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PREFACE

Linear and nonlinear filtering has had and will have
a profound effect on many problems of the Air Force. In
particular, linear filtering theory has been applied to

orbit determination, aircraft and missile guidance, and

control problems.



ABSTRACT

This paper is a written version of a talk to be given
on problems of filtering theory. It is a review of the
linear theory and some of the recent fundamental ad\ances
in the nonlinear theory.

Some open and quite interesting problems in the non-

linear theory are discussed.
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LINEAR AND NONLINEAR FILTERING THEORY

1. INTRODUCTION

The general filtering problem can be described as
follows: a stochastic process z(t) is observed consisting
of a stochastic process x(t) (i.e. the signal process)
corrupted by noise v(t), which is another stochastic
process. It is desired to construct a stochastic process
x(t), an estimate of the signal. Usually only the second-
order properties of the signal and noise processes are
given.,

In the 1940's, Wiener in [1] and Kolmogowv solved
this problem under the assumption that the signal and
noise processes are second-order stationary processes
and that the observations are known for the infinite past,
by finding the minimum variance unbiased linear estimate.
Here two problems are discussed that generalize the
Wiener problem. The first is linear filtering of vector
nonstationary second-order processes with partial observa-
tions. A fairly complete theory exists (see {2]) ard is
about five years oid. The second problem, that of filtering
with the signal (the solution of an arbitrary random
differential equation) has a far—from—complete theory as
yet, although intecresting contributions to this problem
have been made lately. The purpose of discussing these
two problems is twofold: primarily to point out a research

area with many interesting and difficult problems, and
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secondly to point out scome results that do not seem to have
the attention they deserve, except in the area of control

theory.




2. THE LINEAR PROBLEM

We shall assume that the signal prccess x 1is the

solution to the following random differential equation:
dx = Fx dt + G d3,
k(to) = ¢,

where x 1is an n—vector, # 1is r-dimensional brownian
motion, and c¢ 1is a gaussian zero mean random vector
independent of . Further, F is an n x n matrix, and
G 1is an n x r matrix. The observations will be given as
the solution to

dz = Hx dt + dv,

with v an s—-dimensional brcwnian motion independent of

R and ¢, and H an s ¥ n matrix. Further, we assume

E[p(t) - p(s)][p(t) —8(s)]' = Q(t - s)

and

E[v(t) — v(s}][v(t) = v(s)]' = R(t — s).

Our problem now consists in finding the minimum variance
unbiased estimator x(t) of x(t) that is a functional of
the observations z(s), tg < s g t. It is very easy to
describe the desired estimate in this case. Let Ft be
the minimal o-~field induced by z(s) for s, tg < st
Then

x(t) = E[x(t) [F_]
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so that our problem can be resolved by finding the
conditional distribution of x(t), given F.. But with

our assumptions of gaussianess, a little thought reveals
that this is N(Lt(z.), Pt)’ where Lt(z.) is the projection
of x(t) on the closed linear subspace of the Hilbert space
of L random variables. P_ = E(xt - )'Et)(xt - it)'; that
is, the conditional covariance is identical with the
unconditional covariance—a direct consequence of

gaussianess., X is a projection form of the Wiener-Hopf

equation, namely,
(2.1) [x(t) — R(t), u] = Ex(t)u' =0

for every n—vector u in the subspace determined by the

t
observations. In fact, by letting x(t) = It W(t, =) dz_,
0
Eq. (2.1) becomes
L
(2.2) cov x(t), Hx(s) = J W(t, -) cov [Hx(-), Hx(s)] d- + RW(t, t),
t
0

the matrix form of the Wiener—-Hopf equation. Rather than
solve Eq. (2.2) directly, it is more convenient to give
x(t) by a sequential recipe. Now Eq. (2.2) can be used to
derive the tollowing dynamical evolution equations for

X and P [see Eq. (2.2)]:

df = F& dt + PH'R L (dz — H} dt),
(2.3)
x(to) =0



dP -1

= ' ' '
St = FP + PF' — PH'RHP + GQG',

(2.4)

P(t = ECC'.

