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ABSTRACT

The two dimensional steady-state problem of the effect of a step pressure

traveling with superseismic velocity on the surface of a half-space is treated

for an elastic-plastic material. The plasticity condition selected is suitable

for a granular medium where inelastic deformations are due to internal slip

subject to Cbulomb friction.

The problem is inherently nonlinear and leads to a system of coupled

differential equations which are solved by digital computer. Numerical

solutions are tabulated av functions of the significant nondimensional parameters,

i.e. of the Mach number, Poisson's ratio and of a value a defining the internal

friction.
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LIST OF SYMBOLS*)

bl Functions defined by Eqs. (41), (52), (200) and (201).

Cp, CS , Velocity of propagation of elastic P-waves, S-waves,

and inelastic shock fronts, respectively.

I Young's modulus.

F Plastic potential, Eq. (4).

G Shear modulus.

Jl ) J2 Invariants, Eqs. (2) and (3).

K 2(+) Bulk modulus.

L < 0 Function related to inelastic behavior, Eq. (27).

p(x - Vt) Surface pressure.

Po Intensity of step pressure.

0
R - - Ratio of principal stresses.

I 1 s2 Principal stress deviators.

ax ) 6y a s N  T, sij Stress deviators with respect to axes x, y, etc.

t Time.

u, v, u, v Particle velocities and accelerations in x and y

directions, respectively.

UN 'T Particle velocities, normal and tangential to shear

front, respectively.

Other symbols, which are used in one location only, are defined as they occur.
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U Characteristic velocity.

V Velocity of surface pressure.

x, y Cartesian coordinates, Fig. 1.

X 2PG sin2 c Nondimensional expression.

, S Values X at P- and S-fronts, respectively.

oMaterial parameter related to angle of internal

friction, Eq. (149).

1 2 Nondimensional stress variable.

1I + a2

y Angle between a1 and position ray of element, Fig. 4.

8 Angle between a and normal to S-front.

a 0 - 3 Small quantity for purposes of asymptotic expansion.

A, Al, etc. Increments of a, a, etc., at a front.

e a - Small quantity for purposes of asymptotic expansion.

v iJ Strain, strain rates.

E i Elastic and inelastic strain rates, respectively.

SSmall quantity for purposes of asymptotic expansion.

Angle defining direction of major principal stress,

Fig. 4.

X> O Function related to inelastic behavior, Eq. (9).

S Nondimensional stress variable.
sI + as2
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Poisson's ratio.

t- 3.14159...

p Wasi density of medium.

"ij ,Stresses, stress rates.

Ol ' 03 Principal stresses.

Shear stress.

CP Position angle of element, Fig. 4.

VP CP S ) Position of elastic P- and S- and inelastic shock fronts,

respectively.

'P1 'V2 Limits of inelastic region.

# Angle of internal friction.

Differentiation with respect to c.
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I INTRODUCTION

The two dimensional problem of the effect of a pressure pulse p(x - Vt)

progressing with the velocity V on the surface of an elastic half-space,

Fig. 1, has been treated by Cole and Huth (1) for a line load and, by super-

position, may be found for any other distribution p(x - Vt). Miles (2] has

considered the three dimensional problem of loads with axially symmetric

distribution p(r,t) over an expanding circular area on the surface, Fig. 2.

He has demonstrated that the plan. problem [1] contains the asymptotic so-

lution for the three dimensional problem (2] in the region near the wave front.

The actual solution of the three dimensional problem would require a great

numerical effort,which can be avoided by using the solution of the plane

problem to estimate the effect of circularly expanding surface loads.

Real materials can not be expected to be elastic, and solutions of the

three dimensional problem, Fig. 2, for dissipative materials are hopelessly

complex. However, estimates for the three dimensional case can be made from

generalizations of the problem treated in (1] for dissipative materials.

This has been done for linearly viscoelastic materials by Sackman (31, and

Workman and Bleich (41., in the superseismic and subseismic ranges, respectively.

For possible application to granular media the present report considers an

alternative material where internal slip subject to Coulomb friction may occur.

The problem has previously been considered by Bleich and Heer [51 for the

range of low Sitbseismic velocities V, while the more interesting superseismic

case is the concern of this report.

The slip mechanism in the medium makes the problem nonlinear, such that

superposition is not permitted and each pressure distribution p(x - Vt) poses

a separate problem. The present report treats the case of a progressing step
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load p(x - Vt) N P0H(Vt - x). An approach permitting a simplified solution of

the important, but very complex case of a decaying surface pressure is discussed

in Section IV.

Based on concepts of the theory of elastic-plastic materials, Drucker and

Prager [6) have shown that a material subject to internal Coulomb friction can

be represented by an ideal material, the behavior of which is governed by a

plastic potential

F J IJ 21 + aJ1 - k (1)

where J1 and J2 are the invariants

J1 = 71 (2)

2 - 1 sij sij (3)

while a > 0 and k > 0 are material constants. a is related to the angle of

internal friction and is therefore subject to the limit a <F , [6], and k is

a measure of the cohesion. Because the surface pressures for which this study

is intended are large compared to the magnitude of cohesion, it suffices to

consider the limit k - 0, giving the simpler plastic potential

F = I/J2i + ' (4)

The behavior of the material is described by the following statements:

1. To represent a granular material with no, or very small cohesion, the mean
J3-

stress -- must be compressive, or

il < 0(5)

2. If, in an element of the material at a given instant,



7<0 (6)

the changes in stress and strain, ii , Will be related by the

conventional elastic relations,

3. However, if the yield condition at a time t is satisfied

F - 0 (7)

three possibilities exist. There may be further loading of the element

with permanent plastic deformation and dissipation of energy, in which

case F - 0. Alternatively, there may be unloading without permanent

deformation, in which case F < 0. Finally, there may be a neutral state

where F - 0, but without permanent deformation or energ dissipation.

For the first case, with plastic deformatio the total strain rate will

be the sum of an elastic and a plastic portion

;E +P
i 'j (8)

where is obtained from the conventional elastic relations, Vhile

Xi" (9)

, which must be positive,

> 0 (10)

is an a priori unknown function of space and time.

In case of unloading_ and in the nqutrj! ca-me the elastice trc-;-train

relations
'Eiii " * i (11)

apply2 The neutral case occurs in the solutions obtained in regions

without change in stress or strain.

5



The fact that the same set of differential equations does not hold everywhere,

but that there are regions with moving, a priori unknown boundaries, complicates

the solution of dynamic problems in this type of material considerably. In the

following, the basic equations will be formulated separately in regions with and

without permanent deformations at the particular time t, and the solutions will

be matched to obtain a complete solution satisfying the prescribed surface con-

ditions. The problem being much too complex to expect closed solutions, a numeri-

cal approach suitable for digital computers will be employed. The technique is

related to the theory of characteristics and is a generalization of the method

used by Bleich and Nelson (7].

The problem to be solved considers only the steady-state, i.e. the fact is

ignored that in reality the loads p(x - Vt) in Fig. 1 must have begun at some

large but finite negative value of time. This omission of the initial condition

results in a lack of uniqueness, which can be removed by consideration of the

character of solutions of the problem in Fig. 2. The lack of uniqueness and the

remedial consideration is best seen in the elementary example of a half-space of

an inviscid compressible fluid loaded by a uniform pressure pulse, p, which

progresses with supersonic velocity, V > c. There is an obvious solution,

Fig. 3a, in which the load produces a plane wave of intensity p progressing witn

-lc
a front inclined at the appropriate angle * = sin V . However, this is not the

only steady-state solution. An alternative is a plane wave, the front of which is

inclined at the angle 1800 - . Combinations of the two solutions are also

correct steady-state solutions. To find states generated by the application of

pressure on the surface only, it can be reasoned that solutions which include the

wave front shown in Fig. 3b can not apply because the medium ahead of the front

shown in Fig. 3a should be undisturbed when the applied load moves with super-

sonic relocity. Thus, in case of the fluid a unique solution is obtained.

Similar reasoning will be used in the body of the report.

6
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II FORMULATION OF THE BASIC EUATIONS

Figure 4 indicates the half-space and a system of Cartesian coordinates.

x is in the direction of motion of the step load, y and z are normal to the

surface in and out of the plane of the paper, respectively. The analysis con-

siders the case of plane strain, ez - 0, when the velocity V of the step load is

superseismic, i.e. larger than the velocity of P waves in the material when slip

does not occur, Throughout the analysis it is assumed that the strains are small.

As stated in the introduction there are, in general, inelastic regions in

space-time where permanent deformations with energy dissipation occur, and othcr

regions where changes of stress and strain are entirely elastic. The basic

differential equations for the two types of region must be treated separately.

In addition it will be necessary to consider the possibility of shock fronts,

i.e. degenerate infinitely narrow regions where the differential equations break

down.

a. Inelastic regions

Combining the familiar elastic stress strain relation

•j ' -+E l+ ijkk] (2

where 8,, is the K1oneker delta, and the relation
Jj

i Vij + ~1(13)

expressing the strain rates in terms of the velocity components, gives, for

plane strain, four constitutive equations

_ 6x ( +6z) + X -a (14)
x_ E yxx

8
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+ + (16)

0C r V r+ -- (17)

+ - + X IFx
x UG

where C and are, respectively, the x and y components of the particle velucity.

Further, there are two equations of motion, which are in a linear theory

+ XX (18)

S+ P = .(19)

The yield condition, Eq. (4),and Eqs. (14)-(19) form a set of seven

equations governing inelastic regions. Inherently, however, the unknown

function X must satisfy the inequality X > 0, Eq. (10), required for an

element in an inelastic region.

