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STABILITY DIAGRAMS FOR MAGNETOGASDYNAMIC CHANNEL FLOW

by

F. D. Hains

ABSTRACT

A st'!r, is made of the influence of a coplanar mag-

netic field on the stability of a conducting fluid flowing

between parallel planes. After derivation of the general

stability equations for small magnetic Reynolds number,

numerical results are obtained for the case where initial per-

turbations of the magnetic field vanish. This must occur if the

channel walls have zero or infinite conductivity. Four sets of

stability diagrams are presented so that each stability curve

will represent the effect of a given applied magnetic field

as only one of the four quantities in the Reynolds number is

changed. The flow is always stable for initial disturbances of

the field produced by passage of a pulsating current through walls

of finite conductivity.

This paper was presented at the meeting of the Fluid Dynamics
Division of the American Physical Society on November 23-25, 1964

in Pasadena, California.
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NOMENCLATURE

B -- magnetic field

= wave propagation velocity

E = ejectric field

-9
j = current

K O
w u

-2-

N= maoneti-2 interactinn parameter
p• U

0

R z maAnetic Reynolds number 0u L

- Reynolds number - -

C= wave number

Superscr ipts

- - dimensional quantity



I. INTRODUI;TIN

The effec;t o0 a uniform c(planai maqtiet ij f leld on the stability

of parabolic flow of a conductinj fluid between parillel wulls has been

the subject cf several inve-,tiqatinrt,. The ,tibil ity equat ioIn were

f irst oiven by Michael(1) who showed 5quire'* Theorem is aiL- aý,plicable

to two-dimensional maqnetohydrodyranic flowc. In ,d~itior to the Reynolds

number R, two other nandimensional tyaramete-rj ,-ppea- in the equations:

the maginetic Reynolds number R m and the inte'action parameter N.

Becaiuse of the complicated form of the stability equations,

Stuart(2) simplified the equations by assuming Rm is small. The fluid

dynamic and electrodynamic equations are uncoupled because the induced

Snagnetic field is of second order. Stability curves were obtained for

* constant values of the parameter q = NC, where C is the wave number. Un-

fortunately, the drawbacks of this form as compared to the use of N alone

were not recognized by Stuart until the calculations were well under way.

The curve q = .08 formed a closed loop indicating complete stability above

a certain Reynolds number, Stuart claimed the closure of the curve could

not be verified because the assumption of small Rm was violated at the

higher values of R. In a discussion of Stuart's paper, Cowling(3) said

the existence of a region of stability for large values of R "hardly seems

reasonable".

Using the stability equation for small Rm given by Stuart,

i Rossow 4) solved the problem again and obtained stability curves for ccn-

stant values of the parameter N. The curves shift to higher R with in-

creased N, but do not form closed loops. This suggested the closure of

Stuart's curves was due to the use of the parameter q irsteid of N. This

t
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(5)was shown to be the case by HWiins), who obtained qualitative agreement

between the curves of Rossow and Stuart by crossplotting. The agreement

is only qialitative because Rosýow used the wroiiti boundary condition along

the axis of the channel. The boundary condition applicable to the outer

edge of a flat plate boundary layer was used instead of thJ conditions

for L,, antiymmetric disturbance in a channel. For this reason, Rossow's

results are not considered in the remainder of this paper.

Because the existing stability diagrams are of limited value,

the stability equation for small R has been resolved by an exact numeri-m

cal method. A useful set of stability diagrams plotted for several non-

dimensional parameters is presented in this paper. In addition, this

paper attempts to clarify several points which have led to some confusion

and misunderstanding about the effects of a magnetic field on stability.

The rirst point concerns the derivation of the stability equa-

tions for small R In taking the limit R M 0, Stuart neglected a termm" m

of the order of the terms retained, and arrived at an equation which is

specialized for the case where initial or externally produced perturbations

of the magnetic field vanish. This condition is always satisfied by channel

walls that are perfect conduct o or insulatMos. Be8ause R is small, them

Field influences the flow to first order, but the flow influences the field

only to second order so that first order perturbations of the field can

only be generated by passaye of an oscillatory current through channel

walls of finite conductivity. In an attempt to be more rigorous, Tatsumi(6)

introduced a new variable but obtained Scuart's specialized equation. In

effe,-t, he also nefjlected fi-qt order perturbations of the magnetic field.

