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ABSTRACT 

Least squares approximations obtain parameters with a variance 
lower than those of the data from which they are obtained.   A 
least squares polynomial approximation to observations may be 
used to obtain "smoothed" values of the observations or to make 
predictions.   The reduction of the variance achieved by this 
process is determined for several special cases.   Some properties 
of the Gram-polynomials necessary for the analysis are derived. 
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SECTION I 
INTRODUCTION 

APPROXIMATION TECHNIQUES 

If a function is empirically given, e.g. , by discrete observations, it is frequently 

desirable to represent these observations by analytical expression, e. g. , polynomials.   If 

the values of the function are not exactly known, but subject to error, then it is not reason- 

able to obtain an exact representation.   It is more appropriate to use an approximate repre- 

sentation, where the differences between the observations and the approximation are so 

small that they can be considered as errors of the observations rather than as inaccuracies 

of the representation.   If the "true" nature of the empirical function, e. g. , the degree of a 

polynomial, is known, it can be used to approximate the observation and determine its 

parameters.   The differences between approximation and observation can be considered as 

pure errors of the observations. 

One way to find the "best" approximation, which minimizes an overall measure for the 

error of the approximation, is a least squares approximation.   The randomness of the 

errors, however, precludes an approximation method that will find the "true" function and 

separate it from the observational errors.   Thus, some part of the observational errors 

can always influence the approximating function, and, consequently, the differences will con- 

tain not only observational errors but also inaccuracies of the approximation.   The larger 

the number of errors, the more likely the probability that the random effects will cancel out 

and that the approximating function will be close to the "true" function.   On the other hand, 

the more the parameters necessary to describe the approximating function, the less the 

reduction of this random error will be.   These functional dependencies are the subject of 

this analysis. 

LEAST SQUARES APPROXIMATIONS 

This analysis is restricted to an important special case:  the values of the empirical 

function ("observations")    y      are given for    n    equidistant values of the argument 

x, x = 0 ...  n-1,    and the approximating function is a polynomial   y(x). 

-1- 



Some important applications of least squares fitting include: 

(a) smoothing a series of values; 

(b) estimating more precisely the present position of an object during tracking; and 

(c) determining the expected position   y(x)    of the object being tracked and its vari- 

ance at the time of the next observation. 

In (a), the polynomial values at the midpoint of the components are used as "smoothed" 

values; in (b), a polynomial of appropriate degree is fitted to the last observations, and 

y(x)    at the endpoint is used as the last position.   Thus, exact expressions and bounds for 

the variance of the polynomial can be given for (a), (b), and (c) at the midpoint, the end- 

point, and at the first equidistant point outside the given interval, respectively. 

General expressions for the variance are well known,     ' but their use requires 

extensive numerical calculations.   The dependency of the variance on the number of observa- 

tions and on the degree of the approximating polynomial is not obvious.   Special studies, 
[1] [3 4 5] 

sometimes incidental to other problems, have been made by Cowden,        Guest, 

Proschan,       and Smith. Smith's problem is slightly different; she assumes that the 

observations are uniformly spread over the whole interval.   Her exact results for the mid- 

and endpoints are, therefore, only approximations for the problem discussed in this report. 
[4] 

Guest       obtains the same approximations in a much easier way by the use of Legendre 

polynomials.   Proschan finds the same approximation for the endpoint by use of determi- 

nants, similar to Smith.   However, these approximations are good for large    n    only; for 
[3 51 

small   n,    they can be very poor.   Guest and Cowden give tables for the determina- 

tion of the variance of    y(x),     based on numerical calculations.   Using Guest's tables, 

one has to notice that    k = 1    is not the endpoint of the interval, but, rather,   k = (n-l)/n. 

Some checks showed good agreement with the results obtained from our exact formulas. 

Numbers in brackets refer to citations in the Bibliography. 



SECTION II 
APPROXIMATION BY ORTHOGONAL POLYNOMIALS L '   '   '   J 

Let    n    values    y      ("observations") be given for equidistant arguments ("times") 

x = 0 .. . n-1.   Let   y(x)    be a polynomial of degree    m    to be fitted to the    y      such 

that 

^n_1 T       1 2 > y -y(x)       =min. (1) 

If the   y     are subject to random variations, then the coefficients of the polynomial are also 

subject to those variations and, consequently, the value of   y(x)    for any given    x. 

