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INTRODUCTION 

Real scientific judgments ar not exactly reflecied in the theory of consistent 
behaviour of Ramsey, de Finetti, and Savage, since in the theory the person is 
postulated to have infinitely fine perct^tiveness. When the theory is applied to 
well-defined statistical problems, the initial probabilities of parameters and the 
utility function postulated in the calculations are derived from rather imprecise 
perceptions or judgments. Often, the final results are insensitive to moderate 
changes in the initial probabilities and the utility function, and it is natural to 
choose mathematical expressions for these functions that roughly represent the 
intuitive judgments and are at the same time mathematically convenient to 
handle. Mistakes are rather easily made, however. That is, one may postulate 
mathematical forms for the initial probability distribution or for the utility 
function, under the impression that intuition is thereby represented fairly, when 
in fact the postulated forms have implications at variance with intuition. 

It is quite common in statistics to work with very simple loss functions, 
notably with quadratic loss functions and also with two-valued loss functions. 
In many cases these are good enough. But a quadratic loss function is not so 
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722 Statistical Methodology I 

good when associated with a probability distribution having an ii.anite variance. 
The trouble here is obvious, and usually there will bo no hesitation over taking 
the obvious remedy, of changing the loss function. It is possible also for there 
to be a conflict between the data and the initiaJ distribution of parameters. This 
may not be altogether obvious, though if it is noticed either the data or :he 
initiaJ distribution will have to be rejected or modified. Suppose, as an extreme 
example, that a person proposes to take readings of the weight ß of an object. 
ano let it be given that the readings will differ from « by a chance "error" having 
a normal distribution with zero mean and 1 g. standard deviation. Before the 
readings arc taken, the person may judge that M will lie between 200 g. and 
300 g., and having no particular opinion as to where n will come in this range 
he may be incautious enough to postulate a uniform dtstribution for the initial 
probability over just this interval, with zero probability outside it. Suppose 
now that he takes sqme readings, and finds them to be somewhere near 500 g. 
If after careful checking he accepts the readings as genuine and trustworthy, 
and is prepared to conclude that, contrary to prior expectation, n is indeed in 
the neighbourhood of 500 g., then his asserted initial di&iribution must have 
been wrong. He did not really mean to imply absolute conviction that fi lay 
between 200 g. and 300 g. If he had had such a conviction, he would have been 
forced to reject the observations as spurious, or else, by a long stretch of the 
imagination amounting to lunacy, to have concluded from Bayes's theorem that 
fi was probably very close to 300 g. 

U is customary to expicss the total probability distribution for an experiment, 
extending over the Cartesian product of a "sample space" and a "parameter 
space," by two component distributions, (i) the conditional distribution over 
the sample space, given any pcim in the parameter space (this is often called 
the statistical specification, or class of admissible hypotheses, or "model" for 
the experiment), and (ii) the marginal distribution over the parameter space, 
usually referred to simply as the initial or "prior" distribution. Usually, the 
former is supposed to be a chance Hisfribution with frequency interpretation, 
whereas the latter represents subjective opinion. It is well known that the 
observations are capable of contradicting the first type of distribution, as for 
example when the distribution is asserted to be normal but the observations are 
strikingly discrepant with the hypothesis of normality. It does not seem to be 
generally realized that the observations can just as clearly contradict the second 
type of distribution. 

