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ABSTRACT 

Six spherical shell models with clamped boundaries consisting of 

two and four layers were tested under external hydrostatic pressure to 

explore the feasibility of multilayer construction for application to 

hydrospace vehicles. In addition, four monolithic models were tested 

to provide a basis of comparison. Three of the multilayer shells were 

bonded with epoxy resin and the remaining three were not bonded. 

The bonded multilayer shell models collapsed at pressures approxi¬ 

mately equal to that of the monolithic shells. The unbonded shells 

showed appreciable reduction in strength. 

ADMINISTRATIVE INFORMATION 

The work described in this report was conducted as part of the Model Basin 

Fundamental Research Program, Subproject S-R011 01 01, Task 0401. 

INTRODUCTION 

One of the problems involved in designing pressure hulls for deep-diving oceano¬ 

graphic vehicles and submarines is the increased thickness of the hull plating. As 

pressure hulls are designed for greater depth and/or larger diameters, the thicknesses 

required become prohibitive from a fabrication standpoint. Several possible solutions 

to this problem are being investigated. Among these are the use of sandwich and 

multilayer construction. 

The use of laminated or multilayer construction is quite common in the fabri¬ 

cation of pressure vessels subjected to internal hydrostatic pressure. The use of 
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thinner plating offers the advantage of greater ease in fabrication. Inherently, 

the thinner plating will be superior in ductility and toughness, higher in yield 

strength and more uniform in properties. In addition, internal pressure vessels 

of laminated construction may be made more efficient structurally through pre¬ 

stressing. 

However, the use of multilayer construction for pressure hulls of hydrospace 

vehicles introduces a problem which is not encountered in internal pressure appli¬ 

cations, namely that of structural stability. Little effort has been directed towards 

the evaluation of this problem. 

Six multilayer and four monolithic spherical caps were machined and tested 

under external pressure to explore the feasibility of multilayer spherical shells for 

hydrospace applications. The six multilayer spherical caps consisted of two and 

four layers. Three of these models were bonded with epoxy resin and the remaining 

three were not bonded. The four monolithic shells were tested to provide a direct 

basis of comparison. The spherical cap with clamped boundaries was chosen as the 

model configuration because it was felt that the presence of high bending stresses 

would be a severe test of the efficiency of multilayered spherical shells. This 

report presents the results of these tests. 

DESCRIPTION OF MODELS 

Ten models, each consisting of a spherical cap bounded by a heavy end 

cylinder, were machined from 7075-T6 aluminum bar stock with a nominal yield 

strength of 80,000 psi. Young's modulus E and Poisson's ratio v were assumed to 
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be 10.8 X 106 psi and 0.3, respectively, in all calculations. A schematic section 

view of the models is presented in Figure 1 . Figure 2 is a plot of the ratio of 

(EsEt)i to E and the axial compressive stress in the material as determined from 

uniaxial compression test of specimens taken from the bar stock, where Es and Et 

are the secant and tangent moduli respectively. 

The ten models comprised two groups of shells, one with a nominal shell thickness 

of 0.03 in. and the other 0.06 in. Thu 0.03 group consisted of monolithic and two- 

layer models, and the 0.06 group consisted of four-layer models in addition to mono¬ 

lithic and two-layer models. Each model had an included angle of 90 deg. Earlier 

tests have indicated that the strength of segments of these thicknesses is not affected 

by increasing the size of the segment beyond 90 deg; see Appendix A. 

Table 1 gives the nominal model dimensions, and Table 2 presents the shell 

thicknesses and measured initial departures from sphericity. The thicknesses shown 

for the multilayered shells were obtained by adding the thicknesses of the individual 

layers in corresponding areas. Radius measurements for these models were taken on 

the inside surfaces of the assembled models with the edges clamped. For the bonded 

models, these measurements were taken prior to bonding. 

