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ABSTRACT

The two dimensional steady-state problem of the effect of a step pressure
traveling with superseismic velocity on the surface of a half-space is treated
for an elastic-plastic material. The plasticity condition selected is suitsable
for a granular medium where inelastic deformations are due to internal slip

subject to Gbulomb friction.

The problem is inherently nonlinear and leads to a system of coupled
differential equations which are solved by digital computer. Numerical
solutions are tabulated as functicns of the significant nondimensionel parameters,
i.e. of the Mach numbeyr, Poisscn's ratio and of a value & defining the internal

friction.
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I INTRODUCTION

The two dimensional problem of the effect of & pressure pulse p(x - Vt)
progressing with the velocity V on the surface of an elastic half-space,
Fig. 1, has been treated by Cole &nd ?uth (1] for a line load and, by super-
position, may be found for any other distribution p(x - Vt). Miles [2] has
considered the three dimensional problem of loads with exially symmetric
distribution p(r,t) over an expanding circular ares on the suriace, Fig. 2.
He hes demonstrated that the plars problem [1] contains the asymptotic so-
lution for the three dimensional problem {2] in the region near the wave front.
The actual solution of the three dimensional problem would require a great
numerical effort,which can be avoided by using the solution of the plane

problem to estimate the effect of circularly expanding surface loads.

Real materials can not be expected to be elastic, and solutions of the
three dimensional problem, Fig. 2, for dissipative materials are hopelessly
complex. However, estimates for the three dimensional case can be made from
generalizations of the problem treated in [1] for dissipative meterials.
This has been done for linearly viscoelastic materials by Sackman [3], and
Workman and Bleich [4], in the superseismic and subseismic renges, respectively.
For possible application to granular media the present report considers an
alternative material where internal slip subject to Coulomb friction may occur.
The problem has previously been considered by Bleich and Heer [5] for the
range of low stubseismic velocities V, while the more interesting superseismic

case is the concern of this report.

The slip mechanism in the medium mskes the problem nonlinear, such that
superposition is not permitted and each pressure distribution p(x - Vt) poses

a separate problem. The present report treats the case of a progressing step
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load p(x - Vt) m poH(Vt - x). An approach permitting a simplified soiution of
the important, but very complex case of a decaying surface pressure is discuesed

in Section IV.

Based on concepts of the theory of elastic-plastic materials, Drucker and
Prager [6] have shown that a material subject to internal Coulomb friction can
be represented by an ideal material, the behavior of which is governed by a

plastic potential

F = |./'J2| +od, -k (1)

where Jl and Jé are the invariants

Jy = 0y (2)
JQ:%siJ sij (3)

while @ > 0 and k > O are material constants. & is related to the angle of

internal friction and is therefore subject to the limit a < (6], and k is

L
12’
a measure of the cohesion. Because the surface pressures for which this study
is intended are large compared to ithe magnitude of cohesion, it suffices to

consider the limit k -+ O, giving the simpler plastic potential
F=|/o,| +e7 . (%)
The behavior of the material is described by the following statements:

1. To represent a granular material with no, or very small cohesion, the mean
J
stress = must be compresssive, or

3

J. <0 . (5)

2. If, in an element of the material at a given instent,




F<O (6)

the changes in stress and stzro.:ln,éi‘j , ‘1J will be related by the

conventional elastic relations,

However, if the yleld condition at a time ¢ is satisfied

F=0 (7)
three pozsibilities exist. There may be further loading of the element
with permanent plastic deformation and dissipation of energy, in which
case F = 0. Alternatively, there may be unioceding without permanent
deformation, in which cese f‘( 0. Mnally, tbere may be a neutral state
where F = 0, dut without permanent deformation or energy dissipation.

For the first case, with plastic deformstion the total strain rate will

be the sum of an elastic and a plastic portion

by o+, (8)

vhere if 4 18 obtained fram the conventional elestic relstions, vhile

»F
- 9
UPER %J— (9)

A\, vhich must be positive,
A >0 (10)

is an a priori unknown function of space and time.
In case of unloading, and in the neutral case tha slastice strsss-strain
relations

. ‘E

VY (11)
apply. The neutral case occurs in the solutions obtained in regions

without change in stress or strain.




——= =
1 1

The fact that the same set of differential equations does not hold everywhere,
but that there are regions with moving, a priori unknown boundaries, complicates
the solution of dynamic problems in this type of material considerably. In the
following, the basic equations will be formulated separately in regions with and
without permanent deformations at the particular time t, and the solutions will
be matched to obtain a complete solution satisfying the prescribed surface con-
ditions. The problem being much too complex to expect closed solutions, a numeri-
cal approach suitable for digital computers will be employed. The technique is
related to the theory of characteristics and is a generalization of the method

used by Bleich and Nelson (7]-

The problem to be solved considers only the steady-state, i.e. the fact is
ignored that in reality the loads p(x - Vt) in Fig. 1 must have begun at some
large but finite negative value of time. This omission of the initial condition
results in a lack of uniqueness, which can be removed by consideration of the
character of solutions of the problem in Fig. 2. The lack of uniqueness and the
remedial consideration is best seen in the elementary example of a half-space of
an inviscid compressible fluid loaded by a uniform pressure pulse, p, which
progresses with supersonic velocity, V > ¢. There is an obvious solution,

Fig. 3a, in which the load produces a plane wave of intensity p progressing witn

lec
v
only steady-state solution. An alternative is a plane wave, the front of which is

a front inclined at the appropriate angle § = sin « However, this is not the
inclined at the angle 3.80O - ¥ . Combinations of the two solutions sre also
correct steady-state solutions. To find states generated by the application of
pressure on the surface only, it can be reasoned that solutions which include the
wave front shown in Fig. 3b can not apply because the medium ahead of the front
shown in Fig. 3a should be undisturbed when the applied load moves with super-
sonic selocity. Thus, in case of the fluid a unique solution is obtained.

Similer reasoning will be used in the body of the report.
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IT FORMULATION OF THE BASIC EQUATIONS

Figure 4 indicates the half-space and a system of Cartesian coordinates.
x is in the direction of motion of the step load, y and z are normal to the
surface in and out of the plane of the paper, respectively. The analysis con-
gsiders the case of plane strain, ., = 0, when the velocity V of the step load is
superseismic, 1.e. larger than the velocity of P waves in the material when slip

does not occur, Throughout the analysis 1t is assumed that the strains are small.

As stated in the introduction there are, in general, inelastic regions in
space-time where permanent deformations with energy dissipation occur, and othcr
regions where changes of stress and strain are entirely elastic. The basic
differential equations for the two types of region must be treated separately.
In addition it will be necessary to consider the possibility of shock fronts,
1.e. degenerate infinitely narrow regions where the differential equations bresk

down.

a. Inelastic regions

Combining the familiar elastic stress strain relation

+B 1+v ) . v

¢ " ["13 " Tev 84y 6kk] (12)
where 515 is the Kroneker delta, and the relation

U % [ui,J + uj,i] (13)

expressing the strain rates in terms of the velocity components, gives, for

plane strain, four constitutive equations

a1 [ aF
—==la_ -v(d, +9& )] + A (14)
ax E | xx yy 22 aoxx /
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ia g2 (1s)
yy
1 . 2r
0=3% [6ZZ -V (ayy + &xx)] + 3, (16)
3 v 1 aF
S—y—+3§ a"i"i"}xs';

(17)
where u and v are, respectively, the x and y components of the particle velocity

Further, there are two equations of motion, which are in a linear theory

ao ar au
ax ay at
30, .
A, ., &
ax Y at

The yield condition, Eq. (4),and Eqs. (14)-(19) form a set of seven
equations governing inelastic regions.

function A must satisfy the inequality A > O, Eq

element in an inelastic region.

other variables

and 32

The appropriate relations are

1 with the
o._=68,5in 6 + s cos l
XX 2 1 3 l
Uyy = 8 sin2 6 + 85 C 9 + § 1
Opg ™ = By =~ 8 * % 9y
T = e ; % sin 26

10

the invariant Jl » the two principal stress deviators s
and the angle 8 formed by the direction of s

(18)

(19)

Inherently, however, the unknown

(10), required for an

It was found convenient to express the four unknown stresses by four

°1
surface, Fig. L.

(20)
(21)

(22)

(23)




In the numerical analysis the subscripts 1 and 2 will be selected such

that 8y is the major compressive deviator.

