~3q072_

77 & s

TRANSLATION

CISTRIBUTION OF DROPS ACCORDING TO SIZE
ATOMIZING LIQUILS BY MEANS OF CENTRIFUGAL ATOM IZERS

FOREIGN TECHNOLOGY
DIVISION

AIR FORCE SYSTEMS COMMAND

—_L
Pt R, )
| YRR | WRIGHT-PATTERSON AIR FORCE BASE
ol | T ) —_—
LS
O 0




This translation was made to provide the users with the basic essentials of
the original documeat in the short:st possible time. It has not been edited
to refine or improve the grammatical accuracy, syntax or technical terminology.



FID-TT- 65-176/142

UNEDITED RCUGH CRAFT TRANSLATION

DISTRIBUTION OF DROPS ACCORDING TO SIZE IN

ATOMIZING LIQUIDS BY MEANS OF CENTRIFUGAL
ATOMIZERS

BY: L. G. Gol vkov
English pages: 1i

SOURCE: 1Inzh ‘nerno-Fizichaskiy Zhurnal. (Russian)
Vol. 7, No. 1, 1964, pp. $5-61,

’

70-004-007-011 TP5500573

THIS TRANSLAT ON IS A RZN DI IOK € # THE ORIGH

NAL FOREIGH TIXT WITHOUT ANY AW/ LYTICAL OR

EDITORIAL COMUINT. STATCWUWTS Ok THECAIZS PREPARED BY:

ADVOCATEDOR ILPLIZO ARS THOSZ O THE SCURCE

AND DO NOT NZCESSARILY REPLECT THE POSITION TRANSLATION DIViSign

OR OPINION OF THE PORZ!G) TTCANOLOGY Die FORZIGN TECHNOLOGY Divis (- |
f VISION. WP-AFB, OMIO. ;
L P— -’

05-176/1+2 Date 3 June 19 -

e ————




DISTRIBUTION OF DROPS ACCORDING TO SIZE IN ATOMIZING LIQUIDS
BY MEANS OF CENTRIFUGAL ATOMIZERS
L. G. G:{ovkov
The article presents further support of the function of distri-
bution of drops according to size proposed in the work (5), explains
the method of paramater derivation for this function and establishes
the numerical value of its parameters for centrifugal atomizers.

The most fruitful concept for the est;blishing of analytic dependences between
parameters which determine the process of atomization and sizes of the spectrum,
in our view proves to be the concept expressed for the first time by Mugele and
Evans (4) and developed afterwards by Tr;sh (5)e Its basis is composed by two pro-
positions: a) in the spectra of tho atomized liquid there are always contained drops
of the greatest size (Dmax); b) drops of all the remaining sizes occur as a result
of statistical conformity to rule.

Tr;sh explains the statistical character of the functions of distribution &
drops according to size by the fact thet at the original moment of scattering of
the Jet there occurs a disordered . «change of energies among the separate particles
of liquid through the mercing of irdiividual drops, their secondary atomi:«tion, re-
pented merging, etc. This chaotic srocess also results in the formation in + .

rum of the atomized liquid of only a small number of very big and very small drop:
Here the author proposes the iollc sing dependences for éomputing the spectra

of the atomized liquid: the equatica for determining D
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The expression (2) is a well-founded semiempirical function of the distribute
fon of the drops by sizes and consequently, it is favorably distinguished from the
other purely empirical equations (for example (1-3, 6) and of other authors). How-
ever, the equation (1) and the numerical value of the parameterg (equal to 0.35)

ware established by Trgsh for developing the experiments in pneumatic atomization

of liquids and therefore proved to be not suitable for centrifugal atomizers.

In this article there is analyzed a supplementary busis of the function of dis-
tribution proposed by Tresh (2), methods are given for the determining of the para-
meter ﬂ of this function, there is established its numerical value for centrifugal
atomizers, and there is also refined the generalized dependence for determining Dnax®

The function (2) was established by Trgsby the methods of statistical thermo-
dynamics with the postulation: 1) of constancy of the overall volume of the drops;
2) of constancy of the surface of the drop mixture in the period of chaotic exchange
of energies among the particles of the liquid. If the first assumption causes no
particular uncertainties, then the second does rot prove to be manifest. Below

L
there is given the proof of Trésh's second postulate.

