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ABSTRACT 

The numerical method of characteristics is applied to the plane, 

cylindrical, and spherical blast wave problems. The calculation begins 

at a constant time line within the blast wave. Along this line, all 

three flow variables are prescribed according to the similarity 

solution. Along a fixed back boundary, which lies between the shock 

front and the time-axis, one flow variable is prescribed. On the 

other boundary» the strong shock equations apply. 

When compared to the exact similarity solution, the results of 

the method of characteristics are found to be accurate to within 1%, 

for all variables along the shock front, after a pressure drop of 99%. 

Also, h2-type extrapolation of calculated results always improves the 

accuracy, whereas the h-type extrapolation may not. 
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NOMENCLATURE 

c 

E 

h 

k 

P 

t 

u 

U 

x 

Y 

P 

Pi 

sound speed 

parameter proportional to the total energy within the wave 

parameter proportional to the mesh size 

x./x position ratio of back boundary 

pressure 

time variable 

particle velocity 

shock wave velocity 

space variable 

specific heat ratio 

geometric parameter (v « 1# 2, or 3 corresponds to plane, 

cylindrical, or spherical flow, respectively) 

density 

constant density outside wave zone 

Subscripts 

s  « at the shock front 

b  « at the back boundary 

i 
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I 
!.  INTRODUCTION 

In the hydrodynamic regisnc of hypervelocity impact problems, 

the governing equations are the conservation equations for unsteady, 

compressible fluid flow. Due to the nonlinearity of these equations, 

very few closed form analytical solutions exist and, for most problems, 

numerical methods are the only resort« Among the numerical methods, 

the two most commonly used are the finite-difference method and the 

method of characteristics. In the finite-difference method, an arti- 

ficial viscosity must be added, either explicitely, as in the von Neuman- 

Richtmyer q method1, or iroplicitely, as in the Lax method2. By the 

introduction of artificial viscosity, discontinuities (shocks) are 

spread Into narrow regions, across which flow variables change rapidly 

but continuously. Flow fields with a complicated shock geometry can 

be calculated without extra difficulty. Because of the smearing of 

shocks, however, the finite-difference method is not accurate, especially 

in regions near the shock front. Also, it does not give an exact 

treatment of singularities such as centered rarefaction waves. As 

mentioned in Reference 3, two of the finite-difference calculations of 

hypervelocity impact problems gave initial peak pressures which differed 

from the exact values by at least 15%, In the method of characteristics, 

the shock is calculated by the exact shock equations; therefore, better 

accuracy can be expected. For problems with simple geometry, the 

method of characteristics seems to be more suitable. 

For solving one-dimensional unsteady flow problems, the method of 

characteristics as described in textbooks such as Courant and Friedrichs*4, 

Shapiro5, and Rudinger6 has been used widely. Most recent accounts of 

1 
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this method, with special emphasis on high speed computation by 

electronic computers may be found in books by Fox7 and Hoskin8. 

Due to the nonlinearity of the equations, an exact analysis of the 

error involved in the numerical calculation by either the method of 

characteristics or the finite-difference wethod is very difficult. 

Makino and Shear9 showed that replacing the differential characteristic        j 

equations by difference equations introduces an error of the h2-type. 

But the type of error in the variables solved from these difference 

characteristic equations is still not known. Without an exact error 

analysis, the accuracy of any numerical method can be estimated by 

comparing the result either with accurate experimental results or with 

an exact analytical solution. 

In the present paper, calculations of the blast wave problems are 

made using the numerical method of characteristics, and the results 

are compared with the exact similarity solutions*  If the region in 

which the density is close to zero is excluded, the method of character- 

isitcs yields results which are accurate to within 1% on the shock 

front when a 99% pressure decrease is reached. Different types of 

extrapolation formulas are applied to three sets of calculations of 

the same problem, each set having a different mesh size.  It is found 

that the h2-type extrapolation always improves the results« 

These results of the blast wave calculations indicate that for 

other unsteady flow problems which do not include extremely low density 

regions, the numerical method of characteristics can be expected to be 

of the same accuracy. 

For the continuity of presentation, the basic governing equations | 

and the corresponding characteristic equations are given in section II; 

different similarity solutions for blast waves are discussed in i 
i 
i 



section III, Discussions on the formulation of the problem, numerical 

calculations, and method of extrapolation are then presented in the 

second half of the paper« Appendices A, B» and C are included mainly 

for easy references although some of the material represents new ways 

of presenting these topics. Appendix D includes an 8-digit table of 

properties within the blast waves« This table may be used to evaluate 

the accuracy of other numerical methods. 

II. GOVERNING EQUATIONS 

When the unsteady flow of an ideal gas depends on only one space 

coordinate, the govemiig equations in Eulerian coordinates for 

continuous flow without friction and heat transfer are the continuity 

equation 

3p   9u   3p  , ..pu  n ,,* 
1t + P37+U^* (v-lW.O (1) 

the momentum equation 

3u   3u  1 3p  A .^v 
It + "ST + F JT - 0 (2) 

and the energy equation 

where v has a value of 1, 2t or 3 corresponding to plane, cylindrical, 

or spherical flows, respectively, From this system of hyperbolic 

equations, the following three physical characteristic equations may 

be obtained (see Appendix A). 

Along I and II        ^ - u ♦ c (4) 

Along III dx . u (5) 



where I and II are the right-traveling and left traveling waves, 

respectively, and III is the particle path line* The corresponding 

state characteristics are 

along I and II,     du » ♦ -i (dp) ♦ (v-1) ~ (dt) (6) 
pi- A 

along III,        dp - i (dp) (7) 
C'' 

In these characteristic equations^ the following expression for sound 

speed as a function of pressure and density has been introduced; 

c2 - YJ (8) 

After eliminating c2 by using vqa  (8), eq, (7) may be integrated, and 

the result indicates that p/p , or the entropy, remains constant along 

each particle path* However, this constant is in general different 

for each particle path. Notice that this assumption is incorporated 

in the energy equation (3). It is convenient to eliminate the density p 

from the characteristic equations by using equation (8), The state 

characteristics are then 

along I and II,     du « ♦ — (dp) ; (v-l) — (dt) (9) 
YP x 

along III, IL . (iL)Y.r *  (10) 
'o   o 

The constants c and p must be evaluated for each particle path. 

Equations (4), (5), (9), and (10) are the basic equations which are to 

be used in the method of characteristics. 

Only shock waves of very strong intensity will be ased in our 

calculation. This restriction is consistant with the similarity solution 

of blast waves, the results of which will be compared with our method of 

characteristics solution. The Rankine-Hugoniot relations for a strong 

shock moving into a uniform^ stagnant region are 

4 
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P.-^-P,"1 (13) 

In the numerical procedure of the method of characteristics, 

all governing equations are put into finite-difference form. Thus, 

equations (4), (5), (9), and (10) become 

along I and II,      |i ■ ü ± c (14) 

Au - J £) ££; (v.l)(^)(&t)        (15) 
p  Y       x 

along III, 
|| - u (16) 

J- - (|-)^ (17) 
ro    o 

where A represents the (central) difference between two adjacent points 

along a characteristic and the barred values represent the average 

between the same two points. 

III.  SIMILARIFY SOLUTIONS OF BLAST WAVES 

The self-similar solutions of blast waves have been analyzed by 

many investigators and are among the few known exact solutions of the 

one-dimensional, non-isentropic (entropy changes from particle to 

particle), unsteady flows. This type of flow will be calculated by 

the numerical method of characteristics and the results compared with 

the analytical solutions. 

5 



Taylor10 solved the blast wave problem which consists of the 

instantaneous release of a finite amount of energy at a point within 

a stagnant, ideal gas field. The subsequent flow was non*isentropic# 

with spherical syraetry (u - 0 at x • 0)f and with a strong shock 

propagating into the stagnant gas. By utilizing the self-similar 

property of the flow, the governing partial differential equations 

were reduced to ordinary differential equations with one independent 

variable. These equations were then integrated numerically and the 

results presented in tabular form. Lin11 followed essentially the 

same technique and solved the prob I«» of the instantaneous release of 

energy along a line and the ensuing cylindrically symmetric flow. 

His results in tabular form were also obtained by numerical integration. 

Recently, Lee12 presented a unified approach which encompasses a large 

number of similarity solutions. He did not attempt to integrate the 

resulting ordinary differential equations. 

Sedov13 and Rouse11*, among others^ have successfully integrated 

the ordinary differential equations of the blast wave problems and 

obtained closed form solutionso They also included in their solutions 

the case of plane motion, in addition to the cylindrical and spherical 

cases. Since these solutions are in closed form, their numerical value 

can be calculated to any desired degree of accuracy without too much 

difficulty. On the other hand, the solutions of Taylor and Lin involve 

numerical integration; therefore, a high degree of accuracy is difficult 

to achieve. Figure 1 gives a comparison of the results of our cal- 

culation of Sedov's spherical wave solution and the solution obtained 

by Taylor. It can be seen that, although Taylor's values may be 

satisfactory for other purposes, they are not accurate enough to serve 
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as a standard to evaluate the accuracy of other numerical methods. 

Figure 10 of Reference 14 gives a similar cooparison of the analytical 

solution of Reuse for the cylindrical case and the numerically integrated 

solution of Lin. 

It is evident! then, that only accurately evaluated closed for« 

solutions can be used as a standard to gauge the accuracy of numerical 

methods. Gerber and Bartos15 presented a numerical table calculated 

from Roused equations for cylindrical waves with Y • 7/5 and 5/3. 