It was found convenient to express the four unknown stresses by four

other variables: the invariant J1 , the two principal stress deviators s1

and s2 and the angle 0 formed by the direction of sI with the surface, Fig. 4.

The appropriate relations are

2 2 1
=8 sin2 8 + s Cos 2 0 + J (20)Xx 2 1 31i

y z B Bin 8+s cos 8+-J (21)
1

aZ =8 " S " 2 + J (22)

T a 2 -in28 . (23)
2

10



In the numerical analysis the subscripts 1 and 2 will be selected such

that sI is the major compressive deviator.

Because the steady state case is considered, all quantities appearing in

the analysis which are functions of x and t must be of the form f(x - Vt). For

the step load p = p0 H(Vt - x), dimensional considerations similar to those used

in (5] make it plausible that the various quantities do not depend on x - Vt and

y separa~tely, but must be solely functions of the variable

x - Vt (24)
y

or, alternatively, of the angle y, shown in Fig. 4, and defined by

= cot4 . (25)

The transformation to the new independent variable f, which will be seen

to be successful in obtaining a solution, changes the partial differential

equations obtained above into a set of simultaneous ordinary differential

equations. Noting = -1
sin2

1 d sin d
16X y TC 'y

b _Id sin2cp d (26)
by y 2y c"

V d V sin2 r d

and defining

Lu + hy2(27)
CJl sin c

the seven basic equeations become; respectively,

2s +  4lS + s2 " 2 .. (28)

'1 1~2 2 1



cos 0 sin (cp - )sI + sin 9 cos (p - a' s + sin cp J
2 9

Cos (C - 28)(s - 82) 0 + pV sin cp i 0 (29)

sin e sin (y - 0) s I  Cos 9 cos (C - e) s2 - cos C Jl +

+ sin ( - 28)(s I - s 2 ) 8 + pV sin p =0 (30)

2 22' -22CoBOs 8 + sin2 8s + +- J1 " si n 20(s- s) B -

1 1-2v 1 2

sin2 9 s I + Cos 9 s 2 + 1+-V ,+sn2 (1s 2)l

-[s sin 2  + s 1 cosT2 8 - 2Jl] GL G cot ' (302 2 1-2v1'1 2 l~v 3 1 n20s 1 - 2 ) v

1 i 1 GLsin 2e sI - in 20 s2 + cos 2e (a 1-2)8 . (s .s. .sin2e-2 2 1 2 1s  S2 ) si {V

V +24 = 0 (33)

1-2v 2 GL G. 2G1-- J1 J V 2- + cot P 0 (34)-+ 1 v V -V

where primes indicate the derivative with respect to y.

Differentiation of Eq. (28) yields a seventh differential equation

' 2
(2s I + s 2 ) s + (252 + S )2 - 2ai t (35)

Eliminating the velocities i and 4 from Eqs. (29)--(34) leaves a set of

five differential equations in five unknowns which are related to the stress

12
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pattern alone. Defining, for convenience, the angle y (see Fig. 4) and the

quantity X m X(C)

y- - e (36)

X - sin2  (37)

the five equations become:

1 - i-2v 0 Sl+ s + s17

+ 2e 2 JI

cosy l-3X -sin 2y - 6ssinY +v 1 2

1sin 2y sin 2y sin 2y 2X - 1 0 3 = 0 (38)

(32)
sin 2y-X X-cos2y - cos 2y 0 X(-sl+ s2 )  (sI- 82)0'

2sl+ s Sl+ 2s - 6a2jI  0 0 GL
1 2 1 2 1

This set of equations is linear and homogeneous in the four derivatives and in

the quantity L, and may be satisfied by

sl I 2 = t( )e L= 0 (39)

However, L - 0 implies X a 0, which violates Eq. (10). It follows that in

an inelastic region the determinant of Eqs.(38) must vanish, giving the

"determinantal equati on"

b2 +bb 0 (40)2 1b3

where

13



b * 2 [1 + (1 - 2X)(1 - 2v)J

b 2 a cos 2y + (1 - 2X) (1 - 2v - 40 (14v) (41)

b3 - (1 + v)(1 - 2X)(1 + 21) 2  2X

and

.. (42)s I + 8s2

o21

+ (43)

Due to the vanishing of its determinant only four of the five Eqs. (38)
! I I I

are independent. As L may not vanish, s , s2 J1 and 8 can always be

expressed in terms of L,

' 1 Gs)(b +b) (44)Sl - (sl + s2)(5 4 b) -WL

2 -=5 (sl + s2)5 " 4V) V

' GL
9 b 6  (146)

Jl = 3(sl + s2) b7 GL (47)V (7

Velocities and accelerations, if desired, are

u = (2pV sin y [b 4 sin(2y - c) - 20b 6 cos(2y - c) i- (b 5 + 2b 7 ) sin CPj V (48)

, (s+ s 2 )  GL
v 2pV sin p (b 4 cos(2y - cp) + 20b6 sin(2y - cp) - (5 + 2bjT cos CP] G(

0= _ sin q u (5;)
y

""= V sin2  
* (51)

y

14



where

2b n 2 [b2 -4 1-2X b1

b2.b bI5 B

5= 3I b

bsi2 b2
b

7 b 1 2

Since Eq. (40) must remain valid throughout an inelastic region, it may

be differentiated with respect to cp This leads to an expression which contains

the first derivatives of the stresses linearly, so that substitution of Eqs.

(44)-(47) into this expression furnishes a linear equation for the value of L:

2Xb 3 (1-2v) sin 2y + j Xb1 sin 24 [2(1+v)(1+20)2 + 2 ] +

eL + 2b2( sin 2y sin2 c + X sin 2v (-2) - 4X sin 2q (1+v) I]
b1[ (l+v)(l+2)(l-2X)(b

5+ 62 7 ) - Xb40] +

+ b2 (b4 cos 2y + 20b6 sin 2y + b5(l-2X)(l-2v) sin 2

- 12b f2(l+v)(1-2X)]

I I I I

The derivatives s1 , s2 ,l and B can be obtained by substitution of Eq. (53)

into Eqs. (4)-(47).

If the values of sI , s 2  J 1 and e are known on one boundary of an

inelastic region, their values in the interior of such a region can be found

by forward integration. Of course, the starting values of s, s 2 , J1 and 0

must satisfy the yield condition, Eq. (28), and the determinantal equation,

Eq. (40). Further, the integration can be carried on only when

15



L < (54)

which condition follows from Eq. (27) noting X > 0, Eq. (10), and Jl < 0.

b. Inelastic shock fronts

The analysis of the previous subsection treated regions of finite extent,

and the additional possibility of infinitely thin regions, i.e. shock fronts,

remains to be considered. If such fronts exist in the present problem the

equations obtained above should indicate this by becoming singular, since at

least one of the derivatives of the stresses must become infinite at a shock

front. Instead of searching for singularities it is better for a physical

understanding to demonstrate the existence and properties of shock fronts in

general. This general derivation automatically answers the question of stability

of the fronts, by proving that a front, where the stress rises with an arbitrarily

steep slope, Fig. 5a, will not disperse but propagate without change of slope.

Consider the basic Eqs. (..4)-(19), which apply to any type of wave

propagation in plane strain. To investigate the possibility of plane pressure

waves without shear, the y direction is selected as the direction of propagation.

For such a rave, the shear r, the horizontal velocity A and all derivatives with

respect to x vanish, while for reasons of symmetry a . Since x, y, z are

the principal directions, the stress deviators s and sy become sx = s2 , Sy s1

Using the relation s2  - j sI ,the yield condition (28) becomes

2 - 2J2=0()

while Eqs. (14)-(19) furnish three independent relations

+ + s 2a (56)
by 2G 1 K

1K



TG1 9K1
o0 -s + 1  "X[ Sl r Jl] (57)

P 3 (58)

where

X - l (59)

K G + Q(60)

If a front, at which inelastic deformation occurs, is to propagate with a

velocity c without change of slope, it is necessary that

sI - af (y - at) = alf () (61)

Jl = a2f (y - at) = a,() (62)

= a3f (y - at) = a3f (C) (63)

where C - y - at, the values of ai and c are free constants, while f is an

arbitrary function. Since the signs of the coefficients are undefined, one

can select the sign of f, considering fronts of the type shown in Fig. 5a.

Selecting

f > 0 (64)

the increaec of .ith time requires

f' < 0 (65)

where the symbol ' indicates derivatives with respect to C.