Because the steady state case is considered, all quantities appearing in
the analysis which are functions of x and t must be of the form f(x - Vt). For
the step load p = pOH(Vt - x), dimensional considerations similar to those used
in [5] make it plausible that the various quantities do not depend on x - Vt and

y separately, but must be solely functions of the variable

.x-Vt
y

(2k)
or, alternatively, of the angle ¢, shown in Fig. 4, and defined by
g = cot ' . (25)

The transformation to the new independent varisble ¢, which will be seen
to be successful in obtaining a solution, changes the partial differential

equations obtained above into a s2t of simultaneous ordinary differential

equations. Noting %-: -12 )
sin” ¢
Q
2. 14 sing &
&x  y df Y &p
3 § d s8in2¢ 4
-t D - = —— 26
¥y yd T Ty & (26)
L. Vv a v 2 d
®TCYETYH Py
and defining
L=+ ——-’;‘Lé—- (27)
aJl sin~ ¢
the seven basic equetions become; respectively,
2 2 2
al+slsz+32-a.}‘§-o (28)

11




f ' l 1
cos 6 sin (¢ - 0) s, + 6in 8 cos (p - 8) 8, + 8in @ 39

- cos (9 - 20)(8l - 82) o + pV sin ¢ i a 0 (29)

4 t l
sin 8 sin (p - 9) s, - cos 8 cos (9 - ©) 8y = COS @ 3 g+
+ sin (@ - 20)(5l - 82) 9' + pV sin ¢ 0' = 0 (30)

l t
3 Jy - sin 28 (sl - 82) 8 -

2 1] . 2 1]
cos O 8y + sin~ 8 B, + Tro

o 2 2 9 o271 0L . , G _
(s, cos e + 8, gin- ® - 2o l] 7t 2 7 U 0 (31)
2 ] 2 ] 1_2\)1 1 ] ¢
sin® @ §, + cos ] s, + e 3 Jl + sin 28 (sl - 52) 8 -
2 e 2 GL 2G . ! ~
- [sl sin- 8 + 8, COB 8 - 2 l] v - TT'COt v =0 (32
i ol ' cal 1 GL
5 sin 28 8 - 3 sin 20 8, + cos 20 (sl - 32) 8 - 5 (sl - 52) sin 26 5 -
G Gt
-7 cot p u + A 0 (33)
l-2v ! 2 GL G .° 2G o !
- T Jl - & Jl v - 2 7o + TF'COt v =0 (34)

where primes indicate the derivative with respect to ¢.

Differentiation of Eq. (28) yields a seventh differential equation

, ' , ' 2 ' ]
\251 + 32) sl + \252 + sl) 52 - X JlJl = 0 (35)

Eliminating the velocities U and Vv from Egs. (29)~(34) leaves a sct of

five differential equations in five unknowns which are related to the stress

12
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(32)

pattern alone.

quantity X = X(g)

Defining, for convenience, the angle y (see Fig. 4) and the

Y.'-e (36)

X = %¥§ 8in° ® {37)

the five equations become:

-1

sin‘y
= sin 2y
sinzy-X

2s.+ 8

2
cos”y

= 8in 2y

X-cosy

s.+ 28

l-2v !
T7v 0 sl+ 32 + sl
+ aagJi
1-3X <l:§ﬁ\ -sin 2 - 6Mu2J 5,
3X\1+y Y 1 2
l H
sin 2y 2X -1 0 3% =0 (38)
1]
- cos 2y 0 X(sl+ 52) (sl- 82)6
2 GL
- 6 9 0 0 e
1 L -

This set of equations is linear and homogenecus in the four derivatives and in

the quantity L, and may be satisfied by

However, L = O implies A = O, which violates Eq. (10).

5y

25;3.]"::(81-'82)0'314“0 (39)

1

It folleows that in

an inelsstic region the determinant of Iigs.(38) must vanish, giving the

"determinantal equation”

where

YA s s Ml ke W g

b, + blb3 = 0 (40)

13
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b, =2 (1 + (1 -2X)(1 - 2v))

b, = 8 cos 2y + (1 - 2X) {1 - 2v - bp (1+v)] ) (k1)

b3 = (1L + v)(1 - 2X)(1 + 2u)2 - BQX

and

e (i2)
2
a J
1
b —— (43)
sl+82

Due to the vanishing of its determinant only four of the five Eqs. (38)

! ] !
are independent. As L may not vanish, 8) 1 Sy Jl and 9 can always be

expressed in terms of L,

s; =3 (8 +5,)(b5 +0,) & _ Yy
5, =3 (8 + 3,)(bg - b, ) & | (45)
o = bg %% (46)
J; = 3(s, +8,) b, %% (47)

Velocities and accelerations, if desired, are

o o) cL
. _ -1 "2 A ) ) i . ) oL
W= 5 sin o (bh sin(2y ~ @) 2Bbg cos(2y @) + (b5+ ab7) sin ) -
;o) GL
= Hvsing L0y cos(2y - @) + 2Bbg sin(2y - @) - (bg+ 2b,) cos @] 57

. sin2 P &'

Y
.o V 2 ot
= < si
v=gsint eV

1h




where

1
b, = 2 (1+v) {l;gﬁ EE +1+al/3+ 52
5 3 1+y bl
X ? (52)
sin 2 2
Pg = §T1-5X) b,
b b
b = =2 - 2
T bl 2

Since Eq. (40) must remain valid throughout an inelastic region, it may
be differentiated with respect to @. This leads to an expression which contains
the first derivatives of the stresses linearly, so that substitution of Egs.

(44 )~(47) into this expression furnishes a linear equation for the value of L:

r

2Xb3(l~2v) sin 29 + % Xb, sin 29 [2(l+v)(l+2u)2 + 52] +

+ 2b2[5 sin 2y sin® 9 + X 8in 2¢ (1-2v) - UX sin 29 (1+v) u]
7" \ 3 (53)

( bl[(l+v)(l+2u)(l-2x)(b5+ 6&2b7) - kaBJ +

{ + b2[bu cos 2y + 2Bbg sin 2y + b5(1-2X)(l~2v) - ‘ 81n° $

- 12b7a2(l+v)(l-2x)]

! | t
J, and @ can be obtained by substitution of Eq. (53)

]
The derivatives s. , 82 » 4y

1
into Eqs. (44)-(47).

If the values of s J, and 8 are known on one boundary of an

1’ 809

inelastic region, their values in the interior of such a region can be found

17 8 Jl and ©

must satisfy the yield condition, Eq. (28), and the determinantal equation,

by forward integration. Of course, the starting values of s

Eq. (40). Further, the integration can be carried on only when
15




L<O (54)

vhich condition follows from Bq. (27) noting A > 0, Eq. (10), and Jy < 0.

b, Inelastic shock fronts

The analysis of the previous subsection treated regions of finite extent,
and the additional possibility of infinitely thin regions, i.e. shock fronts,
remains to be considered. If auch fronts exist in the present problem the
equations obtained above should indicate this by becoming singular, since at
least one of the derivatives of the stresses must become infinite at a shock
front. Instead of searching for singularities it is better for a physical
understanding to demonstrate the existence and properties of shock fronts in
general. This generael derivation automatically answers the question of stability
of the fronts, by proving that a front, where the stress rises with an arbitrarily

steep slope, Fig. 58, will not disperse but propagate without change of slope.

Consider the basic Eqs. (14)-(19), which apply to any type of wave
propagation in plane strain. To investigate the possibility of plane pressure
waves without shear, the y direction is selected as the direction of propagetion.
For such a vave, the shear T, the horizontal velocity u and all derivatives with

respect to x vanish, while for reasons of symmetry o, o, . Since x, y, z are

the principal directions, the stress deviators s_and s_ become s_ = s, , s = s, .
X y X 2 y 1
Using the relation 5, = - % 81 the yield condition (28) becomes
2 2

%Sl-dd'i=0 (55)
while Egs. (14)-(19) furnish three independent relations

v _ 1 . 1 : T 2 -

3y - 23 51t gk Iyt A (s - 2%g,] (56)




0:-%él+-;—‘}—(5l-i[}sl+eaeJ1] (57)
. 08 oJ
v 1 1 1
"R '3 W (59)
vhere
< A
PR Y (59)
Bqu
2 l+v
£ 2o (35 (©0)

If a front, at which inelastic deformation occurs, is to propagate with a

velocity ¢ without change of slope, 1t is necessary that

8, = ayF {y - ct) = a,f (C) (61)
Jy = af (y - ct) = af (¢) (62)
v o= asf (y - ct) = 8¢ (¢) (63)

where { = y - ct, the values of a, and c are free constants, while f is an
arbitrary function. Since the signs of the coefficients are undefined, one
can select the sign of f, considering fronts of the type shown in Fig. Sa.

Selecting

£>0 (6h4)

£1 <0 ‘ (65)

vhere the symbol ' indicates derivatives with respect to (.

17




)

Substituting Eqs. (61)-(63) into Eqs. (55)-(58) and eliminating the

velocity v yields
-2\ -2\
! c 1 C - 2
f [al<l-%}-—)+§aa<l-%K—)]+pckf[al~2ua2:|=0 (66)

-2 -2
11 ptc l ptC -Tal L 2
f 5%—8.1-'3- %T{—ag]-pclf[-é-al+20a2]=0 (67)

2| ¢ o - azag] = 0 (68)

If shock fronts of the type sought exist, these three equations must be
satisfied for arbitrary functions f, subject to the limitations of Eqs. (64),

(65) and subject to the condition A > O. Equation (68) gives

a
f=:%§ (69)

— ¢
Equations (66) and (67) permit nonvanishing values f, A and f only if the
determinant of the coefficients of f' and pE'Xf vanishes, yielding after

substitition of Eq. (69)

(1 + 20 /3)°
&= X (70)

TP 2 14V

(1 + 6" (53]
However, the result is valid if, and only if X > 0. Computing.X from
Eq. (66) yields, after simple manipulations, the inequality
- 1 1-2v

1+ /3 q—-(-——l+v) <0 (71)

where the upper or lower signs in Egs. (69) to (71) are to be used consistently.

