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PREFACE 

Linear and nonlinear  filtering has  had and will  have 

a  profound effect  on many  problems  of   the Air Force.     In 

particular,   linear  filtering theory has  been  applied  to 

orbit  determination,   aircraft and missile guidance,   and 

control   problems. 
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ABSTRACT 

This  paper  is  a written version of  a  talk  to be  given 

on problems  of   filtering theory.      It   is  a  review of   the 

linear  theory  and  some of   the  recent  fundamental  ad\ ances 

in   the nonlinear  theory. 

Some open  and quite  interesting problems   in  the non- 

linear  theory  are  discussed. 
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LINEAR AND NONLINEAR FILTERING THEORY 

I.  INTRODUCTION 

The general filtering problem can be described as 

follows:  a stochastic process z(t) is observed consisting 

of a stochastic process x(t) (i.e. the signal process) 

corrupted by noise v(t), which is another stochastic 

process.  It is desired to construct a stochastic process 

x(t), an estimate of the signal.  Usually only the second- 

order properties of the signal and noise processes are 

given. 

In the 1940^, Wiener in [1] and Kolmogowv solved 

this problem under the assumption that the signal and 

noise processes are second—order stationary processes 

and that the observations are known for the infinite past, 

by finding the minimum variance unbiased linear estimate. 

Here two problems are discussed that generalize the 

Wiener problem.  The first is linear filtering of vector 

nonstationary second-order processes with partial observa- 

tions.  A fairly complete theory exists (see [2]) and is 

about five years old.  The second problem, that of filtering 

with the signal (the solution of an arbitrary random 

differential equation) has a far-from—complete theory as 

yet, although interesting contributions to this problem 

have been made lately.  The purpose of discussing these 

two problems is twofold:  primarily to point out a research 

area with many interesting and difficult problems, and 
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secondly  to point  out some  results   that do not  seem  to have 

the attention  they deserve,   except  in  the area  of control 

theory. 
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2.  THE LINEAR PROBLEM 

We shall assume that the signal process x  is the 

solution to the following random differential equation: 

dx = Fx dt + G dß, 

x(t0) = c, 

where    x     is an n—vector,   ß     is  r-dimensional  brownian 

motion,   and    c     is  a  gaussian  zero mean   random vector 

independent of    ß.     Further,   F     is  an n   x n matrix,   and 

G     is an n   x  r matrix.     The  observations  will  be given as 

the  solution  to 

dz = Hx dt + dv, 

with    v    an s-dimensional  brownian motion independent of 

ß     and    c,   and    H    an  s   x n matrix.     Further,   we assume 

E[ß(t)  - ß(s)][ß(t)   - 0(8)]'   - Q(t - s) 

and 

E[v(t)  - v(s)][v(t)  - vCs)]'   - R(t - s). 

Our problem now consists  in finding  the minimum variance 

unbiased estimator x(t)   of  x(t)   that  is  a functional  of 

the  observations  z(s)*   t« <£ s ^ t.     It  is very easy  to 

describe  the desired estimate  in this  case.     Let F    be 

the minimal   a-field  induced by z(s)   for  s,   t« <  s ^ t. 

Then 

x(t)   - E[x(t)|Ft] 
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so that our problem can be resolved by finding the 

conditional distribution of x(t), given F..  But with 

our assumptions of gaussianess, a little thought reveals 

that this is N(L (z.), ^V^' where L (z.) is the projection 

of x(t) on the closed linear subspace of the Hilbert space 

2 of L random variables.  P. s E(x - x ) (x — x ) ; that 

is, the conditional covariance is identical with the 

unconditional covariance—a direct consequence of 

gaussianess.  x is a projection form of the Wiener-Hopf 

equation, namely, 

(2.1) [x(t) - x(t), uj = ExCtV = 0 

for every n—vector u in the subspace determined by the 
t 

observations.  In fact, by letting x(t) = f  W(t, T) dz , 
' t:0 

Eq. (2.1) becomes 

(2.2) cov x(t), Hx(s) =    W(t, -) cov [Hx(-), Hx(s)] d- + RW(t, t), 

the matrix form of the Wiener-Hopf equation.  Rather than 

solve Eq. (2.2) directly, it is more convenient to give 

x(t) by a sequential recipe.  Now Eq. (2.2) can be used to 

derive the following dynamical evolution equations for 

x and  P  [see Eq. (2.2)]: 

dx = Fx dt + PH,R~1(dz - Hx dt) , 

(2.3) 

x(t0) = 0 
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dP = FP + PF1 - PH'R 1HP + GQG', 

(2.4) 

P(t0) = ECC. 

