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ABSTRACT

The plasma shteath simulation ctechmique developed earlier has
been used to investigate the effects of various types of sheath disconti-
nuities and inhomcgeneities on a slot antenna radiation pattern znd input
impedance.

In the case of semi-infinite and finite-extent homogeneous
plasma sheaths, the radiaticn pattern and the impedance characteristic
are investigated with regard to the geometry of the discontinuity and
its proximity to the slot antemna. It is found that the radiation pat-
tern is unaffected by the discontinuity as long as the ratio of the dis-
tance between the source and the discontinuity to the sheath thickness is
of the order of 20 or greater. When the sheath is made finite in extent,
vith a discontinuity on each side of the slot, the resulting pattern is
seen to be a superposition of the effects of each discontinuity acting
separately. The input impedance of the slot exhibits only small varia-
tions when the ratio of the discontinuity separation to the sheath
thickness is of the order of 4 or greater. For smaller separations,
the impedance exhibits significant variatiomns, strongly dependent on the
geometry of the discontinuity. The effects produced Ly inhomogeneities
are found to be similar to those of a homogeneous sheath with a certain
equivalent dielectric constant.

For both the homogeneous and inhomogeneous sheaths, favorable

comparison with the available theory is obtained.




LIST OF CONTRIBUTORS
In addition to the authors, Mr. Lee Cocper and Mr. John Gecltz
contributed to the research reported in this document. Mr, Cooper and
Mr, Goltz are undergraduate Research Assistants in the Department of
Electrical Engineering, Engineering Experiment Statiom, at the Univer-

sity of Arizona in Tucson, Arizona.

RELATED CONTRACTS AND PUBLICATIONS
This document is an extension of the results of Scientific
Report No., 1, Contract No, AF 19(628)-3834, December, 1964, This was
also published under the title "An Experimental Study of Plasma Sheath
Effects on Antenras" in the Journal of Research of the Natiomal Bureau of

Standards, Radio Science, Vol, 69D, No. 6, June, 1965, pages 839-850.

it



1, Introduction

The recent interest in propagation of electromagnetic waves
through a plasma sheath has generated a large number of papers, mostly
theoretical in nature, which solve for the fields of various radiators
in the presence of idealized plasma sheath environments. Most of these
papers make assumptions concerning the nature of the discontinuities end
inhomogeneities in the plasma sheath in order to make the problem more
tractable amalytically. For example, Tamir and Olirner [}964] approxi-~
mate a discontinuous plasma sherth by terminating the sheath at a finite
distance from the radiator with a termination perpendicular to the ground
plane and to the plasma-air interface. As will be seen later, this con-
figuration allows an approximate analytical solution to be made by means
of a Kirchhoff-Huygens integration over the discontinuity plane. Rusch
[}96%] and Tyras [}965b] formulated mathematical models for the dielectric
constant in a stratified inhomogenecus medium, with the latter obtaining
a closed form expression for the radiation fields,

Little or no experimental work in this area has been reported,
primarily due to the handling difficulties and instabilities inherent in
actu..l laboratory plasmas. Recently, however, a plasma sheath environ-
ment was successfully simulated using real dielectric materials [?yras
et al,, 1965é] « The simulation method allowed the experimental determi-
mation of the radiation patterns and input admittances for the problem of
a slct antenna in an infinitely conducting plane clad with a homogeneous,
lossless, and isotropic plasms layer of infinite extent.

This simulation method provides a laboratory geometry readily
suitable for modification so that discontinuities and inhomogeneities in

1




the plasma sheath may also be simulated. In particular, discontinuities
of the "plate" type [Eamir and Oliner, 196é] as well as inhomogeneities
composed of discrete vertical stratifications can be easily simulated,

It is the purpose of this report to describe in detail these
simulated inhomogeneous and discontinuous plasma sheath environments and
to present thelr respective radiation patterns and iaput admittances. 1In
the case of the radiation patterns, the experimental results are compared
with the approximate analytical results of Tamir amd Oliner for the dis-
continuous plasma sheath and with the asymptotically exact results ob-
tained from a saddie point integration for the inhomogeneous plasma

sheath.

