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- Summary:

An attempt is made to provide a rational method of constructing
one degree of freedom approximations for impulsively loaded metal
: structures which are analysed according to an elementary rigid-plastic
theory. The approximation follows automatically from a chosen mode

shape, and a criterion for determining good mode shapes is introduced.
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"'1. INTRODUCTION

LI

A,

: The problem of the estimation of permanent deformations in ductile met
structures subjected to high intensity dynamic loading has received increasing
attention over the past fifteen years. The problem is, in its entirety, one of gre
"cﬁlifficulty. Above the complexity of the problem of elastic structures subjected t
transient loading, additional complicating factors which are of importance includ
the dissipation of energy in plastic work, elastic unloading from plastic states, v
hardening, the dependence of yield stress upon rate of strain, geometry change ¢
and divers other non-linear effects. Very few solutions to dynamic loading prob:
have recognized all these factors. More commonly, one or 110re of the factors :
assumed to dominate the behavior of the structure, and all others are neglected .
approximated.

Probably the most widely used approximation3 is the replacement of the
distributed mass of the structure by one or more point masses. This approxima
has been used in conjunction with a variety of idealizations of the material behav

s 56

In fairly simple structurcs the actual distribution of mass, elastic stiffs

and yield stress can be considered. Solutions for an elastic, perfectly plastic

3See , for example:

N. M. Newmark, ""A method of computation for structural dynamics,' Proc. E
Mech. Div., A.S.C.E., 85, (EM3), p. 67, 1959.

C. H. Norris, et al. Structural Design for Dynamic Loads , McGraw-Hill Bool
Co., New York, N. Y., 1959.
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fnaterial have been found4, but are difficult if the load magnitudes are much larger
than those causing the yield stress to be reached. A variety of dynamic loading
problems has been solved using what will be termed in this paper an elementary
rigid-plastic theory. A representative but by no means complete list of papers is
given. > The elementary rigid-plastic theory involves the following idealizations:
(i) For the purpose of the dynamic loading problem under consideration
a ductile material is represented by a rigid, perfectly plastic constitu=
tive equation. All elastic effects are in consequence excluded.
(ii) Geometry changes are assumed to bec small, and the yield stress is

assumed to be independent of the rate of strain.

For example:

H. H. Bleich and M. G. Salvadori, "Impulsive motion of elasto-plastic beams, "
Trans. A.S.C.E., 120, p. 499, 1955,

J. A. Seiler, B. A, Cotter, and P. S. Symonds, "Impulsive loading of elastic-
plastic beams,' J. App. Mech., 23, p. 515, 1956.

bE. H. Lee and P. S. Symonds, '""Large plastic deformations of beams under
transverse impact," J. App. Mech., 19, p. 308, 1952.

M. F. Conroy, '"Plastic-rigid analysis of long beams under transverse impact, "
J. App. Mech., _}_‘_9_, p. 465, 1952.

P. S. Symonds, '""Dynamic load characteristics in plastic bending of beams, "
J. App. Mech., 20, p. 475, 1953.

H. G. Hopkins and W, Prager, "On the dynamics of plastic circular plates, "
z. angew. Math. u Phys., 5, p. 317, 1954.

E. W. Parkes, '"The permanent deformation of a cantilever struck transversely
at its tip,'" Proc. Roy. Soc., A228 , p. 462, 1955,

P. G. Hodge, Jr., "Impact pressure loading of rigid-plastic cylindrical shells, "
J. Mech., Phys. Sol., 3, p. 176, 1955.
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The use of the elementary rigid-plastic theory is the subject of this paper.
It is not within the scope of the report, however, to give a compl‘ete appraisal of
the utility and applicability of this theory. Itis eatirely a valid method of approach,
as are the other idealizations mentioned above, provided that care is taken to define
the range where idealization and reality have something in common, and provided
that experimental evidence confirms the theoretical predictions in this range. The
elementary rigid-plastictheory, when applied to structures subjected to short
duration, high intensity loading, has a range of validity bounded at one end by the
requirement that the deformations should not be so large that geometry change
effects are significant, and at the other end by the requirement that the energy of th
disturbance should be large compared to the energy which could be stored elasticall
in the structure in order to justify the exclusion of elastic effects. These require-
ments are in some senses contradictory since the large disturbance needed to meet
the energy requirement will tend to produce large deformations. Thus the extent
of the possible range of validity of the elementary rigid-plastic theory must depend
on the configuration and flexibility of the structure, and in some cases may not exis
at all.

Experiments show that the rigid-plastic theory almost always requires
corrections for the dependence of yield stress on strain rate, strain hardening and

geometry changes. When these corrections are made, remarkably good agreement
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has been achieved6, showing that the neglect of elastic effects is permissible when
the total energy dissipated is much great;er than maximum energy which could be
stored elastically. "1 appropriate circumnstances it is possible to make the
corrections for strain rate sensitivity and for strain hardening by simply multiplying
the static yield stress by a constant factor7; however, the "appropriate circumstance
are not always obvious, and this method should be used with caution for a highly rate
scnsitive material such as mild steel.

In the authors' opinion the importance of the elementary rigid-plastic theory
lies in its ability to provide, quickly and simply, an estimate of major deformations
due to very large dynamic loads. Such an estimate provides a convenient basis for
more refined analyses and calculations to include effects of strain rate sensitivity,

finite deflections, and other effects when necessary.

S. R. Bodner and P. S. Symonds, "Experimental and theoretical investigation of
the plastic deformation of cantilever beams subjected to impulsive loading, "
J. App. Mech., 29, p. 719, 1962.

E. H. Lee and S. J. Tupper, "Analysis of plastic deformation in a steel cylinder
striking a rigid target," J. App. Mech., 21, p. 63, 1954.

