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An Interpolation Curve using a Spline in Tension

by
Daniel G. Schweikert
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ABSTRACT

The use of a linearized mathematical spline for
interpolation between given points occasionally yields
extraneous inflectlon poin“s which for some applications,
notably the fairing of ship lines, are not acceptable.
To avoild this difficulty, a spline in tension is con-
sidered and the value of tension which 1s sufficient to
remove all the extraneous inflection points is determined.
The slopes of the interpolating curve at each of the af
gilven statlons are consldered as the unknowns and can be
calculated without the necessity of numerical matrix

inversion.
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I, INTRODUCTION

Frequently in engineering work one encounters the
need to relate a smooth curve to a large number of discrete
points. Where the discrete points represent experimental data,
one usually desires a smooth curve which will approximate the
glven data; thus, the curve is not required to pass through
every given point. However, when the discrete points are in-
tended to indicate the geometric outline of a physical body,
the smooth curve is usually required to pass through the exact
locations of all the given points; such a curve serves the
purpose of interpolating points between the given points.

Only t*tiie second type of curve, the interpolation curve, will
be considered here.

Historically, draftsmen have determined a "smooth",
or "faired", interpolation curve with the aid of a long flexible
beam or "spline". The spline is constrained to pass through
the given points in a plane, and heavy objects - "dogs" - placed
between the given points keep the spline from moving while its
deflection curve is being outlined on the drawing. Although
seeningly not subject to variations, two draftsmen will seldom
achieve identical results. In spite of these slight variations
the method, in general, yields highly ssacisfactory results.

The usual mathematical analysis of the draftman's
spline considers the small deflections of a simply supported
elastic beam. Using "Strength of Materials" assumptions, the

deflection curve can be represented bty cubic polynomials
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connecting the given points with adjacent cubics having their
first and second derivatives equal at their common given point.
The method has been aptly termed a '"plecewise polynomial" method
by Birkhoff and Garabedian [1]; a derivation of the form used
by them for one variable (the slopes at the given points are
taken as the unknowns) appears in Part II. Although Schoenberg
notes [2] related work on piecewise polynomial approximation
found in actuarial literature on "osculatory interpolation",

he 1s apparently the first to extensively treat the polynomial
analog of the draftsman's spline [3,%].

The cubic polynomial "spline" curve has many useful
properties [5,6,7] and has been successfully used as an inter-
polating curve in many problems far removed from those treated
by its physical counterpart, the draftsmant's spline. Unfortu-
nately, the cubic polynomial method is not satisfactory in the
problem closest to its origin: producing a smooth geometrical
outline which passes through the given points. The difficulty
centers around certain conditions on curvature implied by the
physical problem. One may require a convex interpolation curve
for a "convex'" set of given points. For instance, consider the
five points in Figure 1; the interior points 2, 3, and 4 have
positive second differences (see eq. 22) and it would be
reascnable to require the interpolating curve to have a positive
second derivative. Such a requirement is indispensable where the
interpolation curve represents the geometrical outline of a form

which must be fabricated, such as a ship's hull or automobille
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body. The cubic polynomial method coes not always satisfy this
plausible requirement; under conditions discussed in rart 2.2,
the curve will have a negative second derivative in certain
regions where a positive second derivative is expected from

the location of the given points, thus introducing unwanted, or
extraneous, inflection points.

Customarily, the draftsman's results do not have the
extranecus inflection points predicted by cubic polynomial
representation. Thus, by refining the assumptions made to obtain
the cubic polynomial representation, we may possibly obtain a
better mathematical representation which duplicates the physical
model's lack of extraneous inflection points. The assumptions
can be considered as follows: 1) the group of "Strength of
Materials" assumptions concerning the distribution of stress and
strain in the beam; 2) small deflections, or more precisely,
curvature taken equal to the second derivative; 3) simple
supports at the given points. The validity of the first group
of assumptions seems certain, at least with respect to extranecus
inflection points, since experiment or physical intuition can
quickly supply examples of simply supported physical splines
which have extraneous inflection points under approximately the
same conditions as those which yield such points in the cubic
polynomial method. The second assumption can be dismissed from
conslderation since it will be shown that the conditions under
which an extraneous inflection point cccurs in the cubic

pclynomial method is independent of the magnitude of the




562(36)/3 -5

deflections. The assumption of simple supports, however, is
immediately open to question. The heavy "dogs" provide the
physical mechanism which could preduce reaction moments and
maintain tension in the spline. It seems likely that the drafts-
man recognizes the "convexity" of the given points and manipu-
lates the spline by deviating r'rom simple support conditions in
order to achieve the implied cvrvature conditions, thereby avoid-
ing extraneous inflection points.