All models or layers were machined in the same manner. First both surfaces 

were rough machined. Then the inside contour was generated with a special tool 

while the outside was supported with a potlike fixture formed of the low melting 

point material serol. The final outside contour was then obtained by supporting the 

inside contour with a mandrei and generating the outside surface. 
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Models 6, 8, and 9 were bonded with epoxy resin (Epon 828 and Versimid 140) 

having a compressive yield strength of about 7000 psi and a Young's modulus of 

330,000 psi. The entire mating surfaces were coated, the layers were slipped 

together, and then firmly clamped at the edges. Application of heat was necessary 

to solidify the epoxy resin. This was done in a furnace at a temperature of 140 F 

for 1 hr. Models 5, 7, and 10 were not bonded. 

TEST PROCEDURE 

Each model was tested under external hydrostatic loading with oil as the pressure 

media. A sketch of a model in the test tank is presented in Figure 3. Pressure was 

applied in increments, and effort was made to minimize pressure surge when applying 

the load. Each increment of pressure was held at least 1 min and the final pressure 

increment was less than 5 percent of the collapse pressure. A slight dropoff in 

pressure was observed just prior to collapse of all models. As soon as this was detected, 

the pressure was increased to maintain a constant level. 

Strain readings were recorded for each model except Models 2, 4, and 6. 

Because of the relatively small size of the models, foil resistance strain gages with 

grids 1/32 x 1/32 in. were used. Strain gage locations for these models are given 

in Figure 5. 

RESULTS 

The experimental and calculated collapse pressures and membrane stresses away 

from the boundary are presented in Table 3. Elastic strain data for all instrumented 

models are presented in Figure 4. The abscissa for these plots is the ratio of the arc 
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length from the fixed edge to the gage to one-half the unsupported arc length of the 

shell, and the ordinate is the strain sensitivity (i.e., the initial slope of the straight- 

line portion of the pressure strain curve in ¿x in./in./psi). Typical pressure strain 

diagrams are presented on Figure 5. Photographs of the models after tests are shown 

in Figure 6. 

DISCUSSION 

Table 3 compares the experimental buckling pressures with the pressures calcu¬ 

lated by Model Basin empirical elastic and inelastic buckling equations* for complete 

spheres. In all calculated pressures, the average thickness near the edge was used 

since failure of each of these models occurred in the nonsymmetric mode (see Figure 6). 

The experimental buckling pressures of the monolithic models are in good agreement 

with previous results of Krenzke and Kiernan.1 Models 1 and 2, which had a 

P3/P^ ratioof approximately 1 and a 9 value of 11.8, gave P^p^E ra^oso^®*^ 

and 0.78, respectively. For the samevaluesof P3/P^ and 9, a rat'° 

approximately 0.80 has been obtained in the earlier tests.1 Models 3 and 4 which had 

a P3/P^ ratio of approximately 1 .7 and a 9 value of 8.2 gave ra*’os 

and 0.81, respectively. For the same values of P3/P^ and 0, a PEXp/PE ratio of 

approximately 0.86 had been obtained in the earlier tests.1 

The experimental results of the bonded multilayer shells were essentially the same 

as those of the monolithic models (see Table 3). The bonded model of the 0.03 in. 

1 References are listed on page 38 

*A brief background on the collapse strength of spherical shells together with the 

nomenclature used in this text are presented in Appendix A. 
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series (Model 8) showed no reduction in strength. In fact, the ratio of PgxP^E ^or 

Model 8 was slightly higher than that obtained for the monolithic shells. This is 

possibly attributable to the tnickness of the epoxy resin layer which is neglected in 

all calculations. Models 6 and 9, the bonded models of the 0.06-in. series, showed 

a reduction in strength of approximately 9 percent. P^xp/^E ra^os of 0-75 and 0.74 

were obtained for lhese models. Models 3 and 4, which were monolithic in construction 

and had the same ratio of shell thickness to radius, gave P /V„ ratios of 0.80 and 
EXP E 

0.81. Conceivably, failure of these models could have initiated prematurely in the 

bonding layer. 