T. J. Mentel, "The plastic deformation due to impact at a cantilever beam with
an attached tip mass,'" J. A. M., 3._2, p. 515, 1958.

T. C. T. Ting and P. S. Symonds, 'Impact of a cantilever beam with strain rate
sensitivity, ' Proc. Fourth U. S. Nat. Congr. App. Mech., A. S. M. E.,
p. 1153, 1962.

A. J. Frick and J. B. Martin, ""The plastic deformation of a bent cantilever,"
Tech. Rept. NSF GP1115/16 from Brown University to the National
Science Foundation, April 1965.

7E. W. Parkes, '"The permanent deformation of a cantilever struck transveisely at

its tip, ' Proc. Roy. Soc., A 228, p. 462, 1955,
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This report will be limited to the discussion of one dimensional cont
i.e., structures made up of bars and rods, curved or straight, whose cross:
dimensions are small compared with their length. Generalized stresses (bel
moments, axial force, etc.) and generalized strains (curvatures, axial strai
will be used in the analysis. The following description of the plastic flow rul
rigid-perfectly plastic material follows Prager.

Let the generalized stresses acting at a section be

. '= l’...!
QJ (i n)

and let the associated generalized strain rates be

G.(j = 1,eee,n).
4 G

The dimension of a particular component of generalized strain is such that t!
stress-strain product has the dimension of work per unit length. Tuv stress
relation is written in terms of a yield function ¢ (Qj) which must be convex a
which must contain the origin. The generalized strain rates are given in ter

the generalized stresses as follows:

qj=>‘< ¢(Qj)>-5%._ (1)

J

where

<e(Q)>=1 when  ¢(Q) =0

8W. Prager, An Introduction to Plasticity. Addison Wesley Press, (Readin;
Massachusetts), 1959.
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<§(Qj)>= 0 when é(Qj)< Y

A>0 but otherwise unspecified.

Stresses such that
] (Qj) >0

are not admitted.

The geometric interpretation of equation (1) is now well known. If the r
components of the stress Qb, are plotted as coordinates in an n dimensional space
a stress point is defined. Similarly the convex function ¢ = 0 may also be plott
as a closed surface in the stress space. If the stress point lies inside the surfac
® = 0, the strain rate is zero. If the stress point lies on the surface, the magnit
of the strain rate vector is not specified. However, if qj is plotted in the stress
space with the stress point as origin, the strain rate vector is required to have t
direction of the exterior normal to the surface &= 0 at that point. A two dimen:
representation of this interpretation is given in Fig. 1.

This geometrical approach demonstrates that if Qj* is any other admis

state of stress (Fig. 1), then
Q. -0 54q >0 (2)
T T

*
Further, if Qj itself lies on the yield surface and is associated with strain rate
. X : .
q. (shown in Fig. 2), it is clear that by a second application of the concept

deomonstrated in equation (2),

@ -Q " -4.">0 ;
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< These inequalities have been discussed in a more general context by Hi119 and
Drucker. .

Inequality (3) may be used to show that the velocity history at any point
in a structure following the application of high intensity time dependent loading is
unique, provided that changes in geometry may be ignored and that ce- tain continuity
requirements are satisfied. This result has been discussed by Martin“, and is
based upon earlier work by Drucker12 which appears to have passed unnoticed by
most workers in this field.

Suppose that a given structure is subjected to the following loading and

boundary conditions: On length S_of the body time dependent tractions ’I‘i

T

(i=1, 2, 3)are specified, and on the remainder of the structure Su time dependent

t

velocities {li are prescribed. S, and Su’ which together comprise the whole

T
structure, may themselves be time dependent. Further, let the velocities at time

t = 0 be given by V. These quantities define the problem. Assume now that two

solutions can be found. First, velocities hi associated with accelerations 'tii ,

9

R. Hill, "A variational principle of maximum plastic work in classical plasticity, "
Quart. J. Mech. App. Math., 1, p. 18, 1948.

loD. C. Drucker, "A more fundamental approach to stress-strain relations,"
Proc. lst U. S. Congr. App. Mech., A.S.M.E., p. 487, 195].

“J. B. Martin, "A note on the uniqueness of solutions for dynamically loaded
rigid-plastic and rigid-visco-plastic continua,' Tech. Rept. NSF GP1115/12
from Brown University to the National Science Foundation, September 1964,

12D. C. Dricker, "A definition of a stable inelastic material," J. App. Mech., 26,
p. 101, 1959, “"'
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. . X . . X
resses Q , strain rates q.. Secondly, velocities u accelerations u, stresses
* . . * . . . .
» strain rates qj . Both solutions satisfy all the ficld equations.

Consider the two solutions at sorae time t >t Since the tractions, inertia
rces and stresses of each solution are in internal and external cquilibrium, the
ferences in these quantities are in equilibrium. Similarly, the differences in the
*ain rates and velocities are compatible. Further, the difference in the tractions

nishes on ST' and the difference in displacements vanishes on S . In consecquence,
u

ym the priuciple of virtual velocities,

Ld " [ ] * * . . * -
- m (u, - y{u, -u )ds = (Q.-Q. ){(q.-q. )as (4)
1 J J J J
S S
.ere m is the mass per unit lengtr. of the structure. Fron. {3), the right$and side
non-negative. Hence, provided that the velocity at each point is a continuous

iction of time, we may write

- '* * .*
T s m(ui-ui)(ui-ui)dS§O (5)

T

L . *
is seen that a non-negative quantity involving the velocities u,, u, must decrease
i i

. . %
th titne. At time t = 0, however, u == vy, and the non-negative quontity is
. . .
tially zero. It follo . s that u, = u, for all t >0.
The restriction imposed by the requirement that the velocity at each point

ould be a continuous function of time is a serious one in general. It may readily

shown that when discontinuities are permitted th> solutions to certain problems are
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not unique (Ting”). In practice, however, a large class of problems where
discontinuitics do not occur is of interest. This is the class of st;'uctural proolems
where shear and axial strains are stipulated zero (bending and torsion strains are
permitted). The velocity at each point will be a continuous function of time in thesec
cases, and hence uniqueness follows. This report will be restricted to problems
falling into this class,
Further, the report will be concerned only with impulsive loading problems.