17



Substituting Eqs. (61)-(63) into Eqs. (55)-(58) and eliminating the

velocity 4 yields

[al + 1 a - + p if - = 0 (66)

L-2 3 2 2~r ]

f C a, - a- LpcXf[ a, (67)2G 3 3K a2 2

f2 [J a 2 -_'2a2] 0 (68)

If shock fronts of the type sought exist, these three equations must be

satisfied for arbitrary functions f, subject to the limitations of Eqs. (64),

(65) and subject to the condition > 0. Equation (68) gives

a2  + -
al + (69)a1  - 2t

Equations (66) and (67) permit nonvanishing values f, and f' only if the

determinant of the coefficients of f' and pF if vanishes, yielding after

substitition of Eq. (69)

-2 K (1 + 2a/3)
2

c = (i+ 62 (l+) (70)

However, the result is valid if, and only if X > 0. Computing from

Eq. (66) yields, after simple manipulations, the inequality

1-2v (1C3 (1+ < 0 (71)

where the upper or lower signs in Eqs. (69) to (71) are to be used consistently.
1

The limitations Ot > 0 and V < - indicate that the lower sign never leads to a2
valid solution. Using the upper sign one obtains the requirement

18



< 1 1-2v (72)
/3 l+I

and the corresponding velocity

2 W K (1 + 2/3)2 (73)

P~ (1 + 6a2(1+V)
1-2v~

The stresses 8 1 and J, at the front have the ratio

1

- - -- - (74)
1 2 /3

The function f being arbitrary, it may be selected as a step function,

Fig. 5b. The function

f(y - ;t)- H(ct - y) (75)

vanishes for positive values of (y - t) and is equal to unity for negative

values of (y - Et). The discontinuities As1 and AJ1 in the stress history

I = AS1 H(ct - y) (76)

Jl = AJ, H(ct - y) (77)

then satisfy Eq. (74) provided

As1 _ - (78)

The corresponding velocity to be obtained from Eq. (63) is

4 - A4 H(Ct - y) (79)

where

Sl+ 2a /3 (80)

19



Equations (76)-(80) give the relations for an inelastic shock front

entering a stressless region, a case which will be utilized in the construction

of solutions in Section III. For completeness it is noted that in general. the

region ahead of the front need not be stress free, but Eq. (74) must be satisfied

ahead of the front.

The above investigation of possible shock fronts was based on the premise

that T - 0. The fact that no inelastic fronts are possible when T / 0 is

demonstrated in Appendix A, so that the discontinuity described in this section

is the only one which can occur with inelastic deformations.

Summarizing, it has been demonstrated that, for values of a' and Y which

satisfy Eq. (72), a plane pressure discontinuity will propagate with velocity

; given by Eq. (73). In order to occur in the solution of the steady state

problem, Fig. 4, the front must be inclined at such an angle p that the horizontal

component of the velocity c equals the velocity V of the load on the surface.

The angle is obtained from Eq. (73)

-1 1 K ( + L
c= TY - sinl[ V F 'a/3) (81)

The principal stress at the front being normal to the front requires

" 1 . (82)

Further, the relation s - 1 at the front defines the value 8, Eq. (42),

= 3.0 (83)

20



c. Regions and shock fronts without inelastic deformation

In a region where no instantaneous inelastic deformation occurs, the strain

rates are defined by the purely elastic relations, Eq. (11), and the stresses are

subject to the inequalities

1 1 2

F'uj~~ ~ (84+)

In addition, the equations of motion, Eqs. (18), (19) hold. To obtain the

differential equations, one could proceed in the same manner as in subsection a.

However, it is not necessary to do so, because the resulting differential equations

must obviously follow from Eqs. (38) by making the following two changes:

1) The last equation is to be omitted because it represents the yield

condition F w 0, which does not apply.

2) To account for the change in the stress strain law from Eq. (8) to

Eq. (11), L 0 is to be introduced into Eqs. (38).

In this fashion the following four simultaneous differential equations are obtained.

-1 -1 1-2 01

2 2 1l-2v
sin y cos y 1-3X i12-r -sin 2y s

0 (85)
sin 2y sin 2y 2 sin 2y - 2(1-2X) 1Jl

31

sin2 y-X - cos2 Y - cos 2y 0 1- s2)e

21



The equationsare linear and homogeneous so that the derivatives of the
I I f

stresses, s1 , s. , J vanish, unless the determinant of Eqs. (85) equals zero.
4. 1

In spite of the fart that the coefficients in Eqs. (85) contain y, the value

of the determinant is independent of the value of the angle Y. The determinant

of Eqs. (85) vanishes when X is a root of

4X(l-2X) (1 + (1-2X)(1-2v)] - 0 (86)

Equation (86) has two significant roots,

x - (87)

and

X=1 (88)XS 2

and one, X = 0, which may be shown to be trivial. Substituting the two roots

X and XS into Eq. (37) furnishes two locations

p= -= T/ - sin [c] (89)

cS = - sin' sin-' [' (90)

where the determinant of Eqs. (85) vanishes, and cp , cS are the velocities

of P- and S-waves, respectively. In any location cp C p or cS the derivatives
I I I

B 1) S2 ) J1 vanish, so that the stresses must remain constant everywhere,

except at the locations qp and yS "

The angles cpp and cS being the potential locations of elastic P and S

shock fronts, respectively, it is known that discontinuities in stresses and

velocities may occur at these locations and may, therefore, be part of the

complete solutions to be obtained in Section III. The following pertinent

details for these fronts will be required subsequently.
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(1) The P-front

Designating the changes in the various quantities at the front by the symbol

4, the discontinuities in the stresses 'N 'IT 0 17z (normal and tangential to the

front, respectively) and in the component i of the velocity (normal to the front)

are proportional,

-pi (91)

No other discontinuities can occur.

The changes AaN and AqT are of course restricted by the fact that the in-

equalities (84) for the stresses must be satisfied on either side of the front.

No general study of this restriction is required, but in Section III it will be

necessary to know if a P-front is possible when the stresses and velocities ahead

of the front cp vanish. In this case the conditions (84) are satisfied ahead of

the front, F a J1 2 0. To check behind the shock, it is noted that the stresses

AaN and AoT are not only the total stresses, but they are also the principal

stresses, AaN - al ) AcT = a2 . After computation of s1 and J1 , one finds the

necessary conditions for a P-front

a1 <0 (92)

> 1 1-2v (93)

/3 l+Y

A compressive shock front oi' arbitrary strength al < 0 in the location cp = p is

therefore possible if, and only if, the inequality (93) on O is satisfied. The

angle y and the quantity 8- Eq. (42); immediately following the front are

TT (94)

8 - 3 (95)

Attention is drawn to the fact that the inequalities (93) and (72) which

permit, respectively, an elastic or an inelastic pressure discontinuity to enter a

stress free region, are mutually exclusive, but complementary. In other words, for

any combination of O' and vone, but only one, of the two types of fronts exists.
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(2) The S-front

At an S-front discontinuities occur only in the shear stress N w T T

and in the tangential velocity AT " The changes are proportional,

'I' PC S

In addition, the Inequalities (84) must again be satisfied ahead and behind

the front. Checking the situation if the region ahead of the front is stress

free, Eqs. (84) are again satisfied ahead of the front. Behind the front the

stresses are

T - T N a 'T W 8N a 8 a1 n0(97)

The invariant J2 may be written

2 2
V2 SN + SNST + sT + 4 2 (98)

and, because in this last equation all stresses, except r, vanish, the condition

J J 2 J2 <- (99)

is violated. Thus an S-front can not enter a stress-free region.

Some details about S-front locations where stresses ahead of the front do

not vanish will be required. Consider specifically the possibility of such a

front at a point where the equal sign in the first condition (84) applies ahead

of the front,

F J 2 (100)
2 1

which indicates that the material is at the verge of inelastic deformation.
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Let the shear stresses just ahead of the front, for ), be T, and

those behind the front, for V( + ) , be T. The invariant. J and the deviators

with respect to the N and T directions, s N and sT , respectively, are equal at

(PS and +) Noting that the equality (100) is satisfied ahead of the front,

it is clear that the inequality Eq. (99) requires

1IT < (101)

The largest possible change AT = T-r occurs therefore when T - - 1, in which

case Eq. (100) is satisfied also for () It is useful to consider this case

in terms of the principal stress variables used in oubsection a, i.e. using the

angle y and the quantities J1 ' si and $ as variables. Figure 6 shows the

direction of the major deviator il ahead of the front at an angle to the

S-front. The state of stress ahead of the front, , Sl and 92 ) corresponds to

the values of i, sN and sT which apply in this location. Behind the front the

state of stress is defined by T - - 'r, SN , sT 2 which stresses define changed

values y, s I ) s2 • When computing these values by the conventional relations

it is found that sI 1 s2 , being even functions of T, are necessarily equal to

l 1 s2 , respectively. y, being an odd function of T, changes

Y r - V- (102)

Therefore, a change in shear from ' to T - - i at V. does not change the

values of the variables s , s 2 , J1 or 0, but only the values of the angles

y and e. The latter becomes

at c+). e CPS - Y = CPS +y-" (103)

These changes in y or e occur if the stresses satisfy the equality (100) ahead

of, and behind the front.
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III CONSTRUCTION OF SOLUTIONS

In Section II a number of partial solutions were obtained from which the

solution of the complete boundary value problem is now to be constructed.

Section IIa gives the differential equations for the determination of the

stresses and velocities in inelastic regions; from Section IIc it Js known

that all unknowns in elastic regions are constants, except for discontinuities

of a prescribed nature at the locations S and *p . In addition, there may be

a shock front with inelastic deformation at a location i.