The question now arises as to what parts of the simple
support assumption can be successfully retained. Since only a
small amount of tension applied to a simply supported spline
would physically remove the extraneous inflection points in
most cases, one is led to consider the simpler condition of
tension alone and neglect the reaction moments.

The value of tension can be expected to change abruptly
at each of the "dogs'". However, as a mathematical expediency,
tension will be considered constant over the length of the
spline. This assumption permits the use of a mathematical model
in which the tension 1s produced by axial loads at the end of
the spline rather than by reaction forces ut the support points.
Thus, the net result of these changes will be the analysis,
in Part IV, of a simply supported spline in tension from a
"Strength of Materials'" viewpoint.
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ITI, SIMPLY SUPPORTED SPLINE
2.1 Basic Equations

Let the ordinates yo,yl,...,y be given at XosXyseoes

ntl
X141 respectively. For convenience consider the unit spacing
Xgpp - % =1 (1 = 0,...,n). Let y(x) be an interpolation curve
through these points and define y{ and y{ as the first and

second derivatives of y(x) at x, for 1 = 0,1,..,,n*1. The inter-
polation curve assoclated with the deflection curve of a simply

supported elastic beam (spline) is made up of a sequence of

cubic polynomials fy(x) such that

y(x) = fi(x) for x; < x <Xy (1 = 0,...,n)

(1)
¥( ) = lim £ (x)
n+1 e ';'xn+1 n
with the following conditions on value, slope, and second
derivative:
fi(xi) =y 1=0,...,n, (2)
11im £,.4(x) =y, 1=1,...,nm1, (3)
Jc->xi
1im £ (x) =f}{(x,) 1=1,...,n (4)
x _)xi 1"1 1 1 & 2 2
1im £ o (x) = £Mx,) 41=1,...,n. (5)
X axi i<1 i 1

The cutic, fi(x), can be expressed in terms of the ordinates

and slopes at each of 1ts end points, X5 and Xi41°




562(36)/3 =

fi(x) = (xi.;_l"x)yi + (x-xi)yi‘*'l +
(%42} (x=x ) {ly] = (yy4q-vy) Hxgyq-x) (6)
- [yj'_-l-l - (y1+1"y1)](x"x1)}

for x; £x < X444 (1 =0,...,n).

The form of fi(x) shown in (6) identically satisfies the con-
ditions on value and slope expressed in (2), (3) and (4); however,
1t does not, in general, satisfy the continuity condition on

the second derivative expressed in (5). In order to expend (5)
we first differentiate (€) twice:

£0(x) = ¥4y - v+ 32(yyq-vy) - (v *9)) Hxy g -2xtx, ]

for <x <x (L =0,...,n). (7)

X4 1+1

From (7),
£1(x;) = ¥i4y-v§+3[20yy4y-v,) - (vhg*tvyf)] (2 =0,..050) (8)

Q.

Im £ (x) = yl-y)_g-3(2(v,-yy g )-(vj*y) )] (1=1,...,n01).
X —>xi (9)

Using (8) and (9), (5) becomes

yiy * Myl =30y - vyy) (B =1,...n). (10)

Equation (10) gives n equations for the n+2 unknowns y{ (1 =0,
...,0n71) necessary to determine y{x) throughout X, £x $x4q
(cf. (1) and (6)). The two additional required equations are

usually obtained by specifying enc conditions on slope or

second derivative at xo and x

n+l°
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If the end slopes are specified, the number of unknowns
18 immediately reduced to n and these will be determined by (10)
alone.

If the second derivative yg is specified instead of y!
then the equation
yg = £a(x,), (11)

o)

or, using (7) to expand (11) into a more convenient form,
= " "t -

2yl + y{ = -3y, + 3(y;-y,) (12)
1s added to egs. (10) to provide n+l equations for the n+l
unknowns, y{ (1 =0,...,n). Likewise, the equation

y' . = 1lim £ (x) (13)
ntlx Sxt N

or, using (7) to expand (13),

= det
yé + 2yé+1 = iy$+1 + 3(yn+1 - yn): (14)

is considered with eqs. (10) when yg+1 is specified instead of

y6+1. If the physical spline 1is simply supported at the end-

points, the internal moment at those points is zero. In this

1dealized representation of the physical spline, the specifica-
"

tion of yg 2 Wiy = O is equivalent to having zero end moments

and is the most frequently used end conditicn.

