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ABSTRACT 

The effect of surface roughness on the radar backscattering cross section 

of a perfectly conducting nominally spherical target is examined by applying 

the Kirchhoff method. 

It is shown that,  for the type of roughness and sphere size to which the 

Kirchhoff method is applicable,  the standard deviation of the cross section 

increases with frequency according to the law 2\TZ<r kt, until the first Fresnel 

zone reduces in size to the scale length of the roughness.    At this point a knee 

in the curve occurs and its further course is determined by a more detailed 

statistical description of the surface.    Here a    is the nominal cross section, 

I, is the standard deviation of the surface height h and k =   2-rr/\,  where X. is 

the wavelength. 

The average cross section is shown to be given by a 1 +   0{(kh)3}l    In 
o 

this connection,  an error that may be significant,   occurring in the work of 

Hiatt et al.on roughness effects,  is pointed out. 

Some experimental results are reported which support the theoretical 

conclusions and,   moreover,  indicate that they may be useful even when the 

scale length of the roughness is smaller than the wavelength. 

Further theoretical results are included concerning the effect of rough 

ness on a general second order surface and the correlation function for the 

cross section. 

Accepted for the Air Force 
Stanley J.   Wisniewski 
Lt Colonel,   USAF 
Chief,   Lincoln Laboratory Office 
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Radar Echo Variations of a Large Rough Sphere 

I.      INTRODUCTION 

Variation with aspect of the radar backscattering cross section of a nom- 

inally spherical metal body detracts from its usefulness as a standard of 

cross section.    The situation is deteriorated further if the mean cross section 

is appreciably different from the nominal cross section.    For manufacturing 

purposes,  therefore,  it is important to know how the cross section depends 

upon the surface tolerance. 

The effect of roughness having a scale length short compared with a wave- 

length has been discussed by Hiatt ,et al (I960) by a method based on an 

impedance boundary condition.    Their theoretical work is limited to finding an 

expression for the average backscattered field strength,  although useful ex- 

perimental results are presented concerning the variation of the cross section. 

At the other extreme of the scale length of the surface roughness, that is, 

for perturbations which smoothly deform the sphere into some still-convex 

body like an ellipsoid,  for example,  the problem is easily tackled by applying 

the well known relationship between the cross section and the radii of curvature 

at the specular point. 

This paper presents the results of an application of the Kirchhoff method. 

The basic assumptions made are that the perpendicular distance from the mean 

surface to the true surface is small compared with a wavelength and that the 



scale length of the roughness is small compared with the radius of the sphere 

but large compared with the wavelength.    It is further assumed that the sur- 

face is statistically uniform and isotropic. 

The scale length assumption,  as it stands,  limits the application of the 

results for practical purposes to spheres which have had the small scale 

roughness removed by polishing.    However,  experience with the Kirchhoff 

method has shown that it yields accurate results even when the scale length 

assumption is relaxed considerably (Bechmann and Spizzichino, 1963:IV).   In 

Section VII some experimental results for rough spheres are reproduced 

which tend to support this view. 

The Kirchhoff approach reduces the problem to a form which has already 

received considerable attention in the random phase-screen theory of radio- 

star scintillations induced by the ionosphere,     [e.g.   Booker,  et al (1950), 

Mercier (1962)]. 

II.     THE KIRCHHOFF INTEGRAL 

The scattering properties of a perfectly conducting sphere can be charac- 

terized by the parameter ka,  where a is the radius of the sphere and k =   2TT\, 

\ being the wavelength of the incident radiation.    For large values of ka the 

backscattered field can be expressed as the sum of an optics terms and a 

creeping-wave term.    For values of ka larger than about 10, the creeping- 

wave contribution is less than one tenth that of the optics term (Senior,   1964). 

Since,  in addition,  the creeping waves traverse a path on the surface which 



is at least ua in length,  it is to be expected that the effect of the surface per- 

turbations will average out,  in some sense,  thereby making the creeping-wave 

term significantly less sensitive to the roughness than is the optics term.    It 

is reasonable to suppose,  therefore,  that the effect of neglecting the creeping- 

wave term will not be serious for even smaller values of ka than 10. 

