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DISTRIBUTION OF DROPS ACCORDING TO SIZE IN ATOMIZING LIQUIDS 
BY KEANS OF CENTRIFUGAL ATOMIZERS 

by

L. G. Golovkov

The article presents further support of the function of distri­

bution of drops according to size proposed in the work (5), explains 
the method of paramater derivation for this function and establishes 
the numerical value of its parameters for centrifugal atomizers.

The most fruitful concept for the establishing of analytic dependences between 

parameters which determine the process of atomization and sizes of the spectrum, 

in our view proves to be the concept expressed for the first time by Mugele and 

Evans (4) and developed afterwards by Tresh (5). Its basis is composed by two pro­

positions* a) in the spectra of th«. atomized liquid there are always contained drops 

of the greatest size b) dmps of all the remaining sizes occur as a result

of statistical conformity to rule.
H

Tresh explains the statistical character of the functions of distribution jf 

drops according to size by the fact th« t at the original mcmient of scattering of 

the Jet there occurs a disordered > change of energies among the separate particles 

of liquid through the merging of individual drops, their secondaiy atomisation, re­

peated mergir*g, etc. This chaotic orocess also results in the formation in tn. )C- 

rum of the atomized liquid of only a small number of very big and very small drops.

Here the author preposes the lollc /ing dependences for computing the spectra 

of the atomized liquid* the equation for determining

(1)

k Pm ^ t \ PmOD„aJ V Pm)

and the function of the density of .he distribution of the drops sizes
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The expression (2) Is a well-founded aemiempirical function of the distribut- 

ion of the drops by sizes and consequently, it is favorably distinguished from the 

other purely empirical equations (for example (1-3» 6) and of other authors). How- 

ever, the equation (l) and the numerical value of the parameter^ (equal to 0.35) 
n 

were established by Tresh for developing the experiments In pneumatic atoralzation 

of liquids and therefore proved to be not suitable for centrifugal atomizers. 

In this article there is analyzed a supplementary b«isis of the function of dis- 

tribution proposed by Tresh (2), methods are given for the determining of the para- 

meter o of this function, there is establiohed its numerical value for centrifugal 

atomizers, and there is also refined the generalized dependence for determining F) 

The function (2) was established by Treshy the methods of statistical thermo- 

dynamics with the postulation: l) of constancy of the overall volume of the drops; 

2) of constancy of the surface of the drop mixture in the period of chaotic exchange 

of energies among the particles of the liquid. If the first assumption causes no 

particular uncertainties, then the second does not prove to be manifest. Below 

there is given the proof of Trash's second postulate. 

The known peculiarities of the conditions of the existence of molecules on the 

boundary separating liquid and gaseous phases are the reason that the increase of 

the surface of the separation requires the expenditure of work. The amount of this 

work referred to unit of area of surface represents the surface tension  or the 

specific Isobar potential Z (7). 

In the formation of the surface by the area 4 f *he change in the isobarlc po- 

tential amounts to 

(3) 
On the other hand it is known that for any process ( 3 Z/ ^ T) = -S. Consequently, 

the change in the entropy in this process is equal to /d S = -( ^ i A  Z)/ ^ T) , or 

with the taking into consideration of the relationship (3) 
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AS-~
■ ■ \ d(^f)

dT p '[dTi
Q

p L dT

By disregarding the change In the surface connected with the change in the tempera­

ture (in view of the insignificant coefficient of the volumetric expansion of liquids) 

we shall get

AS- -A/
\dT)

Now let us assume that in the process under consideration of the chaotic ex­

change of energies Between the particles of the liquid their total surface increases 

by { ^ r 0), Then according to the relationship (3) and (4)^ Z ^0 and ^ S

7^0 inasmuch as ( d ^ T)p always is negative (with increased temperature the 

Surface tension always becomes less).

Conaequently, with f ^ 0 the indicated process should be accompanied simul— 

taneoucly both by increase in the isobarlc potential Z and py increase in the antropy 

S. According to the second law of thermodynamics the simultaneous Increase of thes-.- 

two values in a spontaneous proces; is not possible. Therefore the value f can­

not be positive.

The propoflltion of the reduction in the total surface of the drops ( f ^0) 

also leads to a contradiction with the second law of theraodynamics { ^ C, nni 

imultaneously ^ S^O). The contradiction disappears when f = 0, i. e.. 

w ,en the surface of the drop mixture ij the period of its ■disordered" state is un­

changed, which was what was to be proved.

In the solution of each statistical problem after establishing the matheform of 

the function of the distribution, it is necessary to develop methods of determining 

the numerical values of the paramet-srs of this function on the basis of the exist- 

in • reuulta of observations, i. e., to derive its parameters. The parameters of
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the function (2) are Dmax and K • 

In the processing of the experimental data on the atomlzatlon of liquids by 

centrifugal atomizers with the aid of the theory of dimensionalities there was ob- 

tained the following generalized equation for determining Dmax: 

With regard to the parameter^as depends on two basic methods of primary pro- 

cessing of experimental data on th atomizing of liquids, there are proposed below 

two operations for its determination. 