The known peculiarities of the conditions of the existence of molecules on the
boundary separating liquid and gaseous phases are the reason that the increase of
the surface of the separation requires the expenditure of work. The amount of this
work referred to unit of area of surface represents the surface tension or the
specific isobar petential Z (7).

In the formation of the surface by the area A f the change in the isobaric po-

tential amounts to AZ =abf.

(3)
On the other hand it is known that for any process ( d z/ aT)p = =5, Consequently,

the change in the entropy in this process is equal to As=«( 2(A 2)/2 T)p, or

with the taking into consideration of the relationship (3)
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By disregarding the change in the surface connected with the change in the tempera-
ture (in view of the insignificant coefficient of the volumetric expansion of liquids)
we shall get

As-—A/(g—;)’. (4)

Now let us assume that in the process under consideration of the chaotic ex-
change of energies between the particles of the liquid their total surface increases
vy (A £ 7 0). Then according to the relationship (3) and (4) ] 220 and /] S

20 inasmuch as ( J /9 T)p A.4ays 1s negative (with increased temperature the
Surface tension always becomes less).

Consequently, with 4] f 22 0 the indicated process should be accompanied simul-
trneously both oy increase in the isobaric potential Z and oy increase in the antropy
9. According to the second law of thermodynamics the simultaneous increase of thes.
two values in n spontaneous proces: is not possible. Therefore the value /) f can-
not be positive.

The proposition of the reduct!on in the total surface of the drops | Li f £ 0)
w150 leads to a contradiction with Lhe second law of thermodynamics (d 2L

'multaneoua]\yd S &£ 0). The contradiction disappears when ArL=0, 1. e,
cn the surface of the drop mixture ir the period of its "disordered" state is un-
changed, which was what was to be proved.

In the solution of each statistical problem after establishing the mathelor ¢
the function of the distribution, it is necessary to develop methods of determining
the numerical values of the parametars of this function on the basis of the exist-

in results of observations, i. e., to derive its parameters. The parameters of
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the function (2) are D and /g .
In the processing of the experimental data on the atomization of liquids by
centrifugal atomizers with the aid of the theory of dimensionalities there was ob-

tained the following generalized equation for determining Dmax:

Do _ (e )" m'»a)"--(x_o.s_f’r_).'
P ='( pr')' 1+ Pu® o\ Px (5)

With regard to the parameter /y a8 depends on two basic methods of primary pro-
cessing of experimental data on tb atomizing of liquids, there are proposed below
two operations for its determination.

For the case where to measurement in the sample there is subjected each of its
eluments (every drop) the determination of / is done by the method of the maximum
plauaibility (8) which gives the most nearly "precise" value for the parameter /.? .

In determining in the sample the number of di.ps which fall into different
intervals as to size for finding the numerical values of / one uses the method of

moments.

Method of Maximum Similitude. The relative frequency of the drops dn/ng in the
formula (2) can be treated as the probability of the occurrence of drops of dimen-

sions of from 8 to 5 +d 6 , and therefore the function (2) is the probability den~
sity of the random value 6 « By accomplishing on the equation (2) the functional
conversion D = D 6 » we shall get the function of the density of the distribution
of directly in accordance with the diameter

I e -

or after integration

f"D",'“.xeXP("ﬁDm-x/D) . (7)
?(D)= D7 (1 + p)exp(—P)

-
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We propose now that we have a sample of the volume Op, consisting of n indepe: *-r.
values for the dimensions of the drops

D33 Dai D3 ees § Dp,

The probability of the occurrence of a given sample

PO, B =9 (Dy; B)9(Dyi B)...9(Dp; ) (8)
representing a function of the fixed values of the dimensions of the drops Dl’ D2,
D3, ess 5 D and the variable ‘paraneter / is also called the function of similitude.

It 4s apparent that if the selected value of /g is such that P(0; /g ) is very
small, then this event "practically” should not occur in a single experiment. Con-
sequently, such an hypotheses about the value of /? ghould be rejected as not pro-
bable.