Howeverf their table contains too few data points for our purposes« 

For easy reference, we have made numerical calculations of Sedov's 

solution for the plane, cylindricalf and spherical cases with two values 

of Y« 7/5 and 5/3. These numerical results are tabulated in Appendix D9 

table II, Eight significant figures were used in all calculations. A 

comparison with calculations made for a few points using twenty-two 

digits indicated that the data in Appendix D are accurate at least to 

the sixth digit. Sedov's solution, for Y * 7/5, is as follows, 

f_.    p^VJI^       r21(v>p.30jtt2   pag]   (1J^v2VJ['tt' (18) 

u        3(v*2)V x 
mmtrn    M     mmmmmmmmmimttm   m^mm (19) 

(20) 1 f- -   P1^--0] ^    [6.3(v+2)v]"r [^If (1 JS-i^ ^ 

I E.p^jfe j6.3(v+2)^4 n^i{1 JS-EJv^«!   (21) 

I . 2       ,llv2*20v*14t 
where ^ - ^    f ^ZtU^ 8) 

a2 "TfST 



Sv 
a * j ■ 
3  4^5v 

«„-^21 

«id V is a parameter with the range of variation 

Hie properties at the shock front, which are indicated by the subscript 

s in the above equations# are given by 

Q    P T   v 

u " 4/ A\   (—)  x0T (22) s  3(v*2) vp ^   2 v ^ 

Pc - 6P (23) 5    1 

10E     -v ,~A. ps • 31^57^ x2 (24) 

The position of the shock front, at any time t, is 

x -(ji)^ t** (25) 

IV.  FORMULATION OF THE PROBLEM FOR NUMERICAL CALCULATION 

In applying the numerical method of characteristics to the blast 

wave problems# it is desirable to avoid the origin (x * 0, t * 0) and 

the time axis (x ■ 0). The origin is a singular point with unbounded 

values of pressure, particle velocity, and sound speed and, along the | 

time axis, the sound speed is infinite. Only a region of the flow 

field which does not include the time axis will be calculated. This 

region is bounded by a constant (non-zero) time line on the bottom, 

8 

i 

i 
r 



T 
the shock front on the right» and a back boundary curve on the left 

with the equation ^ ■ k x$ » where k is » constant. (See Figure 20 

To pose a problea which is aatheutically correct, the following 

boundary and initial conditions mist be prescribed on the back 

boundary, shock front, and constant tiae line. 

The constant tine line, t ■ t in Fig, 2, is considered as the 

initial value curve; therefore, values of all three dependent variables 

p, u, and c Bust be specified on it. These values were calculated 

from the exact solution, equations (18) to (25) and equation (8), and 

considered as the specified values for the solution by the aethod of 

characteristics. The back boundary curve is a "tiae-like" arc, 

according to the terminology used by Courant and Friedrichs**, since 

two of the three characteristics, II and III, reach this curve fron 

inside the region R. The correct boundary condition requires that 

one of the three dependent variables be specified on this curve. In 

our case, the particle velocity u was calculated fro« the exact solution 

and used as the one specified dependent variable. 

The shock front is also a tine-like arc, but in this case only 

the I-characteristic reaches a point on it fron inside region R. Also, 

there is no prior information about its exact position. There are four 

unknown quantities to be determined at the shock front, U, p, c, and 

u. Therefore, the strong shock conditions, equations (11), (12), and 

(13), are the correct boundary conditions at the shock front since 

these three equations, together with the equation of the I-characteristic 

serve to determine the four unknown quantities. The position of the 

shock path is determined by integrating the shock velocity U. 

9 
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Ve NUMERICAL CALCULATION 

In the mmericai calculationp a nuober of equally spaced points 

on the constant ti«e lincc t • t . arc chosenr and the properties 

i 

i 

T 
at these points are calculated from the exact solution. A network 

is then constructed in the physical plane consisting of the I and II T 

characteristics passing through these points and the reflections of 

these characteristics from the back boundary and shock front 

Properties at the mesh points of this network will be determined. 

Since the equations for the state characteristics involve the time 

variable t, and the physical characteristics involve the state 

variables u and cp  neither the physical nor the state plane can be 

independently constructed,, An iteration scheme must be adopted to 

determine a mesh point in both the physical and state planes, i e „ for 

each point the five unknowns x t, p. u- and c must be solved for 

simultaneouily by some iteration process  The iteration scheme adopted 

here is described in detail in Appendix B- It follows essentially the 

standard procedure given in textbooks such as References 5 and 16- 

In brief, it involves the construction of the 1 and 11 characteristics 

from two neighboring pointsP locating their intersection, and tracing 

back a path line until it interscts the straight line connecting the 
i 

original two points0 At this mterseuion point the entropy is calcu- 

lated by a linear interpolation of the values at the two known points J 

The calculated results for pianef cylindrical, and spherical waves 

are presented in Table I0 The same values of p and E were used for 

all three cases. For the factor kr which determines the position of 

the back boundary^ three different values, 0c5t 0U7L  and 0o8 were used 

10 
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for the plane, cylindrical, and spherical cases, respectively. As 

the value of k decreases, i.e., as a point moves towards the time axis, 

the value of the density p approaches zero very rapidly and the sound 

speed c increases rapidly without bound, as shown in Fig« 3. Because 

of these extreme values, the accuracy of the numerical solution 

becomes inadequate as k becomes smaller. The mesh of the characteristic 

network in the physical plane is of irregular size when these extreme 

values of c are included. In Figure 4 a coarse network for the case 

of v ■ 2, k « 0.6 is shown. For practical problems such as those 

encountered in hypervelocity impacts, exploding wires, or atmoshpheric 

explosions, the initial spacial distribution cf c at any two points 

seldom differs by a ratio of more than 2.5, and the initial density 

is seldom close to zero. Therefore, the value of k was so chosen that 

the ratio of the sound speed at the back boundary over that at the shock 

front was approximately 2.5 for all three cases. This results in 

the aforementioned values of 0.5, 0.7, and 0.8 for the plane, cylindrical, 

and spherical cases, respectively, as indicated in Fig. 3. The 

initial position of the shock front was aribtrarily taken as 2 feet 

for all three cases: therefore a different valae of t was obtained for 
o 

each case. 

The numerical procedure was programmed in Fortran II language and 

the calculation performed on an IBM 7040 computer. The maximum com- 

putation time was approximately two hours, which gave a pressure at 

the last point on the shock front of about 1% of the initial pressure 

on the shock« 

The accuracy of these calculations is shown in Figures 5, 6, and 

7, Figure 5(a) shows the physical plane of the plane wave, indicating 

12 



the position of the shock front» the back boundary, and the last lint 

of ntmerical calculation. The percent relative error of pv u, and c 

at points on the last line of calculation as compared to the exact 

solution is plotted in Fig. S(b). The percent error of t, pt u, and c 

along the shock front is shown in Fig, 5(c). These errors along the 

shock front were obtained by comparing the calculated values of these 

variables with those of the exact solution at the saae x location. 

Since the location of the nunerically calculated shock front deviates 

slightly fron the exact shock front6 the properties are not coapared 

at the sane value of tine; however, this error in tine is quite snail. 

The naxinun error along the shock front for all variables is less than 

•6%; while on the last line of calculation the naxinun error is less 

that 3%. Sinilar results for the cylindrical and spherical cases 

are shown in Figures 6 and 7^ respectively. 

VI. EXTRAPOLATION OF NUMERICAL RESULTS 

It is shown in Appendix C that the error introduced by replacing 

the differential equations (4), (5), and (9) by finite-difference 

equations (14), (15), and (16) is of the h2-type, where h is a para- 

meter proportional to the mesh size. AlsoP the linear interpolation 

process, which is used in the solution of the difference equations, 

is known to be correct to the order of h2. The boundary conditions 

and initial conditions used in our problem are either prescribed 

functions or exact strong shock conditions. Since all errors introduced 

by the numerical solution are of the order h2, it seems reasonable to 

assume that each of the numerically calculated variables has an error 

I which is of the h2-type, i.e., 

pe - p • «.h2 * *2hk  ♦ ^h6 * ... (26) 

i 
13 



I 
where p is the exact value of pressurey p is the approximate pressure 

at the saae point calculated with a »esh size h9 and $. are quantities 

which are independent of the mesh size and depend only upon the location 

of the point in question« Equations similar to equation (26) are also 

assumed to hold for c and u. 

With this order of error assumed» it is possible to apply 

Richardson's extrapolation method17 to the calculated values at any 

point with two different mesh sizes and obtain new values which are 

more accurate. If two values of the pressure at a point are calculated» 

p corresponding to a mesh size h., and p corresponding to a mesh size 

h f then the extrapolated value may be determined from the following 

equations which are obtained by truncating equation (26), 

(27) 

P« B P2 + ♦lh| 

Elimination of ♦ from these equations gives 

Pe" -H—H" (28) 
h2
2 - *\ 

In this equation, p represents the extrapolated value of p. Similarly9 c 

if calculations with three different mesh sizes, h., h2, and h3, are 

performed, the following equations may be used to solve for p , 

Pe " Pi * ♦lhi * ♦2hi 

Pe - P2 ♦ *$ * *& (29) 

Pe " P3 * ♦ih3 + *2
h] I 

14 
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It oust be mentioned that9 although the finite-difference equations 

involve errors of the h2-type^ there is no proof to show that the errors 

in the calculated values of p, u, and c themself are also of the h2-type. 

Equation (26) is merely an assumption. However» for the present 

problem« as demonstrated in the numerical examples below, the h2-t/pe 

extrapolation does improve the numerical results« 

Roberts 18 used an extrapolation formula which is based on the 

assumption that all errors in numerical solutions are of the h-type; 

or( in our notation, his assumption becomes 

Pe - P - ^h ♦ ^h2 ♦ *3h3 ♦ ._        (30) 

where ^. are functions independent of h and dependent only upon the 

position of the point in question» The resulting extrapolation formula 

for two sets of calculations is 

h P - h p 

Pe - \  - hi ^ 
For comparison purposes, both h2-type and h-type extrapolations 

are applied to the present numerical results for the plane wave case. 