This is liable to happen, in particular, if there are many parameters. Suppose 
that according to the statistical specincation the observations y, (i - 1,2 n) 
have normal independent chance distributions with known common variance 
and mean values expressed as linear functions of some parameters, ft is tempting 
to postulate as the initial distribution for the parameters some particular multi- 
variate normal distribution, because such a distribution is conjugate" to the 
statistical specification (Raiffa and Schlaifer f6]). However, by a (fully known) 
non-singular 'inear transformation, the parameters can be made to have inde- 
pendent normal initial distributions with zero means and unit variances; and 
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now —if the number of parameters is large—by the law of large numbers we 
deduce that a certain linear function of the observations has high probability 
of being close to zero, and that a certain quadratic function of the observations 
has high probability of being close to one, and similar statements about higher 
moments. But these particular functions of the observations may in fact yield 
values that are far from the predicted values. Perceiving this difficulty, Duncan 
[3j, and possibly also Dunnett [4], have hinted that the initial distribution for 
the parameters should not be completely postulated in advance, but should be 
permitted to have one or more adjustable constants in it, which would be chosen, 
after a preliminary analysis of the observations, to avoid one or more specific 
conflicts of the above sort. Such an adjusted distribution cannot be said to 
represent prior opinion directly, since it depends on the observations. Its use 
may possibly be justifiable, but we may reasonably ask to see thf; justification. 

The main purpose of this paper is to illustrate a more satiot/ing way of assigning 
the initial distribution lor the parameters, in a problem where there are many 
parameters. We consider an experiment in which a large number of factors are 
tested or "screened. ' It is expected that most of the factors will have small 
effects, and importance attaches to identifying any factors that have substantial 
effects. We introduce an initial distribution expressing indifference of opinion 
concerning the factor responses, but a certain expectation as to the relative 
magnitudes of the responses in aggregate; such a distribution should appear 
reasonable (we believe) for some kinds of exploiatory experiments. Conditions 
on the design that facilitate the ensuing analysis are formulated. Particular 
attention is paid to supersaturated designs, for which the number of parameters 
exceeds the number of observations. 

Our formulation of this problem is based on unpublished work by Beale and 
Mallows [I], to whom is due the idea of modifying an ordinary least-squares 
analysis in the light of a suitably chosen prior distribution. On the subject of 
screening experiments in general, including supersaturated experiments, see 
Satterthwaite [7] and the associated discussion. Booth and Cox [2j have recently 
considered the construction of supersaturated designs, under a condition (not 
imposed here) that each factor may be tested at only two levels. The considera- 
tions of this paper have some relation to Stein's work on many-parameter 
estimation, as for example [8] and [9]. 

Tiao and Zellner [10] have treated essentially the same problem, in a paper 
that came to hand after this was written. 

A   FACTOR-SCREENING  EXPERIMENT 

Specification and notation 
Let yi, yi,... , y% he readings obtained in a factorial experiment in which / 

factors are varied. Let the following specification be postulated, implying that 
the effects of the factors are linear and additive: 

(1) y« = /»+ Z xi'0' -Mi      (»=1,2,...,«). 
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Here the coefficients Xj-, representing the levels of the factors, are known and 
freely adjustable in the planning of the experiment; the mean p and the response 
coefficients 8, are parameters whose values are not certainly known; and the 
errors et are realizations of chance variables independently and identically dis- 
tribi'ted in a normal distribution with mean 0 and variance tr*. 

Let X denote the n X C/ + i) matrix of coefficients of the parameters /i, ß,. 
in   (1),   that  is, 

(2) 1    Xu   Xn 
1    Xn   Xn 

Xlf\ 

Xtr 

1     X%i     Xni     ...     X,//   . 

By redefining ß and the zeros of the factor levels if necessary, we can make 
every other column of X orthogonal to the first column. Thus we shall suppose 

(3) 5>(r-0 (r= 1,2, ..../). 

We shall also suppose that X has the greatest possible rank for its size, namely 
min(n,/ + I). We shall be interested in large values for n and/, but the formal 
requirement in what follows is merely that n > 3, / > I. If / < n — 2, we say 
that the design is unsatumted; the parameters ß, ßT, can be estimated by the 
method of least squares, and ö-

S
 can be estimated from the residual sum of 

squares. If / = n — 1, the design is saturated, and the method of least squares 
yields estimates of n and ß, but not of o-1. If / > n, the design is supersatwated, 
and the method of least squares yields a unique estimate for ß but not a unique 
estimate for ßT. 

