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ABSTRACT

This paper investigates in what manner the spectrum or
body waves radiating from point sources in a multilayered
medium over a homogeneous half-space is different from the
spectrum of body waves from the same source in an infinite
medium. The effect of the system consisting of a point
source in a layered crust on the spectrum of p-waves ob-
served at large distances in the half space 1s studied.
Analytical expressions for the transfer function of this
system are derived for three types of point sources: an
explosive source, a single couple, and a double couple of
arbitrary orientation within the crust.

Preliminery numerical computétions for the explosive'
source at various depths in a realistic model of the earth's
crust study the effect of: a) the angle of incidence into
the homogeneous half-space, b) the source depth, c¢) minor
variations of the crustal model. In the case of an explo-
sive source the most influential parameter of the transfer
function is the source depth. In shallow explosions the low
frequency part of the spectrum of body waves 1is compara-

tively rejected.
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Figure Z:

Figure 8:

Figure O:

Figufe Captions

Point Sources and the crust of th earth.

"An explosive source, a singie, or . double

couple radiate body waves into the mantle
with angle of incidence { p.

' Cartesian (x,y,z) and cylindrical policr

(v, ©,2Z )coordinate system with numbering
of layers, depth of interfaces and of
source.

Contour integration in the complex JH-plane.

Geometry of the single couple. The point
forcesy :‘and-sg act on the line element

Ew -

The influence of the angle of incidence
on the amplitude of tle transfer function
of the system consisting of an explosive
point source in the crustal model NOCR
(right part cf figure) - at depth 30 km.

= 75°, 60°, 45°, 30°, 15° from top to
bottom. Corresponding phase velocities
are indicated. .

Amplitude of the transfer function for the

explosive source at depths 0.5, 8.0, 30,0 km

in the crustal model NOCR. &Angle of incidence
] = 45°. Frequency range O - 0.3 cps.

amplitude | T| and phase d of the transfer
function for the explosive source at depth
0.5 km In the crugtal model NOCR. Angle of
ncidence ! = 45, Frequence range

0O - 4,0 cps.

Amplitude I T and phase d of the transfer
function for the explosive source at depth
8.0 km in the crustal model NOCR. (Jee
Figure 7)

Comparison of amplitude of the transfer
functions for explosive cource at depth

8 km, § = 30° in crustal model NOCR, and
modified models LVC1l, LVC2 (see tables 1-3).
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The Transfer Function for P-Waves for a System
Consisting of a Point Source in a Layered Medium

1. Introdu-ztion.

Focal mechanism studies using body and surface wave
observationé endeavor to extract useful information about the
source of an earthquake from the set of signals observed at
seismic staticns distributed over the worid. Not all the
information ahout the source originally contained 1n the sig-
nal in the_neighborhood of *he sourée will reach the stations
at large distances from the source. There is, of course,
1oss of information due to geometrical spreading and to ab-

sorption. But equally as important, each homogeneity encoun-

tered by the signal along its path from the source to the

receiver will more or less reshape the signal. A very strong
deformation of the seismic signal occurs on 1ts passage
through the crust of the earth, since the dimensions of the
crust are of the order of the dominant wave length of the
signal.

For the case of deep focus earthquakes (source
depth ® 300 km) only the crust at the receiver has to be
accounted for. But as soon as vhe source approaches the .
crust, interference between direct waves and reflected waves
becomes a factor. In this circumstance the structure of the
earth's crust at the source wili also strongly deform the
signal origirally radiated from the point source, Espc-
cially is this the case 1f the source is located within the
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crust. It is the purpose of this study > invesiligate how
the spectrum of body waves radiating from a'point source 1s
affected 1f this polint soucce 1is placed within the crust in-
stead of in an infinite homogeneous and 1sotropic medium.
This paper concentrates on the spectrum of dilatational waves
radiated from three commonly used point source modelis (evplo-
sive source, single couple, and double couple) into the
mantle.

The dllatational displaccment potenvial in the mantle
of the earth at large distances fir..a the =ource will be cal-
culate’. Numerical exanmples for the case of the explosilve
source in the crust wili be presented. For the sake of clar-
ity the assumptions made throughout this paper conerning the
‘nature of th- medel consisting of a poiat source in the crﬁst
will be listed here.

1,1 Assumptions on the model "point source in the crust."

The situation 18 depicted in figure 1. The assump-
tions are:
1. We are dealing with a point source, i.e. the dimen-
T RGO @ D e region should be small compared
to the dlstance to the next boundary. With this
limitation i1n mind the point source may be placed
at any point in a layered medium.
2. The crust of the earth is approximated by a system
of (n-1) homogeneous, isotropic layers with plane
parallel interfaces. The P-, the S-wave veloclty,

the density, and the layer thickness for the 1th
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3

layer will be duaoted by Ry, P, §4 and d’i re-
spectively. The top layer is specified to have a
free surface. The angle § is the angle of inci-
dence for P-waves 1in the mantle.
3. The mantle, the nth layer, will be regarded to be
"relatively homogeneous." By this we mean, quite
generally speaking, that the elastic properties of
the mantle vary much more gradually than they do
in the crust. Thus we choose the nth layer to be
a homogeneous haif—space.
From this point on, the word "crust" will mean the system
of n-1 layers described under 1. The term "mantle" or
"subcrustal material"” refers to the homogeneous half-space
of our model.

Figure 1 . indicates furthermore, how the signal
might be.follawed through the mantle to the base of the
crust at the receiver station and through that crust to the
receiver, In this paper e will not consider the influence
of the mantle path or of the recelver crust on the signal.
These iatter effects have been examined by a number of
authors. Ben-Menahem, et al. (1965) describ~d a method
for the recovery of source parameters if the source is lo-
cated ir a realistic mantle model sufficiently removed
from the base to the crust. The influence of the receiver
crust system has been treated recently by Phinney (1964),
Fannon (1964a,b), Ben-Menahem, et al. (1965) using the

matrix formulation of Thomson (1950) as developed by




iy

stnbH g

Haskell (1953).

1.2 Previous investigations.

Elastic waves radiating from point sources in a mul-
ti-layered medium overlying a homogeneous half-space have
been investigated recently by a num! er of authors. Hark-
rider (1964) formulated the solution for an explosive source,
a vertical and a horizontal point force in a layered medium
by the Thomson-Haskell matrix method in the frequency domain.
He concentrated on the effect of the source crust on surface
waves of Rayleigh and Love type.

Bortfeld (1964) reported on a solut.i>n in the time
domain by a method of numerical interpretation.

Van Nostrand (1964) presented computations of synthet-
ic seismograms at large distances from point sources in the
crust. He also works completely in the time domain.

bunkin (1965) applied integral transformation tech-
niques for a refinement of the matrix formulation. His
matrix formulation i1s especially useful ror numerical cal-
culations at high frequencies. He provides a review of the
currenf'Thomson-Haskell matrix method which gives a good
insight 1nto the purpose and significance of matrix methods
in problems of wave propagation.

In this paper we shall now proceed in the following
steps:

Section 2: The displacement potentials for P-waves d.e to
a vertical and a horizontal point source in the

crust will be derived as integrali representation
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(sections 2.1 and 2.2). A large distance approx-
imation will be given in 2.3.

