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Abstract 

Under an age replacement policy we replace at failure or at the end of a 

specified time interval,  whichever occurs first.    This makes sense  if a fail- 

ure replacement costs more than a planned replacement and the failure rate is 

strictly Increasing.    We assume that the failure distribution is a Weibull dis- 

tribution with known shape parameter (greater than one) and unknown scale para- 

meter.    Moreover, we assume that a natural conjugate prior distribution with 

specified parameters is at hand which we modify after each stage according to 

Bayes1  rule.    Our policy adapts to the changing prior.    We see intuitively 

that thp larger the replacement Interval set,  the more information we are 

likely to obtain.    We take account of this in a precisely defined manner via 

dynamic programming.    The optimal policy is partially characterized and vari- 

ous limiting results axe obtained. 



Introduction and SumniBry 

Under an age replacement policy, we replace at failure or at the end 

of a specified time interval, whichever occurs first. An age replacement 

policy makes sense when a failure replacement costs more than a planned re- 

placement and the failure rate is striclty increasing. 

The case where the failure distribution is known has been treated by 

several authors; see, e.g., [l] . When the criterion is expected cost per 

unit time over an infinite horizon, the optimal replacement interval to set 

is found as an elementary application of renewal theory. AJ the opposite ex- 

treme, we may know virtually nothing about the failure distribution. Moreover, 

as we acquire failure data, we rray decide not to use the information. An inter- 

mediate case is where we have partial information about the failure distribution 

and adapt our replacement interval to additional information about the failure 

distribution acquired sequentially» 

If our initial information about the failure distribution seems too dif- 

fuse to quantify sensibly, we must choose a policy that seems reasonable to use 

until enough data is accumulated. How much is enough seems to be a qualitative 

Judgment, Scheduling no planned replacement for the first few stages is prob- 

ably the best resort in view of the following result: 

With the criterion of expected cost per unit time over 

an infinite horizon, the minlmax strategy over all fail- 

ure distributions with the same mean is to replace only 

at failure. 

For a proof, see [l. Section k02A],    An analogous result for discounting is 

given in Appendix I. 

The major assumption that we shall make is a strong one: viz., the fail- 

ure distribution is known to be a Welbull distribution with given shape para- 



meter greater than one; i.e., 

1 . e-xy
k , y ^ 0 

(1) F. (y) -    i 
L 0,elsewhere 

k > 1 and known . 

k-1 
This distribution has strictly increasing failure rate xky 

When X is unknown, which except for Section I we assume to be the case, 

there is a trade-off between minimizing the expected loss on the current stage 

(■ period starting Just after the last replacement and ending Just after the 

next replacement) and acquiring maximal information about the failure dis- 

tribution so as to minimize future expected losses. An in-service failure 

is more informative than a planned replacement, because in the latter case 

all we would know is that the life of the item would have exceeded the replace- 

ment interval, The  longer the replacement interval set, the more likely a 

failure replacement. However, setting an infinite replacement interval ^s 

clearly not necessarily optimal. 

We take account of these intuitive considerations in a precisely defined 

way via the empirical Bayes approach [13] and dynamic programming. 

Except for Section 8, we shall be dealing with an infinite horizon. Con- 

tinuous discounting is used, with the lose inctunred at the time of replacement 

and the total loss equal to the sum of the discounted losses inrtmrred on the 

1 ndlvldual stages. Suppose that a stage starts at time t and we set a re- 

placement interval a , chosen from the extended half line [0, «], If a re- 

placement actually occurs at t+x , then the loss incurred on that stage is 

fc-e-»^4*) , If x.a 
(2) L(«,x.t)' {       ^(trt) 

^ c2e  
v   / ,  if x < a 

where 0 < c, < Cp and a 1B a positive discount rate. The cost of a 
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planned (failure) replacement is c,(Cp). 

Before going on to the main part of the paper (Sections 2-6), we consider 

in Section 1 the case where X is known.  In Section 2, we give the dynamic 

programming formulation of the (adaptive) case where \    is unknown. Various 

plausible limiting properties are phovn  to hold in Section 3.  In Section k, 

we show that an optimal policy exists. We consider in S' ction 5 an extension 

to the case where I (> l) items are in operation simultaneously. In Section 

6, we partially characterize the optimal policy and discuss its computation. 

In Section 7 (nonnegllglble cost of adapting) and Section 8 (finite horizon), 

the loss function given by (2) is modified and a raarkedly different formulation 

results. Tills is followed by four appendices. 

REIATED PROBLEMS. Adaptive maintenance policies for setting optimal inspection 

intervals were considered in [7]. The information-current loss trade-off is 

Ignored, but taking account of it seems to be much harder for an inspection 

policy than for an age replacement policy. The difficulty is due to the ap- 

parently intractable likelihood function in the former case. 

Consider, however, the following problem: determination of the optimal 

"burn-in" time (with respect to an appropriate loss function) to eliminate in- 

service failures due to "infant mortality". If the failure distribution Is a 

Weibull distribution with known shape parameter k < 1 , our methods can be 

readily applied. For a nonparametric approach to this problem based on the 

assumption of decreasing failure rate, see [10]. Note that failure times for 

those items that survive the ,fburn-in" period are not generally available. 



1.    Knovn Scale I^raacters 

In this section we assume that the scale parameter    X    in (l) is knovn. 

Although    this case is not our principal concern,  the results, besides having 

intrinsic interest, will be needed later when we consider the asymptotic pro- 

perties of an adaptive policy. 

The expected loss due to replacement of an item put in service at time 

t    is    e      ♦(a) , where 

(3) ♦(a) - e^ + ^ cJJ e^dF.Cx) . 

From the fact that 

oo a»(a) __ e-(aa + \ak) [(c2 - c1)xkak"1 

~5a      " fc L 
- c,a 

we see that ♦(a) looks like one of the following; 

"1 '(») 

♦ (a) 

(1) 

y 
0(a) 

(2) 

Figure 1.      Possibilities for    <Ka). 

i.e.,   it crosres the line corresponding to no planned replacement once or 

not at i 11.    As we  shall  see,  the optimal    a    to set at each stage lies be- 

low the  solid portion of the curve. 

