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BALLISTIC RESEARCH LABORATORIES
REPORT NO, 658

Karpov/irr
Aberdeen Proving Ground, Md.
18 November 1947

THE ACCURACY OF DRAG MEASUREMENTS A8 A FUNCTION
OF NUMBER AND DISTRIBUTION OF TIMING STATIONS

ABSTRACT

General formulae are given for the error to be ex-
pected in the drag coefficient ofa projectile whose flight is
observed over a given range containing n timing stations
distributed in an arbitrary manner, It is assumed that the
time-distance relationcan be represented by a cubic poly-
nomial of the form _

2 3
t-ao+a1z+azz +asz
1t is further assumed that the meanerrors in timme and dis-
tance, e, and e, respectively, are independent and constant
at each observing satation,
Niustrative examples are included.

A proof of optimum distribution of timing stations for
drag determination is given in the Appendix.




INTRODUCTION

The Spark Range of the laboratory contains 25 spark staticns which are arranged, in groups of {ive,
over a distance of 280 feet. Every odd station is wired to record the time of passage of the projectile on
the drum camera chronograph, 13 timing stations in al., In addition, stations 1, 7, 11, 13, 15, 19 and 25 are
connected to six megacycle electronic counters which record six time intervals, The two timing systems
serve as a check on each other. Distribution of station is illustrated in the schematic drawing below. The
chronograph timing stations are marked by crossew; the counter stations are marked by dots. In both timing

systems distribution of timing stations is symmetric with respect to the mid-point of the range.
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With so many timing stations, distributed over a relatively short range, the drag coefficient can be
determined with a high degree of accuracy with almost any reasonable symmetric distribution of the timing
stations, but the actual distribution, when full range i{s used, appears to be near the optimum, i.e.,leading
to the mallest error in the drag.

However, in actual practice, not infrequently some timing stations misfire thus rendering the distri-
bution assymmetric, Moreover, {or special firings the range is sometimes shortened by cutting the last or
the last two groups of stations. Under these circumstances it {s desirable to know a priori how the accuracy
of drag determination is affected by using a shortened range. If the accuracy is affected too adversely a re-
distribution of the remaining timing stations would be necessary.

The general problem of finding an optimum distribution of n timing stations,for drag determination,
is of interest and frequently arises in practice. Work already has been done on this problem for cases of
equal spacing of timing stations, and, more generally,for symmetric distribution ~f timing smtions.l An
analysis of error in the drag coefficient for an arbitrary distribution of the timing stations is a simple gen-
eralization of the symmetrical case and is a straight forward process. This generalization and the applica-
tion of the results to the Spark Range are the subjects of this report.

1. . L. Kellpy; Unpublished work. Dr. Kelley considers the case of symmetric distribution of timing stations
with time-d{stance relationship given by a quadratic polynomial.

Note: It is my urderstanding that Professor ]. E. McShane has considered the more general problem of the
optimum distribution of timing stations, Unfortunately, his work has never been published and was not avall-
able to me,




DERIVATION OF THE FORMULAE

We shall assume that the time-distance relationship can be represente” by a polynomial, Moreover,
we shall assume that at each timing station the accidental errors in the time observations are characterized
by a mean error e, and the accldental errors in the observation of distance are characterized by a mean
error e . The respective mean errors are the same at each station and are independent.

