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THE COMPUTATION  PROBLEM WITH SEQUENTIAL DECODING* 

ABSTRACT 

Fano Sequential Decoding is a technique for communicating at a high information 

rate and with a high reliability over a large class of channels. However, equip- 

mentcost and variation in the time required to decode successive transmitted digits 

limit its use.    This work is concerned with the latter limitation. 

Others have shown that the average processing time per decoded digit is small if 

the information rate of the source is less than a rate R .   This reportstudies the 
comp 

probability distribution of the processing time random variable and applies the re- 

sults to the buffer overflow probability, i.e., the probability that the decoding 

delay forces incoming data to fill and overflow a finite buffer. It is shown that 

the overflow probability is relatively insensitiveto the buffer storage capacity and 

to the computational speed of the decoder, but quite sensitive to information rate. 

In particular, halving the source rate more than squares the overflow probability. 

These sensitivities are found to be basic Sequential Decoding and arise because 

the computation per decoded digit is large during an interval of high channel 

noise and grows exponentially with the length of such an interval. 

Aconjecture is presented concerning the exactbehavior ofthe overflow probability 

with information rate. This conjecture agrees well with the (limited) experimental 

evidence available. 

Accepted for the Air Force 
Stanley J. Wisniewski 
Lt Colonel, USAF 
Chief, Lincoln Laboratory Office 

*This report is based on a thesis of the same title submitted to the Department of 
Electrical Engineering at the Massachusetts Institute of Technology on 5 February 
1965 in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 
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THE  COMPUTATION PROBLEM WITH SEQUENTIAL DECODING 

CHAPTER I 
INTRODUCTION 

A. BACKGROUND AND PREVIOUS WORK 

The branch of statistical communication theory known as coding theory has received much 
1 

attention since the results of C. E. Shannon    in 1948.    Many investigations were and are attracted 

to coding theory because of the potential for ultrareliable communication suggested by Shannon's 

Noisy Coding Theorem.    Loosely stated,   this theorem says that data can be encoded for trans- 

mission over a noisy channel in such a way that the probability of a decoding error is arbitrarily 

small, provided that the information rate of the source is less than a rate called channel capacity; 

the converse to the Noisy Coding Theorem essentially says that channel capacity is the largest 

rate at which the probability of error can be made arbitrarily small. 

The implications of the Coding Theorem are obviously stimulating.    The fact that codes ex- 

ist for noisy channels which achieve small error probabilities while operating .at a fixed informa- 

tion rate is quite surprising.    A priori,  one would have expected that reliability could be achieved 

only by repeating the transmitted message,   that is,   that reliability is obtainable only at the ex- 

pense of less information per unit time,  i.e,  a reduction in rate. 

Although the Coding Theorem indicates the potential for ultrareliable communication,   it has 

been found that this ultrareliability costs either a great deal in equipment or in decoding delay. 

Both costs are exorbitant if the decoder operates so as to strictly minimize error probability. 

Practical considerations force one to consider less than optimum codes and decoders (in a 

probability of error sense).    A number of such codes and decoders have been invented.    Included 
2 

among these various coding techniques are Massey's Threshold Decoding,   Gallager's Low Den- 
3 4 sity Parity Check Codes,    Bose-Chaudhuri Codes with the Peterson Decoding Procedure,    Itera- 

te     £. 7ft 
tive Decoding, '     and Sequential Decoding '     as first presented by J. M. Wozencraft and later 

9   10 
modified by R. M. Fano.    Each of these procedures and others   '       not mentioned find application 

depending upon the performance requirements which are set and the economics of the application. 

Sequential Decoders score reasonably well in both the performance and economic categories. We 

shall concentrate on Sequential Decoding, and in particular on the Fano Sequential Decoding Algo- 

rithm,   in this report. 

B. FORMULATION OF PROBLEM 

In many ways,   the Fano algorithm is an attractive decoding procedure.    It applies to a large 

variety of channels in contrast with the algebraic codes such as Bose-Chaudhuri codes which are 

best adapted to symmetric channels with an equal number of inputs and outputs (which is a power 
4 

of a prime   ).   The Fano algorithm is also recommended by the fact that it will operate with high 



reliability at a substantial fraction of channel capacity.    Thus,   it is ideally suited for systems 

handling high-quality,   high-volume traffic. 
The Fano algorithm,   however,   possesses at least two disadvantages.    The first is that the 

necessary encoding and decoding equipment is expensive.    The second and most damaging dis- 

advantage of the Fano algorithm is that the time required to process the incoming data is varia- 

ble and assumes very large values during intervals of high channel noise.    The variability of the 

processing time requires that incoming data be buffered.    The fact that this processing time 
assumes large values implies that occasionally and eventually a finite buffer will fill and over- 
flow.    After overflow,   it is found that the decoder often performs erroneously.    Such an event 

is catastrophic unless moderated with periodic resynchronization,   the use of a feedback channel, 

or some other means. 

Not only is overflow serious,   but it occurs much more frequently than do undetected decod- 

ing errors (i.e.,   errors without overflow).    Thus,   it is the controlling event in the design of the 

decoder.    Although the overflow event is serious,   the decoder can be so designed and the infor- 

mation rate be so restricted that overflows are very infrequent.    It is,   therefore,   a problem 
which can be resolved. 

Our concern in this report is to obtain some understanding of the sensitivity of the overflow 
probability to the following:   the buffer capacity,   the machine speed and the information (or 

signaling) rate.    This is a difficult analytical problem.    As a result,   we have been forced to 

analyze the machine performance and to determine the various sensitivities indirectly.    Our 

approach to the overflow question has been to consider a random variable of computation (called 
"static" computation) which is related to the computation performed by the machine as it decodes. 

We have shown that the cumulative probability distribution function PR  [C > L] of the random 

variable of "static" computation  C   is an algebraic function of the distribution parameter   L, 

that is,   it behaves as L     ,   a > 0,   for large   L.    From this behavior and a study of the exponent 

a,   we have found through a heuristic argument that the probability of buffer overflow is relatively 
insensitive to a change in machine speed or to the size of the buffer but that it is quite sensitive 
to information rate,   being more than squared by a halving of rate. 

The deductions on the sensitivities of the overflow probability indicate that practical limits 
on the size and speed of a decoder are set primarily by the overflow probability and that the 

machine performance is really only sensitive to information rate.    This sensitivity is due to the 
fact that PR [C > L] behaves as L"a for large   L.    We shall find that PR JC > L] behaves as L~a 

for large   L because for every transmitted codeword there exists an interval of high channel 

noise such that "static" computation is large and growing exponentially with the length of the 

interval of high channel noise.    The probability of such a noisy interval decreases exponentially 

with the length of the interval.    It is the balance between the two exponentials which forces the 

algebraic nature of the distribution of "static" computation,   PR [C > L].    Since this same balance 
is fundamental to the entire concept of Sequential Decoding,   it does not appear that the buffer 

overflow problem can be avoided unless some major modification of the decoding procedure can 
be devised. 

These results and arguments are explained in detail in the following chapters. 
Chapter II focuses on the Fano Sequential Decoding Algorithm.    The algorithm is defined, 

motivated and discussed.    Many of its properties are clearly outlined.    The buffer overflow 
problem is discussed and the random variable of "static" computation is defined. 



Chapter III is prefaced with a discussion of the connection between an exponential growth 

in computation with the length of an interval of high channel noise and the algebraic nature of 
the distribution of "static" computation.    The main purpose of the chapter is to underbound the 

distribution of "static" computation.    A general underbound is found which applies to all codes 
on the "completely connected" discrete memoryless channel (DMC).    A lower bound is also 

found for the (small) subset of codes which have fixed composition,   again for the "completely 

connected" DMC.    Both bounds to PR  [C > L] are algebraic in  L. 

Chapter IV concentrates on obtaining an upper bound to the distribution of "static" computa- 

tion,   PR  [C > L].    Since there are "poor" codes,   codes for which PR [C > L] is large so that 

large computation occurs with high probability,   we must establish that codes exist with a 

PR [C ^ L] which decreases as an algebraic function in  L.    (It cannot decrease any faster be- 

cause of the lower bound result.)   We show that such codes exist by averaging PR [C ^L] over 
the ensemble of all tree codes.    This average is algebraic in  L  so that many codes exist with 

an algebraic distribution function. 

Chapter V interprets the upper and lower bounds to PR [C > L],   describes an experiment 

performed at Lincoln Laboratory and compares the results of this experiment to the tail be- 
havior of PR [C ^- L],  i.e.,  its behavior for large  L.    The comparison leads to a conjecture on 
the true tail behavior of PR  [C > L].    It is shown that this conjecture has a very close connec- 

tion to some fundamental results in information theory which are expressed in the Coding 

Theorem.    Finally,   a heuristic connection between the distribution of "static" computation and 
the overflow probability is established and the sensitivity of the overflow probability to machine 

speed,   buffer size and information rate is brought out.    Some problems deserving further re- 
search are also suggested. 



CHAPTER II 
DESCRIPTION OF FANO SEQUENTIAL DECODING ALGORITHM 

This chapter briefly discusses the encoding problem and introduces the Fano Sequential 
a 

Decoding Algorithm.     The dynamics of the algorithm are described and a definition of computa- 

tion is presented.    This chapter serves as preparation for the following analytical chapters. 

A.    TREE  CODES 

Let us assume that the output of a source with a b-letter alphabet is encoded for transmission 

on a discrete memoryless channel (DMC).    (The DMC is characterized by the set of transition 
probabilities {p(y/x, )} where {x, },   1 <c k~<: K is the channel input alphabet and {y.},   1 ^ j <; J is 

2     K * j 
the channel output alphabet.)   Consider encoding the source by mapping a sequence of source 
digits into a sequence of channel digits.    The channel digits are selected from an array that 

topologically resembles a tree and will henceforth be called a tree (see Fig. 1). 

For the moment,   consider mapping a finite sequence /3 
from the source alphabet onto a finite channel  sequence u 

ii 
(/3., p7, . . . , p   ) of n  digits drawn 

n (Ul,u2, , u  ),   where  u    = -n -q 
, u     , . . ., u   .) is the subsequence of t digits (or a tree branch) drawn from the channel 

input alphabet.    At the q*" node of the tree,  /3    directs a path along the bottom branch if /3    = a., 
(u 

qi' 

!-«2 J20S 

2 

z^/zt^vKx^^rrJz^X^-^ "2 

<j < (112,010,201,221.) 

INCORRECT  SUBSET 

NODE  No (3,2,2) 

CORRECT  PATH 

Fig. 1 .   Convolutional tree code. 



along the second branch from the bottom if /3    = a?,   and along the top branch if /3    = a,.    (A path 

is a contiguous sequence of branches.)   For example,   the channel input sequence u, = (112, 010, 

122) corresponds to the source sequence a    = (1, 0, 2) in Fig. 1 when the source and channel input 

alphabets are both {0, 1, 2} . 

The extended source sequence 0(=/3   ) specifies an infinite path u(=u   ) through the tree.   The 

path u  will be called the correct path.    For each node of the correct path,   say the q    ,   q = 

0, 1, 2, ...,   where the 0     node is the origin,  we define an "incorrect subset."   The incorrect sub- 

set at the q     node consists of (1) the q     node itself and (2) all nodes (of depth greater than  q) 

diverging from the q     node,   which are not part of the correct path.    For example,   see Fig. 1 

where the incorrect subset at the 2      node of the correct path is shown. 

We shall find it useful to classify nodes in each incorrect subset.    Consider the q     such 

subset.    Consider a node "at penetration  s" in this subset (such a node is the terminus of a path 

of q + s branches).    There are a number of nodes at this penetration s.    Let the node in question 

be m     from the bottom of this set of nodes.    Then,   it is uniquely identified by the triplet (m, s, q). 

This triplet indicates that the particular node is m     in rank among nodes at penetration   s  in 

the q     incorrect subset (see Fig. 1).    The q     node of the correct path (or the reference node) 

is identified by the triplet (1, 0, q).    (By convention,  this single node is said to be at penetration 

zero in the q     incorrect subset.)   Denote by M(s) the number of nodes at penetration  s  in the 
q     incorrect subset.    Then, 

M(0) =  1 

M(l) = (b - 1) 

M(2) = (b - 1) b 

M(s) = (b - 1) bs_1      for      s^l       . (1) 

There are M(s) paths at penetration  s  in the q"1 incorrect subset,   and each of these paths con- 

tains q + s branches. 

Given that u    = (u,, . . ., u  ) is transmitted,  let v    = (v.. v.,, . . ., v  ) be the received sequence, n       -1 -n' n      v-l —2 —n n 

where v    = (v   .,..., v     , . . . , v   .) is the q      subsequence of i channel output digits.    The prob- 
ability that v    is received when u    is transmitted is computed from the transition probabilities 

of the DMC as follows: 

n n       I 
p

R (%/%]= n pR[yv= n n prvqh/uqni <2> 
q=l q=l  h=l 

where p [vqh/uqh] = p [y./xj when vqh = Vj and uqh = xfe. 
The data (or signaling) rate (in bits per channel use) is defined as 

log   b 

If the successive source digits are equally likely and statistically independent,   then  R  is also 
the source entropy (or information rate) per transmitted digit.    We shall assume that successive 

source digits meet these conditions. 



B.    CONVOLUTIONAL CODES 

Although we shall later assume for analytical convenience that data are encoded with an 

arbitrary tree code,   we present convolutional codes here to show that tree codes may be realized 

with a minimum of equipment. 
Define a basic sequence g = (g., g,, . . ., gc, 0, 0, . . . ),   called the code generator,  where 

g    = (g  ..<•••> g  .) is the r     subsequence of i digits, and S is called the code constraint length. 
We also define translates of g by 

In= (0,0 0,g1 gg, 0, ...) 

where  0  indicates a subsequence of I zeros.    Assume that the letters in the generator  g and 

the letters of the source alphabet coincide and consist of the set of integers {0, 1, . . ., b — 1} b 
a prime.    Then,  the source sequence ft = (jS,, 0?, . . .) generates the channel sequence u = 

) by <«1'H2 

u = T, P g <-< ^n6n 
(•I) 

Multiplication and vector addition are taken modulo b.    Following this rule the tree,  partially 
shown in Fig. 1,   may be constructed from the code generator g = (112, 010, 201, 221, 000, . . . ). 

In particular,  the source sequence (3 = (1, 0, 2, ... ) generates the channel sequence u = 
(112, 010, 122, . . . ). 

? 0 I 0 

Fig. 2.   Convolutional encoder. 

ENCODED  DATA 

This code can be realized (see Fig. 2) with a standard shift register of S stages (the code 
constraint length),   multiplierst and adders (modulo b).    Clearly,   the size of the convolutional 

encoder does not increase faster than linearly in the code constraint length.    Others have shown 
that the probability of a decoding error with Sequential Decoding on convolutional codes decreases 
exponentially in the code constraint length (for almost all codes).    In a probability of error sense, 

convolutional codes are near optimum. 

t The circles in Fig. 2 indicate multiplication by the enclosed numbers. 



This example has assumed that the source alphabet and channel alphabet are identical. 

Neither this restriction nor the restriction that the alphabets contain the same number of ele- 
ments is needed (see Ref. 11).    In addition,  the constraint that b be prime is not essential.   For 

example,   b  may be a power of a prime and the components of /3  and  g  may be chosen as ele- 
4 

ments of a general Galois field,   addition and multiplication taken in this field. 

C.     FANO ALGORITHM 

In preparation for a discussion of the Fano search procedure,   we introduce and motivate 

the'"metric" with which the procedure operates. 

1.     Metric 

Assume that a source generates a sequence of outputs /3.    This sequence directs a path u 

through a tree code.    The branches of this path are transmitted over a discrete memoryless 

channel.    A sequence of branches v is received at the channel output.    The Fano decoder is a 

device that operates on this sequence and produces a replica of the transmitted sequence,   unless 
decoding errors occur. 

The Fano decoder (or algorithm) is a rule for searching efficiently through the paths in the 

tree code in an attempt to find a "best fit" with the received sequence v. To determine a "best 

fit," values are assigned to nodes in the tree. The value of a node is said to be the value of the 
metric between the path terminating on this node and the corresponding received sequence. As 

the decoder searches nodes, values of the metric are compared to the criteria of Fig. 3. The 

criteria T. = i t    are straight lines of zero slope separated by an amount t  . 

T 

U-M-MI5I 

T, 
/^                 CORRECT PATH 

UJ    ° 

T, 

yS'                                                  \                                     LENGTH 

\             INCORRECT PATH 

»0 \_y 
T. 

Vs. 

Fig. 3.    Criteria and typical paths. 

Let us be precise about the definition of metric.    We define a "branch metric" and associate 
T pt ii    = in       ii , u   .) be a tree 

or a value of this branch metric with each branch of the tree.'    Let u    = (u   ., u   ,, -o ol     o2 
branch and let v (v   A > v   ->. ol     o2 , v   .) be the corresponding received branch.    The branch metric 

o! 
between u    and v  ,   d(u  , v  ),   is defined as -o -o   —-o -o 

d(uo,yo)£    I    [I(uoh,voh)-R] 
h=l 

(5) 

t This is not a metric in the mathematical sense because d(y   ,v ) may be negative. 



where' 

p [v  ,/u  , ] 
T, . A i oh7   ohJ ... 
Mu u. v u) = logo T, ;  • (°) oh    oh 62       f(v  , ) 

Here,   p [v , /u . ] = p [x./x, ] when v ,   = y. and u ,   = x, .    We let f(v , ) be a probability-like func- 

tion.    It may be interpreted as the probability of channel output symbol v ,   when the channel in- 

puts are assigned probabilities {p, },   1 ^ k ^ K.    The function f(v  . ) and the probability assignment 

{p, } will appear during the "random code" argument of Chapter IV and an interpretation will be 

attached to f(y.) and {p, } . 
J K 

The "path metric," d(m, s, q),   on the path containing q + s branches and terminated by node 

(m, s, q),   is defined as the sum of the branch metric on each of the q + s branches.    The value 

of this path metric is associated with node (m, s, q).    When we plot d(m, s, q) for paths in the 

tree,   we indicate the values of the path metric with nodes.    The nodes in this plot have a one- 

to-one correspondence to nodes in the tree and will be indexed with the same triplet (m, s, q). 

This definition of path metric is justified by two facts — it leads to a workable decoder and 

this decoder can be studied analytically.    The definition is recommended by the fact that a large 

value of the path metric indicates that the path in question is very probable a posteriori (see 

below) which is equivalent to saying that with high probability this path is the transmitted path. 

We now show that the value of the metric is monotone increasing in the a posteriori probability 

of a path. 

Let u  ,   n = q + s,   represent the tree path (m, s, q) and let v    be the corresponding received 

sequence.    Then,  the value of the metric on u    is 

n      I 

d(m, s,q)A    £      £    [Kuh,vh)-R] rh'   rh' 
r=l  h=l 

PD [v  /u  1 , R L  n'   n' „ ,,. l°S2        f(v  ) -nR <7> 
n 

th _,.   .x ...       th 
rh'    rh 

f(vn) inn «vrh) . (8) 
r=l h=l 

In obtaining Eq. (7),   we have used Eqs. (4) and (5),   together with the definition of PR [v   /u   ] of 

Eq. (2).    Now, PR [v  /u   ], the conditional probability that v    is received when u    is transmitted, 

is proportional to PR fu /v   ],  the a posteriori probability of u ,   since (from Baye's Rule) 

PR ^rAj = PR t%/°nl   P^iy (9) 

and PR [u  ],  the a priori probability of u ,   is constant under variation of u   .    (We have assumed 

that successive source digits are statistically independent and identically distributed.)   Thus,   we 

have established for the given source that the path of n branches with the largest value of the 

metric is that path of n branches which is a posteriori most probable. 

f If output y occurs with probability f(y) then l(x,y) is the "mutual information" between x and y. 



We have attached a value of the branch metric to each of the b branches stemming from a 

node.    We observe by analogy with the argument above,  that of these branches,  that branch with 

the largest value of the branch metric is the a posteriori most probable branch at that node. 

