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NOMENCLATURE

C Chord

CQ Torque coefficient, Q/ pwR'vs

CT Thrust coefficient, T/ piTR 2 v 2

d Chordwise coordinate measured from leading edge

di Infinitesimal length of vortex line element

D Propeller diameter

vc
f 0 -- rRv D

S

f1 ' f 2 1 ' f 8  Functions of x (see Eq. 10, Ref.1)

g Number of blades

G Nondimensional bound circulation, F/rDvs

Ah Camber offset divided by the chord

k Ratio of the strength of a line element of free vorticity
at any chordwise station to that at the trailing edge

L Distance from the stacking line to the leading edge of
blade section

Mn (X)X--'.

Nn

Q Torque

r Radial coordinate

rR Ratio of percent thickness of blade section at any span-
wise station to percent thickness at reference station

R Propeller radius

S Distance from a point on one of the blades to point p

T Thrust

v Local axial inflow velocity to propeller

va Axial inflow velocity to propeller at edge of boundary
layer

iv
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v s  Forward speed of propeller relative to undisturbed fluid

V Relative velocity of blade section and fluid

W Induced velocity

Wa Axial component of induced velocity at lifting line

W* Apparent axial displacement velocity for an optimum
propeller

W n  Normal component of induced velocity at the lifting line
for an optimum propeller

Wt  Tangential component of induced velocity at lifting line

Wy Normal component of induced velocity on blade surface

W z  Normal component of induced velocity on hub surface

x Nondimensional radial coordinate, r/R

X, Y, Z Nondimensional rectangular coordinate system at pro-
peller axis, X = X'/R, etc.

X', Y', ZI Rectangular coordinate system at propeller axis

X', Y', Z' Rectangular coordinate system having Z' axis pass
through hub at point p

y Nondimensional chordwise coordinate, d/C

z Half-thickness of blade divided by the chord

a Angle defining points in helical coordinate system

P Pitch angle of helical sheets

y Variation of pitch angle from lifting-line value (ideal
angle of attack)

r Bound circulation

1 Strength of vortex line element

X x tanp

Xs vs/wR

4 Angle defining intersection of a helical line and the
plane X' = 0

"'rn Angles describing stacking-line locations

W Angular velocity of propeller

SUBSCRIPTS

B Due to bound circulation

v
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F Due to free vorticity

h At the hub

p G )rresponding to the singularity point on the blade sur-
face or the point on the hub surface where the normal
components of induced velocity are calculated

T Due to blade thickness

vi
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INTRODUCTION

This report is a follow-up to the author's "A Lifting-Surface Pro-
peller Design Method for High-Speed Computers" (Ref. 1), and presents
numerical results from the lifting-surface propeller design computer
programs as opposed to the theoretical development given in the earlier
work. Since considerable reliance is placed on Ref. 1, and since much
the same nomenclature is maintained without extensive explanation of
terms, it is assumed that the reader has access to the earlier publica-
tion.

Three basic sections make up this report. The first presents check
solutions of the lifting-surface propeller design programs. The second
presents design calculations for a typical wake-adapted propeller, with
particular emphasis on illustrating the effect of operation in a wake in
contrast with operation in a uniform stream. The final section outlines
changes or additions to the design method which have either been made
or are being planned to improve the method and make it more complete.

Interest in the design of propellers by a lifting-surface approach
remains high. The works of particular significance which have come
to the attention of the author since writing Ref. 1 are those of Kerwin
on lifting-surface theory (Ref. 2), Kerwin and Leopold on blade thick-
ness effect (Ref. 3), and Cheng on a lifting-surface design method
(Ref. 4) which carries on the work started by Pien (Ref. 5).

CHECK SOLUTIONS OF LIFTING-SURFACE PROPELLER
DESIGN COMPUTER PROGRAMS

NEED FOR AND TYPE OF CHECK SOLUTIONS

Since a considerable number of approximations were made in the
theoretical development of the lifting-surface design method, it was
deemed essential to check computer solutions against exact analytical
solutions. This would check not only the adequacy of the approxima-
tions used, but also the correctness of the computer programming, a
desirable procedure with programs of this complexity.

By allowing the pitch angle, P, of the helical sheets to become
either 00 or 900, the blades become flat surfaces. By choosing
certain blade shapes (either rectangular or sector) and certain blade
loadings, it was found that exact analytical solutions could be obtained.
These are compared with the computer solutions from the bound cir-
culation program, the free vorticity program, and the blade thickness
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program. Since the free vorticity program is capable of calculating
the lifting-line solution (Page 31, Ref. 1), a comparison with the exact
lifting-line solution for an optimum propeller is also shown.

In addition, the ability of the camber line computer program to
reproduce a camber line from the slope data is checked by compari-
sons with some exact solutions for two-dimensional camber lines.

CHECK SOLUTIONS OF BOUND CIRCULATION PROGRAM

The analytical checks of the bound circulation program are pre-
sented as Check Solutions 1 - 5. Solutions 1, 3, and 4 show the effect
of a blade on itself,1 while Solutions 2 and 5 show the effect of a sur-
rounding blade.

Since it was not possible to obtain an exact check solution identical
to 3 (41 = 0, P = 00), but with a variable chordwise loading, and since
it was desired to check the ability of the program to handle the variable
chordwise loading situation, a nearly exact comparison was made. By
choosing a very narrow blade of constant chord, the solution given by
the computer program is the one for a nearly rectangular blade. This
was compared with the exact solution for a rectangular blade. The
comparison is given by Check Solution 4, and was made at only one
station near the tip (x = 0.8), where the distortion of the blade from a
true rectangle would be less.

Check Solution 1. Bound circulation program, effect of blade on
itself; comparison of exact analytical solution with computer solution
for flat (p = 90 ° ) rectangular blade.

Hub radius: Xh = 0.3
Pitch angle: P = 900 flat rectangular blade
Chord: C/D = 0.2
Blade position: = 0.0 (effect of blade on itself)

Chordwise distribution of Spanwise distribution of
bound circulation: bound circulation:

I G 1
0.03 Gmax

Xh 1.0

0.0 1.0

0.0 0.3 1.0
X

1 In using the tmrm "the effect of a blade on itself," reference is made to the velocity induced at

a point on a blade due to the singularity distribution representing that blade. Use of the term "the effect

of a surrounding blade" refers to the velocity induced at a point on a blade due to the singularity distri-
bution representing another blade.

2
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Check Solution 2. Bound circulation program, effect of a surround-
ing blade; comparison of exact analytical solution with computer solu-
tion for flat (3 = 900) rectangular blade.

Hub radius: xh = 0.3
Pitch angle: P = 900 flat rectangular blade
Chord: C/D = 0.2
Blade position: = 0.7 radians (effect of a sur-

rounding blade)

Chordwise distribution of bound circulation:

- - 0.25

0

0.0 1.0
Y

Spanwise distribution of bound circulation:

Xh 1.0

-- G =4.0(x-x2)
0 j Gma x

0.0 0.3 1.0
x

4
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Check Solution 3 Bound circulation program, effect of blade on
itself; comparison of exact analytical solution with computer solution
for flat (p = 00) sector-shaped blade.