The collapse strength of the unbonded models was appreciably less than that of 

the monolithic models of comparable shell thickness. Models 5, 7 and 10 collapsed 

at pressures equal to 77, 73, and 48 percent of those observed for comparable mono- 

lithic shells. Considering the severe edge conditions imposed on these shells, these 

results are not too surprising. In explaining the strength reduction of these shells, 

it is convenient to put Zoelly's classical buckling equatiorr in the form 

4 \/(l - i^)BD 
Pi = R3 [11 

where B, the extensional stiffness, is equal to Eh/1 - i? and D, the bending stiffness, 

is equal to Eh3/12 (1 - i/3). In this equation, it can be seen that the only term 

affected by layered construction is the bending stiffness D. Assuming the layers 

are free to slip on one another, the effective stiffness becomes 

EFF 
_ (j) E (h/j)5 

12(1 - 

[21 
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where ¡ is the number of equal thicknesses comprising the shell. If this expression is 

used in place of the nominal bending stiffness D in Equation [11, the buckling expression 

becomes __ 

4 \/0 - m 
P = — -55- LJ I 

-, ccc I K 

Thus, it seems that an initially perfect, multilayer sphere could be weaker in strength 

by a factor of 1/j when compared to a monolithic shell of the same thickness and 

radius. If the factor 1/j is used in conjunction with Model Basin empirical equations, 

the elastic and inelastic buckling of near-pe»-fect multilayer shells becomes 

Psccr = 1/i (-84)E (h/Ro)2 for = 0.3 
fcrr 

[41 

Pr = 1/j (.84) )jE$Et (h/R0)2 for y = 0.3 [5] 
EEFF 

The experimental results of Models 5, 7, and 10 are compared with the pressures 

of Equations [41 and [5] in Table 3. It can be seen that fairly good agreement was 

obtained on Models 7 and 10, both of which seemed to have failed elastically. 

PEx/PE 
ratios of 1.10 and 0.94 were obtained for these models. The fairly low 

EFF 

nomma I stress levels attained at collapse (59 and 45 percent of the stress at the pro¬ 

portional limit) indicates that these models failed essentially by elastic instability. 

Although some nonlinearity can be observed in the pressure strain plots of both these 

models, this is attributed to elastic nonlinear behavior. This is indicated in the 

pressure strain plots for Model 7 (Figure 5) where the shape of the curves was repeated 

without noticeable permanent set between the two runs. 
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A Pexf/^e ratio of 0.74 was obtained on Model 5. Although the nominal 

stress at collapse was only 74 percent of the proportional limit, the pressure strain 

plot for this model (Figure 5) indicates that yielding occurred prior to failure. Thus, 

failure of Model 5 was inelastic. It is therefore not surprising to see the fairly low 

ratio of ^exp^E * resulfs have been obtained for comparable monolithic 

segments; see Figure 7. 

Figures 4a and 4b indicate that there was relatively good agreement between 

experimental and theoretical strains for the monolithic shells (Models I and 3).* 

The general shape of the strain distribution patterns was very similar, but the experi¬ 

mental points were slightly to the left of the theoretical curve. The experimental 

results of the bonded multilayer shells (Model 3 and Models 6 and 9) are also shown 

on these plots. Note that the strains were nearly identical to those of the monolithic 

shells. The strains for Model 4 and Models 5 and 10 which were not bonded are 

compared to the empirical distribution of experimental strains of Models 1 and 3 in 

Figures 4c and 4d. The data indicate that the edge effects on the unbonded models 

were confined closer to the boundary than on the monolithic shells. This is attributed 

to the reduced stiffness of the multilayer shell. The data also demonstrate that, 

as would be expected, considerably more bending v/as present in the unbonded 

shells than in the bonded and monolithic shells. This supports the conclusion that 

premature failure results from the reduced bending rigidity of unstable multilayer 

spherical segments which are not bonded together. 