The limitations a > 0 and v < % indicate that the lower sign never leads to a

valid solution. Using the upper sign one obtains the requirement

18




1l 1-2v
« <t L2 (72)

V3

and the corresponding velocity

2 K _(1+e2a/3)
¢ b a? (LY (73)
(1 + (T35

The stresses 8y and Ji at the front have the ratio

1 M

:-I— »n -;— - e (7,4')

1 2 /3

The function f being arbitrary, it may be selected as a step function,

Fig. Sb. The function

f(y - ct) = H(ct - y) (75)
vanishes for positive values of (y - ct) and is equal to unity for negative
values of (y - ct). The discontinuities s, and AJ; in the stress history

8, = 48, H(et - y) (76)

J, = a3y H(ct - y) (17)
then satisfy Eq. (T4) provided

As

E;l - (78)

1 /3

The corresponding velocity to be obtained from Eq. (63) is

v = AV H(ct - y) (79)
where

Av . L1+ 2 /3 (80)

AJl 396
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Equations (76)-(80) give the relations for an inelastic shock front
entering a stressless region, a case which will be utilized in the constructicn
of solutions in Section III. For completeness it is noted thet in general, the
region ahead of the front need not be stress free, but Eq. (74) must be satisfied

ahead of the front.

The above investigation of possible shock fronts was based on the premise
that T = 0. The fact that no inelastic fronts are possible when T # O is
demonstrated in Appendix A, so that the discontinuity described in this section

is the only one which can occur with inelastic deformations.

Summarizing, it has been demonstrated that, for values of @ and v which
satisfy Eq. (72), a plane pressure discontinuity will propagate with velocity

¢ given by Eq. (73). In order to occur in the solution of the steady state

problem, Fig. 4, the front must be inclined at such an angle 6 that the horizontal

component of the velocity c equals the velocity V of the load on the surface.

The angle is obtained from Eq. (73)

g=nm-st|3) F L) (81)
P -‘/ 1 &'2 1+vy
* (l-av)

The principal stress at the front being normal to the front requires

Y:

i

, 8 =0 - g (82)

av] § o

Further, the relation s, = - at the front defines the value 8, Eq. (42),

o 51

B = 3.0 (83)
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c. Regions and shock fronts without inelastic deformation

In a region where no instantaneous inelastic deformation occurs, the ftrain
rates are defined by the purely elastic relations, Eq. (11), and the stresses are

gubject to the inequalities

Pu l[sf + 8,8, + sglil + uJi <0

(8k)

J <0

In addition, the equations of motion, Eqs. (18), (19) hold. To obtain the
differential cquations, one could proceed in the same manner as in subsection a.
However, it is not necessary to do so, because the resulting differential equations

must obviously follow from Eqs. (38) by making the following two changes:

1) The last equation is to be omitted because it represents the yield

condition F = O, which does not apply.

2) To account for the change in the stress strain law from Eq. (8) to

Eq. (11), L O is to be introduced into Egqs. (38).

In this fashion the following four simultaneous differential equations are obtained.

1-2v !
"t -t e ° *1
sin® cos® 1-3X 1-2y" - sin 2 5
Y Y Trv ) Y o
=0 (85)
'
sin 2y sin 2y 2 sin 2y - 2(1-2%) % Jy
2 2 '
sin® y-X X - cos”y - cos 2y 0 (a,- 82)6
el — b —J

2l
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The equationsare linear and homogeneous so that the derivatives of the
stresses, si s s;: 3 Ji vanish, unless the determinant of Eqs. (85) equals zero.
In spite of the fart that the coefficients in Eqs. (85) contain vy, the value
of the determinant is independent of the velue of the angle y. The determinant

of Eqs. (85) vanishes when X is a root of
kx(1-2X) [1 + (1-2X)(1-2v)] = O (86)
Equation (86) has two significant roots,

X, = =2 (87)

and

X =% ) (88)

and one, X = 0, which may be shown to be trivial. Substituting the two roots

X, and X, into Eq. {37) furnishes two locations

P S
r N c
] -1 ;L_]/?.q (A R
Pp = T - sin K 5 (l-.?v)] mn - sin [ V] (89)
r c
-111 G -11°78
Pg = T - sin 7 ‘/ 5] m - sin {77] (90)

where the determinant of Eqs. (85) vanishes, and ¢p » Cg 8re the velocities

of P- and S~-waves, respectively. In any location or the derivatives
PF P Pg

8y 5 S5, Jl vanish, so that the stresses must remain constant everywhere,

except at the locations @, and o

P s’

The angles Pp and Pg being the potential locations of elastic P and S
shock fronts, respectively, it is known that discontinuities in stresses and
velocities may occur at these locations and may, therefore, be part of the

complete solutions to be obtained in Section III. The following pertinent

details for these fronts will be required subsequently.
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(1) The PB-front

Designating the changes in the various quantities at the front by the symbol

4, the discontinuities in the stresses Oy » Op

front, respectively) and in the component ﬁN of the velocity (normal to the front)

=0, (normal and tangential to the

ere proportional,

: Y T I
boy : AUT : AuN 1 I © ey (91)

No other discontinuities can cccur.

The changes AUN and AGT are of course restricted by the fact that the in-
equalities (8i4) for the stresses must be satisfied on either side of the front.
No general study of this restriction is required, but in Section III it will be
necessary to know if a P-front is possible when the stresses and velocities shead
of the front @, vanish. In this case the conditions (84) are satisfied ahead of
the front, F = Jl ® 0. To check behind the shock, it is noted that the stresses
AGN and AcT are not only the total stresses, but they are also the principal
stresses, AcN =0y, AGT =0, . After computation of sy and Ji , one finds the

necessary conditions for a P-front

9, <0 (92)
a> -f; By (93)

A compressive shock front of arbitrary strength ¢, < O in the lccation ¢ = Pp is

1
therefore possible if, and only if, the inequality (93) on & is satisfied. The

angle vy and the guanticy B, Eq. (b2), immedistely following the front are

i
Y=35 (9h)
B =3 (95)
Attention is drawn to the fact that the inequalities (93) and (72) which }

permit, respectively, an elastic or an inelastic pressure discontinuity to enter a
stress free region, are mutually exclusive, but complementary. In other words, for
any combination of « and v,one, but only one, of the two types of fronts exists.
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(2) The S-front

At an S-front discontinuities occur only in the shear stress T, = T, =T

N T
and in the tangential velocity ﬁT . The changes are proportional,
AT : AR, =1 — (96)
t 8 ) peg

In addition, the lnequalities (8l4) must again be satisfied ahead and behind
the front.. Checking the situation if the region ahead of the front is stress
free, Eqs. (8l4) are again satisfied ahead of the front. Behind the front the

stresses are

T = AT, GNIO‘TISNl!TIJlIO (97)

The invariant J2 may be written

. .2 2 2
Jp = sy ¥ ByBn + Sp + br (98)

and, because in this last eguation all stresses, except T, vanish, the condition

4 2
Fug,-o°d <o (99)

is violated. Thus an S-front can not enter a stress-free region.
Some details about S-front locations where stresses shead of the front do
not vanish will be required. Consider specifically the possibility of such a

front at a point where the equal sign in the first condition (84) applies ahead

of the front,

2
F-Je-aJ;‘L’ao (100)

which indicates that the materiel is at the verge of inelastic deformation.
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Let the shear stresses just ahead of the front, for Qé-), be T, and

those behind the frout, for ¢é+), be ¥+« The invariant Ji and the deviators

with respect to the N and T directions, s, and s respectively, are equal at

T 2
¢(-) and ¢£+). Noting that the equality (100) is satisfied ahead of the front,

it is clear that the inequality Eq. (99) requires
vl < 17l (101)

The lergest possible change AT = T~T occurs therefore when T = - 7, in which

(+)

case Eq. (100) is satisfied also for ®g '+ It is useful to consider this case
in terms of the principal stress variables used in subsection a, i.e. using the

angle y and the quantities J and 8 as variables. Figure 6 shows the

1l
direction of the major deviator s

’Bi

1 ahead of the front at an angle ¥y to the

S-front. The state of stress ahead of the fromt, ¥, §l and §2 , corresponds to

the values of ?, By and S which epply in this location. Behind the front the

state of stress is defined by * = - T, 8 m 2 which stresses define changed

N’ °®

values v, 8y 8 When computing these values by the conventionel relations

2 L]
it 1s found that 8y » By ) being even functions of T, are necessarily equal to

El , §2 , respectively. ¥, being an odd function of T, changes

y=n-Y- (102)

Therefore, a change in shear from TtoT = -7 a8t QS does not change the
values of the variables By 1 S5y Jl or 8, but only the values of the angles

vy and 8., The latter becomes

a‘tpé‘*-): e’ws'Y"Ps"'-‘?'" (103)

These changes in y or 8 occur if the stresses satisfy the equality (100) ahead

of, and behind the front.
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III CONSTRUCTION OF SOLUTIONS

In Section II a number of partial solutions were obtained from which the
solution of the complete boundary value problem is now to be constructed.
Section IIa gives the differentiasl equations for the determination of the
stresses and velocities in inelastic regions; from Section IIc it is known
that all unknowns in elastic regions are constants, except for discontinuitiles
of a prescribed nature at the locations ’S and ¢P » In addition, there may be

a shock front with inelastic deformation at a location ¢.