Least squares approximations are simplified by the use of orthogonal polynomials 

4   (x).   They are characterized by the orthogonality relations 

> 0 if r = s 
S w(x) 4   (x) A   (x) = F* , (2) 
Cx r        s }o ifr^s 

In the case of equal weights,     w(x) = 1,  and equidistant arguments,    x = 0 ... n-1,    they 

determine the Gram-polynomials (sometimes called Chebysheff-polynomials; but this name 

is more commonly used for other orthogonal polynomials).   An explicit expression for 

them is 

*r(x,n)=£r      (VfJIffl«»/*-1)*- O) 
i=0 

where    x      = x(x-l) ... (x-i+1),    and the sum of their squares is 

n n+1       n+2 n+r 
\ = 2r+l  ' n-1 ' n-2 '" 5H? ' (    ' 



The approximation which satisfies Equation ( 1 ) is given by 

y(x) = £ _YtK
(?l)/qr ' (5) 

r=0 

where 

,n-l 
Yr=   1       VU§)> (6) 

From ( 5 ) and ( 6 ) we obtain 

,n-l 

if we define 

y« =)     yFc(x,Q , (7) 

(x,§) = )      *«+(§) /a. (8) 
^r=0 

Equation ( 7 ) is very convenient for practical use, since it is linear in the    yp.      The 
[1] 

numerical values of the    c(x,S),    for several    n    and    m,    are given by Cowden, 

Hilde brand,[6 "'and Milne. ^8 ^ 



SECTION m 
A GENERAL PROPERTY OF THE REDUCTION FACTOR 

If the    y     are uncorrelated random variables, all with the same variance    a,    then 
[5 71 

the variance of   y(x)    is known to be 

V(x)=a^       4r2(x)/qr. (9) 
r=0 

The term    R(x) - V(x) /a   may be called the reduction factor.   It can be calculated for any 

x    from Equation ( 9 ) as, e. g. , in Cowden        and Guest. However, if one uses 

Equation ( 7 ) to obtain the polynomial value    y(x)    for any of the given equidistant arguments 

x,    it can be obtained in a simpler way.   Comparison of Equations ( 9 ) and ( 8 ) shows 

R(x) =c(x,x) . (10) 

Verbally expressed:  the reduction factor for the variance, achieved by a least squares 

polynomial approximation to equally weighted equidistant observations, at any of the observa- 

tion points, equals the coefficient of the observation at this point in the linear combination of 

the observed values giving the polynomial value at the point under consideration.   This 

gives immediately, without calculations, the reduction factor if one uses the numerical 

expression for ( 7 ) as given in Cowden,        Hildebrand, and Milne. 

For a special case, the midpoint of an uneven number of observations, this result has 
rg-| 

been obtained by Milne. 

-5- 



SECTION IV 
THE REDUCTION FACTOR AT THE MIDPOINT 

The midpoint of the interval    x = 0 .. . n-1    is    x = (n-1) /2.     The value of    ((>       at 

this point is derived in the Appendix.   We substitute Equations ( 4 ) and ( 46 ) into ( 9 ), 

write    r = 2s,     since, in effect, we have to sum the even terms only, and obtain 

H 
n-l\   _ T        [l     3 2s-l\   [n+1     n+3 n+2s-l\    4s+l     n-1     n-2s 

m     2 <J- 4 '        2s  I   \n-2 ' n-4 ' n-2s n    ' n+1 ' n+2s .    (11) 

where    t    is the largest integer such that    2t < m.     Since    R     = R ,     we restrict our 

further arguments to    m = 2t.     Extensively written, Equation ( 11 ) becomes 

(n-ll 
'2t     2 

1 
+ — 

n 

I \2     2 i 12    2 2 
,   r   1     n-1      „   1     3       n -1     n -9 
1+5   2      -2~ + 9   2*4       — • — 

n -n n-4    n -16 

4t+l 
1 3 
2 "  4 

2t-l 
2t 

2    2 2 
n-1     n -9 

n2-4    n2-16        n" - (2t) 

2 2 
n -(2t-l) 

'"     2    ,„,.2 
(12) 

This is an exact expression for the reduction factor.   To obtain a simple estimate for it, 

we define 

+5|i|2 + 9fi.!|2 
2t 2 2     4 

,     1     3 2t-l 
(13) 