Section 3: The results for the vertical and horizontal point
force are used to construct the potentials due to
three types of point sources commonly used in
focal mechanism studlies: an explosive source,

a single couple, and a dcuble couple. Transfer
functions for these systems '"point source in the
crust" will be defined there.

Section 4:° Prelimirary numerical examples for the case of

the explosive source in the crust will be pre-
sented.

2.0 The displacement potential due to a vertical and a
horizontal point force in a layered medium over half--

space.
Throughout this paper we prefer to work in the fre-

quency domain. The description of wave propagation by a
irequency transfer function 1s, 1n many cases, more advan-
tageous than the equivalent description by the system re-
sponse'tc a unit pulse excitation, since 1n many studies
the knoﬁledge of the frequency response 18 required in any
event, and since the overall transfer functions of a series
of linear systems can more easily b= obtained by multi-
plication or the corresronding transfer functiona than by
convolution »f the corresponding uinlt pulse responses,

2.1 The displacement potential due to a vertical and a
horizontal point force.

We shall consider the »rocess of wave propagation
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from a vertical and a horizdntal point force in a layered
medium over a half-space after transforming our model of
the process in a timeless space by a Fourier integral . trans-
formation of the equations of motlon for the various homo-
geneous layers of our model, including the source and
boundary conditions. In such a space information from
source to receiver 1s no longer transmitted in time. In
this timeless space a local disturbance of the equilibrium
at the source will "immedlately'" affect the whole system.
Our transfoermed point source, a Dirac-delta-source in space,
which acts either as a vertical or horizontal point ferce
will generate a disturbance in the distribution of the
stress-tensor. The stress-tensor is coupled to the strain
tensor by the elasticity tensor. Therefore the redistribu;
tion of stresses will also cause a redistribution of the
transfor&ed dispiacement vector throughout the transformed
space, right to the place of the receiver.

For the description of our model we choose the two
coordinate systems depicted in figure 2. For the most part
the cyl.indrical system (¥ ,©,2 ) will be used. 1In Sect.
2.2 the right-handed xyz-system 1s sometimes more advantage-
ous.

It will now be useful to defline transformed displaceé
ment potentials ‘?1, Pi and -x-i from which the transformed
displacements vector (qi, '\'ii,Wi) may be derived (see
Harkrider, 1964) as follows:
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- % Nw 1 (2.1)
q”"e'z'-’ Qt‘ o 'O‘z *T 96

- ) _ 1 9% + L Qz-;. - 97(;.‘ (2.2)
ilr®z)=¢58" * ¥ Tee Ir

= | 26: I 3 = 2.3
w;(r.g‘z,l-—s;:-— + '%-z-!— + “.6't Vi ( ,
| 18 l.nt.n .

We will then carry these potentlals from the source to a
"receiver" within the homogeneous half-space. Comparing these
with the potentials which would have arisen if the same type
of source had been placed in an Infinite medium of subcrustal
material, we arrive at the quotient of the two potentials
which may »e regarded as the transfer functions of the soufce
crust sygtem.

The potentials will not be carried directly from the
source to receiver. The Thomson-Haskell matrix formulation
uses the so-called motion-stress vector, whose components
ave the components of the displacement or particle velocity
vector énd of the stress tensor. This motion-stress vector
t+g carried across the interface continuously, and through
the layer from top to bottom by a matrix transformation.

Thus the continuation of the motion-stress vector from source
to receiver can be expressed as a series of matrix transform-

atior3. Dunkin (1965) reformulated the Thomson-Haskell
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matrix method to reduce numerical difficulties at higher
frequencies. Dunkin's refined matrix formulation allows,
8o to speaX, an increased flow of information from source,
to recelver through the "noisy channsl" of a digital com-

puter,

This papér will follow the matrix formulation as
explicitly developed by Herkrider (1964). To avoid repeti-
tion we will simply sum up that he continues two motion-
stress vectors R‘; and ﬁu through the model from source to

th

receiver. In the 1 layer these vectors are:

u i vai (Zi ‘
Rna . { ‘&"tﬂ ) !""?'J ) Sy (%), 't'm(zu} (2.4

ﬁu . ( \.n.i.c(z&) ) tu(z;)} (3:5’

These vectors, which are dependent on only, are essen-
tially derived by a series of integral transformations from
the Fourier transfcrmed displacement potentials. They are
connected with the transformed potentials P:(2), yi(z), x:(2)

um(z) ‘z[ 2] + dvzuz)] (2-6)

C

‘. o [dez) | d'wi() : :
TPV LU LU v:1z)] (2.7)
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ale(z) | diwei(z) 2 dwl(z)
G lz) = zf‘}[ rr e T T ] (28)
. 1 *

= Ai L; ‘Pi(z)

. dy: vitz) 2
t,,;(z):-slr‘.[l -%ﬂ +2 dT"fr—ﬂ,.‘%ﬂ’] (29]

and A
L%LZ-L =t l: x;(Z) ‘z' ‘o’
Talz) = AM dXxilz)

1z (2.01)

In" eq. (2.6) - (2.11) the following notations are used:

4& = 9 : horizontal wave number, with
¢ ¢ = horizontal phase velocity
“‘;‘ dilatational wave number with
«4 = p-veloeity in) 4%h layer
“M . shear ‘ pi = S-velocity in

Lame's constants in the 1th layer

From @:1Z), ¥i i2) , X¢(Z) the Fourier transformed displace-
ment potentials ii, ;&. At are obtained by:

$iir, ©,3) 'f‘ﬂ(z) Jg(""“’ tedh (212)
¥(r, 0,2) 'f?u*) Jeihr) Lo dh (2.12)
o .

Xilr,@2) = Kilz] Jp (hr) sim2OdA (2.14)
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Jz are the Bessel functions of order f, where l = 0, [ in
case of vertical and horizontal point force respectively.
This paper will only be corcerned. with the P-waves

radiating into the half-space. Therefore we will now only
-3

follow the motion-stress vector "gi from source to receiver.

