 1s necessary to retain the general equation of momentum
(1.99). On p, V-plane the point describing state in wave travels

the path from point A to point B no longer along straight line AB,

but along a certain curve, which 1s deplcted in Fig. 1.42 by a dotted
line,

From the entropy equation without the thermal conduction term
as du \?

% wre=n(%) (1.106)

it follows that entropy in wave monotonically increases from initial

value SO = SA to final value S1 = SB, so that dotted line 1s wholly

contained between Poisson adisbats 5, and S, (see Fig. 1.42),
Inasmuch as adiabats are convex downwards ((aep/avg)s > 0,

dotted line lies wholly below straight line AB).*

Really, vertical distance between adiabats S, and S, is propor-
tional to S, - S, ~(p1 - po)j, while vertical distance between points
A and B is Py ~ Poe Therefore, section of straight line AN on which

dotted line in principle could pass above straight line 1s a quantity
which is small as compared to the main part of straight line NA,




Equation of curve along which
there occurs transition from point A

to point B is

p=mteut(1-7-) +3nde. (1.107)

v Inasmuch as curve lies wholly

Fig, 1.42, p, V-diagram
pertaining to problem
about structure of shock
wave front without taking
into account thermal con-
duction, State in wave
changes along dotted
curve AB,

below the straight line, at all points
inside wave du/dx < 0, If x-axis is
directed in the direction of motion of
gas, then u > 0, 1,e,, gas in wave only
is retarded, and consequently is
monotonically compressed, Thus, conslideration of structure of shock
wave front, taking into account viscosity, leads to the case in which
for (aQP/avz)s > 0 there 18 possible only compression of gas in shock
wave, Profiles of veloclty and density in wave have the form depicted

in Figo 1.430

2 We will determine effective width
_51___,//”—_-__- of front Ax by equality
e {f
* Bg—U. du
. . (At | "
7 3 A=z %Wmn* (1.108)
_'-_‘?\__‘2
|
wr 2 analogously to the preceding. Geometric
Fig. 1.43, Profiles meaning of it is clear,
of density and veloc-
ity in shock wave Maximum absolute value of gradient
frontt Ax 1s effective
width of wave, | du/dx | .. 1s determined according to

(1.107) by meximum vertical deviation

*Ax 18 called sometimes Prandtl width of front.
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of straight line AB from dotted line, i.e., from Poisson adiabats
SO or Si' is deviation, as we already know, corresponds to middle

of segment AB and 1s given by formula (1.102). Thus,

4 |du t /o
3"1';; s (#)SA (Vy—=Vo)r.
Substituting this expression for | du/dx |max in (1.1208), and

noticing that n = pyv ~ polV ~ pglcy (v is kinematic viscosity), end
also that

se— =V (pi— po) (Vo—Vy) ~ ‘/-(Pt-l’o)’l%l"’ ﬂ;o_l’_oco‘ (3:":)3‘*73 '

we will arrive at formula (1.4105) for width of front:

1 4
Az ~l ot ]P0
Vo—V, P1—Pg

Width of front can be estimated also with help of entropy
equation (1.106) analogously to the way this was done in the first

case?

(ug—uy)?
Azt °

Qo7 % ;So ~1

Substituting here expression (1.89) for jump of entropy and
making simple transformations, we will arrive at former formula for
Ax,

During construction of continuous solution with only viscosity,
no difficulties similar to those which appear during consideration
of only thermal conduction appear. This circumstance, as already was
noted, has a deep physical basls and testiflies to the fundamental
role of viscosity in realization of shock compressicn., Namely,
viscosity 18 the mechanism due to which there occurs irreversible
transformation of part of kinetic energy of flow incident on shock

Into heat, 1.e., transformation of energy of directed motion of

o oy et o b et i il ok K ~--&¢M




molecules of gas into energy of random motion due to scattering of
% ; thelr momentum,

; Thermal conduction in this sense';iays an indirect role, since
it leads only to transfer of energy of random motion of molecules

from one place to another, but does not influence the directed motion

gl Ll i i S

directly.

If we conslder shock waves of not too great amplitude in an
ordinary gas, in which transport coefficients — kinematic viscosity v
and thermel diffusivity X — are approximately identical and are deter-
mined by the same mean free path of molecules (v = X ~ lc), then we
% as before will obtain formula (1.105) for width of front., This is
| easy to check by considering general entropy equation (1.98), taking
into account viscosity as well as thermal conduction,

Formula (1.105) shows that for a pressure Jump in the wave of
the order of magnitude of the actual pressure before the front, width
of front is of the order of the mean free path of molecules. With
further increase of amplitude of wave, if we use the same formula,
width becomes less than mean free path, This result, of course,
does not have physical meaning, If gas-dynamic quantities strongly
change at distances of the order of mean free path of molecules, then
hydrodynamic consideration of viscosity and thermal conduction, at
basis of which lies the assumption about smallness of gradlents,
loses validity.

Width of an arbltrarily strong shock wave of course cannot
become less than mean free path of molecules, which is indicated by
consideration, based on use of kinetic equation for gas (see Chapter

VII).
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Under certain conditions there is possible considerable broadening
of front of strong shock waves to distances equal to many lengths of
mean free path, and separation of it into reglons of smooth and sharp
change of quantities is possible., In particular, this occurs in a
gas with delayed excitation of certain degrees of freedom of molecules
or during the course of reversible chemical reaction in the wave.

These problems, just as a whole series of others appearing during
more detalled study of.internal structure of shock wave fronts, will

be conslidered in detail in Chapter VII,

4, Certain Problems

§ 24, Propagation of an Arbitrary Shock

Gas~-dynamic quantities on each side of a shock wave front are
not independent, They are related by definite relationships which
express laws of conservation of mass, momentum, and energy. Thus a
shock, a compressive shock wave 1n substances with normal thermo-
dynamic properties, propagates through the substance as a stable
formation, without spreading out.

Meanwhile there 1s possible a formulation of the problem in which
at the initial moment in the gas there exists a discontinuity surface,
on both sides of which gas-dynamic gquentities in no way are related
with each other — are absolutely arbitary. Such shocks are called
arbltrary shocks.

Let us give several practical examples which show how arbitrary
shocks arise, Let us imagine a pipe divided by a thin partition
(varrier). Pipe 1is filled with gas, where densities and pressures
and, in general, types of gas on right side of partition and on left

side are different., Let us assume that at a ceritain moment the
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partition is rapidly removed., “. this instant in the place where the

partition was the two regions come “into contact — two gases at rest
with absolutely arbitrarily given densities and pressures. If pres-
sures in each gas are different, then after removal of the partition
the gases under action of the pressure drop will be set in motion.
3 Second example, Let us assume that through a pipe filled with gas,
: from both ends there are sent shock waves with arbitrarily given
amplitudes., At the time of collision of both waves somewhere in the
middle of the pipe, there appears a surface dividing the gases with
; arbitrary pressures, velocities, and temperatures (possible differences
in densities in this example are somewhat limited; we will say that
; if both waves are very strong, then densitles in them are identical
| and equal to limiting density). After collision of waves, motion of
gas will be changed in some way., Third example, We have approached
the theory of shock waves considering the motion of a gas under
; action of a piston starting to be thrust into the gas with constant
; velocity. In this case the shock wave will be formed directly at
é the piston, at the initial moment and will propagate through the gas
é with constant veloclty. 1In reality, of course, the piston, which has
finite mass, cannot instantly acquire terminal velocity, but gathers
it, gradually being accelerated under the action of force applied to
it. Thus the shock wave will not be formed at once, and will be
formed far from the piston.

It is possible to replace smooth law of change of velocity of
piston in time U (t) by some step curve, by dividing time into very
small intervals and assuming that in every such interval of time the

: velocity of piston is constant, and upon the expiration of this

interval changes with a jump by a small amount., Then the curve of




motion of the piston on x, t-plane will be depicted by a broken curve
consisting of small line segments. In every small time interval,

during the period of which velocity of piston is constant, piston

sends forward a perturbation — a wave of compression, i.e., & weak '
shock wave. Thls wave travels through the gas with velocity slightly §
exceeding the speed of sound, whereas the preceding weak shock wave, !
which was caused by the preceding Jump of velocity of piston, prop-

agates relative to gas moving behind it with a velocity slightly less
than speed of sound, as is shown in Fig. 1.44. Therefore, every
successive shock wave catches up with the preceding wave, and the
compressions carried by them are superimposed, If we draw on the

X, t-plane characterlstics going out from curve of motion of piston,

then they will intersect (Fig. 1.45). It turns out that it is

possible to assign a law of acceleration to the piston such that 1all
i of these weak shock waves overtake one another at one moment and at
one point, Then all of the numerous little pulses of compression are
é eccumulated into one large jump. (All characteristics intersect at
one point).

1 State of gas 1n thls shock changes from undisturbed to final

| almost adlabatically. Indeed, if all of the compression of initial
] gas to pressure p is divided into n stages, n weak shock waves with
| Jump of pressure Ap = (p - po)/n, then in each of them the Increase
of entropy AS is proporticnal to (Ap)3 ~ 1/n3, and total increase of
entropy with cumulation of n waves 1s proportionel to nAS ~ 1/n2- 0
as n -+ o, Thus, states of gas on each side of shock appearing as a
result of cumulation are related by Poisson adiabat, Meanwhiie, in
the shock wave, states on both sides of the shock are related with

é each other not by Poisson adiabat, but by Hugoniot zdlabat.
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Consequently, quantities on both sides of shock do not satisfy laws

of conservation and the shock is arbitrary,

¥ 4 3 ¢ > A

8

‘I

;
N - - ' 2
Fig. 1.44, Profile of
pressure in system of .
two small compressive o
shocks following one Fig. 1.45. Inter-
after the other, Wave section ¢f character-
A travels through gas istics during com-
located in front of it pression of gas by
with velocity higher accelerating piston,
than speed of sound c' I is line of piston,

in this gas., Wave B
travels through gas

located behind it with By generalizing cases represented
subsonic velocity, less

than cb. Therefore, shock by the given examples, we will formulate
% TP A LS DR idealized problem about finding motion

of gas in which there appeared an
arbitrary shock. Let us assume that at initial moment t = O in plane
x = 0 all quantities undergo a discontinuitys pressure, density,
velocity, temperature, On both sides of the shock all these quantities
are constant., Types of gases cn both sides also can differ. The
larger the distance from discontinulty surface, on which parameters
of gas can still be considered to be constant, the longer in time the
solution to which we will arrive will be accurate (this problem was
for the first time solved by N. Ye. Kochin [3]).

Inasmuch as in the conditions of the problem there are not
contained characteristic lengths and times, we look for motion
depending only on the ratio x/t. In § 11 it was shown that self-
simllar plane flow of gas can be described by solutions of only two

typest there are possible centered simple rarefaction waves and
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motion in which all gas-dynamic quantities are constant, Furthermore,
there can occur discontinuities — shock waves,

Thus, the unknown motion should be constructed from three
elements: rarefaction waves, regions of constant flow, and shock
waves., The set of possible motions is limited by the fact that in
one direction there cannot move more than one wave (it makes no
difference which kind — rarefaction or shock).

Shock wave propagates through undisturbed gas with supersonic
speed, but through compressed gas in it — with subsonic speed.
Rarefaction wave travels through gas with speed of sound., If, for
instance, through gas to the right there travels a shock wave, then
rarefaction wave following after it in the same direction, and all
the more so a shock wave, will necessarily overtake 1t in a certain
time, But in virtue of self-similarity, both waves emerge from one
point x = O at the same moment t = O, Therefore, cne wave as it were
already has overtaken the other at the very initial moment, and both
of them propagate in the form of one., In exactly the same way, it is
impossible for a second wave to follow behind the rarefaction wave.
Shock wave would overtske rarefaction wave, and second rarefaction
wave would move behind the first at a fixed distance, which in virtue
of self-similarity is equal to zero, so that difference between both
weves dlsappears.

Thus, the unknown solution can be constructed only in the form
of some combination of two waves, shock waves and rarefaction waves,
which propagate in opposite directions from initiasl shock and are
separated by regions of constant flow. There are in general two of
these regions, They are differentiated by a plane dividing those

gases whlch at the inital moment were located on each side of the
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arbitrary shock, Inasmuch as in hydrodynamics of an iaeal {iuld,
diffusion of molecules is not taken into account, interpenetration

of gases into each other is lacking, and boundary between them will
be retained, ln some way moving in space together with the gases,

The case when gases are of one type obviously does not represent a
fundamental dlfference (we will imegine that molecules of gas on one
side of initial shock are "cclored"). This plane boundary between
the two gases, which can be called the contact boundary or contact
discontinuity possesses specific properties. Obviously, pressures
and velocities of gases on both sides of contact discontinulty
coincide with each other, Otherwise near it there would appear
motion and regions of gas on both sides would cease to be regions of
constant flow., Densities, temperatures, and entropies of gases on each
side of contact discontinuity can remaln arbltrary, in accordance

with the arbitrariness in initial values, Difference between these
quantlties during equality of pressures and velocitlies in no way can
set gases in relative motion (of course, under the assumption of
absence of diffusion and thermal conduction, to the influence of which
we will return somewhat later),

Contact discontinuity is at rest relative to gases and does not
send perturbations which could influence waves (shock and rarefaction)
travelling in both directions from it.

We will enumerate possible motions of gas after appearance of
arbitrary shock: so to speak, cases of disintegration of shock, which
constitute different combinations of rarefaction and shock waves.
There can be presented three typicel casest 1) in both directions
from shock there are propagated shock waves; 2) in one direction

travels a shock wave, but in the other — a rarefaction wave; and

:h. T R _,,m\‘},‘:».z e




RO PP - R o N

3) in both directions there travel rarefaction waves,

Let us examine these cases more specifically. For this, it is
convenient to use p, V-diagram (Fig., 1.46)., First of all we will fix
on the diagram initial states of gases., Point A presents gas on the
left of the shock, point B — on the right. Let us assume for
definiteness that pressure at point .A(Pa) is less than P . Let us
draw upwards from these points Hrgoniot adiabats describing compres-
sion of gases in shock waves, and downwards — Poisson adiabats, along
which there occurs expansion of gases in rarefaction waves, After
disintegration of shock, pressures in both gases in reglions subjected
to influence of waves are equalized,

1. Let us assume that this
new pressure p, is higher than
initial Py and Py e

In this (first) case both to
the right and to the left from

arbitrary shock (or from contact

surface) there travel compressive
Fig, 1,46, p, V-diagram

illustrating different shock waves (Fig. 1.47a). Gases
cases of disintegration

of arbitrary shock. Points after them are in states &4 and bo
A and B describe initial

states of gases A and B. with identical pressures Pg and
HAA and HBB are shock

adiabats, APA’ BPB 5 velocities. Gas 1In state &, moves
Polsson adiabats of gases relative to initial gas in state

A and B.
A to the left and gas bo moves

relative to gas B to the right., Inasmuch as gases &, and bo move
with identical velocity, it is necessary that gases A and B at
initial mcment move toward each other, Two shock waves are formed

during collision of the two gases moving toward each other with




great velocity (we recall the secopd example), The less the velocity
of collision, the lower the obtaiﬂed pressure p, in the shock waves.,
2. At some low veloclty of collision, there appears a new
regime, in which pressure P4 1s still higher than pressure Py but
less than Py . In this (second) case, through gas A after disintegra-
tion of shock there propagates a shock wave, and through gas B — a
rarefaction wave (Fig. 1.47b), In particular, such a regime is
realized when initial velocities of both gases, A and B, are identical
and are equal to zero, i.e,, when at initial moment in gases at rest
there 1s a discontinuity of pressure, as in the example with the
partition, Substance starts to move in the direction of pressure
drop. This case has lmportant practibal applications, On this
principle is based the mechanism of a shock tube, in which there are
obtained in the laboratory strong shock waves, which heat the investi-
gated gas A to high temperature, Shock tube is divided by a thin
partition (diaphragm). On one side of the diaphragm in the tube
there 1s contained investigated gas A at low pressure; on the other,
into the so-called high pressure chamber there is pumped the working
gas B. After burst of the diaphregm, gas B 1s expanded in the
direction of the low pressure chamber, sending into gas A a strong
shock wave, The appearing regime, which is depicted in Fig. 1.47b,
will be more specifically considered in Chapter IV during the study
of operation of shock tube, By appropriate selection of gases A and B
and pressure drop, it is attempted to obtaln as strong a shock wave as
possible and heating of investigated gas to very high temperatures.
One of methods of obtaining still higher temperatures is realization
of first regime — collision of two shock waves, A particular case

of the first regime 1s reflection of shock wave from end of shock
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temperatures.

