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With the help of: Pontryagin's maximum principle a designer can de-

termine for a given plant a control system which is optimum for a given

performance criterion. Many papers have been devoted to the investiga-

tion of zeroing initial disturbances in minimum time, because this seemed

a desirable performance. However the control of spacecraft has drawn

attention to the fact that minimum fuel consumption often may be more

important than minimum setthng time, In some cases, the problem of

control w-ith mini=m fuel consu;prtion leads to a -hang control

just as in the minimum time control ;roblem. T4ether this occurs or

of mchaica orelecricl pwer(ref. l 1
not, depends on the type of mechanical or electrical power supply.

In the following we will restrict ourselves to linear systems and to

performance criteria which lead to bang-bang control.

Let the system be given by

or f (xj u) (1)

A is a constant matrix =L B is a constant vector. The conzrc.

function u is bounded

I'< 1 (2)

It is desired to go from

'X(o) = ' to 'X(T) = 3
o Xf

with the performance criterion
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T

fg(xi) dt minimum4)

0

must assume at any time an extreme value in order to satisfy the perfor-

mance criterion. This extremum will be reached, if

u = sgn E (pibi) (6)

The functions pi are the solutions of a system which is called "adjoint"

to the system considered,

H fj

:- : - Pj. ('i)

The initial conditions of the functions p. must be chosen such
that starting at x°  the point xf is reached in time T . In the

minimum time case, T is not given but is made a minimum, in this case,
(x )- -'J

g(x) = 1 . Without specialization Xf can be set xf = 0

The above procedure means that to each point x belongs a set of0

switching points. If it is possible to find the geometric locus of all

possible switching points in a phase space, then the task of finding the

initial conditions for the adjoint functions is superfluous. For second

order systems without zeros this task has been achieved for the minimum

time case (7 )  several minimuia error criteria (3) and minimum fuel'

consumption 1 . In this second order case the locus of the switching

points is a curve which separates, the phase plane in two halves. The

initial. u value is apparent and the only trouble is the realization



of this switching curve as a function of the phase variables. The remark..

able fact is that the switching curves for minimum time and several error

criteria are neighbor curves. This fact first obierved that the (/s 2 )

curves for the (1/6 2 + 1) and (/s 2 + 2 s+l) 'plants by merely pertu,.-

bing the minimum time switching curve, and watching the change of the

.magnitude -)f the integral determining the performance.

The fact that there exists a mathematical procedure to principally

compute the-optimum control law, does not mean that the result of such a

computation necessarily enables the designer to realize this control.

He will first have to weigh the advantage of an optimum control with a

possibly difficult control lav against a control with a somewhat simpler

switching function. Only if the advantage is great will he decide to

realize the optimum law.

We shall exclude from our consideration the simplest switshing

function, that is the linear fanction. This switching function will in

general lead to chatter at least near the origin of the phase space if

not also in other regions of the phase space. Optimum control can also

lead to chatter. The case of the performance criterion

f e2dt, (8)

0

treated by A. T. Fuller (2 ) , shows this clearly, but in general chatter

will be avoided, if optimum control is used. In systems with linear

switching functions the chatter is due to imperfections, while in systems

with optimum control this chatter occurs in an ideal or perfect system



and the imperfections of the control components would only modify

this chatter.

Quasi-Optimal Switching Curves for Second-Order Systems

.inear switching as an approximation of an optimum control function

shall be excluded in this paper.* The question of a better approxima-

tion, then, has to be discussed. For performance criteria which do not

lead to chatter near the origin, the control law requires a switching

surface near the origin which is formed by portions of all possible

zero trajectories. Such a requirement can be and has been easily sat-

isfied, e.g., in second order systems with pure, imaginary poles, The

first example (Fig. 1) shows an often expressed idea of approximation

for a system with the transfer function (1/s2 + 1),(See ref. 5). This

idea can easily be extended to systems with (1/s2 + 2t s + 1), see

Fig. 2. In this case the linear part of the switching curve is made

parallel to the "envelope" of the cusps. In both cases one can

argue, whether really much is lost by taking only part of the first

cusp and the dashed lines.