We have, obviously, 

-2*<R     M 
n 2t     2 

c 9 2 
2t    n-1     n -9 

2 2 
n -4    n -16 

2 2 
n -(2t-l) 

2 2 
n   -(2t) 

(14) 

-6- 



It can be shown by induction that 

S2t = 
3     5_ 
2' 4 

2t+l 
2t (15) 

A comparison with Wallis' product, 

2_ _  Lim      1_    3     3     5 2t-l     2t+l 
n ~ t=<*>      2 * 2 ' 4 * 4 "■    2t    '   2t 

gives the estimate 

2(2t+l)   < S2t  < |<2t+l) (16) 

Combining ( 14 ) and ( 16 ), we have 

2       2t+l n^l 
TT  '     n 2t    2 

3 2t+l     n2-l     n2-9 n2-(2t-l)2 

4 '     n    '    2     *    2        ' *'    2    /nÄ 2 n -4    n -16        n  - (2t) 
(17) 

For large    n,    the terms containing   n      are very nearly 1, and, since    2/n = 0.64,    the 

range for    R       given by Equation ( 17 ) is fairly small.   However, if it is not small com- 

pared to    n,    an approximation of Equation ( 12 ) may be worthwhile.   We notice that the 

factors 

4t+l i    £ 
2 '  4 

2t-l 
2t 

in Equation ( 12 ) approach    4/rr = 1. 27    very rapidly.   The first of them,     5(1/2)    =1.25, 

is already very close to the limit.   Therefore, 

nR 
n-1 

2t -! 

2 2 2 
n-1      n-1    n -9 
-2— + — --T- + 

n -4      n -4    n -16 

2 2 2 
n-1        n -(2t-l) 

n2-4 
2 2 

n   - (2t) 
(18) 
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If we expand the terms in the bracket and neglect all terms of higher order than    n, 

we obtain 

T,        n-1      ,     5 nR2t TH
1+

I 
t i 

t(t+l) (4t+5) 

6n2 
(19) 

Guest        and Smith obtain the estimate    R    «*S     / n.        It is quite good, except when 

m    is comparable to    n.      For a first estimate, one may even make use of Equation ( 16 ) 

and approximate    R    ^0.7 (2t+l)/n. 

COROLLARY 

If a polynomial of    (n-1) degree is fitted to    n    observations, an exact fit is 

achieved, and, therefore,    R = l     for the arguments of the observations.   For odd    n, 

the midpoint    (n-1) /2    is one of the given points.   Therefore, we have the identity 

I   l 2 i \        2 2 
1   2   n -1      Jl     3   2  n -1     n -9 n = 1+5M  -2-+92-4   —'-rr 

\  l      n -4        i '     n -4    n -16 
+ .. 

+ (2n-l) 
1 3 
2 '  4 

n-2   2   n -1 
n-1 

n2-9 
2 2 

n -4    n -16 

4n-4 
2n-l 

(20) 

for all odd    n. 

-8- 



SECTION V 
THE REDUCTION FACTOR AT THE ENDPOINT 

At the endpoint of the interval,    x = 0    (the other,    x = n-1,    gives the same results), 

we have    ^    = +1;     therefore, Equation ( 9 ) combined with Equation ( 4 ) immediately 

gives 

R (0) =- 
m   n 

, „ n-1  _ n-1 n-2      .„  ,. n-1   n-m 
1+3 —- + 5 —-  . —- + ... + (2m+l) —- ...   

n+1   n+1 n+2      x   ' n+1   n+m (21) 

2 
If we consider that     1+3+5 ... +(2m+l) = (m+1)   ,     we have, obviously, 

ÖHV>R   (o)><mV.Hli.^...^    . (22) 
n mx n n+1    n+2        n+m *      ' 

The argument used in the corollary of SECTION IV gives    R       (0) = 1,    since the endpoint 

is always one of the given points.   Therefore,    R    (0)   < 1     is obvious from Equation ( 21 ). 

This, combined with Equation ( 22 ), gives 

.2 1 

V «4. ^Mm<*>^". £•£§...£= • 

For small    n,    these bounds can be quite far apart.   To obtain an approximation, we expand 

the fractions in the bracket in Equation ( 21 ) in series and omit terms containing   n   and 

higher powers.   This gives 

(m+1)2 - -  h • 1 + 5 (1+2) + ... + (2m+l)(l+2+ ... + m) 1    . ( 24 ) 

The bracket can easily be evaluated, and we obtain, by combining Equations ( 21 ) and ( 24 ), 

(25) R    (0)-<^)- 
m n 

m (m+2) 
2n 



[4] [9] [10] 2/2 
Guest, Proschan,       and Smith give the approximation,     R    (0) «s(m+l)   /n. 

