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BALLISTIC RESEARCH LABORATORIES

REPORT NO. 658

Karpov/lrr
Aberdeen Proving Ground, Md.
18 November 1947

THE ACCURACY OF DRAG MEASURXMENT8 AS A FUNCTION
OF NUMBER AND DISTRIBUTION OF TIMING 8TATIONS

ABSTRACT

General formulae are given for the error to be ex-
pected in the drag coefficient of a projectile whose flight Is
observed over a given range containing n timing stations
distributed in an arbitrary manner. It is assumed that the
time-distance relation can be represented by a cubic poly-
nomial of the form

t -a° +a 1 z + a2z2 +a z3

It is further assumed that the mean errors in time and dis-
tance, et and ez respectively, are independent and constant

at each observing station.

Illustrative examples are included.

A proof of optimum distribution of timing stations for
drag determination Is given in the Appendix.
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INTRODUCTION

The Spark Range of the laboratory contains 25 spark stations which are arranged, in groups of five,

over a distance of 280 feet. Every odd station is wired to record the time of passage of the projectile on

the drum camera chronograph, 13 timing stations in al,. In addition, 3tations 1, 7, 11, 13, 15, 19 and 25 are

connected to six megacycle electronic counters which record six time intervals. The two timing systems

serve as a check on each other. Distribution of station is illustrated In the schematic drawing below. The

chronograph timing stations are marked by crosseL,; the counter stations are marked by dots. In both timing

systems distribution of timing stattons is symmetric with respect to the mid-point of the range.

X X X X X V X X X X X X

0 O0O 11O too

With so many timing stations, distributed over a relatively short range, the drag coefficient can be

determined with a high degree of accuracy with almost any reasonable symmetric distribution of the timing

stations, but the actual distribution, when full range is used, appears to be near the optimum, I.e.,leading

to the mallest error in the drag.

However, in actual practice, not infrequently some timing stations misfire thus rendering the distrt-

button assymmetric. Moreover, for special firings the range is sometimes shortened by cutting the last or

the last two groups of stations. Under these circumstances it is desirable to know a priori how the accuracy

of drag determination is affected by using a shortened range. If the accuracy is affected too adversely a re-

distribution of the remaining timing stations would be necessary.

The general problem of finding an optimum distribution of n timing stations,for drag determination,

is of interest and frequently arises in practice. Work already has been done on this problem for cases of
1

equal spacing of timing stations, and, more generally,for symmetric distribution )f timing stations. An

analysis of error in the drag coefficient for an arbitrary distribution of the timing stations is a simple gen-

eralization of the symmetrical case and is a straight forward process. This generalization and the applica-

tion of the results to the Spark Range are the subjects of this report.

I. J. L. Kelley; Unpublished work. Dr. Kelley considers the case of symmetric distribution of timing stations
with time-dAstance relationship given by a quadratic polynomial.

Note: It is my Lrderstanding that Professor J. E. McShane has considered the more general problem of the
opti-?um distribution of timing stations. Unfortunately, his work has never been published and was not a~ail-
able to me.



DERTVATION OF THE FORMULAE

We shall assume that the time-distance relationship can be represente by a polynomial. Moreover,

we shall assume that at each timing station the accidental errors in the time observations are characterized

by a mean error et, and the accidental errors in the observation of distance are characterized by a mean

error ez . The respective mean errors are the same at each station and are independent.

We shall confine our discussion only to quadratic and cubic polynomials since there are both theoreti-

cal aud practical reason, against using higher order polynomials for the spark range. Suppose, therefore,

that the time-distance relation is given by

a0 + a 1z+ a2 z + a3z3 " t

where the origin of the z coordinates is arbitrary but is usually taken a the mid-point of the range, or at the

average of the z coordinates.

With n timing stations we form normal equations in the usual manner, and, after eliminating ao0 we

arrive at the following set

c 11a + cl 2 a2 + c13a3 a 'I

c22 a2 + c.3a3 - t 2  c j - ct

c33a3 t3

where
i n z 2  -(z) 2  c2 2 ,n~z4  22

c11 -.( )a20n Z .(Zz )
C1 2 -nZz 3  " 2 c5 2-nZb " 2 Zz 3

c 3 nZz 4  " ZZ Z 3  c3 3 -nZa 8 z (Zz 3 )2-

t I -nZt - Zt Zz t2 nZz 2t - ZtZz 2  t3 -n Z 3 t - ZtZz3

We shall need the following auxiliary quantities

C12 ail c 22 -c122

C is a, cl11 c23 - c1If 13

. 2
C 23 a c1 c33 -c 13
C 1 C 12C 23- C 132

also C 33 ,c 13 c2 - c12 c23

C44 -c2 c 33 - c 23

C2 -C 12 C44 - C3 3
2



Let us consider the timing error first. After solving the normal equations for the constants al, a2,

and a3 we procede to find errors el, e2,and e3 of these constants as functions of et,the timing error. The

operations to be performed are the following:

