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ABSTRACT

The plasma sheath simulation cechnique developed earlier has

been used to investigate the effects of various types of sheath disconti-

nuities and imhomcgeneities on a slot antenna radiation pattern and input

impedance.

In the case of semi-infinite and finite-extent homogeneous

plasma sheaths, the radiation pattern and the impedance characteristic

are investigated with regard to the geometry of the discontinuity and

its proximity to the slot antenna. It is found that the radiation pat-

tern is unaffected by the discontinuity as long as the ratio of the dis-

tance between the source and the discontinuity to the sheath thickness is

of the order of 20 or greater. When the sheath is made finite in extents

with a discontinuity on each side of the slot, the resulting pattern is

seen to be a superposition of the effects of each discontinuity acting

separately. The input impedance of the slot exhibits only small varia-

tions when the ratio of the discontinuity separation to the sheath

thickness is of the order of 4 or greater. For smaller separations,

the impedance exhibits significant variations, strongly dependent on the

geometry of the discontinuity. The effects produced Ly inhomogeneities

are found to be similar to those of a homogeneous sheath with a certain

equivalent dielectric constant.

For both the homogeneous and inhomogeneous sheaths, favorable

comparison with the available theory is obtained.
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1. Introduction

The recent interest in propagation of electromagnetic waves

through a plasma sheath has generated a large number of papers, mostly

theoretical in nature, which solve for the fields of various radiators

in the presence of idealized plasma sheath environments. Most of these

papers make assumptions concerning the nature of the discontinuities and

inhomogeneities in the plasma sheath in order to make the problem more

tractable analytically. For example, Tamir and Oliner E1964] approxi-

mate a discontinuous plasma shepth by terminating the sheath at a finite

distance from the radiator with a termination perpendicular to the ground

plane and to the plasma-air interface. As will be seen later, this con-

figuration allows an approximate analytical solution to be made by means

of a Kirchhoff-Huygens integration over the discontinuity plane. Rusch

14963] and Tyras [1965b] formulated mathematical models for the dielectric

constant in a stratified inhomogenecus medium, with the latter obtaining

a closed form expression for the radiation fields,

Little or no experimental work in this area has been reported,

primarily due to the handling difficulties and instabilities inherent in

actL..1 laboratory plasmas. Recently, however, a plasma sheath environ-

ment was successfully simulated using real dielectric materials [Tyras

et al., 1965a] . The simulation method allowed the experimental determi-

mation of the radiation patterns and input admittances for the problem of

a slot antenna in an infinitely conducting plane clad with a homogeneous,

lobsless, and isotropic plasma layer of infinite extent.

This simulation method provides a laboratory geometry readily

suitable for modification so that discontinuities and inhomogeneities in

i
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the plasma sheath may also be simulated. In particular, discontinuities

of the "plate" type (Tamir and Oliner, 19641 as well as inhomogeneities

composed of discrete vertical stratifications can be easily simulated.

It is the purpose of this report to describe in detail these

simulated inhomogeneous and discontinuous plasma sheath environments and

to present their respective radiation patterns and input admittances. In

the case of the radiation patterns, the experimental results are compared

with the approximate analytical results of Tamir and Oliner for the dis-

continuous plasma sheath and with the asymptotically exact results ob-

tained from a saddie point integration for the inhomogeneous plasma

sheath.

2. Theoretical Background

2.1 Semi-Infinite Plasraa Sheath

A common idealized model of the plasma sheath surrounding a re-

entry vehicle is seen in figure 1, with LI and L2 considered infinite in

length. It consists of a perfectly conducting plane covered with a homo-

geneous plasma of infinite extent. Tamir and Oliner E9621, among others,

have analyzed this problem and have shown that the field in the plasma

region and the near field in the air region are dominated by a single

leaky wave and that the radiation field has a maximum at an angle closely

corresponding to the critical angle of geometric optics, as long as the

plasma dielectric constant remains positive.

To study the effect of finiteness on the radiation patterns;

Tamir and Oliner [i 9 6 41 proposed the model of figure 1, with L2 consid-

ered infinite, LI finite, and *l " 900 In solving for the approximate

radiation fields, it was assumed that the fields incident on the discon-

tinuity plane were just those present in the case of the infinite plasma
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slab, namely, the field due to the leaky wave. The problem is then one

of an aperture with a prescribed field distribution, A Kirchoff-Huygens

integration over the fields on this aperture yields the far field and

consequently, the radiation pattern, R(O).