As mentioned in the last two paragraphs of the introduction, steady-state

problems of the type studied here need not have un2.que solutions. However, it

may be possible to eliminate excess solutions by specifying that the steady-state

solution desired should be the asymptotic solution, if any, of the problem of an

expanding load (Fig. 7) applied on a half-space initially at rest. This additional

condition is invoked here and furnishes a vital boundary condition for the solution

through the reasoning which follows. It is known that the partial differential

equations of the transient problem, Fig. 7, are hyperbolic in elastic and in in-

elastic regions° The characteristic velocities U under elastic conditions are

U = c and U - cS , while those in the inelastic case are functions of the stresses,

but subject to the inequality U < cp . The hyperbolic character of the differential

equations and the inequality have been demonstrated by Mandel (8] for a general

class of elastic-plastic materials governed by a plastic potent T his result

applies here. The largest characteristic velocity being cp , one can conclude

that, in the non-steady-state s~ersdsmic problem, V/cp > 1, Fig. 7, all unknowns

vanish ahead of a front inclined at an angle cp corrcsponding to r, , such that

one has a boundary condition for the solution of the steady-state problem

for q < p i =s i = si ='r=0 (104)
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Additional boundary conditions apply at the loaded surface where the

pressure p0H(Vt - x) is applied. At this surface one of the two principal

stresses must be vertical and equal to - p , so that there are two alternative

boundary conditions. Either

l l + 1  p (105)1' 1+ ji " - Po 2. (i

or

2 o s2 + 1 (106)

It can easily be shown that the nature of all equations in Section II is such

that p0 will appear s an external factor in the solutions for the stresseb and

velocities, while the nondimensional quantities 0, 0 and y are independent of po

This simplification is due to the homogeneous nature of the plastic potential,

Eq. (4), and would not apply if Eq. (1), alloming for cohesion, is specified.

Therefore, only the case p0  1 need be considered, so that Eqs. (105), (106)

become

0+ 1 (107)

or

02~2+m1 , y O~rr (108)a2 " 2 3 1" ,

At this point is must be stressed that no uniqueness or existence theorem

for transient problems is available for elastic-plastic materials. Although the

boundary cond+t^o (l,\ cl-m-e- cetain excess solutions of the steady-state

problem, Fig. 8, which clearly are not asymptotic solutions of the transient

problem, Fig. 7, the remaining solutions of the steady-state problem may still

not be unique, because the original transient problem may not have a unique

solution. In constructing solutions it must be attempted to consider all con-

ceivable possibilities, but, in view of the numerical procedures necessary, it

is not an absolute proof of uniqueness if Just one solution is actually found.

29



In order to have confidence that the solutions obtained are the physically

meaningful ones, even if others should exist, the solutions will be considered

as functions of the basic physical parameters v, a and of V/cp , in the expectation

that there should be a continuous transition in character and in the numerical

values of the solutions. The principle that the character of the solution should

change smoothly as a function of the parameters is also extremely helpful in the

formulation of the solutions. As a starting point one can explore the existence

of a range in the above parameters where the elastic solution applies and from

there continue, step by step, into further ranges.

Applying this gradual approach, one arrives at the conclusion that the

occurrence of discontinuous fronts at the transition from the stressless to the

stressed state in the elastic situation must also apply in the more general case,

at least for values of the parameters close to those where the elastic solutions

are valid. The first attempt will therefore be the construction of solutions with

an initial discontinuity at the arrival time, and the possibility of continuous

behavior at arrival will be considered subsequently to demonstrate uniqueness,

and also in situations where the assumption of an initial discontinuity does not

lead to a solution.

In accordance with the above approach, one expects that the properties of

the initial discontinuity will govern the character of the solution as a function

of the parameters v, a and V/cp . The existence and the nature of the initial

discontinuities depend on v and Cr only, such that these two parameters play a more

important role than V/cp , and a preliminary classification of the ranges can be

1
based on v and c' only. In the permissible range for these parameters, 0 < v <1

and 0 < C < 1/r/M, there is according to Section IIc a Range 1, Fig. 9a, defined

by

/3 a > 1-2v (109)
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where an elastic P-front, but no other discontinuity can enter a stress free

region, while for

/3 •< 1-2 (110)

only a compressive discontinuity with inelastic deformation may enter a stress-

free region. The total range where the latter inequality applies is subdivided

in Ranges II and Ill, depending on whether the velocity ; of the inelastic front

is larger or smaller than the velocity cS of elastic shear waves, respectively.

Range III, where c < cS , applies if

/'3 a, < - 2 + -3(11
2(i+v)

while Range II, C > cS , applies if Eq. (111) is violated. The reason for this

division will be seen later.

a. Range Ia

As indicated above, the first step in the construction of solution is the

determination of the range, designated Range Ia, in which entirely elastic

solutions exist. In such a solution a P-wave enters a stressless region and an

entirely elastic solution is possible, if at all, only in a range entirely within

Range I, Fig. 9a. The stresses in an elastic half-space due to a superseismically

traveling uniform surface pressure are given in Appendix B. There is a uniform

state of stress between the P-front and S-front, and again a uniform, but different

state of stress between the S-front and the surface, Fig. 10. The two uniform

states of stress must satisfy the inequalities (84)

F < 0 , J1 < 0 112)
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There is no need to check the validity of these inequalities in the region

between the P and S fronts because this has already been done in Section IIc

where the existence for the P-front in Range I was proved- However, Eqs. (112)

must be considered for V > p > S . At the S-front a state of pure shear is

added to the state of stress for f < S ' This can not change the first in-

variant J1 , so that only the condition F < 0 requires checking.

Substitution of Eqs. (179), (180) from Appendix B into this condition

results in the inequality

>2 2o 2(cS -VP)
21 2 2 1 (12+ (113)

cos 2 S

where

cPp = TT - sin' -1 [1 VL --G/ (114)

cps = rr - s in'l 1  (115)

The inequality (113) defines Range Ia where the response is entirely elastic.

The range is a function of Poisson's ratio and of V/cp > 1, and its boundary

can be found by using the equal sign in Eq. (113). Figures 9b-d show that these

boundaries end at ne one between the principal Regions I and II, the endpoint

being defined by the relation

u ,~..p V 2  _-,v%)2

1= (16)

Figures )b-d show Range Ia covering nearly all of Range I, while in Fig. 9e

Range Ia actually covers all of Range I. Using !;qs. (113), (116) for the

limiting value a - 1 one finds the critical value V/Cp = 1.061 below which

Range Ia covers all of Range I. The stresses in Range Ia are entirely elasti-

and are given by the simple relations listed in Appendix B.



b. Range rb

It was found above that entirely elastic solutions exist only when the

inequality (113) is satisfied. The remainder of Range I, i.e. the range

/3 <1+V 1 Cos 2(cpS " P) 1
1- < + (117)

cos

will be designated as Range 1b. In this range the solution can no longer be

entirely elastic and must therefore contain at least one location with inelastic

deformation.

Using the expected continuity of the character of the solutions as a guide,

the solution in this range ou sx tL start again with a discontinuity which,

according to Section IIc, can only be an elastic P-front located at Ip. Using

Eq. (91) for the stress changes at the front, one finds that for*) 4 = (+) the

1-2V
inequality F < 0 is satisfied, provided the special case /3 a - is excluded

for separate consideration. Having recognized that the solution must contain an

inelastic region, where F - 0, a further elastic stress change must occur, which

is possible only at the S-front. The appropriate change in the state of stress

at the S-front has been obtained in Appendix C, in terms of the as yet unknown

stress discontinuity Au at m .

Fo f(+) < (P<_f -

CT. a ,0-3, y -Y , = p -I (118)

while for c c ( + )

/3 V12(12 +v) 2  1 (119)i+V

J 40 ;.220)

The symbol (+) in p indicates a value infinitesimally larger than cppP



(1-2 ((121)

= 2I8 (122)

= TS + 1-1 ±(123)

The quantity 6 is obtained from

cos 26 - i cos 2(cp - yS) (124)

and is subject to the inequality

yPS I61 ?: '8S- yp (125)

1-2V
The special case /3 ct = - remains to be discussed. In this case F = 0

(+)

is satisfied already for c = , so that the possibility of an inelastic

region no longer requires a shear front at S However, a change in shear

leadJ Z again to a state with F = 0 is still possible. Both possibilities are

actually included in Eqs. (119)-(124). The special case simply means that one

of the two values 0(t + )) is equal to 8(cp + )) given by Eq. (118). The fact

that in the special case an inelastic region may, in principle, occur in the

range p < T < TS is of no consequence, because such a solution would violaLe

the necessary continuity of the configurations.

The results obtained so far, and further steps required, are best discussed

in terms of the angle 8 in various locations, illustrated in Fig. ii. The

direction of the principal stress between the P and S-fronts according to 2q. (118)

is normal to the P-front, while for c > cp) Eq. (123) defines 8. Because of

the inequality (125), e(P +)) is less than but more than 0, regardless of the

sign of 6. According to Section II, there is no further possibility for a change

in 8 as required to arrive at the surface value 0(8r) !! , (0 or TT), except one

or more inelastic regions for p > cS .
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Using the values of 0, J1 , sl I y and 8 defined by Eqs. (119)-(123) the

results of Section IIa are now to be used to find and determine the history of

the stresses and particularly of the angle e. If a region can be found during

the forward integration where either of the values 8 = 1 (or 0, or TT) is obtained,

the integration is terminated. From the point of termination to the surface an

elastic region of no change is selected such that the surface condition for a is

then satisficd. During this integration the unknown value Ao in Eqs. (120), (121)

is a common factor in all stresses, so that the integration will give a principal

stress at the surface, which contains this factor, which is selected to satisfy

the boundary condition, Eq. (107 or 108), 01,2 = - ".

The use of the solutions derived in Section Ha for inelastic regions is

quite straightforward. From the values of 0, y at c+), potential starting

points i of inelastic regions are located as roots of the determinantal equation

(40). Next it must be verified that GL/V, Eq. (53), is negative, If this is so,

Eqs. (h4)-(47) are used to determine the solution by forward integration, con-

tinuously checking the sign of GL/V. The integration can be continued until GL/V

changes sign, but may be stopped at any desired location Y2 " When an angle

2 (or 0, or Y) for the direction of the principal stress is obtained, a

solution to the problem has been found.