This vector is continued from top of layer t to the bottom
of the layer'i by the matrix relation:

Raa RALK Mr. (zi-0) Lzl n
The elements of the matrix Q‘i , the layer matrix, are:

‘“r)u? (‘n-).., B L -(xa-t)wQ;
(an)ia = (an)yy =i [ 51) 5
(0n; ) = (0n) 5= - (& c’)"[ P - @)

(onidy = i tgoet)”’ [ 220 vry, s

(ox; )z; =y Ji3 ® = =i [ Yi Y, vim T +(1i-1) smha‘ ]

(“‘)‘* 2 (ay),, = “(fi-t) mPr 4y > &

(0n;)3 i(nc*)" [r.. pin P; + 9::- }

(‘a-,,. "'“!' )n 2 g;c‘x;(‘;-u) [ml"-m Q;]
(o9 )t & ’[‘L") "'""t + h “"\0&]
(Px)y = i [ R ..w A "‘“"

ol L R Q‘]

(2.15)

(2.16)

R R s

Tt
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where:
) (l}_. )z (2.17)
‘c = 4 (4
(2.18)
P o= A di
. 2.19
di = z; -z, (2.20)
and:
. a T
-t J & - t for  h >A¢;
&l‘ - ‘2.2',
“ ° { 2 2 for <
2. b2 :
hra = (2.22)
Since the motion-stress vector is continuous across the in-
terfaces it can be continued directly into the next layers
untll the receiver point is reached. Harkrider then shows
that the point forces can be represented in our Z -dependent
model space by introduclng a discontinuity of the motion-
stress vector at the place Z=D of the source, These dis-
continuous motion-stress vectors are in case of a vertical
point source:
(2.23)
( 0, 0, doy_, o}

where

TNt st

s

1
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and for a horizontal point force:

{o0 0,0, th,} (2.25)
where -
Jrg, = i -L;é,,-r (2.2¢)

I:“M’is the Fourier transformzd point force. Now the source
layer \=$ is divided into two layers §, and Sy at the

level of the source depth D (see figure 2 ). The layer S,
will be referred co as the top scurce layer. The layer

matrix Q“' for the layer §, are the same as for the undivided
source layer $only dg=22g~Zy-y nas to be replaced by g, the
depth of the source in the source layer.

Taking care of the prescribed components of the motion-
stress vector at the free surfaces aznd the radlation condition
that no sources are at infinity, one 1s in a position to cbn-
tinue the motion-stress vector introduced at the source to
the receiver pesition in the Infinite half-space. In the

half-space n the transformed potential in the form:

guiz)e- (@]} et (] 4 (227
W ’2‘2"

y;,-(z):-i% e
jaVorH

satisfies the wave equatioas and the radiatlon conditions,

-i hrg, (2-2nq)

provided &r,‘ and "Pu are chosen as in 2q. {2.21), (2.22).

In that case Aj and ﬁb are connected with the motion-stress

vector ﬁ‘“ in the half-space by the matrix relation:
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N\
fA,
. -t >
8 = Eg “‘ (2'19)
" "
w,;
w; j=VerH
\ P
where: . N
. PR YL
-2 g_:, 0 (o) 0 |
 TIO Y !
E;' : 0 A1) /ted ;) 0 (fi ;) (2:30)
i’ . . . LEN -1
(G4 ) 0 (nlpre)” o
. )
0 1 0 (ne'f)
#
The following matrix relations connect the potential vector
-
defined in eq. (2.2&) with the motion-stress vector ’1[‘(0)
at the free surface and thé scr'rce motion-stress vector:
a) for a vertical point force: , \
P W ¥ o T
Ay U3, (0) /)
[d
.| veyte) o 23
Av « J ﬁz__ + nhn ,
Wy 0 dop,
bwv 4 h o 4 ) o 4
. Q
b) for a horizortal point force in dircction@e=0 (see figure
i, 10) ) 0
2 )i [ ) Ua, (0) 0
L% , € ;
" s J- ‘!‘.;CLL'.’. 4 u‘;“. 0 (2.32)
Wy 0 o
X 0 e
. " ’ - L, > bu“
where
J= Ej Qg .. «a (2.33)
- ‘“0 “.‘ elelen ‘. .




will be called tne crustal matrix and where R‘s\ is the

serse of
R, = Gxg - Qag, ... Qg (2:34)
nl,, will be termed the top source matrix, while Gmg is
the top layer matrix. Harkrider (1564) derives a very con-
venlent form for the elements o: RM ‘
(Png, Juy = (RRy )2y (Raghay  ~(Rag )y
R;; = [~ gl (ﬂtu’n -,““")n _"ln)ta (2:35)
(g ) - (Rrg )2 LTV PO | T
o LIV Y (Prsdar = (Rag)ay  (Pay ,u’
N

In case oi the vertical point source we are only concerned
with the matrix eq. (2.31), for the horizontal point force
with eq. (2.32). Both matrix equations represent each a
vsystem of 4 linear algebraic equations for the 4 unknowns
Ay , Wy, “““’/‘ WQ,('I/( or A“ w“u"w%;w"“% respec-
tively.

Up to this point we have iollowed Harkrider's develop-

ment. Since he was interested in the surface displacements,

Wy lo wp (0
he solved the systems of equations fcr -—%LL} ) —%%Li

arriving finally at the displacements due to surface waves
of the Rayleigh type.

Since in this paper we are interested in the radiation
of P waves into the hali-space we shall soive the systems
for fy and Qy, correspondinz to P waves Irom the vertical

and norizontai poulnt Lorce. Given these quantities we then

o = N . - - P e
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aerive integral representations {or the transformed poten-

tials ('f'w due to a vertical point source:

‘F‘v (r'z) & /(_.) Av (%,z e-l.."a“iz"zhr.l{‘o(k',dh (1.;"
0 .

and Py

due to a horicontal point force:

Oun (*,6:2) =/m9 (-1) Ay ("'3}2 e i'h“’(z.zw,.l,(LM dk

(237
Solvinz (2.31) f‘orAv results in:
5 D (238)
A, = D
where:
D‘=
U [U;\‘Jm )( s Ju‘vn-’u) t (-’u""sa.) (Y ds; ’Ju’n) ¢ Uu ~na) (- u’a)}* (1.39)
V[ =dul{daa Jiy=da Jaa )+ (dna=32 ) (Jwhe ~hydanjt (B =Ia) e dig o 1::)]
Doz (du=du)Uy ~du) - (Ju =du)(dy=~dw) {2.40)
ka are the elements of the crustal matrix J (eq. (2.33)),
and U ana V (using eg. (2.35)) are given by:
. -1 ] -f
U = (aaﬂ"% JG“; (ﬂtﬂ )“ Jtn$=(“‘”'ua'?‘;(n‘u’uJt“ (Nol}
-
V = (b, ’:3 J‘l,"’ ('lsa ,“ th & = (Pagyfus J“R;" ('lsl,u Jrks (2.42)
In case of a vertical point source (see eq. (2.23),(2.24))
we have 3
LA
Uy =- 55 ( Angaa .43

V.: + %‘ (hs:)zl

BRI B

..Mﬁ‘mltml[ﬁun I
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and for the horizontal point torce eq. (2.41) and (2.42)

degenerate to (see eq. (2.2%), (2.25)):

<

Uy - =t Eﬁ%‘ LTV P (2-44)

- 4
Vu = +tL %‘%-‘ (all“ ," (2 5,

i
Considering that ]ﬁF‘ i1s a common factor in the quantities

U ;de and therefore a factor ol Av and Au we shall define

for later use the quantities Ay and Ankxn

AV=- E_h_ AV ' ‘1'“"

2r
By = - Lth 3, (2.47)

The eq. (2.36) and (2.37) represent the complete solutions
{or the dilatational displacement potentiai within the half-
space due to a vertical or a horizontal point force in a
layered Erust. In the next section «.2 we willl use contour
integration in the complex ‘—plane to separat: modal solu-
tions of the surface wave type from the contributions of

body waves.