We shall confine our discussion only to quadratic and cubic polynomials since there are both theoreti-
cal and practical reason: against using higher order polynomials !or the spark range. Suppose, therefore,
that the time-distance relation is given by

2 3
ao+alz+azz +a32 nt

where the origin of the 2 coordinates is arbitrary but is usually taken a* the mid-point of the range, or at the
average of the z coordinates,
With n timing stations we form normal equations in the usual manner, and, after eliminating a,we
arrive at the following set

€118 *C %G1t = Y
czzaz + Czals - tz Cu - Cn

Cagtg = 'g
where

c 1-n}:za --(21&)2 czzmﬂzz4 -(222)2

cz-nzz3 - zz};za °23'“z"6 - 222223

c 3-nzz4 - 22 2:3 cas.nzge .('2,,3)2.
tyenZat -FtTz tenZed - Zrged eazed - gz

We shall need the following auxiliary quantities

3
Ci12°C1 %22~ 12

€13 "1 %23 - ®12%18

Co3 =y 33~ Oy
C, =CgCay- Cpq”

also C33"“13%22 " 122
C‘ ®Cpg Caq ~ °232

€2 =C12Cu-C

3
33




Let us consider the timing error {irst. After solving the normal equations for the constants a,, 8,

and a, we procede to find errors el. ez,and eq of these constants as functions of et,the timing error. The

3
operations to be performed are the following:

2 2
( e ; ‘ut )
—) - wherei=1,2, 3
o ) kel \ DT k=1, 2.0
the exXpression for each constant {s partially differentiated with respect to each t,the result squared, and the

squared exprese‘ons summed over all stations - a standard least square px'ocedm'e.2 The finai results are

given in the following table.
Table 1. Error i{n constants 8y, &, and 8, a8 functions of the timing error e and the number and diatribution
of timing stations,

A, Arbitrary distribution of stations
The quantities tabulated are (°t/ °t)2

Time-distance reiation

Error Quadratic Cublc
8 RCag fCag Cyq
T2 Ty
., nyy ney) Cog
Cre C)
. ncyo €12
C
2

B. Symmetric distribution of stations
Under this condition the sums of all odd powers of z vanish and the above equations assume much

simpler form.

Error Quadratic Cublc
- 6
* —— -
Iz 22 2z -(22)
n n
"2 ntzl-(zz!)2 nzzl-(Zz!;2
a 2'2
3 z:"’—z';’-(zz‘?

3. For example, see W. E. Deming: Statistical Adjustment of Data, John Wiley & Sons Inc.,1043.




For symmetric distribution with equal spacing of stations the relations sre further simplified, Let
the number of timing stations be n = 2m + 1, always an odd number, the spacing h, and the overall range R.
Then h = R/2m and the various sums of the coordinates can be written as:

2 m 4

2 2R 4 2R m o4
22" e — 2r Iz = Tr
(2m)2 r=l em)d 1
(] m
g28. 2R 3 0
(2m)° 1
Thms we write .

. Symmetric and Equal specing of stations
Error Quadratic Cubic

2 2 6
meE 1 gzmg Zr
. T
1 R° el ¢ gzl grt - (Y

SZ‘mQ4 2m + 1 the same as
quadratic
4R 2m+l Zr‘ - ( zrz)z

3 o ¥

2R Zrzzr -(2:1")2

all summations are to be performed from 1 to m,

It is to be noted that error In the velocity, which is proportional to e varies inversely as the first
power of the range; similarly error in the drag coefficient, e, varies inversely as the square of the range;
and error in the derivative of K'D' eé, varies inversely as the cube of the range.

The products e e e
1 2 .2 3 .3
—;t—R-fl ..—‘R -fa,‘M"';"‘R .‘3

are independent of the range and depend only on the number of timing stations. These are tabulated below and
. show the sensitivity of various errors to variation in the number of timing stations:
Table II. Dependence of errors on the number of timing stations. Equal spacing of stations.

Quadratic Quartic
am+ 1 Quadratic and Cubtc and
Cublc Quintic
4 P f ) t
6 l.u ‘ou aow 1608" -
K 1.13 3.03 .07 4.7 16.67
'] 1.03 3.98 2,71 13,66 14,18
11 0.96 J.a 2.46 12.72 12.78
13 0.80 3.22 2.37 12.04 11.81




The error in a, increases nearly fourfold by us\ng quartic or quintic polynomials, In order to attaln
the same accuracy in drag determination with quartic or quintic polynomials as with quadratic or cubic it
would be necessary, therefore, to double the range. Increasing the number of the timing stations is much less
offective mears of reducing the error in a, thgn lengthening the range.