These problems may be characterized in exactly the same way as the general
problem given above with the following restrictions:

(i) The tractions applied to ST will be taken to be zero.

(ii) The velocities prescribed on Su will be taken to be zero.

(iii) Su and S_, will be assumed to be time independent.

T
The impulsive loading problem is thus essentially one in which initial velocities are
prescribed over the whole structure at time t = 0; thereafter, no external forces do
work on the structure.

No direct technique exists for determining the response of the structure to
this (or any other more complex) form of loading. A solution must be sought on a
irial and error basis. If a solution can be found which satisfies all the conditions
(equilibrium, compatibility, yield and the stress-strain relation), the uniqueness

result assures that this is the only solution for the velocity as a function of space

and time.

13T. C. T. Ting. Private communication, March 1965.
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The response of a one-dimensional rigid-plastic structure to impulsive
»ading is characterized by two distinct prases of behavior, In the first phase,
:avelling "hinges'' (discrete points at which plastic deformation occurs) associated
ith discontinuities in the acceleration field are found. In the second phase, deforma-
on occurs without change of shape of the velocity field, The equations of the second
hase may be written in terms of separate functions of time and space purameters,
nd hence are easily formulated.

. . _ . . 14 .

In considering the elementary rigid-plastic solutions, Symonds™  emphasized
1at in certain cases very simple closed form solutions of impulsive loading problems
an be obtained, for example by momentum conservation equations in finite form.

o, 15 , > , , .
xamples were gi-en = where slightly modified problems required numerical irtegra-
on of the equations. Further examples have been given in the literature. Thus the
roblem of a mass striking a fixed cnd beam was solved in closed form by Parkes’

ut for the pin ended case the equations for the first phase have to be solved

-
umerically (E zra1 ).

4P. S. Symonds, ''Large plastic deformations of beams under blast loading, "
Proc. Second U. S. Nat. Congr. App. Mech., A,S.M.E., p. 505, 1954.
5F‘. S. Symonds, '"'Simple solutions of impulsive loading and impact problems of
plastic beams and plates, ' Tech. Rept. UERD-3 from Brown University
to the Norfolk Naval Shipyard under Contract N1895-1756 A, April 1955.
6E. W. Parkes, "The permanent deformation of an encastre beam struck
trans-rersely at any point in its span,' Proc. Inst. Civ. Engrs. (London),

10, p. 266, 1958.

7A. A. Ezra, "The plastic response of a simply supported beam to an impact
load at the center,’” Proc. 3rd U, S. Nat., Congr. App. Mech., A.S. M. E.,

p. 513, 1958.




elle

A further example is given in Fig. 3. This is a fixed end team subjected to
impulsive loading so that the velocity is Yo in the region of length b. The complefe
solution can be easily obtained in closed form for any ratio b/f. However, if the
ends are pinned rather than clamped a quite unpleasant numerical solution is require
in order to obtain the three quantities required to define the motion in the first phase
This example will be discussed later in the paper.

Although the solution by numerical integration of a problem of elementary
rigid-plastic theory is almost certain to be much less difficult than the solution of
the same problem according to elastic-plastic theory, it may be tedious enough so
that, for purposes of first estimates at least, one would welcome a simple approxim
method. Such methods have frequently been used. The most common method is
equivalent to the replacement of the structure by a mass-spring system of one degre
of freedom. Matching the model to the actual problem has been done in various ad
hoc ways. No attempt seems to have been made to generalize or systematize the
various approximate methods.

This report will discuss a technique of approximation which is closely
related to the matching of one degree of freedom models. Using an argument akin
to that used to establish uniqueness, it will be shown that the solution to one impulsi:
loading problem may be approximated by the solution of a problem involving the sam
siructure but different initial velocities.

To make use of this property we shall first give, for illustrative purposes,
the solutions to two simp%e problems, and then show how approximations may be
constructed for these and other problems. Finally, we shall discuss the relation

between the two approaches to approximation, showing that the concepts of the previc
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paragraph may be used to provide a rational method of matching one degree of

freedom models to the structure.
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| 2. SOME EXAMPLES OF SIMPLE SOLUTIONS

In this section we shall present two problems which can be very simply
solved with a rigid-plastic theory. These solutions are given primarily to illustr
problems where the solution for the first phase, when travelling hinges occur, ca
written in closed form
(i) The first problem considered will be the uniform contilever subjected to
transverse impulse on a point mass attached at the tip. The solution to this prob
was obtained by Parkes7. The beam, with the relevant physical parameters, is
shown in Fig. 4. At time t = 0, the tip mass acquires a velocity v. Shear strai
are neglected in the analysis, and hence the bending moment is constrained to be
between +M0 and -Mo for all shear force values.

In accordance with the trial technique for solution, a response is postula
and then checked. An assumed velocity field at time t >0 is shown in Fig. 5(a).
The section AB of the beam rotates about B, and thus the bending moment at B m
be zero. 3BC remains stationary, and thus for equilibrium of BC [Fig. 5(b)] the ¢
force in BC must be zero and the bending moment must be Mo. Certainly this
distribution of velocity and strain rate is kinematically admissible, and the stres
strain relation has been satisfied.