It is convenient to compute the risk starting at time    0  .     If the 

starting time  is    t  ,  multiply by    e'      .    Since the horizon is infinite,  the 

(total) risk at each stage is the same,  except for a discount factor;  more- 



over,  the optimal replacement  interval to set does not depend on the starting 

time.    Due to this stationarity,  there is some fixed replacement interval 

which is optimal to set at each stage. 

Ifit    X.    denote the age of the    i        item at its replacement time. 

When the same replacement interval is set each time,     (X.l    is a sequence 

of independent and identically distributed random variables.    If we always 

choose a replacement interval    a ,  the risk is 

(5) R(a) = EL(a,X ,0) + E e"0*! L(a,Xo,0)l 

+ E M\+*2) L(a,X5,0) + .   .   . 

-^II.IFT^   v     Ml ss ELCa^jO)  +    E^"^^1 !• EL(a,X2,0)^ 

= <t>(a) + &(aH(a) + 62(a)<t»(a) + . 

»(a) 
1  - &(a) 

where the expected discount per stage is 

(6) , /   N      ^-(oa + Xa  )       f     ^-ax.«  /   v u^aj  = e  v '  + e      dF^fx)    . 
Jo ^v 

The relation R(a) = ^(a)/[l - 6(a)] can also be obtained directly from the 

optimality equation. 

The minimum risk is 



(7) min R(a) 
a 

R(a )  ,  say 

Immediate consequences of the theorem in Appendix II are 

(i) a   < 00 

(ii)        a    satisfies 

(6) a    = 
c,  + $(a )/(l - 5(a )Ja,lk-l 

±  ,  y 
(c2 - c^Tk j 

(iii)      a      is unique.    Although  (8) may have more than one root, there 

Is exactly one root of (8)  that minimizes    R(a)  . 

A procedure for finding successive approximations converging monotonely 

up to    a      that does not involve obtaining all the roots of  (8) is given in 

Appendix IX.     From the first step of this procedure we have 

(iv) 
* 

a   > 
cia 

_(c2  - c1)Wc^ 

1 
k-1 

a result that can also be obtained from inspection of Fig. 1, the fact that 

1 - &(a) is increasing, and a simple dominance argument. 
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2.  Unknown Scale Parameters 

Whereas the scale parameter was assumed known in Section 1, we shall 

assume from now on thatit has a fixed (but unknown) value > .  Moreover, 

we shall assume that we have at hand a prior distribution G with specified 

parameters which WP modify after each stage according to Bayes' rule.  If 

I 
G    has density    g  ,   then the posterior density = g x likelihood function x 

normalizing factor independent of > .   The likelihood function in case of 

-Xa^ k-1    -Xx planned replacement at a    [failure replacement at    x]  is    e [kXx        e"      ]  . 

Taking 

j bVVbV(c) ,    x^o 
(9) g(\;b,c) =| 

0,  elsewhere 

the posterior density is again a &.jma. density 

k k 
g(>v;  b+a ,  c)  [gi'K;  b+x    ,  c+l)]  .    Thus,  we see that we have a natural con- 

jugate prior distribution  [12]  for   X .     This makes a dynamic programming 

formulation possible with state variables   (b,c,t)  , where  (b,c)  are the para- 

meters of the prior distribution for a stage that begins at time    t , 

2.1    Preliminaries 

Suppose that a replacement interval    a    is set and replacement occurs 

at    t+x .     Now we apply Bayes1  rule:  to obtain the new state variables, make 

the transformation 
#      k 

f (b+a    ,  c,  t+a)   ,     if x = a 

(10) (b,c,t) ^) k 

1 (b+x    ,  c+l, t+x)   ,    if x < a    . 

Note that c increases in steps of 0 or 1 , while b and t are re- 

stricted to half lines.  Moreover, although the risk depends on t , the op- 
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timal policy does not.     Thig means that  the risk has to be computed only at 

points of a grid in    R    ;   jther values are obtained by interpolation.. 

The reason for using a natural conjugate prior distribution is to keep 

the state space tractable, a point which was  stressed in    [}].     The re- 

striction to the case where    k    is known is due to the apparent nonexistence 

of a natural conjugate prior distribution when    k    is unknown.     Practical ap- 

plication of our results to cases where    k    is not precisely known depends on 

the sensitivity of the policy to the assumed value of    k . 

The expected loss from the next replacement when the state is   (b,c,t) 

is    e"0* « (a,b,c), where  (cf.   (3) and   (9)) 

(il) <Ka,b,c) = c
1
e"aa     1        k 

b+a 

r a -ax k-lJ ,       , c e       x      dx +    c,^ k c b    / » -    ; r 
2               j0 (*+xk)C+1 

For use throughout the sequel,  it is convenient to define an operator   T    such 

that if    h(b,c)  is an arbitrary function of   (b,c),  then 

(12) T[a,h(b,c)]  = (^V) C e^b+aV) 

r a -Ox k-1, 
+ kcb    /       h(b+x   ,c+l)     ; :— 

J0 (b+xk)C+1 

It is clear from (lO) that we may interpret T[a,h(b,c)] as the expected 

discounted value of h^'jC1), where  (b^c^f) are the new state variables 

and a replacement interval a has been set. 

2.2 Dynamic Programming Formulation 

Following an adaptive policy indefinitely, the minimal risk R(b,c) must 
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by the     "principle of optimality"  ([U],[8])  satisfy 

(1'0 R(b,c) =    min  ($(a,b,c)  + T[a,R(b,c)])  . 
a 

No solution to this  functional  equation is apparent.     However,  we  shall   find 

two sequences    {R.,(b,c))    and    (W    (b,c))    such that    IL   (b,c)>|rR(b,c)    and 

W N(b,c )fR(b,c),  provided in each case that the replacement intervals  set are 

uniformly bounded away from    0 .    The proof of this statement for the first 

sequence is given in Section 3.2;  for the second,  the proof is similar. 