Distance error. Distance error can be easil ' taken care of by the following device. We shall assume
that distance error e, can be expressed as equivalent timing error by the relation

e
(4

@ B ———

t v

where v is the velocity. We already have the ;xprouiom for errors in the constants ., L) and 8,88
functions of LS the true timing error. The errcr in these constants due to distance error, or equivalent

timing error o, CON, therefote, be cbtained at once by replacing L9 by LY The tota] timing error, therefore,
the two errors being assumed independent, is

2 2 b
% = %1t

IMNV.KD.ANDGID/GV

Neglecting gravity, the equation of motion of the projectile can pe written as

v

av
&
where Fl - -—"—‘!- , pbeing the alr density, m is tha mass, and d is the maximum diameter of the projectile.
pda
U the time-distance relation is given by
2 3
t-1001120|2: 0531

then it can be eastly verified that at z « 0, the following relations are true:

1 a,

) ‘l l“D 1 s
1 e’ 2 Jas8,
LI e N

Let the percentage mean errors in velocity, in K‘D' and in {ts derivative be Py Py and Py respactive-

ly. Then e

Py =100 ¢ 1

-

o) ()]




For all practical purposes, however, the 1ast term is much smaller than the first ard with ample accuracy
2
)

we can write

p2-100

It can also be easily shown that the percentage error in the derivative of V‘D’ Py is adequately given

by ey
Py = 100 ———

Tha, 1"3

The expressions fcr e, 8, and L already have been given. These are functions of the number and distri-
button of the timing stations, the length of the range, and the total timing error o, and can be computed,
Let 2 be the velocity of sound, M -% the Mach number, then, using the defini*ions of constanta 8, 8,

and 4y the percentage errors can be expressed as followa:
P 100a M o

Py = 100 21’-‘l ve,

d’q:

-

6F; a

Py = 100 o

A

¥p

Consider the percentage error in KD: it {s proportional to WK.D and since in supersonic velocities

KD usualiy decreases with increasing M, Py increases rather rapidly at higher velocities, Ps {s also pro-
portional to !" or, by definition of Fl'
portional to the air density, and to the square of the maximum diameter of the projectile. In addition, P3 is
proportional to e which, in turn, depends upon the accuracy of the instrumentation as represented by the
timing error o and the distance error e . and upon the number and distribution of the timing stations.
Finally, Py dependa on the order of the polynomial chosen to represent the time-distance relationship: the
higher the order of the po.ynomial the greater the error in 8, (= oz) and, hence, \n Py Therefore, \n order

: .to maintain the same accuracy in KD with polynomial of higher order either the number of timing stations
should be increased,or, more effectively, the range be increased. As an illustration, the percentage error
\n KD has been computed for the case of & mode) of standard 166mm shell M101 which has been fired in the
range at various Mach numbers. Aithough the firings were done only up to Mach number 2.8, the error curve

was computed to M « 5.0 by meana of the empirical "Q function®
‘ Q= 10K.DM = 3 ¢+bM

For this mode! & « 0.0408 and b « 0.1328,

Figure 1 shows separstely the errors due to distance, to time, and the total error, [t is spparent that
st mubsor..c velocities the distance error is the more important; at higher velocities the error due Lo time
predominates.

it {a proportional to the maas of the projectile and is inversely pro-
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OPTIMUM DISTRIBUTION OF TIMING STATIONS