2.2 Separation of mdodal surlace wave solutions from body
waves

The procedure for the separation of modal surface
wave contributions {rom body waves will be described only
for the transiormed dilatational potential ‘;w due to a
vertical point source. The separation in case of the hori-
zontal point force follows the same line of reasoning.

The dilatational potential @Puv(®2) in the half-space
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due to a vertical point source 1s given by eq. (2.36),which

ve rewrite using eq. {2.49):

- | Lh -thv, 2
Puv tni2l ',/ 7 (B A et
where: Z =222y

and ‘l",. is the same as defined in eq. (2.21). To evaluate
the integral in (2.43) we use contour integration in the com-

plex -plane. we will inftroduce the following abbreviation:

3

. 2 s dn\y A
Fla)= 57 () &vid
The Bessel function will be replaced by the Hankel functilons:

}O(AP) = i"{ “o‘”“", + qu(lr)]

With this equation (2.48) may be written as:

Fay(n?) e I, 4 I,

where: o0 -

kv, 2

I, =i.'//¥“‘, e
(-]

”J"(Ar) dh

I, :idj:(k’ o=t hr Ho'*! (&r) d &

From now on we consider the wave number«& «nd the angular

frequency W to be complex variables:
§ s heltT

w e s~ t

W

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(253)

(2.5%)

(2.55)
(2.56)
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Keeping in mind that

Lo “o‘"(t') =0 for &0, T>0

Lrv »em
L H‘lll“r):() for ‘l?O,t‘o

r-» -0

we displace the path of integration from the positive real

axis to the imaginary aris for thc integral I., containing

(2.57)

{2.58,

{
Ho » and to the negative lmaglnary axis for the integral Ig

)

containing Hc“ , closing the path by the quarter clrcle in
the first énd fourth quadrant, respectively. The contribu-
tion to the integrals I| and Iz along these quarter circles
vanish according to eq. (2.57) and (2.58).

The chosen deformation of the original contour is indi-
cated in figure 3., The integrands in I. and I; have poles
and are multivalued functions of § . The poles occur at the
zeros of the denominator of NL). There 1s a slngularity
at ;:0 for the Hankel functions. This singularity dis-
appears as both integrals are summed up, since the Bessel
function is regular at §=0. It will therefore be disre-
garded.

Due to the presence of the exprescilons ‘.Q‘."n “";'“)“,
which appear in the crustal matrix J , the integrand is mul-
tivalued. To get a single valued function we must intro-
duce zll branchlincs originatin at the branch points
'gr.‘“ ng ( L e 'n ey l) . To assume the vanishing

of the potential for g"“ we must remain on that sheet of

-

,,.,443’."“&11!%}”1 N[ TRy
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the Riemann surface whare

Re (LB )>0; Palilry) >0 (2.59)

L= "..'o '“

Therefore the branch lines are given by:

Re (¢3rg;) =0 (2-60)
Re (¢%rpi) =0 (2.61)

é‘: ,|"' [} n
The positions of the poles and branchlines are indicated in
figure 3 for the case of R(W)?20 . por Relw)<0 pe poles
and branchlines would be displaced to the first quadrant. But
the results of the following derivations are the same in both
cases,

Jardetzky (1952) pointed out that in all cases of wave
propagation from a point source in a multllayered medium over
the halfLSpace, all expected branch 1line 1lntegrals vanish
except one branchline in each potential 3 and ¢ correspond-
ing to the terms Q“ or r““,respectively, for the half-space.
(See also Ewing et al. {1957)). This can also be proven by
considéring the symmetry properties of the layer matrices
Q‘l (see eq. (2.16)) and Eé:’(see eq. (2.30)). In this way
it is possible to prove the vanishing of the branchline inte-
grals due to "‘; | "; for &=lpseee, 0l There still
remain two branchline contributions yq“ and iﬁ.\ due tc Vg
and rPQ.Of the half-space for both dilatational and shear

potential.

T e s
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Referring to figure 3 the contributlons to the integrals

I‘ an I‘L firom branchlines and poles @may be written as fcllows:

1, e & [Far) 77T WY Gine) de (2.62)

{2.63)

It can be shown that

Flit)=- FliT) (2.64)

Consldering further that

B ite) = - WP (-itr) (2.65)

we may write I. as:
-00

I| =-.‘:/:“t, c-.‘,tr“i H.u'(itr) dt (2-66)

0
Summing‘1| and Ilkaccording to eq. (2.52) we realize that the

contributions along the positive and the negative imaginary

axes cancel. Therefore the final complete solution fcr
$|w(f'|l’ 1s: g
i Sre Z i)
Foe (n12) = z/”'f) “Z Hgr) d+ .

/*‘E)e"“"z Ho' 1 gr) AT ~ 200 2 Rusiduy

Up to eq. (2.67) no approximation has been used. Thus eq.(2.67)




represents the exact sclution for tne rourler transformed
diiatational potentvial &;.y('\z) in the half-space due to
a vertical point source within the crust.

We can now separate body waves from suria e wave con-
tributlons by the following line of reasoning. Rody waves

may be recarced as thocse waves which travel in the half-
space with horizoental phese velocity C’ﬂn . A1l waves
travelinzg wilh pnhase velocity CSPs\ are more or less
trapped in the crust, 1.e. the amplitude dimi:iishes rapidly
within the half-space with increasinz depth 2 They are
mathematically described by the residue contributions from
the poles. Thus we may regard the contributions from the
branchline contours as descrioing the body waves in the half-
space éenerated by the point source in the layered medium.

We now define the transforued dllatational potential of

body waves qv in the halfspace due to a vertical point
%

source by:

- -i{r“i 1
wu.z:=-‘§f<§)e R d 1.8}
o b JE(G) SR gt (g dt
“Xpn

This definition of body waves 1s especlally useful at large

distances from the source such that the sur:«:» waves have

had sufficient time to separate from the boay waves. We

shall now restrict our attention to the value of the inte-

gral representation of 6,“.2) at large distances from

the source,

l'mm%m'!ﬁlm‘lmithltiB:)MF?WEItmhmbiﬁllwwmunwxmuhﬁmmﬂm:'m‘u-».m-»u- o

i
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Large distance approlimation.

At Jarce distances :rom the source we substitute the

arproximation off tne Hankel unctions for lar.ce values of

the ar-ument §|" into eq. (2.5.), writing the two integrals

in one as:

il T +ir-3
Goin e. T ra )

dg (2.69)

Z;h- Pu

Por large distances we shall éepproximate the value of this

intezral by the contribution at the saddle point. To apply

the saddle point method we rewrite the integral in the form:

- LAY f
‘Mr.z)=/ Sl e < d¢ (2.70)

vhere

fI5)e-i(rgietr-§) (2m)

Since we are considering only the branchline integrals where

there are no poles of :Ht) on the chosen branch o the

Riemenn surface, we are Justified in assuming that the factor

W(f(“} varies slowly compared to l&?{f‘u) itself,

espec:iaily for large ¥ .