As mentioned in the last two paragrasphs of the introduction, steady-state
problems of the type studied here need not have un!que solutions. However, it
may be possible to eliminate excess solutions by specifying that the steady-state
solution desired should be the asymptotic solution, if any, of the problem of an
expanding load (Fig. 7) applied on a half-space initially at rest. This additional
condition is invoked here and furnishes a vital boundary condition for the solution
through the reasoning which follows. It is known that the partial differential
equations of the transient problem, Fig. 7, are hyperbolic in elastic and in in-
elastic reglons. The characteristic velocities U under elastic conditions are
U= c¢c_and U= Cq while those in the irelastic case are functions of the stresses,

P

but subject to the inequality U< ¢ The hyperbolic character of the differential

P L]
equations and the inequality have been demonstrated by Mandel [8] for a general
class of elastic-plastic materials governed by = plastic potentiel., This result

applies here. The largest characteristic velocity being c, , one can conclude

P
that, in thc non-steady-state apersdsmic problem, V/cp > 1, Fig. 7, all unknowns
vanish ahead of a front inclined at an angle Pp corrcsponding Lo °p ) such that

one has a boundary condition for the solution of the steady-state problem

for @ < @p : g, =s, =0=v=0 (10b)
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Additional boundary conditions apply at the loaded surface where the
pressure pOH(Vt - x) is applied. At this surface one of the two principal
stresses must be vertical and equsl to - P, » 80 that there are two alternative

boundary conditions. Either

1 n
9 =8 +3 Jy = - P, s Y=3 (105)
or
1
9y =S, +3 Jy = - P, y=Oorn (106)

It can easily be shown that the nature of all equations in Section II is such
that P, will appear ag an external factor in the solutions for the stresses and
velocities, while the nondimensional quantities 0, B and y are independent of P,
This simplification is due to the homogeneocus nature of the plastic potential,

Eq. (4), and would not apply if Eq. (1), allowing for cohesion, is specified.

Therefore, only the case p_ = 1 need be considered, so that Egs. (205), (106)

become

al-sl+33=Jl-~1 , y=3% (107)
or

g, = 8, +<% gy = - 1 o Y= O,m (108)

At this point is must be stressed that no uniqueness or existence theorem
for transient problems is availsble for elastic-plastic materials. Although the
)} eliminates certaln excess solutions of the steady-state
problem, Fig. 8, which clearly are not asymptotic solutions of the transient
problem, Fig. 7, the remaining solutions of the steady-state problem may still
not be unique, because the original transient problem may not have a mnique
solution. In constructing solutions it must be attempted to consider all con-
ceivable possibilities, but, in view of the numerical procedures necessary, it

is not an absolute proof of uniqueness if just one solution is actually found.
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In order to have confidence that the solutions obtained are the physically
meaningful ones, even if others should exist, the solutions will be considered

as functions of the basic physical parameters v, @ and of V/cP ; In the expectation
that there should be a continuous traensition in character and in the numerical
values of the solutions. The principle that the character of the solution should
change smoothly ae a function of the parameters is also extremely helpful in the
formulation of the solutions. As a starting point one can explore the existence

of a range in the above parameters where the elastic solution applies and from

there continue, step by step, into further ranges.

Applying this gradual approach, one arrives at the conclusion that the
occurrence of discontinuous fronts at the transition from the stressless to the
stressed state in the elastic situation must also apply in the more general cease,
at least for values of the parameters close to those where the elastic solutions
are valid. The first attempt will therefore be the construction of solutions with
an initial discontinuity at the arrival time, and the possibility of continuous
behavior at arrival will be considered subsequently to demonstrate uniqueness,
and also in situations where the assumption of an initial discontinuity does not

lead to a solution.

In acccerdance with the above approach, one expects that the properties of
the initial discontinuity will govern the character of the solution as a function
of the pesrameters v, o and V/cP + The existence and the nature of the initial
discontinuities depend on v and & only, such that these two parameters play a more

importent role than V/cP , and a preliminary classification of the ranges can be

based on v and @ only. In the permissible range for these parameters, 0 < v < %

end 0 < a < 1/ /I3, there is according to Section IIc a Range 1, Fig. 9a, defined

by

1-2y
Via> s (109)
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vhere an elastic P-front, but no other digcontinuity can enter a stress free
region, while for

1-2y
/Iea< I (110)

only a compressive discontinuity with inelastic deformation may enter a stress-
free region. The total range where the latter inequality applies is subdivided

in Ranges II and III, depending on whether the velocity ¢ of the inelastic front

is larger or smaller thsn the velocity cS of elastic shear waves, respectively.
Range III, where ¢ < Cg s applies if
/30 =2 4 i (111)
2(1+v)

while Range II, ¢ > c¢g » applies if Eq. (111) is violated. The reason for this

division will be seen later.

e Ia

As indicated above, the first step in the construction of solution ig the
determination of the range, designated Range Ia, in which entirely elastic
solutions exist. In such a solution a P-wave enters a stressless region and an
sntirely elastic solution is possible, if at ell, only in a range entirely within
Range I, Fig. 9a. The stresses in an elastic half-space due to a superseismically

traveling uniform surface pressure are given in Appendix B. There is a uniform

state of stress between the P-front and S-front, and again a uniform, but different

state of stress between the S-front and the surface, Fig., 10. The two uniform

states of stress nust satisfy the inequalities (8k4)

F<O , J, <0 (112)
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There is no need to check the validity of these inequalities in the region
between the P and S fronts because this has already been done in Section 1Ic
where the existence for the P-front in Range I was proved- However, Eqs. (112)
must be considered for m > ¢ > Pg - At the S-front a state of pure shear is
added to the state of stress for ¢ < Pg - This can not change the first in-

variant Jl » 80 that only the condition F < O requires checking.

Substitution of Eqs. (179), (180) from Appendix B into this condition

results in the inequality

r

2
2 1 <l-2v>2 [C"S 2(9g - ®p) 1]

e > + 3 (113)
1+v c052 a¢s 3
where
1 {1 2G (1-v
ep=mosin |y | 5 (1-2\,)] (11k)
1{1 G
(ps = 1 - Sin hv ;‘] (llS)

The inequality (113} defines Range Ia where the respeonse is entirely elastic,
The range is a function of Poisson's ratio and of V/cP > 1, and its boundary
can be found by using the equal sign in Eq. (113). Figures 9b-d show that these
boundaries end at .ne one between the principal Regions I and II, the endpoint

being defined by the relation

7y \e N v
(__Y_' - x=iV (.1.16)
o 1-v){1-3v
Figures Jb-d show Range Ia covering negrly all of Range I, while in Fig. Ye
Range Ia actually covers all of Range I. Using &gs. (113), (1i€) for the

limiting value o = - one finds the critical value V/cP = 1,061 below which
12

Range Ia covers all of Range I. The stresses in Range Ia are entirely elasti.

and are given by the simple relations listed in Appendix B.
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b. Renge Ib

It was found above that entirely elastic solutions exist only when the

inequality (113) is satisfied. The remainder of Range I, i.e. the range

14y 1 cos” 2(9g - %p) 1
..._3. < = ey <= + = (117)
iov 5 E 3
cos 2@5

will be designated as Range Ib. In this range the solution can no longer be
entirely elastic and must therefore contain at least one location with inelastic

deformation.

Using the expected continulty of the character of the solutions as a guide,
the solution in this range ougi. tc start again with a discontinuity which,
according to Section IIc, can only be an elastic P-front located at ¥p - Using

*
Eq. (91) for the siress changes at the front, one finds that for ) P = ¢é ) the

inequality F < O is satisfied, provided the special case /3 & = i;i

for separate consideration. Heving recognized that the solution must contain an

is excluded

inelastic region, where F = 0, a further elastic stress change must occur, which
is possible only at the S-front. The appropriate change in the stuate of stress
at the S-front has been obtained in Appendix C, in terms of the as yet unknown

stress discontinuity Ao at =

(+ (-) |

P .

For e <o < P

) n
almAc’anB,Yug,erP--e- (118)

(+) ,

B =3 Vlav( > (119)

while for @ = P

1+ 2
J) =2 4o {120)

*) The symbol (+) in ¢( +) indicates a value infinitesimally larger than Pp
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81 * TB{I-v bo (121)
vy = 3% [4 (122)
8 = g -3+ ¢ (123)

The quantity 8 is obtained from

cos 28 = g cos 2(pp - QS) (124)
and is subject to the inequality

95 > 18] > @5 - 9y (125)

1-2v
The special case /3 a = iTe

is satisfied already for @ = 9é+), so that the possibility of an inelastic

remains to be discussed. In this case F = 0

region no longer requires a shear front at Pg - However, a change in shear
lead) z aguin to a state with F = O is still possible. Both possibilities are
actually included in Egs. (119)-(124). The special case simply means that one
of the two values 6(¢é+)) is equal to 9(¢§+)) given by Eq. (118). The fact

that in the special case an inelastic region may, in principle, occur in the

(+)

range @p <@ < Pg is of no consequence, because such a solution would violate

the necessary continuity of the configurations.

The results obtained so far, and further steps required, are best discussed
in terms of the angle € in various locations, illustrated in Fig. 1l. The
direction of the principal stress between the P and S-fronts according to Zg. (118)

is normal to the P-front, while for ¢ > ¢é+), Eq. (123) defines 9. Because of

the inequality (125), 9(¢é+)) is less than g but more than 0, regardless of the

sign of 8. According to Section II, there is no further possibility for a change
in 8 as required to arrive at the surface value 8(n) = g , (0 or m), except one

or more inelastic regicns for ¢ > Pg -

L




Using the values of B, Jy s 8, » ¥ and 8 defined by Egs. (119)-(123) the
results of Section Ila are now to be used to find and determine the history of
the stresses and particularly of the angle 8. If a region can be found during
the forward integration where either of the values € = g (or 0, or m) is obtained,
the integration is terminated. From the point of termination to the surface an
elastic region of no change is selected such that the surface condition for @ is
then satisficd. During this intezration the unknown value Ac in Egs. (120), (121)
is a common factor in all stresses, so that the integration will give a principal
stress at the surface, which contains this factor, which is selected to satisfy

the boundary condition, Eq. (107 or 108), 0 = - L
b

The use of the solutions derived in Section IIa for inelastic regions is
quite straightforward. From the values of B, ¥y at Qé+), potential starting
points P, of inelastic regions are located as roots of the determinantal equation
(40). Next it must be verified that GL/V, Eq. (53), is negative, If this is so,
Egs. (U4l)-(47) are used to determine the solution by forward integration, con-
tinuously checking the sign of GL/V. The integration can be continued until GL/V
changes sign, but may be stopped at any desired location Qa . When an angle

6 = g (or 0, or ) for the direction of the principal stress is obtained, a

solution to the problem has been found.