We  first find R..(b,c)   .     Instead of following an adaptive policy in- 

definitely,  suppose that we were to follow an adaptive policy for    N    stages. 

From the    (N+l)st    stage onward, we would set  the  same replacement  interval 
■4- V\ 

that we did on the    N"       stage.     Call the. minimal risk at stage    n    of such 

a policy    R N(b,c)   .    We obtain recursively 

(Ik) hn^'0^  =   min *(a'b'c) 

a 

where 

^) »(a,b,c) = jil^ 

and 

(16) bi&>bfC)  * e^ UL^\      +kcbc/        e      x      d.       f 
\^arj J0 (b+xk)C+1 

and for    n < N 

(17) Rnl^b'c)  = min ^(a>b.c)  + T[a,Rn+1^(b,c)])     . 
a 



^,«(b.c)    is found in a similar manner. 
1 Nx     '     ' IN 

a 

and for    n < N 

(19) WnN(V) = mln ^(a»b>c) + Tta»wn+1 N(b'c)])     * 
a * 

We may think of    W N(b,c)    as the analog of    R N(b,c)    for the case when we 

adapt for    N    stages and then terminate,     it is felt that     {R    (b,c))    con- 

verges considerable faster than    {W    (b,c))  . 

R N(b,c)     Is computed for a finite grid   ö  ,  n = N,...,l .     Starting 

from an initial value of    c  ,   the spacing between successive values of    c    is 

one  (cf.   (lO)).     For values of    b   off grid,  R   ,(b,c)    is obtained by inter- 

politiön..   We may choose to continue computing policies for successive values 

of    N    until 

(20) max        [(R1^_1(b,c)   -RlN(b,c))/R1^.1(b,c)]<    e 
(b,c)<4 

where    € > 0    is a preassigned tolerance.     A more stringent criterion would 

be to continue computing until 

(21) max      [(R1N(b,c)   - W1N(b,c))/R1N(b,c)] 
(b,c)€ü 

<  € 

Observe that, if (21) is satisfied, it still holds with W (b,c) re- 

placed by R(b,c) . Although we would use (21) with more confidence than 

(cO), much more computation would be involved. 

-10- 



Let    a^Cb^c)    be  tY > -minimizing    a    in  (17)  [in  (lU),   if    n = N] . 

Always acting as if we were at the first stage, what we shall actually do 

at stage    n  (n = 1,2,.,.,N ,...)    is to use  the replacement interval 

a,   *(b ,c  ), where the  state variables at stage    n    are    (^ /C  ,1   )    and 

N      is the smallest    N    satisfying  (20) or   (21), whichever is deemed appro- 

priate. 

-11- 



.'.  Limiting Properties 

Analogously to RnN(b,c)[R(b,c)], define RJ: (b,c)[Rt(b,c)]  to be the 

mlnliral risk under the restriction that the replacement Interval set at each 

stage be at least € , for some fixed G > 0 .  Let a  (b,c)[a (.b,c)] de- 

note the minimizing a .  Our replacement policy will use a,„(v;. ) at each 

stage.  We call this policy (N,G)-optimal. 

In applications, restriction to the class of (N,€)-optimal policies Is 

no Important.  It Is plausible that our results hold without the restriction 

that the replacement Intervals set are uniformly bounded away from 0 , but 

proofs are lacking. 

We may paraphrase (roughly) the main results of this chapter as follows; 

1. After a sufficiently large number of replacements, we are 

virtually certain at any particular stage to be setting 

a replacement interval close to the one we would use if 

0 
we knew > . 

2. For    N    sufficiently large,    a    (•,. )    is   "close" to    a (• > ■)  . 

We also consider what happens for small discount rate    a . 

5.1    Asymptotic Optlmality 

An    (N?e)-optimal policy seems to be a reasonable one to use during the 

transient period when we are acquiring significant information about the 

failure distribution.     Because of discounting,  this is an important con- 

sideration.     Moreover, we now slate a result that  shows that an    (ll,e)- 

opLimal policy has an asymptotic optlmality property that we would require 

of any policy we were to use. 

THEOREM 1.     (asymptotic optlmality).    Under an    (N,€)-optimal policy, 

-12- 



n . pllm       «xO u^N(bn,cn)J  = V 
n -► oo 

N fixed 

provided that a-n ^ e .  In fact, with ,he same proviso, 

plim ^(ba,cn) = a*o . 

To prove this theorem, we require some preliminary results. To save 

tedious repetition, we do not mention Slutsky's theorem [5, Section 20.6] 

each time we use it. 

LEMMA 1.     Let    Y    have distribution    F^    and   X = min(a,Y),  where    a    is a 

positive constant.     The variance of    A      is maximized at    a « «»   and is finite. 

PROOF. 

EXk  = ^ (1  -  e"M  ) 

Var    ^        1   " e 2aVMk 
var    A    ■ 

> 

-i^-   Var X^ = 2ka        e > 0    . -~£ 

LEMMA 2.     Under any policy for which    a    , the    n        replacement interval 

set, must  oe at least    e > 0 ,  n = 1,2,. .., 

(i) plim   b /n = i/}P 

(ii) plim    cn/n - i    , 

where    ^    is a positive constant. 
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PROOF.     Let    X    = ain  (a  ,Y),  where    Y    hat:  diGtrlbutlon    ?^Q  .     By Lemma n ' n 

1,   the  variance of    X is  uniformly boundei over    n    for all     (a,,a-,,,.,   ); 

the bound is achieved for     («,•,...) . 

Therefore, by a standard martingale convergence theorem [11,  Section 

29.1], 

n 

n pllm ^- pllm i- (b1 +2^^ ) 

1 

pllm 

1 
üx 

n 

,0     k 
--ipllmt^d-e-^l  )      . 

The limit is a positive constant, since    a   ^> e > 0,    y   and    Var b /n -► 0 

Hence,     (l)    Is proved.     The proof of    (ii)    is similar.       || 

LEMMA 5 .     (consistency).     Under any policy for which   a    ^ € > 0, 

V   ,  P[G(X;b ,c)converges to a distribution degenerate at    X ]  ■ 1  . 