The optics term,  to the first order in ka,  is that obtained by the Kirchhoff 

method of calculating the scattered field.    (If the spurious shadow region con- 

tribution is discarded,  the Kirchhoff solution is accurate to at least the third 

order in ka. ) 

When a linearly polarized plane wave of unit intensity propagating in the 

negative z direction is incident upon the rough sphere, the Kirchhoff solution 

for the backscattered electric field at a point in the far zone can be written 

as 

E =   2^    \   exp{-i2kz (x,  y)} dydy 

A 

Here R is the distance from the sphere to the field point,   z(x,  y) is the height 

of the illuminated hemisphere from the plane z =   0 and the integral is carried 

out over the projected area of the illuminated hemisphere on the plane z =   0. 

A superfluous constant phase factor has been omitted and E is understood to 

be polarized in the same direction as the incident electric field. 

in.   THE VARIANCE OF THE CROSS SECTION 

The effect of the surface roughness may be introduced by writing z(x,  y) 



as 

z(x, y) =   z   (x, y) +   6(x, y) (2) 

where 6 is the height of the true surface,  in the z-direction,  from the mean 

surface z  (x, y).    Thus, by definition, 

<6(x, y)> =   0 (3) 

where the angle brackets denote the operation of taking the average or expected 

value of the enclosed quantity,  and z   (x, y) can be written 

z  (x, y) = Va   — x   — y   — a (4) 

From (1) and (2),  the expected value of E is given by 

k      f      -i2kz
0<x'y>     -i2k6(x. y) <E>=

MJ    
e <e *y>dxdy     . (5) 

Figure 1 shows that,  to a first approximation,   6(x, y) is related to h(x, y) (the 

height,  in the radial direction,  of the true surface from the mean surface) by 

the equation 6(x, y) =  h(x, y)/cos8, where 0 is the angle between the z axis and 

the radial direction.    Therefore,   since the roughness is statistically uniform 

over the surface,  then in the vicinity of the specular point <exp{-i2k6(x, y)}> 

2 2 
is a weak function of the single argument x   +  y .    In addition,  a basic assump- 

tion here is that h « \,   so that 2k6(x, y) is uniformly bounded for all k.    This 

clears the way for a straightforward stationary phase evaluation of (5),  using 



the form for z    given by (4) with ka as the large parameter. 

The result is <E> =   ia <exp{-i2k6(0, 0)}>/2R,  which,   since 6(0, 0) =  h(0, 0), 

h/X.« 1 and <h(0, 0)> =   0,   may be written 

<E>=   (1 -2kV) i-^- (6) 

2 2 
where t,    =   <h  (x, y)>,   or,   alternatively, 

<E> =   (1 - 2k2£2)E 
o 

(7) 

where E    is the backscattered field of the perfect sphere of radius a. 
o 

It is shown in the Appendix that,   for small perturbations of the scattered 

field,  the normalized variance D{a} of the cross section cr is given by 

D{<r} =  < 
o- - <o-> 

<<r> 
> =   2 < 

1 E - <E> 
<E> 

+  Re 
|TE-<E>~|21 

(8) 

where Re denotes the operation of taking the real part.    Therefore,  from 

(1),   (2),   (5) and (6),  this may be written,   to0{(k£,)   },  as 

?k2   vr   -i2k[z_(*. y) - z
0(x'» y')] 

D{o-} =  =J-J     \   e F^x, y, x', y1) dxdydx'dy' 
IT  a    \- 

-{I 
-i2k[zQ(x, y) +   Zo(x', y')] 

e F   (x, y, x', y') dxdydx'dy '}]■ (9) 



where 

Ff (x. y. x-, y.) =   <e"i2k[ ^ ^ " ^' *'>]>- <e-
i2k5<X« ^W^*'' *% 

F2 (x, y, x", y.) =   <,-«*«<*. * +   6<X'« M*-«**«*. f)><m'^W. Y% 

It is clear that both F    and F    are zero when the distance between the 

points (x, y) and(x", y') is large enough for the corresponding 6's to be uncor- 

related.    Therefore,  when the scale length L of the surface roughness is 

smaller than the width w of the first Fresnel zone,  the variation of F    and F 

as functions of x — x',   y — y1 is stronger than that of the exponential factors 

and the method of stationary phase is not directly applicable. 

However,  the period of the exponential factors in the integrands in (9) 

steadily increases as x, x', y or y' increase,   so that eventually the period is 

small compared with the scale length of the roughness.    Such regions contrib- 

ute negligibly to the integrals,  which leads to the conclusion that the effective 

region of integration in x, x1, y, y1 space is a hyper-sphere centered at the 

—2 2 
x    +   y    at which the 

V2 2        2 
i — (x   +  y )/a 

of the roughness.    (The scale length on the x,  y plane is a projection of the 

true surface scale length. )   The value of r    is easily deduced to be a\/4L. 