The elastic stress analysis of spherical segments with clamped boundaries is 
presented in Appendix B. 
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Although these tests were rather exploratory, several general observations can 

be made concerning the feasibility of laminated shells for deep-depth applications. 

The models tested in this study were in the farily unstable range with severe edge 

conditions, and thus the results should be used with caution. It is possible that the 

strength of a laminated shell without bonding can be increased by providing more 

favorable edge conditions. The collapse strength of a complete multilayer sphere, 

for example, could approach that of a monolithic sphere if no appreciable bending 

is present prior to collapse. In this regard, the effect of bending, friction between 

layers, and reduced bending rigidity on collapse strength must be more firmly 

established. If the individual layer of a multilayer shell is of such thickness that it 

is fairly stable in itself, these effects are not too significant. This is true for many 

of the materials under consideration for various hydrospace applications. Thus, 

further investigation of this problem seems warranted. 

SUMMARY 

Six multilayer and four monolithic spherical segments with clamped edges were 

tested under hydrostatic pressure to explore the feasibility of laminated spherical 

shells for hydrospace applications. These tests demonstrated that the bonded multi¬ 

layer shells were approximately equal in strength to the monolithic shells. However, 

the collapse strength of those multilayer shells which were not bonded was appreciably 

below that of the monolithic shells. In fact, the strength of the unbonded shells 

which failed at low membrane stress levels could be estimated by neglecting the 

effects of frictional forces between the layers. Since the models tested were fairly 
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unstable and had severe edge conditions and since many practical applications might 

involve stable spheres or hemispheres with more ideal edge conditions than represented 

by these models, further investigation of the behavior of multilayer spherical shells 

appears warranted. 
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TABLE 1 

Nominal Model Dimensions 

Model Number Number of Layers 
L 

nnom hi 

1 1 0.03 0.03 

2 1 0.03 0.03 

3 1 0.06 0.06 

4 1 0.06 0.06 

5 2 0.06 0.03 

6 2* 0.06 0.03 

7 2 0.03 0.015 

8 2* 0.03 0.015 

9 4* 0.06 0.015 

10 4 0.06 0.015 

*Bonded 
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APPENDIX A 
RECENT TESTS OF SPHERICAL SHELLS 

The elastic buckling of complete spherical shells was first treated by Zoelly and 

is presented by Timoshenko.2 His classical pressure Pi may b« given by 

Px = 1 .21 E (h/R)3 for V = 0.3 [A 1 ] 

where h is the shell thickness and R is the midsurface radius of the shell. 

Early experiments showed wide disagreement with Equation [A 1]. Normally, 

this disagreement may be attributed to initial imperfections, adverse boundary condi¬ 

tions, and residual stresses present in the experimental specimens. More recent tests1'3,4 

of shells which more closely meet the assumption of the theory (i.e., near-perfect 

shells) lend considerable support to Zoelly's equation. Tests of small, near-perfect 

machined hemispherical shells which had ideal boundaries and which failed at stress 

levels below the proportional limit have given experimental pressures ranging from 70 

to 90 percent of the classical buckling pressure. The tests indicated that the classical 

buckling coefficient of 1 .21 may be attainable for the ideal spherical shell. However, 

the tests also demonstrate that for small, almost unmeasurable imperfections, the 

buckling coefficient falls off very rapidly to about 70 percent of the classical value. 

Based on these results, the Model Basin recommended1' 3/4that the following formula 

be used to predict the collapse strength of near-perfect spherical shells whose initial 

departures from sphericity are less than 2 1/2 percent of the shell thickness: 

P3 = 0.84 E (h/R0)2 for v = 0.3 [A 2] 

where R0 is the radius to the outside surface of the shell. 
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Initially perfect shells may buckle at pressures approaching 43 percent greater 

than the pressure given by this empirical equation. However, it appears unrealistic 

to rely on this additional strength because of the difficulty in measuring the initial 

contours of most practical shells to the degree of accuracy required. 