PROOF.     The mean and variance of the prior distribution at stage    n    eure, 

2 
respectively,    cn/bn    and    cn/bn    .     By Lemma 2 

c c  /n n n' 
pllm r— « pllm   r—T- ^        b b /n n n' 

■Ik- 



*lim Cr/D        ,0 
plim b/n n 

similarly, 

c c 
plim —j-   ■ plim    — plim    r— 

bn 

.0 1 =    A      plim r—    » 0 , 
b n 

since    plim    b    ■ •    by Lemma 2.     Since convergence in quadratic mean 

convergence in probability ^^-convergence of lavs,  the lemma follows. 

PROOF OF THEOREM 1.    We observe that Lemma 2 implies 

plim   b    m oo 
n 

plim    c    ■« n 

and hence it follows from inspection of (ll), (12), end (lli)-(l6) that with 

b  and c  random variables and n - • 
n      n 

(22) 

w.p.l 

a'4(bn'cn)j- ^'Vl'W'n' + o'1' 

Next, we note that {lh)  and (15) imply 

(25)     Wb'c) = min  Wa'b^ + 6(a,b,c)RNN(b,c)] 
a^€ 

-15- 



Hence 

W 4-l,H(b
n.cn) 

mln {»(a,^,^) t B^,^,^^^,^) + o(l)J | 

w.p.l by (17) and (22) 

4(Vcn) + ^^ w.p.l by (25) 
(comparing «inimands) 

-    *** {^a'bn'cn) + ^a'bn'cn)k.llN(bn>cn) + 0^J } 
a^e 

w.p.l 

Letting a  statnd for a^N(b ,c ), we have, by backwards induction (on the 

hypothesis R^/^,^) - Rj^V^) + o(l) w.p.l, n - N-l,...^») 

(25)  , \^n.cn)  - »(VV^) + &(an,bn,cn)L^N(bn,cn) + o(l) 

w.p.l; hence 

(26) 

and so 

«INtV'n) "  1 - Ci ,b ,c )     V-F-1' n' n' n 

(27) pll*. <„(bn)cn) 

plim min 
a^e L 1 - 5(a,bn,cn)  J 

-16- 



We note that by the Holly-Bray theorem [11, Section 11. 5] and Lemma 3 

(26) pllm <Ka,bn,cn) =» *xo(
a) 

(29) pllm 6(a,bn,cn) - 6 0(a) 

Since the mlnimand In (27) converges uniformly for a ^ e / we may 

Interchange pllm and mln, which Is Justified by the lemma proved In Appendix 

III.  Therefore, by (20) and (29) 

(50) pllm ^N(bn,cn) - mln 
a2G 

%o(a) 

1 - 6.0(a) 
*<>' 

ho If a }PZ£ 

Let 

(51) A (a) 
nN ' 

^o(a) 

l-6x0(a) 1-5 (a,b r ) 
n' n' 

Since by (28) and (29) A (a) converges In probability to 0 uniformly for n 

a ^ € , pllm A^(a ) ^ pllm sup A (a)»  sup pllm A (a) ■ 0 and hence 
a ;> c    n a ^ e 

(52) pllm VK' " ^(^n^n) 

Combining  (32) with (50)  shows that 

(55) pllm R^o^n) m\0 ,    lf    V 1 e 

proving the first assertion of the theorem. Since by the theorem of Appendix 

-17- 



* 
II   a-o    is unique,  the second asaertlon follows from the first. 

3.2    Behavior    as    N -» « 

Let    R(7T,b,c)    denote the risk under the stationary policy   TT ,    For 

example,  If we use    a5  (•>•)    at each stage,  then   TT ■ ^nC' ; ") •    Note that 

c c 12 
R(a (•»•),*>,c) » lr(b,c).    If we measure the  "distance* from   TT     to   TT     by 

|    |    TT1   -  7T2|    |    -     SUp I^TT1^^)   -   R(TT2,b,c)   |     , 
(b',c)€r 

where T Is a compact subset of ((b,c): b > 0, c > 0), then we have 

THEQIREM2.   11m | | a^N(.,. )-a
€ (. ,. ) I 1-0 

N -* • 

Two lemmas are required for the proof. 

LEMMA k.    R€(b,c) satisfies 

(Jl*) I^(h,c) - mln (♦(a,b,c) + T[a,R€(b,c)])  ; 
a^c 

moreover, If H(b,c) is a solution to (5^) such that 

(55) Plim e-atnH(bn|Cn) . 0 , 

then H(b,c) ■ R (b,c) . 

A proof can be given along the lines of  [8J. 

-18- 



(1) ^N(b,c)>l<R€(b,c)    . 

(ii) T[.,R€(b,c)]  Is continuous    . 

(lii) convergence is uniform on    T , 

(iv) R (•'•)    is continuous on    P . 

PROOF.    Since    R N(b,c)    is bounded below by    0    and decreasing in      N , 

F^N(b,c)^H(b,c),  say.     Since Theorem 1 implies that   plim e^^^^^n) ■ 0, 

it follows that (55) holds.     By Lemma k,  it therefore suffices to show that 

H(b,c)    satisfies  (5^) to prove    (i) . 

Taking the limit as    N -* »   on both sides of 

RfN(b,c) -   min    (♦(a,b,c) + Tta^O^c)])    , 
a 2 € 

we get H(b,c) on the left. On the right 

(I) interchajige lim and min 

This is Justified by the lemma proved in Appendix 

III. 

(II) take the limit inside the integral in the relation 

T^R^bjC)] -T[a,R^N-1(b,c)] 

\c -aa_€   .     k v :j    e  \f^
b^'c) b 

"1 
vb+a 

+ kcbc r R5 N , {^,0+1) e     *  f 
Jo ^'N-1        (b+x

k)c+1 
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This is justified by the Lebesgue monotone convergence 

theorem. 

This shove that H(b,c) satisfies (5U). 