~

Qi

In the fourth qaadrant the saddle
point of the irtezrand 1s deterwined from ¥ ‘§Q)=0

to be
located at:
IO . % t‘n (1)
where
: R = VE¥ew 213

J"Hl"““ﬂi“! ‘@I;"w,liii.'n jill
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is the distance from the plumb point uf tae sourze at tae

base of the crust to the receiver at (V|i) . Since

always . N
r <R (2:74)

one may conclude that, as liong as R. is sulliziently zrecater
than ¢ , 1.e. as long as the rccelver is suirTicieatly re-
moved from the base ol the crust, thne saddle point 1s
separated from the branch point at t;“.

Writing ‘he complex branchpoint tq“ as:
Y 1S
§‘h - i K‘“ l e (2 ,

the path of steepest descent through the saddle point, on
which Rl( f(;,} has a maximum and decreases most rapidly

has the direc‘cion¢ :
E-.E (2.76)
¢ = M 2

Evaluation of (2.69) at the saddle point along the path of
stecpest descent ylelds finally -
J
- ¢ - o
2] = :F S e
Pyl nl) (“", r R
Here we havc returned to real angular frequency W and real

wavsz number A . Siaz

X - S:As' T ‘_'.‘ (2"7‘)
R <
and since
o = w (2.19)
€w - '
the saddle point*o is located at:
- L -4 “ - g - .
‘lo-g"lq“‘ "E %\'C“A (280,

U p— T S S
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Together with eq. (2.70) o ?f&) ue wmgy; T.acretlore write:

re ".'Lu
‘Fv('tz"‘:':— (—Cf Vau A, 2 R

where us® nas been nade 0%
%{,,1*"v= Ty
x is the anglie ol incldence &t walcn tae P-waves leave the
base of the zrust (seec Jigure 1),
The equivalent result ior tine dilatational potential due

to a horizontal point iorce witn direction 9"'0. is:
— ".;5.‘53 . A, un© !ilﬁ!:!i
‘Pa,o(rcetz”' A% w, “. 0 R

In the next section we shall now derive the expressions lor

three types of point forces commonly used as models in focal

mechanism studles, namely: an explosive point source, a single

couple ana a dcuble couple,

3.0 The‘transfer function for P-waves at large distances

from three types of poinl sources: exploslve source,
single couple, and double couple.

3.1 Procedure and general remarks.

In this section we shall derive the transformed po-
tentiais at large distances for the f{ollowing types of point
sources:

1. Explosive point source, potential &ﬂ in 5.2

2. 3Single couple, potential ‘Tz in 3.3

3. Double couple, potential ‘?3 in 3.4.
These multipole types of point sources can be derived from
a single point force by spatial differentiation and super-

position (Ewing, et al. 1957). We shall taks acdvantage of

(2.81)

(2.82)

(2.83)



2>

the fact that the displacement :('ield due to a point force
‘of arbitrary orientation in a layered system can bes com-

pcsed by superposition of the [ields due to the normal

(vertical) and the tangertial (horizontal) component of

that point force (Keylis-Borok, 1933).

We wish to crmpare the potentials of the point source
in the layered medium and of the point source in the in-
finite mediam of subcrustal material. The latter potential

we shall denote by ‘F;.g , Nhere & ¥ 2,3 depending on

the source type. We shall define frnctions:
T} = iiin ¢ =423
Pieo
which we shall call transfer functions. They can bve inter-
preted as describing the effect of the following operations
on the particular type of point source in the infinite
homogeneous medium of subcrustal material:
1) ﬁeplacing the half-space on top of the point
source by a system of (n-1) different homogeneous
layers with parale’]l interfaces.
2) Moving the point source into “he s'h layer, the
e layer.
Therefore we shall call for & =4,2,3
T1 : dilatational transfer functior of the system
"type L point source in the crust" at large
distances.

Ti has been defincd as the transfer function for the dilata-

tional potential. It should be mentioned that any quantity

werived from the dilatational potential, 3uch as displacement,

b — et e gy e e e e e s B e gy s R N e #

I

ph bbb
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particle velocity, etc., haé the same transfler function
as long as one is operating in the same way on tne "input"
‘?&n and the "output' (;;’.

For ali three types of point sources cc-sidered here
the following explanations apply:

1) A point force may act in the arbitrary direc-

tion of the unit vector ? » Wwhich may be defined
by 1ts components in our xyz-coordinate system:

-l: . {h“ h;' ﬁ_;)
We. shall decompose the point force winto its con:-

ponent vectors:

R: s{nk, 0, O}

. -
where K= K|

We are now dealing with one vertical. K) , and two
-l

-
horizontal point forces, K. and “i 5

?iv and ‘?ill due to these vertical and horizontal
components are obtained from the expressions (2.81)
and (2.83) derived in section 2.3 by taking into
account the decompositica of the force. This means
that in the motion-stress V?Etor ieq. (2283) and
(2.25)) we have to replace L by Lw or L"L or
'Iﬁl for the thrze components of the point force.
2) The potentials ?iv and Q'u due to decomposed couples

of forces (that is, a pair of equal but opposite

‘The potentials

(3.2)

iy

'"iilw i

b e

il
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forces %‘: acting a2t vhe ends of an infinitesimal
line element éR s w‘nere-l: is the unit vector in tne
directicn of the 1ine), these potentials are obtained
frcaa?é and %H oy taking the component oI the grad-
ient of these pectentials in the direction of m (see
tor instance Nakano (1923)):

i." = (’.R '%vi$v = R~V, Pv

Iy R R R A (3.7)
Thé subscript affixed to the gradient symbol indi-

cates differentlation with reépect to the source

coordinates. The distance R from the plumb point

of the source at the top of the mantle to the re-

ceiver point as defined in eq. (2.73) dces not change

on vertical variation of the source locaticn. There-

fore the derivative -7 R with respect to the vertical

source coordinate vanishes.

The gradients in (3.6) and (3.7) require operation

.. on E,,(;) and Ku(t)defined in eq. (2.46) and

(2.47). It should be realized that these two quanti-
ties are.only dependent on the vertical of the source
coordinates, while derivatives with respect to the
horizontal source coordinates will vanish. The
crustal matrix -I (see eq. (2.33)) does not contain
the source depth D :§+2s-| as parameter; only the

expressions forV and\/ are dependent, since they
N
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contain tne top source matrix HRSI (see eq. 2.24))
Py, = 951 e 10 (34

In this matrix product only the top source layer
matrix Qg, is g dependent,

tive matrix d's. 3

oy = 3 (0 8) Jl,

and likewise:

Ne defline the deriva-

H‘l\ -0.“-0,_‘-,.,,-3' (3.19)
or

| 3.1r
Ripg = a's,e Ry, (3.1r)

Referring to eq (2.41) and (2.42) for U and V we need
[
only the following elements of HRS\ :

(R by i (g )y (R, ), 7 (Frg )y,

The elements of Q,, which will be used for the com-

putation of these 4 elements are (compare eg. (2.16)):
(0';,)“ = ~h []’; g sam Py '(is"”"p, h‘uQ,]

[ a ~
(o) = LA [(fa=t) nPs + gs vp, o O]

(00"’“ - ?;;1[ l‘.‘ $Am ?s - "p‘ Som Ql}

"

("n,u\' act [m Fs + "* @ Q‘]

