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ABSTRACT

Least squares approximations obtain parameters with a variance
lower than those of the data from which they are obtained. A

least squares polynomial approximation to observations may be
used to obtain ''smoothed' values of the observations or to make
predictions. The reduction of the variance achieved by this
process is determined for several special cases. Some properties
of the Gram-polynomials necessary for the analysis are derived.
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SECTION 1
INTRODUCTION

APPROXIMATION TECHNIQUES

If a function is empirically given, e.g., by discrete observations, it is frequently
desirable to represent these observations by analytical expression, e.g., polynomials. If
the values of the function are not exactly known, but subject to error, then it is not reason-
able to obtain an exact representation. It is more appropriate to use an approximate repre-
sentation, where the differences between the observations and the approximation are so
small that they can be considered as errors of the observations rather than as inaccuracies
of the representation. If the "true' nature of the empirical function, e.g., the degree of a
polynomial, is known, it can be used to approximate the observation and determine its
parameters. The differences between approximation and observation can be considered as

pure errors of the observations.

One way to find the "best' approximation, which minimizes an overall measure for the
error of the approximation, is a least squares approximation. The randomness of the
errors, however, precludes an approximation method that will find the "'true' function and
separate it from the observational errors. Thus, some part of the observational errors
can always influence the approximating function, and, consequently, the differences will con-
tain not only observational errors but also inaccuracies of the approximation. The larger
the number of errors, the more likely the probability that the random effects will cancel out
and that the approximating function will be close to the 'true' function. On the other hand,
the more the parameters necessary to describe the approximating function, the less the
reduction of this random error will be. These functional dependencies are the subject of

this analysis.
LEAST SQUARES APPROXIMATIONS

This analysis is restricted to an important special case: the values of the empirical
function (''observations') y, are given for n equidistant values of the argument

x,x=0... n-1, and the approximating function is a polynomial y(x).

==




Some important applications of least squares fitting include:

(@) smoothing a series of values;

(b) estimating more precisely the present position of an object during tracking; and

(c) determining the expected position y(x) of the object being tracked and its vari-

ance at the time of the next observation.

In (a), the polynomial values at the midpoint of the components are used as "'smoothed"
values; in (b), a polynomial of appropriate degree is fitted to the last observations, and
y(x) at the endpoint is used as the last position. Thus, exact exprcssions and bounds for
the variance of the polynomial can be given for (a), (b), and (c) at the midpoint, the end-
point, and at the first equidistant point outside the given interval, respcctively.

1
1,5,7 . .
General expressions for the variance are well known, [, ] but their use requires

extensive numerical calculations. The dependency of the variance on the number of observa-

tions and on the degree of the approximating polynomial is not obvious. Special studies,

sometimes incidental to other problems, have been made by Cowden, [ Guest, [3,4,5]

(9] and Smith, [10] Smith's problem is slightly different; she assumes that the

Proschan,
observations are uniformly spread over the whole interval. Her exact results for the mid-
and endpoints are, therefore, only approximations for the problem discussed in this report.
Guest[4] obtains the same approximations in a much easier way by the use of Legendre
polynomials. Proschan finds the same approximation for the endpoint by use of determi-
nants, similar to Smith. However, these approximations are good for large n only; for

small n, they can be very poor. Guest[3’5]

and Cowden give tables for the detcrmina-
tion of the variance of y(x), based on numerical calculations. Using Guest's tables,
one has to notice that k =1 is not the endpoint of the interval, but, rather, k = (n-1)/n.

Some checks showed good agreement with the results obtained from our exact formulas.

1
Numbers in brackets refer to citations in the Bibliography.
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SECTION II
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Let n values Yy ("observations') be given for equidistant arguments (""times")
=0... n-1. Let y) bea polynomial of degree m to be fitted to the g such
that

n-1

)

[yx-y(x)] 2 - min. (1)
x=0

If the yx are subject to random variations, then the coefficients of the polynomial are also

subject to those variations and, consequently, the value of y(x) for any given x.

Least squares approximations are simplified by the use of orthogonal polynomials

cbr(x). They are characterized by the orthogonality relations

4. >0 ifr=s
Z w4, (x) ¢ (x) = ; (2)
X 0 ifr#s
In the case of equal weights, w(x) =1, and equidistant arguments, x=0... n-1, they

determine the Gram-polynomials (sometimes called Chebysheff-polynomials; but this name

is more commonly used for other orthogonal polynomials). An explicit expression for

them is
‘ Ty r+| () )
eem=Y (') [F)x9 /0y @, (3)
i=0
where x 'S x(x-1) ... (x-i+l), and the sum of their squares is
n n+l n+2 n+r
%= %A " md n2 7 ner (4)