In thisi paper, the general stability equation for small R is presented,m

and solutions are given for channel walls with zero, infinite and finite

conduct ivity.



The second point concerti5 the choice of parameter used to

describe the stability curves, and the r-orrer.t interpret;ition uf the

curves for the particulir parameter chu•,eri. In scjbility problems where

the Reynolds number is not the only nondimensiunal parameter, Haine(_)

has shown the charige in R should be it terpre4.ed ;n a vmriation of only

those quantities not common to both R and the other nor difnensional

parameters. For the parameter q cho'.en by qtuart, this would mein varia-

tion of the coefficient of viscosity ý' to ch,;nne R. Since R is inde-m

pendent of Z, the assumption of small R is not virjl.ted by variation ofm

R in this manner, and the closure of Stuart's curves is therefore correct

if R = R(Z). If, as Stuart assumed, R = R(Z), the closure of the sta-
0

bility curt,es cannot be decided with the present theory because the

assumption of small R is violated for laiye values of R. Since varia-

tion of' ' to change R ,would also change q, some other quantity in q must
0

vary along each of Stuart's stability curves in order to keep q fixed.

Clearly, some new parameter independent of ' must be chosen to describe
0

the stwbiity curves if R = R(ino). In this paper, pirameters are intro-

duced which permit variation of each quantity in R individually.
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II. STABILITY EQUATIONS

The magnetohydrodynamic equations which govern the flow of an

incompressible, viscous fluid are (in dimensional form):

4flow continuity: V * V a (l'

-DV 4 - . 2.4
Navier-Stokes: .JXD + • J X B +iV V (2

Dt

Ohm's Law: J = TE + V x B)

Faraday's Law: V X E = - C)B
C)t

magnetic continuity: V B = 0 (b

Ampere's Law: V X B C)

where 11 and a are the viscosity coefficient and electrical conductivity

respectively. p is the fluid pressure, p is the density, t is the time

4
and E hi the electric field. The components of the magnetic field and

velocity are, respectivelys

V = iuJv (+

Elimination if E from Eqs. (3) and (4) with the aid of (1), (

and (6) yields

Ata

Asecond equation is obtained by elimination of J from Eqs. (2) and (6)



P- + V = (E ) B "2 V (10)

It is convenient to nondimensionalize by defininq the new v.riables

(x,y) (;,) p =/~2 -2
P u

0

( , 6,v)6 ( 8I,8)/Uo t_
L

(BI,2 B We :E N

R zou L u 0Rm = _CYu L_U R 0

m 0

where L is the channel half-width, and u is the velocity at the axis of

the channel. The tilda (--) indicates a dimensional quantity.

Eqs. (9) and (10) are linearized by assuming small perturb-3tions

in the dapendent variable of the form

u = (Y) , ALLX..

V 4I( x -t)
ax

p P(x,y) + e.,'(X,y,t) (12)

aY'(x.v.t)

82 a x

where c is 3 small quantity. These relations automatically satisfy the

continuity Eqs. (1) and (5). Assuming solutions of the .,eparahle form
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S-0(y)exp ia(x - ct) (13)

Y *(y)exp im(x - ct) (14)

The linearized form of Eqs. (9) and (10) reduce to

jR Iyy " 1 - (U-c)* (15)
m

DO = ia.N(U'c)) "0 (16)

where 0 is the operator defined by

DO = (U-c)(Oy-L20) - U 0 + i r 2 + 4 01 (17)
yy yy aR !_.yyyy yy

2

The steady-state velocity profile is U x 1 - y 2 These two coupled equa-

tions are the stahility equations for plane MHD flow with a uniform co-

planar magnetic field. In the remainder of this paper the operator D is

used so that the le't hand side of Eq. (16) is expressi-d simply as DO.

The boundary conditions along the channel walls require tha

velocity components to vanish

-_ - - -.-- t)--a--(-ly )- - -0- - -(4)-
y

If the walls are perfect conductors,

*(k 1) = 0 (19)

and if the walls are perfect insulators,

0 (20)
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For walls of finite conductivity, '.he value or *(* 1) takes on some unknown

value found by matching the solution in the channel to the solution in the

wa11.

Because of the complicated form of Eqs. (15) and (16). we re-

strict our attention to the special case of small R m. Assuming

0o m+ R ...

(21)

€0 0 0 + R m 0 ÷_"_"

Eqs. (15) and (16) become

Cy 2 * 0 (22)

DO ioN (u-c)* -0 (23)

This is the general form of the stability equations tur small Rme

Stuart(2) obtained a single equation which corresponds to Eq.