2, Theoretical Background
2,1 Semi-Infinite Plasma Sheath

A common idealized model of the plasma sheath surrounding a re-
entry vehicle is seen in figure 1, with L; and Ly considered infinite in
length, It consists of a perfectly conducting plane covered with a homo-
geneous plasma of infinite extent, Tamir and Oliner [i96i], among others,
have analyzed this problem and have shown that the field in the plasma
region and the near field in the air reéion are dominated by a single
leaky wave and that the radiation field has a maximum at an angle closely
corresponding to the critical angle of geometric optics, as long as the
plasma dielectric constant remains positive.

To study the effect of finiteness on the radiation patterns,
Tamir and Oliner [;96%}.proposed the model of figure 1, with L, consid-
ered infinite, L; finite, and ¢; = 90°, 1In solving for the approximate
radiation fields, it was assumed that the fields incident on the discon-

tinuity plane were just those present in the case of the infinite plasma




slab, namely, the fielid due to the leaky wave. The problem i5 then one
of an aperture with a prescribed field distribution. A Kirchoff-Huygens
integration over the fields on this aperture yields the far field and

consequently, the radiation patterm, R(8).

2
R(O) = |x(e>| (1)
where
K(8) = ei(kp“o)ae-l + ei(kp-i-o').z-l 6120
p @ kp+ g
+ ieic sin(keE"U) + sin(keﬁ+c)
cos(k_ ) K..- % +g (2)
ep ep” O Kepto
and where

o = kdcos® (k = frea space wavenumber)
£ = (L/d)cotec (8, = critical angle)
k, = k,d (k, = transverse wavenumber in the air regionm)

|2

kep = k,.d (k,, = transverse wavenumber in the plasma region)

and kp and kep satisfy the transverse resonance relation
k2 -k 2= (kd)2(1 -
p " kgp = (KL - e) (3)

k o tank
P p ikep an ep *

When the discontinuity plane and the source are separated by a
large distance, the first term in K(8) becomes dominant; and the radiation
pattern is just that of an infinite plasma layer, Once the ratio of the dis-
continuity separation to the sheath thickness 1s made less than 20, the radi-
ation pattern begins to change appreciably. This change is composed of a
broadening cf the major lobe and a shifting of the peak, all on the disconti-
nuity side of the esvurce (870). In addition, increased end-fire and broad-

side radiation 1s observed. The exact nature of this change is strongly




dependent upon the plasma sheath paraxeters (€p and d).

2,2 Inhomogeneous Plasma Sheath

A possible model for the inhomogeneity profile thought to exist
in the plasma sheath surrounding a reentry vehicle is shown In figure 2a.
This profile can be approximated, for amalytical as well as experizentel
purposes, by comstructing a sheath of discrete layers of hooogeneous die-
lectrics as in figures 2b and 2¢c. As the layers becoze fiaer, the dis-
crete codel will approach the coatinucus =odel.

Consider, then, an inf:initely coaducting ground p:iane covered
with N layers of ho—ogeneous dielectric materizl of infinite extemnt aad
excited by an infinite narrow siot anteanz, s ia figure 3. By symmerry,
there is no variation of the fields with the x-coordinate, or 7?i = 0.
Consequently, the only cozponent of the magnetic field is the x-cc—pcnent,

th _. - .
Ther in the n layer, B satisfies the source-iree vave equatic
2 b <

:2]
2 2
Y H +%k H =0 (5)
Xp B *n
2 2 —5s
where k =k ‘JE; and C; = —Eq— +-jlr~ . An e *'F tize dependence bas
n ° 20 vy

been assumed and suppressed tkroughout. Since the geometry is irfinite
in the y-direction, a Pourier transform pair on the y-coordinate can be

defined as follows:

_ 17 oy

H, = JZ?’\/ Hee dy (5)
-0

1 =_ icy

Hy. = ,zwfﬂy.e da, (6)

-0
2 o
Thus, — = i@ and -~ = -G , and equation (4) beacomes
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2 2

2 -
Bzz * Sn] an = 0, {(7)
2

where s, = !.»:n - & azd Iz(sy) > 0. Thke solutioz of (7) is fommd to be
— is 2 -ig 2
H =2%2e @ £3e ; (8)
p 4 n n
n
2nd, by (8)
1 = is Z —isa;I ic‘-“j
g = r Laae + B ¢® B e “4ax (9)
-
-

Thke &, 2nd B reprsseat the amplituces of trzosmitted azd reiflected wavss,
respectively. Im the 2ir regicm, there is mo r=flecZed wave; znd eguation

(3) becomes

T r is. (z-4) ipy
g = 4.5 T
——

N Dﬁzn (112)

g =t . (i1b)

The boundary conditions are the continuity of the tangential
E and H fields at the dielectric interfaces zand the prescribed E f£ield at

the source. This can de si=rearized by

L A s i e S ————— e | e o e o vt
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By ;"B ,3t2=¢ (12v)

]
%112’0:"%(5')' (13)

Applicaticn of (13) on equation {liz) yields

B(y) = 1 j (=, B3 )ciﬁyéa (1)
""Eosl 4
Thus the gesatity s (. 31) is recogaized zs the Fcurier trazasform of

L—nsosiV&(y) ; or, frem equaticas (3) zné (8) ,

=

s.{4, - B) = — (y)eQ" ]
A S | —

J2r Y

Thass
U‘:‘e.‘v .
4 -3 =2~ - L | {152)
S

2 1 ! (158)
VI sy 1 - (By44;)

Usiog the boundary conditions for the intercediate interfaces, equations
(122) and (i2D) becoze

—is 4
43 e —m-1m-1 (162)
n




The zpplication of equations (16) &t the last interface, where 3;; = o,

resuits in the following expressions:

-2 - G
R P (172)
Bg1 =23
and
-= e -
75 -1 (17p)
whare

m = s -
n nSa-1 0 To-15,

Bguations (16) can now be manipulated imto the following recursicn re-

iationships:
e ———
-is d An is d
-2is 1d-\ 1 =e @na-l- B zne n a-1
Ba—l = e n-iD 2 n (18)
n-1 -
= fg e nn-1_ 3 isn n-1
n
% e——
and
d
2e s eXfn-1%-1
A = _n-15a-1 (19)
a
is d d

Z e agp-1. me nn-1
o n

g |

. . = e y————— - e e



These recursion relationships can now be prograzed on a com-
puter to yield the desired transmission coeificient, AH. The procedure
for czalculating Ay was the following:

1. éﬁ:l.and its reciprocal were calculated froo equatica (172)

and were stored.

e

»

'S

2. The result was put info eguation (18), where a series of itera-
N

N
e

tions ware perfcr—ed o calculate

1 3
Py
,....gl. Zach _2 and

P

|88
ot

ics reciprocal were stored.

3. Al was then calculzted using equaticn {15b). This resul: was

then placed iz equation (i9;, where iterations were performed

to obtain Agyeneedy g

4, Ay was then obdtafaed from equation (1ibj).

Evaluation of the integrzl represeantation of the transmitted
field can now bz carried out by mzking the following changes of the
varizbles in equation (7):

y = ¢sin@
z-d = pcos8
&=k sin¢ ,
(o}

I1f che last medium is air, then ., = 1 and equation (1C) becomes:

N

H, 1 \jPANelkoccos(g-o)kocose de . (20)

Xy
N .{27
The method of saddle point integration is used to evaluate this expression

for the radiation field. The resulting expression is:

i(k -7 X
Hxn = e Xoe=7/4) _jtlz cos® Ayl, - g - (21)

c
Since Ay is ultimately evaluated at ¢ = 8, the value of each s, used in

the computer program is just 8, = ko\’€n - sin’e .