Second order systems with real poles require switching curves

which can be 4escribed by a simple power law. Also the number of

switchir an be easily determined; it is one or none (for

all those ii. .nts which incidentally lie on a zero trajectory).

The design problem is simple compared to systems with complex or

imaginary poles.

Fr
*For details see ref (3) and (4).
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Control of Third-Order Systems

For third order systems the control with minimum settling time is

certainly the simplest one. Let us consider first the general equation

of a system

ef"+ a2e" + a1e' + a0e = b2u" + blu' + bou (9)

This system has poles and zeroes. If b = b2 - 0. We have the third.

order system without zeros. Switching occurs on a surface in the three-

dimensional phase space.

In case of three real poles, the division of the phase space in two

halves does not pose any analytical difficulties. The realization of

this switching surface may pose an analog computer problem, but dertainly

not a digital computer problem. We, therefore, immediately concern

ourselves with the problem of one real and two complex poles. This case

has been treated recently in two papers (6,7). In these papers iteration

procedures were described for finding the exact switching curves.

There is no doubt that the exact switching suface poses a difficult

design problem, particularly if initial distrubances of any larger size

would be admitted. Fortunately the experiences with the second order

system can be generalized.

We will consider the system described by the equation

(s + Y)(s 2 + 2tws + w )e = u = sgn F , with < 1 (10)

This third order differential equation can be replaced by a system of

three co. :-led first order equations in e, el, and e" . This system

then can be conveniently transformed to a partially uncoupled system

by the transformation

-5-



x= 2 2 - e

W2 2t6) 1

In the new coordinates the system (1O) is described by

-t Vw 0

x -vW -t, 0 X + V/W u (12)

0 0 -7 2.

The exact optimum control function u is given by

u = sgn( Pl+- P2 +P 3 ) (13)

The functions pi are the solutions of the adjoint system

:2l = tpi + VWp 2

2 = tNP2 - Vw. (14)"

3 = P37

Integration of this system yields

P1  m1eW
t cos(Wt + P

P2 
= mleWtt sin(&t + P (15)

P3 
= me

with ml, m2  and P, as constants of integration. Upon introducing

these: expressions into eq'. (13) one obtains

-6-



u = sgn i mle "1 cos(Wt + pl)

- e i sin(t + I + m2 e7 or

-J

u = sgn(ml* e wt cos(wt + 1 + m2 et] (16)

The constants ml*, 1l* and m2 depend on the given initial distur-

bance as mentioned earlier. Their determination causes trouble which

can be avoided if a "switching surface can be found.

The "Outer" Switching Surface

In the following we shall first develop a quasi-optimum switching

surface for the plant with 'the transfer function i/s(s2+l) . We

shall later show how the results for this plant can be generalized.

For 7 = = 0 eq,. (16) simplifies to

u = sgn[m* cos(wt'+ P) + M2 ]  (17),

If T is assumed to be the time for zeroing an initial diszrubance,

one can consider the study of the motion in reverse time T'.

T T -t.

u = sgn[m* cos (wt - wT - 1) + m (18)

sgr.[m* cos (Wt - P*) + m2 ]

One can construct a trajectory in reverse time by assuming PrX* and
1

(m*/m2) . Then the switching times are determined and after T sec-

onds one will reach a point in the phase space, which corresponds to

the initial disturbance. Since cos(wT - wT - *) cos[Wr - (wT +

-7-



is a periodic function, two trajectories for which 04T + ) -

(wT2 + 2= 27M. will partially coincide and have coinciding switch-

ing points in the identical portions. In ref. (6,7) it has been shown

how to find the location of these switching points in the phase space

(see fig. 3). It is obvious, %haz it would be difficult to build up the

surface on which all possible switching points for all possible P, ,

m1/u2  , T are lying. But there is no need to be very exact as soon as

one is one cusp away from the origin of the phase space. Therefore it

was tried to approximate the locus of the switching points in a rather

primitive way. The straight lines on which the points P2, P4 ... and

P, p!.. ". are lying (see Fig. 4) are considered as representatives

of the more complicated curve which is the carrier of switching points.