Based on the results of the elastic buckle specimens, an empirical formula was 

also developed which adequately predicted the collapse of near-perfect machined 

hemispherical shells which had ideal boundaries and which failed at stress levels 

above the proportional limit. This formula may be expressed as 

PE = 0.84 \[ÏT^ (h/R0)s for v = 0.3 [A3] 

For stress levels below the proportional limit. Equation [A 3] reduces to Equation 

[A 2]. From simple equilibrium, the average stress may be expressed as 

a PRo2 

aVg 2h R 
[A4] 

Equation [A 3] can then be solved by a trial and error process using the stress-strain 

curve for the material used in the test specimen. Equation [A3] therefore provides 

a baseline for predicting the elastic or inelastic collapse of near-perfect, initially 

stress-free, deep spherical shells with ideal boundaries. 

Tests were also conducted to determine the relationship between unsupported 

arc length and the elastic and inelastic collapse strength of machined shallow spherical 

caps with clamped edges.1' 5 Although previous data in the literature showed wide 

disagreement in experimental results, these tests followed a very definite pattern. The 

test results for the elastic models are plotted in Figure A-l .5 The ordinate is the ratio 

of the experimental collapse pressure to the empirical pressure P3, and the abscissa 
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is the nondimensional parameter 0 defined as 

0.91 La 
9 = ——=— for j, = 0.3 [A 5"] 

y Rh 

where La is the unsupported arc length of the shell. The results are in good agreement 

with the axisymmetric nonlinear theory of Budiansky,6 Weinitschke,7 and Thurston8 for 

0 less than about 5.5 and the nonsymmetric nonlinear theory of Huang"* and Thurston10 

for 0 greater than 5.5. Thus, it seems reasonable to assume that the mode of failure 

becomes nonsymmetric for 0 greater than 5.5. The experimental results for the inelastic 

models are presented in Figure 7.1 The results are plotted in families of curves which 

basically represent varying degrees of stability; shells with the highest values of 

p3/pe are the most stable. For those deep segments which had Ps/P^ ratios of 1, the 

average membrane stress at collapse was approximately 70 percent of the proportional 

limit. The observed collapse pressure was approximately 20 percent lower than would 

be expected for a complete near-perfect sphere. 
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APPENDIX B 
STRESS ANALYSIS OF SPHERICAL SEGMENTS 

The forces and moments in a spherical segment with clamped edges under external 

hydrostatic loading can be obtained by superimposing the results of the membrane and 

bending solutions such that the boundary conditions are satisfied. In the membrane 

problem (Figure B-l) the shell experiences a uniform compression, no rotation at the 

edge, and a horizontal displacement given by 

FIGURE B-l 
To this solution must now be added the effects of edge moment and horizontal force 

consistent with the boundary conditions (Figure B-2), 

The magnitude of H and Ma must be such that the corresponding rotation and horizontal 

displacement at the edge are zero. 

The analysis of a spherical shell under symmetrical loading is presented by 

Timoshenko in Reference 11 . Of interest to this report is an approximate solution 

obtained by Hetenyi.12 The results of his solution for the forces, moments, horizontal 

displacement, and rotation are: 
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-X¡/) 
6 

N . = -cot (a - ¡/i) C / . ..- . sin (\i¡) + y) [B 21 
^ s/ sin (ry - ¡/)) 

N = C ,— - [2 cos (X>/) + y) - (Kx + Kj) sin (X0+y)] [B 3] 
e 2 s! sin(a - 

R e"^ 
M, = —C/ ..=== [K: cos (X’j) + y) + sin (X0 + y) ] [B 4] 

* 2x / sin (a - i/)) 

R eAyj r 
M = - C --— { [(1 + 1^) (^ + ^)-2^ 1005 0,1)+y) 

8 4i^X \Jsin (ai - 

+ 21/3 sin (Xi/) + y)} [B 51 

6 
R sin (a - i/)) 

Eh 
[cos (X0 + y) - K8 sin (X¡/) + y)l [B 6] 