In addition to the 101 initial point (100 initial segments) calculation, 

two more sets of calculations, using 50 and 25 initial segments, 

respectively, were performed. The mesh si^es of these three cases 

are designated as h « 1/4, h » 1/2, and h * 1, respectively. The 

errors in p along the shock front for these three cases are shown in 

Fig« 8« It can be seen that the error decreases as the mesh size 

decreases. Several sets of extrapolated values of the pressure along 

the shock front were obtained by using different combinations of the 

three sets of calculations with different mesh sizes« These extrapolated 

values of p were compared with the exact values and the error plotted in 

15 
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Figure 8. The curve labeled h2(lf 1/2) represents the error in the 

extrapolated value* of p obtained fro» the h2-type formula, eq, (28), 

by using the pressures fro» the corresponding calculations with mesh 

sizes h ■ 1 and h ■ 1/2 ; h(lt 1/2, 1/4) represents h-type extrapolation 

of pressures corresponding to mesh sizes h ■ 1, 1/2, and 1/4, etc. The 

11(1/2, 1/4)extrapolation gives the least error, while the other three 

h-extrapolations give errors equal to or larger than the original 

calculation of mesh size h * 1/4« On the other hand, all four h2- 

extrapolations give errors which are smaller than the h « 1/4 case. 

In other words, for the present problem, the h2*extrapolations always 

improve the results, whereas the h-extrapolations do not necessarily 

improve the results. The results also indicate that extrapolations 

of three sets of calculations are not necessarily better than 

extrapolations of two sets of calculations. Extrapolation curves 

for the variables u and c give essentially the same results as those 

of pressure and, therefore, are not presented. 

VII.  CONCLUSION 

The numerical method of characteristics produces very accurate 

results when applied to blast wave problems if the region where the 

density is close to zero is excluded. For other one-dimensional 

unsteady fluid flow problems which do not include zero density regions, 

it is reasonable to expect that the numerical method of characteristics 
i 

will also produce accurate results. 

According to our numerical calculations, h2-type extrapolation I 

always improves the accuracy, whereas h-type extrapolation may not. 

16 
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For the purpose of evaluating the accuracy of any numerical 

nethod used for solving unsteady# non-isentropic flows, the similarity 

solution of blast waves may be used as a standard for comparison. 

Since the similarity solutions are quite lengthy^ they have been 

computed for two values of Y, and the numerical results are presented 

in Appendix D for easy reference. 

17 
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APPENDIX A 

Derivation of Characteristic Equations 

In this appendix, the application of the method of characteristics 

to the one«dinensional flow of an ideal gas with area change, friction, 

and heat transfer5 is presented. The governing equations are the 

continuity equation 

the monentun equation 

-^+ uix+7^ + F = 0 <A-2) 

and the energy equation 

where F is the wall-friction term and q represents the heat transfer 

rate.    From the ideal gas equation of state and tne definition of 

sound velocityf we have 

^   ~ Vf (A.4) 

With this equation, the properties u, p, and p may be treated as dependent 

variables which are governed by equations (A.l), (A.2), and (A,3). For 

regions where these variables are continuous, three equations for the 

total differentials du, dp, and dp may be written. Combining these 

differential relations with the governing equations, (A.l) to (A.3), we 

obtain the following set of six equations which may be solved for the 
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six partial derivatives of uf p# and p# 

+dx-f+dtf 

da 

(y-MaF^) 

(A.S) 

Solving these equations for 3u/3x by Cramer's Rule, we obtain 

where 

dx dt  0  0  0  0 

0 0 dx   dt 0     0 

0 0 0      0 dx   dt 

p 0 0     0 u      1 

u 1 1/P    0 0      0 

0 0 u      1 -uc2 -c2 

and 

N 

du     dt 0  0 0  0 

dp      0 dx dt 0 '0 

dp      0 0  0 dx dt 

-pu/A dA/dx  0 0  0 u  I 

-F     1 1/p 0 0  0 

(Y-l)p(uF^q) 0 u  1 -uc2 -c2 
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The vanishing of D produces the three physical characteristics 

I-characteristics dt^^^^              *A*'' 

11-characteristics dt ^ tt ^              (A#8) 

Ill-characteristics Ai'~U'                                         (A#9) 

Notice that the Ill-characteristics are also path lines. Along 

these physical characteristicsf the derivative 3u/3x is indeterminate 

and therefore may be discontinuous. To insure that du/dx is indeter- 

and not infinite, the numerator, N( of equation (A.6) must also vanish 

along the characteristics« Along the Ill-characteristic, (udt-dx) * 0, 

and N vanishes identically. Along the I and Il-characteristic, 

dx/dt • u t c, and the vanishing of N produces the following state 

characteristics (or compatibility equations)« 

The upper signs refer to I-characteristics and the lower signs refer 

to II-characteristics, 

When equations (A,5] are solved for du/3t, dp/dx, and ap/dt , 

the vanishing of the numerators yields results which are identical to 

those for du/dx • When equations (A.5) are solved for dp/dx and dp/dt , 

the numerators of these solutions do not contain the common factor 

(udt-dx). The vanishing of these numerators yields, in addition to 

equation (A.10), the Ill-state characteristic. 
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The solutions of equations (A*5) for the other five derivatives 

are given below for reference. 

^^adt-dx){[(y-iyttr+f^^dxdt+[F(iidt--dx) 

-ada--^dx+(ua-ddadt} 

-Wdt^Fdi+da)} 

$ ^adt-d^^^dx-ry-MaF^ldx+adPlX (A-12) 

(adt-<lx)-A»rdxdt-cÄdPdt-^cadadx} 

^ =i<(adt-dx){(-^dt -d/)(adt-dxl+/ FfdtiVdadt} 

+(y-a)>>(aF+4)(dtf+ d/rdt^c« -dPftW2) 

"^=^ttdt-<fxi{^dx^ud^)(adt-dx5->'dx(F+du)} 

-(jr-MaF^)dx(di)2^Pdxdt - acad/(dt)a> 

For frictionless flow without heat transfer, both F and q vanish. 

The quantity (l/A)(dA/dx) can be evaluated for the following specific 

types of one-dimensional motion: 

1 dA 1) Plane motion A « coastant,     A T" tt 0 

2) Cylindrical motion     A « luxt t X T" * x 

1 HA   ? 
3) Spherical motion A ■ 4Trx2  , A 3" " 7 
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where x represents the radial coordinate for the cylindrical and 

spherical cases.    These results nay be summarized by writing 

at*? 
where v « 1, 2, or 3 corresponds to plane, cylindrical« or spherical 

notionsf respectively. The physical and state characteristic 

equations for one-dimensional flow of an ideal gas without friction 

and heat transfer become 

Physical Characteristics State Characteristics 

14) 

=a-c 

ftftm^ 

It is convenient to eliminate the density p from the characteristic 

equations by using equation (A.4). When this substitution is made, 

and the third state characteristic equation integrated, the following 

characteristic equations, in terms of p, u, and c, are obtained. 

Physical Characteristics State Characteristics 

(A.15) 

The constants c and p must be evaluated for each Ill-characteristic, 
o    o 
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APPENDIX B 

Iteration Procedure 

In this appendix, the solucion of the finite-difference 

characteristic equations (14) to (17), for the boundary conditions 

specified in Section IV, is described. 

The basic step in the solution of unsteady flow problems by the 

method of characteristics is the determination of all variablesf u, 

cf p, x, and t, at a new point when these variables are known at two 

existing points. Repined application of this step, using suitable 

initial and boundar conditions, produces the solution of the problem. 

For the blast wave problem, three different types of points exist, 

each requiring a different procedure in the basic step. These three 

types of points are 

1) interior points, which lie within the region of numerical 

solution, 

2) points on the shock front, and 

3) points on the back boundary. 

The three procedures, which were used to solve for the three types of 

points, are outlined below. 

1) Interior Points 

Figure B.l  Physical Plane 
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Referring to Figure B.l, all variables are assumed known at 

points 1 and 2, and the variables at point 3 are to be detemined. 

Point A is located, in the physical planet at the intersection of 

the Ill-characteristic (path line) passing through point 3 and the 

straight line joining points 1 and 2. The properties uA, cA, and pAf 

at point A, are detemined by a linear interpolation of the properties 

at points 1 and 2. The finite-difference forms of the physical 

characteristic equations arc, from equations (14) to (17) 

«long I TÖ^"»^« (B-l) 

along II -^= £»* C„ (B.2) 

along III Xj-fli = n (B.3) 

The corresponding state characteristics are 

along I UfUf-^l-Pj-fy-lß^kt-tj) (B.4) 

along II iLfU^- -J^Pfe- P^^-jJ^a^rt,^ (B.5) 

along III JJl- (-^"P (B«6) 

where the barred quantities represent average values, i.e., 

The equation of the line between points 1 «id 2 is 

h~lh~ fa'fa (B.7) 
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and the linear interpolation formulas, which are used to determine the 

properties at point A» are 

PA = '5t^^^-Pi)        (B.10) 

Fron these ten equations, the ten unknowns, x , t , u , c , p , x., 

t., uA, cA, and pA, nay be determined. The solution is accomplished 

by the following iteration procedure. 

First Iteration 

A single prime is used to designate the first approximation of 

the variables. 

Equations (B.4) and (B.S) are solved simultaneously for the 

properties u and p by neglecting terms containing t and using the 

properties at point 1 to replace the average properties between 1 and 

3, and the properties at 2 to replace the average properties between 

2 and 3. These values are then designated by u * and p *. An estimated 

value of c., which is called c,, is calculated from the equation 

c^fl^ 
Next, equations (B.l) and (B.2) are solved simultaneously for x * and 

t* by using the previously determined values of c and u '. Equations 

(B.3) and (B,7) are then solved simultaneously for x • and t* by 

using u ' in place of u3A . The properties u', c', and p* are 

determined from the interpolation formulas, equations (B.8), (B.9), and 

(B,10)t and the calculated vai^w of x'• The quantity ** is calculated 

3S 



by inserting the values c», p*, and p^ into eq lation (B,6). The 

first approximation of the properties at points 3 and A is now complete. 

Second Iteration 

Once the first approximation is established» the following 

procedure may be used to obtain the second and subsequent approximations 

of the variables at point 3. A double prime is used to designate the 

second approximation. 