Then,  we order branches at a node according to their value of the branch metric and say that 

they are "most probable," "second most probable," etc. 
We consider next the motivation for and definition of the Fano algorithm. 

2.  Search Procedure 

Sequential Decoding procedures in general,   and the Fano algorithm in particular,   are moti- 

vated by the following consideration:   For a properly chosen code and for signaling rates which 
are suitably restricted,  the a posteriori probability of the correct path and the value of the path 

metric on it will typically increase (see Fig. 3).    On the contrary,  any incorrect path branching 

from the correct path will typically decrease in path metric (see Fig. 3).    Thus,   a separation 

will typically occur between the correct path and some incorrect path.    Using a set of thresholds, 

a decoder can eliminate from consideration a large number of improbable,  hence,   incorrect 

paths.    As long as the channel "noise" is not too severe,  the separation between the correct and 

incorrect paths will become increasingly evident.    A period of high channel noise,  however, may 

force a large amount of searching and even cause decoding errors.    We shall consider these two 

points later. 
The set of rules for searching tree paths which we shall consider here is known as the Fano 

Sequential Decoding Algorithm.    A logical flow chart of this procedure ' is given in Fig. 4.    To 

I                  START               \        .        ' 
I SET  THRESHOLD « Oj |       T 

LOOK  FORWARD ON 
"MOST   PROBABLE"BRANCH 

STEP FORWARD 

L_ 

FIRST TIME 
AT THIS  NODE? 

"       I 
-(TIG HTEN   THRESHOLD) 

LOWER   THRESHOLO 
ONE STEP > 

I   B 

l__ 

I NO IS  THERE A 
"NEXT MOST PROBABLE" 

BRANCH   OF   THIS NODE? 

LOOK    FORWARD 
ON IT 

STEP FORWARD ) 

[__ 

Fig. 4.    Flow chart of Fano algorithm. 

fSee Ref.8 for the flow chart of the computer program which realizes the chart of Fig. 4.    The bookkeeping re- 
quired by  D of Fig. 4 is accomplished with a small number of instructions in the computer program.    This chart 
is based on a flow chart suggested by Professor I.M. Jacobs. 

10 



describe the operation of this algorithm we introduce the notions of forward mode and search 

mode operations.    The machine operates in the forward mode when it is searching for the first 

time a path whose metric is nondecreasing.    (We shall be more precise about this point later.) 
Roughly speaking,   the machine operates in the search mode when it is looking for a path which 

has a continuously growing metric. 
Let us now be specific.    Suppose that the decoder is following a path which is growing in 

metric and that this path is being followed for the first time so that the machine is operating in 

the forward mode.    Then,  at each node of this path the decoder raises a threshold,  called the 

running threshold   T  in units of t    until it lies just below the value of the path metric at each 

node.    In Fig. 4 this operation is performed by D.    After the threshold is tightened at a node, the 

decoder looks forward along the "most probable" branch (that one which has the largest value of 
the branch metric).    If the path metric on the extended path remains above the existing value of 

the running threshold  T,   and if the extended path is examined for the first time,   forward mode 
operation continues.    If the extended path falls below  T,   as in Fig. 5,   search mode operation 

begins.    Operation B of Fig. 4 is then performed. 

|3-6?-3??»| 

RUNNING THRESHOLD 

ENTER AND LEAVE 
J I—^ SEARCH MODE 

Fig. 5.    Typical machine search. 

When the machine enters  B  it is looking for a path which will remain above  T.    Hence,   it 
looks back to the preceding node to determine whether it remains above   T.    If so,   (OK) perhaps 
the "next most probable" branch extending forward from the original node will remain above T. 
At  E,  the machine determines whether a "next most probable" node exists,   and if not, it looks 

back again with the same intention,  that is,   of finding an extendable path.    If in looking forward 
in  C  the machine finds that the extended path remains above   T,   it steps forward tightening the 
running threshold if this node is visited for the first time.    (This threshold is tightened and the 

machine enters or remains in the forward mode only when a node is examined for the first time. 

Otherwise,  looping would occur.)   If the forward look in C  is successful,  the machine steps 

forward and continues to look forward,   as indicated by Fig. 5.    If the forward look in  C   is un- 

successful,  the machine again looks back in search of a node from which an extendable path may 
be found (i.e.,   a sequence of nodes which remains above  T).   If an extendable path cannot be 

found,  that is,   if every sequence remaining above  T and connected to the node at which searching 
begins eventually crosses  T,   then the running threshold  T  must be reduced.    After the threshold 
is reduced,  the decoder looks forward along "most probable" branches until it reaches the node 
at which it entered the search mode.    The branch on which the decoder looks forward is a new 
branch,  so that the threshold may be increased if this extended path lies above  T  (see Fig. 6). 

Id 
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RUNNING   THRESHOLD 

V 
^THRESHOLD   REDUCED 

LENGTH 

Fig. 6.   Threshold reduction, b = 2. 

13-12-MM] 

•""c 

V /    RUNNING THRESHOLD 

II               II            II 

LENGTH 

Fig. 7.    Branch examination with a threshold. 

LENGTH 

Fig. 8.    Minimum threshold T 
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The machine operation may be summarized as follows:    The decoder operates in the forward 

mode,   extending along "most probable" branches and increasing the running threshold as it pro- 

gresses,  until an extension fails the running threshold T.    At this point,   search mode operation 
begins and the decoder looks for a sequence of nodes which remains above  T.    If each sequence 

of nodes connected to the node at which search mode operation began is such that it crosses T 

before forward mode operation resumes,  then T  is reduced.    As soon as the decoder finds a 

new path remaining above the existing value of T,  forward mode operation begins and T  may 

be increased. 

D.    COMPUTATION 

We now establish that the decoder does not look forward or back on any given branch more 

than once with each value of the running threshold. There are three situations which need to 

be considered. There is a node at each end of the given branch. We need to consider the case 
where both nodes lie above a given threshold, and where either the preceding or following node 
lies below the given threshold. If both nodes fall below some threshold, the branch considered 

will not be examined with this threshold. 

If the node preceding the branch in question lies above the given threshold,   while the follow- 

ing node lies below this threshold (see a   of Fig. 7),  then the decoder may look forward on this 
branch,   but it cannot look back because it would have to step forward to do so.    But from  A  of 
Fig. 4,   it cannot step forward while this threshold is in effect.    Next consider the situation of 
b   in Fig. 7.    The decoder can look back on the given branch,   but it cannot look forward because 
it would have to step back to do so,   which is prevented by the restriction OK in  B  of F ig. 4.    The 
third situation to be considered is that of  c   in Fig. 7.    Both nodes terminating the branch in ques- 
tion lie above the given threshold.    With this threshold the decoder may look forward and then 
step forward (A  of Fig. 4) from the preceding to the following node.    The decoder may then search 
forward and later return to the second node with this same threshold.    We now show that the de- 
coder cannot return to the first node and then retrace this branch.    We observe from B,   E,   and 
C  of Fig. 4 that this branch with the given threshold cannot be retraced because the decoder can 

extend only along either the "next most probable" branch at the first node,   or along the "next 
most probable" branch at an earlier node.    The decoder can only retrace the original branch by 

exiting from  B on BAD (Fig. 4) and lowering the threshold.    Thus,   with any given threshold any 

particular branch cannot be examined in the forward and reverse directions more than once. 

Now let us consider the lowest threshold which is used by the decoder.    Consider paths 

branching from the q     node of the correct path and terminating on nodes labeled (m, s, q), 
1 -£ m <: M(s),  0 ^ s < ">.    Let D be the correct path minimum at or following the q     node and 

let Tn be the threshold just below D'   (see Fig. 8).    Assume that the received path is decoded 
correctly,   that is,   that decoding errors are not made.    Then paths which cross Tn will not 
be examined beyond the point at which they cross Tn.    This is true since threshold T„ — t    is 
used only if all paths fall below Tn;  but by definition the correct path remains above T,-..    This 
implies that the decoder will not step forward to a node which lies below T„ nor to any node 

connected to and following such a node (see (m, s, q) of Fig. 8). 

th 
t Since the decoder operation depends only on incremental values of the metric, we may assume that the q     cor 
rect node lies between T   and T,, and measure D and T_ from T   = 0. 

o 1 Do 
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We may also deduce that if D < 0 and all nodes connecting any node such as (m1, s1, q) in 

Fig. 8 to (1, 0, q) [including (m\ s\ q)] be above T„ + t ,  then the decoder must look forward 

from (m1, s', q) before the threshold is reduced to Tn.    (The constraint D < 0 is necessary be- 

cause if D > 0 the machine may never be forced back to (1, 0, q) so that forward or backward 

looks from (m, s, q) may never occur.) 

The two central results of the last three paragraphs may be summarized as follows: 

(1)   Consider a node (m, s, q) branching from the q*n node of the correct 

path.    Let  D be the correct path minimum on or following the q 

node.    Let T„ be the threshold iust below D.    Assume that node 
D J 

(m, s, q) lies between thresholds T   , . and T   where T   ^ T„ as in v    •   ' **' n+1 n n        D 
Fig. 9.    Let N,   be the number of forward or backward looks from 

this node with threshold T, Then,   for each threshold T.   ^. T„ and k D 
T,   < T  ,   T    > T     , > k        n      n        n-1 >Tk>. . .> T       we have 

0 <f Nk ^J b + 1 

N,   is zero for any other threshold.    The lower limit represents a 

situation of the type represented by (m, s, q) in Fig. 8;  in this case, 

the machine does not look forward or backward from the node in 

question. 

The conditions under which N,   - 0 and the bounds on N,   in Eq. (10) 

are central to the arguments of Chapter IV,  which is concerned with 

overbounding the statistics of the decoder behavior. 

(2)   Consider a node such as (m1, s1, q) of Fig. 8.    This node remains 

above T„ + t    and is connected to (1, 0, q) through a set of nodes 
Do 

all of which lie above T„ + t   .    If D < 0,   the decoder must look D       o 
forward at least once from this node before the threshold  T  is re- 

duced to Tn (to which it must be reduced,   since the decoded path 

is xhe correct path and this path lies below T„ + t    at some point). 

LENGTH 

Fig. 9.    Typical path trajectories. 
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The conditions under which the decoder must look forward at least once from node (m1, s', q) 

are central to the arguments of Chapter III, which is concerned with underbounding the statistics 

of the behavior of the decoder. 
We shall call the number of forward and backward looks at a node the "computation" at this 

node.    These looks are the operations which require machine time.    In the remainder of this 

report,   we use this definition of computation to investigate the computational demands of the 

decoder. 

E. BUFFER AND DYNAMICS OF DECODER 

In the previous section,   we assumed implicitly that the decoder is capable of searching back 

indefinitely into the tree in the process of decoding.    Although this assumption will be needed for 

later analysis,   it is not consistent with a physical machine.    To search back indefinitely requires 
that all received branches be stored in the decoder.    Practical limitations on the cost and size 

of the decoder force one to consider buffers for storage which are of finite size.    We shall con- 
12 sider now a particular buffer realization and discuss the dynamics of the decoder operation. 

li-«-»3i| 

RECEIVED 
BRANCHES •     • • •     •     • • •• 

EMPTY 

t 
EXTREME 

. SAFETY 
SEARCH 

LOGIC, TREE   GENERATOR 

OECODED 
DATA 

Fig. 10.   Buffer. 

Assume that the decoder operates with the buffer of Fig. 10.    Received branches are inserted 

at the left end of the buffer and progress through the buffer at the rate at which they arrive.   The 

buffer stores  B branches.    Below each branch there is space to register an element of the source 
alphabet.    As the decoder operates,   it inserts into these places tentative source digit decisions. 

Insertions are made at the position of the "search" pointer.    When these tentative decisions reach 
the left-hand side of the safety zone they are considered to be final.    When they reach the right- 

hand side of the safety zone they are considered to have been decoded.    If a digit released from 

the right end of the safety zone disagrees with the corresponding source output digit,   a decoding 

error is said to have occurred. 
The "search" pointer indicates the received branch at which the decoder is looking.    The 

"extreme" pointer indicates the most recently received branch that has been examined.    As the 

machine operates the two pointers may advance together toward the left-hand side of the buffer 

until a search is necessary.    At that time the search pointer and the extreme pointer will drift 

back,  the search pointer moving away from the extreme pointer.    (When the extreme pointer is 

not moving forward,   it drifts back because branches are arriving at a constant rate.)   As the 
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search pointer moves back it erases previous tentative decisions,   and in moving forward it in- 

troduces new tentative decisions.    Digits in the safety zone cannot be changed. 
13 It has been found from simulation      that under normal operating conditions the two pointers 

usually hover near the left-hand side of the buffer.    Occasionally,  however,  they will drift back 

a substantial distance.    During this drift,  the two pointers usually are separated by a small frac- 

tion of the distance they have drifted from the buffer end.    (This behavior is rationalized by the 

observation that the number of machine computations tends to grow exponentially with the depth 
of the search from the extreme point.) 

Occasionally,  the search pointer reaches the far end of the buffer.    Then,  the decoder is 

likely to release an incorrect digit into the safety zone; thereafter, the decoder tries to advance 

on an incorrect tree path.    Since this is difficult,  the machine must do a large amount of computa- 

tion.    The search pointer then hovers near the far end and additional erroneous source digits 
are released into the safety zone.    Thus,   if the search pointer is forced to the far end of the 

buffer,   it will tend to remain at this end and to decode in error.    We call this event buffer over- 

flow.    This report is motivated by a concern for this event. 

Although,   decoding errors may occur without causing a large machine computation,   it is 
13 noted from simulation      (and may be rationalized heuristically) that for safety zones of moderate 

size, decoding errors are almost always preceded by overflow. The heuristic argument states, 

in effect, that the noise sequences, which are responsible for errors in the absence of overflow, 

occur with vanishingly small probability,   especially for safety zones of large capacity. 

Since buffer overflow can be detected,  the decoder can discard the unreliable digits in the 
safety zone.    Thus,  the probability that an erroneous digit is released to the user before the 
buffer overflows can be made very small,  much smaller than the probability of overflow.    This 

observation is equivalent to the statement that the probability of a machine failure,  where fail- 

ure means overflow or error is dominated by the probability of buffer overflow.    Represent this 
probability by PRT?(N).    We define PRF(N) as the probability that the first buffer overflow occurs 
on or before the time at which the N'" source decision enters the safety zone. 

We shall be concerned in this report with the sensitivity of PRFr. to buffer size  B,  to the 
speed of the decoder and to the data rate  R.    We shall find that PRp is relatively insensitive to 

buffer size and machine speed,   but quite sensitive to data rate.    We shall establish the mechanism 

which is responsible for the particular sensitivities of PRvr.-    Throughout,   we assume that the 
decoder is working with a fixed channel. 

A preliminary statement can be made here concerning the largest signaling rate R at which 

P—-P, is "small" or at which the decoder will function well. Others ' ' ' have shown, through 
analysis and simulation, that the largest rate at which the average computation per decoded digit 

is small is a rate called R .    Since large average computation implies frequent buffer over- 
flows,  R is an upper limit on the rate at which the machine will function properly.    R comp ^^ r     r       j comp 
is strictly less than channel capacity,   except for pathological channels,   and is a large fraction 
of channel capacity for many but not all channels. 

F.     "STATIC" COMPUTATION 

Unfortunately,   the statistics of the dynamical computation performed by the Fano decoder 

as it operates in time are too difficult to study directly through analysis.    Consequently,   we are 
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led to consider a kind of computation called "static" computation which is at once analytically 

tractable and closely connected to the real machine computation.    Through an investigation of 
"static" computation,   we shall be able to make strong qualitative statements about the sensi- 

tivities of P_„. rsr 
A restriction to the study of "static" computation has been found necessary without exception 

by all others who have investigated the Fano algorithm. By "static" computation we mean 

a computation which is eventually performed by the decoder,   if no digits are decoded in error 

and if the buffer is infinite.    Thus,  the assumptions are that the decoder has a buffer of infinite 
capacity,  that it has operated for an indefinite length of time,   and that it has decoded correctly. 

Let (m, 

is given by 

Let (m, s, q) be a node of the q     incorrect subset where 1 ^ m ^ M(s),   0 ^ s < <*>,   and M(s) 

M(0) = 1 

M(s) = (b - 1) bS-1       ,        fors^l [Eq. (1)] 

We define "static" computation associated withthe qth correct node as the number of computa- 
tions made on each node (m, s, q) of the q     incorrect subset. 

The connection between "static" computation and the probability of overflow will be made 

later. 
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CHAPTER III 
LOWER BOUND   TO DISTRIBUTION OF COMPUTATION 

In this chapter,   we underbound the cumulative probability distribution of the random variable 
of "static" computation C,   namely,   PR [C > L].    This underbound applies to discrete,   memory- 

less channels (DMC) which are completely connected (all channel transition probabilities are 

strictly positive).    We show that this lower bound is an algebraic function of the distribution 

parameter  L for large  L;  that is,   PR [C ^ L] ^(A/L   ) for all  L greater than some constant 

L ,   where A,   a > 0. o 
The lower bound derivation is preceded by a discussion of the condition on the random vari- 

able of "static" computation which is responsible for its having an algebraic distribution function. 

Roughly speaking,   this condition states that the distribution is algebraic if "static" computation 

is large during an interval of high channel noise and grows exponentially with the length of such 

an interval.    This important result is responsible for the particular sensitivities of the overflow 
probability mentioned in Chapter II. 

A.     BEHAVIOR OF DISTRIBUTION OF COMPUTATION 

The computation performed by the Fano decoder is a random variable.    It is large during 

periods of high channel noise and small otherwise.    The same is true of the random variable of 
"static" computation  C  associated with the q     node of the correct path.    We now argue some- 

what loosely that exponential growth of "static" computation implies that it has an algebraic dis- 
tribution function. 

Let £    be the sequence of si  channel transitions (corresponding to  s  tree branches) following 
ji s — 

the q     correct node.    The sequence |    alone is not sufficient,   as a rule,  to determine  C  com- 
pletely.      Knowledge of £     is  sufficient,   however,   to determine whether  C  is  large or not. 
If £    for large   s  represents a long interval of high channel noise,   then  C  will still be random, 
but all values in its range of values will be very large.    In particular,   let us assume that for 

each s >s    there exists a £     such that C >A  2       where A ,   6 > 0,  that is,  the "static" compu- o s s o o ' ^ 
tation grows exponentially with the length of an interval of high channel noise.    (Following argu- 
ments similar to those of the next section,   it may be verified that such an assumption holds for 

all codes on the completely connected DMC.) 

PR[C£L]>PR[C»L|«8]PR[«8] (10) 

where PR [£ ] is the probability that the particular sequence £ of si channel transitions is the 
sequence of si transitions following the q reference node. Both £ and s in Eq. (10) are arbi- 

trary.    For each   s   let £     be a high channel noise sequence.    Now choose  s   such that 

A   2s6 ^L > A   2(s_1)G       . (11) o o 

s9 Then,   for this  s  and the high channel noise sequence (;    we have by assumption that C > A   2 

Therefore,   from Eq. (11),   C ^ L which implies that PR [C>L|£   ]  =1.    Thus,   for the particular 

value of s  defined by Eq. (11) and for the high channel noise sequence f    of that length,   we have 

PR[C >L] >PR Ug]       . (12) 
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For the completely connected DMC (the only channels considered in this chapter) we have 

PR[?B1   >2'S<P <13> 

where <p ^ — I  log-,  min  p [y/yij because P„ \l  ] is the product of sf  channel transition proba- 
], k J 

bilities all of which exceed the smallest transition probability,   the latter being nonzero by the 

connectedness assumption.    Combining Eqs. (11) and (13) we have the following lower bound to 
s0e 

PR [C > L].    The bound applies only for s > s    or L > A  2 

/A yp/e s e 
PR [C > L] > [^J Z'f       for       L>Lo^Ao2° . (14) 

Exponential growth of computation with the length of an interval of high channel noise implies 

that the distribution of "static" computation is algebraic,   which in turn implies the particular 

sensitivities of the overflow probability discussed in Chapter II.    The existence of exponential 

growth is,  therefore,   a most important characteristic (or defect) of a decoding scheme. 