2 2.n

( -a.(~ where 1.-1, 2,3
k - 1 , 2,....n

the epression for each constant is partially differentiated with respect to each t,the result squared, and the

squared expresp4ons summed over all stations - a standard least square procedure. 2 The final results are

given in the following table.

Table I. Error in constants al, a2, and a3 as functions of the timing error et, and the number and distribution

of timing stations.

A. Arbitrary distribution of stations

The quantities tabulated are (al/atd2

Time-distance relation

Error Quadratic Cubic

a1  nc22 nfC22 C44

C12 C2

a2  nc11  nc 11 C23

12 1

a3  nc 2 2 C12
3~C 

2

B. Symmetric distribution of stations

Under this condition the sums of all odd powers of z vanish and the above equations assume much

simpler form.

Error Guadratic Cubic

Z z z Z Zz . (ZZ

n n
a2 4 4nzz "tzz n Zz -Z z)'

a: 
Zz 

2

2. For e pe, Wn z a ( z4)

2. For example, see W. E. Darning: Statistical Adjustment of Data, John Wiley & Sons 1nc.,1943.
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For symmetric distribution with equal spacing of stations the relations a re further simplified. Let

the number of timing stations be n a 2m + 1, always an odd number, the spacing h, and the overall ranfbe R.

Then h - R/2m and the various sums of the coordinates can be written as:

2 2R 2  m 2 4 2R4  m 4Zz - Z) Zr Zz 4- Z r
(2i2r-1 (2m) 1

6 2R6 m 6

(2zn) 1

Uin we write

Q% Symmetric and Equal spacing of stations

Error Quadrattc Cubic

12 Zr Zr Zr " Z r4 ) 2

a 2m + 1 the same as
2 4R 4 2mn+1 4 2 quadratic

-M( Zr 2

a3  2R Zr 2 Zr -(Zr)

all summations are to be performed from 1 to m.

It Is to be noted that error In the velocity, which is proportional to e l , varies Inversely an the first

power of the range; similarly error in the drag coefficient, e2 , varies inversely as the square of the range;

and error in the derivative of %, e 38 varies inversely as the cube of the range.

The products e61 62 2 e 3
-Refl I , f w 2et  0 et  2 e 0t  3

are independent of the range and depend only on the number of timing stations. These are tabulated below and

show the sensitivity of various errors to variation in the number of timing stations:

Table 1I. DeJpndence of errors on the number of timing stations. Equal spacing of stations.

Quadratic Q;;arttc
2M + I Quadratic and Cubic and

Cubic QuIntIc
fI f2 fI f3 f2

6 1.26 4.28 3.80 16.87 -
7 1.13 3.93 3.07 14.70 16.67
9 1.03 3.65 2.71 13.56 14.18

11 0.96 3.41 2.46 12.72 12.78
13 0.80 3.22 2.37 12.04 11.81



8

The error in a2 increases nearly fourfold by usIng quartic or quintic polynomials. In order to attain

the same accuracy in drag determination with quartic or quintic polynomials as with quadratic or cubic it

would be necessary, therefore, to double the range. Increasing the. number of the timing stations is much less

effective mears of reducing the error in a2 than lengthening the range.

Distance error. Distance error can be easil ' taken care of by the following device. We shall assume

that distance error e can be expressed as equivalent timing error by the relationz

e~et -v-

where v is,the velocity. We already have tV* expreasiona for errors in the constants al, a2 , and a3 as

functione of e t the true timing error. The error in theme constants due to distance error, or equivalent

timing error t2, can, therelote, be obtained at once by replacing et by t2. The total timing error, therefore,

the two errors being assumed independent, is

2 22
et .- +e 2

333018 MR Y, LK AMD dL/dv

Neglecting gravity, the equation of motion of the projectile can De written as

dv v

1

where F, , p being the air density, m is the mass, and 4 to the maximum diameter of the projectile.