3. Experizental Systexms and Results
3.1 BDiscontiauwous Plasma Sheath

The plasma sheath simuilation system described by Tyras et al.
[}965%] repiaced the problem of the plasma-air interface with that of an
a2ir-liquid dielectric inzerface. The dielectric used was Aroclor 1232, 2
£lnid with a dielectric constant of 2.78 a2nd 2 low loss tangent. The fluid
was contained in a2 semi-cylindrical plexiglass tank with 2 dielectric com-
stznt of 2.59. This provided an essentizlly reflection-free plexiglass-
aroclor iaterface. It was shown then that the air ilayer between tha
grouad plane and the tank was eguivalent to 2 plasma sheath with z die-
lectric coastznt of 0.36, and that the Aroclor region was equivaleat to
the air region 2bove the plasma sheath, Thus the radiztion patterns ob-
tained for the experimental systea were expected to exhibit the sa=e
fuactional relationships a2s those obtazimed from the analytical solution
of tha actual problen.

That this was a feasible method for a plasma sheath siculation
was shown by the excellent agree—ent between the theoretical zad experi-
mental radiation patterns. The variztion of the iaput adnittance with
the sheath thickness was also investigated, and good agreement with the
available theoretical data was again observed.

The extension of this method to simulate finite and semi-infinite
plasma sheath environments is straightforward. A plexiglass sheet was
placed ir the space between the tank and the ground plane in order to
simulate the rectangular semi-infinite plasma sheath of figure 1, with L2
considered infinite and o equal to 90°. Radiation patterns were then
obtained for various values of the discontinuity separation Ll. Simjilar

measurements were also made for angular discontinuities with ¢; equal to

e e e o e —————t—r—— o — e e
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45° and 15°. It is expected that this type of discontinuity is a more
realistic —odel of the environments encountered in reeantry.

Figures &4a through 4f show the experimental and theoretical
radiation patterns obtained for the rectangular discontinuity. The fea-
tures of major importance in these patterns are the following:

1. The radistion pattern is relatively unaffected as long as

the ratio of the discentinuity separatiorn to the sheath
thickness is at least 20.

2. As the discontinuity plzme is coved closer to the source,
the major lobe of the radiation pattern on the disconti-
nuity side of the source (062 0) is seen to broaden and the
critical angle is seen to shift. In addition, increased
broadside and end-fire radiation is observed.

3. While it is not shown on all the figures, the radiation
pattern on the other side of the source (8<0) is affected
very little by the presence of the discontinuity.

These features are cooplerely in line with the predictions of Tamir and
Oliner E.%la on the basis of their leaky-wave amalysis.

In compariag the theoretical and experimental radiation patterms,
it is to be noted that no outstanding point-by-point agreement was reached.
This is due in part to the inherent errors arising from the approximate
leaky-wave method of analysis for obtaining the radiation fields. This
error is usually apparent at broadside for certain combinations of plasma

dielectric constant, ¢, , and sheath thickness, d, which is readily apparent

P

in figure 4b. However, the general qualitative nature of the effects of

- S e g R . - W T G St g, e <y 7 e e

e e AR ST |
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the discontinuity on the radiation patterns is ia good agreement with the
theory in view of the three features noted above.
With a view toward simulating more realistic discontinuities,

the geometry of figure 1, with finite L, and L,, was also iavestigated.

3
It was observed that the effects of the angular discontinuities wece of
the same general type as those of the rectangular discontinuity. Again,
no appreciabie changes were noticed for separations greater than 10 wave-
leagths; and the changes noted for smaller separations were of the same
type as those observed previously. Figures 5z and 5b show the radiatiom
patteras obtained for an angular disceatinuity with L, infinite and ¢ =
£5°. The effect of the addition of a second discontinuity to sinulate
the eavironment of figure 1 is seen in figures 62 1d 6b. It is evident
that the resulting radiation pattern is essentially a superposition of
the effects of each discontinuity acting separately.