Hub radius: xh = 0.3
Pitch angle: P = 0. flat sector-shape blade
Chord: C/D= 0.3xf
Blade position: j = 0.0 (effect of blade on itself)

Chordwise distribution of bound circulation:

0.015

0

0.0 1.0
Y

Spanwise distribution of bound circulation:

'cII
1.0

0Gmax

0.0 0.3 1.0

6
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Check Solution 4. Bound circulation program, effect of blade on
itself; comparison of exact analytical solution for flat, rectangular
blade with computer solution for flat (P1= 00) "near"- rectangular blade.

Hub radius- Xh =0.3
Pitch angle- P = G1 flat, "near"- rectangular blade
Chord: C/D = 0.05i
Blade position: ~ = 0.0 (effect of blade on itself)

Chordwise distribution of bound circulation:

Spnie 0.01.

Spawvisedistribution of bound circulation:

X -G IO 1.0

TABLE 4. Comparison of Exact and
Computer Solutions for Solution 4

Error- not computed since com-
parison Is not exact.

(W?/vs)B

Yp xp 0 . 8 0

Computer Exact

-0.1 -0.04372 -0.04374
0.1 -0.07174 -0.0717S
0.3 -0.07429 -0.07429
0.5 -0.05961 -0.05956
0.7 -0.02464 -0.02450
0.9 0.05788 0.05804
1.1 0.09717 0.09714

8
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Check Solution 5. Bound circulation program, effect of a surround-
ing blade; comparison of exact analytical solution with computer solu-
tion for a flat (P = 00) sector-shaped blade.

Hub radius: Xh = 0.3Pitch ngle: = 0.00 1
Pitch angle: C/D = 0.3x flat sector-shaped blade
Chord: /= .x
Blade position: t2 = 0.7 radians (effect of a sur-

rounding blade)

Chordwise distribution of bound circulation:

0.025

L

0.0 1.0
y

Spanwise distribution of bound circulation:

xh 1.0

0 G = 4.0(x-x 2 )

o I~max

0.0 0.3 1.0
X

9
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CHECK SOLUTIONS OF FREE VORTICITY
PROGRAM

The analytical checks of the free vorticity program are given as
Check Solutions 6 - 9. Solutions 6 and 8 show the effect of a
blade on itself, while Solutions 7 and 9 show the effect of a sur-
rounding blade.

Since the angle, a (see Fig. 1, Ref. 1), which is the independent
variable when integrating over the free vorticity sheets (see Eq. 35,
Ref. 1), is undefined when P = 900, it was necessary to make P
almost equal to 900 in Check Solutions 6 and 7, rather than exactly
90'. In Solution 6, x tanp was made equal to 120 and in Solution 7
it was made equal to 1,000. Further, since the upper limit of in-
tegration in the free vorticity program is determined by an axial
distance behind the point where the velocity is desired (see discus-
sion, Page 30, Ref. 1), it was necessary to make P almost equal to
00 in Solutions 8 and 9, rather than exactly 00. In these solutions,
x tanp was made equal to 0.001.

The chordwise variation of the free vorticity is given in terms
of k, the ratio of the strength of an element of free vorticity,_r,
at any chordwise station, to the strength at the trailing edge, rTE.
It is related to the chordwise loading distribution, as discussed on
Pages 26 and 27 of Ref. I.

It was possible to obtain an exact solution for only one value of
y with Check Solutions 7, 8, and 9.

11
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Check Solution 6. Free vorticity proTram, effect of blade on itself;
comparison of exact aT.alytical solution with computer solution for a
flat (3 900) rectangular blade.

Hub radius: x h = 0.3
Pitch angle: P 90 flat rectangular blade
Chord: C/D = 0. 1
Blade position: t .- 0.1) (effect of blade on itself)

Chordwise variation of k F/FTE:

1.0

Integration truncated one chord
I " length behind trailingedge: i.e.,
II

k 0 for y>2

0.0 1.0 2.0

y

Spanwise variation of bound circulation:

Xh
I G =0.075(l - x )

,

0.0 0.3 1.0

12
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Check Solution 7. Free vorticity program, effect of a surrounding
blade; comparison of exact analytical solution with computer solution
for a flat (P = 900) rectangular blade.

Hub radius: xh = 0.3
Pitch angle: P = 900 flat rectangular blade
Chord: C/D 0.2 1
Blade position: = 0.7 radians (effect of a sur-

rounding blade)

Chordwise variation of Spanwise variation of
k = F/FTE: bound circulation:

0.75 I

I" ~G =2.5(1 -x2)
Xh

0.0 I

-0.25
0.0 1.0

y
0.0 0.3 1.0

x

(Integration truncated at the

trailing edge; i. e., k = 0
for y > 1)

TABLE 7. Comparison of Exact and Computer
Solutions for Check Solution 7

Error (based on values rounded to five places):
where the absolute error exceeds 0.00001, the per-
cent error is less than 0.068%.

ffy/vs)F
xp XPy =P 0.2S

Computer Exact

0.35 0.07345 0.07347
0.4S -0.00478 -0.00479
0.55 -0.06817 -0.06821
0.65 -0.11211 -0.11218
0.75 -0.13763 -0.13772
0.85 -0.14781 -0.14790
0.95 -0.14662 -0.14672

14
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Check Solution 8. Free vorticity program, effect of a blade on it-
self; comparison of exact analytical solution with computer solution for
a flat (f3 00) sector-shaped blade.

Hub radius: x; = 0.3
Pitch angle: P = 0 1 flat sector-shaped blade
Chord: C/D =0.3x I
Blade position: qI = 0.0 (effect of a blade on itself)

Chordwise variation of Spanwise variation of
k I/FTE: bound circulation:

0.43497 1
k=sin [0.6(y -0.25)]

I~~-q~r- 4  0. * 0.S(l-x 2 )
" 0.0

-0.14944

0.0 1.0 0.0 0.3 1.0y x

(Integration truncated at
trailing edge; i. e., k=0
for y > 1)

TABLE 8. Comparison of Exact
and Computer Solutions for

Check Solution 8

Error (based on values rounded to
five places): maximum absolute er-
ror of 0.00001.

(W /vs)F

Xp yp = 0.25

Computer Exact

0.35 0.10362 0.10363
0.45 0.09368 0.09368
0.55 0.07994 0.07994
0.65 0.05979 0.05979
0.75 0.03221 0.03221
0.85 -0.00085 -0.00085
0.95 -0.03057 -0.03057

15
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Check Solution 8. Free vorticity program, effect of a blade on it-
self; comparison of exact analytical solution with computer solution for
a flat (= 00) sector-shaped blade.

Hub radius: xh = 0.3
Pitch angle: P = 00 flat sector-shaped blade
Chord: C/D 0.3xI
Blade position: iI = 0.0 (effect of a blade on itself)

Chordwise variation of Spanwise variation of
k = Y/FTE: bound circulation:

0.43497
k=sin [.6(y-0.25))

xJh G=0.5(1-x2)

II10.0

-0.14944 Z0

0.0 1.0 0.0 0.3 1.0y x

(Integration truncated at
trailing edge; i. e., k=O
for y > 1)

TABLE 8. Comparison of Exact
and Computer Solutions for

Check Solution 8

Error (based on values rounded to
five places): maximum absolute er-
ror of 0.00001.