B.     LOWER BOUND ARGUMENT 

Our intention in this section is to underbound,   without a loss of rigor,   the probability 

PR [C > L].    To underbound PR [C > L],   we find an event which implies that C > L.    The proba- 

bility of the former event underbounds the probability that C > L and is used as the underbound 

to PR [C > L].    As a preliminary,   we recall some of the definitions and statements of Chapter II. 

"Static" computation associated with the q      incorrect subset is defined as the number of 

forward or backward "looks" required by the Fano decoder on the reference node (the q      correct 

node) or on nodes in the q      incorrect subset.    "Static" computation is measured under the as- 
sumption that the decoder decodes without error,  that the q     correct node is in the infinite past 

of the decoding process,   and that the buffer has infinite storage capacity.    The latter assumption 
is equivalent to the assumption that the machine can search forward or backward to any length 
in the tree. 

A node in the q      incorrect subset is labeled (m, s, q) to indicate that it is at penetration  s 

in this subset (there are  s branches between it and the reference node) and it is m      in order 
among the M(s) nodes at that penetration in the q     incorrect subset;   M(s) is given below. 

M(0) = 1 

M(s) = (b - 1) bS_1       for      s > 1       . [Eq. (1)1 

There are b   nodes at penetration t  or less,   since 

t 
Y    M(s) = 1 + (b - 1) + (b - 1) b + . . . + (b - 1) bt_1 

s=0 

= 1 + (b - 1) (1 + b + b2 +. . . + bt_1) 

-l+(b-D   (^TT1)   =b*        • (15) 

The reference node is labeled (1, 0, q) and is said to be at penetration zero in the q     incorrect 

subset. 
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A  path metric is defined and the value of the path metric on a path terminated by node 

(m, s, q) is associated with node (m, s, q) and is called d(m, s, q).    Let u    represent the path of 
n = q + s branches terminated by (m, s, q) and let v    be the corresponding portion of the received 

sequence.'    Then,   d(m, s, q) is defined as 

n        t 

d(m,s.q)£     £       £    [I(urh. Vrh) - R] [Eq.(7)l 
r=l   h=l 

where 

A P [v ,/u     ] 
Kurh. vrh) i  log, f     rh [Eq.(6)] 

rh 

and u . , v ,   are the h     of I   digits on the r     branches of u ,   respectively,    p [v ,/u ,1 is a 

channel transition probability and f(v , ) is a probability-like function which is interpreted as 
the probability of the channel output digit v ,   when channel inputs are assigned probabilities 
{pk},  l<k< K. 

As the Fano decoder operates,   it attempts to extend along a path which increases in path 
metric.    A set of'threshold T. = i t  , — °° < i < °°,   is used to ascertain whether a path being ex- 

amined grows or decreases in metric.    The decoder operation depends on increments in the 
path metric.    Thus,   we may assume that the reference node (1, 0, q) lies between T    =0 and 
T1  = t ,   i.e.,   0 < d(l, 0, q) < t  . 

Our intent is to find an event which implies that C > L and to underbound the probability of 
this event.    It was observed in Chapter II that if  D  is defined as the minimum value of the cor- 
rect path metric at or following (1, 0, q),   and T     is the threshold just below  D,   then at least one 
computation (a forward look) is required on node (m, s, q) and on each node connecting it to 
(1, 0, q) if D < 0,   and node (m, s, q) and all nodes connecting it to (1, 0, q) lie above T„ + t   . 

One forward look on node (m, s, q) and each of the connecting nodes is required under these 

conditions before the decoder reduces the running threshold from T_ + t    to T„.    This latter b D       o D 
threshold is used at least once since the decoded path is the correct path (by assumption) and 
this path dips below T„ + t    (see Fig. 11). 

We assume that the channel is completely connected.    This implies that the path terminated 
by some node (m, t, q) cannot fall from the value of the metric on the reference node,   d(l, 0, q), 

with a slope+ of magnitude larger than f (Ft — I    .   ) where^ 

. P [y/xJ 
I    .    i   min  log,  J   ,K . (16) min       .  . &2       f(y) 

That is, 

i.k     -   ^y 

d(m, t, q) >d(l, 0, q) -ti(R - I    .   )       . (17) 

t The subscript n  on  u  or v  is reserved for sequences of n  branches measured from the origin.    The subscript s 
on u  or v  will indicate sequences of s  branches measured from the q*n correct node. 

X Slope is defined as the increment in the metric for a one-node change in path penetration. 

§ It may be shown that I   .    < 0. 
' mm 
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(1,0,q+J) 

Fig. 1 1.    Trajectories of correct path and incorrect path. 

We are now prepared to  describe  an  event which implies   C > L.     As shown by   Eq. (15), 

there are b   nodes at penetration  t  or less in the q      incorrect subset.    If each of these b   nodes, 
t t-1 b   > L > b      ,   lies above some threshold T.,   and if the correct path falls below T. at some node 

beyond (1, 0, q),   say at node (1, 0, q + s) [which is  s  branches removed from (1, 0, q)|,   we find 

that the "static" computation on just the b   nodes of the incorrect subset equals or exceeds   L 
t t-1 (since  t   is defined by b   > L > b      ) so that the total "static" computation C equals or exceeds L. 

We have the desired underbound if we let T. be the threshold below the value of the path 

metric on the path (m, t, q) which falls at the maximum rate.    In particular,   we have that 

d(l, 0, q) -ti(R- I T. > d(l, 0,q) - tl(R - I    •   ) - t (18) 

If the correct path falls below this underbound to T.,   then threshold T. is used and at least 

b , b   H>b "  ,   nodes   in  the  q   1   incorrect   subset  will  have  at  least  b   computations done 

on them.    Therefore,   the probability that the correct path falls below the T. of Eq. (18) under- 

bounds PR [C > L,]. 

The metric on the (q + s)      correct node is defined as d(l, 0, q + s).    If d(l, 0, q + s) is less 

than the underbound to T.,   this threshold will be used.    This condition is written as 
l 

d(l, 0, q + s) < d(l, 0, q) - U (R - I (19) 

If we let u    represent the  s  branches of the correct path which follow node (1, 0, q) and let v s s 
be the corresponding section of the received sequence,   we have from Eqs. (6) and (7) 

d(l,0, q + s) -d(l,0, q) =    YJ     E    tI(urh' vrhl ~ R] 

r=l   h=l 

(20) 

d(l, 0, q + s) -d(l, 0, q) ^ I(u  , v  ) - si R -i   _        s     s (21) 

where u  , , v  ,   are the h      digits on the r     branches of u  , v  ,   respectively.    Equation (19) is rh     rh b s     s 
now rewritten with the aid of Eq. (21). 

I(u  , v  ) < SIR - ti(R - I    .   ) - t s     s min o 
(22) 
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Recalling that b   > L > b        and remembering that R = (log2b)/f,   we obtain the final result, 

namely,   if 

/R -I    .    v 
i(ng, vs)< s*R-(iog2L+i) (—ir^j-tc <23> 

then the static computation C must exceed L. Therefore, the probability of the event in Eq. (23) 

underbounds PR [C > L]. We note that s is arbitrary. It is chosen to maximize the underbound 

to PR [C > L].    The desired result then is 

PR [C > L] > max PR    I(ug, vj < st R - tQ -(log2L + 1)  ( R
11111

) • <24> 

It should be noted that the random variable I(u  , v  ) is assigned with probability P„ [u  , v   ], S      S t\       s      s 
which is the probability that the first  s  branches of the transmitted and received sequences fol- 

lowing the q     correct node are u  , v  ,   respectively.    The inequality of Eq. (24) applies to any 

particular code and ug is a codeword (of s branches) in this code. 

Let p   (x) ^ PR [I(u , v ) < x].    Then,   the lower bound result is formally summarized below. 

Theorem 1. 

The "static" computation in the q     incorrect subset,   when the Fano algorithm is used on 

the completely connected DMC,   has the following bound on its cumulative probability distribution: 

PR [C > L] > max pg   \sl R -tQ - (log2 L + 1)   ( f^11)! (25) 
s 

where I    .    is defined by Eq. (16). min J     ^ 

(^.Hl 
Next we further lower bound Eq. (25) so that the dependence of the bound on   L and  R  be- 

comes explicit.    First,   we lower bound p   (x) in terms of the smallest value of the conditional 

probability p   (x|u   ),   defined as the conditional probability that 1(0  , v  ) < x given u   . s s s     s s 

PS
(X)= I Ps(xlas)PR["Sl <26) 

u    in the code s 

p   (x) >    min   p   (x|u  )       . (27) 
all u s 

Here the minimum is taken over all words of si  digits,   not just words in the code.    Since Eq. (27) 

is independent of code,   we shall use it to obtain a bound valid for all codes.    Equality holds in 

Eq. (27) under certain conditions on the channel and the probability-like function f(y).    Equality 

is equivalent to saying that p   (x) is independent of the code.    The conditions are: 

(a) The channel is uniform at the input,   i.e.,   the set of transition proba- 
bilities {p(y./x, )}, 1 < j < J is independent of k; 

J    K 

(b) f(y-j) = constant for all 1 < j < J. 

In the second major step directed at exhibiting the dependence of the bound on   L and   R,   we 

introduce and apply a theorem due to Gallager.        We shall use it to underbound p   (x|u   ).    Al- 

though it is a weaker theorem than the Central Limit Theorem for Large Deviations (Ref. 18), 
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it is sufficient to demonstrate the  dependencies  of PR [C > L]  for  large   L because  the two 

theorems are asymptotically equal. 

Theorem 2.    (Gallager) 

Let {£•},  1 < i < N  be a set of statistically independent random variables.    £, . assumes the 

J  values w..,  1 < j %> J,   with probabilities {PR(w..)}.    Let  £    be the sum of these   N  variables, 

£  =    2    £,..     Define pL.(a) byt 
i=l 

H.(<r)£log,2      [ (28) 

Then, 

H<a)£tog22°* 
i=l 

and for IT < 0 wc have 

,     (H-(o-)-a  ,(<r)] 
PR [{ < Ht'(a)] > 2 2 ^ exP 

2N(1 - p    .   ) ' mm 

where the prime indicates differentiation with respect to a, and p    .    is defined by i f i min J 

(29) 

(30) 

p ±±  min  P., [min w. .1 'mm — R n 
i ] J 

(31) 

To use this theorem in underbounding p   (x  u   ),   we must associate the   N   random variables 

(^ .}  with the random variables appearing in the definition of p   (x|u .).     We recall that 

ps(x|us) = PR[I(us,vs)«x|u£ (32) 

where I(u   , v .) is defined from Eqs. (20) and (21) as 

I(u ,v ) 

s I 
V      V 

P (v   , /u   .1 r '   rh     rh1 

L     U    loS2       f(v J 
r=l   h=l 

(35) 

and u  . , v  ,   are the h      of  (   digits on the r     branches of u  , v  .   respectivelv.     With u    fixed, rh     rh b s     s r J s 
this random variable I(u  , v ) is assigned with probability 

PR(Vasl 

s       I 

n n p[vrh/urh] 
r=l   h=l 

[Eq. (2)1 

The sf   random variables 

. P'Vrh/urh'l 
loS2      f(v  J rh | 

fThe bar notation indicates a statistical average. 
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are therefore statistically independent and assigned with probabilities p [v  ,/u  , ].    Thus,   if we 

make the following indentifications,   Theorem 2 applies to p   (x|u  ): 

N 4 si 

i = (r - 1) I  + h 

P  [V   ,/u   ul A , r l   rh     rhJ 

t .  =   log,    Ji \  
1 f(vrh' 

p [yH/
u
r A ,        r ,JY   rh1 

w.. = log- —T^—\  

P„ [w..] £ p [y./u ,1 R '    IV       ^ l-/ r    rh' 

H'(cr)^ x (34) 

The particular definition of the index  i  is one which leads to a natural ordering of the si  pairs 

(u  . , v  . ). 
rh     rh 

Before we apply Theorem 2 to p   (x  u   ) we observe that by decreasing p we further ft- j rs     i   s j & 'mm 

weaken the inequality of Eq. (30).    Therefore,   we may replace p with P    .   , J J       f ^min mm 

P    .    = min   p fy./x, 1 
min       .  ,      r lJ l     kJ 

.1, k J 
(35) 

Now let us consider the form of |_i.(<r) and of \±{o).    From the definitions of Eq. (34) we have 

jx.(a) = iog2 YJ p[yj/urh'   af(yj)_c (36) 

If we define Q    = (q,, . . . , q, ) as the composition of codeword u  ,   that is,   if Nq,   represents the 
 O * K ry S K 

number of times channel input symbol x,   appears in u  ,     2    q    = 1,   then we have for H(CT) the 
s    k = 1     k 

following; 

N K 

nM = V   ^.(a) = N   £   qk-yk(<r) (37) 

i    1 k = l 

where 

yk(a) = iog2 i   p [y./xk V      r,  fv   /v   11+CT f(y.)" (38) 

j = l 

All terms of Theorem 2 have been defined so that we may now state the desired lower bound to 

p   (x  u   ).    If u    has composition Q  ,   then, 

Ps(x|ug)>|2 

K 
N  2 qk[yk(a)-o7^(a)l 

1 -.   k = l exp 
2N(1 - P    .   ) 

min 
(39) 
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This bound is independent of the order of symbols in the codeword.   Therefore, for that (unusual) 

class of codes having all codewords of the same composition,  this lower bound applies directly 

to all words u    in the code.    Moreover,   independence of the order of symbols in a codeword 

applies to p(x|u  ) as well as to its lower bound:   it can be shown that p   (x|u'J = p   (x|u  ) when s s        s s        s 
u'   and u    have the same composition.    It follows that the inequality of Eq. (27) is weaker than 

necessary for codes of fixed and known composition;  for this class of codes we may write 

Ps(x) p   (x  U   ) s        s (40) 

for any u    in the code.    It should be noted again that Eq. (40) applies only to codes of fixed com- 

position,   whereas Eq. (27) applies to all codes. 

Our primary task is to exhibit the dependence of the bound of Theorem 1 on   L and  Ft.    We 

now have the necessary tools to do this.    We use either Eq. (40) or Eq. (27),   depending on whether 

the bound is to apply to a code of fixed composition or is to apply to all codes,   together with the 

bound of Eq. (39) and the inequality of Eq. (25) of Theorem 1.    We shall consider the fixed composi- 

tion case first since it serves as an introduction to the general lower bound. 

For fixed Q , we have from Theorem 1, the definition of Eq. (34), the equivalence of the state- 

ment in Eq. (40), Theorem 2 and the bound of Eq. (39) the following lower bound to PR [C ;> LJ: 

PR [C > L]  > max p   (x) > max  p   (x|u  ) 

where 

> — max 
N 

K 
N Z qk[rk(a)-(ry^(a)] 

,   k=l exp 
2N(1 - P    .   ) 
 min 

(41) 

a 4 0 

x = NR - F 

+ 1) (R    R"11") o °2 '  \        R 

N ^ si 

The maximization over N in Eq. (41) is taken subject to the following constraint 

K 

I    qkTk(a)=R-f 
k=l 

(42) 

N = 
K (43) 

k=l 
k'k1 

which is implied by the first equation in Eq. (42),   the last equation in Eq. (34) and the definition 

of n(o-),   Eq. (37).    The function F is independent of Q   and N,   and is constant with respect to 

the maximization. 
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Strictly speaking,   the maximization on N must be taken only for values of N which are 

multiples of ( , the number of digits per tree branch.    We now drop this constraint and permit N 

to assume all values 1 < N < °°.    The imprecision introduced neither affects the character of the 

end result nor materially alters its numerical value. 
Let us now consider the connection between  N  and  a from the second equation in Eq. (43). 

One can show that 

Yk'(ff) = Uj -q)2 >0 (44) 

where £ '. assumes the same values as does | . of Eq. (34) but it is assigned each such value with 

the probability 

p[yA> ,l1+<7f(y.ra 

PR [«• - w   1 = 3     rh J  (45) 

=   P[y/urh]1+-f(y)- 

when u  i= x, .    Consequently, yMc) is monotone increasing in  a,   which implies that  N  is mono- 
tone increasing in  a.    Since 0 .$ N < °°, we must restrict  a  in Eq. (43) to be less than the value at 
which  N   is infinite.    We shall impose this restriction implicitly by extending the definition of 
l/[R — £   q, y! (a)] so that it is infinite for   u larger than the critical value.    At the end of the 

next paragraph,   it will become clear that this extension does not affect the maximization,   serv- 
ing only to simplify the analysis. 

We return now to the maximization of Eq. (37).    If h(N) and q(N) are positive,   then 

max  h(N) q(N) > [max  h(N)] q(N') (46) 
N N 

where   N'   may assume any value.    Thus,   if we maximize Eq.(41) with respect to the first of 
the two factors,   we further lower bound P„ [C >L1.    The maximum of the first factor occurs 

at the maximum of the exponent 

K 

Nf(ir)|N     YJ     qk|yk(a) ~ crT^(cr)l       . (47) 
h = l 

Let us study this exponent.    It is negative since e(cr) is negative.    We see this by observing that 
K 

e(a) assumes value zero at a - 0 and has derivative    £     q, (— a) y!'{a) 5> 0 for a -^  0,   the range of 

a  of interest.    To determine whether the exponent Nt(a) has a maximum in  u,   we take the first 

derivative with respect to  a. 

H^N    V    qk [yk(a) - ay^cr)] 
k = l 

K 

F d 
da 

k=1 
qk [ykM -ayy la)] 

H 
K 
£     q 

k = l k^k(CT) 

(- -a) 
lk = l 

\ yk'(a)] b- 
K 

k = l 
% 
,-| 

K 
R-    £     qkyk((7) 

k=l 

(48) 
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K 
All factors are positive for a < 0,   with the possible exception of the term R -    2    q,   \y^a)]/(r. 

K k=l 
Since    2     q,   [y, (a)}/a has derivative 

k=l     k     k 

K 

do-   ^ la    *-<     dk     a 
k=l 

I   \        K 

v" - I 
fo-yjjcr) - Yk<^) 

k=l 

da) >0 (49) 

K 
we find that R —    2    q    [y, (a)]/a is positive for u < a    and negative for a > a    where a    is such 

k.        K        K yJ KJ \J 

that 

k=i 

(50) 

We can now sketch Ne(cr)/F for a< 0 (see Fig. 12).    It is negative for a< 0 and has a maximum 

at <T = a  .    The value of this maximum is o 

N(%) d%) «(a0) 

?-.(=    \trk(ao)-aoy^(ao)]) 
o vk=l ' 

(51) 

i.e.    the maximum (a , a ) lies on a straight line of slope one passing through the origin.     For 
K °     ° 

a 4 cr ,   R >    2    q    [y, (a )A_] so that Ne((j)/F > a,   that is,   Ne(a)/F lies above the unit slope 
k=l 

line passing through the origin for a < a  .    Maximizing Ne(cr) over  N  is equivalent to maximiz- 

ing this exponent over  a where  N and  a are related by Eq. (43).    Therefore,  the maximum of 
CTQF 

the first term in Eq. (41),   2        ,   is related parametrically to the rate  R  by Eq. (50). 

The final bound is obtained if in the second factor of Eq. (41) we use N' = N(cr ), the value 

of N which maximizes the first factor. Then using Eq. (46) we have for the fixed composition 

case 

i     <X  F 
PR [C >L] > jZ °     exp i^F 

1 - P 
min 

e(«r0) 
(52) 

Fig. 12.    Behavior of Ne(a)/(F) with a. 
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where cr   < 0 is such that o 

K 

k=l 

Tk^o' [Eq. (50)] 

The range — 1 < o   < 0 suffices since,   as shown in Eq. (49),  the sum in Eq. (50) is monotone in- 

creasing in a,   being negative for a < — 1.     This is the lower bound result for the fixed composi- 

tion case.    We must now consider the general lower bound,   valid for all codes.    We shall use 

many of the results obtained above. 

To obtain the general lower bound,   we lower bound PR [C > L] using Theorem 1 and in- 

equalities (27) and (39). 