It is easily seen that (i)  ^>(lli). Since the uniform Ifctit of 

continuous functions is continuous, (i)  ^>(ii) and (iii)Trr=r^>(lv). || 

Theorem 2 is an Immediate consequence of part (iii) of Lemma 5.  Note that 

the convergence of   iJeu^C*,-) - a | j to 0 is not necessarily monotone. 

Provided that the unconstrained minlmlzers are ^ G , we conjecture 

that,, starting with N » 2, a5N(b,c)^ aG (b,c) but that a5 (b,c) ^a5N(b,c), 

N ■ 2,5,....  The intuitive basis for these conjectures is that 

(i) the longer the replacement Interval set, the more 

information about the failure distribution we are 

likely to obtain; 

(ii) the larger N, the more stages we have to get in- 

formation and so ariuirlng maximal information be- 

comes relatively less important; 

(lli) an exceptional case occurs for K » 1 because there 

we do not take account of information acquisition at 

all. 

In contrakt to these conjectures, any of the possibilities 

^n'^ S  4N(bn+lV
Cn+l) 

can hold. 

5. 5 Behavior as Q -» 0 . 

To emphasize the dependence of 4>(a,b,c) on a , we write 

mm 

<t»(a,b,c;a) .  From a well-known Tauberian theorem [lU, Chapter 5] 
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on Laplace-Stleltjes transoms, it follows that the expected cost per unit 

time (with respect to our current prior diecribution) when the same re- 

placement interval a is set at each stage is 

11m  a4»(a,b,c;a) 

a - 0+ 

Thus, by taking a small we could approximate what we would do if our 

goal were tictually lo  minimize expected cost per unl', time. 

For a discussion of this point in a somewhat different context, see 

[6]. 

Note that the (adaptive) problem degenerates when the loss is un- 

discounted cost per unit time since we could Ignore the loss in any finite 

transient period while we learned about the failure distribution. 
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k.     Existence of an Optimal Policy 

For any particular  (b,c), we have already seen (cf. Lemma k)    that 

an optimal replacement interval to set exists, viz.  a (b,c) . Although 

we do not have a means for obtaining it exactly, by successive approxi- 

mations we can do almost as well (cf. Theorem 2).  From a practical view- 

point, perhaps this is all we should ask. 

However, taking a global outlook, a policy TT ■ (TT. ,7rp,. .. ) 

is a sequence of functions such that TT  tells us what action to take 
n 

as a function of (b ,c ).  (We lose nothing here by considering only 

nonrandomized policies. ) In view of the functional equation (5U), we 

always act as if we were at the first stage.  Hence, our policy is sta- 

tionary, i.e., TT = (TT, ,TT, ,... ).  Following [8], it can be shown that an 

optimal policy exists with respect to the topology of pointwise conver- 

gence [9, Chapter 7] using Tychonoff's theorem on the prodict of compact 

spaces.  Of course, the optimal policy is to use a (•• j • ) at each stage. 
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5.  Extension 

Until now we have been tacitly assuming that there was only one item 

in operation at any particular time. However, suppose that I items are 

in operation simultaneously. Our previous results can be applied to this 

case. For simplicity, we consider only the case I ■ 2 . 

Without loss of generality, we assume that Just after the last re- 

placement item 1 had age A, item 2 was new, and the state was (b,c,t). 

Suppose that we are using an "N" stage policy. Let a ■ ^N(b,c) , We 

set replacement Intervals inax(0,a-A) and a for items 1 and 2, re- 

spectively. 

Case 1: Neither item fails before max(0,a-A). 

(i)   (b,c,t) - (b4ak + max(0,ak - A ,c,t-Hnax(0,a-A)) . 

(li)  replace the older item if A > 0; otherwise both items, 

(ill) in the former case, the item not replaced has age 

max(0,a-A). 

(iv)  proceed as before. 

Case 2: The older (newer) item is the first to fail; it fails at 

t + x . 

(l)   (b,c,t) - (b+2xk-A ,c+l,t+x) . 

(li)  replace the older (newer) item. 

(ill) the item not replaced has age x CA+x). 

(iv)  proceed as before. 

Note that we will of^en modify a replacement interval previously set. 
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6.  Computing the Optimal Policy 

Section 6.1 is preliminary.  In Section 6.2 we partially characterize 

the optimal policy.  This characterization can be used to expedite the search 

x'or mlnimizers in (lU) eynd (if). 

In computing the optimal policy, errors can arise in two ways; 

(i)  in numerical integration and in the search for minimizers, 

we must in practice confine ourselves to a finite interval. 

(ii) because we are restricted to a finite grid where R N(b,c) 

is computed recursively for n = N,...,l , there will be 

errors due to interpolation as well as numerical inte- 

gration. 

We bound the error corresponding to (i) in Section 6.5.  The magnitude of 

the error corresponding to (ii) depends on the fineness of the grid.  In 

any case, the spacing between successive values of c is one.  However, 

there is a tradeoff in the spacing of b values between error reduction and 

computing time.  No doubt it is efficient to use unequal spacings determined 

during the course of the computation, but we shall not consider the matter 

further. 

An outline of the replacement poluy computation is given in rlgo- 

rithmic form in Appendix V. 

6.1 Possibilities for the Graph of »(a.b.c) 

In contrast to the situation where "K   is known,  «{'(a^c) looks 

like one of the five possibilities shown in Fig. 2.  Their significance 

will be brought out in Theorem 5. 