(W /vs)F

Xp yp = 0 .2 5

Computer Exact

0.35 0.10362 0.10363
0.45 0.09368 0.09368
0.55 0.07994 0.07994
0.65 0.05979 0.05979
0.75 0.03221 0.03221
0.85 -0.00085 -0.00085
0.95 -0.03057 -0.03057

15
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Check Solution 9. Free vorticity program, effect of a surrounding
blade; comparison of exact analytical solution with computer solution
for a flat (P = 00) sector-shaped blade.

Hub radius: Xh = 0.3
Pitch angle: P = 00 flat sector-shaped blade
Chord: C/D = 0.3x I
Blade position: LI2 = 0.7 radians (effect of a surround-

ing blade)

Chordwise variation of Spanwise variation of
k = P/FTE: bound circulation:

0.91276

I 0.52269 h[G =0"5(1-x2

0.2269 k=sin[O.6(y - 0.25)+ 0.71 X O 1-x

0.0 1.0 0.0 0.3 1.0
y x

(Integration truncated at

trailing edge; i.e., k=O
for y> 1)

TABLE 9. Comparison of Exact

and Computer Solutions for

Check Solution 9

Error (based on values rounded to

five places): maximum absolute er-

ror of 0.00001.

(W /vS)F

Xp yp 0.25

Computer Exact

0.35 0.19990 0.19991
0.45 0.16718 0.16719

0.55 0.13030 0.13031
O.GS 0.09468 0.09469
0.75 0.06337 0.06337

0.85 0.03811 0.03811
0.95 0.01940 0.01940

16
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CHECK SOLUTIONS OF BLADE THICKNESS
PROGRAM

Since the component of velocity normal to a plane source sheet at
a point on the sheet 2 is zero, check solutions of the blade thickness
program for the effect of a blade on itself for flat blades (P = 00 or
90 ° ) yield trivial solutions of zero. It was therefore not possible to
obtain meaningful check solutions for the effect of a blade on itself,
so that in this case extensive hand calculations to check out the com-
puter programs had to be made. However, it was possible to obtain
check solutions for the case of the effect of a surrounding blade.
Check Solution 10 presents such a comparison for the case 3 = 90* .

An exact solution was possible at only one value of yp.

For the effect of a surrounding blade and P = 00, trivial solutions
of zero also appear, since all the blades fall in one plane. However,
it happened that the blade thickness program was so written that it
could also obtain the component of velocity along the blade Wg (see
Fig. 2, Ref. 1) for this particular case. A comparison of values of
Wy is giver. by Check Solution 11 for f = 00.

2 Not at an infinitesimal distance on either side.
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Check Solution 10. Blade thickness program, effect of a surround-
ing blade; comparison of exact analytical solution with computer solu-
tion for a flat (P = 900) rectangular blade.

Hub radius: xh = 0.3
Pitch angle: P = 900 flat rectangular blade
Chord: C/D= 0.21
Blade position: 42 = 0.7 radians (effect of a surround-

ing blade)

Chordwise variation of Spanwise variation of

blade thickness: f0:

2.0

ZREF =0'15Y-0.0Y
2 2

U I
fo 2.Ox

0

0.0 1.0 0.0 0.3 1.0
y x

(See pp. 36 - 38 of Ref. 1 for explanation of ZREF and fO)

TABLE 10. Comparison oI Exact
and Computer Solutions for

Check Solution 10

Error:. maximum absolute error less
than 0.00001.

(WY?/'sT

p 0 .75

Computer Exact

0.35 0.04762 0.04762
0.45 0.04845 0.04845
0.55 0.04540 0.04540
0.65 0.04012 0.04012
0.75 0.03386 0.03386
0.85 0.02756 0.02756
0.95 0.02185 0.02185

18
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Check Solution 11. Blade thickness program, effect of a sarround-
ing blade on the velocity along (not normal to) the blade, -rnpari-
son exact analytical solution with computer solution for a tia, = 00)
sector-shaped blade.

Hub radius: xh = 0.3
Pitch angle: P= flat sector-shaped blade
Chord: C/D= 0.3xI
Blade position: 42 = 0.7 radians (effect of surround-

ing blade)

Chordwise variation of blade thickness:

0.1

N

0.0 1.0
Y

Spanwise variation of f0:

fo = 3"°x2 &:0
UI10
>1 '-

0.0 0.3 1.0

(See pages 36 - 38 of Ref. 1 for explanation of ZREF and fo)

19



oz

00000 0 0 0

9p p p p99999 0M
$.-A I.- -- & - t- t 0

~0 M -
I ~~~ ~ 4 In, I 333

00000P 0 00w0c

tD~~~ ~ w hN n w

000

V3I~0 0 00 *N 0 Dt 40N) or
0 P

tft

0 3 I 3 W ID 3o *1 m I C3
00 00 pp0oNp011 pt 0 on

k , N % ~ ~ '0 ~ 0 ~ u a C D X -

si wNging i iu to w o g 3 G

to w w tv P N - m 0

wN I-P- -. 00 000 0 x (

33 31 3w33 to 0o to0 )WUPP PP X~pp 0 ZniN oZ -. (

LI IN _ I b b b I0 'I 3 0 3 o
N00000, W 99999 U

N NAP, 4I 00

ItL ?z~~ S3AV

$p



NAVWEPS REPORT 8772

CHECK OF LIFTING-LINE SOLUTION
BY FREE VORTICITY PROGRAM

The free vorticity program is capable of calculating the lifting-line
solution, as discussed on Page 31 of Ref. 1. Hence an additional check
on the pr, gram was made by a comparison with the exact lifting-line
solution for an optimum propeller.

Figure 1 shows the bound circulation distribution presented in the form

gFw

Z1rW*(v s + W*)

versus :t for a four-bladed optimum propeller, as computed by
Goldstein (Ref. 6) from the motion of rigid helical sheets. By a law
established by Betz (Ref. 7), the fluid motion in the ultimate wake of an
optimum propeller is such that the shed vorticity sheets form true

1.0 1 1 1 I

O Values computed by Goldstein (Ref. 6)

0.8 -

O0.6 -

+

N

C 0.4

0.2

01
0 0.2 0.4 0.6 0.8 1.0xr/R

FIG. 1. Optimum Circulation Distribution for Four-Bladed Propeller.

21



NAVWEPS REPORT 8772

helical sheets, and hence move as if they were rigid with an apparent
axial displacement velocity, denoted here by 10. Since the free vor-
ticity sheets form true helical sheets, they can be described by the two
coordinates r and e = d + a - (X'/r tanp) (see Fig. 1, Ref. 1). 9 is a
constant on any true helical surface of pitch, 27tr tanp. For an axial
motion of the true helical sheets, the boundary condition is a function
of only r and 0. Therefore the potential generated by the motion of the
helical sheets is also a function of only r and 0, and there are no ve-
locities induced along the sheets, since the coordinate describing posi-
tion in that direction is everywhere perpendicular to the coordinates r
and 0. Thus the resultant of the axial and tangential components of in-
duced velocity on the shed vorticity sheets is normal to the sheets.
This is the normality condition for optimum propellers.