Since,  by assumption,   X./L « 1,   r    is small compared with the radius of the 



sphere. 

Therefore,   for all L,  the significant contribution to the integrals in  (9) 

derives from a small region about the origin within which 6(x, y) and z  (x, y) 

2 2 
are given essentially by h(x, y) and-(x   +   y  ) /2a,   respectively.    In addition, 

since the limits of integration do not lie within or close to this region,  they 

may be extended to infinity.    D{a} can then be written as 

8k V rriI[x+y_xl"y' 1    // 7 5\ 
DM =  —^f     J   e Chr\Ax-x'r+   (y-y1)   Jdxdx'dydy' 

n   i-[x2+   y2+   x'2+   y'2] 
+ Rj^e   a cYV(x-x')2+   (y-y')2N)dxdx'dydy'j .(10) 

where ^cY'/fx - x' )2 + (y - y' )2^   =   <h(x, y) h(x', y')>,   Ch<0) =   i and the fact 

2   2. 
that h/\ « 1 has been used to reduce F    and F    to the expressions 4k  t, C 

12 h 

2   2 
and —4k   t,  C    respectively.    As defined here C    is the correlation function 

n h 

for the surface. 

By means of the substitutions x =  u +  v/2,  x1 = u — v/2,  y = u' + v'/2, 

y1  = u1 — v'/2,  the form for D{cr} given by (10) simplifies to 



D{o-} =   8k\2   1 -  f Ch(V2ap/k) sinp dp (ID 

This is the required result. 

When the scale length is small compared with the width w of the first 

Fresnel zone (w =    y2Tra/k),  the integral in (11) is clearly small compared 

with unity.    Thus in this,  the case of most practical interest,  the normalized 

standard deviation  y D{tr} of the cross section is given simply by 2 V2k£. 

IV.   THE AVERAGE CROSS SECTION 

2 
The cross section is proportional to IE I   ,   so that the average normalized 

cross section <o->/o-    is given by 

<|E|2>      |<E>|2    r ,_        ^2 
<er> f.   , E - <E>| 

12 
^o IE   I2 IE   |2 {-<F^f>} 

The rearrangement of the right side includes the term <|(E — <E>)/<E>|   > 

which has been evaluated in Section III.    It is,  from (8),  just half the first 

2   2 
term on the right of (11),   or 4k  ^  .    Therefore,   (12) can be rewritten,  using 

2   2 2   2 
(7),  as <o->/o-    =   (1 - 2k  £  )    (1 +   4k  t,  ), which is unity to the order in kh to 

which the approximation has been carried.    That is 

~   1+  o{(kh)3}     . (13) 

8 



This result leads one to conclude that a departure of the average cross 

section from the nominal cross section is unlikely to be measureable under 

the conditions for which the theory is valid. 

It is of interest at this point to mention the work of Hiatt et al (I960),  who 

use an impedance boundary condition to represent small scale surface rough- 

ness.    They find an expression for the expected value of the backscattered 

field and then square this to obtain the expected value of the backscattering 

2 2 
cross section.    This is clearly in error,  for<|E|   >=  <|<E>+   (E - <E>) I   > 

2 2 
=   |<E>I    +   <|E — <E>|   >,   so that they have neglected to include the term 

<|E-<E>|   >. 

The application of the Kirchhoff method to the same problem has shown 

that when this additional term is included it just cancels the effect of the 

2 
roughness on the term |<E>|   .    Hence,   although the two approaches to the 

problem do not start from the same assumptions,  the Kirchhoff method indi- 

cates the necessity of including the additional term.    One concludes,  therefore, 

that a modification of the average backs catte ring cross section due to small 

scale roughness has yet to be demonstrated theoretically. 

V.     GENERALIZATIONS 

It is a simple matter to rework the derivation for a mean surface in the 

form of a general second-order surface.    Instead of the single radius a,  one 

has to deal with the separate principle radii of curvature a    and a    at the 

specular point. 



In place of (11),   one finds 

2TT  oo 

D{a} =   8k2;2 1-j-  \     \   C  jv2(a  cos29+   a  sin^p/kj-sinp dp d9 

o    o 

so that again,  when the scale length is small compared with the least width of 

the first Fresnel zone,  the integral is small and the normalized standard de- 

viation of the cross section is 2 V2k£,. 

Equation (13) for the average cross section is found to apply unaltered to 

the more general surface. 