For the case where to measurement in the sample there is subjected each of its 

eloments (every drop) the determination of Ais done by the method of the maximum 

plausibility (8) which gives the most nearly •,precise,, value for the parameter p  . 

In determining in the sample the number of dr >ps which fall into different 

Intervals as to size for finding the numerical values of ^i one uses the method of 

moments. 

Method of Maximum Similitude. The relative frequency of the drops dn/n0 in the 

formula (2) can be treated as the probability of the occurrence of drops of dimen- 

sions of from Q  to ß + d fa ,  and therefore the function (2) is the probability den- 

sity of the random value Q. By accomplishing on the equation (2) the functional 

conversion D = Dmax Q ,  we shall get the function of the density of the distribution 

of directly in accordance with the diameter 

'      n 

or after integration 

/m       &«DL.exp(-ßPn,../DL. (7) 
9(OJ-       Z>'(l+P)exp(-1>» 
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Mt; propose now that we have a sample of the volume 0n consisting of n indepe: 
J^n. 

values for the dimensions of the drops 

DxJ D25 D3 ... ; Dn< 

The probability of the occurrence of a given sample 

P(On\ P)-?(0.; P)<P(0.: fO-.-WA.: ?). (8) 

representing a function of the fixed values of the dimensions of the drops D,, D-, 

D3»  •••  » Dn   and the variable parameter^» is also called the function of similitude• 

It is apparent that if the selected value oi ßia such that H0o; ß )  is very 

small, then this event ,,practically,, should not occur in a single experiment.    Con- 

sequently, such an hypotheses about the value of/} should be rejected as not pro- 

bable. 

The method maximum probability applicable to the given case consists in this 

that the "best" value for rj is determined in a way as the variable argument of the 

function (8) at which it reaches the maximum value. 

In other words, the "best" value for£) we get from the condition 

P (0rt; ß) = max 

or, what is the same, from the condition 

In P (0n; ß) = UVi;  D2'>  •••  ' ^n'P ) = mn*' 

inasmuch as P(0n; A ) ^>0. 

The function of probability for the distribution (7)  in accordance with the equation 

(8) has the form 

P(On.?) ■=    /^....^(U Weipf-n?)' 

and therefore 
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The value otp sought Is determined by the condition of the extrentum ^ Vd/O =0» 

hence 

i. 
p    l + p 

isit V — 

After designating the right side of the expression obtained by b we shall have 

P=('-* + K(l-6), + 86)/2ö. (9) 

Thus,  If one measures in the sample from the drop mixture the dimensions of 

each individual drop, then the finding of the parameter     is reduced to very simple 

operations, the computation of the value   ^. 
n    ^ D, 

1 -1 

and the use of the formula (9)« 

In this situation C^^ should be determined in accordance with the criterional 

equation (5)« 

Method of Momenta.    The essence of this method of deriving parameters consists 

in this that according to the Khinchin theorem with a great volume of sampling 0- 

from the general aggregate of objects any theoretical moment of the order i of ran- 

dom magnitude is approximately equal to the corresponding empirical moment.    In 

this situation the greater the volume of the sampling the more nearly accurate this 

apporximate equality will be.    For our case the most convenient is to use the first 

initial moments of the random value D, or what is the same, the theoretical ^(D) 

and the emperlcal M^ (D)~the mathematical expectancy of the random value D. 

Inasmuch as the random value of D (diameter of the drop) changes from 0 to D^^ 

and its probability density is given by the equation (6), therefore 

AUD)- 
pH--^)^- 

^ 0 
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or after integration 

Mr{0) = ßZW(i+?). do) 

With the second method of processing the primary data en the atomization the 

results of the experiment present themselves thus: in the intervals of grouping 

0""D1; D1""D2' ••*» Dm-l~Dm the »umbers of drops respectively, are np n2, ..., IL. 

For the composition of M^ (D) let us have recourse to the following operation. Let 

us designate by ^i the average of the ith interval of grouping, ^ Ü. the width of 

this interval, and by f ^Dj  the relative frequency of drops of the size DiZ0.5 

^  Di. Then f j^) = n^   £ ^ and 

.=1 (n) 

by designating 

On the basis of .Jilnchin's theorem Mr(D)^Ä?Mv (D), hence 

1 + P      i-i 

j-l . 

we finally get 
? = a/(l-a). (O) 

Consequently, the determination ofß in this case is reduced to the computntv a of 

the value     and the application of the formula (13).    In this situation D       a:öo 

should be computed in accordance with the equation (5). 

At our disposal there were experimental data on the spectra of the atomi aation 

of liquids in the form of the above indicated tables.    Therefore the numerical val- 

ue for the parnraeter^for the centrifugal atomizers was determined by the method 

of moments. 

In the table there are shown the results of the computations of the value/) 

for 15 centrifugal atomizers, the geometrical characteristics of which changel from 

2.09 to 7.50 and the drop in the pressure on them 6 • 105—30 • io5 n/ra2 
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-a,;. 

From the table it is seen that the valueyQ practically does not depend on the 

geometrioal characteristics of the atomizers nor on the system of their operation, 

and it varies with the maximum scattering by not more than 10% around the average 

value y^  = 0.190. 