(23) without the 4o term. It Is therefore specialized for the case where

the pe:turbations in the magnetic field of the order of 40 vanish. In-

stead of using Eq. (15), Stuart performed an order of magnitude analysis

on the equation

S(% ,. OW )~-1 G) . 0(-) (24)

where 4 0 e and 0 a u00 are quantities. By assuming the

terms arid 0 Instead of * and 0 were of the same order he neglected the

* term on the right hand side of Eq. (23) In comparison with the other

terms. Eqs. (22) and (23), obtained by assuming *o and 0 are of the same

order, reduce to Stuart's stability equation when * 4 0.0
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In an attempt to be more rigorous in the derivation of the sta-

bility equations, Tetsumi(E) introduced a new variable

11 w *yy- L2 (25)

and used Eq. (15) in the form

0 = 1--q+ (u- c)* (200
m

-to ,liminate 0 from Eq. (16). ThMe r3stltlnt *tlatiptnn is

Diq + imNq = iO(U-c)Rm D0 (27)

For small Rm, Tatsumi npglected the right hand side of Eq. (27) and ob-

tained an equation of the form of Eq. (29) below. He proceeded to outlife,

the solution of the differential equation for the boundary conditions

0 at both boundaries. It Is easy to show, in the limit as Rm

that Tatsumi's equation is satisfied by q 0 0. By using Eq. (21) and a

similar power series expansion for q, Eqs. (26) and (27) are, to firct

order,

It "a 0 (28)

0,o. *~ o (2g)

0a1 + Ioq0a 0 (9

The corresponding second order equations are

0 • (U - o0  (30'

Dql + tNqv = i(U- c)D*•0  (31'

It is clear that Tateumi's equation is not equivalent to Stuart's stabi]
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equatior because the variable q vanishes for acro Rm. Much of the con-

fusion results because Eq. (29) and Eq. (31) with *0 = 0 have the same

form as Eq. (23) with * = 0. These equations are by no means equivalent.

Tatsumi's equatiý3n is meaningful only for small values of R greater thanm

zero, while Stuart's equation is valid for Rm = 0 as well. Both stability

equations assume 0 0, which is a special case.
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III. CHANNEL WITH WALLS OF FINITE CONDUCTIVITY

If the walls have finite conductivity ciw, initial perturbations

of the mdgnetic field can be induced by passage of a pulsating current J z2

through the walls. In the walls, which extend to y - + =, the magnetic

field must satisfy Eq. (9) with V = 0. Using Eq. (12) for tne field com-

ponents BI and B2, and Eq. (14) for the form of the disturbance, Eq. (9)

reduces to the form

,y + P2 * 1 0 (32)oyy o

where
p2 22 a 2 + icaKc (33)

This equation applies only when R is small. In addition, the nondimensio'.m

parameter K a w u0 L is assumed to be of order one.wo

If the disturbances are symmetric with respect to the channel

axis, the solutions of Eqs. (22) end (3?) are, respectively,

O'y *t0 z A Cosh my (34)

y0 a a • ran (:)5

The boundary condition requiring the matching of 0° and * oy at y + I

leads to the relation

a tanh % 2 tan p(36)

Since cL Is real and positive, must also be real, Eq. (33) shows c must

be a neg~ative imaginary number since K is positive. The disturbances are

always stable,
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IV. CHANNEL WITH WALLS OF ZERO OR INFINITE CONDUCTIVITY

If the channel walls are perfect conductors (H =) or perfect

insulators (H 0), initial perturbations in the magnetic field must
w

vanish. 0' can also vanish for walls of finite conductivity if the current

j is zero. The eigenvalue problen reduces to the solution of Eq. (23)
z

with *' = 0. The boundary conditions are given by Eq. (18). As is cus-
0

tomary in the nonmagnetic case, we restrict our analysis to antisymmetrical

disturbances so that 0 is an even function of y. Integration is only neces-

sary over half the channel if the boundary condition

0 = 0 = 0 (37)

is satisfied at the channel axis.

The problem, as it is presently posed, was first solved by

Stuart(2) using the Tollmien-Schlichting theory. In this paper, solutions

are obtained by an exact numerical method developed by Hains and Price

for Poiseuille flow between flexible walls. Details of the numerical

method can be found in Reference 8, but a brief outline will be given here.