We give the solution obtained by Parkes7 by writing conservation of
momentum equations for the beam. Since no external forces act on the beam the

linear morentum of the beam cannot be changed: hence at time t

2 - Gv (6)

Gz +
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Angular momentum about a line through A perpendicular to both the beam center line
and the direction of motion will be considered. The initial angular momentum about
this line is zero; hence at time t

mx

(== =Mt (7)

X
3 o)

z)

These equations give z and t in terms of the parameter x. Introducing the dimension-

less parameters

vy = mt/2G , E=x/1,

(6) and (7) become

z 1
(=) = 5% (8a)
Mt

(o) _ 1 YEZ

G&lv. ~ 3 (1 + vE) (8b)

E increases monotonically tn give increasing t, and the solution remains valid until
£ =1 or the hinge reaches C. Thereafter the beam rotates as a rigid body about C,
and the behavior enters the second phase. Jhe shear force at C it no longer zero;

however, angular momentum about C gives a relation between z and t directly:

2
(1 +_...y)
Mot 3 T +7) +Gv———_(l+y) Gz(l+-—-—3 Y) (9)
Rearranging
Mot z 2
TR A L w (10)
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This relation applies until z = 0.
The equations derived here can be shown to lead to a distribution of bendin
moments which at all times satisfies the yield condition, and hence this is the

solution to the problem. A closed form solution for the final displacement & of the

tip mass may be obtained by integrating the tip velocity equations:

Mo6 1 2
: > =3(I+T) + 3y log (1 + B) (11)
— Glv
2
(ii) As a second example, consider a uniform beam subjected to impulsive

loading over a length b symmetric about the midpoint, sothat the initial velocity is
v, on this section and zero in the remaining length (£ - b) [Fig. 6(a)]. The yield
condition is taken to be the same as that in the previous example. For b = { the

4, 15. In

solution was given by Symonds for clamped end and pin end conditions
that case it is not difficult to obtain solutions in closed form. In practice, if the
ends are constrained against axial motion, the effects of the constraints tend to
dominate when the deflection exceeds magintudes of the order of the beam depth.
These effects have been consideredls, but they lie beyond the scope of the present
discussion.

For b/t < 1, if the ends are built in a closed form solution can be simply
derived. Fig. 6(c) indicates the trial velocity configuration for an instant soon

after motion begins. The sections AP and QC have zero shear force and bending

moment -Mo and Mo’ respectively. The plastic boundary points are at

l8P. S. Symonds and T. J. Mentel, ""Impulsive loadings of plastic beams with axial

constraints,' J. Mech. Phys. Sol., 6, p. 186, 1958.
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= & (1)

and

]
"

& (t)e ,

and these define the motion in this stage. They can be found by writing the two
equations of momentum conservation, namely of linecar momentum and angular

momentum about any point in AP or QC. Omitting details, the following results

are found:
12M ¢t
2 2 o
51 - 52 2 — (12)
ml! vo

This stage ends when the hinge at P reaches the support point or that at Q reaches
the midpoint. If b < £/2, the subsequent stage involves the pattern shown in Fig. 6(d),
the unknown quantities defining the motion now being the midpoint velocity v(t) and
El(t). Momentum equations enable us to find these as follows:
12M t
b ()

E1= 41 * mblvo i13a)

4v 48 Mot
> =3+ (13b)
v 2
mb v
o
These equations hold for times t such that
48 M t
1< 2 < 2! -3 (14)
= 2 - b
mb Yo
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The latter time corresponds to the instant when the hinge at P reaches end A of tt
seam. The two stages treated above comprise the first phase of the motion.

In the second phase there are stationary plastic hinges at A a:nd C. Eact
half beam rotates as a rigid bar. The midpoint velocity v is found, by writing an

angular momentum equation, to be given by

212 v 61 48 Mot
T Y (15)
b o mb v
o
The beam comes to rest when t = tf , where
48 Motf 61
= -3 (16)
2 b
mb v
o

The deflections in the various stages are easily found by integrating the velocities

written above. The result for the final midpoint displacement is

mbzv | 1
0 + In

12 M [ 4 2b
o]

u = +1],b<—é—- (17)

f
The three terms show respectively the contributions from the three stages of mot:

Throughout the above analysis the yield condition is everywhere satisficd
Since the equations of dynamics, the boundary conditions and the initial velocity
distribution are all satisfied, the result is the exact solution (according to the
elementary rigid-plastic theory). The above results apply for

2b/t < 1



F—
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A similar analysis for
2b/1 2 1
gives the result
2
e S oo
o b

When the ends of the beam are pinned rather than built in, the solution for
general b/2 < 1 cannot be obtained in thte simple manner used above. The velocity
pattern and free body diagram for the first stage are shown in Figs. 7(b) and 7(d).
These enable the initial velocity conditions and all other requirements to be satisfied.
There are now four unknowns; in addition to 51 and !.2 the velocity v1 at the hinge
point P and the reaction force RA must be found. The four equations in these
unknowns can be written in various ways and will be omitted here. Velocities are
continuous at the hinge points P and Q, but the accelerations are not. The numerical
integrations required to obtain the complete solution are tedious. They have been

carried through for b/f = 0.2 and b/f = 0.7. 19

The two examples given show just how easily some solutions in the elementa:
rigid-plastic theory may be obtained. The case discussed in the previous paragraph
shows, on the other hand, how a small change in initial or boundary conditions may
enormously complicate the analysis. Tho nced for a simpler way of obtaining an

approximation to the complete solution in such cases is apparent.

196. Gangopadhyay. M. Sc. Thesis, Brown University, 1964. Further calculations

on this problem have been carried out by K. Vashi.
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3. ONE DEGREE OF FREEDOM APPROXIMA TIONS

A one degree of freedom model appropriate to a rigid-plastic material is
shown in Fig. 8{a). The spring force=-spring displacement characteristic is as
shown in Fig. 8(b); essentially motion of the mass is resisted by a constant force S
If the spring is initially undeformed and has initial velocity {:o, it is clear that the

velocity u at time t is given by

Gﬁ:Gixo - St for 4 >0
or
u St u
-1'1-= ! - —E;——- for a Z_O * (19)
o o o

Thus the velocity of the mass decreases with time, coming to rest in time te = Gu
(

The final displa "ement is

2
o

/S.

l 1
uf == Gu

In order to apply these resuits to, for example, a beam problem, suitable
values must be found for the quantities U, S and G. These quantities may be refer
to as the equivalent velocity, equivalent resisting force and equivalent mass
respectively.