'R [C ^ L] > •=- max min 
" d     N     Q 

,Ne(a) 2 exp 
2N(1 - P    .   ) min 

(53) 

where cr< 0.    We would like to focus attention on the first of the two factors above.    We justify 

our doing this as follows:    Let h(N, Q  ),   g(N, QQ) > 0.    Then, 

h(N, Qo) > min h(N, Q ) 
Q 

•o 

g(N,QQ) > jming(N, QQ) 
% 

h(n, Q  ) g(N, Q  ) >    min h(N, Q  )       min g(N, Q  ) 
1 ^o '   ' -o 

so that 

and 

min   {h(N, Q  ) g(N, Q  )}  > min   {h(N, Q   )}   min   (g(N, Q   )} 

^o ^o -o 

max min  {h(N, Q  ) g(N, Q  )}   > max  min  {h(N, Q  )}   min   {g(N\ Q  )} 
N      Q N      <3 Q -o 

(54) 

In the last step we have used Eq. (46). Thus, if we minimize the second term in Eq. (53) on Q 

and use in it the value of a which achieves the max-min of the first term we will have a valid 

lower bound.    We minimize the second factor Q    if we maximize N' on Q  . 

N        (a) ^  max N'(ff) =  5 j—, max Q R — max   y.(ff) 
"o k 

(55) 

Then,   we have 

PR[OL]>| 

lax min Ne(oT 
N     Q 

exp 
2N (a) (1 -P    .   ) max min (56) 

Our next concern is with the max-min of Ne(cr).    We assert that the minimum on Q    (the 

components of Q    are positive and sum to one) of Ne(a) occurs when Q    has a single nonzero 

component,   having the value unity.    This component q,      = 1 is such that fixed cr < 0 
ko 
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goi 

Fig. 13.    Minimization of Ne(a)/(F) over Q  . 

l»-l?-3tTo] 

Fig. 14.    Relative values of y,(<j)/a. 
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Y,    (cr) — ay.1    (cr) ,   , ,   , 

R-yk  (a)        <       R-y  (a) aU k       • (57) 

o 

This assertion is proved as follows:    Let 6  be defined as the difference between Ne(cr)/F for 

arbitrary Q    and the value of Ne(cr)/F at the supposed minimum on Q   .    Then we have 

K .     ,   , i /   \i       7i    (c) — cry,'    (cr) 

6=    L R ' R-y'    (a) • (58) 

k = l     R -    2    q, y'(ff) o 
k = l     k k 

K 
Using Eq. (57) and remembering that by extension of its definition R —    T,    q, y'(cr) cannot be 

k=l     k  k 

negative for any Q ,   we see that o > 0.    We also observe that 6 = 0 for the assumed composition. 

Thus,   this composition achieves the minimum.    Now if we sketch [y, (cr) — cry'(cr)]/[R — y  (cr)] for 

each  k  and  all values of cr < 0 (keeping in mind that R — y'(cr) > 0 by extension of its definition) 

we see that we achieve the minimum Ne(cr) on Q   by taking the lower envelope of these functions 

(see Fig. 13).    Notice that the maxima of the individual functions occur on the straight line of 

unit slope passing through the origin.    The maximum of the k     function occur.s at ff = cr,   where 

cr,   is such that R = y, (cr)/cr, .    For a < a, ,   the k     function lies above the unit slope straight line 

passing through the origin. 

Figure 13 provides a graphical interpretation of the function min  Nc(cr) vs  cr.    We now con- 

% 
centrate on maximizing this minimum on  N  or,   equivalently,   on a < 0.    We assert that this max- 

imum occurs in Fig. 13 on the straight line of unit slope.    This should be clear from the figure. 

If ff,   is such that R = YiJcO/ci.,  that is,   if {cr, }  are the loci of the maxima,   we further assert 

that the maximum over  cr of min  Ne(cr) occurs for  cr equal to the smallest of the cr, .    This too 

% 
should be clear from the figure. 

We have found that the max-min of the exponent Ne(cr) occurs at the maximum <j    of one of 

the functions [yk(cr) — cryJ (ff)]/R — y) (IT),   and that this particular maximum is the smallest of 

the maxima.    At the particular maximum we have 

max  min  NefcO = ff  F (59) 
N      Q ° 

—o 

where cr    is the smallest of the {ov}  satisfying R =  Yi.(0'ir)A>'i,-    Since y, (cr)/cr is monotone in- 

creasing in  cr from Eq. (55),   we see from Fig. 14 that the smallest cr, ,   as a function of  R   is the 

solution to the equation: 

R =  max 
k 

Vao> 
ff o 

(60) 

If we now choose cr = cr    in N (cr),   the value of N' in the exponent of the second factor of Eq. (56). o max     ' ^ M 

we have 

N (cr  ) =  ; r^         . (61) 
max    o y. (ff  ) 

K     O t /       \ max   — max y! (cr   ) ,            cr                 . K    o k            o              k 
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The denominator is positive because y, (<j)/a > y'Jio) as implied by the fact that y, (a) - ay' [a) = 

e(a) < 0,   for a < 0. 

The complete general lower bound to PR [C > L],   valid for all codes,   can now be stated. 

1      Fa 

PR [C >L1 >|  2     ° exp' -±4¥ 
2(1 -P    .   ) mm 

yk(ao' nax    — max y\ (a  ) , a .       'k    o k o k 

(62) 

where a    is the solution to the equation 

R =  max *k('o> 

k 
[Eq. (60)1 

We collect the lower bounds to PR [C 5-L] for the two cases in the following theorem. 

Theorem 3. 

On the completely connected DMC,   the random variable of "static" computation  C  has the 

following lower bound to its cumulative probability distribution function,   PR [C ^ L]: 

1   -,     o PR [C > L] > | 2     u exp 
. /F(l - P    .   ) 4   .,     .    /    * muy — A(cr  )    / =:  e     v  o'   / P    . 

*V mm 
(63) 

where 

4 min p [y ./x ] 
j.k V  kJ [Eq.(35)] 

it0 + (log2L+l)(^P" 
/R-I    .   \ I mm \ 
\      R      / 

A   . ,    p 'y/xki 
Wn = mi"  log2      f(y.) 

(Eq.(42)] 

[Eq.(16)l 

and f(y.) is a probability-like function of output symbol y.,   interpreted as the probability of y. 

when channel inputs are assigned with probabilities \PU),   1 < k < K. 

K 

f(yj £   E   pk p [y/x. ']" =    -    'k 
k=l 

j'"k'      " (64) 

The function A(u  ) and the parameter a    are related parametrically to the rate   R.    The re- 

lationship depends on whether the bound applies to all codes or to codes of known and fixed 

composition. 

(1)    For a code of fixed composition Q    = (q., . . . , q, ) we have 
—o 1 k 

A(aQ) 
1 

£ f7k(<7o) t     ) 
k=l V  o' 

(65) 
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K I   \ 

R V Tk     ° 

k = l 

for      -1 < a   < 0 o 
[Eq.(50)] 

(2)    For all codes we may choose 

MaQ) 

max 
k 

Yk((To) 

max y! (a) , k o 
k 

(66) 

R = max 
k 

yk(ao) 

for      -14040 [Eq. (60)] 

Here y^fc) is defined as 

yk(a)^  log2   I     P[yjAk] tiy.V 

j = l 

[Eq.(38)] 

An important observation can be drawn immediately from the bound of Eq. (63).    For very 

large  F,   corresponding to very large  L,   the bound is controlled almost entirely by the factor 

F<TO 
(_(7o)(R-Imin)/R 

2        .    Thus,   the bound behaves as (l/L) for large  L,   so that the distribution 

is algebraic with large  L. 
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CHAPTER IV 
"RANDOM CODE"  BOUND ON THE  DISTRIBUTION OF COMPUTATION 

The previous chapter has established the algebraic character of the distribution of "static" 

computation.    In this chapter,   we shall obtain an overbound to the distribution of computation 
averaged over the ensemble of all tree codes.    By so doing,   we show that a large number of codes 
exists whose distribution of "static" computation is bounded by a multiple of the average.    To- 
gether,   the results of this chapter and of the preceding chapter de-limit the tail behavior of the 

distribution of computation.    Chapter V will interpret and relate the result of these two chapters. 

A.    RANDOM VARIABLE OF COMPUTATION 

The approach we use to bound the ensemble average of the distribution of computation re- 

quires that we overbound the random variable of "static" computation.    The discussion of 

Chapter II is sufficient to allow a bound on this random variable.    We repeat the pertinent ar- 
guments of that chapter. 

"Static" computation associated with the q     incorrect subset is defined as the number of 
forward or backward "looks" required by the decoder in the incorrect subset associated with 

the q     node of the correct path.    This subset consists of the q      correct node,   labeled (1,0, q), 
and of nodes on paths disjoint from that portion of the correct path which extends beyond (1, 0, q). 

A particular node of this type is labeled (m, s, q) to indicate that it is in the q     incorrect subset, 
is at "penetration"   s,   that is,   is connected to (1,0, q) through  s  branches,   and is m      in order 

among the M(s) nodes at penetration  s.    The number of nodes at penetration  s,   M(s),   is defined 
below. 

M(0) = 1 

M(s)  = (b - 1) bS_1       for s ^ 1       . [Eq. (1)] 

The q     correct node,   or the reference node (1, 0, q) is said to be at penetration 2ero in the q 

incorrect subset. 
A "path metric" d(m, s, q) on node (m, s, q) has been defined.    If  0  is the generic symbol 

representing the path terminating on node (m, s, q),   then the path metric on this path of n = q + s 

branches is defined as follows: 

n        I 

d(m, s,q)=    £      YJ    lI(erh'vrh)_RI (67) 

r=l   h=l 

where 6  , ,   v  ,   are the h"1 digits (of i  digits) on the r     branches of  9   and v  ,   the received 

sequence of n  branches.'    The function 1(9   , , v  , ) is defined by 

P |vrh/erh] 
1(9  , , v . ) = log,  Jh   ,rtl (68 rh     rh "2 f(v  , ) rh 

where f(v , ) is a probability-like function,   interpreted as  the probability of channel  output 

symbol v  ,   when channel inputs are assigned with probabilities  (pk),   1 •$ k-$ K.    That is,   when 

v .   = y ,  we have rh     Jy 

t The subscript n on subsequences of the transmitted or received sequences, namely un, vn, indicates their length 
in branches from the origin.   The subscripts r, or s indicate their length from the reference node (1,0,q). 
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K 

f(yj> =     E    Pk
P [y/Xk]        • [Eq. (64)] 

k=l 

Later in this chapter,  we will find that f(y) is equal to a probability appearing in the "random 

code" argument. 

With this path metric,  the Fano decoder searches paths in the tree code trying to find a path 

which tends to increase in path metric.    A set of criteria T. = i t    is defined.    A path whose path 

metric tends to cross an increasing sequence of criteria will with high probability be the correct 

path.    As the machine searches for the correct path it must perform a number of forward or back- 

ward "looks" from nodes in the tree.    We are concerned with a subset of the total computation 

ever performed,  which consists of the number of computations eventually performed in the q 

incorrect subset.    Since the machine computation depends on increments in the path metric,  we 

may choose to let the value of the metric,   d(l, 0, q),   on the first node of this subset,   (1, 0, q),   lie 

between T    =0 and T.  = t ,  that is,  we may assume that 0 .< d(l, 0, q) < t  . 
O 1 O J tVi ° 

We found in Chapter II that the computation in the q     incorrect subset depends on the min- 

imum value of the path metric at or following the reference node (1, 0, q) and on the trajectories 

of the individual incorrect paths.    Let  D be the correct path minimum at or following (1, 0, q), 

and let Tn be the threshold just below  D.    We overbound computation on a particular node 

(m, s, q) by disregarding the history of the path preceding this node,  looking only at the value of 

the metric d(m, s, q) on this particular node.    If d(m, s, q) is in a favorable position,  we include 

node (m, s, q) in our computation count.    As discussed in Chapter II,   d(m, s, q) is in a favorable 

position if d(m, s, q) 5-T„.    In particular,   if d(m, s, q) ^ T.   ^-T„,  then the machine may do as 

many as (b + 1) computations on node (m, s, q) with each such threshold T. .    If T,   > d(m, s, q), 

the machine never does any computation on (m, s, q) with T, . 

Before we define a random variable which overbounds the random variable of "static" com- 

putation,   we further consider the metric d(m, s, q).    Let d(m, s) be the change in d(m, s, q) from 

the value of the metric on the reference node,   d(l, 0, q).    Then,   if 0 now represents the s 

branches if the q     incorrect subset preceding the node (m, s, q),   and if v    represents the cor- 

responding portion of the received sequence,  we have 

d(m, s) 4 d(m, s, q) - d(l, 0, q) 

s       f 

= 1(6, vg) - siR £    £      £    [I(erh,vrh)-R] (69) 

r=l  h=l 

where I(©  , , v , ) is defined by Eq. (68).    Then,   since we have assumed that d(l, 0, q) lies between 

T    =0 and T.  = t  ,   we have that d(m, s, q) ^ d(m, s) + t   .    If d(m, s, q) is replaced with this larger o 1        o no >   » -»» r & 
value for each node (m, s, q) the computation required on nodes {(m, s, q)} is increased,   because 

these nodes may be examined with a larger number of thresholds.    (The correct path minimum 

D  is not changed.)   Now,   if we decrease by an equal amount the value of the path metric on each 

correct node following the reference node,   we further increase the computation on nodes {(m, s, q)}. 

If we let u     ,   v     ,   be the r    branches of the transmitted and received sequences following the r r o M 6 

o o 
reference node,   and define d(u     , v     ) as the change in the value of the metric from d(l, 0, q) to 

o     ro th 
d(l, 0, q + r  ),   the value of the metric on (q + r  )      correct node,   we have 
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d(u     ,v     ) ^ d(l,0, q + r  ) - d(l,0,q) 
r       r o 

o       o 

ro      i 

I(u     , v    ) - r 1R i    7,       J1,    [Ku  . , v,)-R]       . (70) r       r o      —    U      u    i      rh'    rh ' 
o       o 

r=l   h=l 

We note that d(l, 0, q) $.0 so that d(l, 0, q + r  ) 5-d(u     , v     ).    If d(l, 0, q + r  ) is replaced with 
o       o 

d(u    , v    ) computation on the incorrect nodes {(m, s, q)} is increased.    We are now prepared to 
o       o 

an overbound to the random variable of "static" computation. 

Using d(m, s) + t    for d(m, s,   q) and d(u     , v     ) for d(l, 0, q + r  ),   r    > 0,   we raise the value 
° o n r       r M        o        o 

o       o 
of the metric on incorrect nodes and lower the value of the metric on correct nodes following the 

reference node.    Thus,   we overbound the computation on incorrect nodes.    Equivalently,   we over- 

bound "static" computation.    Now,   as discussed above,   the machine may do as many as (b + 1) 

computations on node (m, s, q) with threshold T,   if d(m, s) + t    >, T,   >. T„, where D1 is the correct 
k okD' 

path minimum with the metric d(u     , v     ).    No computation is required on (m, s, q) with T    if 
r       r k 

o       o 
d(m, s) + t    < T, .    Therefore,   if there are  N   thresholds between d(m, s) + t    and Tnl,   including 

ok o D 
Tn,,   the machine may do as many as (b + 1) N   computations on node (m, s, q);   N   is a random 

variable.    A convenient representation for N  in terms of the upper bound to the value of the met- 

ric on node (m, s, q),   d(m, s) + t  ,   and the lower bound to the value of the metric on nodes of the 

correct path d(u     , v     ) is had with the random variable z.     (m).    We define z.     (m) = 1 if r r '   r i,s 1, s 00 
d(m, s) + t    y.T. (that is,   d(m, s) ^T.   ,  since T. = i t  ) and if d(u     , v     ) ^ T., . for some r    ^ 1. 

01 1-1 1 o r      r    v    1+1 o 
o       o 

If these conditions are not satisfied z.     (m) = 0.    This type of random variable is called a char- 
1,8 

acteristic function.    Then, 

zi,s(m)  " 

1 if dm, s   > T.   .  and d u     , v       XT.±. for some r    ^ 1 
^    l-l r  '    r     ^     1+1 o 

o       o 

, 0 otherwise      . (71) 

A little reflection indicates that 

I     zi,s<m) N 

the number of thresholds between d(m, s) + t    and Tn,.    Therefore, 

(b + 1)      X     zi  s<m> 

is an overbound to the computation on node (m, s, q).    If this quantity is summed over all nodes in 

the q     incorrect subset,   that is,   for 1 ^ m ^ M(s),   0 ^ s,   we have an overbound to the random 

variable of "static" computation C in the q     incorrect subset.    Hence, 

"o      00     M(s) 

Cs< n E (zi,s
(m) + z-i,s

(m)) (v2) 

i=0  s=0  m=l 

where M(s) is given by Eq. (1) and the i = 0 term is repeated twice. 
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We are now prepared to overbound the distribution of computation using a "random code" 

argument. 

B.    MOMENTS OF COMPUTATION 

Although a lower bound to the distribution of computation PR [C > L] was found by consider- 

ing an appropriately chosen subset of the set of events leading to L or more computations,   if we 

are to overbound this distribution,  we must consider every event which may lead to  L or more 
computations.    We have overbounded the random variable of computation to simplify the analysis 

and to include each event which might contribute to computation. 

The technique which we shall employ to overbound the distribution is to bound the moments 

of computation and use a generalized form of Chebysheff's Inequality. 

Lemma 1.    (Chebysheff's Inequality) 

If  C is a positive random variable,  then 

cP P     [C >L]^-^- p ^0 (73) n. Lp 

where Cp is the p     moment of C. 

Proof. 

C^ >    YJ    cPP<c> ^L?     Z    P(C) 

c>L c>L 

where p(c) is the probability that the random variable   C  assumes value c. Q. E. D. 

The following two examples indicate the "tightness" that might be expected with Chebysheff's 

Inequality. 

Example 1:—   Let  C  assume values 0, c    with probabilities 1 — a, a,   respectively,   then 

c 
CP = aco

P      and      PR [C ^ L] ^ a (-^) 

For L = c   ,   the bound is exact, o 

Example 2: —   Let C > 1 be a continuous random variable with density p(C) = A/(C   ) where 

a > 1 and A = a — i.    Then,   for p < a — 1 

Cp = T       and      P„[C^L]< R        •      ' ""• a — p — 1    . p 

As   p  approaches a — 1,   the moment (hence the bound) becomes indefinitely large.    However, 

the behavior of the tail as a function of  L  more closely approximates the true tail behavior 

l/La-\ 
Judging from Example 2 and the fact that the distribution of computation is algebraic,   we 

should expect that the application of Lemma 1 will lead to a bound which degenerates rapidly as 
the tail behavior of the bound approaches that of the true distribution.    This phenomenon will 

appear in our results. 

Moments of computation cannot,   as a rule,  be computed directly for any arbitrary code. 

We can,  however,   compute these moments over the ensemble of all possible tree codes,  and 
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deduce that at least one code has moments less than the ensemble average.    The ensemble of 

codes is generated by assigning probabilities to the codes in such a way that each digit (there 

are  I per tree branch) is statistically independent and identically distributed and is assigned 

with probabilities  (pk),  that is,   channel digit x,   occurs on a branch in a code with probability 
p. .    Note that we have deliberately chosen the probability assignment used to compute f(y / 
Eq. (64). 

As the last topic in this section,   we introduce Minkowski's Inequality (see the Appendix for 

proof). 

Lemma 2.   (Minkowski's Inequality) 

Let {w. },   1 ><: h-$ H be a set of positive random variables.    Then 

p > 1 (74) 

Using this inequality on Eq. (72),   the upper bound to the random variable of computation,   we 

have as a bound on the moments the following: 

1/p l/p 

i=0   s=0 

oo OO 

+ I 2 
i = 0 s=0 

(75) 

where M(s) is defined by Eq. (1) and we use the fact that z.    (m) > 0. 