The configuration considered was successful and led to just one solution of

n
2

but it is suspected that this may not be so when V/cP > 1 is close to unity. The

the problem. The upper sign in Eq. (123) and the case 0 = z furnished the solution,
rmatter of possible alternative configurations which might lead to solutions is

discussed later in this section.

It is noted that Range Ib, which does not occur at all if V/cP < 1.061,
applies even for other values of V/cP only in a minute portion of the overall

range of v and @, as can be seen from Figs. (9b-d).
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Cs R%e IXa

Accordiag to the definition of ranges at the beginning of this eection,
an initiel inelestic discontinuity, but no other, is possible in Range II.
Further, in this renge, the location 5 of thie discontinuity, defined by

Eq. (81), is such that

¢ < 9g (126)

Range II, which is the one of majcr interest, is defined by the inequalities

(110, 111),

Y 2(1+v) e</3es iﬁv (127)

In that portion of Range II which adjoine Range Ia, Figs. Gb-e, one expects
that the solutions after starting with an inelastic front of discontinuity at ¢
will remain entirely elastic. The range in which such solutions spply and the
values of the stresses are obtained in Appendix D. This range is designated
Range IIe, end the stresses are found in closed form, the configuration being

shewn in Fig. 12.

The discontinuity A¢ in the normal stress at the front is

- CO08 EQS
AC = ~ 5 - 5 (128)
(1-R) cos” (g - @S) + (14R) cos Pg - 1
where
1+ 20 /3
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The principal stresses and their direction between the inelastic front and

the shear front are

wé')?.fv?_ém :
¢, = Ao
1
0, = 0y = Rao (130)
Y "g" )

while between the S-front and the surface

@ >0t

o = -1

o,=-R , 03-RA0 (131)
where

R = -1 - (1+R) Ac (132)

and 63 is the principal stress in the z direction.

The solution applies if the inequality
2 a2 2 s (1-2 2
(L +2«¢/3)° - 36 a"cos pg 2 6 <}:Gi) cos” g (133)

is satisfied. The boundary separating Region IIa from the remainder of Region II,
designated Region IIb, is found by using the equal sign in the above relation.
Figures 9b to e show typical <urves for some values of V/cP « These figures in-
dicate that Range IIa covers only a quite small portion of Range TI, except in

the atypical case when V’/cP is only slightly larger than unity, Fig. Ye.




d. Range IIb

In Range II, but outside Range IIa, the solutions are expected to start
with an inelastic pressure front at 5, but additional inelastic regions must
now occur. In the vicinity of the boundary towards Region Ib, continuity
requires similar configurations, as shown in Fig. 13. Behind the inelastic
front the stresses will be uniform with a shear front at Pg » and a region of
inelastic deformation in a location g <P <. The discontinuity in shear At

must be such that the yield condition F = O is satisfied for ¢ 2_¢é+) .

However, at poinis remote from the boundary between Regions Ib and IIb
alternative configuraticis might cccur and must be considered as possibilities
in the numerical analysis. In the configuration shown in Fig. 13 the possibility
At = O could furnish a solution, or inelastic regions may exist in locations
o <o < Qé-), as shown in the alternative Figs. 14 and 15, where shear discon-
tinuities At # O, may occur, or not, AT = 0. Further, the coenfiguration shown
in Fig. 15 may have a subrange where the discontinuity AT is such that elastic
conditions F < O are created and, therefore, constant stresses occur for ¢ > ¢é+) .
Disregarding, for later discussion, solutions without initial discontinuity,
but allowing inelastic regions to split, this exhausts all pcssibilities to be
studied. The numerical analysis by computer furnished only solutions having
the configuration of Fig. 13. The search for roots of the determinantal equation,

glving starting points of inelastic regions never furnished a root for ¢ < ¢s .

The following statement summarizes the situation. The initial change from
vanishing to nonvanishing stresses occurs at an inelastic front with an as yet

undetermined compressive discontinuity Ac in the principal stress ¢ This tront

l +
is followed by a region of constant stress,
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(-) (+)

for @) ‘> > @
o, = 4o
B =3 (134)
n
0 = 5

For locations ¢ > ?s there are two alternatives. If no discontinuity in

shear occurs, AT = 0, Egqs. (13%) apply also for @ = ¢é+), vwhile the angle y is

v(¢é+)) =95 - +5 (135)

However, if a shear discontinuity, At ¥ O, occurs, Eqs. (102), (103) give, using

§"¢S'6+gs
for ¢é+) :
ol-Aa
B =3
. (136)
Y *3

n
S =g -9-3

Equations (136) and the alternative values for AT = O are the starting points
for numerical integrations which are tc be carried out in the manner described

for Range Ib.

e. Search for inelastic solutions without initial discontinuity

In Ranges I and II solutions were constructed where the initial change,
from vanishing to nonvanishing stresses, occured as a shock, either elastic at
Pp » OF inelastic at @. While the principle of the continuity of solutions
makes the solutions obtained plausible, it is desirable to investigate if

solutions which stert smoothly exist.

52




The differential equations in elastic regions permit definitely no smooth

change in stress for sperueismc velocities V, such that only the inelastic case

is considered.

If a smooth inelastic solution starting from vanishing stresses in a location
¢o exists, an asymptotic study of the appropriate differential equations for
OJ = BJ = Ji =+ 0 in the vicinity of P, must describe this solution. In order to
be physically sensible, the angle y in the vieinity of P must be well behaved
and may be considered a constant in the range @ < ¢ < @, + € where e is small.
The quantity GL/V < 0 must not vanish, otherwise the region is not inelastic as
postulated. There are, however, two possibilities for the behavior of GL/V.
In the limit ¢ ~ Py the function GL/V may be finite and well behaved, in which
case 1t may be considered a constant near Py alternatively, GL/V may, in the

limit, be infinite.

The first possibllity, where GL/V in the limit may be replaced by a constant
is easily proved to be impossible. Following the previous reasoning in Section II,
solutions in an inelastic region exist only if the determinant of Egqs. (38)
vanishes, in which case four of the five unknowns will depend on the fifth. In

the limit s Ji -+ 0 the last Eq. (38) beécomes trivial, O ® O, The iast terms

J 2
of the other equations vanish, because GL/V is finite and products of GL/V and

1
identical with the four Egs. (85) in the elastic case. They have nonvanishing

sJ or J, in the limit are therefore zero. The remaining four equations are then

or @ = o However

S o T'P°
represented by the last Eq. (38), which became trivial, may now not be satisfied

solutions only when P =P ’

and must be checked. 1In the vicinity of sJ s Ji - 0, the ratio of these stresses
must obviously be the same as at the P or S front, Eqs. (91) and (96), respectively,
obtained from the same equations. Based on the discussion of the P and S fronts,
one finds easily that the requirement‘F = 0 1s not satisfied, except in the special

case when the values ¢ and v are exactly on the boundary between regions I and II,

23
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where ¢ & 9p + However, in this case one finds GL/V m 0, and no inelastic

solutions whatsoever are therefore possible when GL/V at 9 is finite.

The case where IGL/VI +®as 9o, remains to be Aiscussed. The first
gueation concerns the possibility of IGL/Vl'» ® and conditions for the occurrence
of such a singularity. If such a point exists for some values of y and of the
ratios of 35 and Jl » when the latter are small, = 0, then IGL/VI -+ ® woul@ also
occur for the same ratios if 5 and J, are finite. Equations (bh), (45) end (47)
vhich apply, would then give infinite values for one or more of the derivatives
53 s Ji + The possibility IGL/VI -+ » exists therefore only in locations where an
inelastic front of discontinuity may occur and the conditions required are those
for such a front. Using the results of Section IIb for inelastic discontinuities,
.o smooth solution can exist in Region I, there being no inelastic shock front.

In Regions II and III where such a front is possible at §, a soluticn of the type
sought may exist,starting at Py ™ 5 ; the necessary initiael values of the state
of stress being again defined by
Blo,) = 3
i (137)
Y(¢°) 3

If an irelastic solution in the region ¢ > ¢ actually exists, the determi-
nantal equation (40) must be satisfied for Q> 5. This is necessary because the
previous reasoning only implies that this equation is satisfied for ¢ = é. To
explore this point an asymptotic expression for Eq. (40) is obtained by substi-
tuting

| CEXER
B=3+4 (138)

n
y=3+1




f.

vhere ¢, A and 1 are small quantities. Retaining the lowest order terms in

the new variables one obtains the expression
2
bgT - 4% = bge (139)

where the quantities b8 and b9 are functions of v, o and V/cP y glven in
Appendix E. The quantity b9 is always positive, while b8 may be positive or

negative, changing the character of the equation radically,

In Range II, i.e. when the inequality (127) applies, b8 is negative so
that the equation has real roots only for negative ¢. While an inelastic region
can exist for ¢ < ¢ ending at ¢ with venishing stresses, no such regions can exist
for @ > @, i.e. in the location of interest here. The solutions in Ranges I and IT

with an initial discontinuity previously cbtailned are therefore unique.