A further result of some interest is the correlation function C   (9) for the 

backscattering cross section,  which may be defined as 

2 
where R(8) =   <<j-(6   ) o-(8  +  9)> — <<r>    and the arguments 9    and 9  +  9 specify 

o o o o 

the directions, based on an arbitrary great circle on the surface of the sphere, 

at which the cross sections are measured. 

The derivation is straightforward provided a9 is small compared with the 

radius of the sphere,  for then it is sufficient to replace x' and y1 in the ex- 

ponential factors in the integrands in (9) by x' — x    and y' — y  ,  where 

2 2 2   2 x      +   y      =   a 8   .    The result may be expressed as 
o o 

10 



R(9) =  8k2;2(r  2 

o 

CO 

Ch(a9) - f Ch(V2ap/kJ J   (e"V2kap J sinfp + ka92/2 J dp      , 

(15) 

where J  (u) is the Bessel function of the first kind of order n and argument u. 

When the scale length of the surface perturbations is small compared 

with the width of the first Fresnel zone,  the integral in (15) is clearly small 

compared with the first term in brackets.    In this case (15) reduces to 

2   2     2 R(6) =   8k  t,   cr     C   (a9),   so that the correlation function for the cross section 
o      h 

is,  from (14),   given simply by C   (9) =   C   (a9). 
a h 

VI.    NUMERICAL STUDY 

The derivation of expression (11) for the variance of the cross section is 

based on the well tried Kirchhoff method.    Thus if the result is incorrect it is 

likely to be because the derivation is faulty rather than the Kirchhoff method. 

To provide a check on the derivation,  a computer program was written 

to compute,  using the Kirchhoff method,  the backscattering cross section for 

a sphere with a particular type of random surface.    By repeating the compu- 

tation for a number of different samples of the same random process the 

variance of the cross section was obtained. 

The random surface was generated by dividing the surface of the mean 

sphere into a large number of curvilinear squares of roughly equal area.    The 

true surface was then defined to be given in spherical coordinates by 

11 



r(9, 4>) =   a +  h(G, 4>),  with h(9, 4>) being constant for all points (9, cj>) lying 

within a particular curvilinear square.    The value of h assigned to each square 

was an independent sample of a Gaussian random process of zero mean and 

given variance. 

The results are shown in Table I.    The entries in columns 1 — 5 give the 

various ratios of significance to the computation,  with L being taken as twice 

the side length of the elemental surface areas.    The entries in column 6 are 

the corresponding values of the normalized standard deviation of the cross 

section given by the expression Z^Zkt,,  which,  according to the derivation is 

appropriate for small values of L/w.    The normalized standard deviation of 

the N cross section values obtained with the computer program is entered in 

column 7 and N is recorded in column 8. 

TABLE I 

COMPUTATION OF THE NORMALIZED STANDARD 
DEVIATION OF CROSS SECTION FOR A ROUGH SPHERE 

1 2 3 4 5 6 7 8 

ka u\ L/\ L/a (L/w)2 2N/2k£ \lr>{v} N 

50 0.8 x 10"3 2.2 0. 28 0.65 0.014 0.017 19 

100 1. 6 x 10"3 4.6 0.28 1.3 0.028 0.029 19 

200 3.2 x 10"3 9.1 0.28 2.6 0.056 0.031 19 

200 3.2 x 10"3 2.2 0.072 0. 16 0.056 0.051 12 

12 



The first three rows show the effect of increasing the frequency,  leaving 

all else unchanged.    The agreement between columns 6 and 7 is good except 

2 
at the highest frequency,  where,  in view of the fact that (L/w)    has the value 

2. 6,  it is to be expected that the simple form 2N/2k£, should over-estimate 

*N/D{<J-}'.    The final row shows the effect of then reducing L by a factor of 0. 25, 

which makes (L/w)    small again and the agreement is regained. 

VII. EXPERIMENTAL RESULTS 

The theoretical work reported here was carried out as a part of the pro- 

gram which culminated in the successful launch of a 113 cm radar calibration 

sphere (Object number 1361) on May 6,   1965 into a nearly circular 1500 

nautical-milt orbit of 32. 11° inclination.    The initial attempt to manufacture 

the sphere involved the welding together of two hemispherical aluminum shells. 

It was found that the welding operation distorted the shells over a wide equa- 

torial zone to a degree that made the resulting sphere unacceptable as a radar 

calibration device.    For this reason,  a different method of joining the two 

hemispheres was used for the flight sphere.    However,  the welded sphere was 

useful for surface roughness experiments because the variations in cross 

section were large enough to enable good measurements to be made on a 

standard radar cross-section range. 