(Q'"‘M :-L*[{; f“ w P +“s-l) (7 Q‘]
{“.ﬂ)uﬁ “[(‘S")‘ls tom Ps‘ls p,“‘a.s]

“Sl,zg -;L‘ [Vu’ n Ps 4+ n Qs]

(“n )ay = (¥'s, )03

(3.12)

o



The quantities \ ) =
_ ; AL == @
4 | AV t and A“ a; L

are obtained from Av and A“ by simply replacing the

(3.13)

elements of the top source layer matrix @g, by those
: '
of the derivative matrix Qg
4) For handy reference in the following sections we de-

fine the following two Vector quantities:

V = {ihr, e 8, ) Lhr, sn® By, 8V} (3m)
Boe{ihr, o0 By, ihrgwo 8, By} (35)

5) The transformed dilatational potentialii,due to a
-’
point force acting in direction N in an 1infinite

homogeneous isotropic medium is given by:

- - iha R
P = - V,( (3.16)
- lﬁw"g.\ R
where ?u is the density of the infinite medium made
~up of subcrustal material. At large distances this
is: 4 - ._L‘“R
- t .“ “‘.. -3 ;"7
fo = - —a— (¥R | TR (3.17)
“lu ’“

Here RP 18 the unit vector 1in the direction from

source to receiver:

LR( x,y,z}z(m‘me,w:s&e,“"i} (3.18)

R L e s S B e Sy S e s pon i 1
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From {0 we derive the potential @ due to a
couple of forces acting on a line element with direc-
tion~=r by determining the comnonent of the gradient

of i?n in the direction w (compare eq. (3.6) and

(3.7)):

4;.', = m- Vs ;“‘ (3.194)
This is for large distances: <_;&“R
- - iy -» I~ ¢ ‘3010’
?; * .ﬂlﬂ\ L ) (:“")("" ‘R’, R

3.2 The explecsive point source.

An explosive point source can be represented by 3
mutual perpendicular couples of equal point forces without
moment. In case of the layered medium we will represent the
source by one vertical couple in the vertical z-direction
and two horizontal couples in the x- and y-direction. The
potentiais for these couples are obtained by operating with
(3.6) and (3.7) on the expressions for @y and 6“ from
eq. (2.81) and (2.83). For the dilatational potential of
the vertical couple we obtain at large distances, omitting

terms of higher order: ~ihvy,

e 2.21)
= | - ot [%» 1 A ( ‘
Fvinz) = "(‘G’ “. "V TR
likewise for the sum of the potentials due t¢ the two hori-
zontal couples: ‘_“,‘“ (3.12)

Fuinz) = (%)‘ A, Ay R

Superposing the two potentials @y and @y we finally arrive

at the dilatational potential ?. due to an explosive point
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source in a layered medium: f&;
- Th (w)tpy [-L A, i dy] == 13.23)
?1("11’ "‘"2_-‘-"‘(7, Ar.“-z v+t Bu R '

The same source in the infinite mediun: of subcrustal mnter-

ial gives rise to the following potential at large dis-

tances: ' 5
- e-L &“\R

- L
P (ri2) = - oy TR

(3.24)

This may be realized from (3.20) by remembering that for all
~» -

three couples without moment W 1s equal towwm . Thus essen-
tially the'following terms have to be summed:

- —»

- 1 <+ %2 -»
(W R +(mR7)° 4 (W R =
0 )2 o |2 0§12 _

(3.25)

According to (3.1) the transfer function Ty is then
1 * =i [} e .
T‘IZd‘ g‘m'w‘ [- AV*L A“] (32‘,

where use has been made of
L]

9‘0\‘ 5 o and l'.":f.‘,’:: ‘5:"' (327)

3.3 The single couple typ2 of point source

The single coup;e type of point source is deplcted in
figure 4, Without loss of generality we shall choose the
X,y, Z - system orientation so that the horizontal component

0
of the force 1s in the direction of the x-axis ([ @2 0°).

The direction of unit vectori\. along the linc element 18
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Ny

arbitrary, the only constraint bein; that the point force

end the line element are perpendicular:

MW =0 (3.28)
The following notations will be usced:
9 ciunge of 'y
X + trend of i?
-*
‘s: plunge ol ™M
- .y
Thus M and W have the followlng components in the xyz-system:
Ra{mdmy, @ vy, s (3.24)
- N i 3.30
we{wmp, 0, ] (3.30)
The constraint (3.28) gives rise to the following relation:
mﬁmx we + swn 4 wmy =0 (3.31)
We shall distingulsh two cases:
case A: Q#Ooor 1269 ana xtQO' or 2709
Case B: qeooor {809 and X =909 or 2709
For case A relation (2.31) 1s satisfied if:
$am
W‘& =) —,——’- (3‘31)
o
. “ung n X
SM\‘& T - ‘ ‘333)
Sam o

SR g

Likitt
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vnere

$am. o V‘- ﬁnﬁt[ml? %0 !3'3“)

. _ -9 - .
In this case tihe two unit vectors ww and W have the {ollow-

ini components:

mox oo {mg oy, g, s iny] (335)
W= (g, 0, wmp] (3.3¢)
For case B relation (3.31) is satisflied for arbitrary plunge
é‘ of i: .‘ The two unit vectors then become:
Ra{0, w3 und] (3.37)
-“. = { l. 0.0} (3'38,

Referring to the remarks on the decomposition of force couples

in section 3.1 and applying eq. (3.6) and (3.7) to the poten-

tial of the vertical and horizontal component forces, we {ind

~ = {
for the dilatational potentials @3y and $ay 2t large dis-

tances.,

' _ ke R

Favn0iz) =+ 1'2-\-?5 L (%2) ., sine (RV) S (3.39)
» g'i‘d“k

Py (r62)= - _Iz_.:._‘. (%j‘v,umqwe(aﬂj R (3.40)

- -
Here ¥ and W are the vectors defined in (3.14) and (3.15).

The sum of both potentials ls the dilatational potential

of a point source of the single couple. type in a layered

Il

Ik
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(h(r, lz}"‘ 2" “’ ‘h[." M?(” v)*w.Qme(h HJ )
The same scgurce in the infinite medlium of subcrustal mater-
1al produces the following dilatational potential
(see eq. (3.20)): .
- ~vhyg R
frolr 82) s ~-ige (RE)(RRE) &2 13-62)
a-
QU’ 't bW oty In R

From eq. (3. l) the transfer function T, is:
T - 2 “I n Arll [LM¢(N'V ,*wﬂme‘h\W’] (3‘“3'
- w? (R Re)(R-RY)

3.4 The double couple type of polnt scurce

The so-called double couple type of point source is
equivalent to a pair of tension and pressure couples without
moment (see e.g. Stauder, 1962). We shall denote the unit
vector 1A the direction of tension by’ir, and the unit vector
in the direction of pressure by F . Both are mutually per-

pendicular:

? 0 ; =0 (3-“",

Without loss of generality we will choose our X,Y;& system

s0 that the tension couple is always in the ¥),2 -plane. The
-
plunge of t 1s denoted by @ , therefcre:

t x{wy, 0, simep} (3.45)