The configuration considered was successful and led to just one solution of

the problem. The upper sign in Eq. (123) and the case 0 = H furnished the solution,
2

but it is suspected that this may not be so when V/cp > 1 is close to unity. The

matter of possible alternative configurations which might lead to solutions is

discussed later in this section.

It is noted that Range 1b, which does not occur at all if V/cp < 1.O61,

applies even for other values of V/cp only in a minute portion of the overall

range of v and a, as can be seen from Figs. (9b-d).
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c. Range Ila

According to the definition of ranges at the beginning of this section,

an initial inelastic discontinuity, but no other, is possible in Range II.

Further, in this range, the location $ of this discontinuity, defined by

Eq. (81), is such that

< CPS(126)

Range II, which is the one of major interest, is defined by the inequalities

(110, 111),

- 2 < /3 a < --2 (127)
-2 ( 1+ Y) +

In that p.irtion of Range II which adjoins Range Ia, Figs. 9b-e, one expects

that the eolutions after starting with an inelastic front of discontinuity at 6

will remain entirely elastic. The range in which such solutions apply and the

values of the stresses are obtained in Appendix D. This range is designated

Range IIa, and the stresses are found in closed form, the configuration being

shcown in Fig. 12.

The discontinuity A in the normal stress at the front is

- cos S

2 - C 2 (128)
(l-R) cos ( - s) + (l+4) cos s- 1

where

1 1-=/3 (129)

1+ 2/3
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The principal stresses and their direction between the inelastic front and

the shear front are

(-) _ (+

Cr U3 h ~ o (130)

IT

while between the S-front and the surface

> cp

o2 " -  , 3 " a (131)0 ,,--1

where

R -1- (1+A) Aa (1.32)

and a3 is the principal stress in the z direction.

The solution applies if the inequality

2 2 2 -4 -,(12v Cos2 cs(133)(i + e/3) 36 acosfs_>l 1

is satisfied. The boundary separating Region lla from the remainder of [egion II,

designated Region Ilb, is found by using the equal sign in the above relation.

Figures 9b to e show typical curves for some values of V/cp . These figures in-

dicate that Range Ha covers only a quite small portion of Range It, except in

the atypical case when V/cp is only slightly larger than unity, Fig. 9e.
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d. E IIb

In Range II, but outside Range lla, the solutions are expected to start

with an inelastic pressure front at , but additional inelastic regions must

now occur. In the vicinity of the boundary towards Region Ib, continuity

requires similar configurations, as shown in Fig. 13. Behind the inelastic

front the stresses will be uniform with a shear front at S ) and a region of

inelastic deformation in a location cS < T < T. The discontinuity in shear 6T

must be such that the yield condition F - 0 is satisfied for c > T(+ )

However, at points remote from the boundary between Regions Ib and IIb

alternative configuraticis might occur and must be considered as possibilities

in the numerical analysis. In the configuration shown in Fig. 13 the possibility

AT = 0 could furnish a solution, or inelastic regions may exist in locations

< P < C(), as shown in the alternative Figs. 14 and 15, where shear discon-

tinuities AT L 0, may occur, or not, AT - 0. Further, the configuration shown

in Fig. 15 may have a subrange where the discontinuity AT is such that elastic

conditions F < 0 are created and, therefore, constant stresses occur for C > (+)

Disregarding, for later discussion, solutions without initial discontinuity,

but allowing inelastic regions to split, this exhausts all possibilities to be

studied. The numerical analysis by computer furnished only solutions having

the configuration of Fig. 13. The search for roots of the determinantal equation,

giving starting points of inelastic regions never furnished a root for f < fS .

The following statement summarizes the situation. The initial change from

vanishing to nonvanishing stresses occurs at an inelastic front with an as yet

undetermined compressive discontinuity Aa in the principal stress al " This front

is followed by a region of constant stress,
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for qP) > c >

8 -3 (134)

,, --
2

For locations c > eS there are two alternatives. If no discontinuity in

shear occurs, AT - 0, Eqs. (134) apply also for f - I while the angle y is

(c(+) s (135)

However, if a shear discontinuity, AT j 0, occurs, Eqs. (102), (103) give, using

y-. - -
2'

for t+).

al Aa

~ 3
TT (136)

e "Ts f - i

Equations (136) and the alternative values for AT = 0 are the starting points

for numerical integrations which are tc be carried out in the manner described

for Range Ib.

e. Search for inelastic solutions without initial discontinuity

In Ranges I and II solutions were constructed where the initial change,

from vanishing to nonvanishing stresses, occured as a shock, either elastic at

p ) or inelastic at cf. While the principle of the continuity of solutions

makes the solutions obtained plausible, it is desirable to investigate if

solutions which start smoothly exist.
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The differential equations in elastic regions permit definitely no smooth

change in stress fo a*peisnic velocities V, such that only the inelastic case

is considered.

If a smooth inelastic solution starting from vanishing stresses in a location

To exists, an asymptotic study of the appropriate differential equations for

aj = a = J1 - 0 in the vicinity of T must describe this solution. In order to

be physically sensible, the angle y in the vicinity of qo must be well behaved

and may be considered a constant in the range co < < po + e where e is small.

The quantity IL/V < 0 must not vanish, otherwise the region is not inelastic as

postulated. There are, however, two possibilities for the behavior of GL/V.

In the limit y - o , the function GL/V may be finite and well behaved, in which

case it may be considered a constant near co ; alternatively, GL/V may, in the

limit, be infinite.

The first possibility, where GL/V in the limit may be replaced by a constant

is easily proved to be impossible. Following the previous reasoning in Section II,

solutions in an inelastic region exist only if the determinant of Eqs. (38)

vanishes, in which case four of the five unknowns will depend on the fifth. In

the limit si , J1 - 0 the last Eq. (38) becomes trivial, 0 R 0. The last terms

of the other equations vanish, because GL/V is finite and products of GL/V and

s or J1 in the limit are therefore zero. The remaining four equations are then

identical with the four Eqs. (85) in the elastic case. They have nonvanishing

solutions only when To = M or o W MP However, the yield ndto F = 0,

represented by the last Eq. (38), which became trivial, may now not be satisfied

and must be checked. In the vicinity of sj ) J1 - 0, the ratio of these stresses

must obviously be the same as at the P or S front, Eqs. (91) and (96), respectively,

obtained from the same equations. Based on the discussion of the P and S fronts,

one finds easily that the requirement F = 0 is not satisfied, except in the special

case when the values a' and v are exactly on the boundary between regions I and II,
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where %. A. . However, in this case one finds GL/V a 0, and no inelastic

solutions whatsoever are therefore possible when GL/V at c0 is finite.

The case where I GL/VI -. as r - o remains to be discussed. The first

question concerns the possibility of IGL/VI -. a and conditions for the occurrence

of such a singularity. If such a point exists for some values of y and of the

ratios of s and J 1 . when the latter are small, -o 0, then I GL/Vj -# a would also

occur for the same ratios if a and J1 are finite. Equations (44), (45) and (47)

which apply, would then give infinite values for one or more of the derivatives

s; , J' . The possibility IGL/VI -u exists therefore only in locations where an

inelastic front of discontinuity may occur and the conditions required are those

for such a front. Using the results of Section lIb for inelastic discontinuities,

no smooth solution can exist in Region I, there being no inelastic shock front.

In Regions II and III where such a front is possible at 4, a solution of the type

sought may exist, starting at co = c ; the necessary initial values of the state

of stress being again defined by

(CPO 3r 
(137)

If an inelastic solution in the region c > cp actually exists, the determi-

nantal equation (40) must be satisfied for c > p. This is necessary because the

previous reasoning only implies that this equation is satisfied for e = . To

explore this point an asymptotic expression for Eq. (40) is obtained by substi-

tuting

0= 3 +A (138)
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where e, A and I are small quantities. Retaining the lowest order terms in

the new variables one obtains the expression

8 'P- 2 - b9  (139)

where the quantities b8 and b 9 are functions of v, Y and V/cp , given in

Appendix E. The quantity b 9 is always positive, while b 8 may be positive or

negative, changing the character of the equation radically.

In Range II, i.e. when the inequality (127) applies, b8 is negative so

that the equation has real roots only for negative e. While an inelastic region

can exist for c < c ending at c with vanishing stresses, no such regions can exist

for t > $, i.e. in the location of interest here. The solutions in Ranges I and II

with an initial discontinuity previously obtained are therefore unique.

In Range III, where the inequality (111) applies, one finds b8 > 0, so that

the determinantal equation has real roots for * > 0 as necessary for solutions

without initial discontinuity in stress. The finel condition, GL/V < 0, is also

satisfied, because the stress ratios in this region are initially equal to those

for the inelastic front, where GL/V < 0. All requirements are therefore satisfied

and it is concluded that in Range III, and only in this range, an inelastic

solution without stress discontinuity exists. The details of its determination

are given in Appendix E.

f. Range III

According to the definition of ranges, an inelastic shock front in the

location $ is possible, and one can attempt to construct a solution starting

with this discontinuity in analogy to Range II. However, the computational search

for inelastic regions, for c > p, was unsuccessful, and the boundary conditions on

the surface can not be satisfied in this fashion. The determinantal equation (h0)

is nonlinear and too complex to prove the nonexistence of roots in general.
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However, the approximate Eq. (139) furnishes a partial proof, as there is

obviously no root a - 0 for e > 0.