It will be convenient to consider a reduced form for all but the first column 
of X. Let T denote an n X n orthogonal matrix, with entries tit, such that 
every entry in the first row is equal to 1/\/n. Then F transforms the observaticiis 
{y() to (u(). where 

(4) 

and 

(5) 

«< = E ttpn 

"i = E yt/Vn "tfv'* 

' . 

Because of (3), X is transformed to 

(6) rar« /v«   oj 
0 

0 

0 
VJn 

0 
wir 

IQ M 

Let  W stand for the {n — 1) X/ matrix of coefficients viu (i = 2, 3, . . . , n; 
r = 1,2 /). For some purposes, \V is a more convenient description of the 
design than X. 

Ji 
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Let C stand for the/ X / matrix WW (where the prime denotes the transpose), 
having entries 

(7) Cr,  =   T.inWl'Wt,  =   E(*lr*<i- 

In summations, the suffixes r, s, will be understood to run always from 1 to /, 
and the suffixes i, j, to run from 1 to n, unless the suffix is enclosed in paren- 
theses, as above in (7), in which case it will be understood to run from 2 to n. 

Puröose 
The purpose of conducting the experiment and obs Tving the y, is to make 

inferences concerning the response coefficients /3r. We shall express the results 
of the experiment primarily in the form of a posterior distribution for the ^r. We 
biiall also consider the particular problem of selecting from among the factors 
any for which the corresponding response coefficient is substantially different 
from zero. This problem will be characterized by tne following loss function. 

We suppose that, associated with the rth factor, there is a given number 
hr, serving as a threshold cf importance, such that if |3r! were known to exceed 
kr we should prefer to classify the nh factor as "interesting" and retain it for 
future investigation, whereas if |3r| were known to be less than k, we shou'j 
prefer to give the verdict "uninteresting" and discard the factor. Let the utility 
loss in discarding the factor be supposed equal to 3,', and the cost of retaining 
the factor for further investigation be supposed independent of I3r, and therefore 
equal to Ä,!. Then if the value of ,dr is not known certainly, the decision to retain 
the factor will be preferred if 

(8) Eidr-)   >   M, 

and the decision to discard will be preferred if the inequality is reversed. Here 
the expectation is with respect to the available marginal probability distribution 
for 0r. 

Thus in addition to determining a joint posterior distribution for all the 
response coefficients &,. given the results of the experiment, we shall be interested 
in the value of Eidr) for each r, with respect to this posterior distribution. 

Initial probability distribution for the parameters 
We have to supply a joint initial distribution for the parameters, n, a*, and 

the ßr. For ß we shall postulate the uniform distribution over the whole real 
line, independent of the distribution for the other parameters. Our procedure 
of analysis will therefore be invariant under changes in the origin of measure- 
ment of the yt. For o-* it will be simplest to consider the possibi!:ty that <r- is 
certainly known. But if «r5 is not known certainly it will be supposed to have 
the following initial-probability element, independent of the distribution of the 
other parameters: 

^ (9) {a-1)kl'-lcxp\-ai/2^]d{<r-1)., 

where k and a are given positive numbers. (There is no need to insert a nor- 
malizing factor, since it will cancel out when we use Bayes's theorem.) 
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As for the response coefficients ßr, we wish to express a prior belief that most 
of them will be small. If/ is large, no joint normal distribution for the 3, will 
do, because of the law-of-large-numhers effect, as already mentioned. 

Observe first that If all the entiics v any jolumn of \V (or in any column 
of X other than the first) are multiplied by a non-zero constant and the corre- 
sponding j3 divided by that constant, the problem is essentially unchanged. Let 
us suppose the columns have been so adjusted that the initial opinion concerning 
the magnitude of each ß is the same. The set of ^'s, if we could observe them, 
would look like a sample from some population. Let us consider the possibility 
of postulating that the population would be normal and have zero mean. 