V the time-distance relation is given by

t M a 0 a:l + ae 2 +a3S

then It can be easily verified that at z a 0, the following relations are true:

SUF 2a.,ao- 'F -

1 22 a

Let the percentag mean errors In velocity, in K,,, and in Its derivative be p p2 and p 3 respective-

ly. Then 
, 1)100 2 2]
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For all practical purposes, however, the last term is much smaller than the first ard witri ample accuracy

we can write P2 "100 a2

It can also be easily shown that the percentage error in the derivative of "i, P3 . is adequately given
by0

P3 - 100 2

a 2

~a3

The expresalons fcr el, 02, and e3 already have been given. These are functions of the number and distri-

button of the timing stations, the length of the range, and the total timing error et and can be computed.

Let a be the velocity of sound, M a ! the Mach number, then, using the deflnitions of constants al, a2

and a3 the percentage errors can be expressed as follows:

pl-100a Me 1

P-100 M ' 2 F I as
6F e2

8F2

ps -100 dKD  3

Consider the percentage error in Kt: it is proportional to A/KD and since in mpersonic velocities

XD usally decreases with increasing M, P2 tncreases rather rapidly at higher velocities. p2 to also pro-

portional to r or, by definition of Fi, it is proportional to the mass of the projectile and is inversely pro-

portional to the air density, and to the square of the maximum diameter of the projectue. In addition, p. is

proportional to e2 which, In turn, depends upon the accuracy of the tistrumentation as represented by the

timing error et and the distance error a and upon the number and distribution of the timing stations.

Finally, p2 depends on the order of the polynomial chosen to represent the time-distance relationship: the

higher the order of the po'ynomial the greater the error in a 2 ( -e2 ) and, hence, in P. Therefore, in order

to maintain the same accuracy in K, with polynomial of higher order either the number of timing stations

should be Incressed.or, more effectively, the range be increased. As an illstration, the percentage error

in KD has been computed for the case of a model of standard 166mm shell M11 which has been fired in the

rage at various Mach numbers. Although the firings were done only up to Mach number 2.6, the error curve

was computed to M m 5.0 by means of the empirical IQ ftwtaic

Q41+ %M~ *a +bM

For this model a * 0.9405 and b a 0.132.

Figure 1 bs smprately Lw errors due to distance, to time, and the total error. It is pparent that

at msbeotc veloctties the distance error is the more important; at higher velocities the error due to tim@

predominates.
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OPTIMUM DISTRIBUTION OF TIMING STATIONS

We have Peen in the preceding section that the error in K-D is proportional to the error in a2, which,

in turn, with a given accuracy of observations, depends only upon the number and distribution of the tlziing

stations. The question naturally arises, therefore, whether there is an optimum distribution of the n timing

stations which will lead to the smallest error in the K.D.

For the case of symmetrical distribution of the timing stations when the time-dlstance relationship

is given either by quadratic or cubic polynomials, Dr. H. G. Landau has shown that optimum distribution is

attained if stations are grouped at each end of the range with one group in the middle. In fact, if the number

of timing stations n is divisible by four, the best distribution calls for placing one half of the stations in the

middle group, with one quarter of the stations at each end. The proof of this is to be found in the Appendix.

In general, if k be a factor such that n - 4k + m

where m can be either 0, 1, 2, or 3, and the range be two units long, tke following table shows the required

optimum distributions.
Table i. Optimum distribution of timing stations

n Number of stations at

z -- z -0 z I e2  2

4

4k k 2k k 4
n

4k + i k 2k+l k 4n

n -1
k 2k+2 k 4n

4k+2 k+l 2k k+l "n -4

4n
4k+3 k+l 2k+1 k +-

n -i
To quote from the Appendix: "It should be pointed out that it will not be possible to fit a cubic in z

with exactly these spacings of stations, since only three values of z are given. Because it is physically Im-

possible to put more than one station at one position, the above spacing can only be approximated .... ".