At this point we note that Eqs. (2.3) and (2.4) have 

solutions that determine minimum variance linear unbiased 

istimator if the gaussian assumption is dropped, since, in 

the gaussian case, the projection and the condition mean 

coincide. 

To ensure that Eqs. (2.3) and (2.4) are computationally 

effective schemes for producing our estimate, it becomes 

necessary to ensure that they are stable and investigate 

their asymptotic behavior.  Toward this end we define 

observability and controllability as follows. 

Definition.. The model is completely controllable 

(observable) if for every tQ(t) there exists a t > tQ 

(t0 < t) such that 

j' e^-^GG'e*'^-8) ds - C(V t) 

j' /'(s-O^FCs-t) ds.M(v t) 

is positive definite.  A differential equation is said to 

be stable if solutions initiating at any time close to the 

equilibrium solution stay close to that solution fcr all 

time.  It is said to be asymptotically stable if, further, 

these solutions approach the equilibrium solution as time 

tends to infinity.  It is said to be uniformly asymptotically 
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stable if it is isymptotically stable uniformly in time 

and in the initial conditions. 

Theorem.  If the model is completely observable and 

if n(t, tQ)   0) is the solution of Eg. (2.4), with PUJ = 0, 

then 

F = lim  n(t, t0, 0) 

exists and is a solution of Eg. (2.4).  Further, if the 

model is also completely controllable, then Eg. (2.3) is 

uniformily asymptotically stable and 

P - lim  n(t, t0, P0) 

for any P^ semidefinite; and Eg. (2.4) is asymptotically 

stable.  Still further. Eg. (2.3) with P = P is the Wiener 

optimal filter. 

As the previous theorem makes abundantly clear, 

controllability rnd observability are fundamental, but 

they also have interesting intuitive meanings, namely, if 

x = Fx and z = Hx, and one knows F and z(-) on [t^, t], 

then x(tn) is determined when the system is observable. 

Further, W(tn, t) is just the Fisher information matrix 

for estimating initial conditions of a linear differential 

eguation.  Controllability suffices so that every two 

points of R may be connected by motions of x = Fx + Gu 

with appropriate u's.  As one might suspect by the names 

chosen for our conditions, there is a complete duality 

between linear filtering and control problems.  In fact, 
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the methods  of  proof  of   the above   theorem  rely on   this 

duality.     Finally^   everything previously  said generalizes 

to   the   nonstationary  case^   i.e.,   F,   G,   H,   R,   Q  functions 

of   time. 
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NONLINEAR FILTERING 

As we have seen in the linear gaussian case, the 

central problem in filtering theory is the determination 

of the conditional distribution of the signal x(t), given 

the a—field F  determined by the observations z(s) for 

s e (tf)' t) •  We shall now generalize the model of the 

signal and observation mechanisms as 

(3.1) dx = f(x, t) dt + -(x, t) df^ 

(3.2) dz = h(x, t) dt -I- dv. 

For this problem, which we shall call the nonlinear filtering 

problem, Stratonovich [3J was the first to devise a method 

to obtain the requisite conditional distribution.  Unfortu- 

nately his final equation was not correct, since he 

neglected a term.  Kushner [4j, using the same formal 

methods as Stratonovich, obtained the correct equation 

for the conditional distribution.  Wonham [5] employed 

somewhat different methods to solve a special case of 

this problem.  Finall>, the author gave, in [6J, an abstract 

representation of the conditional distribution as an 

integral over function space that leads quickly and easily 

via random calculus to the correct equations.  In order 

to state our results we introduce the following notation 

for g(x, t).  Here g  is defined as 

gt  = Eg(xt, t) Ft) 
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and   is  shown   to  satisfy 

(3.3) d^  =   (Ag)t  dt +   [(gh)t - Rt:gt:]R-L(dzt - fit  dt), 

with A  the infinitesimal generator of the space—time 

Markov process determined by Eq. (3.1).  Investigation of 

asymptotic behavior of Eq. (3.3) as t0 . - » and questions 

of existence and uniqueness of solutions of Eq. (3.3) are 

untouched and interesting.  Further conditions for which 

the system 

x - f(x), 

x(0) = c, 

z = g(x) 

is observable—i.e., when the values z(s), 0 < s < e, for 

every c > 0 determine x(0) uniquely—seem to be quite 

difficult, although Markus has introduced local concepts 

in a paper on control theory. 
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