The numerical solution is begun by dividing the channel half-width

into n parts of equal length. After introduction of a new dependent vari-

able developed to reduce truncation errors, the differential equation and

boundary conditions are written in finite difference form at each of the

divisions. The resultant system of linear algebraic equations possesses

a nontrivial solution if, and only if, the determinant of the coefficients

vanishes. This condition determines the eigenvalue c. For each combina-

tion of a, R, N specified, three initial guesses for c are made, and the

value of the determinant for each guess is calculated. A complex quadratic

is passed through these three values, and the root of the quadratic nearest
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the last guess is taken as the new approximation to the eigenvalue. For

n = 50, iteration was contiinued until the value of the determinant had

been reduced to some preselected value close to zero. The final value of

c is the eigenvalue. This numerical method was programmed for an IBM 7090

computer using single precision with 8 digits. The values of c given in

this paper are accurate to at least four decimal places. This accuracy

was chocked by repeating the calculation oF some points with a double pre-

cision program carrying 16 digits.

Neutral stability curves for the wave number a and wave propa-

gation velocity c r are shown in Figs. 1- 6. Three sets of curves are pre-

sented for the three nondimensional parameters N, N' and N*, where

N , NR I
0

N* E N/R = )

Since N is independent of Tt, these parameters have been selected so that

N' is independent of P and u , and N* is independent of L. Use of all0

three parameters to describe the stability curves permits the variation

of R to be interpreted as a change in one of the quantities p, uo, L or p.

In Figures 1 and 2 where N has been chosen as the interaction

parameter, a given value of the applied magnetic field will lead to a Fixed

value of N if the viscosity is varied to change R. This is indicated by

R = R(6) along the abscissa of the figure. As the figures clearly show,

the critical Reynolds number increases with N and the wave propagation

velocity c decreases with N.r

In a channel flow experiment, it is customary to increase the

Re.-nolds number by increasing the Flow velocity Z . Stuart also interpreted
0
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his stobility curves in the some manner. Instead of using N, or %a as

Stuart used to describe the curves, the parameter N' was chosen because

of its independence of u . The stability crjrves are shown in Figs. 3 and

4. The curves are similar to those for N, but approach the nonmagnetic

curve N' = 0 more rapidly with increased R(p, 0). Numerical values of c

over a range in c and RI/3 are given in Table I for some representative

values of N'. Positive values of the imaginary part of c indicate an un-

stable disturbance.

The last set of curves shown in Figs. 5 and 6 show the effect

of variation of the channel width L to change the Reynolds number. As N*

is increased, the neutral stability curves form closed loops with the

region of instability confined to the interior of the loop. This means

the flow is stable for small channel widths and for large channel widths.

When N* > 3.26 X 10-6, the region of instability disappears and the flow

is stable for all channel widths.

rhe distribution of the eigenfunction is shown in Figure 7. Only

the real part of 0 and its first derivative are shown because the imaginary

parts are small in comparison. The magnetic field tends to reduce the

gradients of the velocity perturbations in the region near the wall. Using

the eigenfunction for N = 0, the streamline distribution shown in Figure 8

was calculated. For clarity, the bending of the streamlines was greatly

exaggerated by taking C = 1. The antisymmetric form of the disturbance is

clearly evident from this figure.
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V. CONCLUSIONS

A study has been made of the stability of a conducting fluid be-

tween two parallel planes with an aligned magnetic field. When the magnetic

Reynolds number is small, three different methods of producing a disturbance

are possible. The initial disturbance can be in the fluid, in the magnetic

field, or in both simultaneously.

When the channel walls have finite conductivity, a disturbance

of the magnetic field can be introduced by passage of an oscillatory current

through the walls. This in turn causes the fluid to oscillate, but this

type of disturbance is always stable.

Neutral stability curves have been presented for initial distur-

bances produced only in the fluid. The effect of the magnetic field is to

increase stability, but the particular shape of the stability curves

depends on how the Reynolds number is varied. Four sets of stability curves

were presented, each corresponding to a variation of one of the four quan-

tities in the Reynolds number. The stability curves form closed loops when

the channel width is varied to change the Reyholds number. The loops dis-

-6appear and complete stability is obtained when N* ! 3.26 1 10- . When other

quantities are varied to increase the Reynolds number, the stability curves

are shifted to higher Reynolds number as the interaction parameter is in-

creased.
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