The impossibility of finding a solution with an initial discontinuity is,

however, very satisfactory because the previous Subsection and Appendix E

indicate that in this range a solution exists which starts at t a C without

discontinuity. Because of their singular character the differential equations

at and near the starting point can not be solved by the numerical procedure used

in the other ranges. Therefore, the asymptotic solution obtained in Appendix E

must be applied for a small range r# 2 , until the solutions are sufficiently

well behaved to return to the numerical integration of the differential equations

in Section IIa.

It may be surprising, but beyond the fact that a smooth solution may start

at c - , only a qualitative statement on the asymptotic solution is actually

needed, the numerical coefficients derived in Appendix E need not be used. It

is sufficient to know, from Eq. (218), that in the proximity of C -P the value

of 0 becomes approximately

S3+ A 3 (140)

while

-Y (141)

where the small quantity I is inherently Thrger than the neglected value jAI

Equation (219), and a similar expressin for the principal stress a1 , contains

an arbitrary constant C0 . Thus, at a point, o = q + o ' still to be selected

as end of the asymptotic region, the value of the principal stress a1 (yo) may be

used as the arbitrary constant instead of C . Choosing a value I = 'no small,

yet large enough for the numerical integrations to work thereafter, one searches
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for the corresponding value To where the determinantal equation is satisfied

by the combination of 0 - 3, Y0 - % +  and o . The principal stress cl(co )

at this point can be made equal to unity. From this point on integration pr . eeds

exactly as in the other ranges. Due to the fact that Eq. (217) defining I has a

+ sign, it is necessary to include the twc possibilities + 1 "

The procedure or'.lined was found to be successful, one and only one, of the

integrations for + % furnishing a solution. The stresses in the interval to

ro increase as (( - )n. To obtain their distribution the exponent n can be

obtained from Eq. (220). It is a very sma&L positive number, of the order of

1/100. The configuration of solutions in Range III is shown in Fig. 16.

The occurrence of solutions with and without initial discontinuity in stress,

does not break the continuity in the character of the solutions. Even for the

continuous solutions the derivative of the stresses at $ is infinite, as at a

discontinuous front, and the numerical results indicate that the change in stress

in the asymptotic region due to the small exponent n is so rapid, that this

regLon is practically indistinguishable from a discontinuity, see Fig. 17.

g. Sim4lified determination of velocities and accelerations

The basic relations in Section II permit the numerical determination of

stresses and velocities or accelerations. The integration for the stresses must

be actually carried out to obtain the appropriate open constant from the boundary

condition on the surface. The parallel integrations to find velocities and

accelerations may be avoided, by using the following relations, some of which are

exact, while others are only good approximations.

At all fronts of discontinuity the accelerations are of course infinite,

but the changes in velocity are given - exactly - in terms of the respective

stress dincontinuities, if any,
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.I

atff- psA (143)

PCsat CP as IA 1 - a,_ (144)

Pc

where the subscripts indicate normal and tangential directions, respectively,

and the velocities, Cj .9 are given by

a i mVsin ip (145)

The values of aIat the pressure fronts can be taken directly from the

numerical computations for the stresses. The value AT can easily be computed

from the values and directions of the principal stresses a~, for~ (() and
S

CS Of major interest is Range Ilb where

I~ LL sin 2(qp, - )l(cpS)I (146)

In continuous elastic regions velocities do not change, while accelerations

vanish. Inelastic regions being very narrow, one may disregard tangential

accelerations and changes in velocity, while the normal acceleration may be

assumed to be constant in the region, giving a linear change in velocity. The

total change in velocity AA in an inelastic region of extent Np, may be found

from the change, Ad , in the principal stress at both ends of the region

a I 1 (147)

while the acceleration is

ty* 1 j (148)
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The changes in velocities at the front, given exactly by Eqs. (142)-(144),

are always much larger than those in regions given by Eq. (147), such that the

simplification of using Eqs. (147), (148) is quite satisfactory when determining

shock factors.

h. Numerical analysis

In Ranges Ib, IIb and III a numerical search for inelastic regions, and

subsequent numerical quadratures are required. In Section II the basic equations

have been written in a very abbreviated form, somewhat concealing the complexity

of these relations. The solution of these equations by hand computation would

be nearly impractical, and the computations were made on an IBM 7090. A common

program was devised, allowing for the different configurations which may occur.

The inelastic regions are always quite narrow as functions of op, only a few

degrees, and become even narrower as V/cp becomes large. It was therefore

necessary to vary the intervals of c in the search and in the quadraturee. For

V/cp < 2 intervals of 1/500 rad. were used, while for V/cp - 5 intervals of

1/10000 rad. were selected.

The results obtained are discussed in Section IV.

6
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IV NU MERICAL RESULTS AND CONCLUSION

a. Results

The effects of a superseismically progressing step pressure on the surface

of a half-space have been obtained for an elastic-plastic medium subject to the

yield condition (4), representing an inelastic material governed by internal

Coulomb friction. The solutions depend on the elastic material parameters E

and v, and on the additional parameter Ot < ~Fil]'in Eq. (4). or is related to

the angle # of internal friction, using Eq. (10) of Ref. (6],

sin # - (149)/1 -

In spite of the lack of a general uniqueness and existence theorem, a unique

solution was obtained for each combination of material parameters, surface load

p, and velocity V/cp > 1. There are, however, radically different configurations,

depending on the values of the nondimensional parameters v, of and V/cp . The

ranges in which the various configurations apply have been designated by I, II

and III, where Ranges I and II have been subdivided into Subranges a and b. The

values of the parameters V and at alone determine which of the Ranges I. II or III

applies in a particular case, as shown in Fig. 9a, while the subdivision into

a or b depends on the value of V/cp , typical cases being shown in Figs. 9b-e.

These figures show that Ranges Ia and IIb cover most of the total range in v

and cr, the other ranges being of very limited applicability. Range Ia gives

entirely elastic solutions, known from Ref. (1], and is not further considered.

The solutions found for Range Ilb are those of prime interest, the other ranges

are somewhat academic.

The parameter (Y in inherently restricted, or < 1 but sensible values

for the angle # of internal friction,. Eq. (149), permit a further limitation

to the range 0.10 < o < 0.20. Numerical results were therefore obtained, as
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1 1 1

indicated in Figs. 9b-d, for combinations of V/c, - 1.25, 2, 5, = , ,

and o = 0.10, 0.15, 0.20. The values C1 selected cover the range sin I - 0.3 to

0.7. Except for two points, which fall in Range Ma, all these combinations are

in Range Ilb. For completeness the result for one case in Range III, v - 0,

= 0.05, V/c. - 2 was also obtained.

Figure 18 shows a typical variation of the principal stress o, and of the

angle e in the major Range Ilb. There is a discontinuous rise in the principal

stress a, at the inelastic front, followed by a discontinuity in direction 6,

but not in magnitude of oi ' at the S-front. There is further a minor increase

in a1 in the inelastic region combined with a change in direction, S. For unit

step pressures, p0  1, Table I gives the values of the principal stresses al

02 , a3 ) and of the angle 0, and the locations of the fronts for all cases

considered, which fall into Range lib.

Figures 19a, b show a1 and S for the two cases, V = 1/3, a a 0.10, V/cp = 1.25

and 2.0, which fall into Range Ia. In these cases the initial stress rise is

again at the inelastic front, c - j. There is a change in a, and B at the

S-front, but there are no further inelastic regions, and no further changes in

1 or 0. The solution in this range does not require numerical integrations, but

is entirely in closed form.

Range III is only of theoretical interest, because it applies only for

sin # < 0.21, but a typical case is shown in Fig. 17. There is no discontinuous

front, the solution starts smoothly at y - y, but the principal stress a has a

vertical tangent and rises extremely rapidly, nearly like a discontinucus front.

b. Conclusion

From a practical point of view, the most important conclusion obtained by the

present analysis concernthe general character of the solutions. The numerical
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TABLE I. RESULTS IN RANGE ilb

Location

A B B and C C

* ".* * * 10* a 2  e

V/C vc 8 ~ a -a -2Vp "I I's  0 lp CP (PI %2 "2 " 3  " 1 " 1

0.10 142.U 146.05 15'.90 ,578 o.65 5Z.2u 0.11 t04961152.84

o 145.55 0.15 138.79 146.73 156.55 0.4352 0.5523 62.31 0.7950 0.3872 48.79

0.20 135.4o 147.21 155.4o 0.3202 0.4677 65.70 0.7881 0.3o43 45.4o

0.10 137.51 150.41 157.71 0.5804 0.656o 69.32 0.8987 0.5519 47.51

1.25 1/8 148.42 0.15 133.47 150.96 156.51 o.4424 0.5411 73.37 0.8791 0.4282 43.47