0
At this point we note that Eqs. (2.3) and (2.4) have
solutions that determine minimum variance linear unbiased
istimator if the gaussian assumption is dropped, since, in
the gaussian case, the projection and the condition mean
coincide.

To ensure that Eqs. (2.3) and (2.4) are computationally
effective schemes for producing our estimate, it becomes
necessary to ensure that they are stable and investigate
their asymptotic behavior. Toward this end we define
observability and controllability as follows.

Definition. The model is completely controllable

(observable) if for every to(t) there exists a t > ty

(to < t) such that

jt eF (t=8) gor o F ' (E=8) 4o . C(tgs t)

%o
t 1
I eF (S—t)H'HeF(S_t) ds = M(toy t)

%o
is positive definite. A differential equation is said to
be stable if solutions initiating at any time close to the
equilibrium solution stay close to that solution fcr all
time. It is said to be asymptotically stable if, further,
these solutions approach the equilibrium solution as time

tends to infinity. It is said to be uniformly asymptotically
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stable if it is asymptotically stable uniformly in time
and in the initial conditions.

Theorem. If the model is completely observable and

if n(e, 0) is the solution of Eq. (2.4), with P(to) = 0,

to,

then

P = lim TI(t,
to"’ -—®

exists and is a solution of Eq. (2.4). Further, if the

tys 0)

model is also completely controllable, then Eq. (2.3) is

uniformily asymptotically stable and

P = tltT_m n(t, to > PO)

0
for any P, semidefinite, and Eq. (2.4) is asymptotically

stable. Still further, Eq. (2.3) with P = P is the Wiener

optimal filter.

As the previous theorem makes abundantly clear,
controllability end observability are fundamental, but
they also have interesting intuirtive meanings, namely, if
x = Fx and z = Hx, and one knows F and z(-) on [tO, t],
then x(to) is determined when the system is observable.
Further, W(to, t) is just the Fisher information matrix
for estimating initial conditions of a linear differential
equation. Controllability suffices so that every two
points of R" may be connected by motions of x = Fx + Gu
with appropriate u's. As one might suspect by the names
chosen for our conditions, there is a complete duality

between linear filtering and control problems. In fact,



-]

the methods of proof of the above theorem rely on this
duality. Finally, everything previously said generalizes
to the nonstationary case, i.e., F, G, H, R, Q functions

of time.



3. NONLINEAR FILTERING

As we have seen in the linear gaussian case, the
central problem in filtering theory is the determination
of the conditional distribution of the signal x(t), given
the ~—field FL determined by the observations z(s) for
S « (tO, t). We shall now generalize the model of the

signal and observation mechanisms as

(3.1) dx = f(x, t) dt + ~(x, t) d~,

(3.2) dz h(x, t) dt + dv.

For this problem, which we shall call the nonlinear filtering
problem, Stratonovich [3] was the first to devise a method
to obtain the requisite conditional distribution. Unfortu-
nately his final equation was not correct, since he
neglected a term. Kushner [4], using the same formal
methods as Stratonovich, obtained the correct equation

for the conditional distribution. Wonham [5] employed
somewhat different methods to solve a special case of

this problem. Finally, the author gave, in [6], an abstract
representaticn of the conditional distribution as an
integral over function space that leads quickly and easily
via random calculus to the correct equations. In order

to state our results we introduce the following rotation

for g(x, t). Here g, is defined as

A



and is shown to satisfy
Y. P
(3.3) dg, = (Ag)_ dt + [(gh)t _ ﬁtgt]R (dz, - R, dt),

with A the infinitesimal generator of the space—time
Markov process determined by Eq. (3.1). Investigation of
asymptotic behavior of Eq. (3.3) as ty - — = and questions
of existence and uniqueness of solutions of Eq. (3.3) are

untouched and interesting. Further conditions for which

the system
x = f(x),
x(0) = c,
z = g(x)

is observable—i.e., when the values z(s), 0 < s < €, for
every € > 0 determine x(0) uniquely—seem to be quite
difficult, although Markus has introduced local concepts

in a paper on control theory.
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