é motionless hard wall.
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Fig. 1.47. Profiles

of pressure in different
cases of disintegration
of a shock, Large arrows
with letters A and B
indicate initiel veloc-
ities of gases A and B
before disintegration of
shock, Little arrows
show direction of prop-
agation of waves through
mass of gas (direction of
propagation in space can
] be in certain cases

: different).

constitutes a particular case of collision of two gas flows,

tubé, which is also used for achievement in laboratory of high

Reflection of shock wave from hard wall indeed

If two

absolutely identical flows collide with one another, then after the
collision the contact discontinuity is at rest, i.e., the situation
is the same as if instead of a contact discontinuity there were a
Problems of collision of shock waves and

reflection of them from a wall also will be considered in Chapter IV,

3. If after disintegration pressure
Py is less than Py and Dy» We will
obtain two rarefaction waves travelling
to the right and to the left through
both gases, This regime, which is
depicted in Fig., 1.47c, is realized
if et initial moment gases A and B
move in opposite direction from shock
with sufficiently high speed.

If relative velocity with which
et initial moment gases A and B move
away from each other is very great,

namely, larger than sum of maximum

velocities of flow of gases A and B

2ca QCb

+ —T»
Yya Yb 1

Ca and ¢, are initial speeds of sound

and vy

where

into a vacuunm,

a and Vb are adisbatic indices of
gases A and B (see § 11, formuls
(1.60)), then between gases there will

This regime,

be formed a vacuum, p = O,
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which it 1s possible to consider as 1limit of the third case, is
depicted in Fig, 1.474.

During concrete calculations connected with disintegrations of
arbitrary shocks, along with p, V-diagrams, very convenient are the

so-called p, u-diagrams, on which along axes are plotted pressures p

b nmi A B R @ Mo

and velocities of gases u in laboratory system of coordinates, Shock
adiabat of gas pH(V) can be represented in the form of a dependence

of pressure behind wave front on jump of veloc’ty of gas, 1.e., on
velocity of compressed gas relative to undisturbed gas. Likewlse, in
rarefaction wave pressure i1s uniquely connected with velocity by the
condition of constancy of the Riemann invariant (see § § 10, 11).
Convenience of p, u-dliagrams in problem about disintegration of shock
1s connected with the fact that in final state pressures and velocitles
of both gases are identical, i.e,, final states are depicted by the
same point on the p, u-dlagrams,

ps, u-diagrams for cases of disintegration depicted in Fig. 1.47a-d
are shown in Fig., 1.48a-d respectively.

After clarifying character of motions appearing during disinte-
gration of an arbitrary shock, 1t 1s possible to check the initial
assumption about the fact that motion depends only on the combination
x/t. During examining of rarefaction wave in § 11, this assumption
was supported by the fact that with passage of time, width of rare-
faction wave, which 1s scale of length in the problem without con-
slderation of dissipative processes, increases as x ~ ct, Role of
viscosity and thermal conduction, which is proportional to 1/x, with
passage of time decreases, and in macroscopic flows, when x >> 1, 1s
insignificantly small, Consequently the only constant scale of

dimension of length in gas — mean free path of molecules — disappears,




During flows wilth shock waves, viscosity and thermal conduction,
which Introduce into the equation scale of length 1, in reality act
only in thin layer of wave front, width of which 1s of the order of
l. Small also is the width of the contact shock. Broadening of it
occurs due to processes of diffusion of molecules and thermal con~-

duction., Both processes lead to wldth of shock of the order of

Az ~ V't~V Dt, where D is coefficient of diffusion, which is close to
coefficlent of thermal diffusivity D~ X ~ lc. Distance passed over
by shock and rarefactlion waves during the time t 1s of the order of

X ~ ct, so that Az ~VIz. Thus, ratio of dimensions of region in
which dissipative forces act to dimensions of the whole region involved
in motion for a shock wave is of the order of 1/x, and for contact
shock‘nhfﬂEZ Both quantities are small in macroscopic flow with

x >> 1. Let us return to the third example given in beginning of

this sectlon, and see what regime sppears during disintegration of
shock which 1s formed as a result of cumulation of compressional
waves sent by the accelerated piston, At the moment of Joining of
separate waves, on one side of the shock we wlill have undisturbed

gas A, and on the other — gas in sta.e B, which 1s subjected to
practically adlabatic compression, It 1s possible to show that veloc-
ity which gas acquires during successive compression by a large number
of shock waves 1s less then veloclty acquired during single shock
compression to the same pressure, It follows from this that the

shock disintegrates as in case 2), Through the compressed gas to

the piston will go a rarefaction wave, and through undisturbed gas

— & shock wave, Pressure p will be lower than pressure created on
piston Py However, due tc increase of entropy in shock wave, this

lower pressure corre3ponds to higher temperature, so that gas in shock




wave will be heated comparably to the almost adlabatic heating due

to cumulation of weak waves, In Fig. 1.49 there are represented
distributions of p and T after disintegration of shock formed as a
result of cumwlation of waves during compression of alr by a piston,
whose speed gradually reached 4,44 c, = 1500 m/sec, so that pressure
on piston reached Py = 50pa = 50 atm, Coordlnate and time on figure

are measured from point and moment of cumulation,
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Fig. 1.49. Propegation of
e shock which appears after
collision of a set of consec-
utive compressional waves,
Temperature in the appearing
shock wave 1s considerably
higher than maximum temperature
attalned durlng superposition
) of small compressional waves,
E . but pressures are lower, since
: a) 8 toward the compressional waves
4 - there travels a rarefaction
\<T L wave, Profile of pressure is
Sa S shown by solid line, profile
“ of temperature — by dotted
Fig, 1,48, p, u- line,
dlagram for different
cases of disintegratlon

of shock which are de- The consldered case presents

picted in Fig. 1,47,

Curves H are shock conslderable interest for theory of
4 adiebats in variables

ps uj curves S are occurrence of detonation, since the

Polsson adlabats in

variables p, ug S.W,. obtained result explains how a flame

designates shock wave}

R.W, designates rare- acting on a gas like piston can by

faction wave,
graduel compression cause appearance




of a shock wave at a large distance from the flame (piston). By

gradually compressing gas to fairly high temperature (630° C on the
figure), 1t is possible to realize sharp heating to 1450° C at a
considerable distance at the moment of cumulation, to realize "remote
ignition." Apparently, such is the mechanism of appearance of

detonation in gases in a number of cases.

§ 25. Strong Explosion in a Homogeneous Atmosphere

Idealized problem about a strong explosion in homogeneous
atmosphere constitutes typiral :xemple of class of motions of gas
called self-similar, when gas-dynamic quantities change with flow of
time in such a way that distributions of them over coordinate remain
always similar to themselves,

Self-similar probler about strong explosion was formulated and
% solved by L, I. Sedov, With a clever method, by means of use of
h integrai of energy, L. I, Sedov succeeded in finding exact analytic
solution of equations of self-similar motion [4, 5], The problem
was considered also by K. P. Stanyukovich (in dissertation; see
[15]) and Taylor [6], who formulated and investigated the equations,
but did not obtain their analytic solution,

We will dwell on formulation and results of solution of this
problem, since they will be needed by us subsequently, in Chapters
VIII and IX, during the study of certain physicochemical and optical
phenomena accompanying strong explosion in air,

Let us assume that in gas of density Po» which we will consider
to be 1deal, with constant heat capacity, in a small volume during
short interval of time there is released high energy E. From place

of energy release through the gas there propagates a shock wave, We




will consider that stage of the process when the shock wave departs .
to distances which are very large ac compared to dimensions of region
where energy release occurred, and when motion involves a mass of

gas which 1s large as compared to mass of products of the explosion.
Thus energy release can with great accuracy be considered as occurring
et & point, and instantaneously.

At the same time we will consider that this stage of the process
is not too late, so that the shock wave departs from its source not
too far, and its amplitude is still so high that 1t i1s possible to
disregard initiel pressure of gas p, @s compared to pressure in shock
wave. This is equivalent to the possibility of disregarding initial
internal energy of gas involved in motion as compared to energy of |
explosion E, and of disregarding initial speed of sound o in ;
comparison with velocities of gas and wave front.

Motion of gas 1s determined by two dimensional parameters:t
energy of explosion E and initial density Pgs From these parameters
it 1s impossible to compose scales with dimensions of length or time,
Consequently, motion will be self-sgimilar, i.e., will depend only on
e definite combination of coordinate r (distance from center of
explosion) and time t. In distinction from self-similar motion
considered in § 11, in this problem there is no characteristic
velocity. Initial speed of sound o cannot characterize the process:
in that same approximetion in which initial pressure Po is assumed

equal to zero, speed of sound o is also equal to zero.* Therefore,

*This condition actually determines bounds of applicebility of
solution of the problem, After presenting definite requirements for
accuracy of the solution, we compare obtained pressures in wave front
Py and velocity of propagation of wave D with reel values of PoSo and

find the moment when the approximation of Py > Py becomes too course,

It is necessary to note that in fact the condition of validity of dis-
regarding of initial pressure is somewhat more rigid, namely:
py > [(¥ + 1)/(v - 1)] Poe This one may see from formula (1.76):

under this condition compression in shock wave is equal to limiti
value (y + 1)/(v - 1), 126 1 e




self-similar variable is not the quantity r/t, as in self-similar
rarefaction wave (see § 11),
The only dimensional combination containing length and time in

this case 1is E/poz [E/po] = [cmSSGC'E]. Therefore, as self-similar

variable serves the dimensionless quantityx

e-r(m.) : (1.109)
To front of shock wave there corresponds a definite value of
independent variable &O; law of mction of front of wave R(t) is

described by formulas

U‘I-.
U'IN

e (2)

Velocity of propagation of shock wave is equal to:

o-g-32mud (£) -3d(S)ir.

Parameters of front are expressed in terms of velocity of front,

(1.110)

with help of limiting formulac for strong shock weves

. 1t 2
a=wlf], P=gred’ =330 (1.111)

Density on front remeins constant and equal tc its limiting

value, Pressure decreases with flow of time according to the law
Pg""QoD.""Qo(—'\“ I~TI‘—' (1.112)

It is easy to understand the physical meaning of laws of prop-
agation of a strong blast wave. By moment t the wave attains radius
R, and encompasses volume of gas uvR3/3 and mass M = po.th3/3.
Pressure 1s proportional to average energy of unit of volume, i.e,,

p~ E/R3. Velocities of front and gas are proportional to
D ~u~Vpi~VEi. By integrating equation dR/dt = D, we will find

dependence of radius of front on time, R '~'(E/p0)1/'3t2/5 (with accuracy

up to numerical coefficient €o).
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Formula (1,112) demonstrates law of similarity for transition
from certain energles of explosion to others, Pressure on front has
given value at distances proportional to Ei/a, or at moments of time,
proportional to Ei/j.

Distributions of pressure, density, and velocity of gas over
the radius are determined by dependence on one dimensionless variable
€, which can be represented in the form £ = &Or/R. Shape of distri-
butions, in virtue of self-similarity, does not change with flow of
time; scales of quentities p, p, u depend on time in exactly the
seme way as values of these quantities on shock wave front. In other
words, solution can be represenied in the form

P=p()P(®), u=u())u@?), e=0e(®)
where pi(t), ui(t), p, are pressure, velocity, and density on shock
wave front, which depend on time by known laws described by formulas
(1.111) and (1.112), and p(&), U(E), P(¢) are new, dimensionless
functions.

Substituting these expressions in equations of zas dynamics
written for spherically-symmetric case, and going from differentiation
with respect to r and t to differentiation with respect to £ with
help of relationship (1.109), Just a8 this was done in § 11, we will
obtali. system of three ordinary first order differential equations
in three unknown functions p, U, p. Solution of this system should
satisfy conditions on wave front: for € = £, P=u=pm=1,

We will not expound here procedure of solution or write out
final formulas, which can be found in books of L, I, Sedov [5] and
L. D, Landau and E. M, Lifshits [1]. Let us note only that dimension-
less parameter contalned in solution eo is determined from condition

of conservation of energyt

E-f«ﬂqdr(a_-g-gi . (1.113)




if we substitute in it the found solution, It depends, Just as the

entire solution, on adiabatic index v.

In real eir adiabatic index i1s not constant; it depends on
k temperature and density due to processes of dissociation and ionization
occurring at high temperature (see Chapter III). However, it is

T almost always possible to select a certain effective value of the

index, considering it to be constant, in order to describe a real
process by solution of idealized problem about strong explosion,

For air it is possible to take values of ¥ equal approximately to
1.,2-1.3.

In Fig., 1.50 there are depicted distributions of ratios p/pi,
% | p/pi, u/ul, T/‘I‘1 over relative coordinate r/R for vy = 1.23; parameter
eo thus is equal to EO = 0,930,

It is characteristic that during strong explosion, density of
gas extraordinarily sharply falls from front of shock wave to center,
Practically entire mass of gas, which earlier uniformly filled sphere
of radius R, now 1s gathered in a thin layer near surface of front.
Pressure near front decreases with distance from front to center by

two to three times, but then almost in the entire sphere remains

T

constent., Temperature increases from front to center, at first less
sharply, while pressure decreases, and chen, in region of constant
pressure, very rapidly. Temperature increase in center is connected
with the fact that near the center there are particles which were
heated by very strong shock wave and possess high entropy. During
adliasbatic expansion to identical pressure, temperature is higher,

the higher the entropy of the particles, i.,e., the nearer to the
center they are, Sharp decrease of density during approach to center

is connected with temperature increase (pressure is constant).
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Using condition of constancy of pressure over radius in region not
too close to front, there can be found asymptotic distribution of gas-
dynsmic quantities as r — 0, From equation of motion with p(r) =
= const, %% = 0, it follows that~%% + u-g% =0, i,e., u=1r/t,

In order to find esymptotic

law for density, iet us tum to

\IL ]
u/, - Legrange coordinate (see § 2), We
i \"/" / will characterize given particle of
as by its initial radius r. (b
L) & e y 0 ( Yy
\ I "particle" we mean an elementary
\ l spherical shell with volume hvrgdro).
//\ At the moment of passage of the shock
M wave front, pressure in it is pro-
4 L r/R - -
v , o &l portional to Py ~ R 2 3.
Fig, 1.50, Profiles
of pressure, density, Starting from this moment, particle
velccity, and temper-
ature for strong point ry is expanded adiabatically, so
explosion in gas with
v = 1,23, that at time t its density is equal
tot

o= (35T
But at given moment t, pressures in all particles located in "cavity"
near the center are identical and are proportional to pc(t) = t_6/5'
Therefore, asymptotic law for density in Lagrange coordinates is
p ~ r%/ﬁt'ex/s. Let us turn to Euler coordinate with help of defi-
nition (1.24)1 predr - porgdro. Substituting here function for density
and integrating, we will obtain dependence of Euler radius of given
particle on times r ~'ro(7—1)/7t2/57. Eliminating from this
expression r, with help of function p(r,t), we will obtain the
sought asymptotic laws . 3

g~r-1¢ &0 for r = 0,
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Asymptotic law for temperaturet

. __3 s@-y)
T~—‘;‘—~r =180 for r = O,

§ 26, Approximate Consideration of a Strong Explosion

Basic laws of process of strong explosion can be established with
help of simple method of approximation proposed by G. G. Chernyy [7].
Let us assume that all of the mass of gas encompassed by blast

wave 1s gathered in a thin layer at the surface of the front, density

A
vy -1 Poe
Thickness of layer Ar 1s determined from condition of conservation of

in which 1s constant and equal to density on front Pq =

masss P
4J!R’Arm=“TRQo; Ar=£&—£_t_i.

For instance, at v = 1.3 Ar/R = 0,0435,

Inasmuch as the layer 1s very thin, velocity in it almost does
not change and coincides with velocity of gas on the front Uy . Let
us assume approximately that density in layer 1s infinitely great,
and thickness accordingly is infinitesimal; mass is finite and is
equal to mass M which was initially located in sphere of radius R
M= pouvRB/B. Let us designate pressure on inner side of layer by Poe
Let us assume that 1t composes fraction a of pressure on wave front
P, = Gp,.

We wil, write second law of Newton for mass M:

£ Mu, = 4nR*p. = inR%p,.