If one considers the ruled surface built of these lines, one obtains

forii x I11>1

u = - sgn F
sgn=- Il + (sgn x2)[(xl) + arc cos r(x) (:12)Y

(21lx (s+ xXx'(x)-~.(.)2J

for (x 1 x3 ) > 0 (19)

and

U = - sgn(2 Ix 1 x [x - (sgn x.3 ).w + (sgn x2X[(xl 2 +

+ (x2 )2 ] arc cos [- (X2 ) 2 ]for (X1x) < 0

1 I2
Figure 5 shows a sketch of the surface, it includes the x and x

3
axes, however on x there do not lie real switch'ng points, because

x 1= x2 ; 0 yields F = 0 , but there is no change of sign. F

behaves as indicated in Fig. 6.
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A word has still to be said about the switching surface close to

the origin. A visualization is easy. In reverse time the phase point

leaves the origin on a zero-trajectory. Each point of this zero tra-

jectory can be considered as a switching point. That means, from each

point of the two zero-trajectories a new trajectory is emerging. These

new trajectories form a surface. Each point of this surface can be

considered again as a potential switching point, which means as a start-

ing point of a new trajectory portion in reverse time. As indicated

earlier only the surface formed by the trajectories emanating from the

two zero-trajectories will be considered. The poirtion of this surface,

for which the distance of the surface points from the origin is smaller

thana a fixed value, will be used. For larger distances the surface given

by eq. (19) will serve.

The limit for the use of the surface near the origin was first

assumed to be given by [(x1)2 + (X2 )2 + (x3 )2 ] < (2)2 . However it soon

turned out that the transition fror. the "outer" surface to the "inner"

surface can cause trouble. Since the outer surface is not the exact

switching surface, the phase point may pass, let us say, a switching

from (+1) to (-3.), just before transition. However this switching may

bring the phase point to the (+l) side of the inner svrface. Therefore

a contradiction exists and a chatter occurs which causes the phase

point to be trapped in the transition region. This trouble can

usually be avoided by taking [(xl) + (x2 )2 + (x) 2 ] < 1 . Because

of the flatness of the outer surface near the origin, it is even better

to use [(x l+ (x2 < 1 as the transition conditionc¢.

-9-



The "Inner" Switching Surface

The analytic determination of the switching surface close to the

origin (the "inner" surface) is somewhat troublesome, even if one con-

siders its realization by digital or analog computer equipment. There-

fore some simplifications are desired. Two possibilities are available.

First possiblity: One replaces the plan,.transfer function

21 by -s1 (20)

(s + 7)(s +2 s + l) s

For the latter transfer function, the switching surface is given by

i - 3/2
1 e5 e i12 4-e2 =0 (21)

I  3 -3 2 - e 3  2 )

with negative sign for

2
e5

e2 2-2

and positive sign for (21a)

2
e3

2 2

In these formulas e1 = e, e2 = e, and. e5 = . The control fanction

is given by

U sgn eI + e 3 e e e2 e2)32] (22)

with the same rule for the signs. The deviations caused by using the

model (1/s3) instead of the correct plant can be visualized in the

following figures.

- 10 -



In Fig. 7 the zero-trajectories are given in the ele2 plane for

a full third order system and three possible approximations to it.

The output of the relay is either (+l) or (-1). This determines

the scale of the figures. Naturally one can have more and less agreement

depending on the values of 7 and which here are unit and zero

respectively.

In Fig. 8 projections of these trajectories into the e2e3 plane

are shown. One can see clearly that only in a rather limited region

are the zero-trajectories of the approximations close to the zero-

trajectory of the original system.

In Fig. 9 projections of zero-trajectories for several other third

order systems are shown.

If the initial values are not too large and only one switching

occurs between start and the reaching of the origin of the phase space.

these curves will give an idea of how good the approximation of the opti-

mum control will be, if the complete third order system is replaced by

simpler ones.