R(O) IK(O) (i)

where

K(G)= i+ ei(kp+a) 2-i e 12 a
k p" C k p+a

+ ie ia sin(kep -a) + sin(kep+a)
cos(k ep kep-a kep+a (2)

and where

a = kdcosG (k - free space wavenumber)

= (L/d)cotgc (Gc = critical angle)

kp = kzd (kz = transverse wavenumber in the air region)

kep = kzed (kze = transverse wavenumber in the plasma region)

and k and k satisfy the transverse resonance relationp ep

k 2 - k 2 = (kd)2(l _ E ) (3)p ep p

Epk p ik tankP ep ep"

When the discontinuity plane and the source are separated by a

large distance, the first term in K(G) becomes dominant; and the radiation

pattern is just that of an infinite plasma layer. Once the ratio of the dis-

continuity separation to the sheath thickness is made less than 20, the radi-

ation pattern begins to change appreciably. This change is composed of a

broadening of the major lobe and a shifting of the peak, all on the disconti-

nuity side of the source (970). In addition, increased end-fire and broad-

side radiation is observed. The exact nature of this change is strongly
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dependent upon the plasma sheath par eters (ep and d).

2.2 inhomogeneous Plasma Sheath

A possible model for the inhoi-ogeneity profile thought to exist

in the plasma sheath surrounding a reentry vehicle is shown "n figure 2a.

This profile can be approximated, for analytical as well as experimental

purposes, by constructing a sheath of discrete layers of homo-eneols die-

lectrics as in figures 2b and 2c. As the layers beco-e finer, the dis-

crete mode! will approach the continuous =ode,.

Consider, then, an infinitely conducting ground p,-ane covered

with N layers of homogeneous dielectric material of infinite extent and

excited by an infinite narrow slot antenna, as in figure 3. By s--__try,

there is no variation of the fields with the x-coordinate, or 0.

Consequently, the only component of the magnetic field is the x-co-_pcnent.
th

Then in the n tlayer, F satisfies the source-free wave equation

2 2V H + k H =0 (4)
n Xn

o2whr k o ,  n 2 _.i

where k = k and An e tine dependence has

been assumed and suppressed throughout. Since the geometry is infinite

in the y-direction, a Fourier transform pair on the y-coordinate can be

defined as follows:

rO

Hx F 1OeYdY (5)

=H H,, e i r y d c "  (6)

-2
!, =iCZ nd 2 =- 2

Thus, Y and , and equation (4) becomes

- y y2
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-s=0, (7)

2 2
where =s n 2 and I=(sn) 0. The solution of (7) is found to be

isz -isz
H e + B e (8)

x n

and, by (6)

! =. i-z 3me-:ismz-L

-FL +e d. (9)

The A and Bn represent the a:rlitudes of ns=irted and reflected waves,

respec-avely. in the air region, there is za reflected u-ave; and equatio

(9) beccmes

B = je,- e (10)

The co onets of the electric field are given by

-, _ Zbnz

EZ (11b)

The boundary conditions are the continuity of the tangential

E and H fields at the dielectric interfaces and the prescribed E field at

the source. This can be su=rarized by

En = 4 at z = dn_1 (12a)
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Ew- Hat z -dn-I (12 b)

and

0 (13)

Application of (13) on equation (la) yields

1 I J fs(A. I)ei4a. (14)

T s he .uatity s!(A. - B.) is recogaized as the ?curier transfor. or

%6Vo-(_y); or, froc equations (5) and (6) ,

,(z - 01 q-/ _ ;

.m~nLSN -NB -"° - - 1 15a)

which can be rewritten as

L'9 1E (IV
S,~ i (Bui!A)

Using the boundary conditions for the internediate interfaces, equations

(12a) and (12b) beco=e
- ij s _d ~. -is

Ae ndn-i + B e n i n- e -n e n-in-i (16a)
nn n- n I

S n Lsd nI - -I d ] _sn- 4s dn-e [E'- n [ -n-e (16b)

-Bn- e-is n - dn
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The a~plicarion of equations (16) at the last interfece, %.here B - 0,

results in the following expressions:

e -2s _ -" Id  (17a)

and

eNlA (17b)

= s +s a-%

on =sn~ - sc!