Following Lerbs (Ref. 8) in applying the Betz condition and normal-
ity at the lifting line, the nondimensional bound circulation, G= r/irDv,
is related to Goldstein's circulation function given in Fig. 1 by

ZXs[l + (W*/Vs)] W*[-- g2j l (1)

g vs 2'n'W*(Vs + W*)1

where XS = vs/c0R. Further, the relative flow vector diagram at the lift-
ing line takes the form shown in Fig. 2, so that the normal component of

/00,

Wn

Wa

Wt

V

vs

FIG. 2. Optimum Propeller Velocity Diagram at the
Lifting Line.

induced velocity, Wn, which is equivalent to the component (WY)F com-
puted by the free vorticity program, is given by

22
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Wn W x

vs vs 4x2 + X2[ 1 + (W*/vs)] 2  (2)

and the pitch of the helical sheets is given by

xtanp= Xs 1 + (3)

The bound circulation distribution and pitch distribution given by
Eq. 1 and 3 for values of X, = 0.16 and W*/v s = 0. 25 were used in the
free vorticity computer program to calculate the normal component of
induced velocity. These values are compared with the exact values
given by Eq. 2 in Fig. 3,

0.25

- Exact solution

0.20 0 Computer solution

0.15

0.10

s = 0.16
W*/Ys = 0.25

0.05

0
oIII I

0 0.2 0.4 0.6 0.8 1.0x=rlR

FIG. 3. Comparison of Exact Solution With Solution Given by the Free Vorticity
Computer Program for the Normal Component of Induced Velocity at the Lifting
Line for a Four-Bladed Optimum Propeller.
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CHECK SOLUTIONS OF CAMBER LINE PROGRAM

The camber line computer program uses a polynomial fit to the
camber line slope data to reproduce the camber line and its orientation
in the flow. Since the accuracy of such a procedure for typical camber
lines was not known, comparisons with exact solutions for two-
dimensional camber lines were made. The camber lines for two cases
of trapezoidal chordwise loading (Ref. 9) were used. (Trapezoidal
chordwise loadings have been adopted at NOTS as the best for marine
propellers, and will be discussed later.) One of the loadings is sym-
metric about the center of the blade; the other is not. Values of the
camber line slope from the exact solution corresponding to y = -0.05,
0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, and 1.05 were
input to the computer program.3 The computed camber lines and ideal
angles of attack are compared with the exact solutions in Fig. 4 and 5.

0.09 1 I

Exact solution
0.08 Computer

solution

0.07 C = 1.0

0.06

'n 0.05 Ideal angle of attack:
0 Exact solution, 7 000 '

., Computer solution, ' = 00 '

%.04
.0

0.03

0.02 -

/ / Sha f loading

0.00. 1 \_

0.0 0.2 0.4 0.6 018 1.0
y

FIG. 4. Comparison of Exact Solution With Solution Given by the Camber Line Computer
Program for a Two-Dimensional Airfoil With Symmetric Trapezoidal Loading.

3 See section on modifications to the camber line computer program below.
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0.08

-Exact solution
0 Computer

0.07 - solution

C = 1.0

0.06 -

<a
83

S0.0s

Ideal angle of attack:
0.04 -- Exact solution, 7 = 00 j7.17'

Computer solution, ' = 0' 39.02'

U
0.03

0.02,

/ Shape of loading N

0.01 /

0.00 I _ __

0.0 0.2 0.4 0.6 0.8 1.0
y

FIG. 5. Comparison of Exact Solution With Solution Given by the Camber Line Computer
Program for a Two-Dimensional Airfoil With Unsymmetric Trapezoidal Loading.

ACCURACY OF COMPUTFR PROGRAM SOLUTIONS

The comparisons of the exact solutions with the corresponding com-
puter solutions (Check Solutions 1 - 3 and 5 - 11) given by the bound cir-
c'.Llation, free vorticity, and blade thickness programs, show that where
the absolute errors in the nondimensional normal component of induced
velocity exceed 0.00001, the percent errors are less than 0.068%. This
level of accuracy does not represent the maximum attainable by the
programs but rz :her that which may be arrived at by a compromise
with computing time. This area is discussed in the Appendix. The ac-
curacy of these solutions should be reasonably indicative of that which
is obtained in actual propeller design calculations, and is certainly
more than adequate for engineering calculations.

In the comparison of the free vorticity program solutiri with the
exact solution for the normal component of velocity at the iifting line of
a four-bladed optimum propeller (Fig. 3), the maximum error was
0.765%. Considering the number and distribution of the points available
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from Goldstein's calculations for defining the bound circulation distri-
bution (Fig. 1), it is probably unreasonable to expect better agreement.

Comparisons of the camber lines and ideal angles of attack com-
puted by the camber line program with those given by the exact solu-
tion (Fig. 4 and 5) show the following: For the symmetrical loading,
the ideal angle of attack was given exactly, and the camber offsets
had a maximum error of 1.20% of the maximum offset; for the unsym-
metrical loading, the ideal angle of attack was in error by 1.85 minutes
of arc, and the camber offsets had a maximum error of 0.94%o of the
maximum offset. For torpedo propellers, errors of this magnitude
will normally give rise to noncritical inaccuracies in locating points on
the blade surface. Since these propellers are always relatively small
and moderately loaded, these errors are no larger than the manufac-
turing tc. rances that presently prevail. Hence the camber line pro-
gram should be adequate for engineering design calculations.

TYPICAL WAKE-ADAPTED PROPELLER DESIGN
CALCULATIONS

SPECIFTCATIONS

The following specifications were assumed for the propeller design:

1. Develop a thrust coefficient, CT = 0.1
2. Operate at an advance ratio, Xs = 0.5
3. Operate at a Reynolds number based on the propeller

diameter and free stream velocity, Dvs/v = 5.0 X 106
4. Utilize five blades
5. Have a hub radius, rh = 0.3 R
6. Operate free of cavitation for PLPTH - PVAPO/ Pv 2 T0 .85

WAKE PROFILE

At NOTS, the principal interest is in propellers for torpedoes.
These are located at the end of a tapering afterbody, where the wake
profile is normally that of a turbulent boundary layer. The boundary
layer profiles can usually be approximated fairly closely by a power
law, a typical value of the power being 1/5. Assuming that the tip of
the propeller coincides with the edge of the boundary layer, a typic i
wake profile will be given by

v (r - rh\I/

v6 R - rh

Since xh rh/R = 0.3 for the propeller considered here,
v (x- 0. 3) /

1 (4)
V2 0.7
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It is further assumed that the velocity at the edge of the boundary layer
is 0.95 of the free stream velocity, i. e.,

v6- = 0.95

vs

BLADE THICKNESS DISTRIBUTION

The 10% NACA 63A thickness distribution (i. e., NACA 63A 010)
at the hub is chosen for the propeller blades. The distribution at all
other blade stations is derived from NACA 63A 010 by shrinking all
the thickness coordinates proportionally to provide a linear variation
in the thickness from 10%6 at the hub to 6%o at the tip. Hence the non-
dimensional half-thickness of the blades as a function of the nondimen-
sional radial and chordwise coordinates is given by

z = rR(x)f(y) (6)

C

I--"Y d ~/c

where rR = 1.17143 - 0.57143x and where f(y) describes the variation
of z versus y for the NACA 63A 010 distribution.

It is advantageous to decrease the percent thickness from hub to
tip as indicated above, since this reduces the overvelocities due to
thickness ne.ir the tip, where the higher relative velocity of blade
section and fluid tends to make them larger. However, this advan-
tage must be weighed against the disadvantage arising because the
thinner blade sections have larger overvelocities due to off-design
angles of attack.