The approximation which satisfies Equation (1) is given by

z‘m
yx) = Y ¢ (x)/q : (5)
r=0 rr T
where
-1
R zzoy’fq’r(g)' (6)

From (5) and ( 6 ) we obtain

n-1
yx) = y.cx,8) , (7)
if we define
o(x,8) = Zm 4.0 (O /q, . (8)
r=0

Equation ( 7) is very convenient for practical use, since it is linear in the ¥z The

(1]

numerical values of the c¢(x,f), for several n and m, are given by Cowden,

Hildebrand, “® Jand Milne.. 83




SECTION II
A GENERAL PROPERTY OF THE REDUCTION FACTOR

If the y_. are uncorrelated random variables, all with the same variance o, then

Tk . [5,7]
the variance of y(x) is known to be

m
V(x)=oz ¢r2(x)/qr. (9)
r=0

The term R(x) = V(x) /o may be called the reduction factor. It can be calculated for any

x from Equation ( 9) as, e.g., in Cowden (1] and Guest, (3] However, if one uses
Equation ( 7)) to obtain the polynomial value y(x) for any of the given equidistant arguments

X, it can be obtained in a simpler way. Comparison of Equations ( 9 ) and ( 8 ) shows
R{x) = c(x,x) . (10)

Verbally expressed: the reduction factor for the variance, achieved by a least squares

polynomial approximation to equally weighted equidistant observations, at any of the observa-

tion points, equals the coefficient of the observation at this point in the linear combination of

the observed values giving the polynomial value at the point under consideration. This

gives immediately, without calculations, the reduction factor if one uses the numerical

expression for ( 7) as given in Cowden, (1] Hildebrand, (6] and Milne, 8]

For a special case, the midpoint of an uneven number of observations, this result has

been obtained by Milne. 8]




SECTION 1V
THE REDUCTION FACTOR AT THE MIDPOINT
The midpoint of the interval x =0 ... n-1 is x=(n-1) /2. The value of ¢r at
this point is derived in the Appendix. We substitute Equations ( 4) and ( 46 ) into (9),

write r =2s, since, in effect, we have to sum the even terms only, and obtain

n-1j zt 1 3 2s-1 2n+1 n+3 n+2s-1 z 4s+l n-1 n-2s (11)
mi{ 2| 2°4°"" 25| {n-2 " n-4""" n-2s n °n+tl " n+2s ’
s=0
where t is the largest integer suchthat 2t < m. Since R2t = R2t+1 , we restrict our
further arguments to m = 2t. Extensively written, Equation ( 11 ) becomcs
n-1 1 12 n -1 1 3 2 n2-1 n2-9
Yol z )™ Ta|10lg 2 tYlaca Tz 2
L n"-n n"-4 n"-16
1 3 2t-1 2 n2-1 n2-9 n2-(2t-1) 2
+ | 4t+1 CRE o 5 g cer 5 o | (12)
n -4 n -16 n - (2t)

This is an exact expression for the reduction factor. To obtain a simple estimate for it,

we define
2 2
1 1 3 1 3 2t-1
= =1+ Oif= [ = = = e = 1

S2t 1+5(2 9(2 i + + (4t+1 (2 1 ot ) (13)

We have, obviously,
2 2
SZt n-1 2t n-1 n -9 n -(2t--1)2
T < Byl n 2ttt 2 2 (14)
n -4 n -16 n - (2t)




It can be shown by induction that

2
3 5 2t+1
Sat (E‘ 4" Tt (15)
A comparison with Wallis' product,
2_Lim 1 3 3 5 2t-1  2t+l
T t=eo 2°2°474°77 2t " 2t °
gives the estimate
- 2t+1) < §_, < = (2t+1) (16
rr( 2t — 4 ’ )
Combining (14 ) and ( 16 ), we have
2 2t+1 n-1 3 2t+1 n2-1 n2-9 n2—(2t-1)2
e SPalz) Y4 ez vz 2 2 Gl
n-4 n -16 n -(2t)

For large n, the terms containing n2 are very nearly 1, and, since 2/m=0.64, the

range for R given by Equation ( 17 ) is fairly small. However, if it is not small com-

2t
pared to n, an approximation of Equation ( 12 ) may be worthwhile, We notice that the

factors

N

1 3 2t-1
Pt+4(zg.-‘... _EF—)

in Equation ( 12 ) approach 4/m=1,27 very rapidly. The first of them, 5(1/2)2 =1.25,

is already very close to the limit. Therefore,

2 2 2 2 2 2
n-l)m 1+§ n -1 . -1 n -9 n -1 n -(2t-1) . (18)

nR (— 3 + ... F .
= e g n2-4 n2-4 n2-16 n2-4 n2 - (2t)




If we expand the terms in the bracket and neglect all terms of higher order than n,

we obtain
n-1 5 t(t+1) (4t+5)
—lal+—|t+ ——"""— 19
Ry ( 2 4 2 (19)
6n
(4] . [10] . . . .
Guest and Smith obtain the estimate R2t zszt n. It is quite good, except when
m is comparable to n. For a first estimate, one may even make use of Equation ( 16)

and approximate th ~0.7 (2t+1)/n.