Eq'ations (16) can now be aznipulated into th e following recursion re-

latioaships:

-isd An isd
-2is d m e n n-I n e na-1

=e a (18)Bn-I A le - _ a n -11 - )
Bn-I E3 A n e isu n-I 2 e -sndnnI -n

anda

and

A 2s- A -l eisa-id-i= -% -i(19)
a 11 is d Bn -d

e n n-I - nm e n n-i
a a
An



8

These recursion relationships can now be prograed on a co -

puter to yield the desired transmission coefficient, A_. The procedure

for calculating AN vas the following:

1. AN-1 and Its reciprocal were calculated from equation (17a)
BN-!
and were stored.

2. The result was put into equation (18), where a series of itera-

tions were perfor=ed to calculate AN-2 A! Each .' and
N-2 1.. .

its reciprocal were stored.

3. A1 was then calculated using equation (15b). This resul: was

then placed in equation (i9', where iteratfons -ere perfor-ed

to obtain

4. A, *was then obtained from equation (ti7b).

Evaluation of the integral representation of the transmitted

field can nCra be carried out by r-aking the following changes of the

variables in equation (7):

y = csing

z-d = CcosO

a= k s in4
0

If the last medium is air, then IN = 1 and equation (10) becomes:

S 1. AN ik CCOS(9-o)kocoso do (20)

The method of saddle point integration is used to evaluate this expression

for the radiation field. The resulting expression is:

I = ei(k°p-7/4) -o cos A . (21)

Since AN is ultimately evaluated at 4 = 9, the value of each sn used in

the computer program is just sn = ko e1n - sin2 "
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3. Experimental Syste=s and Results

3.1 Discontinuous Plasma Sheath

The plas-a sheath si-ulation system described by Tyras et al.

[l965a] replaced the Problem of the Plasma-air interface with that of an

air-liquid dielectric interface. The dielectric used was Aroclor 1232. a

fluid with a dielectric constant of 2.78 and a low loss tangent. The fluid

was contained in a se=-ylindrical plexiglass tank with a dielectric con-

stant of 2.59. This provided an essentially reflection-free plexigliass-

aroclor interface. It was shown then that the air layer between the

ground plane and the tank was equivalent to a plasma sheath with a die-

lectric constant of 0.36, and that the Aroclor region was equivalent to

the air region above the plas-a sheath. Thus the radiation patterns ob-

tained for the experi-ental system were expected to exhibit the s-e

functional relationships as those obtained from the ranalytical solution

of the actual problem.

That this was a feasible method for a plasma sheath simulation

was shown by the excellent agreement between the theoretical and experi-

mental radiation patterns. The variation of the input admittance with

the sheath thickness was also investigated, and good agreement with the

available theoretical data was again observed.

The extension of this method to simulate finite and semi-infinite

plasma sheath environments is straightforward. A plexiglass sheet was

placed in the space between the tank and the ground plane in order to

simulate the rectangular semi-infinite plasma sheath of figure 1, with L2

considered infinite and 0i equal to 900. Radiation patterns were then

obtained for various values of the discontinuity separation L . Similar

measurements were also made for angular discontinuities with 4i equal to
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450 and 15?. It is expected that this type of discontinuity is a more

realistic model of the enviroi=ents encountered in reentry.

Figures 4a through 4f show the exp.eriziental and theoretical

radiation patterns obtained for the rectangular discontinuity. The fea-

tures of major importance in these patterns are the following:

1. The radiation pattern is relatively unaffected as long as

the ratio of the discontinuity separation to the sheath

thickness is at least 20.

2. As the discontinuity plane is moved closer to the source,

the major lobe of the radiation pattern on the disconti-

nuity side of the source (90 0) is seen to broaden and the

critical angle is seen to shift. In addition, increased

broadside and end-fire radiation is observed.

3. While it is not showa on all the figures, the radiation

pattern on the other side of the source (9<0) is affected

very little by the presence of the discontinuity.

These features are completely in line with the predictions of Tamir and

Oliner 1964] on the basis of their leaky-wave analysis.

In comparing the theoretical and experimental radiation patterns,

it is to be noted that no outstanding point-by-point agreement was reached.

This is due in part to the inherent errors arising from the approximate

leaky-wave method of analysis for obtaining the radiation fields. This

error is usually apparent at broadside for certain combinations of plasma

dielectric constant, ,pj and sheath thickness, d, which is readily apparent

in figure 4b. However, the general qualitative nature of the effects of
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the discontinuity on the radiation patterns is in good agreement with the

theory in view of the three features noted above.