Table 

Original Data and Results of Determining Parameter/y 

At onuia 
reoMCTpniecKaR 
xapanTcpiicTiiKa 

^opcyiiKH A-f\ 

1. 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
16 

4,72 
3.00 
G,31 
5,45 
3,65 
4,61 
3,65 
5.13 
7 50 
3,63 
3,92 
4.25 
3,45 
2,09 
4.34 

nepenaa aamieim« 
Ha (jwpcyiiKe Apj,' 

•10-»,«/x'   i 
WllCJIO OTOÖpaHHUX 

Kanwib /I. 

9 
10 
13,5 
7.6 

20 
30 
10 
12 
14 
28 
10 
6 
10 
12 
9 

2835 
4521 
3183- 
1543 
3713 
2603 
4008 
4996 
8438 
5404 
3448 
6244 
5747 
8246 
3384 

0,198 
0.171 
0,182 
0,186 
0,206 
0,188 
0,192 
0,193 
0.199 
0.192 
0,192 
0,186 
0,168 
0,180 
0,205 

1) ordinal number of experiments; 2) geometrical charac- 
teristics of the atomizer A;  3) drop in pressure on the 
atomizer ^1 p^   • 10-', n/mr; l) number of selected drops 
no. Y 

After determining the numerical value of the parameter     it was clear how well 

the selected function of distribution describes the existing data from observations. 

In Figure 1 there is shown for a single atomizer the emperical distribution D in the 

form of a graduated curve (histogram) and the theoretical distribution (6) with the 

computation for this atomizer of the value/f.    In Figure 2 there is given for this 

same atomizer the composition of the integral cunres of the distribution! experi- 

mental F(D) and theoretical j(D).    As is known, F(D) = n(D)/n0 and 
D 

«(D)= r9(D)dD= . .)fin„exp(-ßDm„/Q) 

. P'0»...exp(-ßDm;./0)tf£._ 
"jDa(l + ß)exp(-p) 

X 

(l+ß)exp(-ß) 

l ß ßAn.. 

(u) 
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Figure 1. Histogram ^iCD^) and graph 
of function corresponding to it of dis­

tribution density ^(D) for one centri­

fugal atomizer.

In Figure 3 there is presented the 

graph the generalized function of the den­

sity of the distribution of the drops by 

the dimensions, 1. e., the graph con­

structed in accordance with the equaoion 

(2) with the values ^ ~ S~

(subscript cp = average) and the points

^>0 60 50 m no D

Figure 2. Graph of t^e experimental 
F(D) and theoretical ^ (D) of the in­

tegral functions of the distribution 
of the drops of one centrifugal atom­

izer.

1 1 
1 1

4\ —1
—

5 . 1* 1
4 - i

\J - X.
\ 1

1 1 11 ! !
i 1

0 01 0^ ' c.i OS 0.J’

Figure 3. Graph of the general i 
function of the dir'riuutlon of the 
droos in accordance with sizes 
( 3 ) -or centrifugal atomizers.

are plotted according to the experimental data for atemizers which stand out most by 

their ge(»netrical characteristics in the systems of operation (Experiments 6,9,'4,12) 

The data of the table and the graphs (Figures 1-3) are evidence of the pos­

sibility of using equation (?) for computing the spectra of atomization by centrifu­

gal atcMnizers with the value of the parameter/^equal to 0.190.
r,

For determining the numerical value of ^ in the case of other qualitatively dif­

ferent methods of atomization, it is necessary to perform the respective experiaeit.
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The relationships (5) and (7) make it possible to compute the spectra of 

atonization by centrifugal atomizers in accordance with their geometrical dimensions, 

the given system of operation, and the physical properties of the liquids, and can 

be used In different fields of technology. 

Symbols 

£    =  density 

>i\  = dynamic viscosity 

6  -  surface tension 

v  = speed of flow of liquid from the atomizer 

D  - diameter of the drop 

5  = D/D^ax—relative diameter of drop 

n0  = overall number 

dn  = number of drops of the size from 0 to o + do or from D to D + dD 

P     exporimentally determined parameter of the function of dlstrioution 

S  = entropy 

/\ po= drop in pressure on the atomizer 

£      = thickness of the foam on the liquid at the section of the atomizer nozzle 

nj     = number of drops fallen into the ith interval ith interval of grouping 

m       = number of intervals of grouping 

n(D) = number of drops the dimension of which is less than D 

The subscripts   «, and f represent respectively, liquid and gas. 
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Sumnnry 

Proceeding from the Second Law of Themodynaiiics, the validity of Trash's 

assumption (j) for the derivation of the function (2) of droplet size distribution 

is shown. The mathematical statistic methods are used for obtaining the analytical 

relations between the parameters of this function. This allowed very simple predict- 

ing formula (9) and (13) for the determination of the parameter spectra of the pul- 

verized liquid. From the treatment of the experimental data the value of/> = 0.19 

for centrifugal pulverizers was found. 

Figures 2 and 3 show how distribution functions (2) and (U) agree with the ob- 

servation data. 
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