2.2 Conditions for an Inflection Point

Assume that an interpolation curve, y(x), based on the
above cubic polynomial representation of a spline, has been

determined. We wish to determine the conditions which are
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assoclated with the appearance of inflection points. Since fi(x)
13 speciflied by 1its endpoint values Yi» Y11 and slopes y{, y{+1,
the analysis of one interval will yield results typical of all
intervals. Consider the interval x, < x £ X;,,. Since f£](x)
(cf. (7)) is linear there can be an inflection point if and only
if y{ and y;+1 are of opposite sign. In view of the discussion
in Part I, we must study the second differences associated with
x; and x,., 1n order to determine, assuming y{ and y£+l are of
opposite sign, if such an inflection point is extraneous. Before
doing this it will be helpful to discuss the inflection point
conditions in terms of slopes rather than second derivatives.

Let s(x) be the difference between the slope of y(x) and
a polygonal function connecting the given points. Then, in the

interval being considered,

s(x) = y'(x)

(yi+1 - yi) xi _S x £ xi+1: (15)

with its values at Xy and Xi4 being

s; =¥ = (g4 - ¥y) (16)
and

Sy41 = V{41 = (g = ¥4)s (17)
respectively. Substituting (16), (17) in (8) and (9), the second

derivatives y; and y£+1 can be expressed In terms of s, and s :

1+1
yi = £1(xg) = s34y = 8y - 3354y * 8y) )
yley = Mm  f£,(x) =s,,, -8, +3(8,, +s,) (29)
it X=>X 1 i 1 . !

1+1
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S

Defining ‘1 i , (20)

Si+1

the ratio of second derivates has the form

L

¥y _ 1+2ti . (21)
1" 2""‘(1 2

Yi+1

this ratio is positive if and only if -2 < {, < - 3. If s, and
8541 have the same sign (C1 > 0) we would expect an inflection
point. For 8y and 8441 of opposite sign an inflection point
occurs 1if By and 8441 differ in magnitude by more than a factor
of two; an inflection point in this case is not usually desirable.
For example, consider th: single interval problem (n = 0) shown

in Figure 2. With Vo = o, y, = %, and specified and slopes

1, y{ = 0, we have, from (16), (17) and (20), o 3'3’

5 = -%;and Co = =3, The cubic polynomial interpolation curve,

Yo

represented by the solid line, siiows an extraneous inflection
point and subsequent reverse in curvature near the right end.
Clearly, a curve such as the broken curve in Figure 2 has the
desired smoothness which the solid curve lacks, even though its
second derivative must have a larger maximum and could be con-
sidered less '"smooth" in a mathemat‘cal sense. This aituation
suggests that some acditional condi.ion on curvature would be
useful to further define, mathematically, the des’red type of

smoothness.
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III. CONDITIONS CN CURVATURE.

In order to avoid extraneous inflection points, the
discussion concerning Figure 1 leads to the requirement that yI
have the same sign as the second difference at Xy which will
be denoted as di‘ Although this brief statement is intuitively
plausible, it leaves two definitions and some intervening argu-
ments in need of elaboration.

The first problem is that the usual definition of the
second difference at xi,

dy = (yyeq=yy) = (¥4=yyq) =¥y - 29 * ¥y, (L =1,.00,0)
(22a)
leaves us without an indicator of the desired sign of yg at the
endpoints x_ and x

o n+l*
viously the desired one, however, for notational convenience in

If yg is specified then the sign is ob-

stating the curvature conditions, we formally define:

d, = yg, if yg is specified,

and similarly (22v)
d s = y£+1, if yg+1 is specified.

For the case of a specifled end slope we look again vo Figure 1.

If the specified slope at 1 is that of the dashed Iine a, we

would expect a positive second derivative at 1; 1f the slope 1is

ct

hat of b then a negative second derivative 1s desirable. A

0

ronvenient incdicator which duplizates these resrlts is a second
difference which uses the specified slope as the leading first

difference; 1i.e.
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d, = (yl-yo) -yl if y! is specified,

and similarly (22¢)

do+1 = Ype1 - (Yn+1 - Vn); if y},, 18 specified.