The values of u M and p " are calculated from the following version 

of equations (B.4) and (B,5), 

where cl3i • l/2(c1 ♦ cJ), etc. Equations (b,l) and (B,2) are then 

solved simultaneously for the new position of point 3, x^",  and t3
,,
t 

by using the most recent values u^' and Cj1. Similarly, x " and t " 

are calculated from equations (B.3) and (B.7). Again, the most 

recently calculated values of x", t3
n, u.*, and u3

M
t are used. With 

x " established, the interpolation formulas, equations (B.8) to (B.10), 

are used to calculate u ", c*1, and p.". Finally, the quantity c" is 

calculated from equation (B.6) by using the values c ", p*', and p^'. 

The second approximation of the properties at points 3 and A is 

now complete. Repeating the procedures in the second iteration, with 

double primed quantities instead of single primed quantities used as 

input, we can obtain the third approximation. This iteration process 

may be continued until the desired degree of accuracy is reached. In 
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! the present calculation» the coefficients in equations (B.4) and (B.5), 

(WfttfeM1*^ 
were used to determine the convergence of the variables at point 3. 

The iteration was stopped when each of the above four coefficients con- 

verged to within .005% of its value in the previous iteration. When 

this iteration procedure is used, the variables x and t converge 

faster than the properties u3# c3l and p3. For roost points in this 

problem, not more than four iterations were required to achieve 

the desired accuracy. 

A few other iteration schemes* have been tested and compared with 

the one just described. These schemes give the desired accuracyf but 

the one just described seems to be most rapid. 

2) Points on the Shock Front 

t 

Shock Front 

X 

Figure B.2 Physical Plane 

Referring to Figure B,2# all variables are assumed known at points 

1 and 2, and the.variables at point 3 are to be determined. Points 2 

and 3 lie on the shock front. The finite-difference forms of the 1- 

physical and state characteristics are, from equations (14) to (17) 

♦For instance, instead of solving for x " and t " from equations (B.3) 
and (B.7), we could solve equations (B.3), (B./) and (B.8) simultaneously 

| for x ", t ", and u" by using the previously determined values x ", t^11, 
and uv'. out this method involves the solution of a quadratic equation '3 
which has been found impractical. 
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Fro« the definition of shock wave velocity, (<ix/dt)shoc^ ■ Ü, we have 

I^Uaj (B.13) 

Also, the properties at point 3 must satisfy the strong shock equations, 

(11) to (13); therefore, 

U^y^jt/S (B.14) 

C,='S5^tu, (8..s, 

P"5=yJlAUa3 (B.i6) 

From these six equations, (B.ll) to (B.16), the six unknowns, x ft t3, 

u3, c3, p3, and U3, may be determinedo The solution is accomplished 

by the following iteration procedure. 

First Iteration 

Equations (B.12), (B.14), and (B.16) are solved simultaneously for 

u*f P)# *"<* uq by neglecting the term containing t in equation (B.12}. 
3   3        3 

These values are the first approximations and are designateu by u', p^, 

and U3*. The quantity c * is calculated from equation (B.15), where U ' 

is inserted for U , The position of point 3, x • and t •, is found by 

simultaneously solving equations (B.ll) and (B.13). In these equations, 

the previously calculated values u ', c *, and U ' are used, completing 

the first approximation of the variables at point 3. 
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Second Iteration 

Once the first approximation is established, the following 

procedure nay be used to obtain the second and subsequent approximations. 

Equations (B.12), (B.14), and (B.16) are solved for u3
M, pj", and Uj" 

by using some of the values obtained in the first iteration, i.e.. 

The quantity c3
M is not calculated from eqiation (B.15) with Ü " inserted 

for ü3. The position, x3
,f and t^1, is found by simultaneously solving 

equations (B.ll) and (B.13). Again, the most recent values u ", c ", 

and U " are used. The second approximation of the properties at point 3 

is now complete. By repeating the above procedures, with double primed 

quantities replacing single primed quantities, we can obtain the third 

approximation. This iteration process may be continued until the desired 

accuracy is obtained. In the present calculation, the iteration was 

stopped when each of the coefficients in equation (B.12), (c^/Pjg) 

and (u^c^/x^), converged to within .005% of its value in the previous 

iteration. 

3) Points on the Back Boundary 

^        *^Back Boundary 

Figure B.3  Physical Plane 

39 



Referring to Figure B,3# all variables at points 1 and 2 are 

asstned known, and the variables at point 3 are to be determined. 

Points 1 and 3 are on the back boundary« Point 2 is an interior 

point, and points 1 and 2 are on the sane 1-characteristic. Point A 

is located at the intersection of the Ill-characteristic passing 

through point 3 and the I-characteristic joining points 1 and 2. 

The properties at point A will be determined by a linear interpolation 

of the properties at points 1 and 2, The finite-difference forms of 

the physical characteristics are, from equations (14) and (16) 

along 11 ^rBSJ-Z., (B.17, 

Point 3 must lie on the back boundary; therefore, it must satisfy the 

equation of the back boundary curve presented in section III« 

^^tA X3=k'pi7 *' (B,22) 

where k »  constant (the position ratio). Also, as discussed in section III, 

the particle velocity at points on the back boundary is prescribed by the 

exact solution; therefore, 
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«long III J(»"$*= U^A (B'18) 

The corresponding state character!'^ics are 

along II    VUgZ^^-Pj+^-l)1^^^  (B.19) ' 

along III "l^-frJ (Bt20) 

Since the I-characteristic is assumed to be a straight line between 

points 1 and 2, we have | 

CÄ=**^ (B.21) | 
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tr-rjfaVtiu-ä'      "•»' 
where F ■ constant (the velocity ratio U./11 ). The linear interpolation 

formulas, which are used to determine the properties at point A, are 

C^Ct+S^CCa-Ci)       CB.25) 

PA^h+j^iPz-Pi) (B-26) 

From these ten equations, (B»17) to (B.26), the ten unknowns, X3, t3, 

ual c^, Pa1 XA* tA, UA» CA» an^  ^A* niay t)e determined. The solution 

is accomplished by the following iteration procedure. 

First Iteration 

Equations (8.17) and (6,22) are solved simultaneously for x and t 

by using u2 for u  and c for c . These values are then designated by 

Xj' and t ', respectively. The first approximation of the particle velocity 

u * is determined by using t * in equation (B,23] and solving for u . 

The quantity p * is determined from equation (B.19) by neglecting the 

term containing t and using the properties at point 2 in place of the 

average properties. Next, x* and t* are found by solving equation (B.18) 

and (B.21) with u A replaced by u •• The properties u*, c', and p ' 

are determined from the interpolation formulae, equations (B.24), (8,25), 

and (B,26), and the calculated position x *  The sound speed c * may now 

be calculated from equation (B.20)« The first approximation of the 

properties at points 3 and A is now complete. 



Second Iteration 

The following procedure «ay be used to calculate the second and 

subsequent approxiaations. 

Equations (B.17) and (B.22) are solved for x^1 and t3
t> by using 

the average properties u • and c '. The particle velocity u3
M is 

calculated fro« equation (8*23) by using t3
H. Next, equation (B.19) is 

solved for p " by using soae of the values obtained in the first 

iterationt i-t >9 

The position of point At x '• and t.", is detemined fro« equation (B.l^i) 

and (B.21) with u »., used as the average particle velocity. The position 

of point A nay also be determined by the alternate procedure described 

in the footnote of the interior point procedure. Next, the interpolation 

fornulas, (B.24) to (B.26), are used to determine u " c^1, and pA
M. 

Then the sound speed c ** is calculated from eauation (B.20), completing 

the second approximation of the properties at points 3 and A. As 

described in the general point iteration procedure, this process may be 

continued until the desired accuracy is reached. In the present calculations, 

the iteration was stopped when the coefficients in equation (8,19), 

(c23/p23) and (u23c23/x23), converged to within .005%, 
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APPENDIX C 

Error Analysis of the Finite^Difference Equations 

It is desirable to deteraine the nature of the truncation error 

which is introduced by replacing the governing differential character* 

istic equations (4]f (S)9 and (6) by the finite-difference equation^ 

(14), (15)9 and (16). Since these equations are of the sa^e general 

for«, only one typical equation will be analyzed« This equation is 

the I-statc characteristic equation (6)• 

fr-tä-f-WÜ (CD 

where a represents arc length along the I-characteristic. When 

this equation is expressed in finite-difference forat the coefficients 

c/p and cu/x nay be approximated by either c/p and cu/x or (c/p) and 

(cu/x), i.e., either by averaging the variables individually, or by 

averaging the coefficients which are conbinations of the variables. 

It will be shown that the types of error involved in both cases are 

the sane. 

Referring to Figure C.l, the finite-difference characteristic 

equation (IS) is to be written for point 2, in terms of values of 

the variables at points 1 and 39 both Act distance away fron 2 along 

the I-characteristic. 

Figure C.l  Physical Plane 
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With individual variables averaged, eq. (15) becoaes 

JULx ~ fa£.(t,.liStgu.%.      (,2) 
where A represents the central difference, i,e.#Au«u-u ; and 5   1 

the barred quantities represent averages between points 1 and 39 e.g., 

The Taylor series expansions (assuming they exist) for u and nl 

about point 2 are. 

&<*Zi~ 

The other variables at points 1 and 3 can be expanded in a similar 

manner. By adding and subtracting the above series expansions, and 

rearranging, we obtain 

u»!:S«-J!f^)'1<K2+--- 

Again, similar expressions for c2f p2l x2, (dp/do)2 and (dt/da)2 can 

be formed from the corresponding series expansions. 

Substituting these expressions into the exact differential 

equation (C.I), which is valid at point 2, we obtain 

3) 
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where N , N . etc.» are independent of Aa and depend only upon the 

position of point 2. By coaparing eq. (C.3) with (C.2)f we observe 

that the teras N^Ac)2 ♦ N (Aa)1* ♦ ... are neglected in eq. (C.2). 

Therefore, the error e introduced by the replaccnent of eq. (C.l) by 

(C.2) is of the order (Aa)2, or 

e -W^cKlVNefA^V • • • (c.4) 

With coefficients averaged, equation (15) becomes 

where 

^■-Tfe^-mr-HT+tl 
For this case, the quantities c/p, cu/x, u, p, and t at points 3 and 1 

are expanded into Taylor series about point 2. 