CIRCULATION DISTRIBUTION

For a wake-adapted propeller operating in a turbulent boundary
layer-type wake, the spanwise (or radial) variation of bound circula-
tion should be one that has its maximum value near the hub. Such a
bound circulation variation accelerates the slow-moving fluid by the
greatest amount, resulting in higher efficiency. Furthermore, since
a: single-rotating propeller is being considered here, the circulation
distribution must go to zero at the hub. Experience has shown that if
the propeller is designed to maintain circulation there, the accom-
panying mean tangential velocities give rise to a strong and highly
cavitation-prone hub vortex behind the propeller. As a consequence
of the above two requirements, a typical spanwise circulation
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distribution for the type of propeller considered here is shown in Fig. 6.
This circulation distribution was adopted for the present study.

Note in Fig. 6 that the circulation does not drop to zero exactly at the
hub, but rather at a point a small distance from it where the inflow ve-
locity to the propeller (Eq.4 and 5) is still relatively large compared to
the free stream velority. Because the inflow velocity drops to zero at
the hub, a circulation distribution that does not drop to zero at that
point is dictated by both physical and theoretical considerations. First
of all, it is physically impossible to twist the blade rapidly enough to
follow the relative flow velocity vector in the region very near the hub.
Second, viscous effects predominate in the boundary layer flow there,
so that the potential flow considerations used in propeller design are
probably nonvalid. Hence it becomes necessary to exclude in the de-
sign calculations a sr.all region of the flow near the hub by defining an
effective hub radius where the circulation drops to zero. Even ignor-
ing the above argurnent, strictly theoretical considerations make such
a procedure necessary. If a lifting-line solution using Lerbs' induction
factor method (Ref. 8) is attempted for the propeller, where the circu-
lation and inflow velocity drop to zero at the same radial location, a
solution normally cannot be obtained. The first time through, the cal-
culation of the induced velocities gives rise to negative ones and hence
negative values of P near the hub (see Fig. 1, Ref. 1) because the inflow
velocity is so small there. These negative values of P imply the absurd
condition that the flow at that location moves upstream rather than down-
stream. The first iteration on the induced velocities with these nega-
tive values of P near the hub gives rise to positive induced velocities
and positive values of P there. Subsequent iterations oscillate between
negative and positive values of P, and nc solution is obtained.

Chordwise distributions of bound circulation of the trapezoidal type
(see Fig. 7) have been adopted at NOTS as the best for propeller design.
Chordwise loadings of this type go to zero at the trailing edge, so that
the Kutta condition is satisfied and, consequently, viscous corrections to
lift are not large. These loadings also go to zero at the leading edge,
so that the over-velocity due to lift is small in that area, where a spike
may occur owing to possible off-design angles of attack. Hence better
cavitation performance is expected fromn these loadings. The actual
chordwise loading used in this study (Fig. 7) was chosen to be sym-
metric about the center of the blade. Some interesting features of this
arrangement will be explored elsewhere in the report.

VARIATION OF CHORD WITH SPAN

A preliminary run of the Lerbs' induction factor lifting-line pro-
gram, neglecting viscous drag of the blades, was made to obtain a
reasonable estimate of Gmax and the induced velocities. These values,
together with the inflow velocity profile given by Eq. 4 and 5, the blade
thickness distribution given by Eq. 6, and the spanwise and chordwise
distribution of bound circulation shown in Fig. 6 and 7, were utilized to
calculate the minimum value of C/D versus x to meet the requirement
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Area = G

'0

0 0.2 0.4 0.6 0.8 1.0
Y

FIG. 7. Chordwise Variation of Bound Circulation.

of cavitation-free operation for PDEPTH - PVAPOR /apVs 0.85. In these
calculations, the variation of static pressure through the propeller was
accounted for and the usual assumption that the static pressure is a
constant across a boundary layer was made. Since calculations of this
type are common in propeller design, no details are given here. A
plot of the minimum value of C/D versus x to meet the cavitation re-
quirement is shown in Fig. 8. The actual C/D versus x chosen is also
shown, and it is seen that some margin was left for possible off-design
conditions.

LERBS' LIFTING-LINE SOLUTION

As discussed on Pages 2 and 3 of Ref. 1, Lerbs' induction factor
lifting-line solution (Ref. 8) serves as a starting point for applying the
lifting-surface solution. It yields the pitch distribution of the helical
sheets upon which the singularity distributions representing the lifting
surfaces are placed. It also yields the magnitude of the bound circula-
tion needed to meet the thrust requirement. The lifting-line computer
program uses a slightly extended version of Lerbs' induction factor
method, in which the drag of the blade section is accounted for in com-
puting the thrust and torque of the propeller. Using the inflow velocity
p-ofile given by Eq. 4 and 5, the spanwise variation of bound circulation
shown in Fig. 6, the spanwise variation of chord shown in Fig. 8, the
required thrust coefficient CT = 0.1, and the required advance ratio
k s = 0.5 as inputs to the lifting-line computer program, the spanwise
variation of axial and tangential induced velocities at the lifting line
shown in Fig. 9 were calculated. The required maximum value of the
bound circulation (Gmax = 0.00967) and the torque (CQ = 0.0543) to
generate the desire thrust also were given by the program. In this
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solution, 14 terms were used in the odd Fourier expansion of the bound
circulation and 16 terms in the even Fourier expansion of the induction
factors. It is interesting to note that negative induced velocities oc-
curred near the hub and the tip. Such a result is common for non-
optimum propellers.

NORMAL COMPONENT OF INDUCED VELOCITY
FROM LIFTING-SURFACE PROGRAMS

With the value of Grnax and the pitch distribution

v'/ s+ Via/vs
f3 = arctan

x/Xs - Wt/vs

of the helical sheets given by the lifting-line solution, all the necessary
inputs for the lifting-surface computer programs were made available.
In the lifting-surface solution, it was assumed that the blades were not
skewed and that the blade shape was symmetrical about the stacking
line; i. e. , L = -C (see Fig. 3a, Ref. 1).

To illustrate the effect of operating in a wake, an identical lifting-
surface solution (except that x tanp = CONSTANT = 0.456 was used) was
carried along simultaneously with the lifting-surface solution for the
wake-adapted propeller. The condition x tanp = CONSTANT is met
exactly for lightly loaded free-running propellers, and approximately
for moderately loaded free-running propellers. However, it is seriously
violated for lightly or moderately loaded wake-adapted propellers op-
erating in a wake profile of the turbulent boundary layer type. The
value 0.456 corresponds to the magnitude of x tano for the wake-adapted
propeller at the center of the blade, x = 0.65.

The lifting-surface programs yield (1) the normal component of in-
duced velocity resulting from the bound circulation, (W'j)B; (2) the dif-
ference resulting from the free vorticity between the normal component
of induced velocity on the blade and the normal component of induced
velocity at the lifting line from the lifting-line solution, (Wy )F - (Wy)FLL
(see discu-ssion, Pages 30, 31, and 42, Ref. 1); and (3) the normal com-
ponent of induced velocity resulting from blade thickness, (W;T)T. The
variation of these normal components across the blade were calculated
at three spanwise stations: (I) near the tip, x = 0.9625; (2) at the mid-
dle of the blade, x = 0.65; and (3) near the hub, x = 0.37.

A discussion of the width of the strips and the size of the singularity
region used in these calculations is given in the Appendix.