In Range III, where the inequality (111) applies, one finds b8 > 0, so that
the determinantal equation has real roots for ¢ > 0 as necessary for solutions
without initial discontinuity in stress. The finel condition, GL/V < 0, is also
satisfied, because the stress ratios in this region are initielly equal to those
for the inelastic front, where GL/V < O, All requirements are therefore satisfied
and it is concluded that in Range III, and only in this range, an inelastic
solution without stress discontinuity exists. The details of its determination

are given in Appendix E.

Range III

According to the definition of ranges, an inelastic shock front in the
location 5 is possible, and one can attempt to construct a solution starting
with this discontinuity in analogy to Range IX. However, the computational search
for inelastic regions, for ¢ > 5, was unsuccessful, and the boundary conditions on
the surface can not be satisfied in this fashion. The determinantal equation (4O)

is nonlinear and too complex to prove the nornexistence of roots in general.




However, the approximate Eq. (139) furnishes a partial proof, as there is

obviously no root A = T = O for ¢ > O.

The impossibility of finding a solution with an initial discontinuity is,
however; veiry satisfactory because the previous subsection and Appendix E
indicate that in this range a solution exists which starts at @ = @ without
discontinuity. Because of their singular character the differential equations
at and near the starting point can not be solved by the numerical procedure used
in the other ranges. Therefore, the asymptotic solution cbtained in Appendix E
must be applied for a small range q,z,&, until the solutions are sufficiently
well behaved to return to the numerical integration of the differentiasl equations

in Section IIa.

It may be surprising, but beyond the fact that a smooth solution may start
at ¢ = 5, only a qualitative statement on the asymptotic solution is actually
needed, the numerical coefficients derived in Appendix E need not be used. It
is sufficient to know, from Eq. (218), that in the proximity of ¢ = 5 the value

of B becomes approximately

f=3+4~3 (1k0)

while

y-Ren (202)

where the small quantity Inl is inherently larger than the neglected value IAI.

Equaticn (219), and a similar expressi.n for the principal stress 9

an erbitrary constant Co + Thus, at a point, P, = 5 + ¢, still to be selected

, contains
as end of the asymptotic reglon, the value of the principal stress al(¢°) may be

used as the arbitrary constant instead of co « Choosing a value 1 = no , small,

yet large enough for the numerical integrations to work thereafter, one searches
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for the corresponding vealue @o where the determinantal equation is satisfied
”
by the combination of B = 3, y = T + 3 and ¢ . The principal stress cl(Qo)
at this point can be made equal to unity. From this point on integration pr-..eeds
exactly as in the other ranges. Due to the fact that Eq.. (217 ) defining 1 has a

+ sign, it is necessary to include the twc possibilities + no .

The procedure ov:lined was found to be successful, one and only one, cof the
integrations for + no furnishing a solution. The stresses in the interval 5 to
P incresse as (9 - é)n. To obtain their distribution the exponent n can be
obtained from Eq. (220). It is & very smal) positive number, of the order of

1/100. The configuration of aolutibns in Range III is shown in Fig. 16.

The occurrence of solutions with and without initial discontinuity in stress,
does not break the continuity in the character of the solutions. Even for the
continuous solutions the derivative of the stresses at ¢ is infinite, as at a
discontinuous front, and the numerical results indicate that {he change in stress
in the agymptotic region due to the small exponent n is sc rapid, that this

region is practically indistinguishable from a discontinuity, see Fig. 17.

Simplified determination of velocities and accelerations

The basic relations in Section II permit the numerical determination of
stresses and velocities or accelerations. The integretion for the stresses must
be actually cerried out to obtain the appropriate open constant from the boundary
condition on the surface. The parallel integrations to find velocities and
accelerations may be avoided, by nsing the following relations, some of which are

exact, while others are only good approximstions.

At all fronts of discontinuity the accelerations are of course infinite,

but the changes in velocity are given - exactly - in terms of the respective

stress discontinuities, if any,
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at @ = QP ,A%' - -—; (1142)
at = B |8ty | = 9-*.; (143)
at @ = ¢ | aiy - (1h4)

where the subscripts indicate normal and tangential directions, respectively,

and the velocities, cJ , are given by

¢y = V sin QJ (145)
The values of cl at the pressure fronts can be taken directly from the
numerical computations for the stresses. The value AT can easily be computed
from the values and directions of the principal stresses 9 for q( )
¢é'). Of major interest is Range IIb where
|ar| = tﬁ" sin 2(9g - ¢) o, (9g) (146)

In continuous elastic regions velocities do not chenge, while accelerations
vanish. Inelastic regions being very narrow, one may disregard tangential
accelerations and changes in velocity, while the normal acceleration may be
assumed to be constant in the region, giving a linear change in velocity. The
total change in velocity Aﬂl in an inelastic region of extent Ag, may be found

from the change, Aal , in the principal stress at both ends of the region

Ac
|y S 1{ (17)
pc
while the acceleration is
148
iyl = iwl (149)
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The changes in velocities at the front, given exactly by Egs. (142)-(1bk),
are alwvays much larger than those in regions given by Egq. (147), such that the
simplification of using Eqs. (147), (148) is quite satisfactory when determiring

shock factors.

Numerical analysis

In Ranges Ib, IIb and III a numerical search for inelastic regions, and
subsequent numerical quadratures are required. In Section II the basic equsations
have been written in a very sbbreviated form, somewhat concealing the complexity
of these relations. The solution of these equations by hand computation would
be nearly impracticel, and the computations were made on an IBM 7090. A common

program was devised, allowing for the different configurations which may occur.

The inelastic regions are always quite narrow as functions of ¢, only a few
degrees, and become even narrower as V/cP becomes large. It was therefore
necessary to vary the intervals of @ in the search and in the quadraturce. For
V/ep < 2 intervals of 1/500 rad. were used, while for V/cP = 5 intervals of

1/10000 rad. were selected.

The results obtained are discussed in Section IV.
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IV NUMERICAL RESULTS AND CONCLUSION

ao. Results

The effects of a superseismically progressing step pressure on the surface
of a half-space have been obtained for an elastic-plastic medium subject to the
yield condition (U4), representing an inelastic material governed by internal
Coulomb friction. The solutions depend on the elastic material parameters E
and v, and on the additional parameter « <‘/ 1/12 in Eq. (4). o is related to
the angle § of internal friction, using Eq. (10) of Ref. [6],

gin § = —— (149)
1-%°

In spite of the lack of a general uniqueness and existence theorem, a unique
solution was obtained for each combination of material parameters, surface load
p, and velocity V‘/cP > l. There are, however, radically different configurations,
depending on the values of the nondimensional parameters v, @ and V/cP + The
ranges in which the various configurations apply hawe been designated by I, II
and III, where Ranges I and II have been subdivided into Subranges a and b, The
values of the parameters v and & alone determine which of the Ranges I, II or III
applies in a particular case, ss shown in‘Fig. 9a, while the subdivision into
a or b depends on the value of V/cP ; typical cases being shown in Figs. 9b-e,
These figures show that Ranges Ia and IIb cover most of the totel range in v
and &, the other ranges being of very limited applicability. Range Ia gives
entirely elastic solutions, known from Ref. [l], and is not further considered.
The solutions found for Range IIb are those of prime interest, the other ranges

are somewhat academic.

The parameter o is inherently restricted, a < , but sensible values

12
for the angle & of internal friction, Eq. (149), permit a further limitation

to the range 0.10 < & < 0.20, Numerical results were therefore obtained, as

6k
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l 1

indicated in Figs. 9b-d, for combinations of ¥/c, = 1.25, 2, 5, v = 0, BrE 3%

+3

and @ = 0.10, 0.15, 0.20. The values & selected cover the range sin & = 0.3 to
0.7. Except for two points, which fall in Range IIa, all these combinations are
in Range IIb. For completeness the result for one case in Range III, v = O,

- o = 0,05, V/cP = 2 was alsc obtained.

Figure 18 shows a typical variation of tha principal stress 0, and of the

oha

angle 8 in the major Range ITb. There is a discontinuous rise in the principal

stress ol

but not in magnitudé of al » &t the S-front. There is further a minor increase

at the inelastic frent, followed by a discontinuity in direction 6,

in 0, in the inelastic region combined with a change in direction, 8. For unit

1

step pressures, P, ™ 1, Table I gives the values of the principal stresses 9 s

%

considered, which fall into Range IIb.

’ 03 , and of the angle 8, and the locations of the fronts for all cases

Figures 19a, b show cl and @ for the two cases, v = 1/3, a = 0.10, V/cP = 1.25
and 2.0, which fall into Range IIa. In these cases the initial stress rise is

agein at the inelastic front, ¢ = ¢. There is a change in @, and 9 at the

1
S-front, but there are no further inelastic regions, and no further changes in

o, or 0. The solution in this range does not require numerical integrations, but

1

is entirely in closed form.