By combining these two equations, we have 

If we substitute the above equation and similar expressions for 

(dp/da) , (cu/x) and (dt/da) into the exact equation (C.l), we obtain 



where K t K2f etc», are independent of Aa. Comparing eq. (C.6) with 

eq, (C.S)^ it is observed that the tetw K (Aa)2 ♦ K (Aa)*1 ♦ ... are 

neglected in eq. (C.5). Therefore, the replacement of (C.l) by (C.5) 

introduces an error e* of order (Aa)2 . 

We conclude that for either of the two methods of averaging l the 

errors involved in all the finite-difference equations are of the (Aa)2- 

type. If h is a quantity which is in some way proportional to the arc       I 

length Aa, then these errors are of the h2 -type. 

i 

i 



APPENDIX D 

Sinilarity Solution of the Blast Wave Problem 

In this appendix« Sedov9s solution for the wave generated by 

the instantaneous release of a finite amount of energy is sumnarized 

(see ref. (13), chap. IV). 

From dimensional considerations, the dependent variables9 u, pf 

and p, may be expressed as follows: 

u=fV(x) tD.i) 

•/)c?^TRa) (D,2) 

where 

is a nondimensional variable and a, Kf s, b, m, and 6 are constants. 

When equations (D.l), (D.2)# and (D.3) are substituted into the equations 

governing the one-dimensional flow of a perfect gas without heat transfer 

and friction, equations (1), (2), and (3), the following equations result, 

where 
z Sflff(K+Ü 



These equations are ordinary differential equations and motions 

corresponding to then are called self-similar. In these equations, 

a new variable Z » Y(P(X)/R(X)) has been introduced and the expression 

for X, equation (D.4)t has been used. 

In the blast wave problem, a * p and b * £/P , where p. is 

the initial density of the gas outside the wave and E is a constant 

which is proportional to the energy released. The exponents 6 and 

■ are deteixined from the dimensions of b, 

Also, the constants K ■ -3 and S « 0 are determined from the dimension 

of p.. At the shock front, x » x and A « X ; therefore, from equation 
* 5 5 

(D.4), the equation of the shock front becomes 

--{jrf&i-fe 
where A has been arbitrarily set equal to unity at the shock front. 

At the shock front, the variables u, p, and p must satisfy the 

strong shock equations, which are, in terms of the new variables. 

v^'-- ireiW «ft'^»2"''raffia    (D-9) 

These strong shock boundary conditions and the stipulation that the 

energy within the wave zone remains constant determine a unique solution. 

With the above information established, the properties at the shock 

front become 

"^fv+aimjMr) xs" (D-10) 

^ = Fv^%3J ^ (D-12) 
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I 

i 

1 

I 

I 

Sedov obtained a solution of the differential equations (0,5), 

(0.6), and (0,7) which satisfies the boundary conditions (0.9). This 

solution, when transformed back to diaensional variables, aay be 

expressed in terms of a paraseter V as follows, (see ref« 13, page 219). 

4- tn-mr+üyi. (B.i4) 

where 

(D.15) 

(D.16) 

The parameter V has the range 

for 1 < Y < 7. 

The complete solution of the blast wave problem is given by 

equations (0.10) through (0,16) together with the equation of the 

shock front (0*8). 

49 

.-.«■•v-«^isfc»kj?;,-ji5.V'*. 



TABLE II« 

x/x% 

I•00000000 
•99000008 
•96000006 
•9700000S 
•96000003 

»LAST WAVE PROPERTIES FDR PLANE, CYLINDRICAL, AND SPHERICAL 
WAVES WITH y • 7/5 and 5/3 

a.    Plane Wave (v-l), Y ■ 7/5 

u/us 

I.00000000 
•98507586 
•97030586 
•95569410 
•94124416 

0/Ps 

U00000000 
.92860073 
•86384121 
•80496880 
.75132872 

P/Ps 

1.00000000 
.95681441 
•91702569 
.88031874 
.84641294 

1.000000 
1.015077 
U030323 
1.045756 
1.0613^2 

i 

i 

i 

•94999993 
•94000007 
.93000011 
.92000017 
.91000011 

•92695898 
•91284169 
•89889401 
.88511779 
•87151407 

• 702U947 
•65753374 
•61644331 
.57869431 
.54394807 

.81505749 

.78602963 

.75912832 

.73417377 

.71100374 

1.077252 
1.093353 
1.109713 
1.126353 
1.143292 

.90000013 
•89000010 
•88C00013 
^87000010 
•86000015 

•85P08381 
.84482706 
.83174370 
.81883284 
.80609347 

.511906't7 

.43230480 

.45490900 
•42951019 
.40592327 

.6a947?SS 

.66944805 

.65081098 

.6334526C 

.6172747? 

1.160548 
1.178142 
1.196093 
1.214423 
1.2331^3 

.B50C0011 

.83999997 

.83C00010 

.82000017 

.P1000006 

.79352378 

.78112174 

.76888539 

.75681160 

.7^489716 

.38398229 

.36353930 

.34446246 

.32663233 

.30994204 

.60218737 

.58810889 

.57476507 

.56268731 

.5S121304 

1.2523C5 
1.271900 
1.291962 
1.312514 
1.3335PI 

.80000021 

.79000022 

.78000015 

.77000018 

.76000011 

.73313927 

.72153383 

.71007714 

.69876538 

.68751415 

.29429640 

.27960816 

.2657^56 

.25280027 

.24054636 

.54048S6S 

.53045204 

.52106416 

.51227773 

.5040517*t 

1.3551bP 
1.377362 
I.400130 
1.423521 
1.447565 

.75000007 

.74000015 

.73000019 

.72000025 

.71000019 

.67655934 

.66565660 

.65488133 

.64422905 

.63369507 

.22898031 

.21804985 

.20770733 

.19 790966 

.18861748 

.49634H69 

.48913387 

.4823750^ 

.47604272 

.4701092^ 

1.4722^3 
1.497738 
1.523935 
1.550920 
1.^7873? 

.70000014 

.69000012 

.68000009 

.67000008 

.66000037 

.62327496 

.61296423 

.60275827 

.59265269 

.58264331 

17979508 
17141004 
16343250 
15583539 
14859405 

.46454^21 

.45933^18 

.45445/18 

.44988294 

.44559759 

1.60741 I 
1.636999 
1.667543 
1.699091 
1.73160? 

.65000005 

.64000030 
•63000038 
.62000015 
.61000030 
.60000031 

.57272490 

.56289435 

.5531A676 

.54347792 

.53388451 

.52436215 

.14168517 

.13508878 

.12878528 

.12275718 

.11698885 

.11146524 

.44158)17 

.43782378 

.43430378 

.43100834 

.42792^2 

.42504223 

U765403 
1.800279 
I.Ö363R4 
1.873784 
1.912546 
1.952748 

i 
i 
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TABLE II. a. (continued) 

x/xf 

.59000036 

.56000030 

.57000026 

.56000061 

.5500006? 

.54000071 

.5300004? 

.5200003« 

.51000059 

.50000069 

.49000142 

.46000121 

.47000134 

.46000207 

.45000199 

.44000171 

.43000155 

.42000147 

.41000221 

.40000m 

u/u$ 

.bl49072R 

.50551608 

.49618517 

.48691149 

.47769108 

.46852116 

.45939827 

.45032008 
•44178379 
.43228639 

.42332598 

.41439873 

.40550343 
•39663810 
.38779939 

.37H985H4 

.37019584 

.36142753 

.35267990 
•34395096 

P/Ps 

•10617291 
.10109933 
•09623310 
•09156385 
.0870ri48 

.08277720 
•07864253 
.07467007 
•07085273 
•0671PJ80 

.06365748 

.06026761 

.05700940 

.05387808 

.05036870 

•04797728 
•04520000 
•04253319 
•0*997365 
•03751804 

P/Ps 

.42234623 

.41982682 

.41747380 

.41527757 

.41322885 

.41131921 

.40954047 

.40783517 

.40634611 

.40491642 

.40358984 

.40236012 

.40122161 

.40016893 

.39919632 

. 398 30041 

.39747510 

.39671643 

.39602033 

.39538270 

1.994469 
2.037797 
2.082822 
2.129644 
2.178373 

2.229123 
2.282021 
2.33719P 
2.394802 
2.454993 

2.517939 
2.!>83839 
2.652887 
2.725308 
2.801355 

2.881293 
2.^65416 
3.054049 
3.147544 
3.246300 

.39000176 

.38000264 

.37000275 

.36000425 

.35000328 

.340002 70 

.33000476 

.32000414 

.31000672 

.30000857 

.29000825 

.28001068 

.27000359 

.26001251 

.25001419 

.33523643 

.32653950 
•31785596 
.30918647 
.30n5264P 

.29.87742 

.28324017 

.27460923 

.2659887T 

.25737460 

.24876474 

.24016272 

.23155736 

.22297004 

.21438023 

.03516262 

.03290585 

.03074428 

.02867588 

.02669751 

.02480748 

.02300405 

.02128420 

.01964698 

.01808980 

.01661065 

.01520848 

.01387990 

.01262654 

.01144371 

.394 79963 

.39426782 

.39378367 

.3^334396 

.39294554 

.39258553 

.39226123 

.39196980 

.39170692 

.39147606 

.39126895 

.39108557 

.39092372 

.39078182 

.39065776 

3.350793 
3.461458 
3.578875 
3.703631 
3.836461 

3.978100 
4.129386 
4.29138S 
4.465126 
4.6519S6 

4.053379 
5.07099? 
5.307044 
5.563203 
5^84271A 

.24001929 

.23001775 

.22032668 

.2100178 

.20001246 

.^0579662 

.19721014 

.13863509 

.18004683 

.17146339 

.01033109 

.00928595 

.00830843 

.00739421 

.00654376 

.39054996 

.39045677 

.39037681 

.39030857 

.39025078 

6.148442 
6.484449 
6.854603 
7.265372 
7.722500 

St 
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TABLE II. 