COROLLARY
If a polynomial of (n-1) = degree is fitted to n observations, an exact fit is
achieved, and, therefore, R =1 for the arguments of the observations. For odd n,

the midpoint (n-1) /2 is one of the given points. Therefore, we have the identity

112 n -1 1 3}2 n2-1 n2—9
n=1+5 E 5 9 -2-. -_ 5 s
n -4 n -4 n -16
1 n-2 2 n-1 n -9 4n-4
+ (2n-1) (—2 ik s coo on (20)
n-4 n -16

for all odd n.




SECTION V
THE REDUCTION FACTOR AT THE ENDPOINT

At the endpoint of the interval, x =0 (the other, x =n-1, gives the same results),

we have ¢r =+1; therefore, Equation ( 9) combined with Equation ( 4 ) immediately

gives
1 n-1 n-1 n-2 n-1 n-m
Rm(O)—HIt1+3n-—+1+5m.m+...+(2m+1)~n—+-i...m] 5 (21)
If we consider that 1+3+5... +(2m+l) = (m+1)2 , Wwe have, obviously,
2 2
(m+1) (m+1) n-1 n-2 n-m

——~—>R_(0) > (22)

n ‘n+l " n+2 °°° n+m

The argument used in the corollary of SECTION IV gives Rn-l (0) =1, since the endpoint
is always one of the given points. Therefore, Rm (0) <1 is obvious from Equation ( 21).

This, combined with Equation ( 22 ), gives

2 2
. )' (m+1) (m+1) n-1 n-2 n-m
Min (1, *¥—— > Rm ©0) > "l nee " nim (23)

|

For small n, these bounds can be quite far apart. To obtain an approximation, we expand
the fractions in the bracket in Equation ( 21 ) in series and omit terms containing n and

higher powers. This gives

(m+1) e

S

[3'1+5(1+2)+...+(2m+1)(1+2+...+m)] . (24)

The bracket can easily be evaluated, and we obtain, by combining Equations ( 21 ) and ( 24),

2
(m+1) m (m+2)
R () ~— [1- o5 ] (25)




[4] (9]

Guest, Proschan, and Smith

2
(0] give the approximation, Rm 0) z(m+l)2/n.

This approximation is good for very large n only. It is very poor for small n. For
example, if m =3 and n =10, itgives R ~1.6, whereas the exact value is R =0. 67,
It is much closer to the lower bound R > 0.47 in Equation ( 22). Even the approxima-
tion, ( 23 ), gives the poor estimate Rm ~0.4. Therefore, it is advisable to determine
the bounds given by Equation ( 21 ), and to use the exact expression, ( 20 ), if they are too

far apart.
COROLLARY

The term Rn-l (0) =1, combined with Equation ( 21 ), gives the identity

n-1 n-1 n-2 n-1 1
n-l+3m+5nTl.m+...+(2n—l)n+l...2n_l (26)

for all integer n.

2, ..
This corresponds to the upper bound in Equation ( 21 ).

-10-




SECTION VI
THE REDUCTION FACTOR AT THE PREDICTED POINT
The predicted point is the first point outside the given interval, x =-1 (x=n gives
the same results). The value ¢r (-1,n) is derived in the appendix. Substitution of
Equations (52 ) and ( 4) into ( 9) gives

2 2 2
Rm(-l)zi T T b S e B T

+1 " n+2° 2° 2
n+l (n-1)2 n+l n (n-1) (n-2)
n-1 n-m [n+l n+m
+(2m+1)m...n+m 1" nem . (27)
and
1 n+1 n+l n+2 n+l n+m
Rm(-l)_;[1+3ﬁ +5ﬁ'_n_—§+"'+(2m+l)_n—-1"'n-m] g (28)
Equation ( 28 ) has a remarkable symmetry to (21 ). In a similar way, we derive the
bounds
(m+1 ¢ (m+1)2 m+l n+m
—)<R (-1) < e — ... —— , (29)
m m n-1 n-m
and the approximation
2
(m+1) m(m+2)
=1 ~ + .
Rm( 1) ~ o 1 o (30)