This approximation is good for very large    n    only.   It is very poor for small    n.     For 

example, if    m = 3    and    n = 10,    it gives R «1. 6, whereas the exact value is    R = 0. 67. 

It is much closer to the lower bound    R > 0. 47    in Equation ( 22 ).   Even the approxima- 

tion, ( 23 ), gives the poor estimate    R    «0.4.      Therefore, it is advisable to determine 

the bounds given by Equation ( 21 ), and to use the exact expression, ( 20 ), if they are too 

far apart. 

COROLLARY 

The term    R       (0) = 1,     combined with Equation ( 21 ), gives the identity 

nssl+8£4 + 6s4.Jt| + ...+(?ta.1)a4... -A- (26) 
n+l        n+1     n+2 v        ' n+1 2n-l ' 

for all integer    n. 

'. 

2 
This corresponds to the upper bound in Equation ( 21 ). 

-10- 



SECTION VI 
THE REDUCTION FACTOR AT THE PREDICTED POINT 

The predicted point is the first point outside the given interval,    x = -1    (x =n    gives 

the same results).   The value    ^   (~l>n)    is derived in the appendix.   Substitution of 

Equations ( 52 ) and ( 4 ) into ( 9 ) gives 

m n 
nj.     (n+1)2        n-1    n-2     (n+1)2     (n+2)2 

1+3 n+1* ,    .,2        n+1 'n+2' 2'   .    _2 + 

(n-1) (n-1)       (n-2) 

+ (2m+l) — 
n-1 n-m  /n+1 n+m 
n+1 "   ' n+m    n-1 '   ' n-m 

(27) 

and 

Rm<"1>   =n m n 
,   „ n+1     _ n+1    n+2 ..     ,. n+1        n+m 
1+3 —r  + 5 —r .—- + ...  +   2m+l  —T .. . —- 

n-1 n-1     n-^ n-l n-m 
(28) 

Equation ( 28 ) has a remarkable symmetry to ( 21 ).   In a similar way, we derive the 

bounds 

(m+1)   < R       x   < (m+1)     m+1       _ n+m 
n m m       n-1   ''' n-m 

(29) 

and the approximation 

R    (-1) m 
(m+1) 1 + 

m(m+2) 
2n 

(30) 

-11- 



SECTION VII 
THE ASYMPTOTIC BEHAVIOR OF THE REDUCTION FACTOR 

Since    $   (x,n)    is rapidly increasing with    x    for    x > n,    the variance of the 

extrapolated polynomial   y(x)    is rapidly increasing.   Exact values can be obtained by 

lengthy computations only.   An asymptotic estimate, however, is quite easy.    For large    x, 

the highest term becomes overwhelming in   <j>   (x,n),    therefore 

4r(x) ~ (-1) 
(r)    1 • 2 ...   (2r) 

(1- 2 ... r)2       (n-l)(r) 
(31) 

Similarly, in Equation ( 9 ) the term with    r = m    becomes overwhelming.   Therefore, 

12 
R    (x) ~x 

m 
2r 1-2 (2m) 

(1-2 ... m) 
2 *  (n-1) ...  (n-m) 

2m+l    n-1 
n    ' n+1 

n-m 
n+m 

(32) 

or 

R    (x) 
2r 

1- 3 ...  (2m-l) 
2-4 2m 

2m+l 
\ I n2-l 

2       2 
n -(m ) 

(33) 

This gives the asymptotic estimate 

R    (d) ~ f(m)   — 
m n 

2r 

n2-l 
2      2 

n -m 
(34) 

The factor,   f(m),     in Equation ( 33 ), is bounded by    2/TT   and     3/4.     For small    m,    it 

is closer to    3/4;    for large    m,     closer to    2/TT.     Often the approximation    f(m) =0.7 

will be sufficient. 