x/xs 

I«00000000 
•99000023 
.98000020 
.97000012 
.96000015 

BLAST WAVE PROPERTIES FOR PLANE, CYLINDRICAL, AND SPHERICAL 
WAVES WITH Y • 7/3 and S/3 

b.    Cylindrical Wave (vi2)# Y - 7/5 

I.00000000 
.98187036 
.96415340 
.94685728 
.92998646 

P/Ps 

1.00000000 
.87082494 
.76311560 
.67256243 
.595848e2 

P/P$ 

I,00000000 
.92731237 
.86460582 
•81022513 
.762ft3978 

c/c 

1.000000 
1.031923 
1.064422 
1.097580 
1.131484 

i 

i 

i 

•95000013 
.940000B0 
.9300002? 
.92000016 
.91000027 

.91354205 

.89752275 

.88192341 

.86673740 

.85195567 

.53039435 

.47417499 

.42558459 

.38334339 

.34642050 

.7213S991 

.68493403 

.65280404 

.62437809 

.599153?^ 

1.166217 
1.201863 
1.238507 
1.276232 
1.315125 

.90000027 

.89000032 

.88000021 

.87000035 

.86000028 

.83756658 

.82355753 

.80991407 

.79662161 

.78366368 

.31397892 

.28533698 

.25993386 

.23730774 

.21707312 

.57670605 

.55668014 
-53877216 
.52272448 
.50831513 

1.355273 
1.396766 
1.439697 
1.484159 
1.530253 

.85000040 

.84000030 

.83000041 

.82000034 

.81000022 

.77102453 

.75868710 

.74663534 
^73485240 
.72332229 

.19890982 

.18254765 

.16776004 

.15435402 

.142165Q2 

.49535434 

.48367726 

.47314185 

.463623H1 

.45501505 

1.578083 
1.627757 
1.6793P9 
1.733101 
l.7Cr^01^ 

.80000037 

.79000037 

.78000036 

.77000041 

.76000037 

.71202963 

.70095867 

.69009484 

.67942411 

.66893280 

.13105615 

.12090413 

.11160654 

.10307392 

.09522847 

.^4722103 

.44015816 

.43375317 

.42794114 

.42266452 

1.Ö4727P 
1.908023 
1.971407 
2.037593 
2.106757 

75000063 
74000034 
73000047 
72000019 
71000026 

.,65860849 

.64843C11 

.63841113 

.62851581 

.61874270 

.08800280 

.08133709 

.07518002 

.06948532 

.06421298 

.41787236 

.41351864 

.40956300 

.40596864 

.40270295 

2.179081 
2.2^4775 
2.334044 
2.417128 
2.504269 

.70000058 

.69000115 

.68000101 

.67000119 

.66000132 

.65000129 

.64000164 

.63000149 

.62000192 

.61000184 

.60000282 

.60908208 

.59952492 

.59006189 

.58068612 

.5713899? 

.56216638 

.55300965 

.54391306 

.53487216 

.52588090 

.51693607 

.05932704 
.05479554 
.05058956 
.04668403 
.04305583 

.03968425 

.03655071 

.03363795 

.03093081 

.02841485 

.02607750 

.39973646 

.39704233 

.39459632 

.39237678 

.39036383 

.38853941 

.38688719 

.38539203 

.38404040 

.38281962 

.38171845 

2.595736 
2.691818 
2.792839 
2.879128 
3.011055 

3.129020 
3.253450 
3.384^7 
3.523649 
3.670492 
3.f>259A3 

i 
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TABLE II. b. (continued) 

x/xs 

^9000272 
.58000315 
^57000373 
.56000345 
.55000444 

.54000475 

.53000744 

.52000608 

.51000749 

.50000719 

.49000R26 

.48001011 

.47000600 

.46000808 

.45001258 

.44001434 

.43001878 

.42002251 

.41001927 

.40001952 

.39002127 

.38004135 

.37003513 

.36003655 

.35005084 

.34007201 

.33009187 

.32012595 

.31018088 

.30013331 

.29020790 

.28C25050 

.2702619^ 

.26046833 

.25049917 

.24053268 

.23059844 

.22101686 

.21141195 

.202102^5 

u/us 

.50803102 

.49916457 

.49033143 

.48152783 

.47275259 

.46400074 

.45527377 

.44656241 

.43787094 

.42919351 

.42053110 

.4118815P 

.40323773 

.39460075 

.3HS99023 

.37737669 

.36877186 

.36017201 

.35157103 

.34297723 

.33438836 

.32581833 

.31722839 

.30864727 

.30007912 

.29151849 

.28295811 

.27441106 

.26588283 

.25726750 

.24875756 

.24022072 

.23165757 

.22326191 

.21471602 

.20617263 

.19765707 

.18944392 

.18121087 

.17323103 

P/P5 

.02390626 

.02189082 

.02002066 

.01828630 

.01667937 

.01519136 

.01381533 

.01254309 

.01136897 

.01028617 

.00928916 

.00837233 

.00752990 

.00675797 

.00605150 

.00540576 
•00481692 
.00428085 
.00379355 
.0033520? 

.00295281 

.00259333 

.00226903 

.00197830 

.00171853 

3014^699 
.0012^112 
.00109897 
.00093849 
.00079598 

.00067276 

.00056497 

.00047120 

.00039179 

.00032233 

.00026310 

.00021307 

.00017233 

.00013800 

.00011018 

P/P$ 

.38072008 

.37983320 

.37903090 

.37831073 

.37766569 

.37708865 

.37657364 

.37611445 

.37570614 

.37534364 

.37502261 

.37473898 

.37448878 

.37426890 

.37407615 

.37390751 

.37376046 

.37363264 

.37352181 

.37342614 

.37334385 

.37327339 

.37321309 

.37316188 

.37311859 

.37308214 

.37305156 

.37302609 

.37300503 

.37298745 

.37297323 

.37296161 

.37295222 

.37294482 

.37293882 

.37293407 

.37293043 

.37292767 

.37292555 

.37 292397 

C/Cs 

3.990712 
4.165483 
4.351089 
4.548428 
4.758431 

4.982224 
5.^0887 
5.4759?7 
5.748618 
6.040704 

6.353899 
6.690230 
7.052201 
7.441898 
7.862273 

8.316748 
8.808695 
^.342368 
9.922814 
10.554770 

11.244401 
11.997327 
12.825022 
13.7^4168 
14.734785 

15.839694 
17.064317 
18.423639 
19.936156 
21.646845 

23.545504 
25.693058 
28.133270 
30.fc52869 
34.014766 

37.648559 
41.835300 
46.517937 
51.982^75 
58.177597 
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TABLE II. 

x/xf 

I.00000000 
•990000P0 
•90000016 
•970000PB 
•96000031 

BLAST WAVE PROPERTIES FOR PLANE, CYLINDRICAL, AND SPHERICAL 
WAVES WITH Y « 7/S and 5/3 

c«   Spherical Wave (v«5), y » 7/5 

u/us 

1«00000000 
•97872610 
•95824629 
•93656766 
•91968545 

P/Ps 

1.00000000 
•R1781524 
•67765852 
•56797341 
•48080899 

P/Ps 

uoooooooo 
•R997I703 
.81849516 
.75197047 
.69694604 

c/cs 

I.000000 
1.048879 
1.099012 
1.150631 
1.203963 

.95000024 

.94000019 

.93000016 

.92000028 

.91000032 

.90158501 

.88424384 

.86763231 

.85171574 
•83645521 

.41058013 
•35328933 
•30602359 
.26662837 
.23348568 

.65103994 

.6124495<» 

.57978968 

.55198323 

.52818167 

1.259229 
1.316648 
1.376441 
1.438830 
1.504047 

.90000031 

.89000036 

.88000052 

.87000048 

.86000043 

.82181004 

.80773849 

.79419876 

.78114922 

.76855028 

.20536700 

.18132721 

.16063148 

.14270158 

.12707988 

.50771146 

.49003170 

.47470484 

.46137315 

.44974338 

1.572328 
1.643919 
1.71^081 
1.798091 
1.881239 

.85000054 

.84000052 

.83000062 
•82000066 
.81000076 

.75636395 

.74455379 

.73308609 

.72192898 
«71105318 

.11339969 

.10136447 

.09073326 
•08130799 
.07292514 

.43957251 

.43065770 

.42282925 

.41594376 

.40987984 

1.963835 
2.061214 
2.158734 
2.261781 
2.370771 

.80000076 

.79000072 

.78000095 

.77000115 

.7600010^ 

.70043129 

.69003843 

.67985193 

.6698505A 

.66001482 

.06544827 

.05876321 

.05277360 

.04739735 

.04256423 

.404S3i67 

.39981652 

.39565206 

.39197405 

.38872502 

2.486155 
2.608420 
2.738093 
2.Ö7S753 
3.022030 

.75000132 

.74000120 

.73000157 

.72000170 

.71000153 

.65032811 

.64077385 

.63133853 

.62200855 

.61277216 

•03821437 
.03429527 
.03076198 
.02757462 
•02469836 

•38585510 
•38332042 
.38108273 
.37910813 
•37736680 

3^177596 
3^343211 
3^519674 
3.707889 
3*908838 

•70000246 
•69000334 
•68000320 
.67000259 
•66000479 

.60362011 

.59454187 

.50552805 

.57657152 

.56766836 

.02210287 

.01976056 

.01764701 

.01574068 

.01402270 

.37583259 
•37448200 
•37329420 
•37225086 
•37133587 

4^123564 
4^35327l 
4^599282 
^•863019 
5.145973 

.65000319 
•64000410 
.63000660 
.6200064 7 
.61000535 
.60000740 

.55880658 

.54998634 

.54120193 

.53244535 

.52371418 

.51500870 

.012<»7447 
•01108120 
.00982838 
•00870257 
•0076922^ 
•00678706 

37053408 
36983305 
36922099 
368^8736 
36822301 
36781995 

5^450081 
5,777094 
6,129174 
6^5ü8863 
6^91B770 
7^361676 
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TABLE II. c. (continued) 