The method maximum probability applicable to the given case consists in this
that the "best" value for /) is determined in a way as the variable argument of the
function (8) at which it reaches the maximum value.

In other words, the "best" value for K we get from the condition

P (0,; g ) = max
or, what 1s the same, from the condition
In P (Oy; /g) = L(Dy; Do eee 5 Dn;lg) = max,
inasmuch as P(On;/g) >o0.
The function of probability for the distribution (7) in accordance with the equation
(8) has the form -

8
?”‘Dmxexp(—Dm, \-1, L)
o— D‘

. i=2] '
P03 = DiD}...D3(1 4 p)rexp(—nB)

and therefore . N
N LN 0 0f £ a—nln(l +8)
L=2nln§+lnD,’,’.‘..—§D,n“ .'\I".‘ —b-;—‘; D +n3 {

-
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The value ofK sought is determined by the condition of the extremm 2 L/2 ﬂ =0,
hence
2_r [D—'-z ]-—x
B 148 & D,
After designating the right side of the expression obtained by b we shall have
B=(1—b+ V{1 —0F +8)/2. (9)
Thus, if one measures in the sample from the drop mixture the dimensions of

each individual drop, then the finding of the parameter is reduced to very simple

D,

=1

o -
operations, the computation of the value ,_ [ Dinax 2" | ]—l
n

and the use of the formula (9).

In this situation D,, should be determined in accordance with the criterional
equation (5).

Method of Moments. The essence of this method of deriving parameters consists
in this that accofding to the Khinchin theorem with a great volume of sampling On
from the general aggregate of objects any theoretical moment of the order i of ran-
dom magnitude is approximately equal to the corresponding empirical moment. In
this situation the greater the volume of the sampling the more nearly accurate this
apporximate equality will be. For our case the most convenient is to use the first
initial moments of the random value D, or what is the same, the theoretical M’X‘(D)
and the emperical MJ (D)==the mathematical expectancy of the random value D.

Inasmuch as the random value of D (diameter of the drop) chaizgea from O to Dy,
and its probability density is given by the equation (6), therefore

-
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or after integration
M (D) = B Duysl(1 +) (10)

With the second method of processing the primary data cn the atomization the
results of the experiment present themselves thus: in the intervals of grouping
0==Dy; Dy=~=D,, ses, Dpn1==Dp the numbers of drops respectively, are N3y Moy eeey N
For the composition of Mg (D) let us have recourse to the following operation. Let
us designate by D; the average of the ith interval of grouping, 4 Di the width of
this interval, and by ¢ 1({Dy) the relative frequency of drops of the size Di - 0.5
A Dy. Then @4(Dy) = ny/ny A Dy and

i=m

M,(D) =} D, @, (D)a D, (13)

[t

On the basis of .hinchin's theorem MI.(D),-"J M, (D), hence

{=m

D \Y :
£l _ }_; D,e;(D)4D,.

5
by designating +Bl " b=t
}:D[(Pl(DK)ADl (1.
=1 ]
ol — Dm.x
we finally get
'3 =a/(l —a). (13)

Consequently, the determination oflg in this case is reduced to the computntic .f
the value and the application of the formula (13). In this situation Doax 8360
should be computed in accordance with the equation (5).

At our disposal there were expe;imental data on the spectra of the atomizaiion
of liquids in the form of the above indicated tables. Therefore the numerical vale
ue for the parameter /) for the centrifugal atomizers was determined by the method
of moments.,

In the table there are shown the results of the computations of the value /f
for 15 centrifugal atomizers, the geomeirical characteristics of waich changeld from

2,09 to 7.50 and the drop in the pressure on them 6 * 105~=30 * 3105 n/n?,

FTD=TT=/5-176/1+2 7



From the table it is seen that the value g practically does not depend on the
geometrical characteristics of the atomizers nor on the system of their operation,

and it varies with the maximum scattering by not more than 10% around the average

value/op = 0.190.
Table

Original Data and Results of Determining Parameter /?