Evaluating the moments without using Minkowski's Inequality seems to be a practical impos- 

sibility because of the number of cross terms which occur.    With this inequality we reduce the 

problem to that of computing moments of computation on incorrect paths at the same length 

with the same threshold 

expanded as follows: 

/M(s) \p 
, namely,!     2     z.     (m)J   .    If p is an integer,  the latter term may be 

\m=l     *•"      / 

/M(s)                 \p M(s) 

k E   zi,s(m)) • I 
\m = l                  / m1=i 

M(s) 

•      I zi,s(ml)'- 
m  =1 

P 

z.     (m   ) l, s     p (76) 

where the terms in the expansion are expectations of a composite characteristic function or 

probabilities.    Since an expansion of this type does not apply to fractional p,  we shall limit our 

attention to integer p. 

In following sections,   the first term in Eq. (75) will be overbounded.    Since the first and 

second terms differ only in the sign of the index i,  we shall find that the bound on the first term 
can be applied-with minor modification to the second term of Eq. (75). 

C.    PRELIMINARY COUNTING ARGUMENTS 

The two terms in Eq. (75) differ in the sign of the index i.    This section will deal primarily 
with the first term,  but the discussion here may also be applied directly to the second term. 
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We are considering the term 

i/p OO               00 /M(s)                \p 

Z  I E  Zi,s<-) 
i=0  s=0 \m=l                  / 

/M(s)           \p M(s) 

E     «<»»>)    = z 
\m=l           / m, =1 

(77) 

The p     moment term has been expanded in Eq. (7 6) for integer  p,  the only case considered. 

M(s) 

E      zd*^), • • •, z<m  >       • (78) 
m   =1 

P 

The subscripts i, s have been dropped for the remainder of this section. 

In Eq. (78),  the terms corresponding to (m., m?, m,, m.) = (1, 10, 4, 10) and (4, 1, 10, 1) for 

the case p = 4 are equal since z  (m) = z(m) = 1 or 0 and the ordering of characteristic functions 

in the product does not affect the value of the product.    This suggests that many terms in Eq. (78) 

are equal,   since the indices (m., . . . , m ) are dummy variables.    Let us now consider the multi- 

plicity of a particular term. 

Assume that the p-tuple of indices (m,, m?, . . . , m  ) contains t <: p distinct elements 

{6 ., ©,, .... ©,}.    (Each corresponds to a particular incorrect path of  s  branches.)   Since 

z(m.), . . . , z(m  ) = z(Q .), .... z(6 ),   all p-tuples with the set {©.,, • • • , ©t) as distinct elements 

have corresponding terms which are equal.    Let W(t, p) be the number of such p-tuples.    This 

number is independent of the particular elements in the set of t  distinct elements.    We bound 

W(t, p). 

W(t, p) may be viewed as the number of ways of placing one ball in each of p distinguishable 

cells where the balls are of t different colors and each color must appear at least once.    The 

number of such collections of p balls is less than the number of collections one would have if 

we include the situations where one or more colors do not appear.    This larger number is the 

number of ways of placing t  different elements in each of p  distinguishable cells,   or t   .    There- 

fore,   W(t, p) <: tP. 

To underbound W(t, p),  we now establish that W(t, p) ^t W(t, p - 1).    Consider W(t, p - 1), 

the number of ways (p — 1) balls of t  different colors may be placed in (p — 1) cells.    Consider 

extending the collection by placing one additional ball with one of the  t  colors in a p     cell.    This 

new collection contains t W(t, p — 1) items.    It must contain fewer items than does the collection 

of W(t, p) items because one color appears at least twice and every other color at least once, 

establishing the desired bound.    Iterating this lower bound (p — t) times and observing that 

W(t, t) = t!   we have W(t, p) ^ tp    t!     The two bounds are summarized in the following lemma. 

Lemma 3. 

The number W(t, p) of different p-tuples (m., . . . , m ) generated from the set of t  distinct 

elements {6,, 6.,, .... 8 },   each element appearing at least once has the following bounds: 

N/I^I  e_ttp^ W(t, p)^ tp      . (79) 

Proof. 

19 We use the fact that 

t!   M1 */27Tt e_t 

4 0 



The second and final counting argument anticipates results to be obtained in the next section. 

First,  however,  let us rewrite Eq. (78) in terms of W(t, p). 

I z(et). z<et) (80) 

min[M(s), p] 

£ W(t, p) 
t = l all sets of t 

distinct elements 
{o1(e2....,et} 

The upper limit on t indicates that the number of elements in a p-tuple (m,, m,, . . . , m ) cannot 

exceed either p or M(s), the number of values of each index. In constructing the sets of t dis- 

tinct elements {©., ©2> •••• ®t^' we ^raw eacn ©• from a set of M(s) items. They correspond to 
nodes at penetration s  in the incorrect subset and are otherwise labeled as (9  , s),   l^a^ t. 

The terms z(6.) z(8_), .... z(6 ) in Eq. (80) are probabilities defined on  t  distinct paths at 

penetration s  in the incorrect subset.    These t paths  are composed of a number of branches 

which is less than or equal to ts,   since some paths may have branches in common.    (See Fig. 15 
where the paths involved are checked.)   The next section will show that z(8.), . . . , z(0 ) may be 
bounded in terms of the number of branches on the paths {o ., . . . , 6 }.    That being the case,   any 

two sets of t  different paths with the same number of branches will have the same bound.    We 
now proceed to count the number of sets {©J, . • • , ©t) with an equal number of branches. 

The paths {6,, ©-,,... , ©..}  may be visualized by placing a check next to each of these paths 
(of length  s) in the tree.    Above every branch on a path ending with a check place a 1 (see Fig. 15). 

The number of such ones equals the number of branches on these  t  paths.    Let a    be the number 

of ones on branches at length  r  from the reference node and define  a   by a = (a ...... a   ..... a   ). 
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Fig. 15.   Topology of tree paths. 

41 



s 
In terms of a,  the number of branches on the t paths (8.. .... 9.) equals a ^    2Z   a   .    Let 1 t' r=1    r 
N,(a) be the number of sets of t distinct paths (6.., • • • , 9t) which contain a  branches.    The 

following lemma bounds N (a). 

Lemma 4. 

Nt(a) ^ (t - 1)!   (s + l)*"2 2aiR (81) 

s 
where a =   2    a  ;  a  ranges between s~$: a >$ st. 

r=i     r 

Proof. 

The proof is by construction.    We first show that N (a) ^ (t — 1)!   s      2a      for s >, 1.    Con- 

sider placing the first of the t paths into the incorrect subset of the tree (containing M(s) ^ b 

paths).    It may assume no more than b    positions.    A second path connecting with the first,  but 
d, 

having d. separate branches may assume any one of b      positions since its point of connection 

to the first path is fixed by its length d..    A third path with d7 branches distinct from the first 
d2 two may connect to either path and terminate in one of b      positions,   that is,   it can assume no 

d^ .. 
more than 2b      places.    The t     path having d.   , branches distinct from the first t — 1 paths may 

dt-l be connected to any'one of them and may terminate in any one of b positions;  hence,   can be 
dt-l situated in no more than (t — 1) b places.    Thus,  given that the second path has d. branches 

distinct from the first,  that the third path has d2 branches distinct from the first and the second, 

etc.,   the number of arrangements of the t  paths cannot exceed (t — 1)! b     where a = 

s + d. + d-, +. . . +cL  ,    the number of branches on these paths.    All that remains is to determine 

the number of ways that values may be assigned to d., d?, . . . , d.   ?.    (Note that d,   . is fixed 

given  a   and d., . . . , d    ,.)    Since each number d. represents a portion of a path,   1 <: d. .<: s,   val- 
1 t-2 1 

ues may be assigned to d,, d?, . . . , d,   ? in no more than s        ways.    Hence,   the number of arrange- 
t-2   a IH ments of t  paths containing  a   branches cannot exceed (t — 1)! s       b    .    Observing that b = 2 

we have the desired result for s ^. 1.    We also have s ~<: a <<: st since one path contains   s branches 

and the number of branches on all paths cannot exceed st.    Now,   when s = 0,   the bound on N (a) 

is zero.    We cannot let this bound be zero since M(o) = 1,   and we must include the s = 0 term. 

Therefore,   replace s by (s + 1). Q. E. D. 

As mentioned above,   the results of the following section show that z(8.), . . . , z(9 ) may be 

rbounded in terms of a.    Let this bound be Q.     (a l, s 
counting arguments introduced here to bound Eq. (76). 

overbounded in terms of a.    Let this bound be Q.     {a).    We terminate this section by using the 

\p       min[M(s),p] st 

(m)j   ^ YJ W(t, p)     YJ    Nt(a) Q.   g(a) (82) 

/ t=l a=s 

where W(t, p) and N (a) are bounded by Lemmas 3 and 4,   respectively.    From Lemma 4,   the 

number of values  a   cannot exceed st. 
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D.    PROBABILITY TERM 

The purpose of this section is to overbound the probability z.     (9 .),..., z.     (9 ) and show 

that this bound depends on the tree paths 9 .,..., 9   only through  a,   the number of branches 

which they contain.    We call this bound Q.     (a). 

Before we proceed,   it is useful to repeat the definition of the random variable z.     (9  ). 

From Eq. (71) we have 

z.     (9   ) = 
I, s     a 

' 1       if d(9   , s) >T.   , 
a /i-1 

for some r    ^ 1 o 

. 0       otherwise 

and d[u , v )< T. , , \ r r / l+l \    o       of 

(71) 

The expectation of a product of characteristic functions such as z.     (9 .)..., z.     (©J is the 

joint probability of the events on which each characteristic function has value one.    Thus,   we 

have that zT     (9,), . . . ,~z.     (9J is the probability that d(9,, s) 5> T.   ,,   d(9,,s)^T.   ,,..., d(9    s) 
1, S        i 1; S       X l 11 ^- 1—1 L 

This is the probability of the union (on r   ) T. for r    = 1 or 2 or 3 or. o i-l'        r      r l+l o       o 
of a set of intersections.    This may be overbounded by the sum of the probabilities of the various 

intersections.    Therefore,   we have 

Zi.8(ei,'"--Bi,8(et,«      £     PR[d(9a,s)^Ti.1,   l^a^t      , 
r   =1 o 

d(u     ,v     )«T..J       . (83) r       r l+l 
o       o 

Let us reduce Eq. (83) to a more manageable form.    We introduce two lemmas to aid in this 

task.    The first is a probabilistic statement and the second is a form of the Chernov Inequality. 

Lemma 5. 

Let {w, },   1 -<: h^ H be a set of random variables and {\V   },   1 ^ h ^ H a set of constants. 

Then, 

PR[w1«W1,w2»W2,...,WH«WH] 

^R'V^W^^^PR 

H H 

Z %w
h > £ CThw

h 
h=l h=l 

(84) 

where CT,   ^ 0 for the inequality w,   ^-W,   and a,   .$ 0 for the opposite inequality. 

Proof. 

The equality follows immediately.    The inequality follows since the second event is implied 

by the first. 

Lemma 6. 

Let w be a random variable and W  some constant.    Then, 

H 
-W~w 

[w >W]< 2   W2W (85) 
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Proof. 

2W>.    Z      2Wp(w)^2W     I     p(w)       . 
w^W w^W Q. E. D. 

Equation (83) is overbounded with the aid of Lemmas 5 and 6.    We use Lemma 5 with 
A 

a ^ .   . ^ -^ . » 1+1 _ „Q. H = t + 1,   a_ >0 for 1 ^ a<£ t and a,, „ = a_ 4 0.    Then 

zi,s(ei> •l.W*2 

•( 2  a  )T.   ,-cr T... 

oo        2   a d(6   , V) + CT d(u    , v     ) „ .   a      a'        o \r '   r / 
X      I    2a = 1 °       °        . (86) 

r   =1 o 

Any optimization now or later of the parameters cr ,   1 ^ a ^ t,   is too difficult to be rewarding. 

Therefore,  we let a    = l/(l + t),   1 ^ a.$ t,   since this selection leads to meaningful results. 

Recognizing that T. = + i t ,   and remembering that d(6  , s) = 1(6 , v ) — s/R,   d(u    , v    ) = 
_ o      o 

I(u    , v    ) — r !R from Eq. (69) and (70),  where 6    is the set of s branches preceding (6  , s), rro a roa o       o 
we further reduce Eq. (86).    (It should be remembered that t    is the separation between criteria 

whereas t is a variable.) 

o  1+t       O    -       o  1+t       o    0 1+t 
zi s(ei)"-'zi s(6tU 2 2 2 

•p     J|T    2   HO   ,V   ) + <7  l(u      ,v      ) „       -IT T IR    1+t      .      a'   s      o V r      r / 
x      £     2     o  o      2        a=l o       o> (g7) 

r   =1 o 

where tree paths 6  ,   1 ^ a-<: t,   are of length s.    [Note that 6    indicates the node (6  , s),   whereas a a a 
6    is a tree path of s  branches preceding (O  , s).] 

Now focus attention on the expectation in Eq. (87).    The various bounding techniques and 

choices of parameters to follow are justified by the end result.    The following lemma will be 

needed: 

Lemma 7.    (Holder's Inequality) 

Let {w, },   l^h^ H, be a set of positive random variables and let {v,}, 1 < h < H,   be a set 

of positive numbers satisfying 

H 

h=r« 
Then, 

H       H n\\/v* n wh.< n (wh
h) 

h=l h=l 
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Proof.   (See the Appendix) 

The expectation taken in Eq. (87) is over the ensemble of correct and incorrect sequences 

and received sequences.    Let  v be a received sequence which includes v    and v     ,   that is,   v 
o 

contains more than r    or   s  branches.    We may visualize the average in Eq. (87) as consisting 

of two successive averages,   the first taken over the correct and incorrect sequences with the 

received sequence fixed (indicated with |v),   the second average taken over the received 

sequence  v  (indicated with ~   — v).    With  v  fixed,   correct and incorrect sequences are statis- 

tically independent by construction of the "random code" ensemble.    This implies that 

T^T    Z 1(6  , v  ) + CT l(u     , v_   ) 1+t       .as      o \ r  '    r  / ,        a=l o       o 

= 2 
TTt  =«°a-V a = l x  2 

a  l(u     , v     ) o \ r       r   / 
(88) 

where the averages are conditioned on  v.    The average in Eq. (87) is the average of Eq. (88) over 

v.    We overbound the average in Eq. (87) using Lemma 7,   where the average of that lemma should 

be considered as an average on  v.    We have H = 2 and we let v,  - (1 + t)/t,   v-, = 1 + t.    Then,   we 

have for the expectation in Eq. (87), 

v"|t/(l+t) 

T4T   Z 1(9   , v  ) + a l(u     , v     ) 1+t      .as      o \ r       r  / ,       a=l o       o 
777   Z IO   , v  ) i + t      .       a'    s a = l 

(l+t)/t 

(7   IIU       , V       ) 
o \ r       r  / 

il+t 
l/(l+t) 

(89) 

Here the average is first carried out over the ensemble of codes with the received sequence fixed 

and then over the received sequence.    Final arguments in this section are concerned with evaluat- 

ing and bounding these two terms. 

From Eq. (69),   we have 

a    s Z     £    loS; 
r=l  h=l 

P tvrh/erh' 
f(vrh> 

(90) 

where v . , G  ,   are the h     digits on the r     branch of v , G    respectively,   each of s branches, rh'    rh 6 _ s     a        r •" 
An equivalent statement applies (from Eq. (70)] when G    is replaced by the correct path u    . 

o 
Over the ensemble of codes,   digits on correct and incorrect paths are statistically independ- 

ent and identically distributed with probability assignment (pk).    We evaluate the second factor 

in Eq. (89) by observing that I(u     , v     ) is a sum of r I statistically independent random variables 
o       o 

each of which assumes values 

45 



p [y /x, ] 
log2      f(y.)      ,   l«j«J,   l<k<K 

Conditioned upon v,   each of these r i random variables assumes value 

log, 
Pby\] 

fly/ 

with probability 

/ P lyi/xk] 

R [V^J1  = Pk f(y) (91) 

when the corresponding received digit is y..    We recall that f(y ) is the probability of channel 

output   -ymbol y. when input symbols are assigned probabilities   {p. }.    For the second factor in 

Eq. (89),  we have 

(a I(u    , v    )    \l+t o    r      r        \ 

2     °   \) 

l/(l+t) 

I   1(7,1 
.     1+CT 

p [y,/xJi     ° v     fp [y/xk'i 

k = l J 

1+tlr l/(l+t) o 
(92) 

(93) 

where 

^t^o' = rr^ lQg2 2 f(yj> 
J=I 

K 

E pk 
k=l 

p [y/xk'i 1+% 
f(yj 

1+t 

(94) 

Before evaluating the first factor in Eq. (89),   let us observe that several of the  t  paths 

{9,, .... ©.}  at penetration  s   may have branches in common.     We recall that in the previous 

section we identified branches on the paths {9,, • • • , ©t) by placing a 1 above each (see Fig. 15). 

We then defined a    as the number of branches at length  r,   that is,   the number of l's on branches 

at length  r.    Since a    •$ t,   a branch at length  r  may belong to more than one of the  t  terminal 

paths.    Let 6    be the number of terminal paths containing the n     of the a    branches at length  r, 

1^: n^: «   .    Since the total number of terminal paths is  t,   we have 

V L 
n = l 

6    = t 
<-<       n 

(95) 

(The dependence of 6    on  r   is implicit.)    Call this n     branch at length r  <p n and let <p n,   be the 

h     digit (of i digits) on this branch.    Then,   in Eq. (89) we have 

t 
V L 

a=l 

a s        r I 

i e ,v   =   Y    Yd    ),  log, —,,     , a'    s U      U      n    u        &2       f   v (96) 

r=l  n=l h=l rhJ 
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Over the ensemble of codes,  the tree digits <p   .   are statistically independent and identically 

distributed and drawn with probabilities (pk)-    Since <p      is a digit on a branch in the incorrect 

subset,   it is statistically independent of the corresponding transmitted digit and of the corre- 

ct  ,   ) are statistically sponding received digit v  . .    Therefore,   sets of digits (v^, <Prn, • • • 
independent of one another as are the digits in each set.    Digit vrh assumes value y   with prob- 

ability f(y ),   given by Eq. (64).    This is the same function f(y.) appearing in the definitions of the 

metric.    The conditional expectation in the first term in Eq. (98) becomes: 

2       a = 1 

s       t 

- n n 
a 

r 

n 
6 

n 
1+t 

2 

l0g2      f(v  . ) 
rh 

v      r=l  h=l n = l 
• 

V 

s      l 

n n 
r=l   h=l 

. a 
r 

n 
.n=l 

1    K 

\l 
lk=l 

rp[vrh/xk]l6n/< 
Pk|     «vrh)      I 

1+t) * 

(97) 

(98) 

But the digits v  ,   are statistically independent;   hence,   the first term in Eq. (89) becomes,   with 
the aid of Eq. (98),   the following: 

I+t   S«ea-V a=l 

,(l+t)/t 
t/(l+t) 

s 

n 
r=i 

I «yj) n 
i=l n=l 

*   _   [P1ytAt'l'"
/""' 

k=l 
f(y-j) 

d+t)/f it/(i+t> 

(99) 

where we recognize that the random variables in the square brackets of Eq. (98) are statistically 

dependent. 
The above probability is not yet in usable form.    As the first of two steps directed at putting 

it in usable form we use Holder's Inequality (Lemma 7) on Eq. (99) where we identify w,   with 

v       fp [y/xk'l  n 

l>   Pkl   f(y,)   j 
k=l J 

6  /(1+t) (l+t)/t 

and we let v,   = t/6   .    We note that h n 

H r 

h=l     h n=l 

so that the v,   satisfy the necessary constraint.    Then, 
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,       a=l 

s        r 

« n n 
r=l  n=l 

k(l+t)/t 
t/(l+t) 

6  /(1+t) 
p [y/xi,h n v fp [y/xk]l 

k=l J 

d+t)/« 6  '/(1 + t) 

(100) 

In the second step we define 

j = l  \k=l / 

and observe that terms in Eq. (100) can be rewritten as follows: 

(101) 

J   /  K an/(i+t,\<-t)/an 

LI   L    PkPlVXk] 

Lj=l \k=l 

5y<i+t>    L MR 
(102) 

where 

1 + t - 6 
(103) 

We note that /3 < t since 1 <: 6   ^ a   -^ t. ^ n        r 
Next,  we deduce from the following lemma that +R„ ^ + R   for )3^t so that — R_ <<: — R   and 

Eq. (102) may be overbounded by replacing R» with R . 