x/xs 

•59000B39 
.580014*0 
.57001S84 
.SeOOUBS 
.55001672 

.54002796 

.53003275 

.52002840 

.51002^23 

.50004599 

.49003355 

.48009163 

.47006348 

.46010146 

.45011067 

.44018667 

.43015107 

.42019308 

.41030184 

.400^0712 

.39047057 

.38050044 

.370787H 

.360M430 

.35088826 

.34116663 

.33146455 

.32133957 

.31262625 

.30279608 

.29354415 

.28450148 

.27626264 

.26655389 

.25903206 

.25130555 

.24080536 

.23U9252 

.22073661 

.20190170 

u/us 

.50632217 
•49765766 
•48900326 
.48035874 
.47173035 

•46311823 
.45450867 
.44589817 
.43729803 
.42871658 

•42011425 
•41157605 
•40296679 
.39^41679 
.38584417 

.37733058 

.36872267 

.36018251 

.35170054 

.34313061 

.33469694 

.32614924 

.31782215 

.30920425 

.30076393 

.29243045 

.28411388 

.27543493 

.26796611 

.25954004 

.25160967 

.243P5870 

.23679676 

.22847491 

.22202759 

.21540483 

.20640464 

.19842220 
• 1892 0283 
•17305860 

P/Ps 

•00597684 
•00525316 
.00460709 
•00403143 
•00351990 

•00306626 
•00266420 
•00230H54 
.00199508 
•00171971 

•00147732 
.00126657 
.00108094 
.00092039 
.00078058 

.00066033 

.00055540 
•00046589 
.00038965 
•00032384 

•00026870 
.00022132 
.00018229 
•0001^833 
.00012053 

.00009762 

.00007863 

.00006230 

.00005070 
•00003989 

.00003161 

.00002500 

.00002005 

.00001533 

.00001237 

.00000985 
•00000715 
•00000532 
•00000372 
•00000190 

P/Ps 

.36747065 

.36716878 

.36690825 

.36668391 

.36649147 

.36632683 

.36618617 

.36606627 

.36596456 

.36587863 

.36580593 

.36574522 

.3656939! 

.36565139 

.36561595 

.36550674 

.36556241 

.36554262 

.36552643 

.36551325 

.36550271 

.36549408 

.36548730 

.36548174 

.36547743 

.36547408 

.36547145 
•36546932 
.36546787 
.36546664 

.36546573 

.36546504 

.36546458 

.36546414 

.36546390 

.36546369 

.36546348 

.36546337 

.36546327 

.36546317 

7.841068 
8.360305 
8^924lll 
9^537092 
10^?03909 

10.930227 
1U723759 
12^592464 
13.543761 
14.586153 

15.735750 
16.993151 
18^393ie0 
19^931790 
21.642277 

23.529600 
25.655243 
28.010654 
30.628093 
33.5957 38 

36.881095 
40.637672 
44.775833 
49.637383 
55.065425 

61.184002 
68.174751 
76.585588 
84.901924 
95.708296 

107.519620 
120.905540 
134.991110 
154.372310 
171.865060 

192.533140 
225.951510 
261.968880 
313.137030 
437.510460 
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TABLE II. 

x/xg 

1*00000000 
*99000004 
«98000000 
•97000004 
•96000010 

BLAST WAVE PROPERTIES FOR PLANE, CYLINDRICAL, AND SPHERICAL 
WAVES WITH Y * 7/5 «nd S/3 

d*   Plan« Wave (vl), Y • 5/3 

u/us 

I.00000000 
•98505072 
•97020531 
•95546789 
•94084226 

P/Ps 

KOOOOOOOO 
•95624785 
•91488338 
•87575597 
•83872493 

I.00000000 
.96593220 
.93365708 
•90307468 
•87409084 

c/cs 

I.000000 
U005051 
U010208 
U015477 
U020865 

•95000006 
•94000001 
•93000004 
•92000005 
•91000002 

•92633199 
•91194081 
•89767237 
•88352987 
•86951638 

•80365884 
•77043567 
•73894217 
•70907195 
.68072551 

.84661692 

.82057006 

.79537791 

.77245214 

.7«:023869 

1.026378 
U032023 
1.037Ö07 
K043735 
K049817 

.90000001 

.89000005 

.88000000 
i8700O0Ö2 
.86000001 

.85563498 

.84188842 

.82827901 
•81480920 
,80148084 

•65381094 
•62824164 
.60393647 
.58082015 
.55882175 

.72916842 

.70918026 

.69021671 

.67222393 

.65515035 

1.056058 
1.062465 
1.069047 
1.075811 
I.082764 

.85000004 

.84000000 

.83000001 

.82000002 

.80999997 

•78829569 
•77525S02 
•76236011 
•74961171 
.73701023 

.53787520 

.51791799 

.49889235 

.48074356 

.46342028 

.63894953 

.62357420 

.60098232 

.59513321 

.58198839 

1.089914 
1.097270 
1.104^38 
1.112628 
1.120649 

.79999998 

.78999993 

.77999997 

.76999991 

.75999993 

.74999990 

.73999988 

.73000001 

.71999990 

.70999996 

.72455605 

.71224891 

.70008662 

.68807428 
•67620513 

.66447982 

.65289693 

.64145490 
•63015135 
.61898438 

.44687477 

.43106192 

.41593945 

.40146760 

.38760931 

.37432944 

.36159506 

.34937559 

.33764170 

.32636636 

.56951188 

.55766934 

.54642829 

.53^75806 

.52562971 

.51601572 

.5068B992 

.49822793 

.49000622 

.48220280 

1.128907 
1.137414 
1.146176 
1.155205 
1.164509 

1.174098 
1.183983 
1.194174 
1.204682 
1.215520 

.69999984 

.68999990 

.67999995 

.66999999 

.65999985 

.60795186 

.59705104 

.58627923 

.57563358 
•56511094 

.31552383 
•30509038 
.29504327 
.28536123 
.27602415 

.47479666 

.46776821 

.46109864 

.45477007 

.4^876557 

1.226698 
1.238229 
1.250126 
1.262404 
1.275076 

.64999998 

.63999989 

.62999985 

.61999985 

.60999984 

.59999976 

.55470874 

.54442325 

.53425153 

.52419024 

.51423596 
•50438522 

.26701384 

.25831223 

.24990297 

.24177067 

.23390066 

.22627920 

.44306958 

.43766672 

.43254274 

.42768425 

.42307830 

.41871273 

1.288157 
1.301665 
1.315615 
1.330025 
1.344914 
1.360303 



TABLE II«    d.    (continued) 

x/x3 

•stoooooi 
.57000001 
.56000005 
.54999997 

.54000000 

.53000005 

.52000005 

.51000004 

.49999999 

.49000026 

.48000027 

.4 7000000 

.46000021 

.45000020 

.44000026 

.43000014 

.42000011 

.4l0000i3 

.40000044 

.35999994 

.38000004 

.U000047 

.36000020 

.350000^4 

u/u 
9 

.49463495 

.48498122 

.47542076 

.46595017 

.45656591 

.44726477 

.43804331 

.42889816 

.41982607 

.41082^78 

.40188847 

.39301649 

.384204dl 

.37545111 

.3667510C 

•35810458 
.34950^ ;> 3 
.34095443 
.33244640 
.32397999 

.31555182 

.30716069 

.29880413 

.29047908 

.28218428 

P/Ps 

•21889369 
.21173179 
.20478224 
.19803451 
.19147848 

.18510496 

.17890517 

.17287075 

.16699411 

.16126797 

.15568580 

.15024095 

.14492750 

.13974033 
*17467396 

.12972373 

.i?48Fr>n3 

.12015390 

.11552638 

.11099911 

.10656829 

.10223150 

.01798587 

.0*382843 

.08975730 

P/P$ 

.41457608 

.41065739 

.40694625 

.40343289 

.40010791 

.39696258 

.39398845 

.39117741 

.^8P52203 

.38601499 

.38 364957 

.38141905 

.379H718 

.37^33817 

.37547631 

.373^2617 

.37206250 

.370^4051 

.36909537 

.36774262 

.36647776 

.36529679 
«36419571 
.36317053 
.36221767 

c/cs 

1.376212 
1.392665 
1.409686 
1.427299 
1.445534 

1.464420 
1.483987 
1.504271 
5.525306 
ä.547134 

1.569794 
1.S93334 
1.617803 
1.643253 
1.669742 

1.697333 
1.726094 
1.75609H 
1.73742P 
1.820171 

1.Ö54427 
1.690299 
1.927905 
1.967370 
2.008861 

.34000022 

.32999971 

.31999965 

.31000081 

.30000144 

.27391743 

.26567621 

.25745954 

.24926627 

.24109326 

.08577027 

.08186531 

.07804113 

.07429656 

.07062970 

.36133355 

.36051473 

.35975787 

.35905993 

.35841767 

2.052512 
2.098512 
2.147056 
2.198361 
2.252687 

i 
i 
i 

.29000062 

.280001C9 

.27000146 

.26000204 

.25000177 

.24000181 

.23000253 

.22000282 

.21000324 

.20000331 

.23293815 

.22480163 

.21668109 

.20857539 

.20048237 

.19240171 

.18433254 

.17627286 

.I6r22210 

.16017889 

.06703917 

.06352510 

.06008631 

.05672241 

.05343276 

.05021761 

.04707715 

.04401127 

.04102060 

.03810565 

57 

.35782806 

.35728839 

.35679579 

.35634753 

.35594105 

.35557377 

.35524333 

.35494726 

.35468327 

.35444912 

2.310323 
2.371574 
2.436812 
2.506452 
2,580983 

2.660950 
2.746995 
2.839879 
2.9404P7 
3.049876 



TABLE II,  BLAST WAVE PROPERTIES FOR PLANE, CYLINDRICAL» AND SPHERICAL 
HAVES WITH Y • 7/S and 5/3 

e. Cyllndrictl Wave (v«2)f y - S/3 

ä/X, u/u P/P. P/P. c/c. 