With a view toward simulating more realistic discontinuities,

the geometry of figure 1, with finite L and L,., was also investigated.

It was observed that the effects of the angular discontinuities were of

the same general type as those of the rectangular discontinuity. Again,

no appreciable changes were noticed for separations greater than 10 wave-

lengths; and the changes noted for smaller separations were of the same

type as those observed previously. Figures 5a and 5b show the radiation

patterns obtained for an angular discontinuity with 12 infinite and =

450 . The effect of the addition of a second discontinuity to simulate

the environment of figure 1 is seen in figures 6a ad 6b. It is evident

that the resulting radiation pattern is essentially a superposition of

the effects of each discontinuity acting separately.

The effects of discontinuities on the input admittance were also

investigated. Measurements were made at the input to the tapered waveguide

section of the antenna, exactly as reported earlier Pyras et al., 1965]

The resulting admittance characteristics are seen in figures 7a and 7b.

Figure 7a shows the variation of input admittance with the discontinuity

separation with only one discontinuity present. It is seen that the con-

ductance remains essentially constant if the ratio of the discontinuity

separation to the sheath thickness is at least 4, while the susceptance

remains constant over the whole range of the variation in LI. The effect

of the second discontinuity on the input admittance is seen in figure 7b.
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3.2 Inhomogeneous Plasma Sheath

As mentioned in Section 2.2, the discrete-layered model for the

inhomogeneous plasm sheath is a convenient one analytically as well as

experimentally. The profiles shown in figures 2b and 2c are easily simu-

lated in the laboratory using the earlier scaling technique L as et al.,

1965] . Table I below shows the properties of the various materials used

to simulate these profiles.

Table I

(Data for 250C and 3xlOg-lxl09 cps)

Material Actual E Scaled F

Styrofoam 1.00 0.360
Teflon 2.08 0.748
Polyethylene 2.25 0.813
Polystyrene 2.54 0.913

Plexiglass 2.59 0.935

Figures 8a and 8b show the theoretical and experimental radiation

patterns obtained for these two profiles. In figure 8a, good agreement

with theory is observed, with the main discrepancy occurring in the

slightly different critical angles. In figure 8b, a difference of 2 db

is noted in the attenuation at broadside, while there is excellent agree-

ment at the critical angle. In each of these figures, the most signifi-

cant point to observe is the general shape of the radiation patterns. It

seems to indicate that an inhomogeneous plasma sheath of the type shown in

figures 2b and 2c acts effectively like a homogeneous plasma sheath with

some average dielectric constant. This average value of Ep can be readily

computed from the relation, sin2 9c = rp, where 8c is the critical angle ob-

tained from the radiation pattern. This should hold at least as long as

the minimum value of the dielectric constant in the sheath remains positive.

T
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The effects of discontinuities in the inhomogeneous plasma sheath

were also investigated. The configurations of figures 9a and 9b were simu-

lated in the laboratory using the materials of Table I. The radiation pat-

terns for various values of the discontinuity separation, LI. are seen in

figure 10. These patterns exhibit the same characteristics as those of

the discontinuous homogeneous sheath.

The input admittance of the antenna in the presence of these

semi-infinite, inhomogeneous environments was also obtained. Figure ii

shows the conductance and susceptance as a function of the discontinuity

separation. As noted before in the case of the homogeneous sheath, the

variation is very slight for separation-to-thickness ratios of 4 and

larger. It is only when the discontinuity is situated closer to the

source that significant variations are observed.

4. Conclusions

The extension of the earlier results ffyras et al., 1965aj to

include more realistic radiating system environments has succeeded in

predicting the qualitative effects of the discontinuities and inhomogene-

ities in the plasma sheath on the radiation patterns and input admittances.

In the case of the finite and semi-infinite homogeneous plasma sheath, it

has been shown that the analytically approximate method of Tamir and Oliner

[1964] is a valid one to use in order to predict the essential features of

the radiation pattern. It was observed that the radiation ptttern was

relatively unaffected if the discontinuity separation-to-sheath thickness

ratio was about 20 or greater. For smaller separations, the radiation pat-

tern was observed to broaden and the major lobe to shift. In the case of

a stratified inhomogeneous sheath, this report has shown that the
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