Definition. Assume that y(x) is an interpolation curve

2
of class C [xo,xn+1] through the given points y, at x, (1 =0,
...,n+1), satisfying conditions on slope or second derivative
at x_ and x_,,. Assume further that y(x) has at most one in-
flection point in the interval x; < x < x;,., (1 = 0,...,n).

Then, such an inflection point, if it exists, will be extraneous

if d1 and d1+1 have the same sign.
Theorem 1. Assume y(x) as in the above definition.

Then the condition that y, and d, (1 =0,...,n+1) have the same

i
b
sign 1s necessary and sufficient for y{x) to have no extraneous
inflection points.

Proof, The condition is clearly sufficient since for

every interval such that 4, and d1+1 have the same sign, y{ and

i
would have the same sign and there would be no inflection

Vil
peint. Prcof of necessity is more involved and will be demon-
strated with the ald of Figure 3 and the notation that, say,
(+,--)1 will mean y; 1s positive and 4, 1s negative. Assume that
there 13 some point i such thav y; and d1 have the same sign,
say (+,+)1, and y;+1 and d,,, have opposite signs. We have two
choices, (-,+)i+l or (+,-)1+1; the former implies an extraneous

inflection point so we choose the latter. Jecause of the signs

" ]
of d1 and d1+1' it is clear from Figure 3 that Yi+o must be
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negative since only one inflection point in an interval 1s per-
mitted; then (-,+)1+2 is the only combination that doesn't make
the inflection point extraneous. Repeating the argument fcr
i+3, 1+4,... we find that the alternation of signs must continue
if extraneous inflecticn points are to be avoided. In this case,
however, y(x) cannot satisfy the final boundary condition. For
instance, if i+4 1s the last point, the dashed line would be a
typical specified slope associated with the positive di+4’ a
value impossible for y{,, to achieve. If y;+4 had been specified
tihe contradlction is more direct since di+4 has the same sign by
definition. The initial assumption that there 1s at least one
point 1 such that di and y; have the same sign, if there are no
extraneocus inflection points, can be shown by an argument similar
to the one just completed. If one assumes di and y£ have oppo-
site signs at all points then the boundary condition at either
the first or last point cannot be satisfied.

The cublc interpolation curve may satisfy the above
. and d, have the

i i
same sign), but if 1t does not, nothing can be changed to correct

condltions on the second derivative (1.e., Yy

it. In order to find a spline curve which has a parameter that
can be variea to satisfy the curvature conditions, we are led,
with some physical justification as well, to consider a simply

supported spline in tension.
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IV. SIMPLY SUPPORTED SPLINE IN TENSION

4,1 Basic Equations

For the spline in tension we have, corresponding to (6),

the form [8]:
£,(x) = (% q~x)yy + (x-%4)yg4y *

sinh p(x-xi)-(x-xi)sinh p
sinhp-p

+ ;g%IIY{ +'ﬂyi+1 - (q+1)(yi+l‘y1)][

sinh p(xi+1-x)-(x1+l-x)sinh p

1 [ 1 t
- s—[nyi+yl o -(n+1) (yy -5, ) I ]
n°-1 1 71+1 i+1 Y1 sinh p - p ’
(23)
for x; £ x< X544 (L = 0,...,n),
where . tnn
cogh p- sinh p
n = P P (24)
8inh p - p
and

P o ./tension

Although not immediately obvious, (23) reduces to (6) for p = O.
Figure 4 shows a graph of n as a function of p. For r large, q
approaches p-1 asymptotically.

Corresponding to (7), the second derivative 1is
g 2
\ 1 | p® sinh p(x-x,)
fi(x) = ggiIiFY£ +I]Y{+1 - (“+1)(y1+1'y1)}

sinh p-p

2
p° sirh p(x,, ,-x)
)] 147 | (25)
sicth p - p J

- [QY{ + Y{+1 = (n+1)(y1+1-y1

for x; £ x< Xy4 (1 =0,...,n).
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From (25),

2

l D inh

I(xi) n -1 [WY{+y1+1'(ﬂ+l)()1+1 yi)] Sinhspn- g’ (26)
and
2
" 1 sinh p
1im £y 1(x) = [y Lty (n*t) (v, -y, )1 2