The second possibility for control near the origin of the phase

space is a modification of the surface given by Eq. (19). One applies

factor N to the control function which diminishes the control effort;

that means

u = - sgn F (23a)

will be replaced by

u = -N sgn F (23b)

with N = f(IxII) as indicated in Fig. 10. A step width A has to be

- 11 -



chosen and Ni = (i + 1)A for lixl = iA + G with O<E < A . In this

procedure, one may say, the neighborhood of the origin is stretched.

Naturally one cannot expect to reach the absolute "zero", the final state

will be a chatter around the origin. Also, one has to count on loosing

some time by diminishing the control effort.

Results

The Equations (19a, b) and (22) for the switching surface may look

rather complicated, but they can easily be implemented with the help of

a modern computer. It is expected that new miniature digital computing

elements can be used in .flyong-objects.' - .

A number of examples have been investigated. These examples were

first constructed in reverse time by employing the exact switching

points, then it was assumed that we had the initial disturbance given

and we used the "approximate" switching surfaces given by equations (19)

and (22) to zero this disturbance. One example is given here.
0 ,

e = 30.67 ; do = 2.93 ; e= 7.07

12

True optimum and quasi optimum switching time were practically the same.

In Fig. lla and llb projections of the phase trajectories are shown.

Two other examples shall be given here

o 1
e=l x = 13

eo 13 i.e. xo =2

- 12 -



The optimum tiL for this example is Top t = 31.3, and the quasi-

optimum time is Tq.o. = 32.4 . at which time Jxf < 0.1

For the next example, with
o 1

e 0 6.63 = 0

o o z2
e = e3 = 0 i.e. x 0

3 =6.63

we obtained Tt =8.3 and T 8.9 for Ix< _ 0.1

Generalization

As indicated earlier, (p. 7) we have still the task of developing

a quasi-optimum outer switching surface for 7 . 0 and / / 0 .

Let us first consider the case Y = 0 and 0 . When we compare

the analytical expressions for the canonical variables as functions of

time, we recognize that for 0 in the nth interval

e cos (Vx5 + ) + u (24a)

with V = 1 - 2 compared to

x2 Co s o (Vx n + 6*) + u. (24b)
n n n n

1

for t = 0 . xn is similarly changed. Therefore it is indicated that

eqs. (19) should change correspondingly.

U=-sgn( IxI x+ e +(sgn x2)[(xl)2+(x 2) arc cos (x (x 2) }

for (xlx5) > 0 (25a)

and

- 13 -



r1  3 12 22 K(XOT
U -sgn 2x[X -(sgn x)re + (sgn X2)[(x ) +(x ) ]arc cos (2

for (x x3 ) < o (25b)

This is a somewhat primitive generalization, because a look at the

figures in (6) shows that one could apply a much more strict analysis.

For instance one could build-up the switching surface out of the straight

lines which are the arithmetic means between the lines P2 ) P4 ... and

PI, P3 "*. (Fig. 4). In the limiting case ( 40) this new line would

converge into the old one.

The situation becomes more involved, when y 0 0. In this -ease-

3 u (3 U - Yt n

Xn = - no -) e (26a)

compared to

x3 =u t +C* for =0 (26b)Xn =n n n

One sees immediately that the line connecting points 0, P2, P4  " P2n

is no longer a straight line, in spite of the fact that the projection

into the x X plane may still be assumed to be straight. It is pos-

sible to establish a difference equation for

x3(P2n ) - x3(P2n 2 )
22(2T)

x2(P2n ) _ x (P2 n_2 )

3x2
which leads to a differential equation for the relation x (x2) . The

quasi-optimum switching surfaceL F(x 1 ,x ) = 0 then can be found.

It can be realized easily with digital equipment. In the near future we

intend to increase the number of exam,31es and to compare more quasi-

tThis assumption is in the frame of the approximation described in
ref. 6 and 7.
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optimum results obtained with the truly optimal results. Also, the

results shall be extended to include the general case in the finite 7

and finite t .

A Simple Fourth-Order Problem

The importance of two-axes satellite control directed our atten-

tion to a fourth order problem, described by

(s2 + 2t1w s + W2(S2 + 2t w S + W2 )e(s) = u(s) .(28)

In orthogoral variables the system is given by four differential equa-

tions of first order.