The sphere was polished after welding,   so that the final condition of the 

surface was very smooth with undulations of the order of 0. 1 cm in height 

and 15 cm in length.    The surface was not statistically uniform,   since the 

13 



surface was most "rough" in the region of the equator.    Therefore,   since 

this immediately violates one of the conditions necessary for the simple theory, 

it was decided that a detailed dimensional survey of the surface would not be 

worthwhile.    Accordingly,  the two statistical characterizations,   £, and C   (p), 
h 

of the surface necessary to evaluate D{cr} using (11) were estimated from a 

single sectional profile of the sphere taken by means of an accurate circular 

check-ring lying in the equatorial plane (the plane of the weld line).    The dis- 

tance from the check-ring to the surface was measured at 10° increments 

round the full circle. 

The check-ring measurements were reduced to equivalent "displacement - 

from-mean-sphere" measurements by subtracting from them their mean and 

their first Fourier component.    The standard deviation t, of the reduced 

measurements was found to be 0. 0591  cm and the correlation function (defined 

to be unity at 0°) was found to be 0. 607 at 10° and -0.017 at 20°.    The last 

number indicates that the correlation function falls quickly towards zero and 

in addition,   since the surface is smooth,  the slope of the correlation function 

must be zero at the origin.    This indicates that an appropriate simple model 

2      2 
for the correlation function is C   (p) =   exp(-p   /L.  ) with L =   13. 95,  the value n 

required to make C   (p) equal to 0. 607 when p is the surface arc length equiv- 
h 

alent to an angular displacement of 10°. 

Substituting this form for C   (p) into (11) leads to the following expression 

for the standard deviation of the backscattering cross section. 

14 



2V2kC VBW=  "J* , (16) 

V. ♦ (4) 
where w =  *^a\ is the width of the first Fresnel zone. 

Figure 2 is a graph of expression (14) as a function of frequency using the 

values of t, and L obtained as described from the check-ring measurements 

and the nominal sphere radius of 56. 5 cm.    The broken straight line is the 

low frequency asymptote. 

The measured values of the standard deviation of the backscattering cross 

section are entered at points.    Measurements were made at UHF and in the 

bands L,  S,  X,  and K.    The plotted points were computed from the 360° range 

record taken around the equator or weld line of the sphere. 

In Table II the theoretical and experimental data are presented 

numerically. 

15 



TABLE II 

COMPARISON OF THEORY AND 
EXPERIMENT FOR 113 cm SPHERE 

Frequency Wavelength ND{(T} 

(GHz) ka (cm) Theoretical   Measured Measured (db) 

0.4 4.73               75 0.0137 0.018 0.078 

1.2 14.2 25 0.0385 0.046 0.20 

3.3 39.1 9.09 0.0742 0.064 0.28 

8.5 100.6 3.53 0.0923 0.087 0.38 

24.0 284 1.25 0.0965 0.187 0.86 

The standard deviation of the measured values is also expressed in decibels 

for convenience. 

The agreement between theory and experiment is surprisingly good in 

view of the approximations used to describe the surface.    The fact that at 

24 GHz,  the agreement is lost is probably due to the coarse measuring interval 

(10°) used to plot the sectional profile.    For at 24 GHz the first Fresnel zone 

is about 8. 5° wide,   so at this frequency,   smaller scale roughness,  undisclosed 

by the coarse measuring interval,   comes into play. 

It should be mentioned that at the three higher frequencies it was possible 

to expand the scale factor of the output pen recording to a value typically in 

the region of 1 db/in.    The equipment used at 0. 4 and 1. 2 GHz,  however,  was 

not amenable to this modification with the result that the scale factor 

16 



remained at about 6 db/in.    Thus the figure of 0. 078 db for the standard devi- 

ation of the cross section at 0. 4 GHz was obtained from a pen recording with 

a peak-to-peak variation of about 0. 05 inch.    In addition,  the background 

level during the measurement was of the order of -40 db,  which is too high to 

be negligible.    Therefore,  the apparent agreement at 0. 4 GHz is likely to be 

more fortuitous than real. 

It is interesting to note that at the two lowest measurement frequencies 

the wavelength was larger than the scale length of the roughness.    This vio- 

lates one of the conditions required by the Kirchhoff method,  but there is no 

apparent divergence between theory and experiment as the wavelength in- 

creases. 