We have reen in the preceding section that the error in K.D is proportional to the error in a,, which,

in turn, with a given accuracy of observations, depends only upon the number and distribution of th tinming
stations. The question naturally arises, therefore, whether there is an optimum distribution of the n timing
stations which will lead to the smallest error in the KD
For the case of symmetrical distribution of the timing stations when the time-distance relationship
is given either by quadratic or cubic polynomials, Dr. H, G. Landsu has shown that optimum distribution is
attatined if stations are grouped at each end of the range with cne group in the middle. In fact, if the number
of timing stations n {s divisible by four, the best distribution calls for placing one half of the stations in the
middle group, with one quarter of the stations at each end. The proof of this is to be found in the Appendix,
In general, if k be a factor such that awdk+m
where m can be either 0, 1, 2, or 3, and the range be two units long, the following table shows the required

optirnum distributions.
Table i, Optimum distribution of timing stations

n Number of stations at
e2 2
2 == 1 2 =0 7 =] {(—)
e
t
4
4k k 2k k 'Y
5 4n
4k+1 k 2k +1 k -
n -1
4+ 2 k 2k +2 k 4n
e k+1 2k k+1 n§_4
4k+3 kol 2 + 1 k+1 in
n -1

To quote from the Appendix: "It should be pointed out that it will not be possible to fit a cubic in z
with exactiy these spacings of stations, since only three values of z are given. Because it is physically im-
possible to put more than one station at one position, the above spacing can only be approximated. . . .",
In the Spark Range the stations are arranged in groups of five, 50 we can uge 11 timing stations for
. which the theoretical optimum distribution requires placing 3 stations at each end of the range and 5 in the
middle. The following table compares ez/ € values for the theoretical optimum,for physically achievable
distribution in the range with stations five feet apart,for our usual distribution of every odd station being a

timing station, and also using seven electronic counter stations:

No. of Timing 104 x _:2,

Stations t
Optimum 11 .295
Possible in the Range 11 .306
Usual distribution {(drum camera) 13 384

Flectronic counters 7 .461
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I the above figures are translated into the percentage errcr in K of model 155mm shell M101 for

y P
p' e
example, the effect on Py of varicus distribution appears as follows:

Model 155mm shell M101 p, at M =20
Optimum 0.109
Possible {n the Range 0.113
Usual distribution (drum camera) 0.13%
Elecironic counters 0.171

Thus theoretical error, using only the electronic counters stations,is 50% larger than the optimum error
attainable in the range. However, for various practical reasons it is undesirable to segregate the timing
stations as indicated by the optimum distribution. Morecver, the whole error is 8o small that even seven
counters provide ample accuracy.

The foliowing additional few simple examples {ilustrate the effect of various distributions on ey Sup-
pose the length of the range is 10 units, The table below gives various distributions and corresponding values

of .Z/'t’

Distribution No. of stations 62/ e,

-6, -25,0,0,0, +27, +6 7 0360

-5,C, C, 0, +£& 6 .0386

<6, <1, 0, +1, b 5 0375

-5, <2, 0, +2, +b 5 .0406

-6, =3, 0, +3, +b 5 0453

-5,0,0, +6 4 .0400

One station misfires

-5, x, 0, +2, +5 4 0434 Quadratic

.0480 Cubic

The table shows that it is possible to attaip as good an accuracy with fewer stations properly located
. a8 with greater number placed less judiciously.

THE ORDER OF TIME -DISTANCE POLYNOMIAL
The order of the polynomial representing the time-distance relationship in a given range should be
such that the next higher term should be less than the error in time measurement. This {s a necessary
cordition. Tnus {f
t=a +1z+azz+aza+ +4a zm
0 1 2 3 e m

and the time is measured tc the accuracy of 10'6 seconds, the above condition requires that

< 107

max

m
a 2
m
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If the z’s are reckoned from the mid point of the runge, Z max ag‘ , therefore

m
R -6

Given KD vs M, the various coefficients can be computed. Thus

d
2 (B - )

Qs = -
3 8F K] a M
1
and
2 2
s . p M "Z“D+.1.__(’_‘-;-3‘_1>_)
4 24F:1§a aMe Ky \'M dM

In the following table aq and 8 4 2re tabulated for various Mach numbers for the model 155mm shell M101

whose KD vs M graph is given in Figure 2.