"tql Vl1Wl 0 0 Y/ l

-V 1 -WW10 0 V

+ U. (29)

0 0 _t2'2 2 /2
oo -2 2 v22 2/2

L 0  -V2a2  -t2 2 V2/W2

The control torque depends only on one control function; this clearly
,

is a simplification for a first attack, of the problem. The homo-

geneous system is decoupled in two systems of second order. However

the optimal control function a- depends on both frequencies

u = sgn[C1 Cos (Wl T + 8*) + C2 cos (2 T+ 5*)] (30)

Where T= T - t denotes again reverse time. Therefore the two second

order systems are coupled through the control function u

te begin studying the case of two steering functions also.

-15-



A representation of the phase trajectory can only be made by tracing

12 34projections into the x x and the x x planes. An example with

W1/U)2= 1/3 serves to get acquainted with the problem. In this case

1
i --- + R1 0 cos ( lti + 8i

3 u
1 -2  20 cos (w2ti + 82i )'02

It is obvious that the control force visible in the x1x2 plane

is nine times larger than in the x3 x plane. Figure 12a and b

shows an example, which was designed in reverse time. One recognizes

that also in this case an approximation of the time optimal cortrol

law is rather easily possible. This example is particularly simple

in that the ratio w2/01 is an integer. Additional more general

examples are being stud..ed.
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List of Illustrations

Fig. 1 Quasi-optimum switching curve for a (1s 2 + 1) system.
Fig. 2 Quasi-optimum switching curve for a (1/s2 + 2s + 1) system.

12
Fig. 3 Projection of2the optimum switching curve in the x x plane

for a [i/s(s +l)] system.

Fig. 4 Projections of lines joining the ti-s of the cusps in the
xlx2 and x2x3 planes respectively.

Fig. 5 Sketch of the quasi-optimum switching surface for a [1/s(s 2 + 1))
system.

3
Fig. 6 Sketch of the behavior of F vs. time as the x axis.

Fig. 7 Projection of the zero-trajectories in the e 1 e2 plane for a
full third-order system and three approximations to it.

Fig. 8 Projection of the zero trajectories in the e 2 e3  plane for a
full third-order system and three approximations to it.

Fig. 9 Projection of the zero-trajectories for several third order
systems.

Fig. 10 Sketch of multi-level control behavior near the origin of the
phase space.

Fig. lla Projection of the optimum trajectory in the x x2 plane for a °
system with 7 = 0 = 0. Initial disturbance xI = e = 2.93,
x2 = e3 = -7.07, xi = 7.57, i.e., el = x2 + x3 = 30.67

Fig. llb Projection of the sv;ne trajectory in the x2 x3 plane.

Fig. 12a Fourth order systemn, projection of the optimum trajectory into
xI x2 plane.

Fig. 12b Fourth order system, projection of the optimum trajectory into
the x3 x4 plane.
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Optimum and quasi--optimum control of

third and fourth-order systems.

Irmgard FlUgge-Lotz and Harold A. Titus, Jr.

Stanford University

Abstract

Pontryagin's .maximum principle is used for computing the optimum

control functioh u(t) for a giver. plant and a given performance criterion.

If u(t) is bounded, the control is of the bang-bang type in many cases.

If u(t) is expressed as the function of the state variables, that means,

u(t) = sgn f(xi) , the e-quation f(x') = 0 determines the switching sur-

face in the state space. In general these surfaces are not given by

simple analytic functions, in particular not if the transfer function of

the plant contains complex poles. If the desired final state is given by

error and error derivates being zero, this surface goes through the origin

of the phase space. -

Based on experiences with second-order plants, a systematic attempt

has been made to approximate the exact switching surfaces for third-order

plants. There is an aporoximation of the surface portion close to the

origin (the so-called "inner" surface) and an approximation of the larger

portion of the switching surface which is not close to the orig-:. (the

"outer" surface). Examples show the use of these surfaces; their results

are compared to results with exactly optimum switching. They &aree well.

The extension to fourth-order systems is indicated.
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