(27)

As in the cubic polynomial representation of the spline, the
form of fi(x), (23), assures that the conditions on value and
slope, expressed in (2), (3) and (4), are identically satisfied.
Using (25) and (27), the continuity condition on the second

derivative, (5), becomes

Yiq tenw) + ¥y = ) (3y4q-744) (L =1,..,n) (28)

Note that since n equals 2 in the limit as p approaches zero,
(28) reduces to (10) as p = O.
Equation (28) gives n equations for the n+2 unknowns

Yis @ =0,1,...,n+tl). If the end slopes vl and y! , are

n+l

cpe 1fied, theras are only n unknowns and equations (28) are

sulficient, If the second derivatives at the ends, yg and

Y+1 are specified, then the equations (cr, (12), (14))

- 8inh p - p P .
yi oy o= -y — -1) + (n+1){y 7))
v+ vy 0 oZ stoh b (n (n+1){y; -~
e
= ol sinh p - p( 2 1) + ( +1)( _ ) ( 9)
yﬂ nyn41 J;'l La sinh P n- n yn+l yn ’

are combined with (28) to provide n+2 equations for the n+2

unknowns.
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L.,2. Conditions for an Inflection Point.

Combining (25) with (26) and (27), the second derivative
can be expressed in terms of its values at the interval enda-

points:
sinh p(xi;l-x) sinh p(x-xi)

+ yll
sirh p i+l sinh p

10 = 3]

(30)
X, £ x< Xy (L=0,0.0,n)

Inspection of this form shows that although f;(x) ‘s not a
linear function as in the cubic polynomial case, it still has
the property that it will not cross zero unless the end values,
y{ and y£+1, have opposite signs. For instance, 1if yI and
y;+1 are both positive then, going from x, to x,.,, the first
term in (30) decreases monatonically frcm y; to zero while the

second term increases monatonically from zero to y thus

1+17
both termes are positive in the interval and there can be no
inflection point. A similar argument shows that if y; and y;+l
are of opposite sign then there is one and only one inflection
point. Thus, we have shown that the interpolation curve, y(x)
(cf. (1) - (5)), using the hyperbolic spline representation
fi(x) shown in (23), satisfies the assumptions on y(x) specified
in the Definition and Theorem 1 discussed in Part III,

The inflection point conditions in terms of s, are

Aaval AnaAd
- ¢ \-‘vr\o

in [~ 523 e¢] [ eelat 2t o)
~-a Abts W

the cubic polynomial representation (see (15) - (21)). The
final results are that there will not be an inflection point

in the interval Xy < X < Xy49 if and only if -n <C1 < -1/q
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and that for si and s of opposite sign, an extraneous in-

i+l
flection point will net occur if Sy and 5i41 differ in magni-
tude by less than & factor of 1. At this point cne may be
led to the conclusion that by increasing tension sufficlently,
N will accomnodate any specified ratio ii and therefore all
extraneous inflection points can be removed. The problem is

that s, is a function of n and thus as 1f changes; 8o woes Ci‘

1
Since the hyperpolic spline representation approaches a poly-
gonal function as n becomes large, the values of ¥, approach
finite limits, which places the conclusion on firmer ground.

It is more useful, however, to establish this conclusion by
completely determining the effect of tension on slope and curva-

ture throughout all the intervals. Clearly, an explicit solu-

tion for the unlnowns y! (1 = 0,..,n+l) is desirable.

4.3 An Explicit Solution.

Consider first the case of given yé and yé+1. Equa-

tions (28) can be written in matrix form,

NY!'=C (31)
with
29 1 0 ...0 O O
1 2¢ 1, 0]
0 1 4
N = . . i .“ . ) (32)
0 *2n 1 0
0 1 29 1
0O 0 0 1 29 |
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]
1

b
Yo

y! )

(33)

I
(1) (y,-y,) - v

(Tl‘*'l ) (y3'y1)
(ﬂ+1)(y4"y2)

(n+1) (v, 1-¥,_3)
(1) (v, -v,.0)

1) (VY1) = ¥4,

[
-— -

-18-

(34)