1.00000000 1.00000000 I.00000000 1.00000000 1.000000 1  * 
.9900000? .98260494 .92166523 .94511996 1.012644 f. 

.98000006 .96542669 .85100432 .89511844 1.025591 

i 1 .97000009 .94047524 .78713225 .84950298 1.038863 
.96000007 .93175984 .72927755 .80783703 1.052483 

!      " 

.95000007 .91528904 .67676787 .76973429 1.066474 1 .9^000000 .89907062 .62901549 .73485168 1.080859 

.93000006 •88311131 .58550493 .70288336 1.095661 

.92000002 .86741644 .54578281 .67355607 1.110905 1 .91000004 .85199084 .50945142 .64662639 1.126614 

.90000004 .83633774 .47615900 .62187548 1.142814 

1 .n90G0003 .82195941 .44559531 .59910741 1.159530 
.88000006 .80735703 .41748588 .57814596 1.176787 
.86999999 .79303034 .39158689 .55383226 1.194611 
.85999995 .77897846 .36768269 .54102353 1.213029 I 
.84999999 .76519925 .34558121 .52459068 1.232069 
.84000000 .7S168948 .32511128 .50941689 1.251758 I .83000007 .73844518 .30612033 .495 39640 1.272126 
.81999999 .72546130 .28847220 .48243349 1.293203 
.«0999998 .71273252 .27204546 .47044149 1.315010 

I .80000000 .70025258 .25673112 .45934143 1.337607 
.78999995 .68801460 .24243153 .44906157 1.361000 
.73000017 .67601175 .22905966 .43)53704 1.385234 I .77000009 .66423576 .21653616 .43070796 1.410347 
.76000019 .65267930 .20479105 .42252064 1.436377 

.75000005 .64133377 .19376020 .41492532 1.463365 I 

.7^000010 .63019136 .18338679 .40787716 1.491353 

.7^000008 .61924347 .17361896 .40133493 1.520389 

.72000010 .60848179 .16441005 .39526082 1.550521 i .71000016 .59789798 .15571789 .38962028 1.581799 

.70000033 .58748382 .14750441 .38438176 1.614280 I .^9000029 .57723078 .13973474 .37^51601 1.648021 

.69000021 .56713100 .13237764 .3749963? 1.6830R5 

.67000017 ' .55717667 .12540470 .37079827 1.719538 

I .66000038 .54736033 .1 1870019 .36689934 1.757450 

.65000017 .53767383 .11251007 .3632^830 1.796900 

.64000014 .52811052 .10654330 .35991631 1.837966 1 .63000018 .51866326 .10087018 .35679537 1.880737 

.62000043 .50932541 .09547291 .35389918 1.925305 

.61000062 .5000902? .0^033503 .35111246 1.971772 

1 .60000025 .49095098 .08544131 .34872098 2.020249 
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TABLE II, e. (continued) 

x/xs 

•5900002 9 
•58000017 
.57000016 
. 5600004<S 
•5500008B 

.54000036 

.53000090 

.52000070 

.51000123 

.50000133 

.49000112 

.48000021 

.47000121 

.46000109 

.45000191 

.4400014^ 

.43000259 

.42000121 

.4100042? 

.40000250 

,39000401 
.^8000526 
.37000562 
.3600043^ 
•35000671 

•34000493 
.33000B31 
•32001099 
.31000*11 
.3000099« 

.29001115 

.28000688 

.27Ü01044 

.26001364 

.25001894 

.24002711 

.23003225 

.22001616 

.21001715 

.20007142 

u/us 

.48190255 

.47293869 

.46405415 

.45524386 

.44650267 

.43782492 

.42920783 

.42064560 

.41213543 

.40367251 

.39525333 

.3R637418 

.37853403 

.37022733 

.3M95297 

•,537: 48 
. 34u.4r?6R 
.3372 '096 
.32^11977 
•320^6464 

.3128 3021 
• 3047U87 
.20660753 
.28851511 
.28043744 

.27236/03 

.26431021 

.25626119 

.24821510 

.24017854 

.23214874 

.22411877 

.21609942 

.20808353 

.20007255 

.19206663 

.18406061 

.17603958 

.16803388 

.16007221 

P/Ps 

.08077850 

.07633376 

.0720^565 

.0680^356 

.06419762 

.06051838 

.05700820 

.05365870 

.05046317 

.04741456 

.04450670 

.04173370 

.03909083 

.03657221 

.03417356 

.03188990 

.02971761 

.02765183 

.0;^69014 

.02382713 

.02206090 

.02038744 

.01880351 

.017305P9 

.0158^270 

.01455969 

.01330545 

.01212651 

.01ioim 

.00998364 

.00901540 

.00811186 

.00727188 

.00640230 

.00577096 

.00510553 

.00449333 

.00393112 

.00341882 

.00295551 

P/Ps 

.34641181 

.34427269 

.34229238 

.34046031 

.33876663 

.33720202 

.33575818 

.33442688 

.33320071 

.33207261 

.33103586 

.33008439 

.32921251 

.32841457 

.32768542 

.32702028 

.32641468 

.32586406 

.32536488 

.32491281 

.3245046J 

.32413682 

.3238062^ 

.32350992 

.32324520 

.32300^17 

.32279965 

.32261421 

.32245057 

.32230691 

•32218128 
.32207181 
•32197698 
.32189529 
.32102526 

.32176562 

.32171509 

.32167258 

.32163717 

.32160810 

c/cs 

2.070849 
2.123698 
2.178934 
2.236700 
2.297157 

2.360485 
2.426859 
2.496493 
2.569600 
2.646431 

2.727249 
2.^12347 
2.902021 
2.996646 
3.096587 

3.202290 
3.314193 
3.432861 
3.558787 
3.69272P 

3.8352^4 
3.187335 
4.149761 
4^ 32 3509 
4^509903 

4.710112 
4.925515 
5.157910 
5.40^359 
5^h81856 

5.978021 
6.301093 
6.654094 
7.041379 
7.4676«? 

7.938602 
3.461580 
9^()4Ha33 
9,699401 
10.431497 
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TABLE II.  BLAST WAVE PROPERTIES FORPLANE, CYLINDRICAL, AND SPHERICAL 
WAVES WITH Y - 7/5 and 5/3 

f. Spherical Wave (v«3)f Y • 5/3 
^ 1 

Ä/xi u/u% p/pg P/P8 c/c. 
1 

1.00000000 I.00000000 1.00000000 1.00000000 1.000000 1 
•99000010 .98017889 .88868587 .92510274 1.020283 1 
•98000005 .96072915 .79278986 •85941096 1.041169 
•97000007 .94167081 •70980266 •80161795 U062710 *p 
•96000004 .92302074 •6 3767169 .75062777 1.084960 I 
•95000008 .90479347 .57471311 •70551948 1.107972 
•94000008 .88700008 •51953623 •66551378 1.131802 
.93000007 .86964864 •47098843 •62994924 1.156505 *• 

•92000010 .85274400 •42811057 .59826253 U182137 
•91000003 .83628788 .39010008 •56997114 U208755 

•90000005 .82027884 .35628416 •54466125 1.236417 
•89000013 .80471265 •32609564 •52197614 1.265181 
•8800C.ll .78958210 •29905463 •50160716 U295109 
^87000009 •77487813 •27475485 •48328734 !•326264 - • 

•8600000h •76058942 •25285034 •46678460 !•358709 

•85000020 •74670322 •23304612 .45189683 U392511 
•R4000015 •73320466 •21508865 .43844678 U427741 
•8300001? •72007862 •19876139 .42628020 1.464473 
.82000013 •70730884 •18387748 .41526138 1.502783 
•81000018 •69487865 •17027558 .40527100 1.542753 

•80000020 •68277089 •15781587 .39620385 U584470 
•79000024 •67096855 •14637710 .38796702 1.628024 *• 

•78CC0031 •65945459 •13585372 •38047832 1.673513 
•77000025 •64821210 .12615344 •37366485 1.721042 ** 

.76000020 •63722480 .11719567 •36746182 1.770721 .., 

.75000028 .62647690 .10890978 •36181165 1.822669 

.74000025 .61595267 .10123320 .35666263 1.877013 

.73000041 .60563763 .09411123 .35196893 1.933888 
A r 

.72000028 .59551704 .08749490 .34768897 1.993444 
•71000058 .58557806 .08134153 •34378601 2.055833 

•70000028 .57580676 •07561210 •34022620 2*121232 
•69000066 .56619216 .07027315 •33698003 2.189814 i» » 

.68000064 .55672163 .06529344 •33401982 2.261785 q£|, 

.67000068 '  .54738468 .06064579 .33132122 2.337352 

.66000074 .53817101 .05630546 •32886178 ?ö41674« I .65000052 •52907066 .05225007 .32662122 2.500^22 
•64000082 .52007530 .04845981 .32458124 2^58(w39 
•63000073 .51117564 .04491603 .32272474 2.680497 I .62000100 .50236441 .04160239 .32103651 2.777909 
.61000092 .49363361 .03850352 •31950241 2.880625 
.6000013^ .48497713 .03560581 .31810961 2.989014 I 
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TABLE II, £f (continued) 

x/xj 

•59000108 
.58000109 
.57000139 
.56000187 
.55000707 

u/us 

.47638741 

.46785946 

.45938773 

.45096704 

.44?59??5 

P/PI 

.03289616 
•03036319 
.02799607 
.0257P479 
.02371996 

P/Pi 

•31684624 
.31570148 
•31466540 
•31372883 
•31286321 

c/c, 

3.103499 
3.224516 
3.352555 
3.488151 
3.631901 

.54000255 

.53000300 

.520002^6 

.5100036') 

.50000413 

.49000558 
«48000500 
.47000635 
i46000640 
.45000758 

•43425951 
•42596453 
•41770323 
•40947321 
•40127068 

.39309365 

.38493709 

.37680187 

.3686832? 

.36058111 

.02179310 
•01999610 
•01832136 
•01676204 
•01531139 

.01396332 

.01271156 
•01155107 
•01047620 
•00948223 

•31212092 
•31143470 
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