Figure 10 shows the variation across the blade of the normal com-
ponent of induced velocity resulting from the bound circulation, (W )B.
It should be noted that these variations for both the case x tanP = CON-
STANT and the wake-adapted case are odd functions about the half-
chord position, y = 0.5. This results because there is no skew and
becaude the blade shape and chordwise loading are symmetrical. If
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the three conditions above are not met, the variation of (Wi)B over
the front half of the blade will normally bear no simple relation to that
over the rear half. A comparison of the magnitudes of (W;?)B between
the case x tanp = CONSTANT and the wake-adapted case shows that the
effect of operating in the wake is essentially negligible near the tip and
center of the blade, but produces significant differences near the hub.

Figure 11 shows the variation across the blade of (W) F - (W)FLL.
Observe that these variations are odd functions about the half-chord
position, y = 0.5, only for the case x tanp = CONSTANT. Thus the
blade must have not only symmetrical shape, symmetrical chordwise
loading, and no skew, but also a constant x tanP if (Wf)F - (W?)FU is
to satisfy this special relationship. If these conditions -ire not met,
the variation of (WY)F - (WY)FU over the front half of the blade will
generally bear no simple relation to that over the rear half. In com-
paring the magnitude of (W:)F - (WY)FLL between the case x tanp =
CONSTANT and the wake-adapted case, it is seen that the effect of op-
erating in the wake is small near the tip and center of the blade, but
results in large differences near the hub, since the whole trend in the
values is altered. Note also that the values of (WY)F - (W7)FL at the
station near the tip (x = 0.9625) are reversed in sign compared to thooe
at the center of the blade (x = 0.65). This reversal is related to the
fact that the non-optimum circulation distribution (Fig. 6) yields nega-
tive values of induced velocity near the tip (Fig. 9).

The cross-blade variation of the normal component of induced ve-
locity, which results from blade thickness, (WY)T, is given in Fig. 12.
None of these curves show a simple relation between the variation over
the front and rear halves of the blade. This is true for this propeller,
and in general for all propellers, because thickness distributions of
streamlined airfoil sections are not symmetric about the mid-chord
position Comparing the magnitude of (WY)T for the case x tanp =
CONSTANT with the wake-adapted case shows marked differences, not
only near the hub, but also near the tip.

At this point, it is interesting to examine the reasons for the differ-
ences in behavior of the normal components of induced velocity for the
case x tanp = CONSTrANT and the wake-adapted case. The normal
components of induced velocity resulting from bound circulation and
free vorticity were seen to be nearly the same for these two cases near
the tip and center of the blade, but to differ considerably near the hub.
This result is no surprise, considering the wake profile in which the
propeller is operating. This profile (Eq. 4) is a reasonable approxima-
tion of a fairly full turbulent boundary layer. In such a profile, the
variation in velocity in the outer portion is small, giving rise to small
variations in x tanP at the tip and middle of the blade. Near the hub,
however, the variations in velocity are large, leading to large varia-
tions in x tanp and consequently large differences between the x tanp
CONSTANT and the wake-adapted cases there.

The differences between the two cases in the normal component
of induced velocity resulting from blade thickness were seen to be
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relatively large not only near the hub, but also near the tip. This situ-
ation is not difficult to understand if one fact concerning blade thickness-
induced flow is kept in mind. The (WY)T velocity component normal to
a line in the chordwise direction is not normal to a line in the spanwise
direction if x tanp A CONSTANT. This can give rise to a much larger
effect of a blade on itself for the wake-adapted case, compared to the
case x tan3 = CONSTANT. It is, in fact, the blades effect on itself
that causes most of the differences seen in Fig. 12 at Stations x = 0.37
and x = 0.9625.

CAMBER LINES AND IDEAL ANGLES OF ATTACK

The camber lines and their orientation in the flow are determined
from the variation of the normal component of induced velocity across
the blade. A polynomial fit to thE camber line slope is used to deter-
mine the camber line and its orientation, as discussed on Pages 42 and
43 of Ref. 1. In these calculations, the normal component of velocity
used is

WY = (WY)B + (WY)F - (WY)FLL + (WY)T

where (WY)FLL is the normal component of induced velocity at the lift-
ing line from the lifting-line solution. Since this component is sub-
tracted, the angle of attack y (Eq. 49, Ref. 1) gives the orientation of
the chord line in relation to the relative flow velocity vector at the lift-
ing line as shown in Fig. 13. This angle, y, is analogous to the ideal
angle of attack for two-dimensional camber lines, and will be referred
to by that name.

VW

v wt

Wr

FIG. 13. Velocity Diagram Showing Blade Orientation
Relative to Flow at the Lifting Line.
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Figure 14 shows the camber lines and ideal angles of attack where
the blade thickness effect has been neglected. For the case x tanp =
CONSTANT, the camber lines are symmetrical about the half-chord
position, y = 0.5, and the ideal angles of attack are all zero. This re-
sults because the normal components of induced velocity from bound
circulation and free vorticity (Fig. 10 and 11) are odd functions about
the half-chord position. Recall that this relationship occurred because
rhere was no skew, the blade shape and chordwise loading were sym-
metrical, and x tanp equalled a consta .t. For the wake-adapted case,
it is seen that, in general, the camber lines are not symmetrical about
the half-chord position and the ideal angles of attack are not zero, even
if the blade thickness is negligible.

The calculated camber lines and ideal angles of attack, including
the blade thickness effect, are shown in Fig. 15. Since the variation
of the normal component of induced velocity from blade thickness over
the front half of the blade bears no simple relation to that over the
rear half (Fig. 12), the camber lines are not symmetric -bout the half-
chord position, and the ideal angles of attack are not zero, regardless
of whether x tanp = CONSTANT. A comparison of Fig. 14 and 15 shows
that while the blade thickness-induced velocity field yields a distortion
of the camber lines, its principal effect is to alter the ideal angles of
attack. These alterations are as large as 0.6060.

SIGNIFICANT FEATURES OF TYPICAL
DESIGN CALCULATIONS

In the foregoing typical design calculations for a wake-adapted pro-
peller, one feature stands out. For propellers operating in a wake of
the turbulent boundary layer type, the radial variation of x tanp must
be accounted for in the design calculation if anything approaching cor-
rect results are to be obtained. Hence the assumption made in Ref. 4
that this variation gives rise to negligible effects is apparently not
justified in the design of propellers for bodies such as torpedoes or
submarines where the inflow velocity profile is typically that of a tur-
bulent boundary layer. Furthermore, it is doubtful that satisfactory
values of the normal component of induced velocity due to blade thick-
ness for a wake-adapted propeller can be obtained where the radial
variation of x tanp is neglected as proposed in Ref. 2.

The foregoing calculations have also shown that the alteration in
ideal angle of attack resulting from blade thickness is sufficiently
large, even for propellers having only five blades, that the effects of
such thickness must be included in propeller design.
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CHANGES AND ADDITIONS TO THE
LIFTING-SURFACE PROPELLER DESIGN METHOD

MODIFICATIONS TO LIFTING-SURFACE PROGRAMS

Several small modifications, not included in Ref. 1, were made to
the lifting-surface propeller design programs. The tests shown on
Pages 15, 16, 29, 39, and 40 of Ref. 1 on the quantity 4ac - b 2 to deter-
mine the expression for Q to use were changed to

14ac - b 2 1 > O.01b 2  and 14ac - b2 1 0.0lb 2

By means of this alteration, the test was made independent of the blade
shape and the accuracy of the solutions were improved.