Since 1> 2 for all p > O, the diagonal elencnt in each row

of N is larger than the sum of the absolute values of the re-

maining elements in that row; thus, by a well known theorem

on determinants [9], N has an inverse,

of N (say, order m) can be written explicitly [10,11]:

o m-l
- P P .
O =z
N-l= %_ + PO Pm-3
m .
mtl
f—l) PP,
where

m+l
“PPmo  *PoPpo3z +-- (1) P PO
m
+P1Pm_2 -Ple_3 ce. (1) PlPO
m+1
-Ple~3 +P2Pm_3 ee. (=1) PP
[ ] [ ‘. *
L ] .. L ]
m mtl ¢
(-1)" PP (-1) PP, .. Pm-lpqd
P =1
Py =21
P, =20P) - P_
P3 = 21]?2 - P1
Pm en Pm-l' m-2

In fact, the inverse

(35)

(36)

L e e

T
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Uk(ﬂ,, tha diract rcpresentation is
ﬁ
4 n .
P, =2 i1 (- cos %#T) (i =1,...,m)
I==1 (37)
PO = 1.

Defining a matrix R as the adjoint of N,

-1
R = Pm N R (38)

equation (35) can be written in indicial form:

R

i+
py = (1) in_lpm_J 1<3 1,§=1,...,m
R'11 = hiJ i,ij=1,...,m
Also we note symmetry about the non-principal diagonal:

Bmlog mb1-1 = Ry L3 =1....m

In the above case of given end slopes, m = n. In the

1 "

case of given y" and Yn+1 8iven, N takes on a slightly changed

form since equations (29) must be included:

-~ -

T 1. 0 ... 0 O O
1 2n 1 0

N= | LT 3 (39)
0 T Tan1 o
0 ‘1 2 1
0 0 0 1 1

e A -
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with order m = n+2,. The inverse of this second form of N, 1s

identical to the form shown in (35) if P, 1s redefined as [12,11]:

Po=1

Py =

P, =2qP; - P_

Py = 21P, - Py (40)
Pne1= 2Py 5 - Pm-~3

m = MPm1 - Fpoo
Except for P, the P, (1 =0,...,m-1) in (40) are Tschebyscheff
polynomials of the first kind, Ti(q), and have adirect represent-

ation

1
P, =20 (n-cos Ftx)  (1=1,...,m1)

k=1

With y and y! specified, the column vectors Y! and C

n+1
(cf. (31)) that correspond to N (ef. (39)) are:

- 9
Fy! 5 (42) (n+1)(y,-v,) - (n-1) E%EEJL-E- )
C ! sinh p
y{ (n+1) (y5-v, )
S ¢ = [(nt1)(y5-y,)
Yo+ | (13,0 ¥py_y)
2 _,8inhp-D
L}n+1)(yn+1-yn) + (n°- )-ggz—g—— y +1
(43)

g s S - - - . - e -, WP B et P

e o PR
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Because of the similarity in the forms of the solution, the case
of given yg and yg+1 will not be discussed further.

Theorem 2. Let an interpolation curve y(x) be of the
r~rm specified in eqs. (1) - (5) with fi(x) (1 = 0,...,n) being
the hyperbolic spline representation given in (23). Assume that
the end slopes y! and y},, are specified and that d; £0 (1 =1,
.«.»n), (For the case of d; =0, i.e., three given points in a
1°ne, see Part 4.4,) Then, the condition exrressed in (5) and
ecuivalertly in (28) and in(31) has the solution

Y = N 1c (4)
where N’lis given by (35). Thus, y(x) 1is completely determined.

Further, there exists a value of 1> 2 such that the

curvature conditions expressed in Theorem 1 are satisfiled, 1.e.
yy a4 >0 (1 =0,...,n+l). (45)

Proof. First we will show that (35) is the ccrrect inverse.
Using (38), this is equivalent to proving.
NR =PI (46)

Let B = AR (47)

then using (32) and (38') the diagonal terms can be expressed:
(1 # 1,m)

B,, = (-P P + 2qP, P

11 i-2"m-1 1-1 m-1'P £

i-1 mui—l)
(48a)

Pya(@pp g - Py 9) = Py gPh g

"
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Using (36) repeatedly:

Bis =Py Ppoger - Fip Ppog

(2nPy 5 = Py _3)Pp 447 - Py oPpos

Pyp(@Pp yiy - Prog) = Py sPiyn
= Py oProt+2 = Pyo3 Ppogny

= Py %1 - By Pnoo
=Py 2Py - Py Ppn = Pye
Also By, = 2nP P . - PP, =P (48b)
B =20B _, P, -P 5P =F. (48c)

Since N 1s symmetric we need show only the upper matrix terms

(3 >1) as zero:

(3> 1,1 #1)

Byy = (-1)1+J[~P1_2Pm-J v 2Py Py - PyPpogl
(484)
= (-1)1+3Pm-J[-P1 t(anPy ; - By o)l =0
(3 >1, 1 =1)
29 5] & 2n (1) FoPm-g * (-21)%" "1 -
(48e)

= (-1)? PPy + (20)] =0

Thus, eqs. (48) verify (46).