Magss M = MWRBpO/B itself depends on time, so that with respect to time
1s differentiated not velocity, but momei.tum Mui. On the mass from
within acts force thgpc, since P 1s the force acting on 1 cm2 of
surfacej force acting from without 1s equal to zero, since initial

pressure of gas 1s disregarded. Expressing uy and 1 in terms of
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velocity of front D = dR/dt by the formules (1.,111), we will obtain

Noticing that

and integrating the equation, we willl find

D=gR-%1-a),
where a 1s constant of integration, For determination of quantities
a and a we use law of conservation of energy. Kinetic energy of gas
is equal to E_ = Mui/Q. Internal energy 1s concentrated in "cavity"
bounded by our infinitely thin layer, pressure in which is equal to
pressure p, (actually this means that not strictly all of the mass is

contained in the layer, but in the "cavity" there is also a small

1 4WR3

quantity of substance). Internal energy is equal to ET = ;7171 % Pa

Thus,
E-;é;‘—"gpwuﬂzi.
Again expressing P, = 9P, and uy in terms of D and substituting
D, we will obtain

odap W 2w 2 3-8&(1-a)

Be oot [y 4] B0

Inasmuch as energy of explosion E is & constant, exponent of variable
R should become zero, This gives a = 1/2, The obtalned equation

determines constant a,

1 1
3 -+ i B2
o=l mlu ] (G)'

From formula D ~ R5(1"%) with a = 1/2 and formulas (1.111) there

follow the laws already known to usi

. _,_8 _8 2
D~R% p~R?® u~R3 R~©




With help of expression for a we will find proportionality
factor in law R ~ t2/52

ne(3o)- [ ogupr (2 fin (80

We will compare obtained approximate solution with exact solution.

In approximate solution pressure in center is equal to half of pressure
on front, independently of adiabatic index. In exact solution —

P, = O.35pl for vy = 1.43; P, = O.uipi for v = 1,2, Numerical
coefficients &O in law of propagation of shock wave (1.108) in
approximate solution are equal tos &O = 1,014 for v = 1.4 and eo = 0,89
for v = 1,2, In exact solution for the same values of v, eo = 1,033
and 0,89 respectively.

As we see, approximate solution gives fairly good results,

§ 27. Remarks About Point Explosion, Taking into
Account Counterpressure

In the later stage of propagation of a blast wave, when pressure

il ot

in shock wave front becomes comparable with initial pressure of gas
(more exactly, when p, becomes on the order of [(v + 1)/(v - 1)] Pys
see footnote on page 126t), self-similar solution of problem about
strong explosion loses validity.

Process in this stage no longer is self-similar, since in the
problem there are characteristic scales of length and time, which it
is possible tc compese from quantity of total energy of explosion E
and initial parameters of gas. As scale of length serves radius of
sphere whose initial energy is comparable with energy of explosion
ry = (E/po)i/j. As scale of time serves time in which sound passes
over this distance t, = ro/co, where c, = (ypo/po)i/z. Thus, for
instance, during explosion in air of nocrmal density (po = 1.25-10’3g/cm2

Py = 1 atm, c, = 330 m/sec) for enevgy E = 10°1
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approximately to energy released during explosion of 20,000 tons of

trotyl, scales are equal to ry = 1 km, t, = 3 sec,

0
Solution of problem about propagation of shock wave of point

T

explosion, taking into account counterpressure, was obtained in a number

of works [8~10] by means of numerical integration of partial differ-

ential equations of gas dynamics, All results of calculations,

detaliled tables, and graphs of distributions of gas-dynamic quantities

at varlous moments of time can be found in these works, and also in

fourth edition of book of L, I. Sedov [5].

We will be limited here only to certain remarks concerning
qualitative character of the process.

With flow of time, amplitude of shock wave becomes less and less;
pressure on front asymptotically approaches initial pressure of gas —
atmospheric, Accordingly there decrease compression of gas in wave
front and speed of wave propagation, which asymptotically approaches
speed of sound Cqye Law of propagation R ~ t2/5 gradually becomes
law R = cot. When pressure in central region of blast wave becomes
close to atmospheric, expansion of gas in this region is ceased and
gas stops. Reglon of motion of gas 1s carried forward, nearer to
shock wave front, which gradually becomes spherical wave of the same
type as acoustic wave, Behind region of compression in such a wave
there follows reglion of rarefaction, after which ailr arrives at its
finanl state, Final state of layers far from center, through which
shock wave has passed, since 1t 1s weak, 1little differs from initial
state, Distributions of pressure, speed and density over radius at
some later moment t have form depicted in Fig, 1.51., If we follow
the change of pressure in time at a definite distance from center of

explosion, then there will be obtained the picture shown in Fig, 1.52.
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At the time ti’ when to the given place approaches shock wave front,
pressure Iincreases by a Jump, then decreases; 1t drops to a magnitude
lower than atmospheric pressure (positive and negative phases of
pressure), and then returns to its initial magnitude,

As was already said, final

D
‘\~//4 se state of gas at large distances
— from center of explosion almost
’ ‘\//4 Pe does not differ from initial state.
At small distances, gas in final
-
« .o state turns out to be strongly
/| rarefied and highly heated, This
N r
S is connected with the fact that
Fig. 1.51. Profiles
of pressure, density through particles located near the
and velocity at later
stage of explosion, center, the shock wave has passed
when shock wave becomes
weak, while very strong, and entropy of
these particles 1s much higher than
v initial,
Y/
e 2 Asymptotic distributions of
7 ‘ final density and temperature over
Fig. 1.52. Dependence radius near center can be found from
of pressure on time at
fixed point at large condition of adiabatic expansion to
distance from center
of explosion, atmospheric pressure of particles

heated in strong shock wave front,
Repeating calculations made at the end of § 25, but now without
dependence of P, ©On t, and considering Py = Py = const, we will find
the very same distributions over radius as r — 0, as in the problem

sbout a strong explosion p ~ 2/ (V=) o w3/(v-1)




Final distributions p(r) and T(r) are shown in Fig. 1,53, In
heated region there is concentrated quite a considerable fraction of
energy of explosion, on the order of several tens of percent (it
depends on v), This is the energy which went into irreversible heating
of gas, which 1s connected with irreversibility of process of shock
compression, Remaining energy passes forward together with shock wave
and is dissipated in space, What happens to energy "sticking" in
region of center will be discussed in Chapter IX (air in this region

cools due to light emission),
4

2 Later stage of propagation of
blast wave has been studied theoret-
7 o 1cally and experimentally by many
authors, Limiting laws of propa-
gation of wave at large distances
T
: - were found by L. D, Landau [11],
Fig. 1.53. Final distri- Empirical formula of M, A, Sadovskly
butions of density and
4 temperature (t — ) [12] for pressure on front in
: during strong explosion
(under the assumption of dependence on distance from center
adiabatic character of
the process), of explosion has great practical

value, Let us note that law of
similarity p; = £ (E1/3/R) is valid also in later stage of propagation

of shock wave, when pi-— Py € Pye
§ 28. Strong Explosion in Non-Homogeneous Atmosphere

Above there was considered probiem about strong explosion in
infinite homogeneous medium, As is known, atmosphere of Earth is not
homogeneous3 air density decreases with altitude, and, iIn a certain

Q approximation, dependence of density Po on altitude h is described by




barometric formuls Py = pooe"h/A, where Poo 1s density at sea level,
and A is so-celled altitude of standard atmosphere, which at the
surface of Earth is equal approximately to 8.5 km,*

Let us see how shock wave of strong point explosion propagates
in non-homogeneous atmosphere, We obviously will be interested in
that stage 1n which wave has departed from point of eiplosion to
distances compareble with scale of heterogeneity A; only then does
there eppear the influence of heterogenelity. Shock wave, as before,
we assume to be strong (pressure behind front is much higher than
pressure before the front).

Gas-dynamic process now no longer is self-simllar (there is a
scale of length A), and, moreover, motioﬁ is not one-dimensional, but
two-dimensional. In cylindrical coordinates with vertical axis passed
through point of explosion, motion depends on coordinate z and radius
r, Complete solution of gas-dynamic problem can be found only by
means of numerical integration of equations of gas dynamics, However,
it 18 possible to obtain an ldea of the character of propagation of
shock wave and shape of its surface on the basls of simple consider-
ations, which was done by A, C, Kompaneyets in work [13]%**,

Let us assume that, as for an explosion in a homogeneous medium,
pressure is equalized almost over the entire volume encompassed by
the blast wave, and on the front is constant along surface of front
and proportional to mean pressure, i.e,, to the ratio of energy of
explosion to the entire volume

Pi=(y—1)h 5. (1.114)

¥In reellity terrestrial atmosnhere is not strictly exponential,
since temperature of air changes with altitude., Scale 4, which is

determined as A = id 1n p/dh)” 1, chenges in interval from 6 to 15 km
at altitudes below 150 km Above 150 km, scale A becomes still larger,

#*Se@e glso [14].
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Here M (V) 1s numerical coefficient, which for estimate can be

taken, for instance, from solution of problem about explosion in a

homogeneous mediuvz, Let us assume that equation of surface of shock

wave front in cylindrical coordinates is f(z, r, t) = 0., By differ-

entiating this equation, we will obtain

/A dz+ Lary 3 "’ dt=0

or

0[ Dz+ of Dr—va= "';{‘ ’

where Dz and Dr are vector components of velocity of front D, Normal

component of velocity of front is expressed by known formule

&)
D= -5 fivsl.
But, according to condition on front of strong shock wave,

(Pl y+1\¥

’

where Po is density before front at given point of surface,

/3 From the last two expressions we havet

i i\ i
(&%) =~/

We substitute here pressure Py Ry formula

(1.415)

(1.114) and express volume Q in the form

Fig. 1.54, Cross
section of surfaces
of shock wave front
for strong explosion
at a great altitude
along the vertical
plane passing through
point of explosion,
There are shown con-
secutive moments of
time. On segment A,
density of atmosphere
changes by e times,

of integral ( = J.dn with help of equation

of surface of front bounding volume Q.
Thus equation f£(z, r, t) will be

considered to be solved for radius r =

= r(z, t). Atmosphere will be considered

strictly exponential, Such an operation
leads to partial differential equation
for the sought functicn r = r(z, t).

which is solved in work [13].
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Evolutlon of surface of shock wave front is seen from Fig. 1.54,
borrowed from work [13], on which there are depicted cross sections of
wave along vertical plane passing through point of explosion (through
axis z), In Fig. 1.54 there are shown sectlons in consecutive moments
of time, Wave which in the beginning 1s spherical gradually tékes
egg-shaped form, and then, after a finite time 1, goes upwards to
infinity, as 1f "breaking through" the atmosphere, This characteristic
time T 1s equal to

g/ B
where B 1s numerical constant equal approximately to B = 1.4, and
p* 18 density of atmospheric alr at altitude of explosion. By moment
t = 7 the wave goes downwards to a distance of 1,38 A, and along
horlzontal to a distance of 2.04 A, Wave goes upwards to an infinite
distance 1n a finite time, since during upward motion through more and
more rarefled ailr, shock wave 1s accelerated to Infinite velocity.

During motlon downwards, in the directlon of dense alr, wave 1s
decelerated the fastest of all, At the time t = 1, the volume of air
enveloped by the shock wave becomes infinlte; pressure by formuls
(1.114) becomes zero, and solution loses validity. Obtained solution

1s applicable only under the conditlon that shock wave is strong, when

pn__E
Po PR P

R,)i
where R 1s characteristlic dimension of reglon enveloped by shock wave,
and Pq i1s atmospheric pressure.

Heterogenelty of atmosphere has an effect only when wave goes to
distances comparable with scale A, 1,e., to dlstances on the order of
10 km, Thus the above described evolution of surface of front will
occur only during explosions of great power at a great altitude, where

density and pressure are low,




Cos _,,\_r-,;~

e e e

For instance, at altitude h = 100 km, Po 18 on the order of

10  atm = 1 bar, and pi/pO > 100 at distance of R =~ 10 km only for
explosions with energy E > 1020 erg,

For explosion with not excessively great power at low altitude,
shock wave attenuates at distances much less than A, and process of

strong explosion proceeds practically in a homogeneous atmosphere,
§ 29, Adisbatic Dispersion of a Gas Sphere into a Vacuum

Let us become acqualinted with another gas-dynamic problem with
which it will be necessary for us to deal in the future (in Chapter
VIII): the problem about dispersion of gas into a vacuum,

Let us imagine a gas sphere occupying at the initial moment a
spherical volume of radius RO. Let us assume that, for definiteness,
at initlal moment gas 18 at rest and fi1lls volume uniformly with
density Po (total mass of gas is M = pothg/B). Initial pressure of

gas also 1s conslidered to be constant and equal to Pys 8O that total

‘yRD
YR
energy of gas 18 E = 5 f T Po —-?éL (gas 1s assumed to be ideal with

constant heat capacity). At time t = O there is removed the partition
restraining the gas, and the latter starts to be expanded into the
vacuum without restrcint, | '

After removal of partitian there occurs disintegration of shock
and throuvgh gas to center there propagates a rarefaction wave, Front
layers of gas are expanded into vacuum with maximum velocity of outflow
Wax = ;régjf-co. When rarefaction wave reaches center, the motgpn
- dispersion — involves all of the substance. In process of adiabatic
dispersion, due to work of expansion accomplished by gas, substance
accelerates, and its initial internal energy E gradually becomes
kinetic energy of radial motion., It is possible to show (see [15])
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that during isentropic dispersion (and our problem is isentropic,

since at the initial moment, in virtue of constancy of pressure and
density over radius, entropies of all particles are identical, pertur-
bations from internal regions of sphere do not reach the frort boundary,

so that 1t moves with constant speed Wiax = 37%~T ¢ye Law of motion '

; of boundary of gas sphere is R = 5 ? T cot + Ro. It is not possible
to find exact analytic solution of problem at hand, since problem is
not self-similar, and it is necessary to solve system of partial
differential equations, which it is possible to do enalytically only
in very rare cases, The fact that problem is not self-similar is

easy to verify by noticing that there is a characteristic scale of

length — initial radius of sphere RO.

However, this problem possesses the property that with flow of
time, motion asymptotically becomes self-similar, Really, in the §
stage of large expansion at R >> Ro, role of initial parameter of |
length becomes less and less important, since scale of length Ro
becomes very small as ccmpared to characteristic scale of flow — the
actual radius of the sphere R, Motion of gas with flow of time as it
were "forgets" about initial radius Rye Nevertheless, motion does
not completely "forget" about initial conditions, and in this there
appears essential non-self-similarity established in the considered
process,

Let us consider asymptotic behavior of solution as t — ™,

Force acting per unit of mass of gas thus tends to zero, Indeed,
this force —-ﬁ%-%% in order of magnitude is equal to — p/pR, where p
and p are certain average pressure and density over mass at time t.
But average pressure p proportionally to ratio of thermal energy of

all of the gas to its volume p NEtherm/R3 and in any case is less

-
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than E/RB. Average density p ~'1/R3; therefore force tends to zero
in any case not slower than 1/R., In fact, force decreases as R ~ @

faster than 1/R, since thermal part of energy decreases during adiabatic

expansion: E ~ Me ~'M% ~ py_1 ~'R"5(7-1). Hence p ~

therm

2 --’_
Etherm/R R 37, decreases ag R -+ =5y i). Equation

of motion in the 1limit as t - o, R =+ ® acquires asymptotic form:

du du _ 1p 1

= + o= T Qo Ri+3(?-‘)-—>0'

i.e., speeds of all particles tend to constant values, where u = r/t,

As t — ® dispersion acquires inertial character,

This follows directly from condition of conservation of total
energy of gas E, Total energy 1s composed of thermal and kinetic
energlies, but thermsl part of energy during expansion asymptotically
tends to zeroj consequently, kinetic energy tends to E, and average
speed of gas mass asymptotically tends to constant limiting value

= V2E/M, which 18 in a definite numerical ratio with speed of

boundary:
2 2
Ymax = oo =7 VY ‘— ,_,VV =l/y 1w V,ﬂ:,“-

(for instance, in monatomic gas vy = 5/3 and W ™ 2.9um). By sub-
stituting asymptotic solution for velocity u = r/t in continulty
equation, we are convinced that it is satisfied by the following

where £ is an absolutely arbitrary function of r/t., Inasmuch as

density functions

radius of boundary of sphere is equal to R = umaxt’ this formula can
be rewritten in the form

. 1




Asymptotic distribution of density over radius does not change

with flow of timej; 1t only 1s stretched in conformity with increase of
R, whlle remalining simllar to itself, self-similar, Actually, if in
the gas there do not act any forces, and every particle flies with
constant speed by inertla, then no redistribution of mass occurs, and
profile of density remalns constant,
However, Internal non-self-similarity of problem i1s evident in
the fact that this asymptotic distribution of density cannot be found
from equations of asymptotic motion, which permit any distribution,
Distribution of density is formed in the early stage, when in
the gas there act forces of pressure, By the time when gas is strongly

expanded, it 1s, as it were, "frozen." Distribution of density depends
on iﬁitial conditions and can be found only on the basls of complete
solution of the problem,

As already has been noted, exact solutlon of problem with initial
conditions po(r) = const, py(r) = const, u = 0 is impossible to find
in analytic form, Approximate solution 1s possible to construct,; if
we proceed from consideration of the analogous two-~dimensional problem
about dispersion into vacuum of a gas layer of finlte mass with constant
initial distributions, which can be solved, This approximate solution
ig glven in book of K, P, Stanyukovich [15]; it has the forms

= (1-5)" =Y, R=vaut

where solution is valid only for integral values a = 0, 1, 2, 3,...,
which correspond to following series :- -alues of adiabatlc index:
Y =35 5/35 T/5s 5/ Tees.