To make the approximation to k (see bottom of Page 33, Ref. 1)
across the singularity region equal in accuracy regardless of the span-
wise position, the value of Aa (Fig. 11, Ref. 1) is computed so that the
distance across the region is a constant percent chord, &Y. Thus

a = f3pAy

The lifting-surface programs do not allow the normal component of
induced velocity to be computed directly at the leading or trailing edge
of the blade. Hence values were computed at points off the leading and
trailing edges, y = -0.05 and 1.05. Thus the values normally used in
computing a camber line corresponded to y = -0.05, 0.05, 0 15, 0.25,
0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, and 1.05. As a result of the
often-encountered peculiar behavior of polynomial fits to a set of points
near the end points, it was found that the accuracy of the camber line
program could be enhanced by interpolating values of the normal com-
ponent of induced velocity at the leading and trailing edge (y = 0.0 and
0.1) using a three-point Lagrange method. These two new values, plus
the original twelve listed above, are all used in computing the camber
lines. Further, it was found that writing the power series represent-
ing the camber line about the half-chord position also improved the
accuracy of the camber line program. Thus

h = ao + aly+ a 2y + a 37 3 + • a] j

where 7 = y - 0.5. Equation 49 of Ref. 1 now becomes

-- ai (YL4 YTE)

TOh =(Y- + (y -YTE)al + (y 2 _ YE)a2 +. (7y3 -7E)aj

where VLE and 7TE are the values of V at the leading and trailing edges:
-0.5 and 0.5, respectively.
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ADDITION OF THE HUB BOUNDARY CONDITION

Extension of the Douglas Potential Flow Program. It was mentioned
in Ref. I that the hub boundary condition can be included in propeller
design by using a surface source density over the hub boundary. Hess
and Smith (Ref. 10) worked out a method for computing the potential
flow about an arbitrary body in a uniform onset flow using the surface
source density approach. Recently this work was extended 4 so that
an arbitrary onset flow may be considered. However, the capability
of computing velocities at off-body points was not included in the com-
puter program. At the present time, the Douglas Aircraft Co., under
contract to NOTS, is extending the program to include the capability
of computing velocities at off-body points. With these extensions, the
inclusion of the hub boundary condition by means of the Douglas com-
puter program becomes a relatively simple task.

Use of the Douglas Program in the Propeller Hub Problem. In the
method developed by Hess and Smith for computing the potential flow
about arbitrary bodies, the body is represented by a patchwork of four-
sided plane elements over which the source density is assumed con-
stant. The source density strength of each element is determined by
the condition that no fluid must penetrate the boundary. This boundary
condition is satisfied at the center of each element. In the extended
program, it is possible to specify an arbitrary normal component of
onset flow in satisfying the boundary condition. Hence the condition
that fluid not penetrate the boundary can be met even if the body is in
the presence of a disturbance such as that created by a propeller.

Using the surface source patchwork to represent the propeller hub,
it is first necessary to compute the normal component of velocity in-,
duced by the propeller at the center of each element. Using these
values in the Douglas program, the source densities needed to satisfy
the hub boundary condition can be determined and the velocities induced
by the hub at one propeller blade can be computed. The hub-induced
velocities can then be incorporated into the calculation of the camber
lines and ideal angles of attack of the propeller blade sections. The
pitch of the blade section chord lines may be significantly altered by
the hub-induced velocities, so that the blades do not lie close to the
helical sheets upon which the blades were initially assumed to lie when
the normal component of velocity at the hub was computed. In such a
case, it may be necessary to iterate the solution correcting the pitch
distribution of the helical sheets. It is probable, however, that such
a procedure will not be necessary.

Calculation of the Propeller-Induced Normal Component of Velocity
at the Hub. In Ref. 1, the subscript p was used to define the singularity
point on the blade where the normal component of induced velocity was

4 Douglas Aircraft Co., Inc. "Three-Dimensional Potential Flow for Non-Uniform Onset Flow,' by
G. E. Short. Douglas Aircraft Div., Long Beach, Calif., September 1964. (Memorandum C1-210-TM-26D,)
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desired. In this section, the subscript p is used to define the point on
the hub where the component of velocity normal to the hub is desired.

Using a helical coordinate system to define this point, the coordi-
nates in the X', Y', Z' system (see Fig. 1, Ref. 1) of point p are given
by Eq. 1, Ref. 1.

Xp1 = cprh tanPh

Y' = -rh sin(4p + a) (7)

Z'r cos(=, +r)
p h Co Lp +cp)

The value of Ph to be used, and the reason for using a helical coordi-
nate system to locate point p, will be discussed later.

Making this Eq. 7 nondimensional by use of Eq. 7, Ref. 1, one ob-
tains

Xp = tpXh ranPh

YP = -xh sin(p + ap) (8)

ZP = Xh cos (4p + ap)

A rectangular X', Y', Z' coordinate system is defined as shown in
Fig. 16. The X' axis coinc-ides with the X' axis, and the Z' axis passes
through point p on the hub normal to the hub surface.

Point p

.4/p

y1 X'

X1

FIG. 16. Rectangular X', Y', Z' Coordinate System.

A vector having components Ax, Ay, A z in the X', Y', Z,' coordinate
system will have components in the X', Y', Z' system given by

43



NAVWEPS REPORT 8772

Ax = Ax

Ay = Ay cos(t4p + ap) + Az sin (tIp + ap) (9)

AZ= -Ay sin (ip+ap) + AZ cos (tp + ap)

Looking first at the normal component of velocity at the hub induced
by the bound circulation, the Biot-Savart law (Eq. 14, Ref. 1) is used to
compute the desired velocity. The component of velocity normal to the
hub will be in the Z' direction (see Fig. 16). Hence Eq. 14, Ref. 1, gives

1 Sydi X - Sxdly

Wzf= - 3 (10)
41T S

Replacing Eq. 15, Ref. 1, with Eq. 10 and using Eq. 7 in an analysis
similar to that carried out on Pages 6 - 17 of Ref. 1, it is easily shown
that the right-hand side of Eq. 19, Ref. 1, yields the nondimensional
normal component of induced velocity at the hub due to the bound circu-
lation (WZ)B/vs if

A 0 = -(Xp - Ynf 1 +f 2 )[f 8 - f 4 -Yn(f 7 - f)] cos (tm+Ynf3 - f 4 - tip -ap)

+ [(Ynf 5 -f 6)x + (Xp -ynf+f 2 )] sin(tp+Ynf 3 -f 4-p -ap)

A 1 = {(yf - f6 )xf 3 +f 1 [f 8 - f 4 - y-(f 7 - f 3 )] +(Xp - YnfI +f 2 )f 7}

Cos (4m +Ynf 3 -f 4 " tp- a p

+{xf-f+ (X -ynf+f 2 )[ f 8 -f 4 - yn(f 7-f 3 )f 3}

sin(qm +ynf 3 - f 4 - -a)

A 2 = (xf3 f 5 - fIf 7 ) cos (m+ynf 3 -f4- P -ap)

- {[f 8 - f 4 -Yn(f 7 -f 3 )]f l f 3 +(X p -ynfI +f 2 )f 3 (f 7 -f 3 )}

sin (fm +ynf' " f 4 "t- CP

A 3 = fIf 3 (f 7 -f 3 ) sin (4rm +yJf3 £4 " Pi - ap)

-0

(LiWj;)B/vS = 0

and XP, Yp, and ZP are given by Eq. 8.