To see that one of these cases must hold, we note that the slope of 

<ti(a,b,c), given by 
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i .r\ o    Ml     .      \ -Ota /  b   \   rkc(c0-c. )a 

x      '      b + a 

is negative at a = 0+ and Vor all sufficiently large a .  The case that 

occurs depends on the number of positive zeros of -v— <t'(a,b,c) .  The cor- 

respondence is 

no. positive zeros case 

2 (1) - (5) 

o      i    (M 

i 

The number of positive zeros is 2,  0,  1    as 

v      kc(c2-c1)a 

(5) 

(jf)        a > max 
a     c.(b+a ) 

By setting the derivative of the raaximand equal to zero, we find the maxi- 

l/k 
mum occurs at a = [(k-l)b] '  and that (57) is equivalent to 

(50) b > [c(c2-c1)/c1a]
k(k-l)k"1 

Since the derivative of the maylmand has exactly one zero, 
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*(»,b,c) 
♦(co,b,c) _^_ 

(1) (2) 

\ 

<()(oo,b,c) 

(3) 

c    ^ 

(t»(oo,b,c) 

(M 

v 

<t>(co,b,c) 

(5) 

Figure 2. Possibilities for    4>(a,b,c). 
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T: 0(a,b,c) can cross the abscissa at most twice; I.e., -r   ♦(a,b,c) 

has at most two positive zeros. 

We remark that for a sufficiently small case (2) must hold. 

6.2 Partial Characterization of the Optimal Policy 

THEOREM 5.  For n = N : 

(i) b ^ [c(c2-c1)/c1a]
k(k-l)k-1-    ^(b^c) 00 

(ii) Suppose that the inequality in  (i) does not hold.     Let 

a-(b,c)    denote the smaller positive zero of 

4 <Ka,b,c).     Then 

♦(as,b,c) ^ <K«.,b,c) a^Ct^c)-« 

(iii) Suppose that neither of the preceding inequalities holds. 

Let eL.(b,c) denote the root of 4>(a,b,c) = 4(»,b,c) 

that is larger than a_ .  Then either a N(b,c) = «o 

or as(b,c) < a^Cb^) < aL(b,c) 
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PROOF. Using simple dominance arguments, the theorem follows from the fact 

that l-6(a,b,c) is increasing in a ,  and inspection of Figure 2 , 

Note that case (k)  or case (5) holds iff the inequality in (i) holds.  || 

We conjecture that 

(I) |^T[a,RnN(b,c)] < 0 ,  n - N,...,l 

(ll) The extension of Theorem 5 to    n « N,...,l holds. 

Note that    (I) =^(ll). 

6.3    An Error Bound 

Let 0 < e < mln  (l,c,), 

(59) v1 -    [c(c2-c1)/c1a]k(k-l)k-1 

{UO) v2 »    2[(c2+l)(c+l)a"kr(k+l)]/G      , 

and    v,    be the smallest    a    satisfying 

(hi) -aa /    b   \c 

We shall bound the error introduced by the following 

PROCEDURE.  Select a number a' , depending on (b,c) , such that 

ih2) max (max(v ,v ) - b)  ,v7 

Take the minlmizer over    [0,a']    to be the replacement interval,  unless 

the minimizer is    a'   ;   in the later case,  take the replacement interval 
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Lo be «o , approximating R „(b,c) by 

(lO) ^(a',b,c),  if n = N 

<D(a•,b,c,) + T[a,,Rn+1 N(b,c)] , if n < N . 

THEOREM k.     The risk under the foregoing procedure exceeds the minimal 

risk over all procedures using the grid v   by at most 

2e(N-l) +  e   , 
1 - M 

where 

(MO       M-maxCM'^M") 

(1+5)       M' « max(5(a,,b,c):(b,c)ei,  b^v1(c)) 

(U6)       M" = raax[6(^ (b,c),b,c):(b,c)e4, h < v1(c)) 

and ag(b,c) is the smaller positive zero of -jr- <>(a,b,c) 

To prove Theorem U, we need two lemmas. 

LEMMA 6.  If 

(1+7) b > max 

then, for n a N,...,1, 

v1,(c+l)a'
kr(k+l) 

(UÖ) RriN(b+a
k,c) ^  " 

cC)ca"
kr(k+i)/(b+ak) 

and 

riN    '^ " l-cQ"kr(k+l)/(b+a
k) 

a      ,.     -otx^-l 
(U9)        ^ Rntl(b^,ctl) 

e  *• ^ i 
"'a' (b+x ) 
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c2[(c+l)a-
kr(k+l)/(b+a

lk)]2 

l-(c+l)a~kr(k+l)/(b+a,k) 

PROOF.  Observe that (U7) implies that the denominators on the rli;ht-hand 

sides of {hQ)  and (U9) are positive. 

II suffices to rhow that (kQ)  and (Ii9) bold when n ■ N , since 

^^(b^) ^ ^(b^) .  By Theorem 3(i), i^l)  implies 

Note that 

c P00 -Qx k-1 
(51) ^(«^'jc) 3 Cgkcb  / e x  

0  (b+x
k)C 

dx 
+1 

^ (c^cbVb^1) / e^ 
m ^^ax 

c2kca'
kr(k)/b 

similarly 

(52) 5(»,b,c) ^kcQ"kr(k)/b 

Relations (50)-(52) imply (I48).  It can be easily checked that (kQ) 

implies (U9) .  1, 

LEMMA Ü.  If 0 < e < mln (l,c ) and 

\ -Cta  ' b  \      ^ 
(55)        v        ,-TH    C  E/S 

b+a  / 

poo  -ax k-1, 

Ja  (b+x ; 
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then 

(^) | ♦(a,b,c)   - «K   ,b,c) |^G 

|0(a,b,c)   - *(   ^^^k^^b^c) 

The straightforward proof is omitted. 

Theorem k follows from the preceding Lemmas, algebraic manipulation, 

and Theorem 5. 
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7.     Cost of Adapting 

Suppose that recording data and varying replacement intervals entail 

a nonnegligible administrative cost with expected value   T//(a,b,c)    per 

stage until we  stay with a fixed replacement interval.     A new formulation 

is required. 

Suppose that we ^ll stop adapting on or before the    N        stage.    Let 

U (bjc)    denote  the minimal risk at stage    n .    Then 

(57) UN(b;c) = Rj^^c) 

and for    n < N 

(50) Un(b,c)  -nun   [U^C^c^U^^c)]     , 

where 

(59) U^(b,c) = min ty/(a,b,c)  + $(a,b,c) + T[a,Un(b,c)]}    . 
a 

The functions U (b,c) are computed recursively for n » N,...,l over a 

finite grid of (b,c) values. For values off the grid, interpolation is 

used.     If     (b,c)    is  on the grid,  thtn for    n = N,...,l    record 

(i) Un(b,c)     . 