Constant A can be determined from condition of conservation of
mass if we integrate density function over entire volume of sphere,

Corresponding formula is given in [15].
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§ 30, Self-Similar Regimes of Dispersion of Sphere into a Vacuum

There exists a class of solutions of problem about dispersion
of gas sphere into a vacuum in which distribution of all gas-dynamic
quantities are strictly self-similar, i,e., from the very beginning
depend on radius r in the form of ratio of r to radius of boundary of
sphere R and do not contain any other dependence on r., To these
solutions lead not any initial distributions of quantities over radius,
but only those which satisfy a definite relationship.

This class of solutions 1s characterized by linear distribution
of velocity over radius (such solutions were investigated by L. I.

Sedov [5])s
u=rF()=Rg .

(1.116)
where function of time F(t) 1s expressed in terms of speed of
boundary of sphere R = dR/dt. By substituting this formula in
equation of motion, we will obtaln relationship

a -
L= —r(F+), (1.117)

which must be satisfied by distributions of p and p over radius during

the entire process, including at the initial moment of time, Only

under this condition will the solution belong to the considered class,
Let us consider two concrete examples of such solutions,

1., Let density p be constant over all of volume and not depend

on radius N
e=1()= G -

(1.148)
It 18 easy to verify that assignment of functions of density and
speed in form (1.118), (1.116) automatically satisfies continuity

equation for arbitrary dependence R(t)., Substituting (1.118) in

AR 4 2t N



(1.117) and integrating, we will obtain parabolic distribution of

pressure over radius

P=Po(‘)<1—,%)- (1.119)
which should be assigned from the very beginning so that condition
(1.117) 1s satisfled. As we see, the problem is not isentroplc, since
densitlies for all particles are identical, and pressures are different.
Substitution of p and p into entropy equation gives relation between
unknown functions: pressure in center p,(t) and radius of sphere

R(t):
pa(t):AQ\':A(%%,—)vi%;a (1,120)

where A 1s a constant depending on initlal entropy in center of sphere.
Substituting, finally, (1.118), (1.119), (1.120) into equation of
motion (1.117), we will obtain second order differential equation for
law of motion of boundary of sphere R(t)., Solving it with initial
condition t = 0, R = RO’ R = ﬁo, we will find complete solution of

the problem, In particular, we may assume that at initia’ moment the
gas8 18 at restt ﬁo = 0,

If we are Interested in asymptotlic behavior as t - o, it is
immediately possible to set R = const = Uy, where uy is limiting
velocity of boundary of sphere (solution of differential equation,
naturally, gives R — const as t — ®), Quantity uy can with the help
of radial distributions of p and u be calculated from condltion of
conservation of energy, conslidering that as t — ® all energy becomes
kinetic, We obtain thus:

""‘/?;l/i:_:' l/g“- (1.121)

where u, as before 1s defined as square root of average of square of

velociiy over mess u = V= VM.

s
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\: 2, Let us assume that »ntroples of all particles are identical
| (isentropic motion), i.e., S(r, t) = const, p/p7 = A = const (A is
entropy constant). Substitution of ; = Ap'y in relationship (1.117)

leads to following profiles of pressure and density:

i
2
e=e(1-5)" (1.122)
b
2 N\y-1
p=Ag! (1-75)' .. (1.123)
which naturally have to be assigned from the very beginning,
Density in center P, cean be determined by integrating density
over volume and equating integral to masst this glves, as usual,
B ~ M/RB, with numerical proportionality factor depending on 7y,
Relation (1.117) leads after substitution of (1.122), (1.123) to
gsecond order equation for R(t). Limiting value of speed of boundary

uy can be obtalned from conditlon of conservation of energy:

R
E= §3u-2-’—4m"dr,

if we substitute in integral p by formula (1,122) and u = uir/R.

‘ This gives relation between u, and u = V2E/M, where propor-
f tionslity factor also depends on 7y, Both coefficlients are expressed
| by definite integrals, which are calculated with the help of gemma-

functions,
b Let us give numerical results. For v = 5/3 p, = 3.Up, u, =
; = 1,64 u 3 for vy = 4/3 Po ™ 6.6p, uy = 1.92 ug, where p = M/(thB/B)

18 average density over volume, In the limit as t = R~ u,t.*

1
' *In work [17] there are reported certain results of numerical
solution of equations of gas dyramics for problem about isentropic
dispersion of sphere into vacuum under uniform initial conditions (at
t = 0 gas in sphere 18 at rest, its density and pressure are constant
over radius). Unfortunately, in the work there is not given asymptotic
profile of density, but there is given graph of pc(t). It is clear

that with passage of time the dependence tends to Po -1/t3, where

coefficient in this limiting law turns oat to be altogether 1.22 times
as great as in the self-similer solution described here,
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Let us note work of V., S. Imshennik [16], in which there is con-

sidered problem about isothermal dispersion of gas into a vacuum,
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CHAPTER 1II
THERMAL RADIATION AND RADIANT HEAT EXCHANGE IN A MEDIUM

§ 1. Introduction and Basic Ideas

Up to recent times high temperatures of the order of tens and
hundreds of thousands or millions of degrees interested mainly
astrophysicists. Theory of radiation transfer and radiant heat ex-
change was created and developed as & necessary element for under-
standing of processes occurring in stars, and explanation of observed
lﬁminosity of stars, To a considerable degree this theory is also
transferrable to other high-temperature objects, with which physics
and technology of today must deal., In this chapter we will become
acquainted with fundamentals of theories of thermal radiation, radiant
transfer of energy, theory of luminosity of heated bodies, and will
formulate equatiéns describing hydrodynamic motion of substance under
conditions of intense radiation. In the account of these topics we
will be oriented toward "terrestrial" applications, while dwelling on
certain aspects which are not so important for astrophysics, or which

do not even appear in this area.*

*It 1s possible to become acquainted in more detail with problems
of theory of radlation transfer and its applications to astrophysics
in books of V. A. Ambartsumyan and others [1], Unsdld [2], E. R.

Mustel! [3].
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We will recall basic concepts and definitions of the theory of
thermal radiation. Radiation i1s characterized by frequency of oscil-
lations of electromagnetic fileldyv or wave length A related with
frequency through velocity of light A = c/v. Subsequently, we will
always deal with media in which index of refraction is very close to
unity, so that by ¢ we will mean velocity of light in & vacuum, equal

to ¢ = 3.101°

cm/sec, From quantum point of view, radiation is con-
sidered as a collection of particles, photons or light quanta, whose
energy is connected with frequency of equivalent field by means of
Planck's constant h = 6.62:10"21 ergesec, Usually energy of a quantum
hv* is measured in electron volts. One electron volt is the energy
which is acquired by an electron during passage through a potential
difference of 1 volt; 1 electron volt (1 ev) is equal to 1.6010-12 erg.
Frequently in electron volts 1s measured temperature, Temperature T

of 1 electron volt corresponds to energy of kT = 1.6-10"12 erg, where

16

k = 1.38:10""" erg/degree — the Boltzmann constant:

y L N il
%= {8101 11600 '

i.e,, temperature of 1 ev is equal to 11 600° K.

In electromagnetic scale of frequencies (wave lengths) or, so
to speak, in spectrum of radiation, usually there are distinguished
several very unclearly defined ranges, which have definite names:
radio wave, infrared, visible, ultraviolet, x-radiation, <y-quanta,
This division was made historically and does not have any strict physi-
cel foundation, Certain frequencies intermediate between intervals

are even difficult to refer to one or the other heading. An exception

#*In Quantum theory it 1s accepted to use instead of frequency v
"circular" frequency w = 27v and, accordingly, Planck's constant h =
= h/2r. In this book we will use quantities v and h, as this is
accepted in theory of radiation transfer and astrophysics.
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i1s only the more or less definite, visible part of the spectrum:

Py ~»7590-MOOOR, hy ~ 1,7-3,13 ev., In theory of thermsl radiation it
is proven that in state of thermodynamic equilibrium of radiation with
substance, maximum of energy of spectrum with respect to frequency
E-iongs to frequency v, which is related with temperature by tﬁe
formula hy = 2,82 kT, It is possible to say that frequency v is most
characteristic for a body with temperature T = hy/2.82 k; therefore,
comparison of frequency and temperature ranges immediately gives an
idea of to what temperatures a given region of the spectrum correspons.
Visible radiation is characteristic for bodies with temperatures of
the order of 7000°-13000° K.

Electromagnetic field or light quanta possess not only energy,
but also momentum, Momentum of gquantum hv in sbsolute value is equal
to hv/c. Direction of motion of quantum coincides with vector of
energy flow of field — Poynting vector.,

Field of radiation filling space is described by distribution of
intensity of radiation over frequencies in space and along directions
of transfer of radiant energy. If we speak about radiation as a col-
lection of particles — light quanta — then field can be characterized
by distribution function of quanta, which is fully analogous to dis-
tribution function of any other particles. Let us assume that
f(v, r, §, t) dv dr d is number of light quanta in spectral range
from v t¢ v 4+ dv, which are located at time t in element of volume
dr* near point »r and have direction of motion in elementary sclld angle

df} near unit vector fl. Function f is called distribution function.
Every quantum possesses energy hv and moves with veloclity c; there-

fore, the gquantity

#Linear dimensions of elementary volume dr are assumed to be much
larger than wave length A,




Iy(r,Q, t)dvdQ = hvef(v, r, R, t) dvdQ)

is quantity of radiant energy in spectral range dv flowing in 1 sec

through an element of 1 cm2

» which is placed at point r perpendicular
to directions of propagation of energy, which lie in elementary solid
angle df} near vector §). Iv is called spectral intensity of radiation.
Assigning functions Iv or f completely determines fleld of radiation.
Quantity of radiant energy contained in spectral interval dv and lo-
cated in 1 cm; of space at point r at time t, or spectral density of

radiation, 1s equal to

Us(r.t)=hv | faa=21 ( 1.4 (2.1)
tm )

Let us imagine a unit element with direction of normal n., Quanta
intérsect it from the left to the right and from the right to the left,
Quantity of radlant energy in interval dv flowing in 1 sec through
the element from the left to the right ig equal to hve 2J;Tf cos § dQ,
where § 1s angle between direction of motion of quanta Q§ and normal
n; integral is taken over right hemisphere, as the base of which
serves the element of area (Fig. 2.1). Integral over left hemisphere
is equal to quantity of energy flowing from the right to the left,
Difference between unidirectional fluxes from the left to the right
and from tﬁe right to the left gives total spectral energy flow through
this element of area. Inasmuch as cos § has different signs in right
and left hemispheres, spectral energy flow through element with normal

n is equal to

Sv(r, t, B) = hve S fcos®dQ= S I,cos0dQ, (2.2)
(im) (ix)

where integral 1s taken over entire solid angle.
Flux is a vector quantity, The written expression (2,2) is a

proJection of flux vector onto direction n. The vector of spectral
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flux itself is equal to

S\v:SIvndn' (203)

where {§ is unit vector of direction of motion of quanta.
With isotroplc distribution of radiation, when distribution

function f and intensity Iv do not depend on direction Q, density of

rediation is equal to
U,=dnhvf =221, (2.4)

and there is no flux: Sv = 0 and projections onto all directions

3 are also equal to zero (since in every direction there is transfered
exactly as much energy as in the opposite direction).

Total intensity, density, and flux of radiation are obtained from
their spectral counterparts by integration of them over the entire

spectrum of frequencies:

I=§I.dv, U=§U.dv, s=§svdv. (2.5)

o i i e s

Let us introduce now the idea of optical characteristics of a

Flr s h

substance . *

3

Amount of energy spontaneously radiated in 1 cm” of substance in

1 sec in the spectral interval dv 1s called spectral emittance or

2 radiation factor Jv' Usually gases radiate llght in all directlons
: equally, isotropically, since atoms, molecules, ets., are oriented
and move in space in a random manner. Therefore amount of energy
radiated in solid angle dQ} in some direction is equal simply to

J, aa = J,, aq/bw (Jv is calculated per unit solid angle).

*Here and subsequently, when using terms "light," "light quanta,"
"optical"™ properties, we will not be limited, as i1s accepted in every-
day useage, only to visible part of spectrum, but will carry these
terms to any frequenclies,
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Sometimes emittance is referred not to unit of volume, but to
a unit of mass, In order to obtain corresponding magnitudes, it is
obviously necessary to divide Jv or Jv by denslty of substance p.

If through substance there passes a beam of
light, it is attenuated along its path., Attenu-
ation occurs due to absorption of quanta, as
well as due to their scattering, i.e,, deflec-
tion from initiel direction. Relative attenua-

tion of parallel beam on element of path dx is

Fig. 2.1 Concern= proportional to this element, i.e.,

ing the derivation

of the formula for dfy= —p,lydz. (2.6)
flux of radiant
energy. Intensity of beam decreases after passage

over distance x from point x = O to point x by exponential law

I"’"°*F[f§i‘v43] . (2.7)

Attenuation factor Ky, is composed of coefficient of absorption
”va* and scattering coefficient Nyge Reciprocals are mean free paths

of light: total 1, = 1/uv, with respect to absorption i, = 1/nva

-1 -1,-1
and with respect to scattering 1,. = 1/u (1 = (1,, +1,5) 7). Mean

va
free paths characterize attenuation of beam of light with respect to
the corresponding process per unit of path, Coefficients which are
referred not to unit of path, but to unit of mass are spoken of as
mass coefficients, Mass coefflcients are equal respectively to
uv/p’ ”va/p’ "g/Pe

Mean free path 1s the average distance which a quantum passes

over before it is absorbed, scattered, etc., But quantum travels with

*We now digress from processes of stimulated emission, about which
we will be concerned below, and imply by L the coefficient of true
absorption.




gy p—

speed c, and therefore average time of "life" of quantum with respect
to a glven event 1s equal to mean free path divided by velocity of
light 1/c. For instance, if on element of path, dx there is absorbed
fraction dx/zva of quanta, then during the time dt there 1s absorbed
fraction cdt/1_ .

Attenuation of beam of light 1s characterized by product of atten-

uation factor and mean free path. Dimensionless quantity

x
r"y=Spydz' dtyzpydx (2'8)
0

1s called optical thickness of layer x with respect to light of
frequency v. Beam of light is attenuated by e times on an optical
thickness equal to unity. In the case when scattering can be dis-

regarded, optical thickness is

2 .
Ty = (‘ Xva dx, dfy=*;ad_z. (2’9)
6 .

§ 2. Mechanisms of Emission, Absorption and
Scattering of Light in Gases

Light quanta are radiated and absorbed during transitions of
electrons in atomic systems: atoms, molecules, lons, electron-ion
plasma, from one energy state to another. During absorption of a
quantum there occurs excitation of the atcm, molecule, etc, So that
emission of quantum occurs, it 1s necessary preliminarily to excite
atom; atom loses excitation energy, transmitting it to the emitted
quantum, Emittance 1s higher, the larger the number of excited
atoms, 1,e., the higher the temperature.

In Fig. 2.2 there 18 depicted energy level dlagram of simplest
atomlc system, consisting of proton and electron, which in bound state
form an atom of hydrogen. As zero energy 1s taken, as usual, the

boundary between free and bound state of electron, so that in bound
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gtate energy is negative, In bound state electron can be only at

definite, discrete energy levels. Ground state of proton — electron
gystem has energyEﬁ = -13,5 ev, which 1s in absolute value to ioni-

zation potential of atom of hydrogen. In free state with positive
energy (ionized atom of hydrogen) electron can possess any energy,

so that energy spectrum is continuous,

7

0
, 4
/ o
El
£
JFig., 2.2. Energy level dia-

gram of proton-electron sys-
tem, E1 = -13,5 ev 18 ground

gtate of atom of hydrogen,
Eg, E3 are levels with prin-

cipal quantum numbers n =

= 2.3, E = 0 corresronds to
boundary between 1li... and
continuous spectra. Arrows
show possaible types of tran-
sitions: I) bound-bound;
II) capture of electron by
proton; III) ionization of
atom; IV) free-free.

sitions there are emitted and absorbed line spectra,

In qualitative sense, energy
spectrum of complicated atomic systems
does not differ from spectrum of the
simplest system.