Some further experimental data of interest are contained in the paper by 

Hiatt et al_.(l 960).    They measured the standard deviation of the cross section 

of a rough 26 cm aluminum sphere at two wavelengths,   3. 1 cm and 1. 3 cm, 

and obtained the figures of 0. 4 db and 1. 04 db,   respectively.    The standard 

deviation of the true surface from the mean surface was estimated as 0. 037 cm 

and the scale length of the roughness as 0. 101 cm.    Thus at both frequencies 

the scale length to wavelength ratio was less than one tenth, which places the 

character of the roughness well away from the regime of applicability of the 

Kirchhoff method.    However,  a formal application of (11) to this case yields 

the figures of 0. 92 db and 2. 2 db for the standard deviation of the cross 

section at the wavelengths 3. 1 cm and 1. 3 cm,   respectively.    (For such a 

17 



small scale length,  the abbreviated form of (11) applies,   making it unneces- 

sary to know the form of the correlation function for the roughness. ) 

A second assumption necessary to derive (11) was that the maximum 

perturbation of the cross section be small.    This,  too,  is not true for the 

present case,  and additional error is incurred in assuming a linear relation 

between the standard deviation expressed as a pure number and the same 

quantity when expressed in decibels.    In spite of this,  the theory agrees with 

experiment to within a factor of about two at both measurement frequencies. 

This suggests that (11) may be a useful guide to the effect of roughness even 

for scale lengths considerably smaller than a wavelength,  but further mea- 

surements using smaller amplitude roughness are necessary to find out 

whether this is so. 

There was no possibility of measuring the average departure of the cross 

section from nominal,  because the sphere itself was at least as good,  for the 

purposes of calibration,  as any other available standard. 

VIII. CONCLUSIONS 

The effect of surface roughness on the radar backscattering cross section 

of a large metal sphere has been examined by applying the Kirchhoff method. 

The roughness has been assumed to be statistically uniform and isotropic,  and 

the effect on the cross section has been determined by obtaining expressions 

for the average cross section and the standard deviation of the cross section. 

It is difficult to prepare spheres having rough surfaces with accurately 

18 



known and uniform statistics,  and equally difficult to carry out accurate mea- 

surements on the small perturbations of the cross section, but those 

experimental results which have been obtained appear to confirm the validity 

of the theory within its region of applicability and to suggest that the theory 

may be a useful guide even for roughness of scale size small compared a 

wavelength. 
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APPENDIX 

This appendix records the derivation of (8) in the main text. 

The backscattered complex field E may be written as 

E =   <E>+   6E (A-l) 

and if it be assumed that I 6E I  «  I El, then the absolute value  |E|  of E is 

given closely by the absolute value  [<E>I of <E> together with the component 

of 6E in the direction of <E>.    That is 

'-frÜsTT^ (A-2) t[<E>!   J 

where the star denotes complex conjugate. 

From (A-l) it is clear that <6E> =   0,   so that by taking the expected value 

of (A-2) one finds <|E|> »  |<E>|  which enables one to rewrite (A-2) as 

E,-<,E,>«Rel6E<E> 

<E> 

Therefore, 

E I — <IE l>      „     f6E<E> 
Re 

<|EI> -<E>-2 

(E - <E>1 . .    ,. 
-^ET"} (A

-
3) 

2 * 
since  |<E>|     =   <E> <E>    and 6E =   E - <E>. 
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Now the cross section,   a,  is proportioned to |E|   ,   so that 

D{<r} = < 
o- - <o-> 

<<r> 
> =   < 

^-<! E!2> -I2 

<|E 
(A-4) 

The notation 6 |E | =   |E| - <|E|> allows the right side of (A-4) to be ex- 

panded and written as 

IE1
2
-<1E1V 

<|E|2> 
> =   4 

<6 I E I   > 

<|E|>2 
1 +  0 

6_lEi 

!E! ■}] (A-5) 

so that,   since both 6 IE I <  I 6E I and,  by assumption,   I 6E I  « |E|,  the factor 

in square brackets on the right of (A-5) is essentially unity and 

D{cr} M 4 
<6lEl2> 

<!E|>2 
=   4< 

-JEI: 
<|EI> (A-6) 

By combining (A-3) with (A-6), the required expression (8) is obtained. 
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Fig.   1,    Geometry of rough sphere. 
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Fig.   2.    Standard deviation of echo area as a function of 
frequency - theory and measurement. 
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