Consider, for example, the beam shown in Fig. 9(a). This case was
discussed in detail in the previous section. A one degree of freedom approximatio
will be given for this example in order to demonstrate a method of finding the

equivalent quantities.
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In the case of the spring (Fig. 8) the limiting value of the resisting force
may be found by statically applying an external force to the spring and finding the
value of the external force required to initiate flow. This external forcce and the
resisting force will hav: equal magnitudes., This simple icea provides one incans
finding an equivalent force: Apply static loading to the beam and take the himiting
value of the load parameter as the equivalent resisting force.

In this case choose the loading pattern shown in Fig. 9(b). Only half the
beam is shown because of the symmetry of the system. Statics shows that the
limiting value of P is given by

8§ M
P =en® (20)

c 24 -b

Steady flow will occur in the beam when P reaches PC. The flow field associated
with PC suggests iisclf as a reasonable means of choosing the equivalent velocity,
when impulsive loading is applied, it will be assumed that the velocity field has th
same shape as the velocity field stown in Fig. 9(c). (Notice that the velocity field
for steady flow under loads Pc is not unique. The field given is a possible con-
figuration). It remains, therefore, to determine the amplitude of the velocity fiele
as a function of time,

One method of determining the accelcration is to write the angular
acceleration equation for half the beam about the hinge support. If a* and u *are
the velocity and acceleration of the center of the beam,

3 oo ¥

! u
(=) (=) = -2M (21)
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Integrating and substituting from equation (20)

K - t
A 6 (2! - b) Pt (22)
2 c
m/!
* e _
where v is the initial value of u . The equivalent mass, in analogy with equatio
(19), is given by

m!z
G= m (23)

The maximum central displacement is given by

m! 1'10
Y 12 P_(2f - b) (24)

"
It is now necessary to ascribe a value to v . This may be done in a vari

of ways; it is possible to match the initial energy of the actual problem and the on
degree of freedom system, or to match either the linear or angular momentum of
two systems. Computations based cn these three criteria show that the best appr.
imation is obtained when angular momentum of half the beam about the supporting

hinge is balanced. Thus we put

b3
mey 2Ty T 4 b,
(24 TV TV 2 2 4
l. €.,
* -
e 3b (24 b)v (25)
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Substituting into (24) and rearranging in the form given in equation (18), the

approximate central displacement is given by

2 2
mb v 2
* o 9 (22 - b) ] (26)

R v vl p)
o) 1

The derivation of this expression involves many separate decisions which
appear natural but are also arbitrary. If the method is to be applied to find approx-
imate solutions of problems which have not been fully solved it is desirable that the
application of the method should require fewer arbitrary decisions. A more
sophisticated approach using the principle of virtual velocities will eliminate most
of these dc.cisions.

This method is based on the premise that the choice of a mode shape is
the most important part of the approximation process. Suppose that, for a given

structure, the solution is assumed to be of the form

izi* (S, t) = si (S) T (t) (27)

where Si is a vector valued function of the space variable S alone, and T is a scalar
function of time alone. Solutions of this form will be referred to as mode solutions.
Some freedom is permitted in arranging the magnitude and dimensions of the
functicns Si and T. For conveniencc we shall assume that T is dimensionless and
that it has the value unity when t = 0. Si will thus have the dimensions of velocity;

it will in fact be the initial velocity distribution. For simplicity in solution we shall

write (27) as

{;i* (S, t) = vi* (S) T (t) (28)

e
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If the solution to an impulsive loading problem is to be assumed to be of
' *
the form of (28) it is clearly desirable that \A (S) should satisfy the kinematic

boundary conditions.

We shall show first that T(t) must be a linear function of time if the intern
energy dissipation rate associated with the assumed velocity field is to be equal to

the rate of change of kinetic energy. The rate of dissipaticn of the kinetic energy

K is given by

dK d m % ,
dt = dt 2 %Y d5
S
d 2 m ¥ %
-—a—t—(T) g.—i-vl Vi ds
S
* ok
=T-d-T-—S mv, v, ds (29)
dt S i i

- . : - . * * I3 - .
The strains q.j may be derived from the velocities u, . Let the initial values of
* y
these strains, derived from v, o be qj. These strain quantities will be related in

the same way as the velocities

a.r :. - (30)

. ¥ .
When the strain component q. is plotted as a vector in the stress space (as in Fig.
J
* * . 13 . .
it is clear that q. changes only in magnitude as time progresses. It is, however,
J
. X . . . *
the direction of qj which determines the associated stress vector Qj . (Although

Q. may not always be uniquely determined, the dissipation rate is unique for a




b * 3 . 3 v * . ’
given qj .) Thus Q.i does not change with time, and the dissipation rate D iz given

by

D =¥a*-%5 T=DT1 (31)
=M 2 40T

- * T
where D = Qj qj is the initial dissipation rate.
We now equate the rate of change of kinetic energy and the rate of change
of internal energy, given by the total energy dissipation rate with a negative sign.
* %k -
T-‘-l-?- mv. v, dS:-TJ D ds
S

dt S i

= « A (32)

5 D ds
dT _
dt  ~

S
¥ L
J mvi vi ds
S

A\ is a constant, defined by (32), which can be readily de ermined from the initial
velocity distribution. Solving equation (32) for T, with the requirement that T = 1

when t = 0, we obtain

T = (1 -2t) (33)