Range III is orly of theoretical interest, because it epplies only for
sin § < 0.21, but a typical case is shown in Fig. 17. There is no discontinuous
front, the solution starts smoothly at ¢ = 6, but the principal stress o has &
vertical tangent and rises extremely rapidly, nearly like a discontinucus front.

b. Conclusion

From a practical point of view, tiie most important conclusion obtained by the

present analysis concernsthe general character of the solutions. The numerical
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results indicate that the major streuss and velocity changes occur at fronts, an
initial front where the normal stress rises, which may be followed by a shear
front. The contimous inelastic regions which occur are quite narrow, only a few
degrees, and produce changes in the principal stresses and their direction which
are usually quite small compared to those at the fronts. It is extremely important
that a similar behavior can be expected if the surface pressure is not a step, but
decays as shown in Fig. 1. This expectation makes it possible to solve the problem
of a decaying surface pressure approximately by disregarding the inelastic regions
as being of secondary importance, but allowing elastic and inelastic fronts of
discontinuity in the appropriate locations. Because of the complexity of solving
the problem with decaying pressure exactly, it is intended to utilize the above

approximate formulation in future work.




APPENDIX A - Proof for the Requirement # = O at a Pilane Discontinuity

In Section IIb it was shown that, for certain values of &« and v, a dis-
continuous inelastic plane pressure front may exist. This was shown on the
premise that the principal stress o) is normal to the front, which is ejuivalent
to stating that the shear ¢, parallel to the front vanishes., It will be proved
here that no plane discontinuity with inelastic deformation can propagste unless

T.OQ

Let y sgain be the direction of propagation and Xgs. (14)~(19) become

1 1+ .= 2
ﬁ- P -é-G- &y + §-i' Jl + l[sy - 2 Jl] (150)
1 1 2
0 =% ix + 3% 31 +'X{|x - Jll (151)
3s aJ.
i ¥
5&1 + 3 &— ] 3 (152)
B (153)
Lt adra gg (154)

where A and K sre defined by Egs. (59), (60). Noting s =8, =~ % By the

yield condition, Eq. (4), becomesn
2 2 2
4 of - afq =0 (155)
Steady-state solutions require
s, = &7(C) (156)

3y = at(c) (157)
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v = a3f(C) (158)
T = 8 (C) (159)
0 = asf(C) (160)

wvhere { = y - ct.

Substitution of Eqs. (159), (160) into Eqs. (153), (154) yields, after

simplification
~ ] ca -
‘ a; {r e .1 - tpck} = 0 (161)
4 G
[ 3
35 = - 5o (162)

t
f being subject to the inequalities (64), (65), neither f nor £ can be zero

and Eqs. (161), (162) permit nonvanishing solutions for 2), and a5 only if
2l (163)
p
X =0 (164)

The requirement'i = 0 violates the basic condition A > O at locations of

inelastic deformation. Therefore, 8) and a

5 vanish, i.e. no discontinuity in

shear can occur.

Having demonstrated that an inelastic discontinuity in shear is impossible,
it remains to be shown that the discontinuity in the normal stress can not occur
in a region with shear, 7 # 0, even i ¥ is continuous. 1In this case Egs. (150)-
(152), (155) and (156)-(158) apply while

T ® g(y,t) (165)

um E(Y)t) (166)

where g(y,t) # £(y - ct). Substituting Egs. (165) and (156), (157) into

76




Eq. (155) gives

E(y,t) + (F a5 - d®a) £7(y - ct) = 0 (167)

£ and g being different, nonvanishing functions, this equation cen not be

satisfied.




APPENDIX B =~ Steady-State Solution in an Elastic Half-Space

As background for Section III, the details of the solution of the steady-
state problem for an elastic half-space are derived. The ralues of the stresszs
in Cartesian coordinates could be obtained by integration from Ref. [1l] and the
desired principal stresses could be computed. However, it is just as easy to
obtain the latter directly from the knowledge of the location of the shock fronts
Pp and ¢S in Fig. A-1l, coupled with the necessity of uniform stresses for
Pg> P> 9p and T > @ > 95 « The values Pp and g depend on the velocities of

the fronts and are given by Eqs. (1l4) and (115).

Designating the principal stresses in the region ¥g > Z-¢P by 51 s Eé and
g

3% 0, it follows from Eq. (91) that

;. - 5 =, =
o, = 4o Oy =03 = 7y 40 (168)

where the jump A¢ remains to be determined. The direction of 81 makes an angle

(ws - @P) with the normal N to the S~front. The normal stress g, , and the

N
tangentiel stress OT with respect to the S-front in the x-y plane can be expressed
by the principal stresses 51 and 52 ’
- 2 Y ginl(e. - ]
oy = Ao [cos (¢S - ¢P) + 375 8in (ws wP) (169)
- 200 - Y cosl(e. - J
op = 4o [sin (9g - 9p) + 7 co8” (9 - 9p) (170)

In the region m > @ > @, the principel stresses ere cl » S end o, =2¢C .

S 3 Z
The surface condition requires that ol = - 1 be vertical, making an angle
(- @S) with the normal to the shear front. The normal and tangential stresses

(with respect to the S-front) are therefore
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2 2
Oy = - [cos g + R sin ¢S] (171)

2 2
Op = - [sin pg + R cos QS] (172)
where
%
R'g;" - 0, (173)

There being no discontinuity in the normael and tangential stresses at a

shear front, g, and oy in Egs. (169)-(172) can be equated and give two simultaneous

equations for Ac and R. The stresses o, and g, in the z direction must also be

3 3

equal, 03 = g, . Using the abbreviation

3
2 2
N = cos“pg + (1-2v) cos (@S - ¢P) - 14y (17%)
the discontinuity at the P-front for a unit surface load becomes

AC = - SL%!) cos 2 (175)

In the region ¢ > Pg the principal stresses are

ql = -1 (176)
cos ams

oy = 1l - - (177)

03 = - § co8 20 (178)

while the invariants become

3y = - 2 cog oy, (179)
cos 2¢ N
J, = 1 - 5 S 4 (13;ZV ) cos® 20g (180)

It is noted that Pp and pg are functions of v in such fashion that N for V/cP >1
is necessarily positive, so that the condition Jl < 0 is always satisfied.
However, the yield inequality gives a condition on @, Eq. (93) in the text.
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APPENDIX C - Analysis for Range Ib

In this range discontinuous elastic stress changes occur at the P- and S fronts

80 that the combined effect satisfies the yield condition at P = pé+). The

following derives the required details of the state of stress for ¢ Z’Qé+).
Using an approach similar to that in Appendix B, the stresses in the region
Q(') >e> 9§+) are given by Eqs. (168), and the normal and tangential stresses
with respect to the 8-front by Egs. (169), (170). The principal stress 0, for
Qo= Q§+) will, in this range, make an unknown angle 8 with the normal N to the

S-front, Fig. A-2, and Ox and °f become alternstively

2 2
Oy = 0y co8” & + 0, sin” ¢ (181)

0. =g, sin° 8 + g, cos2 8 (182)

T 1 2

Equating Eqs. (169) to (181), and (170) to (182), gives two equations for the
four unknowns Ag, o 9, and §, while the yield relation, F = 0, furnishes a

third equation. The three equations are homogeneous in 4¢ and ai » 9p 80 that

o
8, ¥, § the stress ratios K% , and their equivelent B can be computed. One finds
p =7/ 3|1 2% fa (183)
-2V

where the positive root is toc be used. (The negative root corresponds orly to a

trivial interchange between 9, and Sy .)

The principsl stress deviator s, and the invariant Ji are

'1(’!('+)) - 1-av_v 1) aq (184)

J) - {11—}3 Ao (185)
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vhere Ag is the as yet arbitrary stress discontinuity at ¢P , while 8 is

obtained from the equation

nos 28 = g cos 2(¢P - ws) (186)

Excluding the triviasl addition of multiples of f1, there are two roots

+ lé[ such that there are two possible values, each, for y and 9:

e"?s’gi“l (188)

The value |6l in the Range Ib, considered here, has bounds which can be

established by the following reasoning. While the stresses GN and OT at the
{- - -
S-front are equal for ¢é+) and ¢é ) the shear stresses T, T for ¢é+), Qé ),

respectively, are different. The condition F < 0, F = O, applying for ¢(+),

S
Q(-), respectively require that || > |T|, so that the angle between g, end

the normal K must be larger than the one between 51 and N, or

|8] > (9g - 3p) (289)

Further, Range Ib is by definition a range in which the entirely elastic

solution does not apply. If lé! is larger than, or squal to m - Pg one coculd

select a shear !TEl < }Ti such that & = g». Because of the inequality on T

the condition F < O would apply for this state of stress, giving an elastic

E 2

solution, which contradicts the definition of the range. The angle |6| is

therefore bounded.

m-9g> |8 > (95 - @p) (190)




APPENDIX D - Analysis for Range Ila

Solutions in this range have an inelastic pressure front, but are other-

wise entirely elastic.

The stresses in the region 5(+) <9< v Fig. A-3; may be chtained from

Section IIb. Let 40 be the as yet unknown discontinuity st é, then one finds

51 = Ao &2 = 53 = RAo (191)
where
Ra.l-ay3 (192)
- 1+20/3

In the region @ > (+) the principal stress ¢, = - 1 is vertical; the stress
® > % 1

63 =0, mist equal 33 while o5 remains to be determined, or

o = - 1 0, = Rci = - R 03 = RAo (193)

vwhere R is unknown., (The possibdility of aé = = 1 being vertical would be a

trivial interchange of subscripts.)

At the shear front, the normal and tangential stresses O% and a& must be

continuous, which gives two equations to determine the unknown quantities Ag

end R,

cos QQS

(1-R) con”(3 - m,

A0 = ~

(194)
) + (14R) con® @, - 1

R=-1- (14R) Ac (195)

To check the condition F < O for w > ¢ > cpé” the invariants can now be

determined using Eqs. (193), (195).