The suggestion that initially each 3 has zero expectation and that the joint 
distribution of the ß's is invariant under permutations can be given a certain 
sort of objective validity by performing two acts of randomization: (a) each 
column of W (or each column of X other than the first), together with the 
corresponding ß, is either unchanged or multiplied by —I, according to the flip 
of a fair coir., choices being independent for different columns; (b) the f factors 
are given a random permutation before being numbered from 1 to /. 

These randomizations do no harm, and, like other more usual randomizations, 
are probably advisable as a prcttction against unconscious biases and specifica- 
tion errors if a series of similar experiments is to be performed. But after the 
results of the randomizations are known, the fact of randomization has no 
bearing on the plausibility of a normal population of ß's with zero mean. The 
normality of the distribution is open to empirical refutation, after a large number 
of ^'s have been estimated, just as the assumption that the e's have a normal 
distribution is open to empirical refutation, provided there is enough replication 
in the experiment. Both normality assumptions are logically alike and may be 
regarded as belonging to the "specification" rather than to the "initial distribu- 
tion" part of the total assumed probability distribution for the experiment. We 
then have only three parameters for which we have to assert initial distributions, 
namely ^ and a', as already discussed, and also r, the variance of the normal 
population from which the /J's are supposed drawn. For the latter let us postulate 
the initial-probability element 

(10) (r-1)'/1-1exp["6V2r,]c/(r-,)I 

where I and b are given positive numbers. The mathematical forms for (9) and 
(10) have, of course, been chosen for mathematical convenience. Each distri- 
bution may be adjusted to have any mean and any variance. 

Thus the total probability element for the experiment is proportional to 

(11)    exp 

if a1 i3 known certainly. If cr' is not known certainly but has the initial distri- 
bution (9), then the total probability element is proportional to (11) multiplied 
by the further factor 
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But for the present let us suppose a5 known. 
If we integrate (11) with respect to r*, we obtain the marginal distribution for 

ail the other variables. The probability elemenl is proportional to the product 
of the following two factors, which we separate for ease of discussion: 

(13) 

and 

(14) &' +  Z   ßr1) H   dßr. 

Thus our assumptions about the ßt, that they are a sample from a normal 
population having zero mean and variance r*, where T* has the initial distribu- 
tion (10), is equivalent to postulating (14) as the joint initial distribution for 
the ßr. The distribution (14) has the following properties. The marginal distri- 
bution for any one response coefficient, say ßi, is proportional to 

(15) (p + ß1rr(t+ü>ldßlt 

and this has a great dispersion if / is small. But the conditional distribution for 
ßi, given all the other ß's, and given, in particular, that ßt* + ßt* + . .. -\- ßf 
= Pi1, say, is proportional to 

(16) (ft' H' (V) i\-(i+r)ir dßy 

and this is close to a normal distribution with zero mean and variance 

(i' + PiW+Z- 1) 

if / is large. These properties are intuitively satisfactory, and dc not resemble 
those of any joint normal distribution. 

INFERENCE?:   FROM  THE  EXPERIMENT 

Generaliiies 
The posterior distribution for the ß, is derived (according to Bayes's theorem) 

from the total probability distribution for the experiment, (13) and (14), by 
integrating Tvith respect to the unwanted parameter M and conditioning on the 
observed values of the y(. The factor (14) is not afTected by these operations, 
but (13) becomes 

(17) exp[~ E \yi-i~T, xirßrj / 2^] , 

where yt and y now stand for the observed values. Thus the desirtd posterior 
distribution is proportional to the product of (14) and (17). 