Note that E and LW are zero, since no singularity will appear in the
solution if the boundaries of the surface source elements representing
the hub are properly chosen (as will be discussed later).
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Similar analyses show that

1. The right-hand side of Eq. 35, Ref. 1, yields the nondimensional
normal component of induced velocity at the hub due to free vorticity,
(Wz)F/vs, if

A 0 = xnM n sin(4s m + a - LPp - ap) + (Xp - CLMn)xu cos (4'm+ a - tPp - Lp)

A 1 = (M n + xnNr) sin( Pn + a - Pp - ap)

+ [XP - a (M. + xnN,,)] cos ('Pra + a - L p - ap)

A 2 = Nn[ sin(tpm + a - tj p - ap) - a cos( rn + a - ip - ap)]

E= 0

(AWY)F/v s = 0

and Xp, Yp, and Zp are given by Eq. 8.

2. The right-hand side of the equation s on Page 39 of Ref. I yields
the nondimensional normal component of the induced velocity at the hub
due to the blade thickness, (Wz)T/vs, if

A 0 = xh - x cos ('Pm + ynf 3 - f 4 - Lp - a p)

Al = xf 3 sin(4jm + Yr f 3 - f 4 - p - Cp)

E= 0

(AWY)T /Vs = 0

and XpI Y p , and Zp are given by Eq. 8.

Thus it is seen that small additions to the computer programs, al-
ready developed to determine the component of induced velocity normal
to the propeller blade, will give them the capability of determining the
component norrral to the hub. Work to add this capability to the pro-
grams has been started.

Arrangement uf Surface Source Elements on the Hub. In order that
no singularities or near-singularities occur in the calculation for the
normal component of velocity induced at the hub by the propeller, it is
necessary to arrange the surface source elements on the hub so that
none of their midpoints fall on or near the intersection of the hub and
the singularity sheets representing the propeller. This can be done by

SThe equation referred to was not given a number in Ref. 1. It is the expression for (WjV)T/v s .
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dividing the hub surface by planes X' = CONSTANT perpendicular to the
axis and by helical lines on the hub surface at a pitch angle Ph, which
is the angle of the propeller helical sheets at the hub. This arrange-
ment is shown in Fig. 17.

X1 = CONSTANT

rh

FIG. 17. Arrangement of Surface Source Elements
on the Hub.

By having a helical source element boundary coincide with the inter-
section of the hub and each of the propeller helical sheets, the points
where the normal component of velocity is computed will be at least
one-half element width away from the propeller singularity sheets.

An additional advantage of the arrangement shown in Fig. 17 is that
the angular periodicity of the propeller's induced velocity field may be
exploited so that propeller-induced normal components of velocity at a

the hub need be calculated over only 1/g (g = number of blades) of the
hub surface.

Because of the limitation in the number of elements the Douglas
program can handle (maximum: 1,000 points defining the corners of
the elements), it will be necessary (1) to accurately represent the hub
in the vicinity of the propeller by using a large number of small ele-
ments in that region; (2) to less accurately represent the hub at more
distant points in front and behind the propeller by using fewer, larger
elements; and (3) to ignore the hub boundary condition altogether at
points three to four propeller diameters in front of and behind the
propeller. Since the velocity induced by a source falls off as the in-
verse square of the distance, such a representation will give accurate
values for the hub-induced velocity at the propeller.
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CONCLUSIONS

Check solutions of the lifting-surface design programs indicate that
these programs can yield a level of accuracy which is more than ade-
quate for engineering design calculations. The discussion in the Appen-
dix points out that this level of accuracy can be achieved with moderate
computing times.

The typical design calculations point out two important features of
propeller-induced flow:

1. For propellers operating in a wake profile of the turbulent
boundary layer type, it is essential that the radial variation of x tanp
be accounted for in the lifting-surface calculations if anything approach-
ing correct results are to be obtained. The errors induced by neglect-
ing this variation occur principally near the hub when computing the
effect of bound circu'ation and free vorticity. However, significant
errors may occur, both near the hub and the tip, when computing the
effect of blade thickness. Hence the radial variation of x tanp appears
to be an important factor in the design of propellers for torpedoes and
submarines where the propellers typically operate in a turbulent bound-
ary layer wake profile.

2. The effect of blade thickness, even for a propeller having only
five blades, is sufficiently large that it should be included in propeller
design. The blade thickness-induced velocity field causes a distortion
of the camber lines, but its principal effect is an alteration in the ideal
angles of attack or pitch distribution of the blade sections. These are
essentially the conclusions arrived at by Kerwin and Leopold in Ref. 3.

Once the hub boundary condition has aen incorporated into lifting-
surface propeller design, all parts of the propeller system will be
quite accurately represented by the theoretical singularity distribution
model. Most likely, the theoretical aspects of single-rotating pro-
peller design will then be carried as far as is presently reasonable
from a practical standpoint. Experimental work aimed at (1) determin-
ing better viscous corrections to lift, and (2) obtaining better viscous
corrections to ideal angle of attack for propeller blade loadings having
good cavitation resistance, might then round out the engineering design
of single-rotating propellers.
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Appendix

WIDTH OF STRIPS AND SIZE
OF StNGULARITY REGION

In the check solutions and the typical design calculations presented
here, the width of the strips and size of the singularity region (see
discussion, Page 5, Ref. 1) used in the lifting-surface computer pro-
grams were determined by a compromise between accuracy and com-
puting time. The solutions obtained by the programs become more
accurate as the strips are made narrower and the singularity region
made smaller, until the numerical eccuracy of the computer breaks
down due to the number of significant figures retained. However, this
increased accuracy must be paid for in increased computation time and
cost. Therefore, when the width of the strips and size of the singu-
larity region have been made small enough to obtain the level of accu-
racy needed for engineering design calculations, the added cost of
more accurate solutions is wasted, since the diffecences cannot be
fabricated into the propeller. The list below, based on the check solu-
tions and design calculations run to date, gives the strip widths and
singularity region sizes for the various programs that should yield
answers accurate within a small fraction of 1%. Using these values,
about 22 minutes of IBM 7094 computer time is required to determine
the camber line and ideal angle of attack for one blade station. Based
on the current cost of computer time at NOTS, the computer cost for a
complete propeller design would be approximately $850.

1. Bound Circulation Program

Number and width of strips: Ten of equal width, A Y = 0.1.
Length of singularity region: AX = 0.02.

2. Free Vorticity Program.

Number and width of strips: Sixteen to tweity, varying from
AX = 0.02 to X = 0.10. The
distribution r these strips can-
not be specified in advance for
a given propeller, but must be
chosen to represent accurately
the radial variation of x tanp,
the chord, and the circulation.

Length of singularity region: AY= 0.02.
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3. Blade Thickness Program.

Number and width of strips: Twelve, three at the leading
edge of width AY = 0,3333, the
remainder of width AY = 0.1.
The three narrow strips at the
leading edge are required to
represent adequately the rapid
change in thickness which oc-
curs at that location for nearly
all practical thickness distribu-
tions.

Length of singularity region: AX 0.01.
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