(li)   whether the minimum was achieved for U  (b,c) or 

(ill)  in the latter case, the minimizing a . 

To find the replacement interval to set a stage n' , say, when the 

state is  (b,c,t) , find the smallest n ^ n' , say n , such that 

U'  (b,c) < U   (b,c) .  If no such n is found, we use a^CbjC) . 

-52- 



Otherwise, we take the    a    that minimized   U'» .,    eis the replacement in- n +1 

terval to set. 

Note the resemblsjice to the structure of Bayes'  procedures for trun- 

cated sequential games given in [2,  Section 9.2].    R^^c)    plays the role 

of the terminal loss. 
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d.     Finite Horizon 

Suppose that we are given a finite time horizon    H .     We modify our 

loss function as follows. 
-uVu-ray ^      if     x   .   a>    t+a <  H -o(t+a) 

-o(t+x) (60) L(a,x,t)  =      /c2e^VUT  ;      ,     if    x    a,  t+x < H 

otherwise > 

0 < c1 < c2   ,       0 ^ 0    . 

Since we now have a finite horizon,  it is possible to let the discount 

rate vanish.     It is clear that we may assume that    a <^ H-t    a^d    t < H . 

If we stop at the end of the  current stage,  which we may suppose 

started at  time    t  ,  then we incur a terminal loss    L (x,t) .    Our re- 

suits do not depend on its form.     Observe,  however,  that the optimal re- 

placement interval to set will depend in general on    t    as well as on 

(b,c)   ,   in contrast to the infinite horizon case.     We have the option of 

stopping immediately, making no further replacements of any kind;  if we 

take this option, our terminal loss is    L (0,t)  .     In general, we denote 
s 

the expected value of    L (x,t)    by    <ti (a,b,c,t)  . 
s s 

We assume that there is a finite upper bound N on the number of 

spares available. At each successive stage we select the optimal con- 

tinuation.  Then, ^ la [2, Section 9.2] , the minimal risk with N-n 

spares,  V (b,c,t), satisfies 

(61) VN(b,c,t) = min [LB(0,t), Q(b,c,t)] , 

where 



(62) 

and for    n < N 

Q(b,c,t) -   min    ♦ (a,b;c,t) + e'<3ft»(a,b,c)        , 
a        8 J 

(65) V (b,c,t) - min LV„+1(b,c,t), V^^b.o.t)^ 

where 

(6U) 

and 

V^(b,c,t)  -min {e'at^{&,b)c)  + T'[a,Vn(b,c,t]) 
a 

(65) 
b        c r[8,Vn(b,c,t) -     —ii-   w    Vn(b+aK,c,t+a) 

b-t-a 

k-1 
+   kcbC j      Vn(b+x ,c+l,t+x)    X v  ^^ 

0 J        n '      ' (b+xk)c+1 

The decisions 

< 
% (i)      whether or not to stop 

(ii)    if not, what replacement interval to set 

eure arrived at in a manner similar to that used in Chapter VII. 

Reference to  [l,   Section k.2.k]  shows that, when the failure dis- 

tribution is known,  a much simpler formulation is possible. 
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Appendix I 

Minimax Strategy When Discounting 

Let  the class of distributions   f   '       be defined as follows: 

fix    a,v   (Q>0,  0<v<l)   ;   a distribution    F    belongs to the class 

roo 

e"03cdF(x)  .     Let    F      be the exponential distribution 
-0 

with mean     (l-v)/crv  .     It is easily checked that    ^„ey ' 

THEOREM.     With an infinite horizon and a loss function    L(a,x,t)    given 

oy   (2) at each stage,  the minimax strategy over   i   '       is to replace only 

at failure.    Replacement only at failure is also minimax over all distri- 

Q V butions  in        '      having nondecreasing failure rate. 

PROOF.     For an arbitrary distribution    F  ,  denote by    R(a,F)    the risk when 

a fixed replacement interval    a    is set at each stage.     Using a technique 

found in   [].,   Section lv. 2.1],  we have 

C2V 

;  -    max R(oo,F) ^>    min max R(a,F) 
F€p,v '   a ^0     F6 pa,v 

^   max min R(a,F) 
FGna,v a ^ 0 

c0v 
-.   min      F(a,F0)  = R(oc,F0) -    ^      • II 

a ^ 0 
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Appendix II 

Age Replacement When Discounting and the Failure Rate Is Strictly In- 

creasing to m 

Let F have failure rate q(' ) , 0 < ^ < c  , and Q > 0 .  Defl 

f(a)  = 1 - F(a) 

ne 

♦ (a)       » c L'
OB

7{BL) + c2J      e^XdF(x) 
0 

6(a)       = e-axF(a) +  /      e"axdF(x)      . 

0 

*M - Mi 
R(a  )     =    mln        R(a) 

a ^ 0 

THEOREM.     If    q(a)    Is continuous and strictly Increasing to   •» ,  then 

(1) 
* 

a    < 

(II) q(a  )  =a[c1+R(a  )]/(c2-c1) 

/ X * (III) a      Is unique    . 

PROOF. 

^Fta) M it   ^-T^-   L(Vc1k(a)^(c1+R(a)) 

which is positive for all sufficiently large    a ,  since    q(a)t»    and    R(a) 

is uniformly bounded for    a ^ €  > 0  . 
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(ii) By   (i),     a       is a finite zero of    •^-   R(a)   .     Such a 

zero exists  sin^e    q(a)    co  f   R(a)     is uniformly bounded 

fo1"    a 2 e  > 0>  R(0)  = o0 ,   anci    ^(a) an(i    R(a)    are con- 

tinuous. 

(ill) (suggested  by  David Matula). 

Let    a        and    a        be minimizers.     By  (ii),     R(a^    )  = 

-If # # -x- # 
R(a2   ; —^q(a1   ) = q(a2   ) =^a1     = a2    ,   since    q(a) 

is strictly  increasing.     |! 