M a a

3 4
1.5 4.582x1071%  .3.60x10" 10
2.5 1.688 -0.156
3.5 0.790 40.032
4.5 0.439 +0.034

The KD and its derivatives were computed from the Q function. The Fl for this shell is 760 feet. For esti-
mating the order of the polynomial the above table can be used with sufficient accuracy for other shell
provided the tabular values are multiplied by the ratio of 750 to F‘1 of the new shell, raised to appropriate
power as indicated in the formulae. 3 4
In the following table aq (;) and a 4 (-;) are tabuiated for the spark range, Rl = 280 feet, and
the transonic range, R2 = 700 feet, The transonic range of the laboratory, which is being built, will contain
25 photographic stations, arranged in groups of fives, over a distance of 700 feet, For this example it was

assumed that 3-inch shells were to be fired in this range for which F 1" 2660 feet,

3 4
R (R )
M “3(5) “4(2‘
R = 280 R = 700 R = 280 R = 700
155mm model 3"
1.5 12.56x10°° 15.50x10°®  -13.80x107®  -4.84x1078
2.5 4.63 5.75 - 0.60 -0.21
3.5 2.18 2.68 +0.12 +0.04
4.5 1.20 .49 +0.13 +0.05

On the basis of aforementioned criteria, therefore, in both spark and transonic ranges, the fourth power term

can be safely omitted, g

It is to be noted that although the cubic term is retained, the determinatior. of iV nevertheless, is

very poor. This can be seen from the values of p,, the percentage error, tabulated on page 15 for the model
1556mm shell.
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M Pq
1.5 71.2
2.5 133.8
3.5 261.5
4, 457.9

Clearly, the derivative cannot be accurately determined from a single round.

It i3 of interest to see how well the time-~distance relationship could be approximated by a polynomial
if there v)ere no observational errors. Advantage can be taken of the observed fact that in supersonic range
of velocities, variation of the drag coefficlent with Mach number is accurately represented by the Q function.
Neglecting gravity, therefore, the equation of motion can be integrated expiicitly., The result is: 3

2

-1y

2= -At+Bin (22 -

D
where A, B, C, and D are functions of M at z«0 and of the slope and intercept of the Q function of a particular
type of projectile.

The computations were done for the cone-cylinder model, round 1730, which was fired at M=1,7, The
2z coordinates were computed by the above fcrmula from the observed times thus freeing the 2, t values from
observational errors. Polynomials of various degrees were fitted to these values by least squares with
origin of the coordinates being kept always at station 13, the midpoint of the range; for both symmetric and
asymmetric a!stribution of timing stations. The following table contains, for each polynomial, the resulting
KD' its percentage error Py computed from the residuals in the usual manner, and the mean error e in

microseconds, of an equation of unit weight. The quality of fit can be judged from the size of e o

Table IV
Quality of fit of 2, t values by a polynomial
Distrib, No. of Quadratic Cubic Quartic
atations

Symmetric 7 KD .1250 .1250 1227

Py .25 A4 .81

e, 1.7 1.01 1.06
Asymmetric 5 KD 1240 .1240 1249
stations 1-19 '

Py 086 .14 96

€ 20 .24 .53
Asymmetric 8 KD .1266 235 1165
stations 7-26

Py .40 .38 5.9

e 1.48 .66 3.06

3. 1 am indebted to Dr. A, C. Charters for this formula.
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On the whole, at this Mach number, the cubic seem to give the best fit. however, quadratic could
have been used equally well. Experience shows, however, that over the whole range of Mach numbers,
and especially through the transonic range, cubic representation leads to more consistent results, It is to be
noted that using the observed values of (z,t) the resuduals in time, and hence the mean error, will usually be
augmented by inherent inadequacy of the polynomial to {it the (z, t) function as shown in Table IV, Thus
with the observed (z, t) values, using symmetric distribution and cubic polynomlal, the results are:

KD .1251
Py .29
e, 2.06

with the mean error, ey twice as large. However, one microsecond of this error is due to failure of the

polynomial to fit the data, and only the remainder, therefore, is attributable to errors in time and distance,

USE OF POLYNOMIAL REPRESENTATION IN THE TRANSONIC REGION
Few remarks should be made concerning the use of polynomial fitting of (z, t) data in the transonic

region where K_ varies rapidly with the Mach number,

It shouldDbe recalled that a cubic representation of the (z, t) data takes care of the linear part of the
variation of K'D by the cubic term. In the spark range, the retardation of projectiles over 280 feet seldom
exceeds .08 Mach numbers and is usually considerably less, so the lin2ar approximation of variation of KD
vs M is adequately taken care of by the cubic term.

Another alternative sometimes is being advocated, namely, first to differentiate once, numerically, the
(z, t) data, and represent the velocities by a quadratic in 2, From the equation of motion, again neglecting

gravity, we have

a p K¢ '(',lf j" j'
In v bS\Dd (O+(1‘.*(z

atz «(

In v-I~l Kb -(3l
The above procedure, could perhaps be used success{ully for projectiles with large retardation such
as spheres or !rregular {fragments, For ordinary projectiles the reduction of data by the above method leads
to somewhat larger errors in KD than str .ight polynomial reduction,
The two methods designated | and 1l respectively have been applied to model firings of 155mm shell

M101 with resul's tabulated on page i7. The values of K . with corresponding percentage errors computed

D
from reslduals are tabulated fur various M.
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Table V
Representation of z, t data by polynomial (I), and by method IL
155mm shell M10)

R4 M Method [ | Method 11

K Py Kp P
1211 797 0690 .26 0682 .30
1304 934 .0856 43 .0884 4.16
1207 936 .0709 .10 0709 84
1208 068 0962 .18 0926 2,01
1389 093 .1299 .29 .1281 1.44
1206 1.017 .1444 11 1444 91
1206 1.066 .1508 18 .1681 1.43
1381 1.056 .1640 10 1637 1.01
1382 1.071 .1646 09 .1636 .68
1918 1.965 e 19 1171 1.99
1813 1.999 1164 .28 11208 2.42

Although the differences in KD’s computed by two methods are not exessive and are nonsystematic
in character,the percernage errors by the second method appear to be about 10 times larger. Representatioa
of (z, t) data by a cubic polynomial even in the transonic range must be considered quite satisfactory,

1 wish to acknowledge my indebtedness to Mr. E. Dearden and Mr. K. G, Tadman of the British Branch
for Theoretical Research, Fort Halstead, Kent, England,

B. G. Karpov
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APPENDIX

OPTIMUM DISTRIBUTION OF TIMING STATIONS
FOR DRAG DETERMINATIONS

This appendix by H. G. Landau gives the aolution of the following problem: To determine the drag
coefticient for a projectile at the center of the Aerodynamics Range, n stations are placed symmetrically
IbO‘llt.,tbQ ‘Genter of the range and the positicn, z, of each stations, and time, t, when the projectile passea
is detsrmined. A quadratic or cubic in z s fitted to t by least squares, and the error in drag coefficient
will be & minimum when the error in the coefficient of 22 is a minimum, How should the positions of the
stations be’'chosen so as to minimize this error?

Since the square of the error in 8, the coefficient of zz, is proportional to the reciprocal of

n n 2
4 2
n 2 2z -{2X ¢
ol ' \ia ‘)

the problem is to maximize
2

i ’12) '

n
e b ot
{=]

{=]

where the g, are the distances of the stations from the center of the range and the acale 1s chosen 8o that
the ends of the range arez = l and g » -},

n 2 - 2 8
Now San L (2 -= T s .
t-l(‘ n {a] l)
Let : x‘a-z‘8
n n 8
)
then 8en I -= I x , 1)
lel (t n la] t) (
oix"il , (2

ind from the symmaetry, every value of x, ¥ O must occur an even numbaer of times.