The e2ffects of discontinuities on the ipput admittance were also
investigated. Measurements were made at the input to the tapered waveguide
section of the antemna, exactly as reported earlier [E&ras et al., 19655]
The resulting zdmittance characteristics are seen in figures 7a and 7b.
Figure 7a shows the variation of input admittance with the discontinuity
separation with only one discentinuity present. It is seer that the con-
ductance remains essentjially constant if the ratio of the discontinuity
separation to the sheath thickamess is at least 4, while the susceptance
remairs constant over the whole range of the variationm in Ly The effect

of the second discontinuity on the input admittance is seen in figure 7b.

o gl g e e e
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3.2 1Inhomogeneous Plasma Sheath
As menticned in Section 2.2, the discrete-layered model for the
inhomogeneous plasma sheath is a convenient one amaiytically as well as
experimentally, The profiles shown in figures 2b and 2c are easily simu-
lated in the laboratory using the earller scaling technique [%yras et al.,
1965:}. Table I below shows the properties of the various materials used

to simulate these profiles.

Taols 1

(Data for 25°C and 3x10°-1x10° cps)

Haterial Actual ¢ Scaled ¢
Styrofoanm 1.00 0.360
Tefion 2.08 0.748
Polyethylene 2,25 0.813
Polystyrene 2.54 0,913
Plexiglass 2.59 0.935

Figures 82 and 8b show the thecretical 2nd experimenrtal radiation
patterns obtained for these two profiles. In figure 8a, good agreement
with theory is observed, with the main discrepancy occurring in the
slightly different critical angles. 1In figure 8b, a difference of 2 db
is noted in the attenuation at broadside, while there is excellent agree-
ment at the critical angle. In each of these figures, the most signifi-
cant point to observe is the general shape of the radiation patterns. It
seems tc indicate that an inhomogeneous plasma sheath of the type shown in
figures 2b and 2c acts effectively like a homogeneous plasma sheath with
some average dieiectric constant. This average value of ep can be readily
computed from the relation, sin29c = eps where 8, is the critical angle ob-
tained from the radiation pattern, This should hold at least as long as

the minimum value of the dielectric constant in the sheath remains positive.

e e T
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The effects of discontinuities in the inhomogeneous plasma sheath
were also investigated. The configurations of figures 92 and 9b were simu-
lated in the laboratory using the materials of Table 1. The radiation pat-
terns for various values of the discontinuity separation, L;, are seen in
figure 10. These patterns exhibit the same characteristics as those of
the discontinuous homogeneous sheath.

The input admittance of the antenna ir the presence of these
semi-infinite, inhomogeneocus environments was also obtained. Figure 11
shows the conductance arnd susceptance as a function of the discontinuity
separation. As noted before in the case of the homogeneous sheath, the
variation is very slight for separatiom-to-thickness ratios of 4 and
larger. It is only when the discontinuity is situated closer to the

source that significant variations are observad.

4, Conclusions

The extension cf the earlier results [E?ras et al., 196%%] to
include more realistic radiating system eavironments has succeeded in
predicting the qualitative effects of the discontinuities and inhomogene-
ities in the plasma sheath on the radiation patterns and input admittances.
In the case of the finite and semi-infinite homogeneous plasma sheath, it
has been shown that the analytically approximate method of Tamir and Oliner
[E96§] is a valid one to use in order to predict the essential features of
the radiation pattern. It was observed that the radiatiom p(ttern was
relatively unaffected if the discontinuity separation-to-sheath thickness
ratio was about 20 or greater. For smaller separations, the radiation pat-
tern was observed to broaden and the major lobe to shift. 1In the case of

a stratified inhomcgeneous sheath, this report has shown that the

e me e . mp— - [
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