This is for a* a known constant. If a1 is a random variable, the factor (12) 
must also be reckoned with. The integration with respect to M changes the n 
in (12) to n — 1, and then it is necessary to integrate also with respect to «r*. 
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The resulting desired posterior distribution for the 0, is proportional to the 
product of (14) and 

(18) [••+!: (v.-y-Ex^)]' 
u-m-D/i 

Note that, in regard to the sum of squares appearing in (17) and (!8), we 
have: 

(19) E (*-#- E Xi'ßr) = E (". - E *irßf) ■ 

Let (,3,*) denote a set of values for (3f) that minimizes this sum of squares. If 
the design is saturated or supersaturated, the minimized sum vanishes. (3*) is 
uniquely determined by the minimization if the design is unsaturated or saturated, 
i.e. if / < n — 1. For a supersaturated design, we shall impose beiow a further 
condition which will determine [3*) uniquely. In any case, the sum of squares 
(19) can be expressed, from (7), as 

(20) E 
(i) 

[*i -    E   »*&*)     +   E   Cr.'yßr "  Pr*){S. -  ß,*}. 
\ r / Ti 

The first half of this expression, the minimized sum of squares, does not involve 
the 3,, and so, ignoring it, we may replace (17), in the posterior distribution for 
the ßr when y- is known, by 

(21) cxp E crs{ßt-3n{ß.- ß*)/2ci\. 
TI J 

The corresponding expression for (18), in the posterior distribution for the 0, 
when o-2 is not known, is 

(22) [ .4,+  E   Cr,{ßr ~ ßr*)(ß, ~ ß,*) 
"-(k-Hi-I)/2 

where A* = a- + 2(a ("( — 'E.rWirßr*)2- For the rest of this paper, we shall 
consider cr2 known and work with (21), but our results can immediately be 
translated into the corresponding expicssions derived from (22). 

Under our assumption that X is of maximum rank, Cis of rank min(n — 1,/). 
Because the prior distribution (14) involves the simple equal-weighted sum 
X^r^r2. the posterior distribution will be easiest to make computations with if 
the experiment has been so designed that all the non-zero roots of C are equal. 
The common numerical value of these roots is arbitrary, because all the entries 
in X, except those in the first column, or equivaicntly all the entries in IV, 
could be mul'iplied by a common non-zero constant, and all the ßr and b divided 
by that constant, and the problem would be unchanged. For definiteness, we 
shall choose the common value of the roots to be n. This permits the design 
conditions below to be expressed as succinctly as possible, but with appiopriate 
slight changes in the formulas any other scaling could be used. 

Let g be the positive number defined by 
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(23) |» - £ ^ 
r 

We shall assume that ß* does not vanish for every r, and he.ice that g exists. 

The case / < n — 1  [unsaturated or saturated design) 
The rank of C is /. If all the roots of C are equal to n, C must be n times the 

identity matrix. We then have 

(24) ß* - 2 y*»/** 

and ng' is equal to the sum of squares for factor responses, of/degrees of free- 
dom, in the ordinary analysis of variance of the observations. The implied 
condition on X is expressed in the following 
DESIGN CONDITION (/ < n — 1). The columns of X are orthogonal, and the sum 
of squares of entries in rjery column is equal to n. 

By an orthogonal transformation we can transform (ß,) to (7,), where 

(25) Ti =  L  ßf*ßt/i 
T 

and the posterior distribution for the 7, is proportional to 

exp(-n{(7l - g)2 + 7** + • • ■ + T/}/2*  iFI  dy. 
(26) (6-' + TrTT^2 + + vTn7757r 

This distribution obviously has circular symmetry about the 7l-axis, Let 

(27) p,' - T,« + 7J1 + . . . + 7/'. 

Then the joint posterior distribution for 7! and pi is proportional to 

(28) 
cxp[-n|(7l - g)* + Pi7]/2a W ^y^dpi 

Tin   rz  2-jT+jm (0   + 7i + pi ) 

(20) and (28) is our primary answer to the inference problem. 
For the particular inference problem of selecting "interesting" factors, we 

need to evaluate £(tfr
s). Inverting the transformation, we can express J, at a 

linear form in the 7,; the sum of squares of the coefficients is equal to 1, and 
the coefficients of 71 is /3r*/g. We have clearly 

(29) 

Hence 

(30) 

£(7r7.) = 0 for r ^ 5, 

fi(Ti») - £(73») - ... - £(7/) = £(PI
I
)/(/- D- 

£(/?r') = (^*/g),£(7J
1) + [I - {ßf*fl)*]ßW)/{J- 1). 