In the Spark Range the stations are arranged in gpoups of five, so we can use 11 timing stations for

which the theoretical optimum distribution requires placing 3 stations at each end of the range and 5 in the

middle. The following table compares ea/et values for the theoretical optimum,for phys'cally achievable

distribution in the range with stations five feet apart,for our usual distribution of every odd station being a

timing station, and also using seven electronic counter stations:

No. of Timing 104 x2

Stations et

Optimum 11 .295

Possible in the Range 11 .305

Usual distribution (drum camera) 13 .384

Electronic counters 7 .461
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If the above figures are translated into the percentage error in KD, P2' of model 155mm shell MI01 for

example, the effect on P2 of various distribution appears as follows:

Model 155mm shell MI01 P2  at M - 2.0

Optimum 0. i09

Possible in the Range 0.113

Usual distribution (drum camera) 0.135

Electronic counters 0.171

Thus theoretical error, using only the electronic counters stations,is 50% larger than the optimum error

attainable in the range. However, for various practical reasons it is undesirable to segregate the timing

stations as indicated by the optimum distribution. Moreover, the whole error is so small that even seven

counters provide ample accuracy.

The following additional few simple examples illustrate the effect of various distributions on e2 . Sup-

pose the length of the range is 10 units. The table below gives various distributions and corresponding values

of e/e t .

Distribution No. of stations t

. , 0, 0, 0, 2, +5 ? .03801 1

-5, C, 0, 0, +O. 5 .0385

-5, -1, 0, +1, +5 5 .0375

-5, -2, 0, +2, +5 5 .0405

-5, -3, 0, +3, +5 5 .0453

-5, 0, 0, +5 4 .0400

One station misfires

-5, x, 0, +2, +5 4 .0434 Quadratic
.040 Cubic

The table shows that it is possible to attaip as good an accuracy with fewer stations properly located

as with greater number placed less judiciously.

THE ORDER OF TIME--DISTANCE POLYNOMIAL

The order of the polynomial representing the time-distance relationship in a given range should be

such that the next higher term should be less than the error in time measurement. This is a necessary

condition. Tnus if 2 3 m
t -a, + iIz+a 2z +a3z +... +a z

and the time is measured tc the accuracy of 10"6 seconds, the above condition requires that

m <10max
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R

If the z's are reckoned from the mid point of the range, zma x = , therefore

am(Rn < lO 6

Given KD vs M, the various coefficients can be computed. Thus

K D K D dKDa3Z -7Mr--
6F C a

and K 2  M d2D1 KK )2]

ad4KD 1 dD
24F 1 a dM + D d

In the following table a3 and a4 are tabulated for various Mach numbers for the model 155mm shell MIOI

whose KD vs M graph is given in Figure 2.

M a3  a4

1.5 4.582xi012 -3.60xi0 16

2.5 1.688 -0.156
3.5 0.790 +0.032
4.5 0.439 +0.034

The KD and its derivatives were computed from the Q function. The F1 for this shell is 750 feet. For esti-

mating the order of the polynomial the above table can be used with sufficient accuracy for other shell

provided the tabular values are multiplied by the ratio of 750 to F 1 of the new shell, raised to appropriate

power as indicated in the formulae. 3

in the following table a3 (--) and a4  are tabulated for the spark range, R1 - 280 feet, and

the transonic range, R2 - 700 feet. The transonic range of the laboratory, which is being built, will contain

25 photographic stations, arranged in groups of fives, over a distance of 700 feet. For this example it was

assumed that 3-inch shells were to be fired in this range for which F 1 - 2660 feet.

M a 3  a 4

R-280 R-700 R-280 R -700
155mm model 3"

1.5 12.5bxlO 6  l5.59x10 6  -13.80xi0 -  -4.84xi0 8

2.5 4.63 5.75 - 0.60 -0.21
3.5 2.16 2.68 + 0.12 +0.04
4.5 1.20 1.49 + 0.13 +0.05

On the basis of aforementioned criteria, therefore, in both spark and transonic ranges, the fourth power term

can be safely omitted. dKD

It is to be noted that although the cubic term is retained, the determinatior: of T- nevertheless, is

very poor. This can be seen from the values of P3' the percentage error, tabulated on page 15 for the model

155mm shell.
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M P3

1.5 71.2
2.5 133.8
3.5 261.5
4.5 457.9

Clearly, the derivative cannot be accurately determined from a single round.

It is of interest to see how well the time-distance relationship could be approximated by a polynomial

if thqre were no observational errors. Advantage can be taken of the observed fact that in supersonic range

of velocities, variation of the drag coefficient with Mach number is accurately represented by the Q function.

Neglecting gravity, therefore, the equation of motion can be integrated explicitly. The result is:

_Ct 2

= -At+Bln () 2De- .t

where A, B, C, and D are functions of M at z,0 and of the slope and intercept of the Q function of a particular

type of projectile.