-11-




SECTION VI
THE ASYMPTOTIC BEHAVIOR OF THE REDUCTION FACTOR
Since ¢r (x,n) is rapidly increasing with x for x > n, the variance of the
extrapolated polynomial y(x) is rapidly increasing. Exact values can be obtained by
lengthy computations only. An asymptotic estimate, however, is quite easy. For large x,

the highest term becomes overwhelming in ¢r (x,n), therefore

r
ry 1-2... @r X
§, 60 ~ () Y (31)
l-2...71) (n-1)
Similarly, in Equation ( 9 ) the term with r =m becomes overwhelming. Therefore,
2r| 1.2 (2m) 1 2 2m+1 n-1 n-m
Rm(x)~x 2 " (n-1) (n-m) n " ntl " nrm (32)
(1-2... m) o
or
2r 2 2 2
4x 1-3... (2m-1) n
B4~ (ﬂ (2- i... 2m ) (2m+l 22 (33)
L n -1 n -(m
This gives the asymptotic estimate
2r 2 2
4x n n
R (d) ~ f(m) (T) o (34)
n -1 n -m

The factor, f(m), in Equation ( 33), is bounded by 2/m and 3/4. For small m, it

is closer to 3/4; for large m, closerto 2/m Often the approximation f(m) =0.7

will be sufficient. %
Hans Joksf(

-12-




APPENDIX
SOME PROPERTIES OF GRAM-POLYNOMIALS

A RECURSION FORMULA

For any orthogonal polynomial, a recursion formula,
¢r &)= arx¢r—1 ®) + b1‘¢r—1 Gl crd>r-2 G ()

exists. The coefficients a br and c. can be derived by the following arguments;

we note that ¢r (0) =1 for all r; therefore,

1=b_+c_ . (36)
Multiplication of Equation ( 35) with ¢r-1 (x) and summation over all x gives
-1 2
0=arzx x¢r(x)+brqr_1 . (37)
-0
The same operation with ¢r-2 gives

0=a_ zx— x¢r_1 (x) ¢r_2 ®)+eaq . - (38)

Since ¢r (x) is a symmetric or antisymmetric function with respect to the midpoint

(n-1) /2 of the interval, ¢§(x) is symmetric and it holds that

n-1

.

x-3;—1 ¢i(x)=0 : (39)

-13-




This gives

-1

2 n-1

¢ (0 =""q (40)
z=0 r 2 r

for the sum in Equation ( 37).

To evaluate the sum in Equation ( 38 ), we develop the polynomial x¢r_2 (x) ina

series of polynomials:

x¢r_2 x) = a¢r_1 (x) + polynomials of lower degree. (41)

From this it follows that

n-1

z x¢ 4. ) =aq . (42)
x=0

The term o is obviously the quotient of the highest coefficients of x in ¢r—2 and
¢r 1 which, from Equation ( 3), can be found to be
0= ———= (n-r+l) . (43)

2(2r-3)

From Equations (36), (37), (38), (40), (42), and (43), we obtain a_, br’ and

Cr’ and have the recursion formula for Gram-polynomials:

_ _2@r-1) [ n-1 _r-1 n+r-l
¢r frn) R r(n-r) (x 2 )d?r p &0 r n-r d?r-2 IR (2)
THE VALUE AT THE MIDPOINT
For the midpoint, x =(n-1) /2, Equation (44 ) simplifies to
n-1 r-1 n+r-1 n-1
¢r 2 ° n) " "r n-r ¢r-2 A n). (45)

14—




This allows recursive calculation of the even-order polynomials for the midpoint; namely,

n-1 s 1 3 2s-1 n+l n+3 n+2s-1
ez W=D 3T a2 wd’ npa (46)
The odd-order polynomials equal zero at the midpoint.
THE VALUE AT THE PREDICTED POINT
We call x =-1 the "predicted point.'" Since (-1) 0 (-1)li !, Equation ( 3)
simplifies to
T r(r+l) r(r-1) - (r+l) (r+2)
D=1 Te) T T 2 o) g
r(r-1) ... 1° (r+1) ... (2r)
+1-2...r-(n-1)...(n-r) (47)
This is a hypergeometric series, namely,
¢r (-1,n) = F(r+l;-r; -n+l;1) . (48)
3
For Gauss' relation, (2]
(c-a-b) F(a,b;cx) - (c-a) F (a-1,b;cx) + b(1-x) F(a,b+l;c;x) =0 (49)
we obtain, for x =0, since F is finite,
F@,bjc;1) = ——2— Fa-1,b;c;1) (50)
( ! b b c_a_b ? ? b .
And, if a > 0, by induction,
c-a _ _c-a+l c-1
Fl,bje;l) = = = ——= ...~ (51)

3See Formula 6.

-15-




since F(0,b;c;1) =1.

re-arrangement gives

¢, (-1.n)

Substitution of ¢ = -n+l1,

a=r+l and b=-r and

n+l

=F(r+l, -r;-n+l;1) = —

-16-

n-

n+2

Ol =Tt

n+r
n-r
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