-
The orientation of W wiil be described by its plunge ‘\a and
its trend x

Fa{mdmy, b sing, snd) (3-44)

| ¥ : i = — Uy PR — —
S e e R ] T S e = = == = e e = =
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The const -z int (3.%4) slves risc to the same prelation as
in eq. (3.31,). As in the previous casez we aust distinguish

case A and case B,

case A: q*oo or #180° 1 #90%,, 270°

F = {“" (Y, Sy sny | -ing o) |
ir = ( h, 0. yh" }

where tamd 1is the same as in eq. (3.34)
Case B: ¢ =0% or l80°,' ) 90° o 270°

f,(o,ub&, wad}
=00}

By the same method as 1n the previous section we derive the

potentials due to the vertical and the horizontal components

of the tension couple from: _d . ' 'I-.A
Pav = € V[ (", Teu By * — sne - 2% ”

n - -'&“R t‘k

ad;"“" ?.vs[(,%)"r“ A“wo ¢—'R_-t g ‘-?‘E—)l

For large &“.“ >7' we neglect highe» order terms of the

gradient ‘t . R
Pty = ( ’ fa, ¥ ¢ 2% ( , R "
. Lh Db
v‘w: () a2t 3% w o (F-¥) R

V and B are acain defined in eq. {3.14) and (3.158).

In the same manner we derive the potentlal due to the vertical

(3:47)

(3. 48)

(3.0
(3.50)

(3.51)

(3.52)

(3.53)

i3.54)




component of the pressu.e couple:
.k e
(¥ V)

-1 kg R

R

= (ln)l

"" LT P3 2

where Py 13 the z-component \31‘3 , eq. (3.47) or (3.49).

The two potentials due to the x- and y-compcnent of the pres-

gure couple are: .h“—g
- dn 12 Lh rd B
o (F v n iy w0 (BRI
m -thg R
- 3 L . g - A,

-l )
Both potentials ¥py and ¥py can be combined. This gives

in case A:
gase A TR

) -4 LA gl | [ A,
Fpur Pty (2 , --s“uﬁ“’(x' , (P "} R

and the potential Q;,v is in this case:

2 WYX Lh t-"h‘h
;f!.pv ol (:'f, o 3;& (' V)
and in case B = - -i.h,l
Pou = 2(5..':‘,1"-'.“"&‘;“9;_1:&'(?‘” C R
-t & R
| Tk bl
Ppv = “‘?)"4.5“33%—“'” R

The resultant dilatational potential 63 of the doublie couple

is the sm of four potentials'

- -
93 = ey ¢ "“ + ?pv You

EETETmecT RS al e == S SRR e e R ST R A e e d e = e = i I —
e S B SR S N == = Baba

3.55)

(3.56)

(3.57)

(2.59)

(1.59)

(3.60)

(3.61)

(Mz)
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We distinguish again the two cases A and B.

Case A: With eq. (3.53), (3.34), (R.38), and (3.59) we de-

(Wi}

rive:

’ Lk ._JL._J! v
"3"92’ ( ’rt‘z—[""’?(t )*t (P.‘:‘,R (3".03,

- tingoen o(t 'i?)+ w(x-e)( -!”] C-LR

Case B: From eq. (3.53), (3.54), (3.60) and (3.61)

Qz(r 0,z) = (""' vy é[ I.M'a(PV)-CQQ( )

2 (3-64)
-t R
+emdvn ©(F )] 8 :“‘

The same douvble couple source in the infinite medium of sub-

crustal material produces the following dilatatlonal poten-
tlail -@;co “ R
[ -t
- ' L -> -': 3 ey | 1] ¢ " (3'65,
Pro o [(FR) - (TR

\Ta, ¢,

(3.65) 1s derived according to (3.20) by summing the effect
of the tension and of the pressure couple. The transfer
function T3 is derived with (3.1). Distinguishing the two
cases we rind:

Case A:

(3.66)
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Case B:
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3.5 Remark on nodal planes

The single and double couple type of point source in
the infinite medium have nodal planes where the potential
vanish. These nodal planesy are defined by:

a) Single roaple (see eq (3.42)):

TRY)(w-R =0
that 1s
TR =0 MR g
The potentials are zero in planes normal to "W
(the direction of the force) and normal to W
(the direction of the line element).
b) Dcuble couple (see -~q. (3.65)):
(F-Fe)2 s (T8
This 1s fulfilled if:
F~~ i? a ¥ i?'isz
or
(F =T )R =0
Since F and -t’ are unit vectors thelr sum and
their difference form vectors in the direction
of bisectinz lines between the pressure and the
tension couple. {3.72) states that the potlen-

tial vanishes in the planes rn.ormal to these two

bisec*ting lines.

B e e T 2=

(3. 67]

{3.68)

(3-69)

(3:70)

(3.7)

(3.72)
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On these nodal planes the present defirition of the trans-

fer function T, and T3 in eq. (3.43) and (3.66) and (3.67)

lose thelr meaning, since here the denominator becomes zero

In general it cannot t expected that the n.dal planes of

the source in the infinite mediim do colincide with the nodal

planes for the point source in the crust. Je will by-pass

Lo [
this problem by defining modifisd transfer functions 7i and 73!
[
T s (RRO)(MBY) Ty

and
Toa[(F-B)- (TR T,

These modified transfer functions will not "blow up" on the
nodal planes.

The explosive point source in the infinite medium does

not display any nodal lines. Therefore there is no neces-

sity of defining a modified transfer function ‘n that case.

4.0 Preliminary numerical computations for the transfer
function of an explosive point source.

4.1 Introduction

The transfer functions T.’ Tl and T, (or T, and T, ]

are given in a form which is convenient for programming for

automatic computations. The three functions have been pro-

grammed in IBM Fortran II for the IBM 7072. The transfer

functions contain not only the parameters of the source in

the infinite medium but also:

a) the parameters of the crustal model:

“‘F{Q’i “',u-’n

.i{llu"x;eumnﬂlﬁwnm.:muiﬂih"ﬁn i

S e
> TR T
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‘i,the layer thicknesses,

b) The depthg 0! the source in the source layer

c) The angle of incidéncc § into the mantle.

In this paper we will only give preliminary numerical
results for the explosive point source ac the simplest type.
There 1s no azimuthal dependence; no nodal planes exist fo.
the source in the infinite medium. The selected examples
are not considered to be complete, but they will serve as
gulide to further detailed computation.

Sven in the case of the explosive source we will conl'ine
ourselves to the study of the {ollowing questions:

1) Given a standard crustal model, how does the source

depth influence the transfer function?

2) For a fixed source depth in the standard model,

how does the transfer function vary with the angle
of incidence 3‘ 7

3) How do minor variations of the standard model in-

fluence the transfer function?

The program for the transfer functlon T; 1is based on
eq. (3.26) 1in section 3.2. For the computation of ZEL
and Au the elements of the crusts . m:trix J , 7. (2.33),
and the quantities Uana V , €q.(2.41) and (2.42) must be
determined. With some minor wmodifications the program uses
the same techniques of multiplication of matrices with real

and imaginary elements as that of Hannon (1964a,b).
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The program has been tested in the case of an explosive
point source by comparing the theoretically known response to
a J:excitation for the point source in a hoimogeneous half-
space with the response, calculated from the source-crust
transfer function T , by Fourler synthesis, of a layered
model in which all layers have 1dentic~1 properties. For the
models used in this section the program has been r'n for a

frequency range O to 5 c¢ps without "blowing up.”