The computations were done for the cone-cylinder model, round 1730, which was fired at M-l.7. The

z coordinates were computed by the above fcrmula from the observed times thus freeing the z, t values from

observational errors. Polynomials of various degrees were fitted to these values by least squares with

ortgtn of the courdinates being kept always at station 13, the midpoint of the range; for both symmetric and

asymmetric a'stribution of timing stations. The following table contains, for each polynomial, the resulting

KD. its percentage error P2 computed from the residuals in the usual manner, and the mean error e0, in

microseconds, of an equation of unit weight. The quality of fit can be Judged from the size of eo .

Table IV

Quality of fit of z, t values by a polynomial
Distrib. No, of Quadratic Cubic Quartic

stations

Symmetric 7 RD .1250 .1250 .1227

P2  .25 .14 .81

e 1.77 1.01 1.05

Asymmetric I KD .J240 .1240 .1249
stations 1-19

P2  .05 .14 .95

•o  .20 .24 .53

Asymmetric 6 KD .1256 .,235 .1166
stations 7-25

P2  .40 .38 5.9

e 1.48 .66 3.05

3. 1 am indebted to Dr. A. C. Charters for this formula.
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On the whole, at this Mach number, the cubic seem to give the best fit however, quadratic could

have been used equally well. Experience shows, however, that over the whole range of Mach numbers,

and especially through the transonic range, cubic representation leads to more consistent results. It is tO be

noted that using the observed values of (z,t) the resuduals in time, and hence the mean error, will usually be

augmented by inherent inadequacy of the polynomial to fit the (z, t) function as shown in Table IV. Thus

with the observed (z, t) values, using symmetric distribution and cubic polynomial, the results are:

KD  .1251

P2  
.29

e 2.06

with the mean error, eo, twice as large. However, one microsecond of this error is due to failure of the

polynomial to fit the data, and only the remainder, therefore, is attributable to errors in time and distance.

USE OF POLYNOMIAL REPRESENTATION IN THE TRANSONIC REGION

Few remarks should be made concerning the use of polynomial fitting of (z, t) data in the transonic

region where KD varies rapidly with the Mach number.

It should be recalled that a cubic representation of the (z, t) data takes care of the linear part of the

variation of KD by the cubic term. In the spark range, the retardation of projectiles over 280 feet seldom

exceeds .08 Mach numbers and is usually considerably less, so the linear approximation of variation of KD

vs M is adequately taken care of by the cubic term.

Another alternative sometimes is being advocated, namely, first to differentiate once, numerically, the

(z, t) data, and represent the velocities by a quadratLc in z. From the equation of motion, again neglecting

gravity, we have

In v - l1 (F d= ( '2z

at z - V
l-Z n v 1 KI -C 1

The above procedure, could perhaps be used succ'essfully for projectiles with large retardation such

as spheres or irregular fragments. For ordinary projetile.; the reduction of data by the above method leads

to somewhat larger errors in KD than str Aght polynomial reduction.

The two methods designated I and II ret;pectively have been applied to model firings of 155mm shell

M101 with results tabulated on page '7. The values of KD with corresponding percentage errors computed

from residtls are tabulated for various M.
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Table V

Representation of z, t data by polynomial (I), and by method II.

155mm shell M101

Rd. M Method I Method II

1211 .797 .0690 .26 .0582 .30
1394 .934 .0655 .43 .0684 4.16
1207 .936 .0709 .10 .0709 .84
1208 .956 .0962 .18 .0926 2.01
1389 .993 .1299 .29 .1281 1.44
1206 1.017 .1444 .11 .1444 .91
1205 1.056 .169e .18 .1681 1.43
1381 1.056 .1540 .19 .1537 1.01
1382 1.071 .1545 .09 .1535 .8
1318 1.965 .1187 .19 .1171 1.99
1312 1.999 .1184 .28 .120 2.42

Although the differences in KD's computed by two methods are not exessive and are nonsystematic

in character,the percert age errors by the second method appear to be about 10 times larger. Representatio

of (z, t) data by a cubic polynomial even in the transonic range rr.ust be considered quite satisfactory.

I wish to acknowledge my indebtedness to Mr. E. Dearden and Mr. K. G. Tadman of the British Branch

for Theoretical Research, Fort Halstead, Kent, England.