Note that R(a) may have more than one "'.ocal minimum, but that only 

one of these is a global minimum. If part (ii) of the theorem is used to 

find a , all local minima must be found and the ccrresponding risks e- 

valuated.     We  suggest a possibly useful alternative procedure. 

Let 

VNN  = niin ^^ 
a 

V ,. = min    *(a) + &(a)V    .   TJ n^l n+l,N _ 
,   n < N 

It  can be  shown that 

-1 
q (Q(e1+ViN)/(c2-c1))ta' 

by proving that V 7 R(a ) (using the method of proof for Lemma 5) and 

comparison with part (ii) of the preceding theorem.  The heuristic basis 

for this is that V N would be the minimal risk, if we were to terminate 

after N stages.  A monotone improving approximation to a  is 

q"1(a(c1+V1N)/(c2-c1)) , 
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where    V „    is computed by recursion.    The minimizing    a    for    V N    is 

^(»(c^V^^)/^-^)) 

where we set    VM .   „ » 0 .     Note that    q"      exists since the failure N+1,N 

rate is continuous and strictly increasing to   » .     For the Weibull dis- 

tribution defined by  (l),     q"1^)  = (x/Xk)1^'1^ 
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Appendix  III 

Interchange of 11m and mln 

Tills appendix does not depend on the preceding material. 

Let    {f  }     be a sequence of functions with values in the extended real 

]ine.     We give  sufficient conditions that 

(66) 11m        mln      fn(y) = min        lim        fjy) 
n -♦ oo      yeY       ' yeY      n -»• 

Although apparently not in the literature,  the following result is prob- 

ably well knovn and part of dynamic programming folklore: 

LEMMA.     If 

(i) Y is compact 

(il) f (y)    is continuous in    y  . vn 
x     ' n 

(iii) f   — f  ,  uniformly over    Y  , v n 

then  (66) holds. 

PROOF.     The first two conditions are included only to ensure that all mini- 

ma in  (66) exist,  since a continuous  function over a compact domain achieves 

its infimum;     f    is continuous,   since it is the uniform limit of continuous 

functions. 

* * * 
Let y GY be such that f(y ) ■ mln f(y) and y GY be such that 

yeY n 

f (y ) = mln f (y), n = 1,2,   It suffices to show that nwn  ' ..      nw '* '   ' 
ycY 

(6?) |fn(yn ) - f(y ) l-o(i) 
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Suppose that (6?) does not hold. Then there exists € > 0 such that 

(68) I f (yn ) - f (y*) I > € for infinitely many n . 

However, by (lii), there exists n' such that 

(69) |fn(y) -f(y) |< G , ycY, yn > n' . 

Whe-her f (y ) ^ f(y ) or vice versa, it follows that 

(70)  I fn(ynV(y*) k max (I fn(yn*)-f (yn*) I, I fn(yVf (y*) I ) 

< € , vn > n' , 

contradicting (68).   || 

We have not yet specified a topology for Y .  In our case, Y was 

a compactlfled half line [e,»] with the usual topology. 
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Appendix IV 

Outline of Replacement Policy Computation 

To simplify matters, we assume that the grid rtJ is given. See 

Chapter VI for further details. An outline or the replacement policy 

computation is given by the following algorithm: 

1. Compute ~ {b,c) for all {b,c)€~. 

2. N • 2 • 

). Compute ~N{b,c} for all {b,c}Jb using the previously 

computed values of El,N-l{b,c}. [Note that 

~,N-l(b,c} a ~{b,c)] • 

4. (€ , 

go to 7i otherwise go to 5 • 

5. N .. N+l • 

6. Go to 3 • 

7. Exit with a table of ~N{b,c) and ~N{b,c) values. 



AcknowledgmentB 

I am Indebted to R.   E.   Barlow,  David. Hlackwell,  W.   S.   Jewell,  and 

Frank Proechan for their helpful comments.     I thank David Matula for 

suggesting part of the proof of the lemma of Appendix 11. 

•lO- 



REFERENCES 

[I] BARLOW, R. E. and PROSCHAN, FRANK {l9S:j).     Mathematical Theory 

of Reliability.  Wiley, New York. 

[2]   BLACKWELL, D. and GIRSHICK, M. A. (195^).  Tneory of Games and 

Statistical Decisions.  Wiley, New York. 

[j]   BELLMAN, R. (l96l).  Adaptive Control Processes. Princeton Uni- 

versity Press. 

[4]   RELLMAN, R. and DREYFUS, S. (1962).  Applied Dynamic Programming. 

Princeton University Press. 

[5]   CRAMER, H. (19U6).  Mathematical Methods of Statistics. Prince- 

ton Univr-sity Press. 

[6j   JEWELL, W. S. (1965).  Markov Renewal Programming.  Operations 

Research 11, 93Ö-971. 

[7]   JORGENSON, D. and McCALL, J. J. (1965).  Optimal Scheduling of 

Replacement and Inspection.  Operations Research 11 , 752-7^6. 

[Ö]   KARLIN, S, (19^0.  The Structure of Dynamic Programming Mo- 

dels.  Naval Research Logistics Quarterly 2 , 28^-29^. 

[9]   KELLY, J. (19^;) .  General Topology. Van Nostrand, Princeton. 

[10]  LAWRENCE, M. J. (196U).  An Investigation of the Burn-in and 

related problems. Operations Research Center 6U-52 (RR), Uni- 

versity of California, Berkeley. 

[II] LOEVE, M. (196^).  Probability Theory, (^rd ed.) Van Nostrand, 

Princeton. 

[12]  RAIFFA, H. and SCHAIFER, R. (I961).  Applied Statistical De- 

cision Theory. Harvard University Press. 

-hk- 



[IJ]  ROBBINS, H. (196U).  The Bnplrlcail Bayes Approach to Statistical 

DeciBlon Problems. Ann. Math. Stat. fö,  1-20. 

[Ik]      WIDDER, D. V. (19U1). The Laplace Transform. Princeton Uni- 

versity Press. 

-U5- 