Lemma 8. 

Rfl as defined above is a monotone decreasing function of fi  for /3 ^.0. 

Proof.   (See the Appendix.) 

Replacing Rfl with R. in Eq. (102) and inserting this result into the inequality of Eq. (100),   we 

have the following final bound: 

1+t z
1«

ea'V8) 

a=l 

,(l»t)/t t/(l+t) 
sftR. 

X 2 l     2 (104) 

here a =    Z     a     is the number of branches on the set of paths {B., . . . , 6.} and we have used r it r = l 
Eq. (95).    Combining Eqs. (93) and (94) in Eq. (89) we have the following: 

iTt  V(ea'Vs) + CTo1^  '^   )       r  «,(a  )    ^    -ttlR. ,       a = l v    o       o'      ,   o H:    o    -, 1+t    2 t (105) 

where \J.AO ) and R. are given by Eqs. (95) and (101),   respectively. 

Our last step,   which is to use Eq. (105) in Eq. (87),   is stated formally in the following 

theorem: 
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Theorem 4. 

The probability z.     (9.), .... z.     (9 ) is bounded by the following,   where  a   is the number 

of branches on the tree paths of length s,   {9., . . . , 9 }: 

ol+t     on     ol+t     o 
\.<ei,----\.(et>«S..<0,&2 

sit f^(Rt-R)    -alRt/ -r0i[a0R-nt(a0) 
X 2 2 '[    2     2     °     °        t    ° (106) 

ir   =1 x  o 

where (7   <? 0, 
o 

J     /   K \ 1+t 
,1/d+t) 

j=i   \k=l / 

and 

K r / ,.    1+CT    \l+t 

^r1! 
j = l \k=l J 

(We shall discuss the convergence of the sum in Eq. (106) later.) 

This is the result at which this section has been directed.    We have obtained a bound on the 

probability term which depends on the paths {9 ., . . . , 9 } only through a,  the number of branches 

which they contain.    An identical proof (which we do not include) shows that the probability term 

corresponding to negative values of  i  differs from the bound above only in the sign of  i  and in 

the value of a   (which we shall call a.). o 1 
The following section combines the results of this section with the counting arguments of the 

previous section to obtain the complete bound on the moments of "static" computation. 

E.     BOUND ON MOMENTS 

The purpose of this section is to combine the results of the two previous sections,   thereby 

bounding the moments of computation. 

From Eq. (82) we have 

( 

M(s) \p      min[M(s), p] si 

£      \ s(m))   * £ W(t'p)     £    Nt(a) Q.>£>)       .        [Eq. (82) 
m=l / t=l a=s 

The multiplicities W(t, p) and N (a) are bounded by Lemmas 3 and 4 which are repeated here in 

abbreviated form. 

Lemma 3. 

\/~27t  e_ttp<<: W(t, p)^ tp      . [Eq. (79)] 
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Lemma 4. 

Ht(a)4 (t- 0!  (s + l)t_2 ZatR [Eq. (81)] 

The lower bound to the function W(t, p) was introduced in order to establish that the bound in 

Eq. (82) must grow approximately as t  .    To further overbound Eq. (82) we overbound min[M(s), p] 
s-1 

by  p.    Since M(s) = (b — 1) b for s 5- 1,   it grows rapidly with  s   and the minimum will equal  p 

for most values of  s.    These observations lead to the following bound on Eq. (82): 

t-2 ,a/R 
p p st 

< Z tP 2 (t-1)! (s + 1>t~'J 2 

t = l a=s 

Q1|S(«) (107) 

We are now prepared to use the results of the preceding section.   Theorem 4,   namely, 

+t   (7T7-<7  >     -"   <7T;+<r  )     (#X;)(R.-R) „ ,     >     .  ,      O  1+t       O    ,        o  1+t       o    -,1+t        t 
Qj  gla) 4 2 2 2 

-atR 
X 2 E * 

•r t[a R-n,(<r )] 
o   '   o     H;    o J 

,r   =1 
o 

[Eq. (106)] 

This bound and that given above yield 

P M(s) 
zis(m)l i   tP2

+tO(nt-o)2-«o<iTt+V (t- 1).'   (s + 1) 
t-2 

m = l t=l 

x2frt(Rt-R)/^  2-«
i(Rt"R1 

\a = s 

-r  l[o R-n.(ff )] o '   o        to1 

(108) 

In the previous section (Lemma 8) we discussed R   and said that it was monotone decreasing 

with increasing t.    If we choose R < R  ,   then R^ > R„ for t< p and each term in the sum on  (v   is 
P   -s!(Rt-R) 

less than 1 and each is overbounded by 2 .    (We note that this largest term occurs at 

a - s which corresponds to the case where the paths 6 ., 

+t  (A-cr  )    -it  (i4i+ff > 
V   tP2     ° °    2      ° ° 

©   are one and the same.)   Then, 

t! (s +  1 ,t-1 

-sf(R -R) 

x 2 1 + t 

.r = l 

-r(\%R-^(ao)] 
(109) 

We have yet to discuss whether the sum on  r  above converges and if so,   for what values of 

The semi-invariant moment generating function M-t(f  ) is given by 

Ht(<ro) = lo62 E    P, 
rp[yJ/xk]1i+ao 

k i 
TfyJ 

m\i/(i+t) 
[Eq. (94) 
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Using the following lemma,   we find that y-Aa ) -£ y. (CT ).    Thus,   if there exists a a    such that 

CT  R - u  (CT  ) > 0 then cr  R - HJCT ) > 0 for t < p. 0 p    o o t   o K 

Lemma 9. 

Let  w  be a positive random variable and 0 < v < n.    Then 

/    v.\lv   . i~n.l/n (110) (w  ) '    .$ (w  ) ' 111"* 

Proof.   (See the Appendix.) 

We must ascertain whether there exists a CT    < 0 when R < R    such CT R — u  (CT ) is positive. o p o p    o r 

If so,   the sum on  r   in Eq. (109) converges.    The next lemma will aid us in our determination. 

Lemma 10. 

The function CT  R — [i  (CT ) where n  (CT ) is given by Eq. (94) is positive for cr' ^ CT   -$ 0 where 

u  (CT')/CT'  = R,   and w  (CT )/CT    is monotone increasing in a  . p       ' ' np    o      o fe o 

Proof.    (See the Appendix.) 

iVe deduce from the monotonicity of |JL  (CT  )/CT    that CT' < — p/(l + p).    Therefore,   there exists 

<7, < -PA
1
 + p).   cr    > -\ such that CT.R - u.  (CT.) > 0 and a  R - \x  (CT  ) > 0 when R < R   .    We shall 1 ft \ fi>      Q i i r-p»    \i 0 ^pv   0' p 

need these results soon. 

In any further bounding of Eq. (109) we must consider the two polarities in i, namely i ^ 0, 

i 5^0. We bound Eq. (109) over the two ranges of the index i, using the monotonicity in t/( 1 + t) 

(up),   in R   (down) and in (J..(CT ) (up) with increasing t. 

Theorem 5. 

For i 5-0.   R < R  ,   and CT    >  CT' 
P o 

'M(s) \ p .   /,        >       -,.   /I ,      v t    (1-CT   )       -It    (T+CT   ) 
V i    \\       ^ -, o        o   ,      o2      o        i /     .   i\P-l    P 
2J      Z.     (m)l     ^2 2 pp! (s + lr       p^ 

,m = l 

-sl(R   -R)    /  „ x 
 J2  / -rl[cr R-n (CT )]\ 

X2        1 + P       (   I    2 °        P    °     )     . (Ill) 

-it  <l/2+ff0) 
For i^ 0,   replace cr    by CT.  and 2 by 

+ it  (TT- + 0 
2      O  1 + p       1 

Proof. 

We note that \ < (t)/(l + t) < (p)/(l + p),   using the lower bound for i > 0 and the upper bound 

for i-£ 0. 

Theorem 5 is now employed to compute the sum of the two terms in Eq. (75). 

Theorem 6. 

There exists CT , CT. ^ 0 such that the following is bounded for R < R  : o     1 p 
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OG oo 

I I 
i=0 s = l 

'M(s) \p 

I      Zi>s(m) 
,m=l 

i/p 'M(s) 1/p 

-si(R  -R), 
tJi-O 

2    to+l^/P)   2    (1+P>P     )(2V       °'pp!) 
1/p 

ks=0 

I ^'"ll^ 
•ito(2+ffo) 

kr=l ii=0 

/  "°       -rl[^R-MO]\l/p/  °° ° 1+P     1 

+ (   I    * *        P    *    J E   ^ P 

^r = l 

(112) 

Proof. 

The discussion following Lemma 10 indicates that for R < R    there exists <j    > — } and 

a. < —(p)/(l + p) such that a R — \i [a ) > 0 and cr.R — V-^VA) > 0-    These first'two conditions 

and the last two conditions guarantee convergence of the  i and r  summations,   respectively. 

Q. E. D. 

We conclude our discussion of the moments with the following theorem which summarizes 

the results of the last three sections.    We recall the bound Eq. (75). 

V/p 
-«*/p 

CO 00 

i=0   s=0 

'M(s) \p 

,m=l 

'M(s) 

,m=l 
-i» s 

(m) 

Vp 

[Eq. (75)] 

Theorem 7. 

.th On the DMC,   the p     moment of computation with the Fano Sequential Decoding Algorithm 

is C  ,   which is considered as an average over the ensemble of tree codes,   and is finite for 

R < R    where 
P 

K 1 + P 

V-ii°«2 M z p
k
p[Vxki1/(1+p))        ^-(101,i 

j = l  \k=l / 

A bound to Cp is obtained by combining Eq. (75) with Theorem 6. 

F.    COMPOSITE  BOUND ON DISTRIBUTION 

Our concern for the moments of computation was motivated earlier by the statement that 

the moments may be used with a form of Chebysheff's Inequality to bound the distribution of 

computation.    We restate Lemma 1. 
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Lemma 1. 

Let  C  be a positive random variable with moments C  .    Then, 

PR [C >L]4 ±- H , p [Eq. (73)] 

Since the moments have been averaged over the ensemble of all tree codes,   we have a bound 

on the distribution considered as an average over the ensemble of tree codes.    Indicate this 

average with PR(C ^L). 

It has been shown above that C" is finite for R < R   .    We cannot establish the exact behavior 

of Cf   from our arguments since C^ has been overbounded.    Therefore,   we shall be content to 

consider only those moments,   namely,   first,   second, . . . , p    ,   such that R < R   .    To avoid con- 

fusion let  k  indicate an arbitrary order of moment and define  p  by R   , , .< R < R    (note that R ' r    J     p+1 ^ p p 
is monotone decreasing in increasing  p).    Therefore,   moments of order k ^< p converge and may 

be used in bounding PR  [C ^ L]. 

Fig. 16.    Bound on distribution. 

Given that moments of order k.<C p are to be used in bounding the ensemble average of the 

distribution of computation,   we ask for that order of moment for which the bound is smallest. 
th —k l/k 

If the k     order moment is used and L < (C  )       ,   then the bound on the distribution is greater 

~ki/k 

than one,   so that one must be used as a bound.    Since C increases with  k  (Lemma 7),   the 

bound on the distribution must be_one for L < C and C/L for  L just greater than C.    This bound 

is used for values   L  such that C  /L    exceeds C/L.    The point of intersection of these two 
2     

curves occurs at  L = C /C (see F^ig. 16).    For values of L greater than this value,  the second- 

order moment is used until   L = C  /C    at which point the third-order moment is applied,   etc. 
th k/   k-1 k+1   /   k In general,   we use the k     order moment for C  /C        ^ L ^ (C       )/C   .    The composite bound 

is stated below (see Fig. 17). 

Theorem 8. 

Let C be the random variable of computation with moments C    over the ensemble of tree 

codes,   then,   for k ^ p,   where R   , , .$ R < R   . ^ r' p+1 p 

1       ,        Lx C 

PR [C >L]< 

Ck/Lk (Ck/Ck~i)4 L4 Ck+1/Ck (113) 
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Fig. 17.   Composite bound on distribution. 

With probability equal to 0.9 a code of rate  R  chosen at random from the ensemble of codes 

will have PR [C ^.L]^ 10 PR [C ^. L].   Codes in the ensemble are assigned probabilities in such 

a way that digits in the code are statistically independent and identically distributed with proba- 

bilities (pk). 

Proof. 

The bound on the average distribution has been discussed above.    The second statement 

follows from Markov's Inequality (a variant of Chebysheff's Inequality),   namely,   if x   is a pos- 

itive random variable 

PR [x<C ax] 1 - PR [x >ax]<£ 1 

where  x  is a distribution of computation and a = 10. 

The composite bound is the lower envelope of the bounds corresponding to the individual 

moments.    For large  L (the distribution parameter) the distribution behaves as L  ^ where p 

is the largest order moment which is guaranteed to converge.    That is,   p  is such that 

Ft   .. ^ R < R   . 
p+1 p 
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CHAPTER V 
INTERPRETATION OF RESULTS AND CONCLUSIONS 

This report is motivated by a concern for the  computational  requirements  of the  Fano 
Sequential Decoding Algorithm as reflected in the probability of a buffer overflow.    This prob- 

ability plays a central role in the design of the Fano decoder for two reasons: 

(a) The probability of an overflow is much larger than the probability of an 
undetected error (errors without overflow); 

(b) When overflows occur a serious break in the decoding process results. 

Our particular concern with the overflow event is to determine its sensitivity to the storage 
capacity of the decoder,  to the decoder's speed of operation,  and to the signaling rate of the 

source.    We have had to approach these questions indirectly to avoid difficult analytical prob- 

lems.    Our approach has been to consider a random variable of computation known as "static" 

computation   C.     We have over- and underbounded the probability distribution of "static" compu- 
tation,   PR [C >L],   and have shown that it behaves as L     ,   a > 0,   for large   L.    The bounds to 
PR [C > L] lead to bounds on  a. 

We shall describe an experiment performed at Lincoln Laboratory and indicate the corre- 
lation between this experiment and the analytical bounds on   a.    This will lead to a conjecture 

about the true tail behavior of PR [C ^- L],   i.e.,   the behavior of this probability for large L.    We 
shall interpret the conjectured exponent   a   in terms of established bounds on exponents of prob- 

abilities of error,  these exponents being derived from coding theorems. 
In this chapter,  we also establish a heuristic connection between the probability of buffer 

overflow and the distribution of "static" computation PR [C ^.L].    From this connection we in- 

dicate the sensitivities to buffer size,  machine speed,  and signaling rate which are displayed 

by the overflow probability.    Finally,  we introduce and discuss several research problems. 

We begin this chapter with a discussion of the tail behavior of PR  [C >, L]. 

A.     COMPUTATION EXPONENT 

In Chapter III, a lower bound applying to all codes was found for PR [C >L]. A lower bound 
for codes of fixed composition was also found. We shall be concerned here only with the general 
lower bound. 

In Chapter IV,  an overbound to PR [C "%, L] was found using the "random code" technique.    It 
was shown that a large fraction of the set of all tree codes have a distribution function PR [C ^L] 
which is less than some fixed multiple of the ensemble average of PR [C ^.L]. 

It was indicated by Example 2 of Chapter IV that the upper bound on PR [C > L] of that chap- 
ter should be numerically weak. Because of the lower bounding technique described in Chapter III, 

the same may be said for the lower bound. Example 2 did indicate, however, that the behavior of 

the upper bound in the distribution parameter L should approximate the true (ensemble average) 
tail behavior. We are thus motivated to consider the behavior of PR [C > L] with L for large L. 

To study this behavior,   we introduce a function e(R) called the computation exponent. 

e(R)^ R 
l°g2

P
R  [C^L], 

lim   ' im   I 
,-»oo   ' L^ V log2 L (114) 
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Since PR [C ^.L] behaves as L       for large L, the exponent  a  is related to the computation ex- 

ponent e(R) by a = e(R)/R.    Multiplication by the rate  R normalizes  a  so that e(R) is a bounded 

function. 

We now use the definition of Eq. (114) on Theorems 3 and 8 to obtain upper and lower bounds, 

respectively, to e(R).    We note that e(R) is an implicit function of the code,  since PR [C ^.L] is 

a function of the code. 

Theorem 9. 

On the completely connected DMC,  a code cannot be found with a computation exponent ex- 

ceeding e(R) where 

e(R) A (_(T  ) (R_ i    .   ) 
—        o min (115) 

and a    is the solution to 
o 

R = max 
\{ao) 

a k o 
for      - 1 X a   <0 

^    o ^ 
[Eq. (60)1 

Here,  yk(c) is given by 

.    A   . .    p 'y,/xk' 
^in = mi.n l0g2       f(y.) 

[Eq. (38)] 

[Eq. (17)] 

and 

K 

'ty- 1 pkptyjAk] 
k=l 

[Eq. (64)] 

Theorem 10. 

On the general DMC there exist codes with computation exponents greater than or equal to 

e(R) where 

e(R) =pR (116) 

for R   .. X R < R  ,  p = 1,2,3 and 
p+1 ^ p 

R b" lo&Z   I 
j=l 

K 

Z pkp[y/x
k) 

i/(i+P) 

k=l 

1+p 

[Eq. (104)] 

The probabilities {pw} are the probabilities assigned to letters in codes in the "random code" 

argument.    They also appear implicitly in the definition of the path metric through the function 

f(y).    The path metric on the path terminated by node (m, s, q) of the q      incorrect subset, 

d(m, s, q),   is defined as by 

.,              \        v      V     I i rh'    rh' d(m.s.q) =    I      I       log2   j^ - R 

r=l   h=l 
rh' 

(117) 

S6 



Here u , n = q + s, represents the given tree path; v represents the corresponding section of 
ii n ,, 

the received sequence; and u , , v ,   are the h     digits on the r     branches of u  , v  , respectively. 

Theorems 9 and 10 delimit the tail behavior of PR [C ^.L] as measured with the computation 

exponent e(R);  e(R) ^: e(R) for all codes on the completely connected DMC, and there exist codes 

on the general DMC such that e(R) ^.e(R).    We now consider the behavior of the two bounds, 

e(R) and e(R),  with the signaling rate  R. 

First consider e(R).    We wish to show that it is a monotone decreasing function of increasing 

R.    We recall from the discussion of Chapter III that y, {a )/a    is a monotone increasing function 

of a  .    This implies that R = max \y, (cr   )/<J   1 is also monotone increasing in v   .    Moreover, o r ,      ' 'k    o      o' 6 o ' k 
y, (a  )/a    is continuous in a    as is R = max fv, (IT  )/a   1.    If we can show that e(R) = (— cr  ) (R — I    .   ) 'k    o'   o o ,      L'k    o'   o' o min k 
is monotone decreasing in increasing a  ,  we will have established that e(R) is a continuous de- 

creasing function of R.    The monotonicity of (—cr  ) (R — I    .   ) is established by considering its 

derivative in a  .    The derivative is taken at a value of a    which is not a transition point of o o r 

max [TV.IO'   )/CT   ],  that is,  a point at which the index which achieves the maximum is changing 
k 

from k = k. to k = k,. 1 2 

d 
d<7 

-a   ) (R- I    .   ) = -^-   \-y,    (cr   ) + cr  I    . 
o mm        da     |      'k.    o o mini 

Vi    (cr  ) - I    . (118) 'k.    o min • 

where 

J 

- A 

I  3    k.l 

ft 
p W\\       f{y}]     log^     t(yj) 

l + a -a 
log2       f(y.) 

T+S ~n 
i  ("') J r l l +<T -a 

We may underbound each of the log, {p [y/xk   ]/f(y)},  appearing in Eq. (119),   by the smallest 
L J        1 J 

such term.    By definition,  this must exceed I    .   .    Therefore,  y\.   (<r   ) > I    .    and (— a  ) (R - I    .   ) J min 1    o        min o min 
has a negative first derivative at values of cr    which are not transition points.    Since (— a ) 

(R — I    .   ) is continuous in o   , we have that e(R) is continuous and monotone decreasing in R. min o ° 
Atcr    = -1,  R = 0 and e(R) = -I         >. 0.    At a    = 0,  R =   lim max \y, (a  )/a   1 = max y.' (0) [since o           '                                        min '                o                           n .      "k   o      oJ        .      'k       ' 

cr  —u k                                   k 
o 

•y, (0) = 0] and e(R) = 0.    These results are summarized in the following lemma. 