All electron transitions can be,
as this 1s accepted in astrophysics,
subdivided into three groups according
to the criterion of continuity or
discreteness of energy spectrum of
initial and final states of the atomic
system: into bound-bound, bound-
free, and free-free (all allowed
transitions are shown in Fig., 2.2
by arrows).

Bound~bound transitions include
transiticns of electrons within atoms,
molecules and ions from one discrete
level to another. 1In virtue of dis-
creteness of energy levels of bound

state of electrons, during such tran-

In molecules,

when simultaneously with electron transition there occurs change of




state of vibrational and rotational motions, there are obtained band
spectra,*

During bound-free transitions, electron as a result of absorp-
tion of quantum obtains energy exceeding binding energy of it in the
atom, molecule, or ion and becomes free — there occurs photo-ioniza-
tion. Excess of quantum energy over binding energy is turned into
kinetic energy of free electron. Reverse transitions — capture of
free electrons by lons in ionized gas (photo-recombination) — lead
to emission of quanta. Inasmuch as free electron can possess arbi-
trary (positive) energy, bound-free transitions given continucus
absorption and radiation spectra.

It is necessary to note that not any quantum may cause a photo-
effect in an atom which 1is in a definite state., Energy of quantum
shéuld exceed binding energy of electron in this state. However, any,
even the smallest quantum, can pull an electron from a sufficiently
strongly excited atom, since with increase of excitation the electron
becomes more and more weakly bound,

In an lonized gas (plasma), a free electron traveling in electri-
cal field of ion can emit a quantum without losing besides all of
its kinetic energy and remain free, or absorb a quantum and obtain
additional kinetic energy. These free-free transitions are frequently
called "braking"** transitions, since during emission the electron is
decelerated in field of ion, losing part of its own energy in radia-

tion. These processes also give a continuous spectrum of radietion

*In molecules sometimes there occur transitions accompanied by
change of only vibrational and rotational states without change of
electronic state, Then there are emitted or absorbed quanta of very
low energy, which lie in infrared region of spectrum., At temperatures
of the order of several thousand degrees and above, they pley an
insignificant role.

#**#Trans, Ed. quotes.
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and absorption.,

These processes can occur also during flight of an electron in
field of a neutral atom, In distinction from field of ion, field of
neutral atom very rapidly decreases with distance; therefore for
process of emission or absorption of light, there is necessary close
approach of electron to atom. Probability of "braking" process with
participation of neutral atom is much less than with participation of
ion.

Coefficlents of bound-bound and bound-free absorption are pro-
portional to number of absorbing atoms located in 1 cm3 of gas N,
Magnitude of coefficient referred to one absorbing atom depends only
on properties of atom, degree of its excitation, frequency of quantum,
i,e., is a characteristic of the actual atom. This quantity ”va/N =
= 0,, has dimension of em? (dimension of n,, is 1/cm, dimension of N

is 1/cm3) and has the name of effective absorption cross section. Its

physical meaning is easy to understand by means of the following rea-
soning., Let us assume that parallel beam of light of frequency v
with cross section of 1 cm2 passes through absorbing gas. Absorption
can be imagined thus as if every atom is replaced by some little opaque
disk perpendicular to direction of beam; on hitting this "disk" the
quantum sticks (is absorbed).

If area of every disk is equal to 0, and number of disks (atoms)

per cm3 is N, then total area of all disks, located in layer of gas

with area of 1 cm2 and thickness dx, is equal to 1 cm2 Nov dx, Let us

select dx so small that disks located in layer do not cverlap. Tten,
obviously, during passage of light through such a layer there will

"stick" a fraction of the quanta which is equal to ratio of opaque

area ch dx cm2 to total area 1 cm2; i,e., dIv = -IVNGV dx, Remembering
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definition of coefficlent of absorption (see formula (2.6)), we obtain
that n, = No, l.e., effective cross section o, is area of "opaque"
(for frequency v) disk, corresponding to one absorbing atom. In
exactly this way it is possible to speak about effective cross sec-
tion of atom or some other particle for scattering of quanta. |
Bound-bound transitlons are caused by quanta of strictly definite
energy hv lying within extraordinarily narrow bounds. This energy
must correspond to difference between energies of two levels in atom.
Therefore, we speak of such absorption as selective, Effective absorp-
tion creoss sections of "isolated" atoms for these "chosen" quanta are
extraordinarily'great. For quanta of visible light they of order of
10"9 cm2 in center of line (in middle of narrow interval of selective
absorption.* Such cross sectlions correspond to very small mean free
paths of quanta. For instance, for density N ~ 10 9 3 (order of
density of atmospheric air), mean free path would be on the order of

= 1/n = 1/No -~ 4 cm,

Effective cross sections for bound-free absorption, i.e., for
photoeffect, are much less, on order of :I.O'17 - 10'“o cm2 (1 ~
~ 10'2 - 10 cm at N ~ 10 9 3) These magnitudes pertain, of course,
only to quanta which, in general, are able to pull electron from atom,
i.e., energy of which is higher than binding energy of electron.

In free~free transitions, for absorption of quantum it is neces=-

sary that electron fly at the time of absorpticn very close to

*Effective absorption cross section in center of line having natu-

ral width, of the order ke, where A is wave length of quantum, In
scale of wave lengths natural width of lines in visible part of spec=-

trum 18 on the order of 107*A = 10~*2 cm (1 angstrom (A) is equal to

10'8 cm), Usually in gases width of lines are larger than natural,
and cross section in center of line is accordingly less than A2, For
greater detail see § 9 Chapter V.
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lon — "collide" with ion (free electron is not able to absorb a quan-
tum; it can only scatter it). Therefore, 1n this case, coefficient of
so-called "braking" absorption is proportional to number of ions, as
well as to number of free electrons in 1 cm3: Nopak ~ N+Ne. It 1s
posslible to speak about effective cross section of ion Oprak =
= "brak/N+ ~ Ne only in a conditional sense, since thls cross sectlion
is proportional to density of free electrons., It turns out, however,
that in case of incomplete ionizatlon, coefficient of "braking" absorp-
tion is proportional only to first power of density of gas, since to
density is proportional the actual product N+Nee For quanta which

are the most common at a given temperature, coefficient of "braking
absorption is approximately an order less than coefficient of bound-
free absorption,

In case of tatal lonization, when in éas there are present only
nuclei and electrons (and tound-free absorption in generel does not
occur), coefficient of "braking" absorption is proportional to square
of density of gas.

Mainly free electrons scatter quanta* (if energy of quantum 1s
great as compared to binding energy of electron in atom,.then such
an electron also can be considered as "free").

Quanta of notv tuu nigh energies (much lower than self energy of
electron: mec2 = 500 ev, which are the only ones with which it is
necessary to deal at ordinary temperatures, are s3cattered without
change of energy. Effective scattering cross section is determined
2

[ - = 8 =
0 and is equal to 0g = 3 L

= 6.65.10"25 cm? (this i1s so-called Thomson scattering cross section).

ap—

by calssical radius of electron r

*Let us note existence of effect of resonance scattering, in wnhich
bound electron absorbs quantum with transition into bound excited state,
and then emits it in an arbitrary directlon. Effective cross section of

resonance scattering in center of line, Just as absorption cross sec-
tion, is on the order of A2,
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- instance, in air of normal density N

This cross section is very little; it corresponds to scattering
mean free path 1 ~ 10° cm at density of electrons N_ ~ 1019 em2,
During estimate of scattering length of large quanta, for which all
electrons of atoms and molecules can be considered as free, by Ne we
should understand the total number of electrons present in atoﬁs. For
tee = 2:67-10"7 en™?, and total
number of electrons is 14,4 times as great. Scattering mean free path
is equal to 37 m. It is necessary to note that effective cross sec-
tion of very large, megaelectron-volt quanta differs from Thomson mean
free path,

In incompletely ionized gas, scattering mean free path of quanta
in continuous spectrum always is much larger than absorption mean
‘ree path. Only in completely ionized and very strongly rarefied gas,
when "braking" absorption, which is proportional to NQ, becomes small,
is scattering important,

Under "terrestrial conditions light scattering practically
always can be disregarded as compared to absorption.* Therefore,
subsequently we will omit index "a" for quantities n,» 1,5 We will mean
by them coefficient of absorption and absorption mean free path.

Here we will complete general survey of mechanisms of interaction
of radiation with substance, To detailed account of these problems

will be dedicated Chapter V., Here ncwhere will there be needed by

us specific expressions for coefficients of absorption.

§ 3. Equilibrium Radiation and Ideal Black Body
Let us imagine an unbounded medium which is in a state of thermo-

dynamic equilibrium at constant temperature T. Unde:r steady-state

ke e i

*Under astrophysical conditions scattering sometimes is even greater
than absorption.
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conditions field of radiation is also equilibrium, Thermodynamic

% equilibrium of radiation is characterized by the fact that number of
quanta or quantity of radiant energy emitted by substance in 1 sec
3 in 1 cm; in given interval of frequencies dv and in given interval

of directions 4 1s exactly equal to number of absorbed quanta or

quantity of radiant energy absorbed by substance in the same inter-
vals dv, di. ™eld of equilibrium radiation is isotroplc, i.e,, does

not depend on direction and does not depend on specific properties of

medium, but is a universal function of frequency and temperature,
Spectral density function of equlilibrium radiation va was

derived by Planck at the dawn of development of quantum theory. It

can be obtalned by the most natural means with help of quantum statis-

tics, which is obeyed by a "photon gas" (see, for instance, [4]).

Quantity of energy of equilibrium radiation of frequency v in 1 cm3,

taken over unit interval of frequencies is equal to

Uym it 1 (2.10)

PLL]

In virtue of isotropy, spectral intensity of equilibrium radiation
1s equal to

U, 7 SV | * 2.11
ln=G == = { )

Distribution of energy of equilibrium radiation over frequencies
which is given by Planck function (2.10) is depicted in Fig. 2,3 Max-
imum of this distribution lies at energy of quanta hv = 2,822 kT.
With increase of temperature maximum is displaced in the direction of

higher frequencies. In region of low frequencies hv << kT formula of

*In astrophysical literature instead of Iv there usually is used

designation Bv. 5
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Planck reduces to classical formula of Rayleigh-Jeans:

Up=2T0r, v < AT, (2.12)

In region of large frequencies hv >> kT we obtain formula of
Wien:

U,,—s—“z,:-v—’e "T, hv > kT, (2.13)

Total density of equilibrium radiation is obtained by integration

over frequencies from zero to w of speétral density (2.10), Calcula-

tion gives the known expressions

U,= §U.,dv——‘—°;—ﬂ, (2.14)

where o = 2n5k4/15h3c2 = 5.67.10-5 erg/cmz-sec-deglL 1s Stefan-Boltzmann
constant (U, = 7.55.107"7 °%erg/en’).

2 Proportionality of total density of
44H4 "f\ 3 equilibrium radiation to fourth power of
Z / \\ temperature follows directly from second
ai / A ) law of thermodynamics and the theorem
04 / — known from classical electrodynamics
W/r \\‘ that pressurs of isotropic field of

71 2 3 4 §.617 8 2

radiation is equal to one third of energy
Fig, 2.3. Planck function

(X = 1)1, where x = density: p, = U /3. Substituting this
= hy/kT. expression in general thermodynamic rela-
tion T dS = de + p dV,* whereby specific energy we mean product of
radiation density and volume g = UpV, and noticing that dS is total
differential, we will obtain U = const Tu. We should mention that

relation p,, = Up/3 indicates that equilibrium radiation can be

#*Here S 1is entropy of radlation.
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considered from thermodynamic point of view as ideal gas with adiabatic
index vy = 3/4,

Inasmuch as field of equillibrium radiation is isotropic, radia-
tion flux at any point of body is equal to zero, This means that if
we (mentally) place in the body a plane surface, then unidirectional
radiation fluxes through surface from the right to the left and from
the left to the right will be exactly equal to each other in absolute
value and opposite in direction, The magnitude of unidirectional
flux itself, i.e.,, quantity of radiant energy flowing, let us say,
from the left to the right in 1 sec through unit area will be obtained
by putting in formula (2.2) the expression (2,11) for equilibrium
intensity and integrating not over the entire solid angle, but only

over a hemisphere, Unidirectional spectral flux is equal to

(2.15)
S Uyp  2nhve i
‘V,g ‘ =—;i_ '.' L]
et —1
Unidirectional flux integrated over spectrum is
(2.16)

Ld
S’ = § Sv’dvgfg—et-‘ UT..

Let us lmagine a body with constant temperature T, in which there
is a cavity filled with equilibrium radiation. On 1 cm2 of surface
of the substance in 1 sec from the cavity there falls radiation flux
Svp' This flux, in general, is partially refliected from wall of cavity,
and partially passes inside and is absorbed by the substance (we will
assume that 1t does not pass clear through the body — the body is
not bounded). Let us designate reflectivity by Rv' and absorptivety
of substance by Av; Av =1 - Rv’ Quantity of radiation passing from

cavity to the inside of the body and absorbed in the substance is
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equal to SVp.Av’ In virtue of equilibrium, the same quantity of
radiation JL is emitted in 1 sec from 1 cm2 of surface of body in the
direction of the cavity, i.e., J; = Svp'Av' Absorptivity, reflectiv-
ity, magnitude of emission from surface are characteristics of’body

and state of substance; however, the ratio:

o _g 2w 1 (2.17)
Av_ YPT T s HVAT _y

does not depend on specific properties of body and is a universal
function of frequency and temperature. This statement is called the
Kirchhoff law,
Body, which completely absorbs all radiation incident on it is
called ideal black body. For an ideal black body, by definition,
R, =0, Av = 1, From formula (2,17) it follows that from its surface
there emerges a spectral flux equal to Svp; integral over spectrum of
flux is equal to Sp = oTu.
We will consider an unbounded solid medium with constant tempera-
ture T, in which radiation is in equilibrium with substance, and
again will divide it by an lmaginary plane surface. Unidirectional
fluxes through surface are equal to Svp‘ Quanta which intersect sur-
face from the left to the right are "generated" on the left of the sur-
face, and those going from the right to the left are generated on the
right of the surface, Let us mentally remove the substance from one
side of the surface, let us say, from the right, assuming thus that
temperature of substance on the left is not changed. Furthermore, we
will assume that the medium possesses index of refraction equal to
one, Just as the vacuum which will be formed on the right, i.e., the

boundary does not reflect light. Then, afte» "removal" of substance

from'the right, quanta do not arrive at all from the vacuum side, and

. 165




i Bi csann e i e S U L S i R R A

TR R TN A

flux of quanta from the left to the right from the substance obviously
will not be changed and will be as before equal to Syp. Thus, the
plane half-space filled with substance with index of refraction equal
to one and constant temperature T sends from the surface radiation

flux Svp; i.e., it radliates as an 1deal black body with temperature T,

§ 4, Stimulated Emission
We will consider balance of absorption and emission of light in
substance located in field of radiation Iv’ Quantity of radiant
energy in interval of frequencles du and interval of directions dfl,

3

absorbed in 1 cm” in 1 sec is equal to

I,dvd@x, = absorption per 1 sec per 1 cmz (2.18)

Quantity of energy spontaneously emitted by substance per 1 cm3

per 1 sec in the same interval dv df); is equal to

jydvdQ = spontaneous emigssion per 1 sec per 1 cm3

Quantity of spontaneous emission (radiation factor jv) is
determined only by properties of substance and its state: kind of
atoms, temperature, on which degree of excitation of atoms depends,
etc,, and absolutely does not depend on whether there is radiation in
space or not, This, however, does not exhaust the total quantity of
radiation emitted by substance,

There exlsts so-called stimulated or induced emission. Probability
of stimulated emission of a quantum of given frequency and given direc-
tion 1s proportional to intensity of radiation of the same frequency
and the same direction at given point of space., The existing quanta
promote transitions of excited atomic systems accompanied by emission
of the very same quanta., In quantum theory it appears that total

emigssion probability of given quanta is proportional to the quantity
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1 + n, where n 18 number of plL h definite direction of polari-
zation located in the same phas tnto which the emitted quantum
enters, This number is equal to n = ¢ °r /2hv3 * Thus, total quantity
of radiation emitted in 1 sec in 1 cm3 in interval dv df}, is equal to

, Lok
"d"m(“'mfv)n total emission in 1 sec in 1 cm3. (2.19)

First term in parentheses corresponds to spontaneous emission,
and the second — to stimulated emission,
In state of thermodynamic equilibrium, emission and absorption
of quanta of glven frequency and directlion exactly compensate one
another, so that expressions (2.48) and (2.19) should be equated, where
intensity of radiation Iv is replaced by the equilibrium quantity va.
Taking into account formula (2,11) for equilibrium intensity, we
will find that ratio of emittance of any substance to its absorptivity

is a universal function of frequency and temperature:

iv __ I %V -
e =g . (2.20)
o lv

This relationshlp constitutes one of forms of Kirchhoff law,

Formula (2,20) can be conveniently rewritten in the form
. M
Iv-lv'm(f.—e 'ﬂ')_ (2.91)

Emittance in all directions is equal to

o
J.-hj,-\-.U',x'(i_.g-v). (2. 22)

*Phagse volume corresponding to element dv dfi dr, in which there
are located f dv df} dr quanta, is dp dv, where dp 1s element of volume
in momentum space. Inasmuch as momentum of quantum is equal to p =

= hvl}/c, dp = p2 dp dff = nv? dv dn/c3. Number of phase cells in
element of phase space dp dr is equal to dp dr/hj, and consequently,
number of photons in one cell is equal to f dv 4fi dr h3dp dr = ¢ f/v =
= c?I /hv . Number of photons with definite direction of polarization
is equal to half of this number, i.,e., caIv/Zhv .
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Kirchhoff law constitutes expression of general principle of
detalled balance in reference to processes of emlssion and absorption
of light, It permits calculation of emlttance of substance, if there
is known 1ts coefficient of absorption (and conversely).