4.2 The influence of the angle of inciaence )

We will place the explosive point source at a fixed
depth of 30 km in a standard crustal model, the same as used
by Van Nostrand (1964):

Table 1l: Standard Crust NCCR ¢

S W RN 971
0 -3 3.10 1.79 2.35
3 - 20  6.03 3.48 2.60
20 - 45 6.97 4,02 3.00
45.- 00 8.10 4.67 3.35

Th2 crustal model 1s displayed on the right-hand side
of figure 5. The amplitudes of the transfer functions have
been determined for the followving angles of incidence:

f = ‘so' 30'. '050' 600, 75°¢ . The values of the.corres-
ponding horlizontal phase velocitles € are indicated in the
figure, It may be concluded that i« spectra of P-waves

incident into the mantle at various angles do not vary sig-
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nificantly with angle of incidence in a frequency range from C

to about 0.3 c¢cps. This 1is especlally true for angles ¢f ineci-

dence between i5° and 45°. The first peak at 0.05 cps and

the first trough at 0.1 cps can be attributed to constructive
and destructive interference between the direct P-wave and

the pP reflection from the free surface. In this part of the

spectrum the transfer function is predominantly governed by

the interference between P and pP waves. The [fine struc-

ture of the crust has practically no influence on the spec-

trum. The. slight shift of peaks and troughs towards hilgher

frequencies at increasing angle of incidence may b2 accounted

for by decreasing time lags of reflections within the crust.
4.3 The influence of the source depth

Using the same crustal model as in figure 5 we will
now place the source at three different depths: 0.5, 8.0 and
30.0 km.‘ The angle of incidence into the mantle 1s chosen as
x = 45°, The amplitude of the transfer functions are dis-
played in figure 6 for the frequency range O to 0.3 cps. For

a source depth of 0.5 km the first peak due to constructive
P and bP interference should occur at 1.6 c¢ps. Therefore
' 1‘| is relatively flat up to about 0.2 c¢ps. This becomes
clear on comparison with 'T1 for 8.0 km depth and 30 km depth
where the first peaks are located at 0.2 c¢ps and 0.07 c¢ps,
respectively.

It may be concluded that the transfer function for an

explosive source in a crust is rather sensitive to changes

-in the depth of the source, This becomes even more evident
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if one considers the spectrum up to 4 c¢ps.

Fq&(—

In figures 7 and & the amnlitude 'T| and the phase dor T
is depicted for two source depths: 0.5 and &.C km for ‘ = 450.
Note especially the very high amplictudes for the near surface
source between 1.2 and 2.0 cps, and the relatively low ampli-
tudes f.r very low frequencies between O and 0.2 cps and the
band between 3.0 and 3.4 cps. Comparing this with the spec-
trum of the deeper source one may draw the following tenta-
tive conclusions:

As the source moves closer to the free surface the low
frequency part of the transfer function becomes a hand of
relatively low amplitudes compared to the amplitudes of the
higher frequency bands; e.g. for a point source at 0.5 km
depth 1n the standard model NOCR, the average amplitude be-
tween 0.0 and 0.3 cps 1s avout 1/5 of the average amplitude
in the 1ﬂterva1 1.2 and 1.5 cps. - In this case the systen
acts effectively as a rejection filter for the lower fre-
quencies. The closer to the surface the source 1is located -
without vlolating the free surlface condition - the broader
is this reJect1on band. This range of small amplitudes is
rather flat compared to the spectrum for the same range of
frequencies for a source at larger depths.

Figures 7 and 8 contain also the phase spectrum., It
should be noted that troughs in the amplitude spectrum

usually coincide with irregular variations in the phase

spectrum.
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4.4 The influence of rnilnor variations of the crustal
mode 1

. To get an estimate on how minor changes of the crustal
model might influence the transfer functlon, variations have
% been introduced into the standard model NOCR (see table 1).

The models LVCl and LVC2 are given in tables 2 and 3.

Table 2: Crustal Model LVCI

Depth interval pP- S-Velocity Densigy
(tam) (lan/sec) (km/sec) (g/cm®)

0-~3 3.10 1.79 2.35
.3 -6 5.95 3.44 2 65
6 -11 5.50 . 3.30 2.70
11 - 20 6.03 3.48 2.60
20 - 45 6.97 L, 02 3.00
b5 -~ 00 8.10 4.67 3.35

Table 3: Crustal Model LVC2

Depth interval P~ S-Velocity Densi%y
E (km) (km/sec) (km/sec) (g/cm?)

0-3 3.10 1.73 2.35
3-6 5.95 3.44 2.65
6 - 11 5.00 2.90 2.50
11 - 20 6.02 3.48 2.60
20 -~ 45 6.97 4,02 3.00
4y - 00 6.10 b g7 3.35

In hoth models a low velocity channel has been introuuced

with thickness of .0 km. The velocity in tne LVC 2 channel

. 18 lower than in the LVCl channel thus increasing the veloc-

ity contrast. In figure 9 a conmparison betwecn the transfer

ﬁﬁmm;&wﬁw@, ST % ST A == = LT ia&a&;_}éﬁi =

fi
"
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) functions of the models NOCR, LVC1l and LVZ2 in the frequency
ange O to 0.3 cps 1is presented. The source has been kept
at a depth of 3.0 km for the three models so that for LVC1
and LVC2 the source 1s located in the low velocity channel.
The angle of incldence Is ‘ :300. Figure 9 merely demon-
strates that in this range of frequency the minor variations
so introduced in the model are virtually of no effect on the
transfer function. Closer examination shows small differ-
ences which, however, would have no significance in signal
analysis. .In the frequency range greater than about 1 cps
differences in the transfer function begin to become notice-
able., From the analysls of these and other numerical exam-
ples the following might be concluded about the influence of
minor variations in tne crust:
Minor variations in the crust become significantly
appérent in the transfer function only:
1) if the velocity contrast of the newly introduced
layer 1is sufficiently large.
2) if 1) 1is fulfilied, only that part of the spec-
"trum will be affected above a frequency % ,where
Yo 1s about the fundamental frequency of "destruc-
tive" interference between reflected waves in the
new layer,

5.0 Conclusions

Analytical expressions for the transfer functions
for dilatational body waves radiating into the mantle from

a.system consisting of a point source in a layeredcrust have

P TR P Tyt e ot S A N N ek S i N T T e
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peen established for large distances. Three types of point
sources have been treated: an explosive source, a single
couple, and a double couple, ¢

Preliminary numerical calculations ol the transfer func-
tion for explosive point sources have been presented. They
show as esprcially importait features the strong influence
of the source depth on the shape of the spectrum and the re-
latively strong rejection of low Prequencies for shallow
explosions.

Further analysis of other models, especlally of the
other two point source types must show to what extent the
present conciusions may be generalized.
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