The time tf which elapses before motion in the assumed mode ceases is given
simply by

* 2 34

¢ =X (34)

3%
It is still necessary to determine the initial velocity field Vi since only
»

the mode shape and not the initial amplitude has been assumed. Suppose that a mode



.l De
shape éi is assumed. Then

* .
; =9t (35)
i

<
n

and it is necessary to choose the amplitude a. The actual initial velocity distri

will be taken to be v,

A rational method of determining a may be developed by assuming that
one degree of freedom model is subjected, at time t = 0, to an impulse distribut
mv,, where m is the mass per unit length of the structure. The velocity with w
the model begins to move may be then taken to be v

This problem may be handled by means of the principle of virtual veloc
cbi is a kinematically admissible time independent velocity field. Let the assoc:
strain rates be c'lj‘b. Suppose now that the model is subjected to forces Pi which

over the time interval 0 < t <%, causing acceleratioas 'Lii and stresses Qj' For

in the interval
j P, ¢.dS - f mu ¢ds= \Q q%ds (36)
i i i i A
S S
Integrate from time t =0 tot = ©. Let the initial velocities of the model be ze
%
and the final velocities v, -
T T
% . @
f ( J Pidt) ¢ dS = mv, @ids + J dt S‘ Q.q. dS (37)
s Yo ' s o s 7

Advantage has been taken of the fact that Qi is time independent. We now suppo




that t— 0 and that
T
S Pdt —=mv,.
1 1
o
%

v becomes the initial mode velocity and the term of the right of (37), representing

a measure of work done in the time interval, will vanish. Finally
*
& mv, éidS = S‘ mv, ¢ . dS (38)
s s ' |

Substituting from (35) this expression may be written either as

* * %k
X mv v, ds = X mv, v ds (39a)
S S
or
[ mv, ¢ dS
i
__S
¢ = S m& ¢ ds (39b)
S

Thus, referring back to equation {28), the velocities for a mode solution ca:
be written in terms of an initial velocity field and a time function; the time function
[ equations (33) and (34)] and the initial velocity field can be determined completely
in terms of an assumed mode shape Qi and the physica’ properties of the structure.
The application of this method will be illustrated by the casc of the beam

shown in Fig. 9. Assume a mode shape of the same form as shown in Fig. 9(c)i.e.
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of the same form as was used in the previous approximation. Thus & is given|

2X_ 0<xgt/2 | (40a’

¢ =

and

a 0sxg /2 (40b

The initial conditions for the actual problem (Fig. 9a) are given by

v, =0 0<sx< (L -b)/2
(41)
v,V (2 -b)/2sx<1/2
To determine {xo we use equation {39b). This gives
1/2
2 f mv (-3'%‘-) dx
t-b °
. * 2
u =
° 1/2 2x 2
2 m(——l—') dx
[+
s YP 21 - 1) (42)
2 2

Comparing this result with equation (25), it is seen that the process carried ou
is equivalent to matching the initial angular momentum of half the beam. The
method has an advantage, however, in that it may be easily applied in situation

%
angular momentum cannot be clearly understood. The time tf which elapses




e —

the model comes to rest is given by substitution into equations (32) and (34)

1/2
2x 2. * 2
* 2 m(-—--)l (uo) dx
t = L
f %
2\.1o
4Mo(-—-—-—-)l
2
mi v
i o b 2
=-3 Mo [1-(1-—-[ )] (43)

. * . .
The initial velocity at the center of the beam is ug and this velocity changes

linearly with time. Hence the central displacement of the model is given by

. % %k
u*-_uﬁ tf
£ - 2
2 2
mb v
1 o 9 b .2

Comparing this result with equation (26) which gives the displacement obtained from
the earl_ier model, we find that the second approximation is twice as large as the
first. This is a substantial difference. Without consulting the correct answer
given in §2 of the paper, we would expect the second result to be more reliable
than the first, since i* involves fewer decisions on the behavior of the model.
However, this is not necessarily true. Further, the choice of a mode shape itself

is an arbitrary decision. Alternative mode shapes for the problem under discussio
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are shown in Fig. 10. It may be possible that these shapes would give better
approximations than Fig. 9(c), at least for certain values of b/!.

If the technique used to obtain the second approximation is to be uscful in
problems where the exact answer is not known, some method must be found which
can differentiate between a good choice of mode shape and a poor choice. In the
following sections we shall attempt to show how the ideas used in establishing

uniqueness for the problems under discussion can be used to make such a differenti




e T30- -

4. CONVERGING SOLUTICNS

Using an argument closely related to that used to prove uniqueness, a rela-
tion between the solutions to two independent impulsive loadings (or initial velocity
distributions) on the same structure can be written, provided that the boundary

conditions are the same.

We consider two identical structures with identical boundary conditions (i.e.
velocities prescribed zero on Su. tractions prescribed zero on ST). L.et the initial
%k
velocities be respectively vi (S) and vi (S), and let the solutions be respectively

. . . [ * . * . * *
u, (S, t), U qj. Qj and u, (S, t), o, qj , Qj . As in equation (4), we may write,

- @ ‘*ds Q Q*\‘ ’*ds>o 45
- m(ui-ui)(ui-ui) = (J.- j.(qj-qj) > (45)
S S
or
da i .
< <0 (46a)
where
., Xk
"J -'l’—(a.-ﬁ_*)(ﬁ.-u.)ds (46b)
S 2 i i i i

o m * *
A0 = ——-(vi-vi)(vi-vi)dS (47)

It is clear from (46b) that & is a non-negative scalar function of time, and, from
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(46a), 8 decreases with increasing time. The rate of decrease of 8 is specified

%*
the right hand side of equation (45), and can be zero only when either Qj = Qj or

qj = élj* at each point in the structure. Furthermore 8 is a measure of the differs
between the two velocity fields ﬁi and ﬁi*, and is zero only when the two fields ar:
identical. According to this measure, therefore, the two solutions approach each
other as time progresses.