V cos (X’i) + v) [B 7] 

where the angles et, ¢, and ^ are defined as shown. 

and 

K: = 1 - -—— cot (a - i/j) [B 8] 
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K, 
1 + 2v 

1-— cot (a - 0) [B 9] 

X4 = 3 (1 - 1^) Í £ [B 10] 

The constants C and y are determined from edge conditions. For the case of 

horizontal force applied to the edge of the shell, the boundary conditions are: 

(MJ „ _ = 0 
' 0 = Q! (N^)0 = O!= "HcOSa 

Substitution of the first condition into Equation [B 4] gives y. y and the second 

condition can then be substituted into Equation [B 2] to determine C. These operations 

give 

yH = tan-1 [Bll] 

C|_| = - H (sin oí ,. J /iv+T 
K* 

The horizontal displacement and rotation at the edge are then found to be: 

[B 12] 

= +1)H 
H Eh k/ 

[B 13] 

V = 2X3 5?n .° H 
H Eh K, 

[B 14] 

For the case of moments distributed along the edge, the boundary conditions are: 
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Proceeding in a manner similar to that described above, the constants for this case 

are given by: 

y = 0 [B 151 
m 

c 
m 

2XM a‘'/sin a 

R Kx 
[B 161 

The horizontal displacement and rotation at the edge follow: 

2 X2 sin at 
6 =- M 

m EhK, 
[B171 

V 
m 

-4x3Ma 

ERh Kx 
[B 181 

The edge moment M and the horizontal force H can now be determined from the 
a 

boundary conditions for a clamped spherical segment. These require zero horizontal 

displacement and rotation at the edge. 

-AR sin2 a 1 2\2 sin o? pR20 ~ v) • r 

ï6 = 0: —§T-(K3 + k:)h+ = s,na [B’91 

EV = 0: 2X3 sin a H 

Eh k/ - 

4X3Ma = 

ERh Kx 
[B 20] 
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These equations give 

-pR3 (1 - 
M =- [B 21 ] 

4\3 K? 

- pR (1 - 

2x Ka sin a [B 22] 

In the two sets of constants of y and C, C and C may now be evaluated from these 
ri m 

relations. Superposition of the forces and moments found from each set with the results 

of the membrane theory yield the forces and moments for the spherical segment with 

clamped boundaries under hydrostatic loading. The results are: 

N* = - 
pR 

.+ 
e ^pR (1 - i>) 

2X 

. r ÆTâ n 
COt (a ' ^ L K^sin^-J COS ^ [B 23] 

N 
0 

pR e ^ pR (1 - u)\/sin a 

"T + 4Ka c 2 sin X!i,+ (Kl + Ka) cos W 
[B 24] 

e X^pRs (1 - i>) \/sin a 

4X3 K2 y/ sin (a - 0) 
(K1 sin \¡l) - cos X0) [B 25] 

e X^pRs (1 - i>) yjsin a 

Me ^KT^nfa-rt í [(,+ ^ (K> + K=> -2K=] Si" > * [B 261 

- 2i^ cos Xi/j j 

The strains can readily be obtained from these equations and the two-dimensional 

Hooke's Law. Equations [B 23] - [B 26] were programmed for the high-speed computer 
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facilities of the Applied Mathematics Laboratory at the Model Basin. It is apparent 

that these equations do not yield valid answers for certain angles. When the right term 

of the right side of Equation [B 9] becomes 1 , K2 , which appears as a denominator for 

each of these equations, becomes zero and yields infinite values for the forces and 

moments. Also, when the angle (rv - >/)) becomes zero (at the apex), the term ^sin (a - 0) 

becomes zero, again yielding infinite values for the forces and moments. For the two 

geometries studied, K3 becomes zero at approximately 5 deg from the apex. The results 

obtained from these equations in these areas have been ignored in the curves of Figure 4 

since membrane conditions were prevalent. The curves were completed by arbitrarily 

assuming the membrane strain. 
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