Lemma 12. 

The computation exponent upper bound e(R) is continuous and monotone decreasing in in- 

creasing  R.    It decreases from e(R) = — I    .    at R = 0 to e(R) = 0 at R = max yj.(°).    The compu- 
k 

tation exponent bound e(R) is sketched in Fig. 18 for a typical channel and a typical probability 

assignment {pk}- 

One may show that the rate at which e(R) = 0,  namely max  y' (0),  may exceed channel ca- 
ll        k 

pacity.    On the contrary, if the assignment {pk} that achieves channel capacity C    is used then 
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|i-t?-3?75| 

C„       mo» y   (0) 
0 k    'k 

a. 

<ul 

3-62-3273 

% R
3 

R2     R, 

Fig. 18.    Computation exponent upper 
bound e(R). 

Fig. 19.    Computation exponent lower 
bound e(R). 

max yMO) = C  .    We recall that channel capacity C    is defined as the maximum mutual informa- 
k       K o o 

tion between channel inputs and outputs.    Let I(x, y) be the mutual information between channel 

inputs and outputs; then, 

K 
A V     V , P [y/xk] 

CQ = max I(x.y) = max    L     L    Pk P [y/xkl log2       f(
J

y ) 
lPk) (Pk)  j=1  k=1 J 

(120) 

20 
It has been shown      that the {pk} which maximizes I(x,y) is such that 

V , p fy/xlJ l   P[y/xk]log2      f(Jy)
K   ^CQ     ;      k=1.2 K (121) 

with equality when p,   ^ 0.    Therefore,  if this set {pk} is used in the definition of f(y),  that is, 

in the definition of the path metric, then max yMO) = C    and the rate at which e(R) = 0 is channel 
k ° capacity. 

We shall now consider the behavior of e(R) with  R.    As given by Theorem 10,  e(R) = pR for 

R  +1 .<: R < R  ,  p = 1,2,. . .   .    Fix p.    Then,  for R       ^ R < R  ,  e(R) increases with  R on a line 

of slope  p  passing through the origin.    The full curve e(R) is sketched in Fig. 19.     For   R  arbi- 

trarily close to,  but less than R      e(R) = pR   .    We now show that the points pR    form an in- 

creasing sequence for increasing p, whereas the R    form a decreasing sequence.   This will 

establish that the sketch of Fig. 19 is accurate. 

From Lemma 8, R      p >,0,  is monotone decreasing in increasing /3.    We show that pR    is 
P -pR„ P 

monotone increasing in p by showing that 2 

{Pk}. 

J      f K 

E 
-pR 

2        P I   Pk P [y/xk]l/(1+p) 

P is monotone decreasing in p for a fixed set of 

1+p 

k = l 

(122) 

Lemma 9 is sufficient to establish the monotonicity of 2 
-PRr 

We repeat this lemma here. 
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Lemma 9. 

Let  w  be a positive random variable and let 0 < v ^ 77.    Then, 

(w   )   '    •$ (w ')   ' ' 

Therefore,  if we apply this lemma to the sum over  k  for each j   in Eq. (122),  we find that in- 
-pRp 

creasing  p decreases 2        ^ or increases pR  . 

We now show that on the completely connected DMC,  pR   has a well-defined,  nonzero limit 

as p -* «.    For large  p, 

P [yjAkll/(1+P) =«P{TT^ lnP [y/xk]}  * 1  + ^-p Inp [y./^l 

and 

(123) 

K l/(l+p)jl+p 

E     Pk P [yj/xkl =exp 
k=l 

(1   + p) In 

K 

I 
k=l 

1 + r^ I   pkinp fyj/xk; 

exp 

K 

E  pk inp [yjAk] 

k=l 

(124) 

Therefore,  on the completely connected DMC,  as   p becomes indefinitely large,  pR    approaches 

K 
J       2  pklog2p[y,/xk] 

l°g2    I   2 k=l 

This implies that R    = pR  /p approaches zero on the completely connected DMC.    When the 

channel is not completely connected,   the limit of pR    as p — °° may be infinite.    This implies that 
\ P 

R    — C    > 0.    These results are summarized in the following lemma. 

Lemma 13. 

The computation exponent lower bound e(R) is a set of straight lines of increasing slope, 

e(R) - pR for  R   +1 ^ R < R  ,  p = 1, 2, 3     On the completely connected DMC the points 

pR    increase with decreasing R   to the following limits 

K 

lim  R    = 0 p p —00       r 
lim pR    = log7    £ 

2  Pk
1°g2p[y/Xk1 

,k=l   K J     K 

p— 
i=* 

When the channel is not completely connected   lim  R    = C     where C     may be strictly positive, 
P^OO P 

c    > 0. 
o 

The largest rate for which e(R) is nonzero is R..    For R ^ R.,   e(R) is zero.    It will be 

obvious from a later discussion that R. < C   ,  channel capacity. 

As an example of the computation exponent bounds, we show in Fig. 20 the two exponents 

e(R) and e(R) for the binary symmetric channel (BSC) with transition probability p    =0.01.    We 
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Fig. 20.    Bounds on the computation exponent for BSC with p    =0.01. 
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Fig. 21.    Empirical distribution of computation. 
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select p.   = j,  k = 1,2.    Since this assignment achieves channel capacity, e(R) = 0 at R = C  .    For 

this channel and the given assignment (p. },  we have e(R) = (p/l  + p) [R    + log, (l/2p   )],  where 
K p c. O 

R = R    and  p assumes all values greater than zero (not just the integers).    At R = 0,   e(R) = 

-I    .    = log, (l/2p  ). min 62     '    *o 
In the next section we correlate the analytical results with an experiment. 

B. AN EXPERIMENTAL RESULT 
1 3 A computer simulation      of the Fano algorithm was run recently at Lincoln Laboratory under 

the direction of K. L. Jordan who has made data from this experiment available to the author. 

These data represent slightly more than one million decoded digits on the BSC with p    =0.01 and 

have been used to compute an experimental distribution of computation (see Fig. 21).    The compu- 

tation variable measured in this simulation will be discussed shortly.    It suffices to say that it 

differs somewhat from "static" computation. 

In the experiment,  a convolutional tree code of the type described in Chapter II with b = 2 
was used.    In the generator g = (g,,g?,. . . , g<0,  S = 60;  g. was chosen to maximize the Hamming 
distance between the two tree branches at the first node of the tree.    Given g  ,  g? is chosen to 

maximize the minimum Hamming distance between the four codewords of two branches.    Several 
other subgenerators were chosen in this way.    The remainder were chosen at random.    The BSC 

was simulated with a random number generator and as the decoder operated,  it was assumed to 
have an infinite buffer. 

The computation variable recorded by the computer is best defined with the aid of two im- 
aginary pointers.    We may visualize a pointer "extreme" below the tree code indicating the 

furthest penetration into the tree made by the decoder.    Another pointer,   "search," below the 
tree indicates the depth of the node presently being examined by the decoder.    The search pointer 

either lies on or behind the extreme pointer.    Every time the two pointers move ahead together 
in the tree, the computer program records one computation.    If a search is required, the ex- 
treme pointer remains fixed and the program records the number of operations required before 
the search pointer returns to the extreme pointer and the two move ahead.   The data from the 

simulation are reduced and the computer program prints out the number of times the computation 
exceeds 2    for k = 0, 1, 2, . . .   .    In the particular run used by the author the signaling rate  R was 

| bit per channel use.    The largest number of computations in this run was less than 256 and 

greater than 128 and it was observed that the search pointer never drifted back more than 45 
branches from the extreme pointer. 

Although the computation recorded by the program is not "static" computation,  we shall 

argue later that it is a small multiple of "static" computation.    Since this multiple does not affect 

the tail behavior of the experimental distribution, we are justified in computing the computation 
exponent for the experimental distribution and comparing this exponent to the bounds of Fig. 20. 

The experimental point is shown in Fig. 20.    Other computer runs at rates R = y,  4 were re- 
corded but large computations were so infrequent that the data were not considered reliable and 
were not used. 

In the next section, we conjecture about the true value of the computation exponent. 

C. A CONJECTURE 

We are led to conjecture a form for the "true" computation exponent by consideration of the 

experimental result of the last section and the derivation of the "random code" bound on the 
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distribution of "static" computation.    In the discussion of this bound in Chapter IV,  we limited 

attention to integral moments of computation for analytical reasons.    As a result of this limita- 

tion,  e(R) has the shape of Fig. 19.    We now suggest that the true "random code" computation 

exponent has the form e* (R) = pR   when R = R    for all p >, 0 (not just integer p).    We suggest 

that this is an exponent which may be achieved, that is, that codes can be found with this expo- 

nent.    (This is partially substantiated by the experimental point discussed in the last section. 

The conjectured "random code" computation exponent and this point differ by only 5 percent at 

R = \ for the BSC example.)   Finally, we suggest that e* (R) cannot be exceeded, that is, that no 

code exists with a computation exponent which exceeds e*(R).    These suggestions are summa- 

rized below. 

Conjecture 

The computation exponent e*(R), 

e*(R) = pR        ,       R = R        for      p>0 (125) 

cannot be exceeded by any code used with the path metric of Eq. (114) and codes exist which 

achieve this computation exponent. 

The conjectured exponent e* (R) is a monotone decreasing function of  R.    This may be de- 

duced from the earlier discussion of the exponent e(R).    The value of e* (R) at R = 0 is identical 

with the value of e(R) at R = 0.    The exponent e* (R) is zero for p = 0 or R = I(x,y) where I(x,y) 

is given by Eq. (120). 

The conjectured exponent of this section is interpreted in the following section in terms of 

"list decoding" exponents and the "sphere-packing" exponent. 

D.    INTERPRETATION OF COMPUTATION EXPONENT 

The conjectured computation exponent e* (R) has a simple interpretation in terms of the 

"list decoding exponent," that is,  the exponent of the "random code" bound on the probability of 
21 -23 error with "list decoding." 

"List decoding" is similar to maximum a posteriori decoding.    We assume that one of 

M =. 2       equally likely codewords is transmitted over the DMC.    Here  n  is the code block length 

in channel symbols and   R  is the signaling rate.    At the receiving terminal,  the decoder makes 

a list of the k a posteriori most probable codewords given the received channel sequence.    If 

the transmitted codeword is not in this list of k  codewords,  an error is said to have occurred. 

With "list decoding" the probability of error is reduced from the probability of error with maxi- 

mum a posteriori decoding, k = 1, by accepting some ambiguity in the transmitted message. 

The probability of error with list decoding has been overbounded using a "random code" 

argument.    The probability of error is averaged over the ensemble of codes by assigning to 

each code a probability,  computed as if each letter in the code were chosen independently with 

the assignment {Pu},  the assignment of Chapter IV.    The ensemble average of the probability of 

error with list size k,   P, (e),  k = 1,2, 3, . . . ,  has the following bound 

-nE   (R) 
P,(e)^2       K (126) 

where 

k' 

Ek(R) =    max      [pR^ - pR]      . (127) 
0<p<k 
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The exponent E, (R) is the upper envelope of the straight lines pR   — pR for all 0 ^ p .<; k (see 
K p 

Fig. 22).    At R = I(x,y),   E, (R) = 0.    For R ^ R*    the point of tangency of the straight line of 

slope -k to the curve EM(R) ^ lim  E, (R), the exponent E, (R) increases along a straight line of 
k-»°° 

slope —k to kR, .    The limiting exponent E^fR),   as well as E, (R),   depends on the probability 

assignment {p, }.    If E   (R) is maximized on {p, },   one finds that the resulting exponent equals 
24 t the "sphere-packing" exponent.       This latter exponent is an exponent    on a lower bound to the 

probability of error which applies to every block decoding procedure, list decoding or otherwise, 

and as such the "sphere-packing" exponent represents the largest possible exponent on the prob- 

ability of error with any block decoding procedure. It is a fundamental bound on exponents to the 

probability of error. 

We now return to the conjectured computation exponent e*(R).    A simple construction on 

E   (R) yields e* (R) (see Fig. 23).    From  R a straight line tangent to E   (R) is drawn;  e* (R) is 

the height of the intersection with the exponent axis.    This straight line has equation pR   — pR 

for some  p by definition of E   (R),  where  p  is the magnitude of the slope of the tangent line. 

Although the conjectured computation exponent [which equals e(R) for R = R   ,  p = 1,2, . . . | 

has an interpretation in terms of the "list decoding exponent" and the "sphere-packing" exponent, 

there is no obvious connection between them.    Since the latter two exponents are fundamental in 

a sense,  the fact that the conjectured exponent is interpreted from them suggests that this expo- 

nent may also be fundamental.    Unfortunately, there is no other evidence to suggest that this is 

the case. 

E.    OVERFLOW QUESTION 

In this section,  we establish a heuristic connection between the probability distribution of 

"static" computation,  which we have studied extensively,  and the probability of buffer overflow. 

Our discussion will indicate the sensitivity of the overflow probability to signaling rate  R to 

machine speed,  to buffer size and to the number of digits decoded before overflow.    We begin by 

summarizing the discussion of Chapter II on the overflow event. 

We assume that the Fano decoder operates with the buffer shown in Fig. 24.    Branches arrive 

from the channel and are inserted at the left-hand end of the buffer.    They move through the 

buffer at the rate at which they arrive and are released when they reach the right-hand side of 

the buffer.    Below each branch,  space is provided to record tentative decisions on the source 

digits.    This portion of the buffer is empty to the left of the pointer "search." 

As the decoder proceeds,  it inserts or erases tentative source decisions recorded below the 

tree branches.    These insertions or erasures occur at the search pointer because this pointer 

indicates the received tree branch presently being examined by the machine.    The pointer "ex- 

treme" indicates the latest received tree branch examined to date.    Branches to the left of this 

pointer have never been compared to branches in the tree code. 

The search and extreme pointers hover near the left-hand side of the buffer when the decoder 

has little trouble decoding.    Occasionally,  however,  an interval of high channel noise forces a 

large amount of computation and the two pointers drift to the far right end of the buffer.    When 

this happens, there is a high probability that an erroneous digit will be released into the safety 

zone.    Since the decoder is unable to change digits in the safety zone (the corresponding received 

t The exponent is defined as lim    [ —log~P(e)]/n. 
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branches have been discarded),  the decoder is forced to consider extending on incorrect paths. 

This is very difficult,   so that thereafter both pointers tend to hover near the far end of the buffer, 

releasing erroneous digits.    Although overflow can be detected,   it is a serious disturbance and 

must be combated either with the use of a feedback channel or periodic resynchronization or by 

some other means.    We will attempt to estimate the sensitivity of the overflow probability to the 

system parameters. 
Now that we understand the meaning of overflow,  we return to a consideration of "static" 

computation.    Our intention is to lay the groundwork for a discussion of PR„(N),  the probability 

of a buffer overflow on or before the time at which the N     source decision enters the safety zone. 

Consider the q     node on the correct path (1, 0, q).     "Static" computation associated with 

q     correct node is defined as the computation eventually performed with the Fano algorithm on 
nodes of the q     incorrect subset when the correct message is ultimately decoded.    We now argue 

that whatever computation is performed in this incorrect subset is performed on nodes which are 

close to the reference node (1, 0, q) and that almost all of these computations are performed 
together in time rather than a substantial fraction now and a comparable fraction later.    We are 

in effect going to argue that "static" computation is very closely related to "dynamic" computa- 

tion.    The argument is as follows : 

(1) For a properly chosen code and for a reasonable range of signaling rates, 
R < R|,  computation in an incorrect subset is due almost completely to an 
interval of high channel noise and a concomitant dip in the correct path. 
We argue that this is true by noting that if the correct path does not dip, 
the decoder will never be searching far from the correct path. 

(2) Let  W  be the width of a dip in the correct path (the separation between 
points  A   and   B  in Fig. 25).    Let the magnitude of the dip remain fixed. 
Then it can be shown that a dip of width  W  occurs with a probability 
which decreases exponentially fast in  W.    Therefore,  this width will 
typically be small. 

(3) If the q*" correct node (1, 0, q) is in the region of a dip in the correct 
path (see Fig. 25),   then paths in the associated incorrect subset may be 
above the minimum of the dip over the region A to B of Fig. 25,  but 
beyond B they will typically fall rapidly below the dip minimum never 
to be extended. 

(4) It is conceivable that a dip far ahead of a particular correct node will 
force a return to the incorrect subset associated with this node.    The 
probability of such an event is very small as is seen from the following 
observations:   Typically, the correct path will rise from a particular 

Fig. 25.    Typical correct path trajectory. 
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correct node [see (1, 0, q') of Fig. 25].    If a later dip in the correct path 
is to force a return to node (1, 0, q'),  this dip will have to equal or ex- 
ceed the rise which previously occurred in the correct path.    If such a 
dip occurs far in the future,  it will typically be very large in magnitude. 
Such an event is very unlikely.    It occurs with a probability which de- 
creases exponentially in the magnitude of the dip.^5 

(5)   Thus,  if computation is required in the q*" incorrect subset, with high 
probability it will be due to a dip in the correct path which is close to 
the qtn correct node.    Since the width of the dip will typically be small, 
all the computation performed in the qtn incorrect subset is usually per- 
formed on nodes close to the q*n correct node.    The behavior of the prob- 
abilities mentioned in (2) and (4) can be established with a "random code" 
argument. 

Statement 5 summarizes the argument which suggests that "static" computation is related 
to "dynamic" computation.    We note that the "static" computations in the adjacent incorrect sub- 

sets, which are located within the region of a correct path dip (C to B in Fig. 25) will be com- 

parable so that the total "dynamic" computation due to the dip will be a small multiple,  say 

N       ,  of the "static" computation in one incorrect subset.    We also note the pointers "search" avg' 
and "extreme" indicated in the buffer description may also be applied to the path trajectories of 

Fig. 25.    As a result of a correct path dip, the extreme pointer will move out to point  B and will 

typically remain* there until the running threshold has been reduced sufficiently to pass the correct 

path.    It is this argument which justifies our comparing the computation exponent bounds to the 
data taken from the Lincoln Laboratory simulation.    We may also observe from the discussion 

of Chapter III that the computation increases exponentially with the width of the correct path dip 

so that for a dip which causes a large computation, the extreme pointer of Fig. 24 will drift back 

by an amount x while the extreme and search pointers will have a separation proportional to 

log x.    We are now prepared to discuss the overflow probability. 

The buffer overflow probability PRF(N) is defined as the probability that overflow occurs on 

or before the time at which the N     source decision reaches the safety zone.    It certainly exceeds 

PBF(1), that is, 

PBF(N) 5-PBF(l)       . (128) 

First,  we shall consider PRF(1) in order to bring out the dependence of P„„(N) on signaling rate 

R,  machine speed, and buffer size. 
P„J1) is the probability that the buffer overflows on or before the time at which the first 

source decision reaches the safety zone.    Since the buffer is empty before the first received 
branch enters the buffer,  overflow can occur if computation in the first incorrect subset and ad- 
jacent subsets is sufficient to force the search pointer from the left- to the right-hand side of the 

buffer.    Large computation in these subsets (let there be N of them) is due to a local dip in 

the correct path so that if the total "static" computation over these N        incorrect subsets ex- r avg 
ceeds L  , where L    is the number of computations needed to force the search pointer to the far 

end of the buffer,  then overflow occurs.    If T  .   is the time between branch arrivals and   B  is the ch 
number of branches which may be stored in the buffer, then it takes BT  ,   seconds to fill the 
buffer.    We neglect the distance between the search and extreme pointers and assume that each 

computation requires y     seconds.    Then if L    = BT  ,/y     or more computations are required 

in the first N incorrect subsets,  then overflow will result.    If the computation in these sub- avg 
sets is comparable,  and if the "static" computation in each one of them exceeds BT  , /N       y    , ^ ^ ch'    avg'm' 
overflow occurs.    Therefore, 
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P      (N) > P      (1) ~ P BFU ' •>    BFl   ' R 
BT 

C^L=   N       y avg  m 

We may deduce from the fact that PR [C ^.L] behaves as L^ '     ,   for large   L,   where e(R) 
is the computation exponent,  that PRT,(N) is relatively insensitive to a change in  B,  the storage 

capacity of the buffer,  or to a change in y    ,  the time for one machine computation.    PRF(N) is 

very sensitive to signaling rate,  however,  because the exponent [e(R)]/R increases rapidly with 
a decrease in rate.    These are the sensitivities mentioned in Chapter II.    Let us now consider 

the sensitivity of P„F(N) to  N. 