Teometpuueckan | Ilepenan zanaewus
MNeonuta | xapaktepicTika | Ma $opeynke A py Hucao OT::GP:""“X g

’). ¢dopcyHku A_‘) <108 n/m3 3) xane‘; )'

1. 4,72 i 2835 0,198
2 3.00 10 4521 - 0,171
3 6,31 13,5 3183 0,182
4 5,45 7,6 1543 0,186
5 3,65 20 3713 0,206 °
6 4,61 30 2603 0,188
7 3,65 10 4008 0,192
8 5,13 12 4996 0,193
9 750 14 8438 0,199
10 3,65 28 5404 0.192
i 3,92 10 3448 0,192
12 4,25 6 6244 0,186
13 3,45 10 5747 0,168
14 2,00 12 8246 0,180
16 4,34 9 3384 0,205

1) ordinal number of experiments; 2) geometrical charac~

teristics of the atorgizer 5; 32 drog in gressure on the
atomizer 4 pg + 10-, n/m<; 4) number of selected drops
nOo

After determining the numerical value of the parameter it was clear how well
the selected function of distribution describes the existing data from observations.
In Figure 1 there is shown for a single atomizer the emperical distribution D in the
form of a graduated curve (histogram) and the theoretical distribution (6) with the
computation for this atomizer of the value pp + In Figure 2 there 1s given for this
same atomizer the composition of the integral curves of the distribution: experi-

mental F(D) and theoretical ¢@(D). As is known, F(D) = n(D)/ng and
D

®(D) = jv(D) dD = 3 Dypeexp (— B Dy /D)
R § ] (I +P)exp(—p
J O+ Dexp(—p) B Denax

(1)

FTD=TT=65=176/1+2 8
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In Figure 3 there is presented the

74
graph the generalized function of the den= | | \..
RN .'
sity of the distribution of the drops by ,,L : 'X\; ]
the dimensions, 1. e., the graph con- 0 W W oo 0
structed in accordance with the equation
/) Tigure 3. Graph of the general . |
(2) with the valuesg = .,{cp = 0,190, function of the distribution of Ui
' aroos in accordance with sizes ’,/
(subscript cp = average) and the points { o ) -or ceatrifugal atomizers.

are plotted according to the experimental data for stomizers which stand out most by
their geometrical characteristics in the systems of operation (Experiments 6,9.74, 12)
The data of the table and the graphs (Figures 1-3) are evidence of the pos-
sibility of using equation (7) for computing the specira of atomization by ceatrilu-
gal atomizers with the value of the p:rrzzetcr‘/b/ equal to 0.190.
For determining the numerical value of :,/ in the case of other qualitatively dil-

ferent methods of atomization, it is necessary to perfom the respective experimei L.

FTD-TT=65-176/1+2 9



The relationships (5) and (7) make it possible to compute the spectra of
atomization by centrifugal atomizers in accordance with their geometrical dimensions,
the given system of operation, and the physical properties of the liquids, and can
be used in different fields of technology.

Symbols
e = density
M = dynamlc viscosity
6 = surface tension
v = speed of flow of liquid from the atomizer
D = diameter of the drop ‘
8\ = D/Dpax=—relative diameter of drop
n, = overall number
dn = number of drops of the size from o to o + do or from D to D + dD
/g experimentally determined parameter of the function of distrioution
S = entropy
/) po= drop in pressure on the atomizer
£ = thicimess of the foam on the liquid at the section of the atomizer nozzle
ny = number of drops fallen into the ith interval ith interval of grouping
m = number of intervals of grouping
n(D) = number of drops the dimension of which is less than D

The subscripts » and T° represent respectively, liquid and gas.

FID-TT-65=176/1+2 10
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Summary

Proceeding from the Second Law of Thermodynamics, the validity of Tresh's
assumption (5) for the derivation of the function (2) of droplet size distribution
is shown. The mathematical statistic methods are used for obtaining the analytical
relations between the parameters of this function. This allowed very simple predict~
ing formula (9) and (13) for the determination of the parameter spectra of the pul-
verized 1liquid. From the treatment of the experimental data the value of /} = 0.19
for centrifugal pulverizers was found.

Figures 2 and 3 show how distribution functions (2) and (14) agree with the ob-
servation data. .
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