Existence of processes of stimulated emission, i.,e., transitions
of excited atom whose probability depends on number of "particles"
(photons) already existing in final state of atom plus photon system
i1s characteristic for processes with participation of photons ("parti-
cles") obeying quantum statistics of Bose., Namely, due to existence
of such processes, distribution function of photon gas differs from
distritution function of gas obeying classical statistics of Boltzmann,
where number of narticles with energy £ is proportional to e'E/kT,
and not (ee/kT - 1)'1, as for photons (g = hv),

In order to explain this, we will consider the simplest case, when
atom possesses two energy levels, g, and € (52 > ei), and transition
from upper energy statz to lower is accompanied by emission of quantum

hy = €p = E4s and transition from lower to upper is accompanied by

absorption of quantum hv. Probability of absorption, 1i.e., Nyys is

proportional to number of atoms in lower energy state, which, acccrding

-g,/kT
to the law of Boltzmann, 1s proportional to e 1 . Probability of

sponteneous emission Jv is proportional to number of atoms in upper

- /KT

We will assume that stimulated emisslion does not exist, Then in

energy state, i.e., e

equllibrium the number of events of spontaneous emission of quanta
hv would be equal to number of events of absorption, i.,e., instead of

formules {2,20) or (2,21), we wou.d have equalities

is (2.23)

"x"‘-lvpp iv"lvp"v-
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but vav e y ™ e » 80 that

. _ L
;l‘.:_- I 5= const e T conste *T,

in other words, for intensity of equllibrium radiation, or which
is the same, for distribution function of quanta, we would obtain law
of Boltzmenn, Just as for "usual" particles. In fact, law of Boltzmann
is valid only for large quante hy >> kT in the Wien reglon,

Only taking 1lnto accou?t processes of stimulated emlssion, con-
slderation of balance of emission and absorption of quanta leads to
formula of Planck for distribution function of photons, In our example

of an atom with two energy levels, we will thus obtain

Iyp . -4y M
%é——:{;—“=constc AT —conste W’
e
whence there follows the formula of Planck for intensity va (for
3
const = 2 ).

c
From conducted reassoning it follows that role of stimulated

emission as compared to spontaneous under cornii+ions of equilibrium
tends to zero as hy/kT — m, 1.e., in Wien region of spectrum, This

we may see directly from formula (2.19), if we consider that during

equilibrium in the limit hy/kT — .
M
.IQ-",“\'G .‘T'—’O.
Conversely, in Rayleigh — Jeans reglon of spectrum, where hv < kT,

relative role of stimulated emission is great: 1in formula (2.19)

t+grs fp=14 o— ~1+ 3T,

cﬁ—i

so that ratio of probabilities of stimulated and spontaneous emissions
is equal to kT/hv >> 1,

It 18 necessary to note that in case when field of radiation is
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non-equilibrium, presented considerations about comparative role of
spontaneous and forced emissions in general are incorrect, since
stimulated emlission is proportional to actual intensity of radiation,

which in absence of equilibrium can be arbitrary.

§ 5. Equation of Radiation Transfer

We will form kinetic equation for distribution function of quanta
of given frequency. Inasmuch as this function with accuracy up to
the constant factor hvc coincides with intensity of radiation, it is
possible to write equation directly for intensity. In such fornm,
kinetic equation is usually called equation of radiation transfer.

We will be interested in radiation of frequency v in unit interval
of frequencies which propagates inside unit solid angle in definite
direction . Let us consider balance of radiation in elementary
cylinder with area of base do and height ds, which is located at
given point of space in such a way that direction §} coincides with
generatrix of cylinder and is perpendicular to its bases (Fig. 2.4).
During the time dt into left base flows quantity of radiation
IV(Q, r, t) do dt. From right base during the same interval of time
dt there flows quantity of radiation (Iv + dIV) do dt.

Intensity Iv is function of coordi-
nates and time, Increase of intensity of
beam of light during passage from left base

to right base is composed of the local

increase during the time of passage by

Flg. 2.4, For derivation light over path ds and of the increase

of equation of radiation

transfer, during passage from coordinate s to

coordinate 8 + ds at given moment of time

ol, ds al,
dlym 5 =+ 55 ds-
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Change of intensity of beam occurs due to emission an¢ absorp-
tion of light with considetr#d characteristics in our cylinder.
(In accordance with remark made at the end of § 2, 1light scatter-
ing will be disregarded). Quantity of radiation emitted in cylinder
during the time dt, according to formula (2.19), is equal to

io (4 + 353 v ) dodsdt.

There is absorbed in it in the same time the quantity of radiation
"vIv do ds dt, By forming balance and dividing obtained expression
by product of differentials do ds dt, we will obtain equation

(G aavs) =js (14955 1) —xlo. (2.24)

We here replaced in left side partial derivative along direction
BIV/Bs by equivalent vector expression QVIV.

Combination in parentheses in left side constitutes simply the
"particle" derivative of intensity with respect to time, i.e., time
derivative of intensity of given packet of quanta (cf, with equation
of motion in hydrodynamics (1.6)).

We will transform right side of equation (2,24) by combinirg
terms, corresponding to absorption and stimulated emission, inasmuch
as they both ara proportional to unknown function of coordinates
and time — to intensity of radiation. Let us moreover introduce into
factor before Iv in term of stimulated emission in place of radiation
factor J, its expression in terms of coefficlent of absorption (2.21),
into which we will substitute formula (2,11) for equilibrium inten-
sity. Right side of equation will take form

fv—ﬂv(i—e-%)l,, (2.25)

Hence it is clear that stimulated emissicn can be treated as some
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decrease of absorption: part of quanta absorbed here also are emitted
agalin with the same frequency and in the same direction, and probabil-

ity of this "re-emission" ir equal to e"m’/k'II Physically such acts

of "re-emission" in no way are apparent, and it is possible in general
to excluie them from conslderatlon, 1f it 1s considered that coeffi-

clent of absorption has somewhat smaller magnitude:

hv

=%y (1—e 7T, (2.26)

Interaction of radiation with substance can be represented as

e st S

if there exists only spontaneous emission and effective absorption
!
described by coefficlent Nyys corrected for stimulated emission.

In new treatment Kirchhoff law (2.21) obtains form

Ay
Jv=%3lyp, %=%,(1—e *T), (2.27)

Introducing this expression into the right side of equation of
transfer (2.24), we will write equation in following, final form:

%—%!+071y=x;(lvp- v). (2’28)

We integrate equation (2,28) over all directions § ( over solid
angle). Remembering definitions of density and flux of radiation
(2.1), (2.2), we will obtain

B+ v Sy oxi (U, — Us). (2.29)

This equation can be considered as equation of continuity for
radlation of glven frequency. It expresses law of conservation of
energy of radiation and is fully analogous to equation of energy in
hydrodynamics written in "divergent" form (1.10),

Equation of transfer of radiation (2.28) is a partial differential

equation with respect to intensity as a function of coordinates,

e

time, and direction of Iy(r, t, f1) and describes fleld of non-

equilibrium radiation. Usually thermodynamic equilibrium in the actual
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subgtance is established very rapidly, so that substance can be con-
sidered to be thermodynamically equilibrium at every point of space
and at every moment of time, State of substance thus 1s characterized
by two parameters, for instance temperature and density, Equation of
transfer of radiation contains quantities depending on kind and state
of substance: coefficient of absorption n;, which depends on proper-
ties of substance, its temperature and density, and equilibrium inten-
sity va which is & function only of temperature,

Equation (2,28) describes, in particular, process of establish-
ment of equilibrium of radiation with substance in time,

Let us imagine an unbtounded medium with constant density which is
initially cold, so that radiation is lacking. Let us assume that at ini-
tial moment t = O substance is "instantaneously" heated to constant

temperature T, which then is maintained constant in time., Let us see

how intensity of radiation changes in time, Obviously, space gradients
in this case are equal to zero, n; = const, va = const., Solution of

equation (2.28) in this case has the form

Iy (8) = Iyl — =), (2.30)

i,e., intensity of radiation asymptotically tends to equilibrium, and
relaxation time for establishment of equilibrium of radiaticn with

' t -hy /KT
substance is equal to t = /en, = 1,/c =1,/(1 - e ) ¢c. For
instance, at 1v = 1 cm at maximum of Planck spectrum hy = 2,8 kT, t_ =

p

§ 6. Integrel Expressions for Intensity of Radiation

We will find formal solution of equation of transfer of radiation,

.conaidering quantities depending only on state of substance va(T),
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nL(T,p), as known functions of coordinates and time., Let us consider
at first for simplicity the steady-state case, when distributions of
temperature and density, and also the field of radiation do not depend
on time, We will be interested in radiation at point r of body with
direction of propagation § (Fig. 2.5). Let us draw a ray through
given point in given direction and designate coordinate along ray by
8. Noticing that differential expression in left side of equation of
transfer (2.28) is the total derivative of intensity of a given packet

of quanta along ray of their propagation, we will rewrite equation in

the form
LLRREI A (2.31)

This equation can be considered as ordinary linear equation with

respect to intensity along the ray. Solution of it 1is

[ 8 s
L) =(stpep [ - dsr] a4 1yyexp [~ wiasr] (2.32)
S R4 . i
e Here Iv(s) is intensity Iv(r, 2),

which 18 considered as function of coor-
dinate 8 along ray. Integration over

ray is conducted in general from "-m,"

Fig. 2.5, Diagram explain-
ing 1imits of integration and actually from boundary of body 8,

in formula (2.32). (as shown in Fig, 2.5). By I, is
designated constant of integration.

Let us clarify physical meaning of ottained solution,

Radiation flowing per unit time through element of unit cross sec-
tion at point 8 of the ray (per unit of solid angle) is composed of all
quanta generated in tube of unit cross section along the ray. At point

s!' on segment of ray ds! there is generated a quantity of radiation

Jv ds! = n;va ds', which propagates along ray § in unit solid angle.
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8
From point st to point s there reaches only a fraction exp [~/ nt ds"]
gt

of this radiation; the rest is absorbed along the path, Total inten-
sity is composed of quanta generated on all elementary segments ds!?,
i.e., 18 equal co integral over the ray. If radiating body has finite
dimensions, then it is necessary to integrate actually from boundary of
body 84 to point s. Thus, there is obtained first term in (2.32).
Second term is radiation entering body on boundary 8, from without,
from some external, outside sources., Constant of integration Ivo is

s
intensity of this rediation entering the body. Factor exp [-/ n} ds"]
st

takes into account its attenuation along path from 84 to 8 due to
absorption., Coefficient of absorption n; and equilibrium intensity
va depend on point along ray due to dependence on temperature and
density of substance, which in some way are distributed along the
ray., If these functions are known, then finding of intensity at
any point of the body reduces, as one may see from formula (2.33),
simply to quadrature — integration along the ray.

We will generalize solution (2.33) to the non-steady-state case,

" when ftemperature and density, and consequently va, %5 and unknown

intensity Iv depend on time, Obviously, by moment t to point 8 there

arrive from point s! quanta generated at earlier moment of time

. gt
t -85 1n exactly the same way, on their path they are absorbed

by substance at point 8" in accordance with value of coefficient of

n
absorption at the time of passage through this point t - E—é—i—

Therefore, non-stea(y-gstate solution of equation of transfer can be

written in the form

Iy(s, 1) = § ("‘v,vp)‘,.‘_g_-_!Q‘P [—S (";)...,_::L'df] ds' + (2.33)
. i ¢ .

(4

U emorp [ = § 0, _wed] .
. [ ] . » [ ]
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where actual value of boundary coordinate 8, is taken at the time
8 - 8
t --——-—JQ. It is easy to verify by direct substitution that expres-

c

sion (2.33) indeed satisfies non-steady-state equation of transfer,
From formulas (2.32) or (2.33) it is clear that contribution of dis-
tant sources in strongly absorbing medium to intensity at given point
exponentially decreases with lncrease of distance, To point s there
reach quanta generated only in the nearest neighborhood of point at
distances not greater than several radiation mean free paths, or more

exactly, at optical distances of not more than several units. This

asgsertion becomes especially graphic 1f coefficient of absorption is

constant along the ray. Then exponential factors acqulire the form

exp[—s ds]=exp[—u,(s—s)]—exp[-—'-'] l,,-—-

The only exception, in principle, is the case of extraordinarily

sharp change of temperature, when increase of emittance Jv = n;va
with distance from point has a stronger effect than absorption along
the path with increase of distance passed over, However, in practice
this almost never happens, and main contribution to integrals (2,32),
(2.33) 1is glven by segment of ray near considered point with magnitude
on the order of several (two-three) radlation mean free paths, But
light passes over such a distance in a very small time z;/c, which,

as a rule, is considerably less than characteristic times during which
there occurs noticeable change of state of substance (temperature and
density); for instance, for mean free path of z; = 3 cm time

l;/c:s 10710 gec. Tt 1s much less than characteristic times with
which 1t 1s necessary to deal in usual hydrodynamic flows. This is
connected with the fact that usually speed of substance is much less

|
]
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The noted circumstance is very significant, It means that

‘practically in all cases the field of radiation at every moment of

time can be considered as quasi-steady-state, corresponding to instan-
taneous distribution of sources of emission and absorption, i.e,,
distribution of temperature and density of substance.

In equation of transfer of radiation, consequently, 1t is pousible

.to omit derivative of intensity with respect to time and to consider

time as & parameter on which temperature and density of substgnce
depend, i.e,, va and "5' Sul;sequently we will always start with such
a simplified equation of transfer

VI =%, (Iyp—1) (2.34)

or its solution in form (2.32).

§ 7. Radiation of a Plane Layer

In general, transfer of radlation and radiant heat exchange
affect state of substance, its motion or distribution of temperature
in steady state., This influence is connected with the fact that when
emitting and absorbing light, substance loses or obtains energy, is
cooled or heated, In general, state of substance 1s described by
equations of hydrodynamics, which in the presence of radiant heat
exchange should be generalized taking into account interaction of

;radiation with substance., Inasituch as radiation transfer itself

depends on state of subatance, its temperature and density, then, in
general, system of equations describing substance and radiation con-
sists of equations of hydrodynamics generalized in the appropriate
way and equation of radiation transfer.

In many cases, however, "reverse" influence of radiation on

state of substance is small, or can be considered by any approximate
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method, For instance, at sufficiently low temperatures radiant heat
exchange or loss of energy of body due to radiation are insignificant.
Thus the state of substance practically does not depend on radiation,
and problems of finding radiation field and description of state of
substance are separated, State of substance is described, for instance,
by equations of hydrodynamics, and field of radlation can be found at
every moment on the basis of known distributlons of temperature and
density and known coefficlents of absorption.

As & rul, practical interest in thi3 case 1s presented by deter=-
mination of not the entire field of radiation in medium (inasmuch as

it all the same does not affect state of medium), but finding of

radiation going out from surface of body, l.e,, the gquestion about
incondescence of & heated body, about brightness of its surface,
spectrum of radliation, filux distribution by angles, etc.

If there are known optlcal properties of substance, l.e.,, coef-
ficient of absorption n;* as function of frequency, temperature, and
denslty and distributions of temperature and density in the body, then
the answer to all these questlons 1s contained in integral formule
for intensity (2.32).

If we are interested in radiation going out from surface of body,
it is possible, without disturbing generality, to measure coordinate
along ray s from surface lnto depth of body and to extend integration

along the ray to infinlty:

. S ar (2.35)
1,@)= ;1..17 (e  x(s)ds.