562(36)/3 -23-

Next, consider the existence of a value of 1 > 2 such
that there are no extraneous inflection points. The second
derivative at 1, yj, can be expressed in two equivalent (cf. (5))
forms, (26) and (27). By adding these twc forms we obtain the

more symmetric expression:

1l pESinh p[yl 3
(n2-1) sinh pp "

2y; == - y£+1 * (ﬂ*l)(yi+1 = 2y1 + yj-l)]

(1 = 1""Jn) (49)

or, using (22)
2

" o_ 1 P sinh P
vy T 5
2{n“~1) sinh p-p

(¥ - ¥iyy + (0¥1)q] (2 =1,...,n) (497)

Substituting (49') into (45) and omitting the prsitive constants,

e must show that

[yi_l - y{+1 + (n+1)di]d1 >0 (1 = O,...,n+1) (50)

for some > 2.

th inequality of (50)

Assume d1 > 0 and consider the i
(1 # o,n+1):
(n+1)d; > yiy - ¥i - (51)
Using the solution for y! (cf. (44)) where N'l, (35), is expressed
in terms of the elements cf its adjoint (38), the inequality (51)

becoumes:

n
(q+1)di Py2 Z (R
JEL

is an 1

1+1 J = Ri-l J)CJ (52)

From (36) we see that P th o rder polynomial in 7q; from

i
(36) and (38'), Rij (1,3 =1,...,n) 1is a polynomial of order
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4

n-l or less; from (34%), C, is linear in 1n. Further, it :an
be snown from (3€) that

0CP <P <Py< v <Py 2 2, (53)

Thus, we £ind that the R....S. of (52) is a polynomial in n of
order n while the L.H.S. of (52) is a polynomial inn of order

ntl and 1s positive for n > 2. Thus, there will always be a value
of n > 2 which satisfimrs the inequalities (52). Such a value

will be the largest root of a polynomial of order n+l and can be
easily found numerically if not analytically. Other cases in

the proof follow essentially this same argument.

Having determ!ned the minimum value of 5 which satisfies
the curvature conditions, the unknown slopes can be determined
from (44); (23) 1s then used to perform the interpolation in the
desired regions.

An example of a "tensioned" spline curve 1is shown as a
broken line in Figure 5. The solid line shows a normal spline
curve through the 3 given points 0. 1.0, 2.0. The two intervals
shown are actually part of a 7 interval problem; the vertical
scale is exaggerated 5 times for clarity. No*e that twe extrane-
ous inflection points are removed by the use of the spline in

tension.

4.4 Some Practical Considerations

In the case where three consecutlve points are in a
straight line, i.e. 4, = O, the conditions (45) cannot te satis-
fied for finite n. An infinite value of n will make the
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interpolation curve simply a polygonal function - which 1s harcly
satisfactory. Practical considerations suggest prescribing a
straight line from Yy to Yi41 and considering two problems:

a curve from Yo to ¥y _

i-1
1
Yi41 to Y+l with Yia specified. Where d1 is very close tc zero,

with y)} specified and a curve from
i-1

a circular segment prescribed through the given points at . ;.

(3
-

Vqs Yi41 and the use cof the above scheme would probably be pref-
erable to a very large value of 1. In general, specification

of a discontinuity in curvature or slope at an intermediate given
point, or an interval of specified curvature, can be handled by
considering two spline curves, one on either side of the specified
discontinuity or region.

If a predominance of problems deal with specified end
curvatures, it 1s useful to derive the solution in terms of second
derivatives at the given points instead of the slopes since it
avolds the expliclt use of the two additional equations (29).

In such a change cof variables, (4) rather than (5) are the con-
ditions which are not identically satisfied, but the resulting

matrix, N (cf. 32)), is unchanged.
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