0.20 130.52 151.21 155.50 0.3346 0.4467 76.32 0.8794 0.3395 40.52

0.10 131.53 156.15 158.26 0.5973 0.6326 83.46 0.9641 J.5)20 41.53

1/4 152.49 0.15 128.42 156.27 157.29 0.4733 0.5016 86.57 0.9743 O.4746 38.42

0.20 127.06 156.01 156.58 03753 0.3972 87.92 0.9813 0.3789 37.06

0.10 157.82 159.41 164.01 0.5960 o.6342 70.77 0.8954 0.5498 67.82

0 159.30 0.15 155.68 159.55 163.17 0.4615 0.5155 72.91 o.8943 o.4356 65.68

0.20 153.97 159.64 162.53 0.3547 O.42O6 74.62 0.8955 0.3457 63.97

0.10 155.03 161.35 164.03 0.5979 0.6319 76.76 0.9441 0.5797 65.03

2.0 1/8 160.89 0.15 153.03 161.44 163.43 o.4662 0.5098 78.76 0.9410 o.4584 63.03

0.20 151.63 161.47 162.99 0.3622 0.4118 80.16 O.94O9 0.3633 61.63

0.10 152.10 164.c6 164.97 o,6053 0.6233 84.34 0.9791 0.6012 62.10

1/4 163.22 0.15 150.68 164.04 164.62 o.4776 0.4969 85.76 0.9799 o.4773 60.68

0.20 150.08 163.95 164.38 0.3760 0.3965 86.36 0.9801 0.3784 6o.o3

F0.10 171.31 171.88 172.54 0.6105 0.6177 82.43 0.9703 0.5958 81.31

0 171.87 0.15 170.52 171.89 172.30 0.4823 0.4920 83.22 0.9761 o.4754 80.52

0.20 169.89 171.89 172.18 0.3805 0.3918 83.85 0.978910.3779 79.89

0.10 170.28 172.51 172.7810.6111 0.6171 84.67 0.9887 0.6071 80.28

5.0 1/8 172.48 0.15 169.55 172.51 172.69 0.4834 0.4908 85.41 0.9889 0.4817 79.55

0.20 169.04 172.51 172.64 0.3820 0.3903 85.91 0.9893 0.3820 79.04

O.lO 169.21 173.42 173.50 0.6125 0.6156 87.53 0.9960 0.6116 79.21

1/4 173.37 0.15 168.70 173.42 173.47 o. 4854 0.4888 88.03 o.9961 o.4852 78.70

0.20 168.49 173.41 173.450 3842 0.3879 88.25 0.9961 0.3846 78.49

1/3 174.26 0.1o 168.61 174.33 1174.33 o.6i14o o.(,]1;L 3,..1 0.99U 0.614o 78.(]

* In degrees . In Whih locationr a - 1, 0 = 9.)o
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results indicate that the major stress and velocity changes o..cur at fronts, an

initial front where the normal stress rises, which may be followed by a shear

front. The continuous inelastic regions which occur are quite narrow, only a few

degrees, and produce changes in the principal stresses and their direction which

are usually quite small compared to those at the fronts,, It is extremely important

that a similar behavior can be expected if the surface pressure is not a step, but

decays as shown in Fig. 1. This expectation makes it possible to solve the problem

of a decaying surface pressure approximately by dioregarding the inelastic regions

as being of secondary importance, but allowing elastic and inelastic fronts of

discontinuity in the appropriate locations. Because of the complexity of solving

the problem with decaying pressure exactly, it is intended to utilize the above

approximate formulation in future work.
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APPENDIX A - Proof for the Requirement r - 0 at a P.lane Discontinuity

In Section lIb it was shown that, for certain values of & and Y, a dis-

continuous inelastic plane pressure front may exist. This was shown on the

premise that the principal stress 01 is normal to the front, which is equivalent

to stating that the shear T, parallel to the front vanishes. It will be proved

here that no plane discontinuity with inelastic deformation can propagate unless

.- 0.

Let y again be the direction of propagation and xqs. (14)-(19) become

2G y 9K 1 y1

o L I + 1 j, + 1[s. 2ji ]  (151)
20 x 9K "

1 . (152)
aY 3

b P(153)

+ (154)

where and K ax-e defined by Eqs. (59), (60). Noting ax s - Sy the

yield condition, Eq. (4), becomes

+ y - -0 (155)iy 1

Steady-state solutions require

,ye- (C) (156)

J- 7 (157)
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4 - a3f(C) (158)

T- af(C) (159)

U - a5f(C) (160)

where C - y - ct.

Substitution of Eqs. (159)b (160) into Eqs. (153), (154) yields, after

simplification

PC.f[. ~>fc} (161)

a5 % (162)

f being subject to the inequalities (64), (65), neither f nor f can be zero

and Eqs. (161), (162) permit nonvanishing solutions for a4 and a5 only if

c2 , G (163)p

= 0 (164)

The requirement X = 0 violates the basic condition X > 0 at locations of

inelastic deformation. Therefore, a4 and a5 vanish, i.e. no discontinuity in

shear can occur.

Having demonstrated that an inelastic discontinuity in shear is impossible,

it remains to be shown that the discontinuity in the normal stress can not occur

in a region wit shear, ri r 0, even if T is continuous. in this case Eqs. (150)-

(152), (155) and (156)-(158) apply while

T a g(yt) (165)

-a 0 i(yt) (166)

where g(yt) J f(y - ct). Substituting Eqs. (165) and (156), (157) into
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Eq. (155) gives

g2 (yMt + -al 2 O ) f 2 (y _ ct) . o (167)

f and g being different, nonvanishing functions, this equation can not be

satisfied.
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APPENDIX B - Steady-State Solution in an Elaptic Half-Space

As background for Section III, the details of the solution of the steady-

state problem for an elastic half-space are derived. The ralues of the stresses

in Cartesian coordinates could be obtained by integration from Ref. [1] and the

desired principal stresses could be computed. However, it is just as easy to

obtain the latter directly from the knowledge of the location of the shock fronts

cp and cS in Fig. A-l, coupled with the necessity of uniform stresses for

PS > p > P and T >y > S . The values tp and (pS depend on the velocities of

the fronts and are given by Eqs. (114) and (115).

Designating the principal stresses in the region % > c >- cP by l ) C2 and

3 W z it follows from Eq. (91) that

(I = A=0 A-~ C (168)

where the jump Aa remains to be determined. The direction of a makes an angle

(PS - (PP) with the normal N to the S-front. The normal stress "N , and the

tangential stress aT with respect to the S-front in the x-y plane can be expressed

by the principal stresses a, and &2 )

N Ao co2(c S - cp) + - sin2(cpS - (p)] (169)

Cr= a [sin 2 (C - (P1,) + -2-Cos 2 (CPS - CPA) (170)

In the region T > > S the principal stresses are -, 2 and 3- "

The surface condition requires that c1= - 1 be vertical, making an angle

(T - CS) with the normal to the shear front. The normal and tangential stresses

(with respect to the S-front) are therefore
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Cy N = _coos2 YS + R sin 2 qSl (171)

17 =_sin 2qp + Rco2'PSI (172)

where

a2
R -"2 - 2 (173)

a,

There being no discontinuity in the normal and tangential stresses at a

shear front, aN and qT in Eqs. (169)-(172) can be equated and give two simultaneous

equations for Aa and R. The stresses a3 and &3 in the z direction must also be

equal, a3 ' a" Using the abbreviation

N = coos + (1-2v) cos 2 (CPS - Cp) - l+V (174)

the discontinuity at the P-front for a unit surface load becomes

S - V) cos 2% (175)

In the region p > S the principal stresses are

a1 = - 1 (176)

cos 2cos

C2 = 1 N (177)

a3 =- - cos 2ps (178)

while the invariants become

= - cos 2% (179)
N

J2 -os N 2%+ cos 2 2% (180)

It is noted that cpp and cS are functions of v in such fashion that N for V/Cp > 1

is necessarily positive, so that the condition J < 0 is always satisfied.

However, the yield inequality gives a condition on a, Eq. (93) in the text,
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APPENDIX C - Analysis for Range lb

In this range discontinuous elastic stress changes occur at the P- and S fronts

so that the combined effect satisfies the yield condition at o W. The

folowing derives the required details of the state of stress for p > cps

Using an approach similar to that in Appendix B., the stresses in the region
> ,> (+) are given by Eqs. (168), and the normal and tangential stresses

with respect to the S-front by Eqs. (169), (170). The principal stress 01 for

y , +)" will, in this range, make an unknown angle 6 with the normal N to the

S-front, Fig. A-2, and cN and OT become alternatively

0 - al COx 2 6 + 02 Sin 2 6 (181)

O.T - ,in +02 co, 2 6 (182)

Equating Eqs. (169) to (181), and (170) to (182), gives two equations for the

four unknowns AV, 0 1, ) 2 and 6, while the yield relation, F - 0, furnishes a

third equation. The three equations are homogeneous in AV and 03 , 112 so that

6, y, I the stress ratios , and their equivalent 0 can be computed. One finds

".2 ( -3 (183)

where the positive root is to be used. (The negative root corresponds only to a

trivial interchange between a1 and 42 .)

The principal stress deviator aI and the invariant Jl are

2 Op ~(1-2y)CItl+ A (141

ho (185)Ji (1-+ )" I 81
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where Aa is the as yet arbitrar-y stress discontinuity at cp , while 6 is

obtained from the equation

'.o, 26 con - s)  (186)

Excluding the trivial addition of multiples of T, there are two roots

_ 161 such that there are two possible values, each, for y and 9:

Y !T161 (187)

8 = cps + . 8 (188)
= -

The value 161 in the Range Ib, considered here, has bounds which can be

established by the following reasoning. While the stresses "N and qT at the

S-front are equal for p+) and (fS the shear stresses T, T for c f

respectively, are different. The condition F < 0, F = 0, applying for c
(+ )

T(-), respectively require that ITI > fl~, so that the angle between 1l and

the normal N must be larger than the one between a, and N, or

161 > (Cps - P) (189)

Further, Range Ib is by definition a range in which the entirely elastic

solution does not apply. If 161 is larger than, or equal to rr - cS one could
seeta ha T it I scth tY@=

select a shear JT.I :< j_ such that 8 . Because of the inequality on T ,

the condition F < 0 would apply for this state of stress, giving an elastic

solution, which contradicts the definition of the range. The angle 161 is

therefore bounded.