83




Jyo= (14 2R) Ao
! (196)

Gy« 1+ (1+R) Ae+<3—‘f—-§-*-’—3— (Ac)?

/

After manipulations the condition F < O may be brought into the form

sin (bpg - 29) sin 29 < O (197)

or, due to sin 2p < C,

sin (bpg - 29) > 0 (198)
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APPENDIX B ~ Analysis for Range III

It was concluded in Section III that egolutions without initial dis-

continuities exist in Range III. Such solutions start at ¢ = ¢ with initial

values B8 = 3, y = g , for which the differentisl equations become singuler

g0 that their solution requires special treatment. To cbtain asymptotic

solutions near the singularity, the variables g, B and y are replaced by

¢, & and 1, respectively, defined in Eqs. (138). The new variebles are deemed

to be small quantities, so that approximate equations can be obtained by

retaining in each expression only the leading terms in the above quantities.

However, the relative magnitudes of the three quantities are not known before-

hand, requiring the retention of the leading terms in each of the varisbles.

The determinantal equation (40) becomes

2
be‘f - A b bg.
where

12 {3 - (1~2%) [1 - 2y - k& /3 (l+v)]}

bB -
(1-2%) {1-2%02-2v) + & 43 (149) [k + @ /3 (2-30)]}

2k [1 - 2y + 6a~(1+v)] &
{1-2&(1-2v) s Aga (14+v) (b + o /3 (2-31)]}

bD. =

1+v r(1+am2 _]

¥
- 3(1-2v) 2[ 1+v
[2re (o) |

7

2 1+v
-2y

00!«4

(199)

(200)

(201)

§  (202)




While b9 is positive everywhere, b8 is positive in Range III, considered here.
t t
Using Eqs. (Lk4)-(46) expressions for B and y can be formed and, after changing

to the new variables, lead to

-g:%l- Aln%‘-+ 1 (203)
8. pp 4,11 & (204)
where
. 3+ (3-28) [1 - 2v - ba /3 (1+v)] 20
g! 3(1-2%) { 1+ (1-2v) (1-2%) (205)
il -2y - a /3 (1+v)
B, = = 206
1 3{ 1+ (1-2v) (1-2%) ] (206)
B, = -k f3+ (1-2%) {1 - 2v - 2 /3 (l+\:)]} (207)
(1-2X%) 1+ (1-2v) (1-2X)

where X is given by Eq. (202).

The knowledge of the nondimensional stress variable 4, equivalent to B,
is not sufficient to find the stresses, and one additional relation is required.
The most suitable one is obtained by adding Eqs. (l4k4) and (45), leading to an

equation for (sl + 32),

é% [Ln(sl + '2)] = Cy %% (208)
vhere
1-ov 2( 1ty
ey = - B ) | L ((R)evs - (1) (209)

[1 60:2 (1“" )] [1 + (1-2v)(1- ax)]

when solving the three equations (199), (203), (2Ch) in the three unknowns

7, A and GL/V, the first two are small quantities, while GL/V must go to infinity
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in the limit ¢ - O. (The possibility of finite values for this limit has been
previously eliminated in Section III as permitting only trivial solutions

'j.Jl.o.)

b8 and b, being positive, Eq. (199) is hyperbelic in character, and permits

9
two types of asymptotic sclutions. In solutions of Type A, 7 and A are proportional

to /e ,

M=1D /e & =D,/ (210)

while for solutions of Type B, T is proportional to /e , while A is small of

higher order,
‘n-lec A=0D, ¢ (211)
where N > % .

For solutions of Type A, Egqs. (210}, the leading terms on the right slde

of Egs. (203), (204) only are retained, giving

A (212)
%9; - B, %Ii (213)

Elimination of GL/V and substitution of Eqs. (210) leads to a requirement on

the coefficients, Al = Bl . This requirement is not satisfied, so that solutions

of Type A are impossible.

To obtain solutions of Type B, only the term b8ﬂ2 on the left side of

Eq. (199) is retained, so that

b é
l "‘v ba
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Equation (212) applies again, giving

GL 1
T' 2Al¢ (215)

This relation glves the proper sign for L and satisfies the requirement for
singularity of GL/V. To determine the quantity A it is noted that Eq. (213)
would apply if N lies in the range %'< N < 1 for the exponent, so that in this
case again no solutions can exist. Alternatively, assuming N > l, substitution
of 7 and GL/V gives e solution for A proportional to ¢, equivalent to N= 1,
which is a contradiction. This leaves solely the possibility N = 1, for which

case Eq. (204) indeed gives without further simplification the solution
B0}
D, = zyr——r (216)
2 2A1 - Bl
Being proportional to ¢, the quantity A is small compared to 1, so that - as
a first approximation - the relations

b
N~ + c;% (217)

A~O (218)

may be used. Substitution of Eq. (215) into Eq. (208) gives after integration

n

(s, +8,) =C, e (219)
vhere Co is an open constant of integration, while the exponent is
C
n = EKI (220)

Equation (218), stating A ~ O, implies B ~ 3, such that the ratios of the

stresses must be the same as at the inelastic shock front




Jy - Eé?’“l (222)

o, = (1 + aT.y%—l;—) N (223)

indicating that all stresses are proportional to cn. It is important that

this exponent, while always positive, is less than unity and usually a very
small number, of the order of 1/100 (for the specific case v = 0, @ = 0.05 one
finds n = 0.00598). The derivative of the stresses with respect to the angle ¢
is infinite for ¢ - 2, and the small value of n indicates a very rapid stress

rise adjacent to the singularity.
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TABLE I.  RESULTS IN RANGE IIb

il
’ I —_—
A P
B
C
Location
*%
A B B and C C
¥ * * * -G *®
V/cp v ws* o © Py 9, =0y | - g 8 -0 |- qg ¢}
.10]142.84 [1h6.05[157.90]0.5785 [0.6586[56.20]0.8LLL|0.4GBL[52.54
0 |145.5510.15{138.79|146.73]156.55]0.4352 |0.5523|62.31{0.7950]0.3872|48.79

.20]135.40[147.21|155.40]0,3202 0. k677 |65.70]0.788110.30h3 | 45.40
.10 137.51 150.41{157.71}0.5804 6?8560 69.32]0.89870.5519|47.51
.15]133.47(150.96 |156.51] 0. 442k |0. 5411 |73.37|0.8791|0. k282 | k3. 47
-201130.52/151.21 155.50 0.3346 [0. 4467 76.3gm9.879h 0.3395/40.52

1.25(1/8|148.42

.10[131.53|156.15]158.260.5973 |0.6326|83.46]0.9Ak1 | 3.520{41. 53
.15[128.42]156.27{157.29{0.1473310.501686.57 |0.9743|0.47L6|38. k2
.20{127.06|156.01156.58]0.3753 0.3972|87.92]0.98130.3789(37.06
.10{157.82[159.41|16%.0110.59600.6342]70.77]0.8954|0.5498|67.82
.15]155.68{159.55]163.17}0.4615 |0.5155 [72.91]0.8943|0.4356|65.68
.201153.97]159.64|162.53]0.3547 |0. 4206 |74.62]0.8955]0.3457|63.97
.10{155.03|161.35|164.030.59790.6319)76.76|0.94k41|0.5797|65.03
.15]/153.03{161.4%{163.43]0.4662 |6.5098(78.76]0.9410/0.4584163.03

1/4{152.49

0 1159.30

2.0 |1/8(160.89

.10{152.10]16k.06|164.97]0.6053 |0.6233|84.34]0.9791]0.6012{62.10
.15]150.68|164 .0k [164.62] 0. 4776 |0.1496985.7610.9799]0.4773}60.68
.20{150.08|163.95|164.38]0.37600.3965(85.360.57010. 3784 60.08
.10]171.31{171..88|172.54]0.6105 | 0.6177(82.4310.9703]0.5958| 8L. 31
.151170.52]171.89{172.30]0.4823 | 0.14920|83.22|0.5761]0. 4754 80.52
.20|169.89|171.89|172.18}0. 3805 | 0.3918|83.85|0.9789|0.3779| 79.89
.10(170.28{172.51|172.78)0.6111 | 0.6171|8k4.67]0.9887]0.6071|80.28
.15|169.55 |172.51 |172.69]0. 483k | 0.4908|85.410.98890.4817|79.55
.20]169.0k |172.51|172.64]0.3820|0.3903}85.91{0.9893 0. 3820{79. 0k

N

1/4|163.22

0 {171.87

5.0 {1/8{172.48

.10]169.21 [173.42|173.50}0.6125 | 0.6156|87.53]0.9960|0.6116{79.21

0
0
0
0
0
0
0
0
¢
0
o]
0
0
0
0.20]151.63|161.47|162.99[0. 2622 |0.4118(80.16]0.9409]0.3633|61.63
)
0
0
0
0
0
0
0
0
0
0
0
0

1/4]173.37/0.15|168.70|173. k2 |173.4k7]0. 485k | 0. 1888 88.03]0.9961[0.4852{78.70
.20|168.49 173,41 1173.b5]0. 3842 | 0. 3879|88.25]0.9961|0. 3846/ 78. 19
1/3|174.26]0.10 168.061 [174.33]17%.3310.6140 [ 0.614 1|3 . 9L]0.9999]0.61h06{ 78.4 L

# In degrees *¥% Tn this loeation 0 = - 1, 8= 900
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