B. G. Karpov



18

APPENDIX

OPTIMUM DISTRIBUTION OF TIMING STATIONS
FOR DRAG DETERMINATIONS

This appendix by H. G. Landau gives the solution of the following problem: To determine the drag

coefficient for a projectile at the center of the Aerodynamics Range, n stations are placed symmetrically

about the 'enter of the range and the position, z, of each stations, and time, t, when the projectile Passes

is detsrmined. A quadratic or cubic in z is fitted to t by least squares, and the error in drag coefficient

will be a minimum when the error in the coefficient of z 2 to a minimum. How should the positions of the

stations be'chosen so as to minimize this error?

Since the square of the error in a2, the coefficient of J is proportional to the reciprocal of

n 4 n (~h2) 2

the problem is to maximize

8 n 4 ( ~)2

t-1 i-i

where the at are.the distances of the stations from the center of the range and the scale is cbosm so that

the ends at the range are a a I and & - -1.

Now Ben Z (ui2Z a I
-1 1

Let xt - at

t-n n -1

0 t x 1 (2)

and from the symmetry, every value of xt # 0 must occur an even number of times.

S is, of course, the second moment of the N1 about their mesl (times th consant, n). The problem
to to find the distribution of the x, which maximizes 8 subject to (2). Physically, we must find the positions

of a point-masses on a weightless bar of unit length which give the largest moment of inertia about the center

of gravity. The &Amer ts almost obvious Intuitively: half the N must have the value 0 ad the other half the

value 1.

The proof can be given on the basis of the identity,

n 2 _( ) 2 1 2
Son I (

8.,,,.,i .,i .(,J ,) . ,. 1.
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which can be seen to be true by expanding

I n n 2 n jn(x 2,x

* tfnZ -2 Z x x
I- j-1

i 1- 2 x nn x

a n 2 n 2 1

Let the xt be numbered in order of ncre ng magnitude

0O1x I Ix 21 ..... % Xn S . ( 4)

and sppose first that n is even. Then we can ae that any distribution of the x gives 8 a smaller value than

that given by the distribution with

x -Ofor I

aNod
x lfor i + 1 , ()

For any I, tLe sum of the terms in S which Include are from (3)

n . 2S - Z (xt  x)

We shw that IS. then8I is increaed by putttngl. -O. Ushq (4).

S- (i.a)z 2

N4ow a 2 n
Z X z (it,- I) X

J04+1 J-41I

J=41 .)

tOe sod term here is psitive and UNe Is* term In greater than (I - 1) X beumso I n So that

a 2 n 2 2
z " z .N - 1M+0-1).

J04+1 J84+1
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which, using (6) gives, n -n

zt z xz2  J + x

the value of S for x 0,Ji+1 j1 i

In exactly the same way it can be seen that If I t_ , 1, S1 is increased by putting xt , 1.

Hence it follows that the maximum value of S is given by the distribution (5).

If n is a multiple of 4, n - 4k, this gives the answer immediately: half of the z," have the value 0,

one-q ,rter will be +1 and one quarter will be -1.

The modification for n not a multiple of four can be seen as follows:

a. a odd. Just as before we must have x -0 fort -n-1 and xi for it--3--. The value

of X n+ ts not yet determined.

T The sum of the terms which include x 1 is

S -1
n+1 n1+( +
-r

n- nninl

I 2x + ( - Xn i) 2

The equality is reached for either xn+ 1 -0 or 1.

For n - 4k + 1, the symmetry condition requires putting xn+1 . 0, and for n -4k + 3

symmetry requires xn ! - 1. -r
--

b. a * 4k + 2. In this case the distribution (5) would not satisfy the symmetry corition. We know

that for S to be a maximum we must have x O for I j n-2 ,andx Ifor,

2 2 2

and symmetry r-quires x - Xn+2  Then just as in a) a1,ov(, it follows that these two x's either both have

*4 value 0 or both equal 1.

The results are summarizec In tf P following table.

Number of values of z at
n z=- z= z l S

2
4k k 2k k

U +lI k 2k 41 k n

4

2
4k. Ic 2k. Icn -1

4k~l 2k I k -l-

2
4k+23 kc 2k.2 kc. n -1t
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It should be pointed out that it will not be possible t_ fit a cubic in z with exactly these spacings of

stations, since only three values of z are given. Because it is physically impossible to put more than one

station at one position, the above spacing can only be approximated, and the coefficient of z3 can then be de-

termined, but its error will be large. If this coefficient is desired with any accuracy the problem must be

reconsidered, taking this into account.
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