This can be calculated (for every value of r) as soon as £(7iJ) and £(pi') have 
been evaluated, ana the latter may be found by numerical double integration 
over the region —«> < 7J < ", 0 < pi < =», of three expressions in turn, 
namely (28) as it stands, (28) multiplied by 711, and (28) multiplied by pi?. The 
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first of these is required in order to determine the normalizing factor for the 
distribution (28). 

The case / > n  (supersaturated design) 
The rank cf C is n — 1. The non-zero roots of C (= W*W) are equal to those 

of WW, and if there a^e n — 1 such roots equal to n, WiV must be n times 
the identify matrix. Thus the "-ows of U'are orthogonal and the sum of squares 
of entries in every row is equal to «; the same is therefore true for X. A set of 
characteristic vectors for C, corresponding to the non-zero roots, is the vectors 
whose components are the rows of W. Let {$*) be the unique solution of the 
equations 

(31) a« = S wtrßr*       (t = 2, 3,.. . , n) 

that lies in the linear subspace spanned by these characteristic vectors; we 
refer to this space as V. The general solution of the equations is then equal to 
{$*) plus any arbitrary vector orthogonal to V, and so (5r*) may be charac- 
terized as the solution of (31) that minimizes g. We see easily that 8* is given 
by (24), and 

(32) ng* - £ (* - f)*. 
i 

There is an orthogonal fXf matrix P — (pr,), transforming (ßT) to (y,), 
thus 7, = Y.,pr,3„ such that the first row (pi,) is proportional to (8,*), i.e., 
we have (25), and such that the first n — 1 rows of F are linearly dependent 
on the rows of IV, i.e., they span V. Then the posterior distribution for the y, 
is proportional to 

«p{-«l(7l " g)1 + 7:'+ • • • + rt-t]/*'* III ** 
(33) (fcrT^TV+ .... +>/) ^^^      • 
Let 

(34)        p.» = 7:? + 73» + • • - + 7,-i?,    Pi1 - T.1 + 7,f i! + . . . + 7/'. 

Then the joint posterior distribution for yu pi, and pj is proportional to 

(35) 
t\pl-n{yi - gY + pii\/2(T2]p1 ^i^dyidpdpz 

(0   + 7i   + Pi   + P2 ) 

(33) or (35) is our primary answer to the inference problem. 
For the particular decision problem of selecting "interesting" factors, we need 

to evaluate £03,'). Since the first n — 1 rows of P can be described as an ortho- 
gonal transformation of the rows of W, after the latter rows have been made 
into unit vectors by dividing every component by y/n, we see that the sum of 
squares of the first n — 1 entries in any column of P is equal to the sum of 
squares of entries in the corresponding column of W, divided by n. Our calcula- 
tions v/iil now be simplified if the sum of squares of entries in each column of 
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W is the same, equai therefore to «(« — 1)//. Then the WflB cf squares of the 
first n — I entries in any column of P is equal to (n — I)//, and that of the 
remaining entries is 1 — (» — 1)// =(/—,» + 1)//. Since clearly 

l£(7,T.) = Oforr    ^ j. 
(36)        JECT,*)    - tiy,7)   = . .. = Efyij = S^iVC« " 2). 

^(T.1)    - E(I2M) - • • • - £(T/S)   - B^/Cf - » + 1). 
we obtain finally 

p7)  B(ß/i - W/tfEbtf + {{« - 1)//- (^•/s)tl£0>i,)/(« - 2)+£(pJ)//. 
This can be calculated (for every value of r) as soon as Eiyi*), Bfafl and fCp»1) 
have been evaluated, emd these may be found by numerical tripie integration 
over the region —■• < Ti < =o, 0 < p; < a», 0 < p» < », of four expressions 
in turn, namely (35) as it stands and also (35) multiplied by yt* or by pt* or 
by Pt'. 