The convergence of the twc solutions suggests a means of approximating
unknown solution. If the response to the velocities v, are not known, but the resp
to velocities vi* are known, we are assured that the difference between the respor
(as measured by 4 ) will decrease with time. If the difference is initially not larg
i.e. if Ao is not large, we may expect that the solutions will not be greatly differ
particularly away from the initial instants. Furthermore, we would not expect gr
differences in the velocities at any particular point on the structure (as opposed tc
integrated effect represented by 4).

These ideas may be applied to attempts to approximate responses by mea
of mode solutions, as discussed in the previous section. However, in order to
substitute a mode solution for ﬁi* in equation (45) it must be a complete solution tc
an initial valae problem. The mode solitions used in the previous section were
required to be kinematically admissible only. If it is possible to associate with th
moue solution a statically admissible stress field which everywhere satisfies the
yield condition, then the mode solution is a full solution to an initial value problemnr
and may be substituted into equation (45).

If the mode solution is given as in equation (28},




&i* (S, t) = vi* (S) T (t) (48)

the accelerations are given by
. % * dT
u, (S, t) = v, (S) 75— () (49)

dT/dt may be found from equation (32). Further, if

%
. (50)

as in equation (35), where ’i is a mode shape and @ is an arbitrary magnitude, it
. » . . L3 * *
may be shown by substitution into equations (32) and (49) that u, (S, t) is independ
i
of @a. This means essentially that in the mode model the accelerations are indepa
of the initial velocity, i.e. the initial amplitude assigned to the mode. Using
» . . . - . - *
d'Alembert's principle and considering the inertia forces (-mui ), we have a static
problem with tractions (in this case inertia forces) given on ST' and displacements
. . . o 20

given zero on Su. Using the limit theorerns of Drucker, Greenberg and Prager
if any distribution of stresses can be found which is in equilibrium with the inertia
forces and which does not violate the yield condition, then there is associated with
the mode solution a safe, statically admissible stress field. Again, this remains

true for arbitrary a in equation (50). It will be convenient to refer to a mode solu

which can be associated with a safe statically admissible field as a safe mode solu

If a solution of the form of (48) and (50) is to be substituted into (45). it 1t

necessary to determine the initial mcde amplitude a. Since A [equation (46)]

20
D. C. Drucker, H. J. Greenberg and W. Prager, " Extended limit design theore

for continuous media,"” Quart. App. Math. 9, p. 381, 1952.
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measuses the difference between the solutions, it is logical to choose a such that

o . . . .
4 " is as small as possible. This may be written as

d m
da S“é"‘(vi-aéi)(vi-c¢;)ds =0 (

Differentiating and solving for @, we obtain

g m v ¢ ds
i
S

S mé ¢ ds
1 1
s

Comparison with equation (39) shows that the result is identical to that obtained

earlier by a different argument. Multiplying through by a, we see that, using (50),

% %
g maéiaii ds = g mv, v, dS = S mvivi ds
S s ! S

1

or

% %
S m(v, -v, )v, dS=0
s i i i

Equation (53a) may be used to show that, if (52) 1s satisfied,

* %K
A = ——rzr-l- v‘v. dS N _r§- v' v. dS
S 11 . S 1

—



i.e. the initial measure of difference is simply the initial difference between the

energies of the solutions. Equation (53b) shows that the difference between v, and
* * '

A is orthogonal to v, § this result is suggestive of elastic normal mode analysis,

considering vi* to be analogous to any one mode.

This discussion indicates that the choice of a safe mode solution to
approximate the unknown solution leads to initial conditions identical to those found
earlier, and further to an assurance that a measure of the differences between the
solutions must decrease. If the initial difference is small, i.e. small compared
to the initial energy in any one solution, we are provided with a reliable check of
the validity of the one degree of freedom model. No arbitrary assumptions, other
than the choice of a mode shape, nced be made.

One further useful piece of information may be added. From a proposition

21 ) i .. . . c .
due to Martin , the time t at which the velocities u, vanish in the real solution
i

can be written

t > (55)

* -
where v, is the initial mode velocity and D is the initial rate of energy dissipation
i

in the mode. (This proposition does not require that the mode be a safe mode.)

However, from (34), (32) and (53a),

ZIJ. B. Martin, "Impulsive loading theorems for rigid plastic continua, ' Proc.

Eng. Mech. Div., A.S.C,E., 90 (EM5), p.27, 1964.
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(ad
1
1

provided that the initial amplitude of the mode satisfies the optimum requirement

that Ao be a minimum. Hence
t. >t (57)

i.e. the velocities in the model vanish before the velocities in the actual solution.
I3 * .

Experience shows that tf and tf are very often equal, and in most cases the

difference is small.

In the following section we shall discuss the application of this method to

illustrative examples.




5. EXAMPLES

In order to demonstrate the eficctiveness of the approximation using the mode

solution we shall compare the results of the solutions discussed in §2 with their

approximations.

(i) Consider first the clamped beam shown in Figs. 6(a) and 9(a). The final
central displacement is given in equations (17) and (18), and is a function of b/?.
A mode solution has been found for this problem, Fig. 9(c), and the final displacement
is given in equation (44). It remains to check that the mode chosen is indeed a safe
mode, and to find the relative value of the initial difference °,

The acceleration of the central point in the beam in the mode solution may
be easily calculated from the initial central velocity [ equation (42)] and the time of

duration [ equaiion (43)] since it is known that the velocity-time relation is linecar.