#*We recall that we consider here only media with index of refrac-
tion equal to one, which are gasses,




;f body 1s bounded, then outside of its boundaries coefficient

DI BN

iof Fbaorption is equal to zero and corresponding segment of integra-
|
'tinh drops out. If body is bounded, but from without from the "rear"

~8ide into 1t there penetratés & radiation flux, then by extending

integration over the ray to infinity we thereby include in the integral

these "outside" sources of light,

Let us consider several simple examples having practical interest,

 Let us asgume that body occuples infinite half-space x > O and is

\bounded by & plane surface, Temperature of body is constant; coeffi-

clent of absorption can change arbitrarily from point to point (but
in such a manner that optical thickness of body ? n) dx is infinite),

In thlis case intensity of radiation at the 2urrace of body 1is
equal simply to va(T), since

1,(Q) = SDI.,e-tdzgz.,'; dz =, ds, z;.s..x;ds'.:

Body radiates as an ideal black body with temperature T.

Intensity Iv is quantity of radiant energy passing in 1 sec in
unit of so0lid angle through unit area placed perpendicularly to
‘direction of motion of gquanta.* For a black radiator it does not
depend on angle. Quantity of radlant energy going out in 1 sec through
1 cm2 of surface at angle § to normal per unit of solid angle ( we will

call this quantity radiative ~apacity of body iv** is equal to
! tym 1, (6) cosd. (2.36)
‘For a black radiator

“-’v,cuo. (2.37)

*Dimension of I, 1s energy/bm ssec.sterad.frequency = erg/cm X
K stafad,

'— ~waWe should not confuse it with radiative capacity of a medium J,
‘ar . ‘V‘



Let us consider radiation of plane layer of finite thickness d
with cornstant temperature T and coefficlent of absorption n{.

Intensity of radiation at the surface in direction forming angle
$ with normal (Fig. 2.6) is equal to

dycos 0 xyx
I,(9)= S Ipe a0y,

dz
cos &

]
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.

d .
where Ty, = [ n; dx is optical thickriess of layer in direction of nor-
0

mal to surface,

From formula (2.38) it is clear that intensity of radiation of
layer of finite thickness is always smaller than equilibrium inten-
sity. Spectrum differs from Planck spectrum va(T) by the factor
1 - e_Tv/cos 3. This factor depends on frequency due to frequency
dependence of coefficient of absorption., It tends to 1 only as
d = @w. Most sharply 1s expressed the difference of intensity from
Planck intensity in direction of normal to surface, in which segment
of ray with sources is minimum (is equal to d)., Spectrum tends to
Planck spectrum at large angles to the normal, when § — ©/2,
cos § = O, In dependence upon thickness of layer d, greatest dif-
ference of the spectrum from Planck spe:trum should be observed in
the 1imit of an optically thin layer, 1.e., at angles such that
n d/cos § << 1,

Expanding in this case the exponential function, we will find

with accuracy up to terms of the second order of smallness:

g 2.39
Iv"v,%(’vr ( )




1y(9) Intensity at the surface is propor-

~ \ . tional to 1/cos §, and emissive power of
-’5§ ¢ layer thus does not depend on angle |
t.
tymlycosdm Iyyn,d fOT cos® » x,. (2.40)
< It 18 necessary to note that the idea

Jig. 2,6, Diagram for of "optical thinness" of layer depends on
problem about radiation
of plane layer, angle: there will always be found such large
‘angles $ ~ /2, cos § << 1, that the layer for these directions will
be "optically thick," so that layer c T, << 1 at large angles § ~ %/2
all the same radiates as a btlack body., At small angles, when
TV/COS 4 < 1 and layer is optically thin, 1t emits as a volume radia-
'tor; quanta genernted at any polnt emerge from layer practically with-
out absorption along their paths. In the layer there is no "self-
absorption" and every element of volume introduces an identical con-
tribution into the radiation going out from the surface, This servesas
the basis for the term "volume radiator." An optically thick body
radiates "from its surface," since quanta, generated in the depth do
not emerge from the body; they are absorbed along their path,

In many cases there presents interest not intensity of radiation
at given angle, but radiation flux from surface of body, i.e., quantity

2

of energy going out in 1 sec from 1 cm™ of surface of body in all

directions, This quantity is called brightness of surface (spectral
or integral),
Spectral brightness of surface, obviously, is equal to
So=  {  cmsor (2.41)
over hemisphere
where Iv(n) is given by formula (2.35), $ is angle betseen direction

of propagation of radiation and normal to surface,



We will find brightness of surface of plane layer; thus we will
:'T ; consider temperature and coefficient of absorption as variables, but
depending only on coordinate x {see Fig, 2.6), Let us replace in
formula (2.35) ds by dx/cos § and introduce optical thickness: |

: - 4
dv, = x; dz, ,;.:S,;d,. (2.42)

Then

.
Mo)-y.,e e 56>0. (2.43)

Let us place this expression in (2,41) and integrate over angles
(d@ = 2» sin § d4):

!

Slev
oos &

%
S,-Zns'coso sin 0do Slv,e_ -=2:!S I,,dv, § d(cosd)e s,

Introducing variable w = 1/cos § and taking into accournt the

definition of the tabulated functions — exponential integral functions,

E.(z)-‘§e"'%. n=i, 2..., (2.48)

and also replacing equilibrium intensity by equilibrium radiation

density by the formula va - chp/lHr, we will obtain
(. J

. 2.45

Sy= %S Unp [T (%)) Ey (v3) dr,, ( )

d
or for layer of finite optical thickness Ty ™ [ n,:, dx,
0

Ty
Syse ';' S Uv,E; (f;)d‘l’;. (2' 46)
Using known property of exponential integrals
¢ 1
§Ea(‘)d‘='f.
we will obtain for semi-infinite body of constant temperature

s.-.‘i"'_'-s.,. (2.47)
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As we should have expected, spectral brightness is equal to brightness
of ideal black body,
Brightness of layer of finite thickness and constant temperature

is eugal to

D42 14— 2B, (v,)] = Sy (4 — 2Ex (s4)]- e

5=

Tup
7 () de =

It is always less than brightness of ideal black body of the same

'temperature and tends to the latter as

y = @
For optically thin layer
wet, By~ Ex(0)=1, (2.49)
' 2Ey (vy) ~ 1 — 21,
and
.Cva
Sv- T‘V-SV’-Z"VO 2"9< i- (2. 50)

§ 8, T~ffective or Luminance Temperature of Surface
of a Nonuniformly Heated Body

Spectral brightness of surface of a nonuniformly heated body is
very conveniently characterized bty effective or luminance temperature
Tvef’ By the latter is understood temperature of ideal black body
sending from its surface in given section of spectrum precisely the
same radiation flux as the considered real body.

By comparing formulas (2,46) and (2.47), we will obtain expres-

sion determining effective temperature in the plane case:

Y (2.51)
U (Tos) =2 U7 (51 B () ds,
o
or, substituting Planck function for va,
Ty
4 o 2.52)
% -25 o Ex (v) dv;. (
r) ’“_‘ .w—‘

. Effective temperature depends on frequency. Only in case of
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ideal black body is it identical for all frequencles and equal to tem=
perature of substance,
It 18 possible to introduce effective temperature of integrated

radlation of body over the spectrum, according to the definition

SmaTly, (2.53)

wnere S is integrated flux going out from surface of body, Obviously,
effective temperature of integrated radiation is a certain average
magnitnde with respect to spectral effective temperatures,

We will see what the connection is between spectrum of radiation
of body and frequency dependence of coefficlent of absorption.

We will consider optically thick body; radius of curvature of
surface, let us assume, will be large as compared to mean free paths
of radiation, so that body can be considered as flat, Let us assume
that temperature falls toward the surface, as depicted in Fig. 2.7.

7 Radiation flux of frequency ¥

~
&
3

going out from surface 1s determined

¥ by integral over sources (2.4%). Due to

self-absorption, which is taken into

L-..--.--.-.-

account by fast dropping with T; of

P I

L

o~

&
o~

X

exponential integral, main contribution

.Fig. 2.7. Concerning the .
question about radiation of to integral is given by layer cn the

iggytgizgdtigzegﬁﬁgigef‘ll‘ order of mean free path l; near surface

(with optical thickness 'r;} on the order

of unity). In other words, quanta going out from surface of body are
generated mainly in layer near surface with optical thickness on the
order of unity (more exactly, two—three units). This shell may be

called radiating. Quanta generated in deeper layers are practically
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completely absorbed before getting out of body. Effective temperature,
a8 follows from formula (2.52), is equal to certain average tempera-
ture of radiating layer,

Quanta going out from surface which have those frequencies for
which absorption 1s stronger, and mean free path is less are radiated
in layers closer to surface and less heated, Conversely, more wesakly
absorbed frequencies emerge from deeper and more heated layers. Thus,
if temperature of substance falls toward surface (=8 this usually
occurs), effective temperature of more strongly absorbed frequencies
is less than for more weakly absorbed ones. This is schematically
depicted in Fig. 2.7, on which arrows shown "place" from which quanta
of different frequencies are radiated. "Places" are tentatively
referred to distances from surface equal to mean frze path of quanta.

Spectrum of radiation of nonunlformly heated body differs from
Planck spectrum — more, the stronger the frequency and temperature
dependence of coefficient of absorption, and the steeper the curve
of temperature near surface at distances on the order of mean free
paths of quanta,

In Fig. 2.8 there is schematizally depicted spectrum of radiation
of body with temperature falling toward surface and inverse dependence
of coefficlent of absorption on frequency, with which low frequencies
are absorbed more strongly than high frequencies,

On the contiinuous siectrum there are drawn dlscrete lines corre-
sponding to bound~bound transitions in atome or ions. Coefficients of

absorption in lines alvays are very gerat — considerably larger than

in continuous spectrum, Therefore, effective temperature in lines

preotically exactly coincides with temperature at the actual surface
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of the body (lines are "cut" in

[

-

")

Fig. 2.8, Schematic represen-
tation of spectrum of radiation
of body with temperature de-
creasing toward its surface.
Low frequenclies are absorbed
more strongly than high ones.
Dotted line shows Planck spec~
trum corresponding to average
erTective temperature of radia-
tion. 1In the spectrum there
are cut lines of selective ab-
sorption. Flux at centers of
these lines is practically
equal to Planck flux corre~
sponding to temperature of sur-
face of body.

there appear Jjumps also in spectrum of radiation of body.

spectrum of radiation of body).

For comparison, in Fig, 2.8
the dotted 1line shows Planck spectrum
corresponding to integral effective
temperature, which is average with
respect to spectral temperatures.

In virtue of the definition of
integral effective temperature, areas
vounded by solid and dotted curves
are exactly equal,

In Chapter V we will see that
coefficients of continuous absorp-
tion at high temperatures are not
smooth functions of frequency, but
experience Jjumps., Accordingly
(This 1is

not shown in Fig., 2.8, which pertains to smooth dependence of nv'on v).

Frequently, during optical measurements of incondescence of heated

bodies, there is used idea of color temperature,

Color temperature

1s defined as the temperature of an ideal black body which would give

ratio of brightnesses in two different spectral sections (for lnstance,

in red and blue reglous of spectrum) equal to thet measured by experi-

ment.,

easy to write relationship between them.

tempzratures at frequencies vy and v

perature is T

Using definitions of effective and color temperatures, it is

Let us assume that luminance

o are Ti and T2, and color tem~

10° Considering fTor simplicity that both lines, vy and

v,y lie in Wien region of spectrum, i.e., hvi/kT1 > 1, hvo/sz > 1,
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we wlll obtain
. My
S!l"fV:C-ﬂt, S"~V:c~%;
R B L S
L
7?;-?3‘ 1 2/ "c AT1s
whence

T (2.5%)

If temperature of body is more or less constant in radlating

layers for the whole main spectrum near the surface, color tempera-

ture 18 frequently nearer to true temperature of body than luminance
E temperatures; this circumstance 1s used in pyrometry, during optical
; . measurements of temperature of bodies.
Let us note that in case of a nonuniformly heated "gray" body,

1 for which coefficlent of absorption nv‘does not depend on freguency,

: ”v's nt, effective temperature of different frequencies all the same

lepends on frequency. Only for very small quanta, lying in Rayleigh-
Jeans region of the spectrum hv/kT << 1, does frequency drop out of

formula (2,52). In this case effective temperatures for all these

frequencies turn Qut'to be identical,
§ 9. Motion of Substance Taking into Account
Radiant Heat Exchange

Above it was shown how there can be found field of radiation in
body or radiation going out from surface of body, if state of substance,
.1.e., distribution of temperat'we and denslity in the medium, are
known, Let us consider how there is formulated problem of Joint
determination of state and moticn of substance and field of radiation
in the case when transfer of rac’ation and interaction of rediation

with substance render an essential influence on state and motion of




the medium (gas). Thus motion of substance will always be assumed to
be non-relativistic, i,e,, it will be considered that speed is much
less than velocity of light.

If temperature is not too high, and density of gas is not too
low, energy density and radiation pressure are negligible as compared

to energy and pressure of substance., Let us compare for estimate
ot

density of equii..rium radiastion Ub = with thermal energy of
unit of volume of monatomic gas E = %nkT (n 18 number of particles in
1 cm3). For instance, at n = 2.67‘1019 1 cm3, which corresponds tc

number of molecules in air of normal density, both energies coincide

at a tenperature of 900 COO°K. In reality, energy of radiation becomes

comparable with energy of substance at still higher temperatures,
since during heating, atoms are ionized, which first, leads to
increase of numter of particles in 1 cm3 and, secondly, adds to the
thermal energy the energy expended in ionization.* Thus, in real air
of normal density, energy of radiation is comparable with internal
energy of substance only at a temperature of about 2 700 000°K, In
strongly rarefied gas, energy of equilibrium radiation becomes com-
parable with energy of substance at lower temperatures (roughly speak-
ing, temperature at which both energlies are equal is proportional to
n1/3). However, in this case, during comparison of energies 1t is
necessary to use caution, since in very rarefied gas mean free path
of radiation is great, and if dimensions of gas mass are not great
enough, density of radiation may be much less than equilibrium den-
sity (see below).

Pressures of radiation and substance are approximately in the

same ratio as energies, Indeed, radiation pressure (during isotropy

*About thermodynamic functions of gases at high temperatures, see
Chapter III.
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:°§3f§$1d of radiation) p, = U/3, and pressure of substance p = (y ~1)E,
;whe}e at high'temperatures adiaebatic index <y usually has value in
‘interval from 5/3 to ~1.15 depending upon element composition of gas,
temperature, and density.

Thus, at not too high temperatures and not too low densities of
.substance, energy density and radiation pressure practically do not
;affect energy balance and gas-dynamic motion of substance. The influ-
‘ence of radiation on energy balance and motion of gas 1s different:
losses of energy by a heated body due to radiation and, in general,
.radiant heat exchange in the medium can become considerable, These
‘effects frequently plaey & role at much lower temperatures, when energy
and pressure of radiation are known to be very small,

Cause of these phenomenon consists of sharp difference in
velocities of substance u under usual conditions and velocity of light
c; U< c. Due to difference in velocities, energy flows of substance
and radiation can be comparable with each other, even if energy den-
gity of radiation is much less than energy density of substance. For
instance, in the extreme case, when all quanta move in one direction,
;energy flow of radiation is equal to S = Uc; flux of energy of sub-
.8tance 1s on the order of Eu, i.e., Uc can be on the order of or
égreater than Eu even at U << E due to the fact that ¢ >> u., Energy
flows of radiation and substance frequently are comparable even in
!the more real case, when field of radiation is relatively isotropic,
éand the resultant radiation flux S, which is equal to difference
between unidirectional fluxes, '8 considerably less than its limiting
value Uc, which corresponds to sharply expressed anisotropy of field
;Q§“£§q1ation.

-— -- A8 will now be shown, magnitude of losses of energy or, conversely,
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energy release in substance due to interaction with radiation, are
determined by divergence of radiation flux, so that comparison of
energy flows of radlation and substance can characterize the role of

radlant heat exchange in a medium,

We will find quantity of energy q lost by a unit of volume of mat-

D e S S

ter in 1 sec by radiation., It 1s the difference between energy emitted
by substance and energy of radiation absorbed by substance, §
Difference between emission and absorption of radiation of fre-
quency v (per unit interval of frequencles) and direction @ (per unit of
solid angle) in 1 sec in 1 cm3 stands in right side of equation of
transfer of radiation (2,28). In order to obtain total resultant
3

loss of energy by substance in 1 cm” in 1 sec g, it 1s necessary to

Integrate this quantity over all solid angle and over all spectrum,

i.e.,

@ ®

g= §a\’sd9m',(lvp-—lv)=c Saw;wv,_v). (2.55)

First term in parentheses corresponds to spontaneous emission,
and second — to absorpticn after subtracting "re-emission."