Our assumptions concerning X, to support the above analysis, are expressed 
in the following 
DESIGN' CONDITION (J < «). The rows of X are orikogonal, the sum of squares of 
entries in each row is equal to n, and the sum of squares of entries in each column 
other than the first is equal to n{n — l)/f. 

The effect of the above condition can be expressed geometrically as follows. 
With only n — 1 degrees of freedom available for estimating the vector (ß.) 
in a/-dimensional linear space, unique estimation by least squares can be carried 
out only in a (n — I)-dimensional subspace V. The condition implies that within 
V estimation is isotropic, i.e., has a sphericai distribution of errors, and that V 
itself is equally inclined to each of the/co-ordinate axes. Thus the same amount 
of information is provided about each response coefficient. 

REMARKS 

Construdion of supersaturated designs 
The suggested design condition for a supersaturated experiment can be satis- 

fied for any given / and n, such that / > n > 3. A suitable W matrix may be 
constructed as follows. If n — 1 is even, (n — l)/2 row pairs are taken, the mth 
pair consisting of a row whose rth member is v'[(2n//)sin(2rmr//)] and a row 
whose rth member is -v/[(2«//)co5(2rmr/7)]. If n - 1 is odd, an extra single 
row is included all of whose members are y/in/f)- 

Hunter [5] has pointed out that the most likely occasion for a supersaturated 
experiment is the early part of a sequential programme in which, with / held 
constant, n is increased by steps, from a starting value less than / + 1, up to 
/ + 1 and higher values (unless the programme is abandoned first). It can be 
shown that the above construction leads to a sequence of supersaturated designs, 
all with the same/, and with n increasing by steps of 2, such that each successive 
X matrix can be derived from the preceding one by adding two further rows and 
then rescaling the entries in accordance with our convention, so that they 
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satisfy (3) and have the desired sum of squares. The corresponding operation 
on the If matrix consists of increasing n by 2 everywhere and adding a further 
row pair of the kiad specified above. The transformation matrix T must be 
appropriately modified. 

Specukilicns 
It is very likely that (30) and (37) could be well approximated by expressions 

far easier to calculate, and that the distributions ('-0' and (33) could sometimes 
be adequately replaced by normal distributions. 

The robustness of the above analysis to non-normalily of the population of ß's 
has not been investigated, but might be expected to be fairly good. 

Anyone interested in the method of "confidence intervals" could no doubt 
give an analogous treatment of supersaturated experiments, based on the ran- 
domization and the design condition suggested above. 

SOMMAIHE 

Si Ion propose une expression matheinatique pour !■ repartition des probabilites initiales 
relatives a quelques parametrcs, il faut faire attention aux consequences non voulues. Quand 
il y a beaucoup dc parametres. il pent arriver qu'une repartition du genre nomme • conju- 
guee » par RaitFa et Schlaifcr soit pcu satisfaisante, parce qu'eiie implique certaincs proprietes 
des observations en vertu de la loi des grands nombres, losquellcs ne se vtrificnt pas en effet. 

Comme exemple d'un probleme a beaucoup de parametres, je considere I'analyse statis- 
bque des observations faiies dans une experience factorielle, d'apres une formulation due a 
N!.\t. E. \!. L. Beale et C. L. Mallows. Je considere en particulicr I'analyse d'une experience 
« sursaturee », dans laquelle le nombre des parametres a estimer depasse le nombre des 
observations. Je monlre que lanalyse devient la plus facile quand 1c plan de l'experience 
satisfait ä une certaine condition. Cctt» condition peut s'effectuer pour un nombre quelconque 
de facfeurs et un nombre quclconque d'obstrvations. 
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