-12- 



APPENDIX 
SOME PROPERTIES OF GRAM-POLYNOMIALS 

A RECURSION FORMULA 

For any orthogonal polynomial, a recursion formula, 

<tr (x) = a^^ (x) + br<(.r_1 (x) + c^r2 (x) (35) 

exists.   The coefficients    a  ,     b      and    c      can be derived by the following arguments: 

we note that    <j>   (0) = 1    for all    r;    therefore, 

1 =b   +c 
r      r 

(36) 

Multiplication of Equation ( 35 ) with    <(i       (x)    and summation over all    x    gives 

0 =a ) xcj»   (x) + b q    . 
4=o      r rr_1 (37) 

The same operation with    $ gives 

0 = a    )        x<)>     , (x) 4    o (x) + c q 
r L    n       r-1      Tr-2 r r- 2    ' 

(38) 

Since    ()>   (x)    is a symmetric or antisymmetric function with respect to the midpoint 
2 

(n-1) /2    of the interval,    if   (x)    is symmetric and it holds that 

4=0 

1 n-l] 
X   ■ _   

2 \ 
<t>r(x)=0     • (39) 

-13- 



This gives 

£       4rW = !Tlqr (40) 

To evaluate the sum in Equation ( 38 ), we develop the polynomial   xc)>       (x)    in a 
1  — — 

for the sum in Equation ( 37 ). 

To evaluate the si 

series of polynomials: 

x<)>       (x) = a(j»       (x) + polynomials of lower degree. ( 41 ) 

From this it follows that 

I        "^.iW^W^Vj    • (42) 

The term    a   is obviously the quotient of the highest coefficients of    x    in    ^ an(* 

4      ,    which, from Equation ( 3 ), can be found to be 

a=   ^irVn-r+1>     • <43> 

From Equations ( 36 ), ( 37 ), ( 38 ), ( 40 ), ( 42 ), and ( 43 ), we obtain    a  ,    b  ,    and 

c   ,    and have the recursion formula for Gram-polynomials: 

,    .     . 2(2r-l)  I       n-l\ ,        .     .      r-1 n+r-1   ,        .     . , . . . d>   (x,n) = --^ -*-   x — U        (x,n) ^       (x,n)     . (44) Tr r(n-r)   I 2   I T r-1 r      n-r     Tr-2 

THE VALUE AT THE MIDPOINT 

For the midpoint,    x = (n-1) /2,    Equation ( 44 ) simplifies to 

M 2 
r-1   n+r-1    , (n-1 
r      n-r     Tr-2      2 

-14- 



This allows recursive calculation of the even-order polynomials for the midpoint; namely, 

,      [n-1 I      . ..s   1     3 2s-l     n+1     n+3 n+2s-l , _% 

hs \—  •   n r (_1)      2' 4--'~ls"-^^-n^4---~n^2T     ' ( 46 > 

The odd-order polynomials equal zero at the midpoint. 

THE VALUE AT THE PREDICTED POINT 

We call    x = -1    the "predicted point. "  Since    (-1)*1' = (-1)1 i! ,    Equation ( 3 ) 

simplifies to 

/ n = i + r<r+1) + r(r-l)   •    (r+1) (r+2) 
rK    ' l(n-l) 1- 2 •  (n-l)(n-2) 

r(r-l) ■■■!■ (r+1) ...  (2r) 
1-2 ...   r- (n-1)... (n-r)      ' K      ' 

This is a hypergeometric series, namely, 

<j.r(-l,n) = F(r+l;-r;-n+l;l)    . (48) 

[2]3 

For Gauss' relation, 

(c-a-b) F(a,b;cpc) - (c-a) F (a-l,b;cpc) + b(l-x) F(a,b+l;c;x) =0     , (49) 

we obtain, for    x = 0,    since    F    is finite, 

F(a,b;c;l) = -~j- F(a-l,b;c;l)    . (50) 
C ~*cl — D 

And, if    a > 0,    by induction, 

c-a c-a+1 c-1 
F(a,b;c;l)=   r   =    rrr   ...  —r—.      , (51) v '     c-a-b      c-a-b+1 c-b-1 x      ' 

3 
See Formula 6. 

-15- 



since    F (0,b;c; 1) = 1.    Substitution of   c=  -n+1,    a = r+1    and    b =-r    and 

re-arrangement gives 

i   / ■■    v     T, ,    ■, ■.   ,>      n+1    n+2        n+r |    -l,n) =F r+1, -r;-n+l;l) = —- . —-...      . 52 Tr n-1    n-1        n-r 

-16- 
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