This is given by

Using d'Alembert's principle, the loading diagram for the beam is shown in Fig. 11(a)
and the bending moment diagram is shown in Fig. 11{b). It is readily shown that the
maximum bending moment is Mo' and that it always occurs in the center of the beam.
Hence the mode is a safe mode solution. In order to compute 4° we make use of
equation (54). A relative measure of the magnitude of 2° may be obtained by dividirg

a° by the initial energy of the actual problem. Let this be K°. Then
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o 1 2
, K; .--:-—2--mbvo | , {59a)
1/2
Aoz-—l-—mbvz-l —n-z-ﬁzdx
2 o 2 o
o
1 2 3 2.2b b 2,2
=T g Y [ | (595)
0
A 3 b b .2
=l T -7 (59¢)

K

The final central displacement computations have been plotted in Fig. 12. In adc
to the actual and mode solutions, the upper bound which may be computed by a m
proposed by Ma.rtinZl is given. In Fig. 13 the mode solution error and the ratio
Ac’/Ko are plotted on the same figure. This diagram shows that the error is sm
when AO/Ko is small, and that the error increases as Ao/Ko increases. It ca:
be expected that the error is zero when AO/Ko is a minimum, and indeed this is
so.

Figs. 14 and 15 give further details for the case of b/f = 1. Fig. 14 gi
the central velocity-tinme curves for the actual solution and the mode solution. It
be seen that the velocities coincide after one third of the total deformation time h
elapsed. In fact the velocities coincide everywhere on the beam during this peric
and 4 [equation (46b)] is zero. Thus A decreases rapidly (and in this case

vanishes) even though AO/KO (Fig. 13) has an appreciable magnitude.




Fig. 15 compares the final shapes of the deformed beams for the case
b/1 = 1, showing that the displacements in the mode solution overestimate the actual
displacements in some regions, and underestimate them in others.

A mode solution for the pinned end case of the beam discussed above
(Fig. 7a) may be obtained in a manner identical to that for the clamped case. The
mode shape is taken to be that in Fig. 9(c). The initial amplitude is not affected by
the change in boundary conditions, but the deformation time tf is simply doubled.
It may readily be shown that this is a safe mode solution. A comparison of the
approximate solution with the actual solution for the central displacementlg for
two values of b/! is given in Fig. 16.
(ii) Consider secondly the cantilever with an attached tip mass shown in Fig. 4.
The solution, giving the tip mass velocity as a function of time, appears in equations
(8) and (10). The final tip mass displacement is given in equation (11).

In this case a good guess at a mode solution is clearly a velocity field
involving a rigid body rotation about the support, skown in Fig. 17. The velocity
field and rotation rate at the ba;r,e may be written in terms of i*, the velocity of

the tip mass. From equations (28) and (32), the acceleration of the tip mass will be

:* (M 2¥ /1 M
g 2 Mz /1) . ° (60)
Z = - 7 = o1 (l +-_£’-Y)
G (2% + m (3 27 2 ax 3

o
where ¥ = m!/2G as before. The bending moment diagram may now be drawn, and

is shown in Fig. 18. It may readily be seen that the bending moment does not exceed




Mo at any point for any value of ¥ . Hence the chosen approximation is a safe
mode solution.
_ "
The optimum initial value of the tip velocity z may be found as befor
*

The actual initial velocity is zero except at the tip where it has value v. If v

% . .
is the initial value of z , we require, from equation (532),

4
*
va:G(v)Z+ m(-—;-‘-v)zdx
o
*
- —5 (61)
A
The tip mass velocity is then given by
* 1 t
z
= = (1 - —) (62)
v 14— t
3 f

where, from equation (56)

, X

t*-sz _le

f - X T M
M (—=—)
o 1

o

Fig. 19 shows the tip mass velocities plotted for the actual solution
[ equations (8) and (10)] and for the mode solution, for the particular case vy = 1.
In this case it is seen that the velocities are the same for Mot/le >0.167; it ma

readily be shown that 4 vanishes at time Mot/le = 0. 167.
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The final tip displacement 1s a function of the parameter Yy, and hence the
accuracy of the approximation will depend on Y . The final tip displacements have
been plotted as a function of Y in Fig. 20, and show that the discrepancy varies
from zero at ¥ = 0 to an underestimate of about 15% at v = 3. On the same
figure 8°/K° has been plotted. When y=3 8°/K° has the value 0.67. Despite
this large value of AO/KO the approximation is fairly good.

One further example is summarized in Fig. 21. In this case the cnergy
ratio Ac’/}:(o is extremely small. Considering the areas under the curves to
obtain displacements at the center of the beams, it can be seen that the difference

between the actual solution and the mode solution is extremely small.
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6. CONCLUSIONS

In this paper an attempt has been made to ratignalize the setting up of &
one degree of freedom approximation in elementary rigid-plastic theory for imp
loading. The method requires that a mode shape be chosen; thereafter, the
deceleration (or the equivalent sprirg force and mass) ard the initial mode veloc
follow without further assumptions. The concept of a sate mode and the analysi:
given in Section 4 provide a criterior by which good mode approximations may b
recognized. For illustrative purposes the mettod has beeu applied to extremely
simple examples. There is no conceptual difficulty in applyirg tre technique to !
more complicated cases.

It is seen that even in cases where Ao,"Ko is fairly large the approxims
tion can be reasonably good. Only wrere f/'Ko is small however, can it be
taken that the approximation will certainly be good. The otrer cases emphasize
that good approximations can be obta:ned whe:r AO/KO is large. as undoubtedly
good approximatior. could be obtained with mode sol.tions wnicl were not sate 1ir.
the sense used in this paper. This paper s>ows o1ly thit a certain limited class
of mode approximations can be considered reliab'e.

The technique described covld be applied with c-anges, to problems wit
time dependent loading and to certai”. otrer viscous type material 1dealizations

such as rigid-visco-plastic. Attempts are being made to develop useful approxi-

mating techniques for these cascs.
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