With help of equation of continuity for radiation (2.29), in
which according to the earlier made remark about quasi-steady-state
character of transfer of radlation it is possible to omit time deriva-
tive, we will find that resultant loss of energy is equal to dlvergence

of integrated flux of radlation:

c 2.56)
q-SdivS.,dvadivS. (2.56)
If substance emits more than 1t absorbs, 1t loses energy by
radiation (is cooled by radiation), and q > 0; if there is abscrbed

more energy than there 1s emitted, substance is heated by radlation




’msizﬁgss of energy" 11 negative, q < O (1.e., energy release, which
|1s pqual to -q, is positive),

" | We will form equations of gas dynamics taking into account radisnt
;heaL exchange, but disregarding energy and pressure of radiation,

. First equation — equation of continuity — remains unchanged,

.Also equation of motion does not change, lnasmuch as radiation pressure
iwilllbe disregarded. Only in equation of energy should there be
éintroduced a term of losses of erergy by radiation (energy density of
iradiation and work of forces of radlation pressure will be disre-

;garded). Equation of energy (1.10) will be written in the form#*

%<g3+°—;:>=fdiv [Qu(e +-:—.f"u7.)]_9’ (2.57)
?or, replacing q by divergence of flux S,
| F(er)m-wn[w(ertr)es].

?Thus, to total hydrodynamic energy flow there is added energy flow of

radiation, If we transform gas-dynamic equation of energy to entropy

form (see § 1 Chapter I), we will obtair

where % 1s specific entropy of substance,

. Finding of field of radiation and distribution of temperature in
medium under conditions when radiant heat exchange considerably affects
;energy balance of substance i3 connected with large mathematical
‘difficulties. Differential equaticn of transfer with respect to
coordinates (2.34), which describes field of radiation, is formulated
for spectral intensity of radiation propagated in definite direction,
r;g;gqgation of energy balance (2.57) there are contained quantities g
ter—8,:which are integrated over spectrum, as well as over directions,

i %1t is assumed that, besides radiant heat exchange, no sources of
»-and also no other irreversibls processes exist,

CTf
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Thus, system of equations of transfer and energy has integrodif-
ferential character; it contalns double integrationxl over spectrum
and over angles,

Mathematical simplifications of integrodifferential system pro-
ceed by way of approximate description of spectral and angular distri-
butions, in order to avoid its "integral character." Influence of
spectral distribution on energy balance appears in connection with
dependence of coefficient of absorption on frequency. Exclusion of
spectral characteristics from consideration is possible only if
coefficient of absorption nv’does not depend on frequency: n; = ul,
In this case of "gray substance," equation of transfer (2.34) after
integration over frequencies is written directly for intensity inte-

©
grated over the spectrum I = é I,dv:
V7 =x’ (I,— 1), (2.60)

and in formula (2.55), for losses of energy by substance, it is also

possible to produce integration over spectrum:
g=x (=N =ax Ty~ 0). (2.61)

In general, coefficients of absorption in gasses at high tempera-
tures very strongly depend on frequency, and the idea of "gray mate -
rial" constitutes a considerable idealization., It is very useful
in the sense that it permits clarificaticn of behavior of phenomena
which are not connected with spectral distribution of :adiation. How-
ever, in certain important limiting cases, which we will discuss below,
introduction in the appropriate way of coefficient of absorption x!',
averaged over frequencies, which allows us to exclude from considera-
tion spectiral characteristics of radiation and to go over to formulas

(2.60), (2.61), corresponds to the essence of the matter.
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- | To the questlon about approximate description of angular distribu~-

> [§ge

Itiop of field of radiation will he dedicated the following two para~
graphs,

' | § 10, Diffusion Approximation
| Losses of energy of substance by radiation q, as can be seen
{from formulas (2.55), (2.56), in explicit form do not depend on
?angular dlstribution of radiation and are determined only by quanti-
éties integrated over directions: radiation density or flux, If it
Twere possitle to form instead of equation of transfer for intensity
iof radiation (which depends on direction) some other equations, which
jwould directly be obeyed by quantities integrated over directions,
Idensity, and radiation flux, then question about angular distribution
‘of radiation in examining of influence of radiation on state and mo-
‘tion of substance in general would not appear, One such equation
already exists: this is the exact equation of continuity (2.29),
which in quasi-steady-state case states that:

div.S, = e, (Uyp—Uy). (2.62)

The second relationship, which relates flux and density of radia-
tion and closes the system of equations, can be obtained only spproxi-
:mately. Equation (2.62) was found by means of integration of equation
‘of vransfer over angles, Let us multiply now equation c¢f transfer
(2.3%) by unit direction vector Q and again integrate over angles,
iNoticing that integral of term.nv‘lvp.which does not depend on direc-

‘tion, becomes zero, and taking into account definition of flux (2.3),

we will obtain

(0-avr,.d0m — i’ (2.63)
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In isotropic field of radiatlion flux § = ! n:v df} becomes zero.,
Integral in left side of equality for intensity Iv not depending on

.angle 1s easy to calculate*

Sq Ql,-dQ = SVI,dﬂa%VU,. (2,64)

Equality to zero of this expression indicates that isotropy of
field of radlation is connected with constancy of density in space,
If field of radiation is anisotropical, flux and integral (2,63) are
different from zero, However, in case of weak anlsotropy, in first
approximation integral can be, as before, represented in form (2.64),
if we consider intensity weakly depending on angles to be constant,

This gives approximate relation of flux to radiation density
’ 2.6

vwhere 1} = 1/hv'is mean free path for absorption ~f radiation (cor-
rected for stimulated emission),

If we divide both sides of equality (2.65) by energy of quantum
hv, we wlll obtain relation bhetween flux of quanta of given frequency
Jv and thelr density Nv’ which 1is usual for process of diffusion of
particles,

e

Jy= _DVVNV! DV=T .

Coefficient of "diffusion" of quanta D, is analogous to coeffi-
cient of diffusion of atoms or molecules; c is velocity of "motion" of

quanta, z; is their mean free path.

*We will find i1-th component of vector integral, replacing vector

operator fly by coordinate expression nk a/axk and considering sum-
mation over the twice met indices:

’ ol
faa -z ( a0 -l re, i o e 200

since [ I, dR = 471 = cU ; hence there follows (2.64).
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However, between diffusion of atoms and "diffusion" of quanta
there is an essential distinction, An atom during collision does not
disappear, but only changes direction of its motion (in an arbitrary
way for the case of isotropic scattering); mean free path included in
coefficient of diffusion is mean free path with respect to collisions.
A quantum passing on the average over distance zvﬁ is absorbed by
substance, and under conditions of thermodynamic equilibrium of .ub-
stance its energy due to collisions with atoms, electrons, etc., is

distributed in substance in accordance with laws of statistical equi

.1ibrium, At the place of absorption there are emitted new quanta of

different frequencies and in arbitrary directions., Considering pro-
cess of "diffusion" of quanta of given frequency, we distinguish

among the newly generated quanta only quanta of the same frequency.

The process pioceeds a3 if the quantum flew, was absorbed, and then
again was "generated," and after "generation” can fly with equal
probabllity in any direction, which corresionds to process of isotropile
scattering of atoms during collision.*

Just as during diffusion of atoms, condition of applicability of
diffusion approximation is smallness c¢f density gradient of radlation,
The latter should change little at a distance on the 2:rder of mean
free path of radiation z;. For small gradients field of radiation 1is
almost isotropic, and this condition was assumed at basis of derivatioq

of diffusicn equation (2.65)., Really, to a given point quanta arrive

*If we conslder transfer of radiation, taking into account scat-
tering of quanta, then during weak anisotropy, as before, there is
obtained diffusion relationship of type (2.65), in which there stands
mean free path corresponding to total attenuation factor, which is
equal to sum of coefficients of absorption and scattering., If scat-
te~ing 1s anisotropic, then, just as during diffusicn of atoms, in-
at. .d of scattering cocefficient there appears transport coefficient
us(i - Cos 0), where Cos 6 is average cosine of scattering angle,
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mainly from region with dimensions on the order of mean free reth,
If radilation density in this region 1s almost constant, then quanta
arrive at given point from all directions equally, which leads to
isotropy of fleld of radiation in it.

Near boundary between the medium and vacuum, density changes
strongly at distance on the order of mean free path, and anisotropy of
angular distridution of quanta is great — quanta chiefly fly from
body in the direction of the vacuum, since they do not proceed from
the vacuum, Therefore, near boundary with vacuum, diffusion approxi-
mation can lead to noticeadle errors,

Gradients of density are small and diffusion approximation is
accurate in case of optically thick bodies. If x is characteristic
scale, on which density of radiation noticeably changes (x is on the
order of dimensions of body), then diffusion flux in order of magnitude
is equal to

Sym =5, ~ 2 1,

The greater the cptical thickness of the body x/l; is, the less den-
sity of radiation changes on mean free path (this change i1s on the
order of z;VUv ~ 3? Uv)’ the smaller flux Sv’ is as compared to
quantity Uﬁc, and the more accurate the diffusion approximation is,

If optical thickness of body is on the order of unity, z;,/x ~1
and Sv~ ch. In case of an optically thin body l;/x > 1, and flux
estimated by diffusion formula would have to become larger than ch.
In reality this is impossible and simply indicates the inapplicability
of diffusion formula for optically thin bodies,

Flux Sv never can be larger than ch. Equality Sv - ch corre-

sponds to the case when all quanta fly strictly in one direction,

i.e., 1t corresponds to the most sharply expressed anisotropy. Quantity
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cUﬁ sometimes is called kinetic flux.

Ratlo of flux to kinetic

Sv/CUv’ which in the diffusion approximation is on the order of inverse

optical thickness of body z;/x, is a mea ure of anisotropy of field of

radiation:

during complete isotropy SV/ch = 0; 1f all quanta fly in

.one direction Sy/va = 1, Ratlo Sv/ch always is contained within

8y

‘1limits O<:er

< 1. Dependence of flux on degree of anisotropy of

angular distribution of radiation at a given density of it 1s schemati-

cally illustrated by polar diagram for intensity (Fig. 2.9).

O@@®

Fig. 2,9. Polar dia-
grams for distribution
of intensity of radia-
tion over angle for
various degrees of an-
isotropy. Magnitude

of intensity at given
angle § 1s character-
ized by length of
redius-vector drawn
from center., Length

of arrow characterizes
value of flux., Equal-
ity of radiation den-
sitles in all cases 1is
schematically described
by equality of areas of
all figures,

follows continuity of density and flux on boundaries,

Areas of all figures are identical and
correspond to density of radiation, and
lengths of arrows correspond to fluxes,
Flelds of radlation of various densities can
also lead to the same flux, The greater
the density for a given flux, the smaller
is Sv/ch, and the more isotropic should be
the field of radiation.

Equations of diffusion approximation
(2.62), (2.65) constitute a aystem of two
differential equations in two unknown
functions of coordinates: density and flux
of radiation, To them it 1s necessary to
assign boundary conditions on boundaries
between media with different optical pro-
perties (with different "coefficients of
diffusion"), Fro- the condition of con-
tinuity of intensity of raiiation there

A discontinuity

in density in diffusion spproximation (2.65) would imply an infinity
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of flux, and a discontinuity in flux would indicate radiation build-up,
i.e,, a non-steady-state character (see equation (2.29)).
Special consideration is required by case

of boundary between medium and vacuum, Inas-

T 9 - much as quanta do not proceed from vacuum,

field of radiation on boundary with vacuum

is strongly anisotropic (all quanta fly only
Fig. 2.10. Polar dia- in the direction toward the vacuum), and,

gram for distribution

of intensity on bound- strictly speaking, diffusion approximation
ary x = 0 of body with

vacuun, Vacuum on the here is inapplicable. Approximate condition
right, medium on the

left. on boundery can be written proceeding from
the following consideration, Let us assume (and this for optically
thick bodies is not very far from the truth) that radiation going out
from surface of body in a hemisphere directed toward the vacuum is
distributed over angles isotropically; in the other hemisphere, inten-
sity is equal to zero: quanta do not arrive from the vacuum (corre-
sponding polar diagram is shown in Fig, 2.10). We obtain then that
on boundary with vacuum

SemT (2.66)
where flux is directed along outward normal to surface. Factor 1/2
appears as average cosine of angle of directions of motion of quanta

for their isotropic distribution in the hemisphere,*

/2

*Really, S, = [ QI dR; S, = [ cos $I,6 (8) 2r sin § d% = 29I L.

v v v v VA
hemisphere 0

/2
= 71, but cU = J] I = [ 27 sin § d$I_ = 271, whence there
v v v v
hemisphere 0
follows formula (2,66).

Formula (2,66) formally ensues from relationships of the diffu-
sion approximation. It is easy to verify that the following expres-
sion for intensity leads to diffusion equations (2,62), (2.65):
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§ 11, "Forward-Backward" Approximation

We will consider one more method of approximate consideration of
angular cistritution of radiation, which is sometimes applied in two-
dimensional probléms of radiation transfer, This method 18 known as
the Schwartzschild approximation or "forward-backward" approximation.
Let us combine all quanta moving in the positive direction of x-axis
at angles § from O to /2 ("forward") into one group, and those moving
in opposite direction ("backward") at angles § from % to 7 in another
group (Fig. 2.41), We will approximately coniider angular distribu-
tions in each of the two hemispheres as isotropic and designate irnten-

sities in directions "forward" and "backward" by I, and I, (index of
frequency v for brevity will be omitted), Density and flux of

[FOOTNOTE CONT!D FROM PRECEDING PAGE].

1,@= - [1452] = [1+3e0 52 ]

‘where § is angle between direction @} and direction of flux Sy. Taking

x-axis in direction of flux, we will calculate unidirectional fluxes
in nositive and negative directions of x-axis, We will obtain

2,67
by S i ey o

it is clear that S, =S, + 3 , &8 it must be). Applying these
v v+ V-

formulas to boundary between body and vacuum (x-axis is directed toward
the vacuum) and assumi..g that unidirectional flux from vacuum S,. = 0,

cU.
we will obtain 8, =35, = -51, i.e., formula (2,66), Formulas (2.67)
have greater force than the expression for intensity., This can easily
be verified if we extend formula for intensity to a point at the
boundary.

In direction of negative x-axis, for instance, cos 7 = -1 and

cU.
Iv =-—1§$ < 0, which is physically senseless, The whole fact is that

diffusion formula for intensity is suitable only for weak anisotropy,
when second term in parentheses is much Iess than unity.
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radiation thus are equal to

; a2 s
U=—1d0=2 | Lsin0d0+ 2 | Lsindao =22 (141,  (2.68)
[ ] 73

- R/2 n
S=Sc0301dﬂ=2n ‘ I cos @ sin 0d0+2u§ I,cos¥sin®dd=xn(/,—1,). (2'69)
0 x/3

.Hence, incidentally, there is graphically represented the degree of

anisotropy:

S nL—1
W‘ﬁ;"—"_*_;—")‘—’o for I.% I’.

On boundary between medium and vacuun, if x-axis 1s directed

along outward normal to surface, we have 12 = 0 and By %3 i.e.,

cU
condition (2.66).

In order to form equation for average "unidirectional" intensities

I1 and 12, we will averasge transfer equation for plane case:
ar ., 2.70
cos® 3L (I, 1) (2.70)

over one and over the other hemisphere. We will obtain thus (average

cosine cos § = i-%):
141, __, 1dl, ., (2.71)
T =% (p—1y); —5 =" (lp—1y).
This palr of equations serves
for determination of average inten-
Y/
)0 sities in both hemispheres. By

adding and substracting them, it 1is

easy to go over to equations for

Fig. 2.11. Polar diagram for  density and flux (I = cU /4w):
distribution of intensity of S

radiation in "forward-backward" S wx'(Up- Uy Sm b (5 70)
spproximation. In this case d= Rpes

flux is directed to the left.
The first of the eyuations is

exact continuity equation (2.62), and the second cne colncides with
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approximate equation of diffusion approximation (2.65), with only the
difference that here "coefficient of diffusion” is equal to ite/4
instead of 1tc/3.

By considering equations (2,71) as linear differential equations
in functions I1 and I2, it 18 possible to write their solution in

integral form:
- . T
Iy S I,exp[-2(t’fr)] 2dv;, I= § Tpexp[—2(1—7')] 2dv’".
< : .

Here coordinate x is replaced by optical thickness by the formulas:

=
-dv=x'dz, T Su'dz.

By adding and subtracting expressions for I1 and 12 and substi-

tuting I_ = cUb/uw, we will obtain approximate integral for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>