-Vs?: 161 > (CPS -p8) (190)
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APPENDIX D - Analysis for Rane la

Solutions in this range have an inelastic pressure front, but are other..

ise entirely elastic.

The stresses in the region S< < , Fig. A-3, may be obtained from

Section Ilb. Let Av be the as yet unknown discontinuity at j, then one finds

&2 3 " d (191)

where

L - Ct(192)

In the region ff > the principal stre1s -" is vertical; the stress

3 rz must equal '3 while 02 remains to be determined, or

33
o r 1 2 = R er R  3 ' 4A U (1 93 )

where R is unknown. (The possibility of *2 a " 1 being vertical would be a

trivial interchange of subscripts.)

At the shear front, the normal and tangential stresses a. and OT must be

continuous, which gives two equations to determine the unknown quantities Av

and R,

c.os

= - (i-A) co,2( - ) + (14) co2 (194)

R- I - (1+4) Aa (195)

To check the condition F < 0 for r > o the invariants can now be

determined using Eqs. (193), (195).
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w (I + PA) ~ } (196)

j2 1+ (1 + f) + -+- - (A) 2

After manipulations the condition F < 0 may be brought into the form

sin ( - ) sin < 0 (197)

or, due to sin 2 < 0,

sin (s - 2,) >0 0 (198)
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APPENDIX I - Analysis for Range III

It was concluded in Section III that solutions without initial dis-

continuities exist in Range III. Such solutions start at I - with initial

values 2 3,, for which the differential equations become singular

so that their solution requires special treatmint. To obtain asymptotic

solutions near the singularity, the variables o, 0 and y are replaced by

*, A and , respectively, defined in Eqs. (138). The new variables are deemed

to be small quantities, so that approximate equations can be obtained by

retaining in each expression only the leading terms in the above quantities.

However, the relative magnitudes of the three quantities are not known before-

hand, requiring the retention of the leading terms in each of the variables.

The determinantal equation (40) becomes

b'f - a2 - b9 6 (199)

where

b8  12 {3 - (1-2 ) (1- 2V - 4 / (+v. (20)

(1-22) {1-21(1-2v) + a (3.+v) (4f + Cr /3 (2-.31)]}

b24 [1- 2v + 6&2(l+v)] a (201)

{1-21(1..2v) + #I +k (1+V) (if + a /3 (2-32)]1

3(1 2v)L1l+& (2l+v)J

(202)

22
a m 2 i
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While b9 is positive everywhere, b8 is positive in Range III, considered here.
! t

Using Eqs. (44)-(46) expressions for 0 and y can be formed and, after changing

to the new variables, lead to

GL" ' + 1 (203)

GLG

l B1  + "1 (203)

where

A ___1 - + _-21)1- 2 -4a,3 (1+) (205)
- 3(1-2R) 1 + (1-2v) (1-2R)

B . 3 v) (206)
1. 1 + (-2v) (1-2k)

B2- ~ I 3 + (1L-2k) [1 - 2Y~ - 2I* /3 (1+v)]l 27

where X is given by Eq. (202).

The knowledge of the nondimensional stress variable A, equivalent to 0,

is not sufficient to find the stresses, and one additional relation is required.

The most suitable one is obtained by adding Eqs. (44) and (45), leading to an

equation for (BI + a2),

d (An(sl + X2)] Cl GL (208)

where

[6 2  1+v 1
3L ) ) [+ ( -,-2

C1 =(1-ao+0[13- (209)

When solving the three equations (199), (203), (2,04) in the three unknowns

11, A and GL/V, the first two are small quantities, while GL/V must go to infinity
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in the limit a - 0. (The possibility of finite values for this limit has been

previously eliminated in Section III as permitting only trivial solutions

aj - 1  0 .)

b8 and b9 being positive, Eq. (199) is hyperbolic in character, and permits

two types of asymptotic solutions. In solutions of Type A, I and A are proportional

to/6 ,

&D 2 / (210)

while for solutions of Type B, T, is proportional to /o , while A is small of

higher order,

.DI/, D2  N (21)

1
where N > I .

For solutions of Type A, Eqs. (210), the leading terms on the right side

of Eqs. (203), (204) only are retained, giving

dL All L (212)
de V.

GL
d. B1A "M" (213)

Elimination of GL/V and substitution of Eqs. (210) leads to a requirement on

the coefficients, A, = B1 . This requirement is not satisfied, so that solutions

of T1-ype A are impossible.

To obtain solutions of Type B, only the term b81f on the left side of

Eq. (199) is retained, so that

D - -  (214)
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Equation (212) applies again, giving

GL 1 (215)
V2A 2A,

This relation gives the proper sign for L and satisfies the requirement for

singularity of GL/V. To determine the quantity A it is noted that Eq. (213)

would apply if N lies in the range 1 < N < I for the exponent, so that in this

case again no solutions can exist. Alternatively, assuming N > I, substitution

of 11 and GL/V gives a solution for A proportional to e, equivalent to N - 1,

which is a contradiction. This leaves solely the possibility N - 1, for which

case Eq. (204) indeed gives without further simplification the solution

B2

D2" 2 1B1  (216)

Being proportional to e, the quantity A is small compared to 1, so that - as

a first approximation - the relations

b8  
(217)

a 0 (218)

may be used. Substitution of Eq. (215) into Eq. (208) gives after integration

(81 +s 2 ) - c0  (219)

where C is an open constant of integration, while the exponent is

n a C- (220)

2A3.

Equation (218), stating A 0 0, implies 0 - 3, such that the ratios of the

stresses must be the same as at the inelastic shock front

1

2  - s1  (221)
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J M i (222)

01 - + 9-.1 (23)

n
indicating that all stresses are proportional to s . It is important that

this exponent, while always positive, is less than unity and usually a very

small number, of the order of 1/100 (for the specific case V - 0, a' - 0.05 one

finds n - 0.00598). The derivative of the stresses with respect to the angle c

is infinite for -+ 0, and the small value of n indicates a very rapid stress

rise adjacent to the singularity.
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TABLE I. RESUITS IN RANGE Ilb

-1

Loc',tion

A B B and C C
* -.* * * e* - 2  8*

-~~~ a 2 ~e
V/cp v (s a cp 1P T2 " 2 3 a 1 3

0. 1--27T4 IF;5.05- i57(-.90 0.5 78 0. 5 5.26 0.8111 0.79 1 52.6

o 145.55 0.15 138.79 146.73 156.55 0.4352 0.5523 62.31 0.7950 0.3872 48.79

0.20 135.40 147.21 155.40 0,3202 0.4677 65.70 0.7881 0.3043 45.40

0.10 137.51 150.41 157.71 0.58o4 0.656o 69.32 o.8987 0.5519 47.51

1.25 1/8 148.42 0.15 133.47 150.96 156.51 0.4424 0.5411 73.37 0.8791 0.4282 43.47

0.20 130.52 151.21 155.50 0.3346 0.4467 76.32 0.8794 0.3395 40.52

0.10 131.53 156.15 158.26 0.5973 0.6326 83.46 0.9641 ).5)20 41.53

1/4 152.49 0.15 128.42 156.27 157.29 0.4733 0.5o16 86.57 0.9743 0.4746 38.42

0.20 127.06 156.o1 156.58 0.3753 0.3972 87.92 0.9813 0.3789 37.06

0.10 157.82 159.41 164.01 0.5960 0.6342 70.77 0.8954 0.5498 67.82

0 159.30 0.15 155.68 159.55 163.17 0.4615 0.5155 '72.91 0.8943 0.4356 65.68

0.20 153.97 159.64 162.53 0.3547 0.4206 74.62 0.8955 0.3457 63.97

0.10 155.03 161.35 164.03 0.5979 0.6319,76.76 o.9441 0.5797 65.03

2.0 1/8 160.89 0.15 153.03 161.44 163.43 0.4662 0.5098 78.76 0.9410 0.4584 63.03

0.20 151.63 161.47 162.99 0.3622 0.4118 80.16 0.9409 0.3633 61.63

0.10 152.10 164.06 164.97 0.6053 0.6233 84.34 o.9791 0.6012 62.10

1/4 163.22 0.15 150.68 164.04 164.62 0.4776 0.4969 85.76 0.9799 0.4773 60.68

0.20 150.08 163.95 164.38 0.3760 0.3965 86.36 0.qO1 0.3784 60.08

0.10 171.31 171.88 172.54 0.6105 0.6177 82.43 0.9703 0.5958 81.31

0 171.87 0.15 170.52 171.89 172.30 0.4823 0.14920 83.22 0.976110.4754 80.52

0.20 169.89 171.89 172.18 0.3805 0.3918 83.85 0.9789 0.3779 79.89

0.10 170.28 172.51 172.78 0.6111 0.6171 84.67 0.9887 0.6071 80.28

5.0 1/8 172.48 0.15 169.55 172.51 172.69 0.4834 0.4908 85.41 0.9889 o.4817 79.55

0.20 169.04 172.51 172.64 0.3820 0.3903 85.91 0.9893 0.3820 79.04

0.10 169.21 173.42 173-50 0.6125 0.6156 87.53 0.9960 0.6116 79.21

1/4 173.37 0.15 168.70 173.42 173.47 0.4854 0.4888 88.03 0.9961 0.4852 78.70

0.20 168.49 173.41 173.h5 0.3842 0.3879 
88.25 0.9961 0.3846 78.49

1/31741.26 0.10 168.6. 174.33 1.74.33 0.6140 0.61]1 3,..91 0.9999 0.610 78.'I.

* In degrees ** ti Uis location = - i, 8 = 90°
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