It should be clear that PRp,(N) will increase rapidly to one with  N,  the number of source 
decisions released into the safety zone,  if the average number of decoding operations required 

by the Fano algorithm exceeds the number of computations per second which the decoder can 

perform.    We find from inspection of the conjectured computation exponent that the average com- 

putation required by the algorithm is very large if R ^.R..    Therefore,  PRF,(N) must grow rapidly 
to one with  N  for R ^.R..    This then is an upper limit to the rate at which the Fano algorithm 

may operate with infrequent overflows.    It has b'een shown that the average computation is small 

if R .<; 0.9 R,,  being several computations per decoded digit.    Thus,   if the machirte speed is such 
that several times this number of computations per second can be performed,  then we do not ex- 
pect PRT-,(N) to grow rapidly with N.    In fact, one may reasonably argue that decreasing the sig- 

naling rate rapidly decreases the probability of frequent intervals of large "dynamic" computa- 
tion,   and this implies that with a reduction in signaling rate the machine decodes easily and both 

the search and extreme pointers hover near the left-hand end of the buffer.    If large computations 
are infrequent,  we expect only one burst of computation at a time,  which is to say,  that bursts 
will be statistically independent.    PRF,(N) then is proportional to N  and PRF(1),  that is, 

PBF(N)-NPBF(1) (130) 

when  R .<; 0.9 R.,  PRfr(l) is small,  and the machine speed exceeds by several times the speed 
required to handle the average computation. 

While the statements of this section are strictly heuristic, there is good reason to believe 

Eq. (129) because of the experimental result cited above.    The statement of Eq. (130) is less 
secure than that of Eq. (129).    At best,  it may serve as a guideline. 

This completes the discussion of overflow probability. 

F.    SOME RESEARCH PROBLEMS 

We conclude this chapter with a discussion of some problems suggested by the results of 

this report.    We shall discuss these suggested problems in inverse order of importance. 

The distribution of "static" computation and the probability of buffer overlow were loosely 

connected in the previous section.    It is unfortunate that the connection had to be heuristic. 

Perhaps a more direct connection is possible. 

If a direct,  nonheuristic,  approach to the probability of buffer overflow cannot be found, 
then the heuristic approach of the last section should be improved by improving the bounds on 
the distribution of "static" computation.    In particular, there is reason to believe that a stronger 

lower bound argument than that presented in Chapter III may be found and that such a bound would 
not require the assumption that the DMC is completely connected. 
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A more important problem than the two suggested,  concerns the choice of a path metric. 

The metric assumed for this report,  Eq. (117),  requires exact knowledge of the channel transi- 

tion probabilities.    There are several reasons for not using a metric of this type. 

(1) It may be too difficult to measure the channel transition probabilities; 

(2) The channel may be time varying so that a metric for the poorest channel 
state may be necessary; 

(3) The channel transition probabilities may be known but they may be either 
so large in number or sufficiently difficult to compute in the decoder that 
some other metric is desirable. 

Thus, there is a need to consider the performance of the Fano Sequential Decoding algorithm 

with a variety of metrics.    If we choose to measure the performance of the algorithm with the 

computation exponent,  an analytical treatment of the various metrics may be possible using the 

technique of Chapter III.    It is not expected that the "random code" argument will carry through 

for many different metrics.    It is more reasonable to expect, however, that a fruitful study of 

the effect of a change in metric on the Fano algorithm will be achieved through simulation.    A 
13 

preliminary study of this type has been completed at Lincoln Laboratory.        The behavior of the 

Fano algorithm appears to be insensitive to a variation in metric. 

We come now to the most important problem area suggested by this report, that of overflow. 

Since it occurs with a much larger probability than do undetected decoding errors,   it deserves 

further examination.    In our study of the overflow probability PRp,(N) we have found that it is 

insensitive to buffer size and machine speed,  but strongly dependent on signaling rate.    This 

suggests that a sizable decrease in PRF(N) is obtainable only with a decrease in rate.    For many 

applications,  large signaling rate is desired.    Hence,  if P      (N) could be made'to decrease more 

rapidly with buffer size and machine speed,  then the decoder could operate at a higher rate with 

an equal overflow probability.    We are motivated then to   consider ways of reducing the size of 

the "static" computation for each channel noise sequence.    As mentioned in Chapter III for Se- 

quential Decoding there exists some high channel noise sequence such that "static" computation 

is large and growing exponentially with the length of this interval of high channel noise.    If the 

rate of growth of computation with such a channel noise sequence is reduced,  then P      (N) will 

decrease more rapidly with buffer size and machine speed. 

Conceivably,  a reduction in the rate of growth of computation with channel noise is possible 

by modifying the Fano algorithm.    If the rate of growth of computation with a modified algorithm 

remains exponential, then the modified algorithm should be expected to be similar in design and 

performance to the Fano algorithm.    If the rate of growth realized is nonexponential,   it is doubtful 

that the modified algorithm will resemble the Fano algorithm in any way.    Exponential growth of 

computation seems to be characteristic of this algorithm. 

If the rate of growth of computation is to be nonexponential,  there is some question that the 

probability of error can be made to decrease with the constraint length of the code  S  as fast as 

2 ,  as it does for Sequential Decoding algorithms.     As a matter of fact,  there are a number 

of decoding procedures for which the computation is bounded by a function which is algebraic in 

the constraint length or block length  S, that is, which grows no faster than S^ for some /3 ^. 0; 
1 -e 

but at the same time the error probability decreases only as Z~ ,  where  e   is some num- 
3 9 10 

ber strictly greater than zero. '   '        There seems to be an important sacrifice in error prob- 

ability for a reduction in computation.    Since a small error probability can be realized with 
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small cost,   a trade-off  of this type  may be desirable.     We are prompted to suggest that the 

obtainable trade-off between computation and error probability is limited by the channel and the 
signaling rate.    If such a trade-off exists,   the knowledge of the best balance between computa- 

tion and error probability would be of great conceptual,   and ultimately,   practical interest. 

Note added in proof: In a recent paper to be published, I. Jacobs and E. Berlekamp through 
a direct argument have underbounded the probability of a buffer overflow or an undetected error. 
This bound grows linearly with the number of information digits processed by the decoder and it 

has as computation exponent that given by the conjecture of this chapter. 

Also,  H. Yudkin has recently shown that the random code bound of Chapter 4 can be refined 

so that the lower bound to the computation exponent agrees with the conjectured exponent for 

rates less than R comp 
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APPENDIX 

LEMMAS 

Lemma 2.    (Minkowski's Inequality) 

Let (w, },   1 < h < H be a set of positive random variables.    Then, 

vh=i        ' 

1/p        H       _ 

< I   SP)1/p   •    P^1 

h = l 

Proof. 

Holder's inequality established below,   will be used.    Write 

s  = w.   + . . . + W-. 
1 ri 

and let Sp = s   .    Using Holder's Inequality for two variates with v,  = p and v^ = p/(p — 1) we have 

TT IT 

$>- i ^'U I (<)1/p <^p)d"1/p • 
h=l h=l 

Then, 

S"< 

H 

I Kp> P»!/p 

h = l 

^P"1 

or 

S = (l 4 xh=l       ' 

1/p        H 

< Z (-h
P)1/p 

h=l 

Q. E. D. 

Lemma 7.    (Holder's Inequality) 

Let {w, },   1 < h < H be a set of positive random variables and let {vy},   1 -C h ^ H be a set 

of positive numbers satisfying 

H 

h = l      h 

Then, 

H      H n^K n wh< n (wh
h) h 

h=l h=l 

Proof. 

It suffices to establish that 

ab^a")1/" (b71)1/" a,b^0 
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when (1/V) + (I/TJ) = 1 since this inequality may be iterated to obtain the inequality of the lemma. 

Let the joint probability that a = a. and b = b. be p..    Then, 

ab =  % Piaibi      • 
i 

Let 0(t) = tX'v - (1/V) t for t > 0.    Then, 

r>0      0 < t < 1 

t)= i(t-l/TJ - 1) = • e(. o t = 1 

I<o t > 1 

Therefore,   G(t) achieves a maximum at t = 1 over the range t > 0.    Hence, 

e(t)<G(l) = -       . 

Let t = A/B and multiply by  B where both A  and  B  are positive to obtain the following 

V 7) 

Now,   choose 

p.a." p.b." 
A = J-Li_      ,      B-      l l 

S  p.a." 2  p-b.71 

l I 

Replacing A  and  B by their values and summing on  i,   we arrive at the desired inequality, 

namely, 

Z*i»i»i<(ZPi*?f(z?tf) Q. E. D. 

Lemma 8. 

As defined below,   R. is a monotone decreasing function of increasing /3 for /J 5-0. 

Rt"-j 
j=l Vk=l ' 

Proof. 

Let E(/3) = pR  .    Then, 

dR P  _   d_  E^)  _  0E'(/3) -E(ff) 

At fi = 0 the numerator is zero.    Its derivative is /3E"(0).    We show below that E"(/3) < 0;   hence, 

the numerator is negative for p > 0 as is the derivative of R 

To show that E"(/3) < 0 we shall demonstrate that E(/3) is a convex upward function. 
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J      / K .1+0 

EW—iog2 E  (l pkp(y/xkl,/(1+p)) 
1=1   ^k=l ' 3= 

Holder's Inequality for the two variate case will be used twice.    We apply it to the inner sum 

above with 

1 + p 1 + p 
"l ~  \(1 +/3t)       *       V2 =  (1 -X) (1 + /32) 

where 0 < x < 1,  py Pz > 0 and 0 = \p    + (1 - X) p2 

k=l Vk=l ' 

„ (1-X)(i+0J 
/ J .     i/[(i-x)d+^2)]\ 
I  I   PkP [y/xk] 1 
Vk=l ' 

x 

Applying Holder's Inequality to the double sum in the definition of E(/3) with v. = l/x, v, = l/(l— X) 

we have 

j=l  *k=l ' U = 1     k=1 ' 

I   <o    /  £ ,       l/[(l-X)(l+/32)] 
X I ( E pkp [yjAki ) 

j=l   Xk=l ' 

The inequality is strengthened if the exponents of p [y/x, ] are replaced by l/(l + p.).    Then, 
J     k l 

E [\pi + (1 -X) pz] ^XEf/3^ + (1 -X) E(/32) 

which establishes that E"(/3) < 0. Q. E. D. 

Lemma 9. 

Let  w be a positive random variable and 0 < v < r\.    Then, 

,   v.l/v   , ,   TI> l/ri (w   )        -^ (w ') 

Proof. 

Let w = w. with probability p.,   then. 

(wP) 

We have 
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d     ,    v 
-j-    w 

where 

and 

Q- 
2   p.w. 
l 

>0 

£ Pi^i =* 

Using the standard inequality In x > 1 — (l/x),   the derivative is lower bounded by 

-^ (w  ) ^ -^  (w  ) >A(4-i) 
Lemma 10. 

The function cr R — u.  (cr  ) where u.  (cr  ) is given by o p    o *p    o        & J 

K     / 

k=l V 

1+a 
p [y/xk]\    o 

i+p 

Q. E. D. 

is positive for a' < IT   < 0 where  CT'   is such that u-  (cr')/cr'  = R,   and u  (a  )/CT    is monotone in- y o "p ' 'p    o      o 
creasing in a . 

Proof. 

For a R — u.  (cr  ) to be positive we must have R < u  (cr  )/cr    since a   < 0.    If UL  (cr  )/cr    is o 'p    o r rp    o      o o rp    o      o 
monotone increasing in CT ,  the desired result is established.    We shall now show that such is & o' 
true.    The derivative 

,    a  (CT )       cr u.1 (CT ) — u (CT ) d    rp    o orp    o      rp    o 
dcr        cr 2 o o CT o 

is positive if the numerator is positive.    Since the numerator is zero for CT    = 0 it suffices to 

show that its derivative,   cr u."(cr ),   is negative for CT   <0or u-"(cr ) > 0. o'p     o ' & o np     o 
Let ajk = p [y./xk]/f(y.).    Then, 

J /   K 1+CT   vp   /    K 1+CT \ 

log7e 
P   o 
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also. 

JI"(CT  )       P    S 

IP o_  _       3- 
log2e 

/  K l+(j\p-l / K 1+CT \2 

H+pVpl^) 

J /   K l+(r\p /  K 1+CT A 

(i+p)np(ao> 

(i + p) 

J /   K 1+CT \p/    K 1+<X 
In a 

Jk 

1^ 

2
(1+PVao' 

If we let 

/   K l+cr\p 1+CT f(>?U ^ 7 p*a* ° 
'.!•< (l+p)u   (CT   ) 

2 P 

K 

k=l 
Jk 

both of which are "tilted" probabilities and let 

K 1+CT 

<jP 
&  Pka

3k        lnajk 

K 1+CT^ 
E Pl,a-i 

k = l k jk 

then,   we have 

H"(CT  ) rp    o 
log,e 

J -  J v 2 

Lj=i 
J     3 

v- 
J        K J        K 

I   I Vlna3k,2-(^   £ qjklnajk) 
.j = l     k=l vj=l     k = l ' 

which is positive because both terms are variances.    Therefore,   u (cr )/CT   is monotone increas- r poo 
ing in increasing a . Q. E. D. 

7S 



ACKNOWLEDGMENTS 

I wish to sincerely thank Professor I.M. Jacobs for his continuing interest in this 

problem and for his many helpful comments and criticisms. I also express my 

gratitude to Professors J.M. Wozencraft, R.G. Gallager and C.E. Shannon for 

the many helpful discussions I have had with them during the course of the re- 

search and the writing of this document. My association with these four scholars 

has been the most rewarding aspect of my graduate study. 

I thank the Research Laboratory of Electronics, M.I.T., and Lincoln Laboratory 

for financial support of this work. 

REFERENCES 

1 .    C.E. Shannon and W. Weaver, Mathematical Theory of Communication (University 

of Illinois Press,  Urbana,  Illinois,  1949). 

2. J.L. Massey, "Threshold Decoding," Technical Report 410, Research Laboratory of 

Electronics, M.I.T. (5 April  1963). 

3. R.G. Gallager, Low Density Parity Check Codes (M.I.T. Press, Cambridge, Mass., 

1963). 

4. W.W. Peterson, Error-Correcting Codes (M.I.T. Press, Cambridge, Mass., and Wiley, 

New York,  1961). 

5. P. Elias, "Error-Free Coding;1 Trans.  IRE, PGIT IT~4, 29 (1954). 

6. I.M. Jacobs, "Optimum Error Detection Codes for Noiseless Decision Feedback" 

Trans. IRE, PGIT IT-8 (1962). 

7. J.M. Wozencraft and B. Reiffen, Sequential Decoding (M.I.T. Press, Cambridge, 

Mass., and Wiley, New York,  1961). 

8. R. M. Fano, "A Heuristic Discussion of Probabilistic Decoding," Trans. IEEE, PTGIT  IT-9, 

64 (1963). 

9. J. Ziv, "A New Efficient Coding and Decoding Scheme for Memoryless Channels" 

(to be published). 

10. D. Forney, "Concatenated Codes," ScD Thesis, Department of Electrical Engineering, 

M.I.T. (June 1965). 

11. B. Reiffen, "Sequential Encoding and Decoding for the Discrete Memoryless Channel " 

Technical Report 374, Research Laboratory of Electronics, M.I.T. (August 1960); 

Technical Report 231, Lincoln Laboratory, M.I.T. (12 August 1960), DDC 247612, 

H-146. 

7(, 



12. I.L. Lebow, "A Qualitative Description of Sequential Decoding " Group Report 62G-4, 
Lincoln Laboratory, M.I.T. (12 July 1963), DDC 413949, H-529. 

13. G. Blustein and K. L. Jordan, Jr., "An Investigation of the Fano Sequential Decoding 
Algorithm by Computer Simulation," Group Report 62G-5, Lincoln Laboratory, M. I.T. 
(12 July 1963), DDC 412632, H-525. 

14. R. M. Fano, unpublished class notes presented during Spring Semester, 1963, at 
Massachusetts Institute of Technology. 

15. I. G. Stiglitz, "Sequential Decoding with Feedback," PhD Thesis, Department of 
Electrical Engineering, M. I.T. (August 1963). 

16. H.L. Yudkin, "Channel State Testing in Information Decoding" PhD Thesis, 
Department of Electrical Engineering, M.I.T. (September 1964). 

17. R.G. Gallager, "Lower Bounds on the Tails of Probability Distributions" Quarterly 
Progress Report No.75, Research Laboratory of Electronics, M.I.T. (15 January 1965). 

18. C.E. Shannon, unpublished seminar notes presented in 1956. 

19. W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 
1957), Chapter 2. 

20. R.M. Fano, Transmission of Information (M.I.T. Press, Cambridge, Mass., and Wiley, 
New York, 1961), p. 136. 

21. J.M. Wozencraft, "List Decoding," Quarterly Progress Report No. 48, Research 
Laboratory of Electronics, M.I.T. (15 January 1958). 

22. P. Elias, "List Decoding For Noisy Channels," Technical Report No. 335, 
Research Laboratory of Electronics, M. I.T. (20 September 1957). 

23. R.G. Gallager, unpublished notes. 

24. R.M. Fano, op. cit-. Chapter 9. 

25. I. Stiglitz, op. cit., p. 32. 

77 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classitication ot title,  body ot abstract and indexing annotation must be entered when the overall report is classified) 

I.    ORIGINATING    ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.     REPORT   SECURITY    CLASSIFICATION 

Unclassified 
2b.     GROUP 

None 

3.     REPORT    TITLE 

The Computation Problem with Sequential Decoding 

4.    DESCRIPTIVE   NOTES  (Type ot report and inclusive dates) 

Technical Report 
5.    AUTHOR(S)   (Last name,  first name,  initial) 

Savage, John E. 

6.     REPORT   DATE 

16 February 1965 

7a.     TOTAL   NO.   OF   PAGES 

84 

76. NO. OF REFS 

25 

8a. CONTRACT OR GRANT NO. 

AF 19(628)-500 
ft.     PROJECT   NO. 

c. None 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Report 37 1 

9b.    OTHER   REPORT   NOIS)   (Any other numbers that may be 
assigned this report) 

ESD-TDR-65-52;  Research Laboratory 
 of Electronics Technical Report 439  

10.     AVAIL ABILITY/LIMITATION   NOTICES 

None 

It.     SUPPLEMENTARY    NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Air Force Systems Command, USAF 

13.     ABSTRAC T 

Fano Sequential Decoding is a technique for communicating at a high information rate and with a high 
reliability over a large class of channels.    However, equipment cost and variation in the time required 
to decode successive transmitted digits limit its use.   This work is concerned with the latter limitation. 

Others have shown that the average processing time per decoded digit is small if the information rate 
of the source is less than a rate RCOmp-   This report studies the probability distribution of the proc- 
essing time random variable and applies the results to the buffer overflow probability.    It is shown that 
the overflow probability is relatively insensitive to the buffer storage capacity and to the computational 
speed of the decoder but quite sensitive to information rate.    Halving the source rate more than squares 
the overflow probability.   These sensitivities are found to be basic to Sequential Decoding and arise 
because the computation per decoded digit is large during an interval of high channel noise and grows 
exponentially with the length of such an interval. 

A conjecture is presented concerning the exact behavior of the overflow probability with information rate. 
This conjecture agrees well with the (limited) experimental evidence available. 

14.     KEY   WORDS 

sequences 
decoding 
probability 
distribution 

data processing 
storage 
random variable 

78 UNCLASSIFIED 
Security Classification 