8 is, of course, the second moment of the X, about their mesn (times the constant, n). The problem
is to find the distribution of the x, which maximizes 8 subject to (2). Physically, we must find the positicns
of n point-masses on & weightless bar of unit length which give the largest moment of inertia about the center
of gravity. The answer .s almost obvious intuitively: half the x must have the value O and the other half the

value 1.
The proof can be given on the basis of the identity,

n n 2 n n 3
e Bc(E) 3 Bves) @
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which can be seen to be true by expanding

b B B(aen) eb B {3 ()

el j=1 {el =1
.é- 1%1 {nle-in 1%1 X+ j%l sz}
e B (ER)(E ) e B
n 2aT. (2 5)’
Let the x, be numbered in order of increasing magnitude )
0fx $x,§8 ..... $x $1. (9

and suppose first that n is even. Then we can see that any distribution of the X gives 8 a smaller value than

that given by the distribution with
x, =0 for 1 $ ; ,

x,=lfor 1 2 g 1, (6)
For any i, tLa sum of the terms in S which lncludox‘ue from (3)
n
2
S X (x -x)
1T T
w.mumuiig. then 8, s lncrnudbywmux‘-o. Using (4)
2 . 2
8 fa-x"+ T (x-x) . )
A IR oY
Now ; B. 2 (x - ) o, 3
Johel ! jule] )

2 entem T | -xed 1) x2
- X -X * X - +{n-t- 4 H
! Y e’ 5 1

mmmn«-umu«mwuumugmmmu-ux‘z becsuse {$ g . 8o that

2 2 2 2
FoAt 3 eowtend
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which, using (8) gives,

n i-1 n
5,8 Z xf < I 12 s T xZ
Jote1 j=1 jalel

the value of S‘ for X, = 0.
In exactly the same way it can be seen that if { 2 g vl S‘ is increased by putting X = 1.
Hence {t follows that the maximum value of S is given by the distribution {5).
U n is a multiple of 4, n = 4k, this gives the answer immediately: half of the 2y have the value 0,
one-quarter will be +1 and one quarter will be -1.
The modification for n not a multiple of four can be seen as follows:
a. nodd. Just as before we must have X - Ofor{$ %1— , and X, = 1fori? -9:23—- . The value

of x {s not yet determined,
n+l

= The sum of the terms which include x . 1s
T
L T T e L
n+l =z n+l n+l
= =z 2
n.l ‘ n.l
TPl ma) | T
7 7
The equality is reached for either X Qorl.
Z
For n = 4k + 1, the symmetry condition requires putting Xl " O,andforn= 4k + 3
symmetry requires x_, = 1. 7
7

b. n = 4k + 2. [n this case the distribution (5) would not satisfy the symmetry conlition. We know

that for S to be a maximum we must have g n-2 y _ned
x{-Oforl - ,andxi-lfor\ —
and symmetry requires X, = X0 Then just as in {a) atove, it {ollows that these two x's either both have
z 7z
W value O or both equal 1.

The results are summartzec in tt e following table.

Number of values of z at

n 2=} z=0C 2al S
n?
4k k 2k k T
nz-l
4k ¢+ | k 2k ¢ 1 K -1
4k + 2 k 2k ¢+ 2 k nz-i
k+1] 2k kel
2
e 3 Kel 2xel kol LML
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It should be pointed out that it will not be possible t: fit a cubic in z with exactly these spacings of
stations, since only three values of z are given. Because it is physically impossible to put more than one
station at one position, the above spacing can oniy be approximated, and the coefficient of 23 can then be de-
termined, but its error will be large. [ this coefficient is desired with any accuracy the problem must be
reconsidered, taking this into account.
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